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Foreword

George Boole, an English mathematician, in 1854 has written a monumental work entitled �An inves-

tigation of the Laws of Thought�. In 1938, Claude E. Shannon (MIT, USA), in his classical paper

entitled" A symbolic analysis of relay and switching circuits" in the Truncations of AIEE, has devel-

oped the algebra of switching  functions  and showed how its structure is related  to the ideas

established by  Boole. This is a classical example of how an abstract mathematics in the 19th century

became an applied mathematical discipline in the 20th century. Such is the power of mathematics , the

queen of sciences. In my view the aim of Engineering Mathematics is to make the student think

mathematically and develop �mathematical maturity�.

The need for a good text book on �Engineering Mathematics� for students of engineering  and

technology in India can be easily understood.  Although several books are available, almost none of

them have the right combination , simplicity , rig our,   pedagogy  and syllabus compatibility , dealing

with all aspects of the course. I am confident that this present book will be able fill this void.

It gives me great pleasure to introduce �HIGHER ENEINGEERING MATHEAMTICS� by

B.V.RAMANA the publication of which heralds the completion of book that caters completely and

effectively from a modern point view of the students of Engineering  mathematics and physics and

computer science.

This book has been organized and executed with lot of care, dedication and passion for lucidity.

The author has been an  outstanding  teacher and has vast and varied experience in India and abroad

in the field of mathematics. A conscious  attempt  has been made to  simplify the concepts to facilitate

better understanding of the subject.

This book is self -contained, presentation is detailed, examples are simple, notations are modern

and standard and finally the chapters are largely  independent. The contents of the book are exhaustive

containing  Differential & integral calculus, Ordinary differential equations, Linear algebra, vector

calculus, Fourier analysis, partial differential equations, complex function theory, probability & statis-

tics, Numerical analysis and finally special topics Linear programming and calculus of variations.

Dr. Ramana, a senior most professor of Jawaharlal Nehru Technological University, Hyderabad

deserves our praise and thanks for  accomplishing   this trying task. Tata  Mcgraw-Hill, a  prestigious

publishing house, also deserves  a  pat for doing an excellent job.

I wish Dr. Ramana all success in his future endeavors.

Dr. K. RAJAGOPAL



Preface

Mathematics is a necessary avenue to scientific knowledge which opens new vistas of mental activity.

A sound knowledge of Engineering Mathematics is a �sine qua non� for the modern engineer to attain

new heights in all aspects of engineering practice.

This book is a self-contained, comprehensive volume covering the entire gamut of the course of

Engineering Mathematics for 4 years� B.Tech program of I.I.Ts, N.I.Ts, and all other universities in

India.

The contents of this book are divided into 8 parts as follows:

Part I: Preliminaries:

Ch. 1: Vector Algebra, Theory of Equations, and Complex Numbers, Matrices and Determinants,

Sequences and Series, Analytical Solid Geometry, Calculus of Variations, Linear Programming, on

website.

Part II: Differential and Integral Calculus

Ch. 2: Differential Calculus

Ch. 3: Partial Differentiation

Ch. 4: Maxima and Minima

Ch. 5: Curve Tracing

Ch. 6: Integral Calculus

Ch. 7: Multiple Integrals

Part III: Ordinary Differential Equations

Ch. 8: Ordinary Differential Equations: First Order and First Degree

Ch. 9: Linear Differential Equations of Second Order and Higher Order

Ch. 10: Series Solutions

Ch. 11: Special Functions�Gamma, Beta, Bessel and Legendre

Ch. 12: Laplace Transform

Part IV: Linear Algebra and Vector Calculus

Ch. 13: Matrices

Ch. 14: Eigen Values and Eigen Vectors

Ch. 15: Vector Differential Calculus: Gradient, Divergence and Curl

Ch. 16: Vector Integral Calculus



Part V: Fourier Analysis and Partial Differential Equations

Ch. 17: Fourier Series

Ch. 18: Partial Differential Equations

Ch. 19: Applications of Partial Differential Equations

Ch. 20: Fourier Integral, Fourier Transforms and  Integral Transforms

Ch. 21: Linear Difference Equations and Z-Transforms

Part VI: Complex Analysis

Ch. 22: Complex Function Theory

Ch. 23: Complex Integration

Ch. 24: Theory of Residues

Ch. 25: Conformal Mapping.

Part VII: Probability and Statistics

Ch. 26: Probability

Ch. 27: Probability Distributions

Ch. 28: Sampling Distribution

Ch. 29: Estimation and Tests of Hypothesis

Ch. 30: Curve Fitting, Regression and Correlation Analysis

Ch. 31: Joint Probability Distribution and Markov Chains

Part VIII: Numerical Analysis

Ch. 32: Numerical Analysis

Ch. 33. Numerical Solutions of ODE and PDE

Web Supplement Besides the above, the following additional chapters are available at

http://www.mhhe.com/ramanahem

1. Matrices and Determinants

2. Sequence and Series

3. Analytical Solid Geometry

4. Calculus of Variations

5. Linear Programming

The site also contains chapter-wise summary of all the chapters in the book.

This book is written in a lucid, easy to understand language. Each topic has been thoroughly cov-

ered in scope, content and also from the examination point of view. For each topic, several worked

out examples, carefully selected to cover all aspects of the topic, are presented. This is followed by

practice exercise with answers to all the problems and hints to the difficult ones. There are more than

1500 worked examples and 3500 exercise problems.

This textbook is the outcome of my more than 30 years of teaching experience of engineering

mathematics at Indian Institute of Technology, Bombay (1970-74), National Institute of Technology,
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Warangal (1975-81), J.N. Technological University, Hyderabad (since 1981), Federal University of

Technology, Nigeria (1983-85), Eritrea Institute of Technology, Eritrea (since 2005).

I am hopeful that this �new� exhaustive book will be useful to both students as well as teachers. If

you have any queries, please feel free to write to me at: ramanabv48@rediffmail.com.

In spite of our best efforts, some errors might have crept in to the book. Report of any such error

and all suggestions for improving the future editions of the book are welcome and will be gratefully

acknowledged.

B V RAMANA
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Visual Walkthrough

INTRODUCTION

Chapter Introduction provide a quick

look into the concepts that will be

discussed in the chapter

Examples

Every chapter contains worked out

example problems which will guide

the student while understanding the

concepts and working out the

exercise problems

Chapter11

Special Functions—Gamma, Beta,
Bessel and Legendre

INTRODUCTION

We consider Fourier-Legendre series and Fourier-

Bessel series. Chebyshev-polynomials which are

useful in approximation theory are also presented.

Algebraic function f (x) is obtained by the alge-

braic operations of addition, subtraction, multipli-

cation, division and square rooting of x polynomial

and rational functions are such functions. Transcen-

dental functions include trigonometric functions

(sine, cosine, tan) exponential, logarithmic and

hyperbolic functions.

Algebraic and transcendental functions together

constitute the elementary functions. Special func-

tions (or higher functions) are functions other than

the elementary functions such as Gamma, Beta func-

tions (expressed as integrals) Bessel’s functions,

Legendre polynomials (as solutions of ordinary dif-

ferential equations). Special functions also include

Laguerre, Hermite, Chebyshev polynomials, error

function, sine integral, exponential integral, Fresnel

integrals, etc.

Many integrals which can not be expressed in

terms of elementary functions can be evaluated in

terms of beta and gamma functions.

Heat equation, wave equation and Laplace’s equa-

tionwith cylindrical symmetry can be solved in terms

of Bessel’s functions, with spherical symmetry by

Legendre polynomials.

11.1 GAMMA FUNCTION

Gamma function denoted by  (p) is defined by

the improper integral which is dependent on the

parameter p,

 (p) =
� ∞

0

e−t tp−1 dt, (p > 0) (1)

Gamma function is also known as Euler’s integral of

the second kind.
Integrating by parts

 (p + 1) =
� ∞

0

e−t tp dt

= −e−t tp
���∞
0

+ p

� ∞

0

e−t tp−1 dt

= 0 + p (p)

Thus  (p + 1) = p (p) (2)

(2) is known as the functional relation or reduction

or recurrence formula for gamma function.

Result:

 (n+ a) = (n+ a − 1)(n+ a − 2)(n+ a − 3) · · ·
a ·  (a), n is integer.

By definition

 (1) =
� ∞

0

e−t dt = e−t

−1

����
∞

0

= 1 (3)

By the reduction formula (2),

 (2) = 1 ·  (1) = 1

and  (3) = 2 ·  (2) = 2 · 1 = 2!

and in general when p is a positive integer n

 (n+ 1) = n (n) = n(n− 1) (n− 1)

= n(n− 1)(n− 2) (n− 2)

= n · (n− 1)(n− 2) · · · 3 · 2 · 1 = n!

11.1
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WORKED OUT EXAMPLES

Example 1: Find the degree of the following

homogeneous functions:

a. x2 − 2xy + y2 d. x
1
3 y− 4

3 tan−1(y/x)
b. log y − log x e. 3x2yz + 5xy2z + 4x4

c. (
�
x2 + y2)3 f. [z2/(x4 + y4)]

1
3

Ans:

a. 2

b. log y − log x = ln
�
y

x

� = x0 ln
�
y

x

�
degree zero

c. (
�
x2 + y2)3 = x3

�
1+ �

y

x

�2
degree 3

d. x
1
3 y− 4

3 tan−1(y/x) = x−1 · x− 4
3 y− 4

3 tan−1 y
x

=

x−1
�
x
y

� 4
3
tan−1 y

x
. degree: −1

e. degree 4

f.
�

z2

x4+y4
� 1
3 =

�
1

z2
z4

x4+y4
� 1
3 = z− 2

3

�
1

( xz )
4+( yz )

4

�
degree = −2/3.

Example 2: Verify Euler’s theorem for the fol-

lowing functions by computing both sides of Euler’s

Equation (1) directly:

i. (ax + by)
1
3 ii. x+ 1

3 y− 4
3 tan−1(y/x)

Solution: i. f = (ax + by)
1
3 is homogeneous

function of degree 1
3

Differentiating f partially w.r.t. x and y, we get

fx = ∂f

∂x
= 1

3
(ax + by)−

2
3 · a

fy = ∂f

∂y
= 1

3
(ax + by)−

2
3 · b

Multiplying by x and y and adding, we get the L.H.S.
of (1)

x fx + y fy = 1

3
(ax + by)−

2
3 ax + 1

3
(ax + by)−

2
3 by

= 1

3
(ax + by)−

2
3 (ax + by)

= 1

3
(ax + by)

1
3 = 1

3
f.

Since f is homogeneous function of degree 1
3
the

R.H.S. of (1) is nf = 1
3
f .

Thus

x fx + y fy = L.H.S. = 1

3
f = R.H.S.

ii. f = x
1
3 y− 4

3 tan−1(y/x) is homogeneous func-
tion of degree −1

fx = 1

3
x− 2

3 y− 4
3 tan−1

�y
x

�
+ x

1
3 y− 4

3 · 1

1+ � y
x

�2 ·
�−y
x2

�

fy = x
1
3

�
−4
3

�
y− 7

3 tan−1
�y
x

�
+ x

1
3 y− 4

3 · 1

1+ � y
x

�2 1x
so

xfx + yfy

= 1

3
· x 13 y− 4

3 tan−1(y/x)+ x
4
3 y− 4

3

� −y
x2 + y2

�

−4
3
x
1
3 y− 4

3 tan−1(y/x)+ x
4
3 y− 1

3 · 1

x2 + y2

= −x 13 y− 4
3 tan−1(y/x) = −f.

Example 3: If u = log
x2+y2
x+y , prove that

x ux + y uy = 1

Solution: Let

f = eu = x2 + y2

x + y
=
x2
�
1+ � y

x

�2�
x
�
1+ y

x

� = xφ
�y
x

�
f is a homogeneous function of degree 1.
Applying Euler’s theorem for the function f , we

get

xfx + yfy = n · f = f.

Since f = eu, fx = eu · ux, fy = euuy

so x · euux + yeuuy = f = eu

since eu  = 0, x ux + y uy = 1.

Example 4: Show that x ux + y uy + z uz =
−2 cot u when

u = cos−1
�
x3 + y3 + z3

ax + by + cz

�

Solution: Let

f = cos u = x3 + y3 + z3

ax + by + cz

Here f is a homogeneous function of degree 2
in the three variables x, y, z. By Euler’s theorem



Exercises

In all the chapters there are exercise problems

within the text for the students to solve. This

will hone their problem-solving skills like noth-

ing else can. The answers to these exercises are

provided alongside for the students to verify

Figures
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EXERCISE

Solve the following:

1. (D4 + 10D2 + 9)y = cos (2x + 3)

Ans. y = c1 cos x + c2 sin x + c3 cos 3x

+ c4 · sin 3x − 1
15
cos (2x + 3)

2. (D2 + 2D + 5)y = 6 sin 2x + 7 cos 2x

Ans. y = e−x(c1 sin 2x + c2 cos 2x)+ 2 sin 2x

− cos 2x

3. (D3 +D2 +D + 1)y = sin 2x + cos 3x

Ans. y = c1e
−x + c2 cos x + c3 sin x +

1
15
(2 cos 2x − sin 2x)− 1

80
(3 sin 3x + cos 3x)

4. (D2 + 4)y = sin x + sin 2x

Ans. y = c1 sin 2x + c2 cos 2x + sin x
3

− x cos 2x
4

5. (D2 − 8D + 9)y = 8 sin 5x

Ans. y = c1e
(4+

√
7)x + c2e

(4−
√
7)x + 1

29
(5 cos 5x

− 2 sin 5x)

6. (D2 + 16)y = e−3x + cos 4x

Ans. y = c1 cos 4x + c2 sin 4x + 1
25
e−3x

+ x
8
sin 4x

7. (D2 − 2D + 2)y = ex + cos x

Ans. y = ex(c1 cos x + c2 sin x)+ �
cos x−2 sin x

5

�
.

8. (D2 + 9)y = cos2 x

Ans. y = c1 cos 3x + c2 sin 3x + 1
18

+ 1
10
cos 2x

9. (D2 + 2D + 1)y = e2x − cos2 x

Ans. y= (c1 + c2x)e
−x + 1

2
+ 1

5
(2 sin 2x + cos 2x)

10. (D2 + 1)y = cos x

Ans. y = c1 cos x + c2 sin x + sin x ln sin x

− x cos x

11. (D2 − 4D + 13)y = 8 sin 3x,

y(0) = 1, y  (0) = 2

Ans. y = 1
5

�
e2x(sin 3x + 2 cos 3x)+ sin 3x

+ 3 cos 3x
�

12. (D4 + 2D2n2 + n4)y = cosmx

Ans. y = (c1 cos ηx + c2 sin ηx)(c3 + c4x)+
1

η2−m2 cosmx, with m  = η

13. (D2 + 4)y = cos x cos 3x

Ans. y = (c1 cos 2x + c2 sin 2x)− 1
24
cos 4x

+ x
8
sin 2x

14. (2D2 − 2D + 1)y = sin 3x · cos 2x
Ans. y= e

x
2

�
c1 cos

x
2

+ c2 sin
x
2

�+ 10 cos 5x− 49 sin 5x
5002

+ 2 cos x−sin x
10

15. (D3 + 4D)y = sin 2x

Ans. y = c1 + c2 cos 2x + c3 sin 2x − x
8
sin 2x.

P.I. When F (x)= xm, m being a

Positive Integer

Case IV: Consider f (D)y = xm so that

P.I. = yp = 1

f (D)
xm

Expanding 1
f (D)

in ascending power of D, we get

yp = [a0 + a1D + a2D
2 + · · · + amD

m]xm

since all the terms beyond Dm are omitted as

Dnxm = 0 when n > m.
This result can be extended when F (x) = Pm(x)

a polynomial in x of degree m so that

yp = [a0 + a1D + a2D
2 + · · · + amD

m][Pm(x)]

In particular for

(D + a)y = Pm(x)

we get

P.I.= yp = 1

D + a
[Pm(x)] = 1

a
�
1+ D

a

�Pm(x)

= 1

a

�
1+ D

a

�−1
Pm(x)

= 1

a

�
1− D

a
+ D2

a2
+ · · · + (−1)mD

m

am

�
Pm(x)

wherein terms of order higher than m are omitted.
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Fig. 6.22

Cartesian Form

Cylindrical disc method

I. Axis of revolution L is a part of the boundary of
the plane area. Consider the plane area ABCD
bounded by the curve y = f (x), x-axis, ordi-
nates x = a and x = b as shown in Fig. 6.23.
When the plane area ABCD is revolved about
x-axis, a solid of revolution is obtained, one
quarter of which is shown in Fig. 6.23. The
volume of an element circular disk of radius y

Fig. 6.23

and thickness dx is πy2dx. Integrating these
elements, the volume V of solid of revolu-
tion obtained by revolving about the x-axis the
plane area bounded by y = f (x), x = a, x = b,
x-axis is

V =
� b

a

πy2 dx

Similarly, when plane area bounded by the curve
x = g(y), y = c, y = d, y-axis, is revolved
about y-axis,

V =
� d

c

πx2 dy

II. Any axis of revolution:

V =
� b

a

πr2 dh

where r=perpendicular distance from the curve
to the axis of revolution AB (Fig. 6.24).

Fig. 6.24

III. The plane area is bounded by two curves: Let
the plane area bounded by two curves y = y1(x)
lower curve, y = y2(x) upper curve, the ordi-
nates x = a, x = b is revolved about x-axis,
then volume of solid of revolution generated
is the difference between the volume generated
by the upper curve and lower curve. Thus

V =
� b

a

πy22 dx−
� b

a

πy21 dx=
� b

a

π (y22 − y21 )dx

where y2 and y1 are the ordinates of the upper

and lower curves.

Cylindrical shell method

Axis of rotation AB is not part of the boundary of

the plane area DEFG, volume element generated

by revolving a rectangular strip about an axis AB

(Fig. 6.25).

Fig. 6.25

dr

dV = (mean circumference)× (height)× (thickness)

dV = (2πr)(h)(dr)

So V =
� r=b

r=a
2πrh dr

Figures are used exhaustively in the text to

illustrate the concepts and methods described.

Web supplement

The book is accompanied by a dedicated website at

http://www.mhhe.com/ramanahem

containing additional chapters on the following topics for the students

Ø Matrices & Determinants

Ø Sequence and Series

Ø Analytical Solid Geometry

Ø Calculus of Variations

Ø Linear Programming

It also has chapter-wise summaries.

.
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Chapter1

Preliminaries

Vector Algebra, Theory of Equations, and

Complex Numbers

INTRODUCTION

The preliminary Chapter 1 contains an elementary

treatment of Vector Algebra, Theory of Equations,

and Complex Numbers. Vector Algebra and Ana-

lytical Solid Geometry are prerequisites for Vector

Differential Calculus of Chapter 15 and 16. The the-

ory of equations dealswith the analytical solutions of

cubic and quartic equations while several numerical

methods for solutions of algebraic and transcenden-

tal equations are considered in the Chapter 32 on

Numerical Analysis. Complex numbers is the intro-

ductory part for the complex function theory dealt in

Chapters 22, 23, 24 and 25.

1.1 VECTOR ALGEBRA

Vectors are very useful in engineering mathematics

since many rules of vector calculation are as simple

as that of real numbers and is a shorthand simplifying

several calculations.

Vector analysis was introduced by Gibbs.*

Scalars are physical quantities which possess only

magnitude and are completely defined by a single

real number.

Examples: Mass, temperature, volume, kinetic en-

ergy, salinity, length, voltage, time, work, electric

charge.

Vectors are physical quantities which possess both

magnitude and direction. Thus geometrically vectors

are directed line segment (or an arrow) which are

determined completely by their magnitude (length)

and direction.

Examples: Force, velocity, acceleration, momen-

tum, displacement, weight.

Vectors are denoted by lower case bold face type

letters a or by an arrow overhead the letter as  a or a.

* Josiah Willard Gibbs (1839-1903), American mathematician.

1.1



1.2 HIGHER ENGINEERING MATHEMATICS—I

A vector a depicted as an arrow (directed line seg-

ment) has a tail A known as the initial point (or ori-

gin) and a tip B known as the terminal point (or

terminus).

The magnitude (or absolute value) of a vector a

(length of the directed line segment) is denoted by

|a| or a (non bold face). It is also known as norm (or

Euclidean norm) of a.

Unit vector is a vector of unit magnitude (i.e., of

length 1). If a is any vector of non zero magnitude

(a  = 0), then a
a

is a unit vector in the direction of

a i.e., a unit vector is obtained by dividing it by its

magnitude.

Zero (or null) vector is a vector of zero magnitude

and has no specified direction.

Equality: Two vectors a and b are said to be equal,

denoted as a = b, if both a and b have the same

magnitude and same direction without regard to their

initial points (also known as free∗ vectors). Thus a

vector can be moved parallel to itself without any

change.

Negative of a vector a, denoted by−a, is a vector

having the same magnitude as a but having opposite

direction.

Note: Length of −a is not negative.

a
–

b
–

– –

a
–

b b
– –a

a

–
–k a b=–

–

a b=
– –
a b= –

– –– –
b k= a a b¹

(a) (b) (c) (d)

Fig. 1.2

Scalar multiplication αa is a vector of magnitude

|α|a and having the same direction of a, if α > 0

and of opposite direction if α < 0.

* In contrast, bound vectors are fixed vectors and are restricted

to their initial points (such as application of force at a point).

Here |α| is the absolute value of the scalar α.

Unequal: a, b, are said to be unequal, written as

a  = b when magnitudes of a and b are different or

direction of a and b or both magnitudes and direction

of a and b are different.

In vector algebra, addition, subtraction and multi-

plication of vectors are introduced.

Addition

To obtain the sum or resultant of two vectors a and b,

move b so that initial point of b coincideswith the ter-

minal point of a. Then the sum of a and b, written as

a + b, is defined by the vector (arrow) from the initial

point of a to the terminal point b. Similarly placing

the tail of a with the tip of b, the resultant b + a is

obtained. Thus the vector addition follows the par-

allelogram law of addition, i.e., the resultant of a

parallelogram with a and b as adjacent sides is given

by the diagonal of the parallelogram. Vector addi-

tion is commutative a + b = b + a and is associative

a + (b + c) = (a + b)+ c.

–
a

b+
–

–
a

b+
–

–
b

a+
–

a

a

b
b

–

–

–
–

–
b

a+
–b

–

a
–

(a) (b) (c)

Fig. 1.3

Difference

a − b = a + (−b)

Rectangular unit vectors:

–b

b

a

a
b
–

–

–

–

–
–

Fig. 1.4

Consider a right handed rectangular coordinate sys-

tem. Let i, j , k be unit vectors along the positiveX, Y

andZ axes. Let p(x, y, z) be any point and 0(0, 0, 0)

be the origin.
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k

O j
i

–

–

–

Y

Z

X
Fig. 1.5

Positive vector

r of a point P (x, y, z) is OP with origin O as the
initial point and P as the terminal point. Now r can
be expressed as a linear combination of the unit vec-

tors i, j , k. Here OA = xi, AB = yj and BP = zk
since x, y, z are the lengths of OA, AB and BP re-
spectively and i, j , k are unit vectors in the positive
X, Y , Z axes. By vector addition

r = OP = OA + AB + BP = xi + yj + zk

P x y z( , , )

yO
x

A

X B

z

Y

Z

Fig. 1.6

Generalizing this, if P (x1, y1, z1) and
Q(x2, y2, z2) be any two points, then the vec-

tor PQ can be represented as

PQ = (x2 − x1)i + (y2 − y1)j + (z2 − z1)k

Here x2 − x1, y2 − y1, z2 − z1 are known as compo-

nents of PQ in the X, Y , Z directions. Now

|PQ| =
 
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

which is the distance between the points P and Q

(and thus the length or modulus of the vector PQ).

With this the earlier definitions can be expressed in

terms of the components. Suppose a = a1i + a2j +
a3k and b = b1i + b2j + b3k. Then

1. a = b if ai = bi for i = 1, 2, 3 i.e., their corre-

sponding (respective) components are equal

2. a = 0 if a1 = a2 = a3 = 0

3. a ± b = (a1 ± b1)i + (a2 ± b2)j + (a3 ± b3)k

i.e., addition (subtraction) by adding (subtracting)

the corresponding components.

4. αa = αa1i + αa2j + αa3k i.e., scalar multipli-

cation amounts to multiplication of each compo-

nent.

Multiplication

(a) Inner product or scalar product or dot product
of two vectors a and b, is denoted by a · b, read as a
dot b, is defined as

a · b = |a||b| cos θ

where θ is the angle between a and b and lies in the
interval 0 ≤ θ ≤ π . Note that dot product is a scalar
quantity. It is positive, zero or negative depending on
whether θ is acute angle, right angle or obtuse angle.
Thus for non-zero vectors.

a · b = 0 implies that θ = π
2

i.e., a and b are perpendicular or orthogonal to each

other. Now

a · a = |a||a| cos 0 = |a|2

or |a| = √
a · a =

 
a21 + a22 + a23

For the unit vectors we have

i · j = j · k = k · i = 0 and

i · i = j · j = k · k = 1 .

The dot product in the component form is a · b =
(a1i + a2j + a3k) · (b1i + b2j + b3k)

a · b = a1b1 + a2b2 + a3b3

i.e., sum of the products of the corresponding com-

ponents.

Properties

1. a · b = b · a (Commutative)

2. a · (b + c) = (a · b) + (a · c) (Distributive)

3. a · (αb + βc) = αa · b + βa · c (Linearity)

4. a · a ≥ 0

a · a = 0 iff a = 0 (Positive definiteness)



1.4 HIGHER ENGINEERING MATHEMATICS—I

1. Angle The angle θ between two vectors a and
b is defined as

cos θ = a·b
|a||b|

= a·b√
a · a

√
b · b

Note:

Direction cosines of a vector a are the cosine of the

angles which a makes with x, y, z axes and are given

by a · i−|a| , a · j−|a| , a · k−|a| , respectively.

2. Projection Since |b| cos θ is the projection of b
onA, a · b = (|a|)(|b| cos θ ) is the product of |a| and
|b| cos θ , ie. product of length of a and projection of b
on a. Similarly a · b can be interpreted as the product
of length of b with the projection of a on b. ie. dot
product is length of either multiplied by projection
of the other upon it. Thus the scalar projection of a
in the direction of b is

a cos θ = a · b
b

and vector projection of a in the direction of b is

(a cos θ )
b

b
=
 
a · b

b

 
b

b
=
 
a · b
b2

 
b

a–

q

| | cosb q

b

–

–

| |
co
s

a

q

–

Fig. 1.7

3. Work done by a force Thework done by a con-

stant force F in moving an object through a distance

d = (magnitude of force in the direction of motion)

(distance moved)

= (F cos θ )(d) = F · d

q

F

d
–

–

Fig. 1.8

(b) Vector product (or cross product)
Vector product of two vectors a and b, denoted by
a × b, read as a cross b, is defined as

c = a × b = |a||b| sin θu , 0 ≤ θ ≤ π

The vector c is perpendicular to both a and b such

that a, b, c in this order form a right handed system

of vectors. Here u is a unit vector in the direction of

a × b as shown in Fig. 1.9.

Thus the modulus of a × b is the area of a paral-

lelogram with a and b as adjacent sides as shown in

Fig. 1.9(b).

| |a
| |b

q

a b

a b

´

| |=| || |sinqa b´

| |sinb q

q

b

a

–

–

–

–

– –

– – – –

(a) (b)

Fig. 1.9

Parallel If a × b = 0, then either a = 0 or b = 0

or both or θ = 0 or π . Thus when a × b = 0, then

either at least one of the vectors a, b is zero or else

a and b are parallel non zero vectors.

Corollary a × a = 0 for any vector a. Since the
direction of b × a is opposite to that of a × b, the
cross product is anticommutative (i.e., not commu-
tative) so

a × b = −b × a

However it is distributive

a × (b + c) = a × b + a × c

Now for the unit vectors i, j , k we have

i × i = j × j = k × k = 0 (parallel)

i × j = k, j × k = i, k × i = j (right handed)

while

j × i = −k, k × j = −i, i × k = −j (left handed)
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*

* *

k

i j

–

+

Fig. 1.10

In the component form

a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k)

= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

=
      
i j k

a1 a2 a3
b1 b2 b3

      
Moment of a force F about a point P

The magnitude of the momentM (known as torque)

of a force F about a point P is the product of F and

the perpendicular distance of P from the line of ac-

tion of force F . Thus M = (F )(PQ) = (F )(r sin θ )

sincePQ = r sin θ . HerePR = r is the vector from

P to the initial point R of F . The direction of the

moment is perpendicular to both r and F . Thus the

moment vector M is given by

M = r × F

where |M| = M = rF sin θ

q
R

Q

r
sin

q
r

P

F
– –

Fig. 1.11

Moment of a force F about a line L

Let P be any point on the line L which is in the

direction of a unit vector â. Then the moment of the

force F about the line L is the resolved part along

L of the moment of F about any point on L. Thus

moment M of F about the line L = (PQ × F ) · â.
L

QP

F
–

â

Fig. 1.12

Velocity of a rotating body

Suppose a rigid body rotates about an axisL through

the point with angular speed ω. Let r be the position

vector of any point P on the rigid body. Let θ be the

angle between r and the axis of revolution L. Then

the distance d of the point P from the axis is given

by r sin θ

i.e., d = |r | sin θ
since P travels in a circle of radius d. The magnitude

of linear velocity v is

|v | = ωd = ω|r | sin θ = |ω||r | sin θ
Also v must be perpendicular to both ω and r such
that r , ω, v form a right handed system. Therefore
the linear velocity v of the body is

v = ω × r

Here ω is known as the angular velocity.

r

r

q

q

d

P

–

–

Axis of
revolution

L

O

v
v

–

–

w

w

w

–

–

d

Fig. 1.13

(c) Scalar triple product or box product or mixed

triple product of three vectors a, b, c is defined by

a · (b × c) =
      
a1 a2 a3
b1 b2 b3
c1 c2 c3

      = [a, b, c ] = [a b c ]

Geometrically, the absolute value of the scalar triple

product is the volume of a parallelepiped with a, b,

c as the coterminus (or concurrent) edges. If n is a

unit normal to the base parallelogram then area of

the base parallelogram is |b × c| and height h of the

terminal point of a above the parallelogram is a · n.
Then
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volume of parallelepiped = (heighth) (area of base

parallelogram)

= (a · n)(|b × c| = a · (|(b × c)|n) = a · (b × c)

n–h

c

a

–

–

b
–

b

– –

b c´

Fig. 1.14

Corollary 1: If a, b, c are coplanar (i.e., they lie

in the same plane) then the volume of the parallel-

piped is zero. Thus for coplanar vectors the scalar

triple product is zero.

i.e., a, b, c are coplanar if a · (b × c) = 0. Then a, b,

c are said to be linearly dependent.

Corollary 2: Volume of a tetrahedron with a, b,

c as the coterminus edges = 1
6
of the volume of the

parallelepiped with a, b, c as edges.

Corollary 3: Since the value of the determinant is
unaltered by the interchange of two rows, we have

a · (b × c) = b · (c × a) = c · (a × b) = (a × b) · c

i.e., dot and cross in a triple scalar product can be

interchanged without affecting its value.
(d) Vector triple product of a, b, c is defined as

a × (b × c) = (a · c)b − (a · b)c
In general

a × (b × c)  = (a × b) × c

i.e., not associative.

Also

(a × b) × c = (a · c)b − (b · c)a
Results

1. (a × b) · (c × d)= (a · c)(b · d)−(a · d)(b · c)

Proof: Put a × b = x then

(a × b) · (c × d) = x · (c × d) = (x × c) · d

= (a × b) × c · d
= [(a · c)b − (b · c)a] · d
= (a · c)(b · d) − (b · c)(a · d)

2. (a × b) × (c × d) = b(a · c × d) − a(b · c × d)

= [a cd]b − [bcd]a

= c(a · b × d) − d(a · b × c)

= [a b d] c − [a b c] d

Proof: Put a × b = x. Then

(a × b) × (c × d) = x × (c × d) = (x · d)c − (x · c)d
= (a × b · d)c − (a × b · c)d
= [a bd]c − [a bc]d

Linear independence: Set of vectors a, b, c are said

to be linearly independent if αa + βb + γ c = 0 im-

plies that α = β = γ = 0. Otherwise they are said to

be linearly dependent when not all α, β, γ are zero.

Vector Algebra

WORKED OUT EXAMPLES

Example 1: Prove that the line joining the mid-

points of two sides of a triangle is parallel to the

third side and half of it.

Solution: Let A, B, C be the vertices of the tri-

angle with position vectors a, b, c wrt an origin O.

Let D and E be the middle points of AC and BC

respectively. Then

DE = DA + AB + BE = 1

2
CA + AB + 1

2
BC

= 1

2
(a − c) + (b − a) + 1

2
(c − b) = b − a

2
= 1

2
AB

ThusDE is parallel to the third sideAB and half of it.
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C

D E

A B

Fig. 1.15

Example 2: Prove that the vectors a = 3i + j −
2k, b = −i + 3j + 4k, c = 4i − 2j − 6k can form

the sides of a triangle. Find the lengths of themedians

of the triangle.

Solution: Consider αa + βb + γ c = 0 or

a– –

U T c

P Qb
–

S

R

Fig. 1.16

α(3i + j − 2k) + β(−i + 3j + 4k)

+ γ (4i − 2j − 6k) = 0

Equating each of the components of i, j , k to zero,
we get

3α − β + 4γ = 0

α + 3β − 2γ = 0

−2α + 4β − 6γ = 0

Solving β = γ = −α. Choose α = 1. Thus −a +
b + c = 0 i.e., three vectors are linearly dependent
i.e., non-collinear. Therefore they form a plane tri-
angle. Let S be the mid point of PQ. So that RS is a
median. Now

RS = RP + PS = −a + 1

2
b

= −(3i + j − 2k) + 1

2
(−i + 3j + 4k)

= −7

2
i + 1

2
j + 4k

... |RS| = length of the median

=
 

49

4
+ 1

4
+ 16 =

 
114

4
= 1

2

√
114

Similarly PT be another median. Then

PT = PQ + 1

2
QT = b + 1

2
c

= (i + 3j + 4k) + 1

2
(4i − 2j − 6k)

= i + 2j + k

So |PT | = length of median =
√
12 + 22 + 12 = √

6

Finally QU = QR + 1
2
RU = c + 1

2
(−a)

= (4i − 2j − 6k) − 1

2
(3i + j − 2k)

= 5

2
i − 5

2
j − 5k

|QU | =
 

25

4
+ 25

4
+ 25 =

 
150

4

Example 3: If a = i + j + k, b = 2i − j + 4k,

c = 3i + 2j − k then find a unit vector parallel to

2a − 3b + 4c.

Solution: 2a − 3b + 4c = 2(i + j + k) − 3(2i −
j + 4k) +4(3i + 2j − k). So

2a − 3b + 4c = 8i + 13j − 14k

|2a − 3b + 4c| =
 
82 + 132 + 142

= √
64 + 169 + 196 =

√
429

Unit vector parallel to 2a − 3b + 4c is

2a − 3b + 4c

|2a − 3b + 4c|
= 1√

429
[8i + 13j − 14k]

Example 4: Prove that a = i − 3j + 2k, b = 2i −
4j − k and c = 3i + 2j − k are linearly indepen-

dent.

Solution: Consider αa + βb + γ c = 0. Then

α(i − 3j + 2k) + β(2i − 4j − k)

+ γ (3i + 2j − k) = 0

Equating each component to zero, we have α +
2β + 3γ = 0, −3α − 4β + 2γ = 0, 2α − β − γ =
0. Solving α = β = γ = 0 ... a, b, c are linearly

independent.
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Example 5: Find the unit vector perpendicular to

each of the vectors 2i + j + k and i − 2j + k.

Solution: Let a = a1i + a2j + a3k be the required

unit vector so that |a| =
 
a2
1 + a2

2 + a2
3 = 1. Sincea

is perpendicular to 2i + j + k,wehave (a1i + a2j +
a3k) · (2i + j + k) = 0

or 2a1 + a2 + a3 = 0

Similarly since a is perpendicular to i − 2j + k,

a1 − 2a2 + a3 = 0.

Solving 5a2 − a3 = 0 ... a3 = 5a2
So a1 = 2a2 − a3 = 2a2 − 5a2 = −3a2
Since a2

1 + a2
2 + a2

3 = 1, we have

9a2
2 + a2

2 + 25a2
2 = 1

a2
2 = 1

35
or a2 = ± 1√

35

Thus the unit vector are

± 1√
35

[−3i + j + 5k]

Example 6: Determine the projection of a on b and

b on a given a = i + j + k and b = 2i − j + 5k.

Solution: Projection of a on b is a · b

|b|

= (i + j + k) · (2i − j + 5k)√
4 + 1 + 25

= 2 − 1 + 5√
30

= 6√
30

projection of b on a is b · a

|a|

= (2i − j + 5k) · (i + j + k)√
3

= 6√
3

Example 7: Determine the three sides and an-

gles of a triangle with vertices (1,−1, 1), (2, 3,−1),

(3, 0, 2).

g

a b

R(3,0,2)

Q(2,3,–1)P(1,–1,1)

Fig. 1.17

Solution: Let P (1,−1, 1), Q(2, 3,−1) and

R(3, 0, 2) be the three vertices of the triangle. Then

the side

PQ = (2 − 1)i + (3 − (−1))j + (−1 − 1)k

i.e., PQ = i + 4j − 2k, similarly QR = +i −
3j + 3k and RP = −2i − j − k. Let α, β, γ be the

angles.

Then cosα = PQ·PR

|PQ||PR| = (i+4j−2k)·(2i+j+k)√
1+16+4

√
4+1+1

cosα = 2+4−2√
21

√
6

= 4√
21

√
6
so α = cos−1 4√

126

Similarly cosβ = QP ·QR

|QP ||QR| = (−i−4j+2k)·(−i−3j+3k)√
21

√
19

= −1+12+6√
21

√
19

= +17√
399

Finally cos γ = RP ·RQ

|RP ||RQ| = (−2i−j−k)·(−i+3j−3k)√
6
√
19

= +2−3+3√
6
√
19

= 2√
6
√
19

Example 8: Forces F 1 = 3i + 5j + 6k, F 2 =
+i + 2j + k and F 3 = 3i + 8j act on a particle P

whose position vector is 3i − 4j + 2k. Determine

the work done by the forces in a displacement of the

particle to the point Q(5, 2, 1).

Also find the vector moment of the resultant of the

three forces acting at P about the point Q.

Solution: The resultant force F = F 1 + F 2 + F 3

so F = (3i + 5j + 6k) + (i + 2j + k) + (3i + 8j )

F = 7i + 15j + 7k

displacement vector

= r = PQ = 2i + 6j − k

since point P is (3, −4, 2).
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P
(3, –4, 2)

Q
(5, 2, 1)

O

Fig. 1.18

Work done = F · r
= (7i + 15j + 7k) · (2i + 6j − k)

= 14 + 90 − 7 = 97

Vector moment of the resultant force F = 7i +
15j + 7k acting at P (3,−4, 2) about the point

Q(5, 2, 1) is QP × F

= (−2i − 6j + k) × (7i + 15j + 7k)

=
      

i j k

−2 −6 1

7 15 7

      = i(−42 − 15) − j (−14 − 7)

+ k(−30 + 42)

= −57i + 21j + 12k

Example 9: A rigid body is rotating at 5 radians

per second about an axis OM where M is the point

3i − 4j + 2k relative to O. Find the magnitude of

the linear velocity of the particle of the body at the

point 5i + 2j + 3k.

Solution:

Unit vector in the direction of the axis is
3i−4j+2k√
9+16+4

=
3i−4j+2k√

29

... Angular velocity ω = 5

 
3i − 4j + 2k√

29

 

The point on the axis is M given by 3i − 4j + 2k.

The point P on the right body is 5i + 2j + 3k. So

MP = (5i + 2j + 3k) − (3i − 4j + 2k)

= 2i + 6j − k

The linear velocity v at P is ω × MP

= 5√
29

(3i − 4j + 2k) × (2i + 6j − k)

= 5√
29

      
i j k

3 −4 2

2 6 −1

      = 5√
29

(−8i + 7j + 26k)

Magnitude of velocity =
 

25
29
(64 + 49 + 676)

=
 

25 × 789

29
=
 

19725

29
= 26.08

Example 10: Find the area of triangle with ver-

tices at the points A(3,−1, 2), B(1,−1,−3) and

C(4,−3, 1).

Solution: We know that the area of a triangle is 1
2
of

the parallelogram. Thus area of triangle withAB and

AC as the sides = 1
2
area of the parallelogram with

AB and AC as the adjacent sides = 1
2
|AB × AC|.

C(4, –3, 1)

A(3, –1, 2) B(1, –1, –3)

Fig. 1.19

Now AB = −2i + 0 − 5k and AC = i − 2j − k

Area of -l = 1
2

      
i j k

−2 0 −5

1 −2 −1

      = 1
2
| − 10i − 7j + 4k|

= 1

2

√
100 + 49 + 16 = 1

2

√
165

Example 11: Find the area of a parallelogramwith

A and B as diagonals where A = 3i + j − 2k and

B = i − 3j + 4k.

Solution: Let a and b be the two adjacent sides of

the parallelogram. Then

A = a + b = 3i + j − 2k

and

B = a − b = i − 3j + 4k

Solving a = 2i − j + k and b = i + 2j − 3k
S R

QP

b

a–

–

Fig. 1.20
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Area of the required parallelogram

= |a × b| =
      
i j k

2 −1 1

1 2 −3

      = |i + 7j + 5k| =
√
75

Example 12: Prove by vector methods that

(i) cos(A − B) = cosA cosB + sinA sinB and

(ii) sin(A − B) = sinA · cosB − sinB · cosA
Solution: Let P andQ be any two points such that

the position vector OP of length p makes an angle

A with x-axis and position vector of length q makes

an angle B < A. Then

OP = p cosAi + p sinAj and

OQ = q cosBi + q sinBj . Now

A
B

Q

P

O

y

x

Fig. 1.21

a) OP · OQ = |OP ||OQ| cos θ = pq cos(A − B)

= (p cosAi + p sinAj ) · (q cosBi + q sinBj )

= pq(cosA cosB + sinA sinB)

... cos(A − B) = cosA cosB + sinA · sinB
b) Since OQ, OP and OQ × OP form a right

handed system, consider

OQ×OP =|OQ ||OP | sin θ · k=pq sin(A − B)k

= (q cosBi + q sinBj ) × (p cosAi + p sinAj )

= pq(sinA cosB − sinB cosA)k

since i × j = k while j × i = −k. Hence the result.

Example 13: If a + b + c = 0 show that a × b =
b × c = c × a.

Solution: a + b + c = 0 or c = −(a + b).

Now b × c = b × (−a − b) = −b × a − b × b

= − b × a = a × b

Similarly c × a = −(a + b) × a = −a × a − b × a

= a × b

Example 14: Find the equation of a straight line L

passing through the points A and B having position

vectors a and b wrt an origin O.

Solution: Let r be the position vector of any point

P on the straight line L, passing through A and B.

A

P

B

L

a

b

r

O

–

–

–

Fig. 1.22

Then OP = r = OA + AP ... AP = r − a.

Similarly OB = b = OA + AB ... AB = b − a

Since AP and AB are collinear vectors, there exists

a scalar t such that AP = tAB or

r − a = t(b − a)

or r = a + t(b − a)

Example 15: (a) Find the volume of a paral-

lelepiped whose edges are a = 2i − 3j + 4k, b =
i + 2j − k, c = 3i − j + 2k

(b) Find the volume of the tetrahedron having the

following vertices (2, 1, 8), (3, 2, 9), (2, 1, 4), (3, 3,

10).

Solution: (a) Volume of parallelepiped

= a · (b × c) =
      
2 −3 4

1 2 −1

3 −1 2

      = | − 7| = 7

(b) Let the four points be A(2, 1, 8), B(3, 2, 9),

C(2, 1, 4), D(3, 3, 10). Then the three edges of

the parallelepiped areAB = i + j + k,BC = −i −
j − 5k,CD = i + 2j + 6k. Thenvolumeof tetrahe-

dron = 1
6
of volume of parallelopiped with AB, BC,

CD as the edges

= 1

6

      
1 1 1

−1 −1 −5

1 2 6

      = 4

6
= 2

3
.

Example 16: Find the constant b such that the

three vectors a = 2i − j + k, b = i + 2j − 3k and

c = 3i + bj + 5k are coplanar.
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Solution: If the three vectors are coplanar (i.e., lie in

the same plane) then the volume of the parallelepiped

is zero i.e., a · (b × c) = 0. So

      
2 −1 1

1 2 −3

3 b 5

      = 0 or

7b = −28 or b = −4

Example 17: (a) Show that (a × c) × b = 0 if

a × (b × c) = (a × b) × c

(b) Show that (b × c) × (a × d) + (c × a) × (b ×
d) +(a × b) × (c × d) = −2[abc]d

Solution: (a) a × (b × c) = (a · c)b − (a · b)c =
(a × b) × c

= (a · c)b − (b − c)a

... (a · b)c = (b · c)a
Now (a × c) × b = (a · b) · c − (c · b)a = 0 from

the above result.

Note that (a × b) × (c × d) = b[a cd] − a [bcd] or

= c[abd] − d[abc].

Using the first formula for the first and third terms

and using the second formula for the second term

(b) (b × c) × (a × d) + (c × a) × (b × d)+
(a × b) × (c × d)

= [bcd]a − [bca]d + [cbd]a − [abd]c

+ [abd]c − [abc]d = − 2[abc]d.

Example 18: If a, b, c are any vectors prove that

(a) a × (b × c) + b × (c × a) + c × (a × b) = 0

(b) (a × b) · (c × d) + (b × c) · (a × d) + (c × a) ·
(b × d) = 0

Solution: (a)LHS= (a · c)b − (a · b)c + (b · a)c −
(b · c)a + (c · b)a − (c · a)b = 0 since dot product

is commutative so a · c = c · a, a · b = b · a, b · c =
c · b
(b) Since (a × b) · (c × d) = (a · c)(b · d)
− (a · d)(b · c)
LHS = (a · c)(b · d) − (a · d)(b · c) + (b · a)(c ·
d) − (b · d)(c · a) + (c · b)(a · d) − (c · d)(a · b) =
0, since dot product is commutative.

Example 19: Compute (a × b) × (c × d) (a) di-

rectly (b) by using formula when a = 2i − 2j +
k, b = i + 8j − 4k, c = 12i − 4j − 3k, d = i +
2j − k

Solution: Direct a × b =
      
i j k

2 −2 1

1 8 −4

      = 9j + 18k

c × d =
      

i j k

12 −4 −3

1 2 −1

      = 10i + 9j + 28k

(a × b) × (c × d) =
      

i j k

0 9 18

10 9 28

      = 90(i + 2j − k)

(b) Using formula (a × b) × (c × d) =
[abd]c − [abc]d

Now [ad b] =
      
2 −2 1

1 8 −4

1 2 −1

      = 2(0) + 6 − 6 = 0

[a bc] =
      

2 −2 1

1 8 −4

12 −4 −3

      = −80 + 90 − 100 = −90

(a × b) × (c × d) = 0 · c − (−90)(i + 2j − k) =
90(i + 2j − k)

EXERCISE

1. Show that the diagonals of a parallelogram bi-

sect each other.

Hint: P is point of intersection of diagonals

of the parallelogram ABCD; with AB = a,

AD = b. Then AB = AP − BP , a = y(a +
b) − x(b − a), a, b, non collinear x = y = 1

2
.

2. If the mid-points of the consecutive sides of

any quadrilateral are connected by straight

lines show that the resulting quadrilateral is

a parallelogram.

Hint: ABCD is a quadrilateral with AB = a,

BC = b, CD = c, DA = d; P , Q, R, S are

mid-points ofAB,BC,CD,DA; a + b + c +
d = 0,

PQ = 1
2
(a + b) = − 1

2
(c + d) = SR,

QR = 1
2
(b + c) = − 1

2
(d + a) = PS

3. Find |2a − 3b − 5c| if a = 3i − 2j + k, b =
2i − 4j − 3k, c = −i + 2j + 2k

Ans. 2a − 3b − 5c = 5i − 2j + k; |2a − 3b −
5i | = √

30
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4. Determine a unit vector parallel to the re-

sultant of the vectors a = 3i + 4j + 5k, b =
2i + 3j + 3k.

Ans. (5i + 7j + 8k)/
√
138

5. If ABCDEFA is a regular hexagon, determine,

CD,DE,EF , FA given thatAB = a, BC =
b.

Ans. CD = b − a, DE = −a, EF = −b, FA =
a − b

Hint: AC = a + b, AD = b − a,DE = −a,

EF = −b

6. Prove that the points A(0, 4, 1), B(2, 3,−1),

C(4, 5, 0), D(2, 6, 2) form a square.

Hint: AB = DC = 2i − j − 2k, BC = AD

= 2i + 2j + k

7. Let E be the mid point of the side CD of a

parallelogram ABCD. Prove that the diagonal

BD and AE trisect each other.

Hint:AB = a,AD = b,AE = b + a
2
,AF =

αAE = α
 
b + a

2

 
.

Also AF = AB + BF = a + β(b −
a) − α

 
b + a

2

 
. Since a, b are non collinear,

α − β = 0, α
2

− 1 + β = 0 ... β = 2
3
.

8. Show that a = 2i−2j+k

3
, b = i+2j+2k

3
, c =

2i+j−2k

3
are mutually orthogonal unit vectors.

Hint: a · b = b · c = c · a = 0

9. Determine the projection of a = 2i − 3j + 6k

on b = i + 2j + 2k. Also find the projection

of b on a.

Ans.
8

3
,
8

7

Hint: a · b

|b|
, b · a

|a|

10. Find the angle between a = 3i + 4j + 2k and

b = 2i − 2j + 3k

Ans. cos θ = 4√
29

√
17

11. Determine the unit vector perpendicular to

both a = i − j + k and b = i + 2j − k

Ans. ± 1√
14

[i − 2j − 3k]

12. Determine unit vectors which make an angle

60◦ with a = i − j and angle 60◦ with b =
i + k

Ans.
−j + k√

2
,

√
2
6
(4i − j + k).

Hint: a1i + a2j + a3k be the unit vector,

a2
1 + a2

2 + a2
3 = 1, cos 60 = 1

2
= a1 − a2√

2
,

cos 60 = 1

2
= a1 + a3√

2
.

13. Prove that the pointsA(5,−1, 1),B(7,−4, 7),

C(1,−6, 10), D(−1,−3, 4) form the vertices

of a rhombus.

Hint: AD = BC, AB = DC, |AD | =
|AB | = 7, |AC | · BD = 0 i.e., diagonals at

right angles.AlsoAB.AD  = 0,AB · BC  = 0

corner angles not right angles.

14. Determine the sides and angles of trianglewith

vertices i − 2j + 2k, 2i − j − k, 3i − j + 2k

Ans. Sides are i − 2j + 3k, −2i − j , i + 3j − 3k.

Angles are cos−1

 
5
19
, cos−1

 
14
19
, 90◦

15. Show that a = 2i + j − 3k, b = i − 4k, c =
4i + 3j − k are linearly dependent.

16. Show that a = (a · i)i + (a · j )j + (a · k)k
for any vector a = a1i + a2j + a3k

17. Find the work done in moving an object along

a vector 2i − 5j + 6k when the applied force

F is 3i − j + k

Ans. 17

18. Find the direction cosines of a = 2i − 3j +
4k or find the angles which a makes with the

coordinate axes.

Ans. cosα = 2√
29
, cosβ = − 3√

29
, cos γ = 4√

29

19. If a = 4i + 3j + k, b = 2i − j + 2k, find a

unit vector in the direction of a × b. Determine

the angle between a and b.

Ans.
7i−6j−10k√

185
, θ = sin−1

√
185

3
√
26

= 62◦ · 40 

20. Find the work done in displacing a particle
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fromP toQhavingposition vectors 4i − 3j −
2k, and 6i + j − 3k when constant forces

F 1 = 2i − 5j + 6k,F2 = −i + 2j − k,F3 =
i + j + k act on the particle.

Ans. −10

Hint: resultant force F = 2i − 2j + 6k, dis-

placement vector d = 2i + 4j − k, F · d =
work done.

21. Determine the torque about the point P , 2i +
j − k of a forceF = 4i + k acting through the

point A with position vector i − j + 2k.

Ans. 15.4

Hint: |PA × F | = |(−i − 2j + 3k) × (4i +
k)| = | − 2i + 13j + 8k | where PA = (i −
j + 2k) − (2i + j − k)

22. Find the moment about a line L through the

origin having direction of 2i + 2j + k due to

a 30 kg force acting at a point A(−4, 2, 5) in

the direction of 12i − 4j − 3k.

Ans. 89.23

Hint:F = 30(12i − 4j − 3k)/13, moment of

F about O= OA × F = (−4i + 2j + 5k) ×
F = 60

13
(7i + 24j − 4k).

Moment of F about the line L = 60
13
(7i +

24j − 4k) · 2i+2j+k

3

23. A rigid body is spinning with angular ve-

locity 27 radians/second about an axis paral-

lel to 2i + j − 2k passing through the point

A, i + 3j − k. Find the (linear) velocity of

the point P on the body with position vector

4i + 8j + k.

Ans. 9
√
293

Hint: v = ω × AP = 27
 

2i+j−2k

3

 
×

(3i + 5j + 2k) = 9(12i − 10j + 7k)

where AP = (4i + 8j + k) − (i + 3j −
k)

24. Find the volume of a parallelepiped whose

coterminus edges are a = 3i − 2j + 5k, b =
i + j + k, c = 2i + 4j − k

Ans. | − 11| = 11

25. Determine the volume of the tetrahedron hav-

ing vertices at (0, 1, 1), (1, 0, 0), (2, 2, 3),

(−1, 0, 4)

Ans. 1
6
(14) = 7

3

26. Determine the constant b such that the vec-

tors 4i + 2j − k, bi + j + k, 3i − j − 5k are

coplanar

Ans. b = −1

27. If a = 3i − j + 2k, b = 2i + j − k, c = i −
2j + 2k find a × (b × c) (a) directly (b) using

dot formula

Ans. 15i + 15j − 15k

Hint: (a) b × c = −5j − 5k (b) a · c = 9,

a · b = 3 so a × (b × c) = (a · c)b − (a · b)c
= 9(2i + j − k) − 3(i − 2j + 2k)

28. Compute (a × b) × (c × d) (a) directly (b) us-

ing the formula when a = 10i + 10j + 5k,

b = 5i − 2j − 14k, c = 4i + 7j − 4k, d =
2i − j + k

Ans. −3810i − 2250j + 1065k

29. If a · (b × c) = 0 prove that either (a) a, b, c

are coplanar but no two of them are collinear

or (b) two of vectors a, b, c are collinear or (c)

all of the vectors a, b, c are collinear.

30. Show that if four vectors a, b, c, d are coplanar

then (a × b) × (c × d) = 0

1.2 THEORY OF EQUATIONS

Theory of equations includes solution of equations

which are needed in the study of characteristic equa-

tions, zeros of Bessel functions, integration etc.

Apolynomialor a rational integral algebraic func-

tion is a function

y = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an

where a0, a1, a2, . . ., an are constants called coef-

ficients and n is a non negative integer called the

degree of the polynomial.

For n= 1, 2, 3, 4, the functions are known as linear,

quadratic, cubic and quartic functions. A constant

may be regarded as a polynomial of degree zero.
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An algebraic function is any function y = f (x)

which satisfies an equation of the form

P0(x)y
n + P1(x)y

n−1 + · · · + Pn(x) = 0

where P0(x), P1(x), . . . Pn(x) are polynomials in x.

A transcendental function is one which is not an

algebraic equation.

Trigonometric functions cos, sin, tan, logarithmic,

exponential, hyperbolic functions are examples of

transcendental functions.

An equation

f (x) = 0

is said to be an algebraic equation or transcendent

equation depending on whether f (x) is an algebraic

or transcendental function.

Any value of x∗, for which the equation (1) is sat-

isfied, is known as the solution of the equation i.e.,

f (x∗) = 0. In case of algebraic equations, solutions

are also known as roots (or zeros) of the equation.

Geometrically the curve (graph of) y = f (x) crosses

(meets) the x-axis at the point x∗. Theory of equa-

tions consists of methods of obtaining solutions of

equations. For the linear equation ax + b = 0, the

solution is x = − b
a
, a  = 0. For the quadratic equa-

tion ax2 + bx + c = 0, the solutions (or roots) are

given by x = −b±
√

b2−4ac

2a
, a  = 0. The roots of the

cubic equation canbeobtainedbyCardano’smethod,

while the roots of quartic are obtained by Ferrari’s

method. However no literal equations (formulae) ex-

ist for algebraic equations of degree n ≥ 5 or for any

transcendental equations. In these cases, one has to

resort to numerical methods to find an approximate

solution (or root).

For an algebraic equation

f (x) = a0x
n + a1x

n−1 + a2x
n−2 + · · · + an = 0

(a) There are exactly n real or complex roots (where

n is degree of the equation). Roots need not be

distinct.

(b) has at least one real root whose sign is opposite

to that of the last term an, if n is odd

(c) f (a) is the remainder when f (x) is divided by

(x − a)

(d) Complex roots occur in conjugate pairs, when the

coefficients a0, a1, · · ·, an are real.

(e) The following relations hold good between the

roots and coefficients of equation
(i)

−a1
a0

= sum of the roots

(ii)
−a2
a0

= sum of the product of the roots taken two

at a time

(iii)
−a3
a0

= sum of the product of the roots taken

three at a time.

(iv) (−1)n an
a0

= product of the roots.

(f) At least one root lies between a and b if f (a) and

f (b) are of different (opposite) signs.

1.3 CARDANO’S∗ METHOD

Cardano’s method obtains algebraic solution of a cu-

bic equation. Cardano published this result in 1545

in Ars Magna (also credited to Tartaglia and Ferraro

and Vieta (1591)).

Consider the general type of cubic equation

a∗x3 + b∗x2 + c∗x + d∗ = 0 (1)

Dividing by a∗, we get the equation

x3 + bx2 + cx + d = 0 (2)

This equation can be reduced to a simpler form by

removing the x2 term by the substitution

x = u − b

3
(3)

so  
u − b

3

 3

+ b

 
u − b

3

 2

+ c

 
u − b

3

 
+ d = 0

 
u3 − 3b

3
u2 + 3u

b2

9
− b3

27

 
+ b

 
u2 − 2b

3
u + b2

9

 

+cu − cb

3
+ d = 0

or u3 + pu + q = 0 (4)

where p = c − b2

3
, q = d − bc

3
+ 2b3

27
(5)

To solve the standard cubic equation put

u = y + z (6)

*Girolamo Cardano (1501-1576), Italian mathematician.
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so u3 = (y + z)3 = y3 + z3 + 3yz(y + z)

= y3 + z3 + 3yzu

or u3 − 3yzu − (y3 + z3) = 0 (7)

comparing (4) and (7), we get p = −3yz and

q = −(y3 + z3)

or yz = −p

3
i.e., y3z3 = −p3

27

or yz = −p

3
i.e., y3z3 = −p3

27

and y3 + z3 = −q

Then y3 and z3 are the solutions (roots) of the

quadratic equation

t2 + qt − p3

27
= 0 (8)

Since sum of the roots of (8) is y3 + z3 = −q and

product of the roots of (8) is y3z3 = −p3

27
. Solving

the quadratic equation (8), we get

y3 =
−q +

 
q2 + 4

p3

27

2
= −q

2
+
 
q2

4
+ p3

27
(9)

and

z3 = −q

2
−
 
q2

4
+ p3

27
(10)

Let the discriminant of (8) be

R = q2

4
+ p3

27
(11)

Case (i) Suppose R > 0, then y3 and z3 are both

real and the roots cubic equation (4) are y + z, ωy +
ω2z, ω2y + ωz. (12)

Here ω = −1+√
3i

2
, ω2 = −1−√

3i
2

and ω · ω2 =
ω3 = 1. (1, ω, ω2 are cube roots of unity such that

1 + ω + ω2 = 0).

Hence the required roots of the given cubic equa-

tion (2) are

x1 = u1 − b
3

= y + z − b
3
,

x2 = u2 − b
3

= ωy + ω2z − b
3

x3 = u3 − b
3

= ω2y + ωz − b
3


 (13)

Case (ii) If R = 0, then equal roots y = z. Then

the roots of (4) are y + z, y(ω + ω2), y(ω + ω2)

or 2y, −y, −y (14)

(since ω + ω2 = −1 and y = z)

Hence roots of (2) are

2y − b
3
, −y − b

3
, −y − b

3
(15)

Case (iii) If R < 0 then y3 and z3 are complex. Sup-

pose y3 = a + ib and z3 = a − ib.

If the cube roots of these quantities arem + in and

m − in, then the roots of the cubic equation (4) are

y + z = (m + in) + (m − in) = 2m

ωy + ω2z = ω(m + in) + ω2(m − in) = −m − n
√
3

ω2y + ωz = ω2(m + in) + ω(m − in) = −m + n
√
3




(16)

Using De Moivre’s result, this irreducible case

Cardano’s solution can be expressed in terms of

trigonometric functions as follows:

Let the solution of (4) be

u = y + z = (a + ib)1/3 + (a − ib)1/3 (17)

Put a = r cos θ , b = r sin θ , so r2 = a2 + b2,

tan θ = b
a
. Then

(a + ib)1/3 = {r(cos θ + i sin θ )}1/3

= r1/3
 
cos θ+2kπ

3
+ i sin θ+2kπ

3

 
, k = 0, 1, 2 (using

De Moivre’s Theorem) (18)

In a similar way (a − ib)1/3 =
r1/3

 
cos θ+2kπ

3
− i sin θ+2kπ

3

 
, k = 0, 1, 2 (19)

Here r1/3 is the arithmetical cube root of r . Thus

substituting (18), (19) in (17)we getu = 2r1/3 cos θ
3
,

2r1/3 cos θ+2π
3

, 2r1/3 cos θ+4π
3

. Hence the required

roots of the given cubic equation (2) are

2r1/3 cos
 
θ
3

 − b
3
, 2r1/3 cos

 
θ+2π

3

 − b
3

2r1/3 cos
 
θ+4π

3

 − b
3

 
(20)

The numbers (13) (in case (i)), (15) (in case (ii)) and

(20) (in case (iii)) are known as Cardano’s formulas

for the roots of a reduced cubic equation (4).

WORKED OUT EXAMPLES

Example 1: Solve 28x3 − 9x2 + 1 = 0.

Solution: Rewriting x3 − 9
28
x2 + 1

28
= 0. To re-

move the x2 term, put

x = u − b

3
= u − 1

3

 
− 9

28

 
= u + 3

28
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Substituting 
u + 3

28

 3

− 9

28

 
u + 3

28

 2

+ 1

28
= 0

or

u3 − 27

(28)2
u + 730

(28)3
= 0

so p = −27/(28)2 and q = 730/(28)3.

Let u = y + z. Then y3 + z3 = −q = − 730/ (28)3

and y3z3 = −p3

27
= −(27)3

(28)6
· 1
27
. Now y3 and z3 are the

roots of the quadratic equation in t

t2 + 730

(28)3
t − (27)2

(28)6
= 0

Here the discriminant

R =
 

730

(28)3

 2

+ 4
(27)2

(28)6
> 0

so the values of both y and z are real. Solving for t ,
−730

(28)3
±
  

730

(28)3

 2

− 4
(27)2

(28)6


 2

= −730 ± 728

2(28)3

so y3 = − 2

2(28)3
or y = − 1

28

and z3 = −729

(28)3
= −  

9
28

 3
or z = −9

28

Thus u = y + z = − 1
28

− 9
28

= −10
28

Hence x = u + 3
28

= −10
28

+ 3
28

= −7
28

= −1
4

is a root

of the given cubic equation. Similarly the other two

roots are:

ωy + ω2z =
 

−1 + √
3i

2

  
− 1

28

 

+
 

−1 − √
3i

2

  −9

28

 

= − 1

2.28
[−10 − 8

√
3i] = 5 + 4

√
3i

28

so x = u + 3
28

= 5+4
√
3i

28
+ 3

28
=

= 8+4
√
3i

28
= 2+√

3i
7

Also

ω2y + ωz =
 

−1−√
3i

2

  − 1
28

 +
 

−1+√
3i

2

  −9
28

 

= 5 − 4
√
3i

28

so

x = u + 3

28
= 5 − 4

√
3i

28
+ 3

28

= 8 − 4
√
3i

28
= 2 − √

3i

7

Thus the three roots of the given cubic equation are

− 1
4
, 2+√

3i
7

, 2−√
3i

7

Example 2: Solve x3 − 27x + 54 = 0.

Solution: Here p = −27, q = 54. Since x2 term is

absent, no translation is needed.

So put x = y + z. Then y3 + z3 = −q = −54 and

y3z3 = −p3

27
= − (−27)3

27
= (27)2. Thus y3, z3 are the

roots of the quadratic in t :

t2 + 54t + (27)2 = 0

Its discriminant R = (54)2 − 4(27)2 =
2916 − 2916 = 0. Therefore t has equal roots

i.e., y3 = z3 or y = z.

So y3 = −54
2

± 0 = −27 or y = −3 = z.

The required three roots of the given cubic equation

are: 2y, −y, −y i.e., −6, 3, 3.

Example 3: Solve x3 − 3x2 − 12x + 16 = 0

Solution: To get rid of the x2 term, put x =
u − b

3
= u − (−3)

3
= u + 1. Then (u + 1)3 − 3(u +

1)2 − 12(u + 1) + 16 = 0.

u3 + 3u2 + 3u + 1 − 3(u2 + 2u + 1)−
−12u − 12 + 16 = 0 or

or u3 − 15u + 2 = 0

Here p = −15, q = 2. Now put u = y + z. Then

y3 + z3 = −q = −2 and

y3z3 = −p3

27
= − (−15)3

27
= (15)3

27
= 53

Thus y3 and z3 are the roots of the quadratic in t

given by

t2 + 2t + 53 = 0
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It discriminant is

R = 4 − 4(125) = −496 < 0

So the roots y3 and z3 are complex conjugate.

y3 = −2 ± √
4 − 4(125)

2
= −1 +

√
124i

put x = −1, y = √
124, r =

 
x2 + y2 =√

1 + 124 = √
125, tan θ = y

x
=

√
124

−1
= −√

124

and r1/3 = (125)1/6 = √
5

So y = (−1 + √
124i)1/3 = r1/3cis

 
θ+2kπ

2

 
, k =

0, 1, 2

y = √
5cis

 
θ+2kπ

2

 
, k = 0, 1, 2

Here cis = cos+i sin

In a similar way

z3 = −1 − √
124i or z = (−1 − √

124 · i)1/3
z = √

5
 
cos θ+2kπ

2
− i sin

 
θ+2kπ

2

  
, k = 0, 1, 2

Since u = y + z, and x = u + 1, the required three

roots of the given cubic equation are

1 + 2
√
5 cos θ

3
, 1 + 2

√
5 cos θ+2π

3
,

1 + 2
√
5 cos θ+4π

3
where θ = tan−1(−√

124)

EXERCISE

Solve the following cubic equations by Cardano’s

method.

1. x3 − 15x + 126 = 0

Hint: t2 − 126t + 125 = 0, y3 = 125, y = 5,

z3 = 1, z = 1

Ans. y + z = 5 + 1 = 6,ωy + ω2z = −3 + 2
√
3i,

ω2y + ωz = −3 − 2
√
3i

2. x3 − 15x2 − 33x + 847 = 0

Hint:Put x = u + 5,u = y + z,u3 − 108y +
432 = 0, t2 + 432t + 46656 = 0. R = dis-

criminant = 0, Equal roots y3 = z3 = −216,

or y = z = −6

Ans. 11, 11, −7

3. x3 + 72x − 1720 = 0

Hint: y3 = 1728, y = 12, z3 = −8, z = −2

Ans. y + z = 12 − 2 = 10, −5 ± 7
√
3i

4. x3 + 3x2 − 144x + 540 = 0

Hint: Put x = u − 1, u3 − 147y + 686 = 0,

t2 + 686t + (343)2 = 0. Equal roots, y3 =
z3 = −343 or y = z = −7

Ans. −15, 6, 6

5. 2x3 + 3x2 + 3x + 1 = 0

Ans. − 1
2
, −1±√

3i
2

6. x3 − 18x − 35 = 0

Ans. 5, −5±√
3i

2

Hint: x = y + z, t2 − 35t + 216 = 0, y3 =
27, y = 3, v3 = 8, v = 2, x = 3 + 2 = 5,

3ω + 2ω2 = −5+√
3i

2
and 3ω2 + 2ω = −5−√

3i
2

7. x3 − 3x2 + 3 = 0

Hint: Put x = u + 1, u3 − 3u + 1 = 0, put

u = y + z, t2 + t + 1 = 0, u3 = −1+√
3i

2
,

v3 = −1−√
3i

2
, u = y + z = 2 cos 2π

9
, 2 cos 8π

9
,

2 cos 14π
9

Ans. 1 + 2 cos 2π
9
, 1 + 2 cos 8π

9
, 1 + 2 cos 14π

9
.

8. x3 + 6x + 2 = 0

Ans. A − B, ωA − ω2B, ω2A − ωB where A =
21/3, B = 41/3.

9. x3 − 9x2 − 9x − 15 = 0

Hint: Put x = u + 3

Ans. 3 + A + B, 3 + ωA + ω2B, 3 + ω2A + ωB

where A = (24)1/3, B = (72)1/3

10 x3 + 21x + 342 = 0

Ans. −6, 3 ± 4
√
3i

11. x3 − 6x2 + 6x − 5 = 0

Hint: Put x = u + 2, u3 − 6u − 9 = 0, u =
y + z, t2 − 9t + 8 = 0, y3 = 8, y = 2, z3 =
1, z = 1

Ans. x = (y + z) + 2 = (2 + 1) + 2 = 5; −3±√
3i

2

1.4 FERRARI’S∗ METHOD

Ferrari’s method obtains the general solution of a bi-

quadratic (or quartic) equation (Fourth degree poly-

nomial).

* Scipio Ferrari, Italian mathematician, pupil of Cardano.
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Consider

x4 + 2px3 + qx2 + 2rx + s = 0 (1)

Add (ax + b)2 on both sides of (1). Then

x4 + 2px3 + (q + a2)x2 + 2(r + ab)x

+ (s + b2) = (ax + b)2 (2)

Here the two unknowns a and b are determined such

that theLHSof (2) is a perfect square say (x2 + px +
k)2.

Comparing the coefficients on both sides

p2 + 2k = q + a2, pk = r + ab, k2 = s + b2 (3)

Eliminating a and b from these equations we get

(pk − r)2 = a2b2 = (p2 + 2k − q)(k2 − s)

or

2k3 − qk2 + 2k(pr − s) + (qs − p2s − r2) = 0

(4)

Choose any root k of this resolvent cubic equation

(4) which has always a real root (since odd degree,

sign is that of its last term). Substituting k in (3), we

obtain values of a and b. Now

(x2 + px + k)2 = (ax + b)2

or (x2 + px + k) ± (ax + b) = 0

Thus the four roots of the biquadratric equation

(1) are obtained from the two quadratic equations

x2 + (p − a)x + (k − b) = 0 (5)

and x2(p + a)x + (k + b) = 0 (6)

Note: Abel has demonstrated the impossibility of

obtaining algebraical solution of equations of degree

higher than four. In such cases Horner’s method of

approximation is used to find numerical solution to

any required degree of accuracy.

WORKED OUT EXAMPLES

Example 1: Solve x4 + 2x3 − 7x2 − 8x + 12 = 0

Solution: Let the quartic equation be

x4 + 2px3 + qx2 + 2rx + s = 0

so here 2p = 2, q = −7, 2r = −8, s = 12 orp = 1,
q = −7, r = −4, s = 12. The equation for cubic k
is

2k3 − qk2 + 2k(pr − s) + (qs − p2s − r2) = 0

2k3 + 7k2 + 2k(−4 − 12) + (−84 − 12 − 16) = 0

2k3 + 7k2 − 32k − 112 = 0

By trial, k = 4 is a root of this cubic

(2 · 43 + 7 · 42 − 32 · 4 − 112 = 128 + 112

− 128 − 112 = 0)

Substituting k = 4 in

p2 + 2k = q + a2, pk = r + ab, k2 = s + b2

we have

1 + 8 = −7 + a2 ... a = 4

1 · 4 = −4 + ab ... 8 = ab = 4b ... b = 2

42 = 12 + b2 = 12 + 4

Thus the four roots of the given quartic equation
are obtained from the solutions of the two quadratic
equations

x2 + (p ∓ a)x + (k ∓ b) = 0

i.e., x2 + (1 − 4)x + (4 − 2) = x2 − 3x + 2 = 0

x2 + (1 + 4)x + (4 + 2) = x2 + 5x + 6 = 0

Solving the two quadratics

x2 − 3x + 2 = (x − 1)(x − 2) = 0

and x2 + 5x + 6 = (x + 2)(x + 3) = 0

The four roots of the biquadratic equation are 1, 2,

−2,−3.

Aliter: The above problem can be done as follows:

x4 + 2x3 − 7x2 − 8x + 12 = 0.

Introducing an unknown λ, combine the terms x4

and 2x3 to form a perfect square

(x2 + x + λ)2 + {−x2 − λ2 − 2λx − 2λx2} − 7x2

−8x + 12 = 0

(x2 + x + λ)2 − {(8 + 2λ)x2 + (8 + 2λ)x

+ (λ2 − 12)} = 0

The second expression in { } brackets will be a per-

fect square if b2 = 4ac i.e.,

(8 + 2λ)2 = 4(8 + 2λ)(λ2 − 12)
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or 2λ2 − λ − 28 = 0

Solving λ = 4, − 7
2
. With λ = 4, we have

(x2 + x + 4)2 − {16x2 + 16x + 4} = 0

(x2 + x + 4)2 − {2(2x + 1)}2 = 0

Thus the four roots are given by the roots of the two

quadratic equations

(x2 + x + 4) + 2(2x + 1) = 0 i.e., x2 + 5x + 6 = 0

and

(x2 + x + 4) − 2(2x + 1) = 0 i.e., x2 − 3x + 2 = 0

The four roots are −2, −3, 1, 2

Example 2: Solve x4 − 8x2 + 24x + 7 = 0

Solution: Here 2p = 0, i.e., p = 0, q = −8, 2r =
24 i.e., r = 12 and s = 7. The cubic for k is

2k3 + 8k2 + 2k(0 − 7) + (0 − 56 − 144) = 0

k3 + 4k2 − 7k − 100 = 0

which has k = 4 as a root (64 + 64 − 28 − 100 = 0)

solving for a, b

0 + 8 = −8 + a2 ... a = 4,

0 = 12 + 4b ... b = −3

16 = 7 + b2 = 7 + 9

Thus the four roots are given by the roots of two

quadratic equations x2 + (0 − 4)x + (4 − (−3)) =
x2 − 4x + 7 = 0 and x2 + (0 − 4)x + (4 − 3) =
x2 + 4x + 1 = 0

The roots are 2 ± √
3i and −2 ± √

3.

EXERCISE

Solve the following biquadratic equations by Fer-

rari’s method.

1. x4 − 2x3 − 5x2 + 10x − 3 = 0

Hint: 2k3 + 5k2 − 4k − 7 = 0, k = −1, a =
2, b = 2, x2 − 3x + 1 = 0, x2 + x − 3 = 0

Ans. 3±√
5

2
, −1±√

13
2

2. x4 − 2x2 + 8x − 3 = 0

Hint: x2 + 2x − 1 = 0, x2 − 2x + 3 = 0

Ans. −1 ± √
2, 1 ± √

2i

3. x4 − 12x3 + 41x2 − 18x − 72 = 0

Hint: x2 − 5x − 6 = 0, x2 − 7x + 12 = 0

Ans. −1, 3, 4, 6

4. x4 − 10x3 + 35x2 − 50x + 24 = 0

Hint: 2k3 − 35k2 + 202k − 385 = 0, k = 5,

a = 0, b = 1, x2 − 5x + 4 = 0, x2 − 5x +
6 = 0

Ans. 1, 4, 2, 3

5. x4 + 8x3 + 9x2 − 8x − 10 = 0

Hint: 2k3 − 9k2 − 12k + 54 = 0, k = 9
2
, a =

4, b = 11
2
, x2 − 1 = 0, x2 + 8x + 10 = 0

Ans. ±1, −4 ± √
6

6. x4 − 3x2 − 42x − 40 = 0

Ans. 4, −1, − 1
2
(3 ± √

31 i)

7. x4 − 2x3 − 12x2 + 10x + 3 = 0

Ans. 1, −3, 2 ± √
5

8. 4x4 − 20x3 + 33x2 − 20x + 4 = 0

Ans. 2, 2, 1
2
, 1
2

9. x4 − 3x2 − 6x − 2 = 0

Ans. 1 ± √
2, −1 ± i

10. x4 − 10x2 − 20x − 16 = 0

Ans. 4, −2, −1 ± i

1.5 COMPLEX NUMBERS

Gauss first introduced the term “complex number”

Cardano∗ first used complex numbers in solving cu-

bic equations. Complex numbers find applications in

electric circuits, mechanical vibrating systems. Ar-

gand wrote a short book on the geometric represen-

tation of complex numbers in 1806. Kuhn of Denzig

was the first mathematician who proposed geometric

representation of imaginary number i.

* Girolamo Cardano (1501-1576) Italian mathematician.
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There are no real solutions to equations such as

x2 + 2 = 0 or x2 + 3x + 4 = 0. This led to the in-

troduction of complex numbers. A complex number

denoted by z is defined as

z = x + iy

where x and y are real, while i = √−1 is known as

the imaginary unit. Here x is known as the real part

of z and y as the imaginary part of z and are denoted

as

x = Real part of z = Re(z)

y = Imaginary part of z = Im(z).

For y = 0, real numbers form a subset of the com-

plex numbers. When x = 0, the complex number is

known purely imaginary complex number z. It can

be represented as an ordered pair (x, y) and thus as a

point in a plane known as complex plane or Argand∗

diagram. Here the x-axis is called as real axis, while

the y-axis as imaginary axis.

Equality:

Two complex numbers z1 = x1 + iy1 and z2 = x2 +
iy2 are said to be equal if x1 = x2 and y1 = y2. Thus

z1 = z2 when their corresponding real parts are equal

and corresponding imaginary parts are also equal.

Otherwise they are said to be not equal i.e., z1  = z2.

Note: However inequalities between complex

numbers such as z1 > z2 or z1 ≤ z2 has no mean-

ing since the field of complex numbers can not be

ordered. Thus 2 + 3i > 3 + 7i or −6 − 2i < 0 have

no meaning.

Zero

A complex number z is zero if both the real and

imaginary parts x and y are zero.

Conjugate complex numbers or complex conjugate

number of z denoted by z is defined as

z = x − iy

i.e., z and z differ only in the sign of the imaginary

part.

Trigonometric form of a Complex Number

Since every complex number is represented as a point

in the complex plane and vice versa, the complex

* Jean Robert Argand (1768-1822), French mathematician.

number z = x + iy is geometrically represented by

the position vector OP where O is the origin and

P is the point (x, y). Let (r, θ ) denote the polar co-

ordinates of P ; with origin treated as the pole and

positive x-axis as the polar axis. Then

x = r cos θ, y = r sin θ

So z = x + iy = r cos θ + i sin θ

z = r(cos θ + i sin θ ) = r cis θ

This expression is known as the trigonometric form

or polar form. Here r is termed as modulus or abso-

lute value of the complex number and is denoted by

|z |.

q

r

z x iy
P x y
= +
( , )

y

x

y

O

Fig. 1.23

x

Thus r = |z| =
 
x2 + y2 represents the dis-

tance of z from origin. Here θ is the argument (or

amplitude or phase) of z, denoted as

θ = arg z = tan−1 y

x
. The polar form is also known

as modulus-amplitude form.

Thus absolute value of z is

|z| =
 
x2 + y2.

Amplitude, θ , the directed angle from positive x-axis

is positive in the counterclockwise direction and is

reckoned negative in the clockwise (opposite direc-

tion). θ is measured in radians. It is not unique, but

multivalued and is determined up to 2πk, for any

integer k.

Principal value

Principal value of argument z is denoted by Arg z is

the value of θ which lies in the interval−π < θ ≤ π .

Note: Although z and z have the same moduli.

Their arguments are equal in magnitude but differ

in sign.

That is arg z = − arg z
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while |z| =
 
x2 + y2 = |z|

For any z,

1. |z| ≥ |Re(z)| ≥ Re(z)

2. |z| ≥ |Im(z)| ≥ Im(z).

Complex Algebra

Addition

Sum of two complex numbers

z1 + z2 = (x1 + iy1) + (x2 + iy2) =
= (x1 + x2) + i(y1 + y2)

obtained by adding the corresponding real and imag-

inary parts.

y

z1

z2

z
z

1

2
+

xO
Fig. 1.24

So sum of two complex numbers z1 + z2 is given

by the diagonal of the parallelogram with z1 and z2
as adjacent sides (Fig. 1.24).

Difference

Subtraction z1 − z2 is defined

z1 − z2 = (x1 − y1) + i(y1 − y2)

So |z1 − z2| =
 
(x1 − x2)2 + (y1 − y2)2

Thus the modulus of the difference between two

numbers z1 and z2 equals to the distance between z1
and z2 [in the complex plane (see Fig. 1.25)].

z z1 2– z1 z2

y

O

Fig. 1.25

Multiplication

z1 · z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2)

+ i(x1y2 + x2y1)

Since i2 = −1, (i3 = −i, i4 = 1 etc. and in general

i4k = 1, i4k+1 = i, i4k+2 = −1, i4k+3 = −i).

In the polar form

Suppose z1 = r1 cis θ1, z2 = r2cisθ2 then

z1z2 = (r1 cis θ1)(r2 cis θ2)

= r1r2[cos θ1 + i sin θ1][cos θ2 + i sin θ2]

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2)+
+i(sin θ1 · cos θ2 + cos θ1 · sin θ2)]

Thus z = reiθ = z1z2

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θi + θ2)]

Thus the modulus of the product is the product

of the moduli i.e., r = |z | = r1r2 = |z1||z2| and the

argument of the product is the sum of the arguments,

i.e., θ = θ1 + θ2. or arg(z1z2) = arg z1 + arg z2.

Division

z1
z2

is defined as the inverse operation of multiplica-

tion. Thus the quotient z = z1
z2

is defined as z · z2 =
z1.

In practice
z1
z2

is obtained by multiplying the nu-

merator or denominator by z2, the conjugate of z2.

Thus z = x + iy = z1
z2

= z1 ·z2−−−−−
z2 ·z2

= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

z1

z2
= (x1x2 + y1y2) + i(y1x2 − x1y2)

x2
2 + y2

2

Thus Re(z) = Re
 
z1
z2

 
= x1x2+y1y2

x2
2

+y2
2

and

Im(z) = Im

 
z1

z2

 
= y1x2 − x1y2

x2
2 + y2

2

Note that zz = x2 + y2 = |z|2 = |z|2.
Thus for any z = x + iy, (z = x − iy),

1. Re z = x = 1
2
(z + z)

2. Im z = y = 1
2i
(z − z)

3. z = z then z must be real.

4. z1 ± z2 = z1 ± z2

5. (z1z2) = z1z2
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6.

 
z1

z2

 
= z1−−−

z2

In polar form

z1

z2
= r1(cos θ1 + i sin θ1)

r2(cos θ2 + i sin θ2)

= r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)

 
Thus the modulus of the quotient is quotient of the

moduli i.e., r =
   z1z2
   = r1

r2
= | z1 |

| z2 | and the argument

of the quotient is the difference between the argu-

ments i.e., θ = θ1 − θ2 or arg
 
z1
z2

 
= argz1 − arg z2.

Triangle inequality

Book work: Prove that

|z1 + z2 | ≤ |z1| + |z2 |
Proof Let z1 = x1 + iy2, z2 = x2 + iy2. Then con-

sider |z1 + z2| ≤ |z1 | + |z2 | 
(x1 + x2)2 + (y1 + y2

2 ) ≤
 
x2
1 + y2

1 +
 
x2
2 + y2

2 .

Squaring on both sides

(x1 + x2)
2 + (y1 + y2)

2 ≤ (x2
1 + y2

1 ) + (x2
2 + y2

2 )+

+ 2

 
x2
1 + y2

1 ·
 
x2
2 + y2

2

or

2(x1 + x2)(y1 + y2) ≤ 2

 
x2
1 + y2

1 ·
 
x2
2 + y2

2

Squaring again on both sides

(x1 + x2)
2(y1 + y2)

2 ≤ (x2
1 + y2

1 )(x
2
2 + y2

2 )

or 2x1x2y1y2 ≤ x2
1y

2
2 + x2

2y
2
1

i.e., (x1y2 − x2y1)
2 ≥ 0 which is always true.

Thus |z1 + z2 | ≤ |z1 | + |z2 |
Note: Geometrically the triangle inequality states

that the sum of the two sides of a triangle |z1| +
|z2| is greater than the third side of the triangle

|z1 + z2|. The equality sign holds good i.e., |z1 +
z2| = |z1| + |z2| when the triangle degenerates into

a straight line.

Result 1: Generalization

|z1 + z2 + z3 | ≤ |z1 | + |z2 | + |z3 |

or in general      
n 

i=1

zi

     ≤
n 

i=1

|zi |

Result 2. |z1 − z2 | ≥ ||z1 | − |z2 ||
Since |z1 | = |z1 − z2 + z2 | ≤ |z1 − z2 | + |z2 |
Similarly

Result 3. |z1 + z2| ≥ ||z1| − |z2||
Result 4. |z1 − z2| ≥ |z1| − |z2|
Result 5. |z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2)

(known as parallelogram equality)

(Hint: Use |z1 + z2|2 = r21 + r22 + 2r1r2 cos(θ2 −
θ1)). and |z1 − z2|2 = r21 + r22 − 2r1r2 cos(θ1 − θ2)

De Moivre’s Theorem: Power of complex numbers:

Let z1 = r1 cis θ1, z2 = r2cisθ2; , · · · , zn =
rn cis θn. Then by the product rule in polar form, we

get

z1 · z2 · · · zn = (r1 cis θ1)(r2 cis θ2) . . . (rn cis θn)

= (r1r2 . . . rn)(cis θ1)(cis θ2) . . . (cis θn)

= (r1r2 . . . rn) cis (θ1 + θ2 + · · · + θn)

Thus

cis θ1 · cis θ2 . . . cis θn = cis (θ1 + θ2 + · · · + θn)

If we choose z1 = z2 = · · · = zn = z = r cis θ then

zn = rn cis nθ or for choice of r = 1, we get

(cos θ + i sin θ )n = cos nθ + i sin nθ

which is known as DeMoivre’s theorem. In a similar

way

1

z
= 1

rcisθ
= 1

r
(cisθ )−1 = 1

r
(cos θ − i sin θ )

1

zn
= 1

rn
(cisθ )−n = 1

rn
(cos nθ − i sin nθ )

Thus

(cos θ + i sin θ )−n = cos nθ − i sin nθ

De Moivre’s theorem is valid for all rational values

of n (including positive, negative integral values and

zero).

(cis mθ )n = cis mnθ = (cis nθ )m
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1.6 ROOTS OF COMPLEX NUMBERS

Let z = ωn where n is an integer 1, 2, 3, . . .. This is

a single-valued function which associates a unique

value z for eachω. Now consider the inverse function

ω = z
1
n = n

√
z

which ismultivalued, namelyn valued. For any given

z  = 0 and the given integer n, there corresponds pre-

cisely n distinct values of ω which are known as the

n roots of z. Thus the nth root of a complex number is

another complex number whose nth power is equal

to the radicand. To determine these n roots, let ω =
R(cosφ + i sin φ) and z = r(cos θ + i sin θ ). Then

ωn = [R(cosφ + i sin φ)]n

= Rn(cos nφ + i sin nφ)

= z = r(cos θ + i sin θ )

by using De Moivre’s theorem. Since the moduli of

equal complex numbers must be equal, while their

amplitudes may circle with centre at origin and of

radius r1/n. They constitute the n vertices of a regular

polygon of n sides inscribed in the circle, spaced

at equal angular intervals of 2π
n
, beginning with the

radius whose angle is θ
n
.

Principal value of ω = 21/n is obtained for k = 0

and by taking principal value of argument of z.

In particular, the nth roots of a real non-zero num-

ber A also has n values since the real number A can

be expressed in trigonometric form as

A = |A|(cos θ + i sin θ ) = |A |cis 0 for A > 0

and

A = |A|(cosπ + i sin π ) = |A|cis π for A < 0

Solution of Binomial Equation

The n roots of the binomial equation

xn = A

differ by a multiple of 2π , we have

Rn = r and nφ = θ + 2kπ

or R = n
√
r where the root is real positive and

φ = θ + 2kπ

n

where k is an integer. For k = 0, 1, 2, · · · (n − 1) we

get n different roots since for these values of k, φ

defines n distinct angles which identify n different

complex numbers. But as k takes n, n + 1, · · · or

−1,−2, . . ., the same angles φ are repeated again

and again, thus giving the root values that coincide

with those (already) obtained. Thus the nth root of a

complex number has n distinct values given by

ω = z
1
n = n

√
z = r

1
n

 
cos

 
θ + 2kπ

n

 

+ i sin

 
θ + 2kπ

n

  
(1)

where k = 0, 1, 2, . . . , n − 1

Geometrically, these n values are given by

x = n
√
A

 
cos

2kπ

n
+ i sin

2kπ

n

 
(2)

for k = 0, 1, 2, . . . , n − 1 when A is a real positive

number. In particular the nth roots of unity (for A =
1) are given by

11/n =
 
cos

2kπ

n
+ i sin

2kπ

n

 
, k = 0, 1, . . . , n − 1

similarly when A is a real negative number, then

x = n
√
A

 
cos

 
π + 2kπ

n

 
+ i sin

 
π + 2kπ

n

  
(3)

for k = 0, 1, 2, . . . , (n − 1). In particular the nth

roots of −1 (for A = −1) are given by

(−1)
1
n = cos

 
π + 2kπ

n

 
+ i sin

 
π + 2kπ

n

 

for k = 0, 1, 2, . . . (n − 1).

When A is a complex number, these n values of

x are obtained from (1). Now the general rational

power of a complex number is defined as

zp/q =  
x1/q

 p =
 
r1/qcis

θ + 2kπ

q

 p

= rp/qcis

 
p

q
(θ + 2kπ )

 

for k = 0, 1, 2, . . . , q − 1.
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WORKED OUT EXAMPLES

Example 1: Express in the form a + ib and find

its modulus.

(a)
3 + i

5 + 5i
(b)

(1 + i)(2 + 3i)

4 − i

Solution: (a) 3+i
5+5i

= (3+i)(5−5i)

(5+5i)(5−5i)
= 15+5−10i

25+25

= 2 − i

5
= 2

5
− i

5

modulus of 3+i
5+5i

=   2−i
5

  =
  

2
5

 2 +  
1
5

 2
=
 

4
25

+ 1
25

=
 

1
5

(b) (1+i)(2+3i)

(4−i)
= (2−3+5i)(4+i)

(4−i)(4+i)

= −4 − 5 + 19i

17
= −9 + 19i

17
= −9

17
+ 19 · i

17

modulus =
  −9+19i

17

  =
  

9
17

 2 +  
19
17

 2 =
 

442
289

Example 2: Express
√
3 + i in the modulus am-

plitude form and find the principal argument of

−√
3 + i.

Solution: x + iy = −√
3 + i, so x = −√

3, y =
1, then r =

 
x2 + y2 = √

3 + 1 = √
4 = 2, x =

−√
3 = r cos θ = 2 cos θ . So cos θ = −√

3
2

and y =
1 = r sin θ = 2 sin θ , so sin θ = 1

2
· cos is negative

and sine positive. θ in the 2nd quadrant

θ = π − π
6

± 2nπ = 5π
6

± 2nπ , n = 0, 1, 2, . . .

moulus amplitude form of −√
3 + i is 2e

i
 
5π
6

±2nπ
 

where 2 is the modulus and θ = 5π
6

± 2nπ is the

amplitude (or argument). The principal argument lies

−π ≤ θ < π . Thus 5π
6

is the principal argument.

Example 3: Solve the equation
iy

ix+1
− 3y+4i

3x+y
= 0

given that x and y are real.

Solution:

iy

ix + 1
− 3y + 4i

3x + y
= iy(−ix + 1)

(ix + 1)(−ix + 1)
− (3y + 4i)

(3x + y)

= xy + iy

1 + x2
− (3y + 4i)

(3x + y)
= 0

(xy + iy)(3x + y) − (1 + x2)(3y + 4i) = 0

or

y(xy − 3) + i(3xy + y2 − 4x2 − 4) = 0

⇒ y(xy − 3) = 0 and 3xy + y2 − 4x2 − 4 = 0.

Ify = 0, thenx2 + 1 = 0. Sincex is real,x2 + 1 = 0

is not possible. Thus y  = 0.

Assume y  = 0 then xy = 3 or y = 3
x
. Eliminating y,

3x · 3
x

+ 9

x2
− 4x2 − 4 = 0

or 4x4 − 5x2 − 9 = 0 or (4x2 − 9)(x2 + 1) = 0.

Since x is real, x2 + 1  = 0. Then 4x2 − 9 = 0 or

x = ± 3
2

Thus x = 1.5, y = ± 2 are the solutions.

Example 4: Determine the curve represented by

zz + (1 + i)z + (1 − i)z = 0.

Solution: (x2 + y2) + (1 + i)(x + iy)+
(1 − i) (x − iy) = 0 or x2 + 2x + y2 − 2y = 0

Rewriting (x + 1)2 + (y − 1)2 = (
√
2)2; which is

the equation of a circle with centre at (−1, 1) and

of radius
√
2.

Example 5: Locate the points z1 = 9 + i, z2 =
4 + 13i, z3 = −8 + 8i and z4 = −3 − 4i in the Ar-

gand diagram and show that these four points form

a square.

Solution: Distance between z1 and z2 = length of

the side AB

= |z1 − z2| = |9 − i − (4 − 13i)| = |5 + 12i |
= √

25 + 144 =
√
169 = 13

Similarly

|z1 − z3| = |17 − 7i| =
√
338

|z1 − z4| = |12 − 5i| = √
144 + 25 = 13

|z2 − z3| = |12 − 5i| = 13

|z2 − z4| = |7 + 17i| =
√
338

|z3 − z4| = | − 5 + 12i| = 13

SinceAB = AD = BC = CD (these four sides are

equal) the four points z1, z2, z3, z4 form a square in

the Argand diagram (complex plane).
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z i1 9 +=

z i2 + 13= 4

y

z3 =
–8 + 8i

z4 = –3 – 4i

x

Fig. 1.26

C

B

D

A

Example 6: Show that multiplication of a complex

number by ‘i’ corresponds to a counterclockwise

rotation of the corresponding vector through the

angle π
2
.

Solution: Let the complexnumber be z = x + iy =
r(cos θ + i sin θ ) = reiθ . Then

iz = ireiθ = ei
π
2 · r · eiθ = rei(θ+π/2)

Thus the argument of iz is θ + π
2
which is π

2
more

than the argument of z. HenceOZ is rotated through

an angle π
2
in the counterclockwise direction.

Example 7: Determine the domain in the z-plane

represented by (a) 3 < |z − 4| ≤ 5 (b) Im(z) < 6

(c) π
4
< amp(z) < π

2
.

Solution: (a) 3 < |z − 4| ≤ 5

|z − 4| = |x + iy − 4| = |(x − 4) + iy|
=
 
(x − 4)2 + y2

From 3 <
 
(x − 4)2 + y2

we get 9 < (x − 4)2 + y2

From
 
(x − 4)2 + y2 ≤ 5, we get

(x − 4)2 + y2 ≤ 25.

Thus the inequality represents the annulus region be-

tween two concentric circleswith both centered at (4,

0) and of radii 3 and 5. The boundary of the outer

circle with radius 5 is also included in the region.

(4,0) 7–1 1 9
x

y

Fig. 1.28

(b) Im(z) = y < 6

The open half region below the line y = 6.

y = 6

y

x

Fig. 1.29(a)

O

(c) The wedge region in the first quadrant bounded

by the lines θ = π
4
, and θ = π

2
.

y

q p= /4

q
p

=
2

x

Fig . 1.29(b)

Example 8: If z = 1 + i, plot z2, z3, 1
z
in the com-

plex plane.

Solution: z = x + iy = 1 + i, so x = 1, y = 1,

then r =
 
x2 + y2 = √

2, 1 = x = √
2 cos θ . Then

cos θ = sin θ = 1√
2
. Thus θ = π

4
. Hence
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z = 1 + i = √
2 ei

π
4 . Then z2 = 2ei

π
2 = 2i

z3 = 23/2ei3π/4 = 2(−1 + i)

1

z
= 1√

2
e−iπ/4 = 1

2
(1 − i)

Example 9: Find the locus of z when z−i
z−2

is purely

imaginary.

Solution:
z − i

z − 2
= (x + iy) − i

(x + iy) − 2
= x + i(y − 1)

(x − 2) + iy

= [x + i(y − 1)][(x − 2) − iy]

[(x − 2) + iy][(x − 2) − iy]

= x(x − 2) + y(y − 1) + i[(x)(−y) + (y − 1)(x − 2)]

(x − 2)2 + y2

Since z−i
z−2

is purely imaginary, its real part
x(x−2)+y(y−1)

(x−2)2+y2
must be zero. Then x(x − 2) + y(y −

1) = 0 or x2 − 2x + y2 − y = 0.

Rewriting (x2 − 2x + 1) + (y2 − y + 1
4
) = 5

4
or

(x − 1)2 +  
y − 1

2

 2 =
  

5
4

 2

. Thus the locus of

z is a circle with center at (1, 1
2
) and radius

 
5
4
.

Fig. 1.31

r =A
5
4

(1, )1
2

A =

x

y

r

De Moivre’s Theorem

Example 10: Simplify (cos 5θ−sin 5θ)2(cos 7θ+i sin 7θ )−3

(cos 4θ−i sin 4θ )9(cos θ+i sin θ )5

Solution: Using De Moivre’s theorem

(cos 5θ − i sin 5θ )2 = cos 10θ − i sin 10θ

= (cos θ + i sin θ )−10

(cos 7θ + i sin 7θ )−3 = cos 21θ − i sin 21θ

= (cos θ + i sin θ )−21

(cos 4θ + i sin 4θ )9 = cos 36θ − i sin 36 θ

= (cos θ + i sin θ )−36

Substituting these values in given expression, we get

(cos θ + i sin θ )−10(cos θ + i sin θ )−21

(cos θ + i sin θ )−36(cos θ + i sin θ )5

= (cos θ + i sin θ )−31

(cos θ + i sin θ )−31
= 1

Example 11: Show that [(cosα − cosβ) +
i(sin α − sin β)]n + [(cosα − cosβ)−
i(sin α − sin β)]n

= 2n+1 sin n

 
α − β

2

 
· cos n

 
π + α + β

2

 

Solution: Put cosα − cosβ = r cos θ ,

sin α − sin β = r sin θ (1)

Then r2 = (cosα − cosβ)2 + (sin α − sin β)2

= cos2 α+cos2 β−2 cosα · cosβ+sin2 α+sin2 β

− 2 sin α sin β

= 2 − 2 cosα cosβ − 2 sin α sin β

= 2 − [cos(α + β) + cos(α − β)] − [cos(α − β)

− cos(α + β)]

= 2 − 2 cos(α − β) = 2(1 − cos(α − β))

r2 = 2 · 2 · sin2

 
α − β

2

 
So r = 2 sin

 
α−β

2

 
or rn = 2n sin n

 
α−β

2

 
(2)

Now using (1) eliminating α, β in terms of r and

θ , [(cosα − cosβ) + i(sin α − sin β)]n +[(cosα −
cosβ) − i(sin α − sin β)]n

= (r cos θ + ir sin θ )n + (r cos θ − ir sin θ )n

= rn[cos nθ + i sin nθ + cos nθ − i sin nθ ]

= rn · 2 · cos nθ (3)

r
sin – sina b

cos –a bcos

Fig. 1.32

q

Now from (1) tan θ = r sin θ

r cos θ
= sin α − sin β

cosα − cosβ
, so

cos θ = cosα − cosβ

r
= cosα − cosβ

2 sin
 
α−β

2
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= −2 sin
(α+β)

2
. sin

(α−β)

2

2 sin
(α−β)

2

= − sin
(α + β)

2

cos θ = cos

 
π

2
+ α + β

2

 

Thus θ = π
2

+ α+β

2

Then cos nθ = cos n
 
π
2

+ α+β

2

 
(4)

Substituting (3) and (4) in (2), we get the required

result as

= 2n · sin n
 
α − β

2

 
· 2 · cos n

 
π

2
+ α + β

2

 

Example 12: If z = cis θ and ω = cisφ show that

zmωn + z−mω−n = 2 cos(mθ + nφ).

Solution: Consider zmωn + z−mω−n

= (cis θ )m(cis φ)n + (cis θ )−m(cis φ)−n

(using De Movire’s theorem)

= (cosmθ + i sinmθ )(cos nφ + i sin nφ)

+ (cosmθ − i sinmθ )(cos nφ − i sin nφ)

= (cosmθ · cos nφ − sinmθ · sin nφ)
= cos(mθ + nφ)

Example 13: If sin α + 2 sin β + 3 sin γ = 0

and cosα + 2 cosβ + 3 cos γ = 0 then prove that

sin 3α + 8 sin 3β + 27 sin 3γ = 18 sin(α + β + γ )

and cos 3α + 8 cos 3β + 27 cos γ =
18 cos(α + β + γ )

Solution: Put a = cis α, b = cisβ, c = cis γ . Then

a + 2b + 3c = cisα + 2cisβ + 3cis γ

= (cosα + i sin α) + 2(cosβ + i sin β)

+ 3(cos γ + i sin γ )

= (cosα + 2 cosβ + 3 cos γ ) +i(sin α + 2 sin β+
3 sin γ )

= 0 + i · 0 = 0 using the given hypothesis.

Thus (a + 2b) = −3c

Cubing on both sides

(a + 2b)3 = −27c3

a3 + 8b3 + 3a2 · 2b + 3a · 4b2 = −27c3

a3 + 8b3 + 6ab(a + 2b) = −27c3

a3 + 8b3 + 6ab(−3c) = −27c3

Then

a3 + 8b3 + 27c3 = 18abc

(cisα)3 + 8(cisβ)3 + 27(cis γ )3 = 18 · cisα cisβ cisγ

(cos 3α + i sin 3α) + 8(cos 3β + i sin 3β)

+ 27(cis 3γ + i sin 3γ ) = 18 cis(α + β + γ )

or

(cos 3α + 8 cos 3β + 27 cos 3γ )

+ i(sin 3α + 8 sin 3β + 27 sin 3γ )

= 18[cos(α + β + γ ) + i sin(α + β + γ )]

On comparing the real and imaginary parts on both

sides, the two required results are obtained.

WORKED OUT EXAMPLES

Extraction of Roots

Example 1: Solve z4 + 1 = 0 and locate the roots

in the argand diagram.

Solution: z4 = −1 so z = (−1)
1
4 .

Consider −1 = x + iy so x = −1, y = 0; then

r =
 
x2 + y2 = √

1 = 1

−1 = x = r cos θ = cos θ , 0 = y = r sin θ

... θ = π .

Thus −1 = reiθ = 1 · eiπ
Now z = (−1)

1
4 = r

1
n cis

 
θ+2kπ

n

 =
1

1
4 cis

 
(π+2kπ )

4

 
i.e., z = cos

 
(π+2kπ )

4

 
+ i sin

 
(π+2kπ )

4

 
;

with k = 0, 1, 2, 3

3
4
p

7
4
p

p/45
4
p

z3

z2

z4

z1

x

y

Fig. 1.33
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For k = 0, z1 = cos π
4

+ i sin π
4

= 1√
2

+ i√
2

= 1√
2
(1 + i)

For k = 1, z2 = cos 3π
4

+ i sin 3π
4

= − 1√
2

+ i√
2

= 1√
2
(−1 + i)

For k = 2, z3 = cos 5π
4

+ i sin 5π
4

= − 1√
2

− i√
2

= 1√
2
(−1 − i)

For k = 3, z4 = cos 7π
4

+ i sin 7π
4

= 1
2

− i√
2

= 1√
2
(1 − i)

Thus the four roots of (−1)
1
4 are 1√

2
(±1 ± i), i.e.,

z1, z2, z3, z4 are the solutions of the given equation.

The four roots lie on a circle of radius ‘one’ making

angles π
4
, 3π

4
, 5π

4
and 7π

4
respectivelywith the positive

x-axis.

Example 2: Find all solutions of the equation

z4 − (1 + 4i)z2 + 4i = 0

Solution: z4 − z2 − 4iz2 + 4i =
= z2(z2 − 1) − 4i(z2 − 1) = 0

(z2 − 1)(z2 − 4i) = 0

Then z2 − 1 = 0 and z2 = 4i or z = ±1 and

z = ± 2
√
i

But
√
i = (eiπ/2)1/2 = eiπ/4 so z = ±1,

z = ±2eiπ/4 = ±2
 

1√
2

+ i 1√
2

 
. The solutions

are ±1, ±√
2(1 + i).

Example 3: Find all values of (−1 + i
√
3)3/2

Solution: Let −1 + i
√
3 = x + iy, so x = −1,

y = √
3. Then r =

 
x2 + y2 = √

1 + 3 = √
4 = 2

−1 = x = r cos θ = 2 cos θ , so cos θ = − 1
2√

3 = y = r sin θ = 2 sin θ , so sin θ =
√
3
2

... θ = π − π
3

= 2π
3
. Thus

−1 + i
√
3 = reiθ = 2ei

2π
3

Now

(−1 + i
√
3)3/2 =

 
2ei

2π
3

 3/2

= (8ei2π )1/2

=
√
8e

i
 
2π+2kπ

2

 
with k = 0, 1

=
√
8eiπ = −

√
8 = −2

√
2 for k = 0

=
√
8ei2π = +

√
8 = 2

√
2 for k = 1

Thus the solutions are ±2
√
2.

Example 4: Find the nth roots of unity or solve

zn − 1 = 0.

Solution: zn = 1, or z = 11/n = (1 · eio) 1
n since

1 = x + iy, x = 1, y = 0, r = 1, θ = 0 so 1 =
1 · eio. Then z = 11/ne

i
 
θ+2kπ

n

 
= e

i2kπ
n with k =

0, 1, . . . , (n − 1)

For k = 0, z = 1

For k = 1, ω1 = ei2π/n = cos 2π
n

+ i sin 2π
n

For k = 2, ω2 = ei4π/n =  
cos 4π

n
+ i sin 4π

n

 
=  

cos 2π
n

+ i sin 2π
n

 2 = ω2
1

For k = 3, ω3 = ei6π/n = cis 6π
n

=  
cis 2π

n

 3 = ω3
1

Thus for k = (n − 1), ωn−1 = ei2(n−1) πn = 
cis 2π

n

 n−1 = ωn−1
1

Therefore, the n distinct roots of unity are 1, ω, ω2,

ω3, . . ., ωn−1. Here

ω = e
i2π
n = cos

2π

n
+ i sin

2π

n

obtained for k = 1 is known as the primitive nth root

of 1 (i.e., root with the smallest non-zero angle). In

the Argand diagram, these n roots of unity are rep-

resented by n distinct vertices of a regular polygon

of n sides inscribed in a unit circle spaced at angu-

lar intervals of 2π
n
, beginning with one vertex at the

point 1.

y

1
x

Cube roots: 3 1

1, – 1
2
±

3
2
i

Fig. 1.34

y

1
x

4th roots: 4 1
± 1, ± i

Fig. 1.35

1
x

y

5 15th roots:

q = 0, 2
5
p 4

5
p 6

5
p 8

5
p, , ,

Fig. 1.36

Example 5: If ω is a complex 4th root of unity,

prove that 1 + ω + ω2 + ω3 = 0
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Solution: 1 = 1 · ei2kπ/4 = eikπ/2 with

k = 0, 1, 2, 3, 4. Then ω corresponds root

with k = 1. Thus for k = 1, ω = eiπ/2 = i.

Now 1 + ω + ω2 + ω3 = 1 + i + i2 + i3 =
1 + i − 1 − i = 0

Example 6: Solve the equation z7 + z4 + z3 +
1 = 0.

Solution: Observe that z = −1 is a solution of the

given equation since (−1)7 + (−1)4 + (−1)3 + 1 =
0.

By synthetic division,

1 1 0 0 1 1 0 0 1

−1 1 −1 0 −1 1 −1

1 −1 1 0 1 −1 1 0

z7 + z4 + z3 + 1 =
(z + 1)(z6 − z5 + z4 + z2 − z + 1) = 0

Now consider

z6 − z5 + z4 + z2 − z + 1 = 0

Dividing by z3,

z3 − z2 + z + 1

z
− 1

z2
+ 1

z3
= 0

or  
z3 + 1

z3

 
−
 
z2 + 1

z2

 
+
 
z + 1

z

 
= 0

Rewriting  
z + 1

z

 3

−3

 
z + 1

z

  
−
  

z + 1

z

 2

− 2

 

+
 
z + 1

z

 
= 0

or 
z + 1

z

 3

−
 
z + 1

z

 2

− 2

 
z + 1

z

 
+ 2 = 0

Put ω = z + 1
z
, then

ω3 − ω2 − 2ω + 2 = 0

for which ω = 1 is a root (solution). By synthetic

division.

1 1 −1 −2 +2

1 0 −2

1 0 −2 0

ω3 − ω2 − 2ω + 2 = (ω − 1)(ω2 − 2) = 0

Thus ω = 1 and

ω2 = 2 or z + 1
z

= 1 and ω = z + 1
z

= ±√
2.

Solving z2 − z + 1 = 0 and z2 ± √
2z − 1 = 0, we

get z = 1±√
1−4
2

= 1±√
3i

2
and

z = ±√
2 ± √

2 − 4

2
= ±1 ± i√

2

Hence the seven solutions of the equation are

z = −1,
1 ± √

3i

2
, ±1±i√

2
.

Example 7: Determine the roots common to the

equations z4 + 1 = 0 and z6 − i = 0.

Solution: The roots of z4 + 1 = 0 are z =
(−1)1/4 = 1 · cis  2kπ+π

4

 
with k = 0, 1, 2, 3

i.e., cisπ
4
, cis 3π

4
, cis 5π

4
, cis 7π

4
.

Similarly the roots of z6 − i are z = i1/6 =
1 · cis

 
2kπ+ π

2
6

 
for k = 0, 1, 2, 3, 4, 5

i.e., cis π
12
, cis 5π

12
, cis 9π

12
, cis 13π

12
, cis 17π

12
, cis 21π

12
.

Note that

cis
3π

4
= − 1√

2
+ i√

2
= cis

9π

12
= cis

3π

4

and cis 7π
4

= 1√
2

− i√
2

= cis 21π
12

are the two common

roots. Thus the (−1+i)√
2

and 1−i√
2
are the common solu-

tions.

Example 8: Find the equation whose roots are

2 cos 2π
7
, 2 cos 4π

7
, 2 cos 6π

7
.

Solution: Let z = cos θ + i sin θ = cisθ . Then

z7 = (cisθ )7 = cos 7θ + i sin 7θ

For θ = 0, 2π
7
, 4π

7
, 6π

7
, 8π

7
, 10π

7
, 12π

7

z7 = cis7θ = 1 or z7 − 1 = 0. Note that θ = 0 cor-

responds to z = 1. Now by synthetic division
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1 1 0 0 0 0 0 0 –1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

Fig. 1.37

Rewrite

z7 − 1 = (z − 1)(z6 + z5 + z4 + z3 + z2 + z + 1) = 0

Thus θ = 2π
7
, 4π

7
, 6π

7
, 8π

7
, 10π

7
, 12π

7
corresponds to

the equation

z6 + z5 + z4 + z3 + z2 + z + 1 = 0.

Dividing throughout by z3,

z3 + z2 + z + 1 + 1

z
+ 1

z2
+ 1

z3
= 0

or

 
z3 + 1

z3

 
+
 
z2 + 1

z2

 
+
 
z + 1

z

 
+ 1 = 0

or

 
z + 1

z

 3

− 3

 
z + 1

z

 
+
 
z + 1

z

 2

−

−2 +
 
z + 1

z

 
+ 1 = 0

i.e.,
 
z + 1

z

 3 +  
z + 1

z

 2 − 2 ·  z + 1
z

 + 1 = 0.

put z + 1
z

= (cos θ + i sin θ ) + (cos θ − i sin θ )

= 2 cos θ = ω

Then the above solution reduces to

ω3 + ω2 − 2ω + 1 = 0

observe that

cos
8π

7
= cos

 
2π − 6π

7

 
= cos

6π

7
,

cos

 
10π

7

 
= cos

 
2π − 4π

7

 
= cos

4π

7
and

cos

 
12π

7

 
= cos

 
2π − 2π

7

 
= cos

2π

7

Hence 2 cos 2π
7
, 2 cos 4π

7
, 2 cos 6π

7
are the roots of the

equation ω3 + ω2 − 2ω + 1 = 0.

Example 9: Express sin7 θ in sines of multiplies

of θ .

Solution: Let z = cis θ , then z − 1
z

= 2i sin θ ,

zp = cispθ , 1
zp

= cospθ − i sinpθ , so zp − 1
zp

=
2i sinpθ

Consider (2i sin θ )7 = 27 · i7 · sin7 θ =  
z − 1

z

 7
= z7 − 7 · z6 · 1

z
+ 21 · z5 1

z2
− 35z4 · 1

z3
+

+35 · z3 1

z4
− 21 · z2 1

z5
+ 7 · z · 1

z6
− 1

z7

=
 
z7 − 1

z7

 
− 7

 
z5 − 1

z5

 
+ 21

 
z3 + 1

z3

 
−

35
 
z − 1

z

 
= 2i sin 7θ − 7 · 2i sin 5θ + 21 · 2i · sin 3θ−

− 35 · 2i sin θ
Simplifying

26 sin7 θ = 35 sin θ − 21 sin 3θ + 7 sin 5θ − sin 7θ

Here the RHS is expressed in sines of multiples of θ .

Example 10: Show that

32 sin4 θ · cos2 θ = cos 6θ − 2 cos 4θ − cos 2θ + 2

Solution: When z = cis θ , then z + 1
z

= 2 cos θ

and z − 1
z

= 2i sin θ ; consider zp + 1
zp

= 2 cospθ .

Consider (2i sin θ )4(2 cos θ )2 =  
z − 1

z

 4  
z + 1

z

 2
=
 
z4 − 4z3 · 1

z
+ 6z2 · 1

z2
− 4z · 1

z3
+ 1

z4

 
×

×
 
z2 + 2 + 1

z2

 

=
 
z4 − 4z2 + 6 − 4

1

z2
+ 1

z4

  
z2 + 2 + 1

z2

 

=
 
z6 + 1

z6

 
− 2

 
z4 + 1

z4

 
−
 
z2 + 1

z2

 
+ 4.

Then

= 2 cos 6θ − 2 · 2 cos 4θ − 2 · cos 2θ + 4

24 · i4 sin4 θ · 22 · cos2 θ = 2[cos 6θ − 2 cos 4θ−
− cos 2θ + 4]

32 · sin4 θ · cos2 θ = cos 6θ − 2 cos 4θ − cos 2θ+
+ 4

EXERCISE

1. Express in a + ib form and find modulus of

(a) 2+6i
1−i

(b) 1+4i
4+i

(c) 2−√
3i

1+i
(d) (2+3i)

(3−4i)
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Ans. (a) −2 + 4i,
√
20 (b) 8+15i

17
, 1

(c) 1
2
[2 − √

3 − i(2 + √
3)], 7

2
(d) −6+17i

2i
,

√
13
5

2. Find the modulus and amplitude of

(a) (3−√
2i)2

1+2i
(b) 1 + sin α + i cosα

(c) 1 − cosα + i sin α (d) 2 + 2
√
3i

Ans. (a) 11
√
5

5
, 6

√
2+14

12
√
2−7

(b)
√
2
√
1 + sin α, π

4
− α

2

(c) 2 sin α
2
, π−α

2
(d) 4, π

3

3. Show that 1 + 4i, 2 + 7i and 3 + 10i are

collinear

Hint: 2 + 7i − (1 + 4i) = 1 + 3i, 3 + 10i−
−(1 + 4i) = 2 + 6i so 1 + 3i = 2(1 + 3i) =
2 + 6i

4. Determine the region in complex plane repre-

sented by (a) 1 < |z + 2i| ≤ 3 (b) Re(z) > 3

(c) π
6

≤ amp(z) ≤ π
3

Ans. (a) Annulus region between the concentric cir-

cles with centre at (0, 2) and radii 1 and 3.

(b) right open plane to the right of the line

x = 3.

(c) wedge region in the first quadrant bounded

by the rays θ = π
6
and θ = π

3
.

5. Determine the locus given by

|z − 1| + |z + 1| = 3

Ans. Ellipse with foci at z = ±1 and major axis 3

6. If z1 = 2 + 4i and z2 = 3 − 5i. Verify that

(a) (z1 ± z2) = z1 ± z2 (b) (z1z2) = z1z2

(c)
 
z1
z2

 
= z1

z2

7. If z1 = 4 + 3i and z2 = 2 − 5i, find

(a) z1z2 (b) 1
z1

(c) Re(z31) (d) (Rez1)
3

(e) z1z2 (f) z1z2 (h) z1/z2

Ans. (a) 23 − 14i (b) 0.16 − 0.12i (c) −44

(d) 64 (e) −7 + 26i (f) −7 − 26i

(h) (−7 − 26i)/29

8. If z1 = −2 + 2i and z2 = 3i then find

(a) |z1z2| (b)

   z1z2
   

(c) argz1z2 (d) arg
z1
z2

Ans. (a) 6
√
2 (b) 2

√
2

3
(c) −3π

4
(d) π

4

Hint: z1z2 = −6 − 6i,
z1
z2

= 2
3
(1 + i),

argz1 = 3π
4
, argz2 = π

2

9. Verify the triangle inequality for

(a) z1 = 2 + 3i, z2 = 4 − i (b) z1 = 1 + i,

z2 = 7i

Hint: (a) |z1 + z2| = |6 + 2i| = √
40 = 6.32,

|z1| + |z2| = √
13 + √

17 = 7.73

(b) |z1 + z2| = |1 + 8i| = √
65 = 8.063,

|z1| = √
2, |z2| = 7,

|z1| + |z2| = √
2 + 7 = 1.414 + 7 = 8.414

De Moivre’s Theorem

10. Show that (cos 4θ − i sin 4θ )5×
(cos 4θ + i sin 4θ )−3 ×(cos 3θ +
i sin 3θ )4 × (cos 5θ + i sin 5θ )4 = 1

11. Simplify (1 + cos θ + i sin θ )n(1 + cos θ −
i sin θ )n

Ans. 2n+1 · cosn θ
2

· cos nθ
2

Hint: Put 1 + cos θ = r cosα, sin θ = sin α,

r = 2 cos θ
2
, α = θ

2
.

12. If z = cisθ , show that (a) zp + 1
zp

= 2 cospθ

(b) zp − 1
zp

= 2i sinpθ (c) z2n+1

z2n−1+z
=

cos nθ
cos(n−1)θ

.

13. Show that cos 3α + cos 3β + cos 3γ

= 3 cos(α + β + γ ) and sin 3α + sin 3β

+ sin 3γ = 3 sin(α + β + γ ) if sin α + sin β

+ sin γ = 0 and cosα + cosβ + cos γ = 0

Hint: Put a = cis α, b = cisβ, c = cisγ , a3 +
b3 + c3 = 3abc

14. Prove that

(a) 1 + cos θ + cos 2θ + · · · + cos nθ = 1
2

+
sin
 
n+ 1

2

 
θ

2 sin θ
2

(b) sin θ + sin 2θ + · · · + sin nθ = 1
2
cot θ

2
−

cos
 
n+ 1

2

 
θ

2 sin θ
2

Hint: Use 1 + z + z2 + · · · + zn = 1−zn+1

1−z

when z  = 1.

15. Show that

(a) cos 4θ = cos4 θ − 6 cos2 θ · sin2 θ +
sin4 θ

(b) sin 4θ = 4(cos3 θ · sin θ − cos · sin3 θ )
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Hint: Expand (cisθ )4 by DeMoivre’s theorem

and binomial expansion.

16. Expand

(a) 128 · cos8 θ in a series of cosines of multi-

ples of θ

(b) 512 · sin7 θ · cos3 θ in a series of sines of

multiples of 8.

Ans. (a) cos 8θ + 8 cos 6θ + 28 cos 4θ + 56 cos 2θ

+35

(b) 14 sin 2θ − 8 sin 4θ − 3 sin 6θ + 4 sin 8θ

− sin 10θ

Roots

17. If ω is a complex cube root of unity, show that

1 + ω + ω2 = 0

Hint: ω = − 1
2

+ i
√
3
2
, ω2 = −1

2
−

√
3
2
i

18. Solve the binomial equation z4 = 1

Ans. ±1, ±i

Hint: 11/4 = cis 0+2kπ
4

, k = 0, 1, 2, 3

19. Find all the (a) square (b) cube roots of i

Ans. (a) ± 1√
2
(1 + i) (b) −i, ±√

3+i
2

Hint: (a) i1/2 = cis
  

π
2

+ 2kπ
 
/2
 
, k = 0, 1

(b) i1/3 = cis
  

π
2

+ 2kπ
  

3
 
, k = 0, 1, 2

20. Solve the binomial equation z5 = −32

Ans. 2cis((π + 2kπ )/5) for k = 0, 1, 2, 3, 4.

Hint: −32 in polar form is 32 · cisπ , so r =
32, θ = π

21. Find all roots of (a) (−i)1/3 (b) 81/6

Ans. (a) i, ±
√
3
2

− i
2
(b) ±√

2, (±1 ± i
√
3)/

√
2

Hint: (a) −i = e−iπ/2, r = 1, θ = −π
2
,

(−i)1/3 = cis
  −π

2
+ 2kπ

  
3
 
, k = 0, 1, 2, 3

(b) 8 = 8eio, r = 8, θ = 0, 81/6 = cis
 
0+2kπ

6

 
,

k = 0, 1, 2, 3, 4, 5

22. Find the fourth roots of −8i

Ans. 81/4cis
  

3π
2

+ 2kπ
  

4
 
for k = 0, 1, 2, 3

Hint: −8i = 8cis 3π
2
.

23. Find all distinct values of (a) (−1 − i)4/5

(b) ((1 + √
3i)/2)3/4

Ans. (a) 22/5cis
 
5π+2kπ

5

 
, k = 0, 1, 2, 3, 4

Hint: (a) −1 − i = √
2ei5π/4, (−1 − i)4 =

41/5cis5π

Ans. (b) cis(2k + 1)π
4
for k = 0, 1, 2, 3

Hint: (b)
 

1
2

+
√
3i
2

 3

=  
cisπ

3

 3 = cisπ

24. Solve z4 − z3 + z2 − z + 1 = 0

Ans. cisπ
5
, cis 3π

5
, cis

 
7π
5

 
, cis

 
9π
5

 
Hint: (z + 1)(z4 − z3 + z2 − z + 1) = z5 +
1 = 0 whose roots are cis

 
(2k+1)π

5

 
for k = 0,

1, 2, 3, 4. Out of these for k = 2, cisπ = −1

is deleted.

25. Find the equation whose roots are 2 cos π
7
,

2 cos 3π
7
, 2 cos 5π

7
.

Ans. ω3 − ω2 − 2ω + 1 = 0

Hint: z = cisθ , z7 + 1 = (z + 1)(z6 − z5 +
z4 − z3 + z2 − z + 1) = 0

(−1)1/7 = cis
 
π+2kπ

7

 
with k = 0, 1, 2,

3, 4, 5, 6, deleting z = −1 corresponding to

k = 3, the six roots of z6 − z5 + z4 − z3 +
z2 − z + 1 = 0 are z = cisθ , with θ = π

7
, 3π

7
,

5π
7
, 9π

7
, 11π

7
, 13π

7
. Dividing by z3, introducing

ω = z + 1
z
, we have [ω3 − 3ω] − [ω2 − 2] +

ω = 0.
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Chapter2

Differential Calculus

INTRODUCTION

Calculus is one of the most beautiful intellectual

achievements of human being. The mathematical

study of change, motion, growth or decay is calculus.

One of themost important ideas of differential calcu-

lus is derivative which measures the rate of change

of a given function. Concept of derivative is very

useful in engineering, science, economics, medicine

and computer science. In this chapter we study the

300-year old Mitchel Rolle’s theorem, Lagrange’s

mean value theoremwhich connects the average rate

of change of a function over an interval with the in-

stantaneous rate of change of the function at a point

within that interval, generalized mean value theorem

(Taylor’s theorem) which enables to express any dif-

ferentiable function in power series, namely Taylor’s

and Maclaurin’s series. We also consider the prob-

lem of finding curvature, evolutes and envelope of a

curve.

Suppose a function y = f (x) = x4 + e2x + 3 sin 4x

is differentiated w.r.t. x, then we get the first order

derivative of y denoted by y  = f  = 4x3 + 2e2x +
12 cos 4x which is itself a function of x. Differen-

tiating y  again w.r.t. x, we get the second order

derivative, denoted as y   = f   = 12x2 + 4e2x −
48 sin 4x, which is again a function of x. So by differ-

entiating a second order derivative, we get the third

order derivative and so on. Thus by differentiating a

function y = f (x), n times successively, we get the

nth order derivative of y or simply nth derivative of

y denoted by y(n)(x), f (n)(x),Dny,
dny

dxn
or yn(x).

Note: The order of the derivative is taken in paren-

theses so as to avoid confusion with the exponent of

a power. The order of the derivative is also denoted

sometimes by Roman numerals for example 4th, 5th,

6th order derivatives are denoted by y iv, yv, yvi etc.

2.1 DERIVATION OF nth DERIVATIVE OF

SOME ELEMENTARY FUNCTIONS

Power Function

Consider y = (ax + b)m, where m is any real num-
ber. Differentiating y w.r.t. x, successively, we get

y1 =m(ax + b)m−1 · a
y2 =m(m− 1)(ax + b)m−2 · a2

y3 =m(m− 1)(m− 2)(ax + b)m−3 · a3

After n differentiations,

yn=m(m− 1)(m− 2) · · · (m− (n− 1))an(ax + b)m−n.

Case a: When m is a positive integer, then

yn =
m(m−1)(m−2) · · · (m−(n−1)(m−n)) · · · 3 · 2 · 1

(m−n) · · · 3 · 2 · 1 ×

× an(ax + b)m−n

yn =
dn

dxn

 
(ax + b)m

 
= m!

(m−n)!a
n(ax + b)m−n.

Case b: When m = n = a positive integer

yn =
dn

dxn

 
(ax + b)n

 
= n!

0!
an(ax + b)0

2.1



2.2 HIGHER ENGINEERING MATHEMATICS—II

= n!an = a constant.

Case c: When n > m, then

yn = 0

i.e., all the derivatives of orderm+ 1,m+ 2,m+ 3

etc. are zero.

Case d: When m = −1, then

y = (ax + b)−1 = 1

ax + b

and yn = (−1)(−2)(−3) · · · (−n)an · (ax + b)−1−n

yn =
dn

dxn

 
1

ax + b

 
= (−1)n · n!an

(ax + b)n+1

Case e: If y = ln(ax + b), then

y1 =
a

ax + b

using result of Case (d) and differentiating (n− 1)
times

yn =
(−1)n−1(n− 1)! an

(ax + b)n

Thus
dn

dxn

 
ln(ax + b)

 
= (−1)n−1(n− 1)! an

(ax + b)n
.

Exponential Function

Consider y = amx .
Differentiating y w.r.t. x, successively, we get

y1 = mamx · loge a
y2 = m2amx · (loge a)2

In general, yn = mnamx (loge a)
n.

In particular, when a = e

yn =
dn

dxn
{emx} = mnemx (loge e)

n = mnemx.

Trigonometric Functions

Case a: Suppose y = cos(ax + b). Then

y1 =−a · sin(ax + b) = a cos
 
ax + b + π

2

 
y2 =−a2 · cos(ax + b) = a2 cos

 
ax + b + 2

π

2

 
y3 =+a3 · sin(ax + b) = a3 cos

 
ax + b + 3

π

2

 
.

Generalizing,

yn =
dn

dxn

 
cos(ax + b)

 
= an cos

 
ax + b + n

π

2

 
.

In a similar way, we can get

Case b:

yn =
dn

dxn

 
sin(ax + b)

 
= an sin

 
ax + b + n

π

2

 
.

Product Functions

Case a: Consider y = eax · cos(bx + c).
Differentiating,

y1 = aeax cos(bx + c)− eax · b · sin(bx + c)

y1 = eax
 
a · cos(bx + c)− b sin(bx + c)

 
.

To rewrite this in the form of cos, put

a = r cosφ, b = r sin φ.

Then

y1 = eax
 
r cosφ · cos(bx + c)− r sin φ · sin(bx + c)

 

y1 = reax
 
cos(bx + c + φ)

 
.

Here r =
√
a2 + b2 and φ = tan−1

 
b
a

 
.

Differentiating y, again w.r.t. x, we get

y2=raeax cos(bx + c + φ)− reax · b · sin(bx + c + φ).

Substituting for a and b,

y2 = reaxr cosφ · cos(bx + c + φ)−
−r · eax · r sin φ · sin(bx + c + φ)

= r2eax
 
cosφ · cos(bx + c + φ)−

− sin φ · sin(bx + c + φ)

 

... y2 = r2eax
 
cos(bx + c + 2φ)

 
.

Observe that differentiation increases, the power of
r and angle φ. Thus

y3 = r3eax
 
cos(bx + c + 3φ)

 
.

In general,
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yn=
dn

dxn

 
eax cos(bx + c)

 
= rneax · cos(bx+c+nφ).

Case b: In a similar way, we obtain

yn=
dn

dxn

 
eax sin(bx + c)

 
= rneax · sin(bx + c + nφ).

Case c: When the function f (x) is the product of

the powers of sine and cosine functions, then express

f (x) as the sum of the sine and cosines of multiples

of the independent variable (angles) and use results

in Trigonometric Functions (mentioned above).

Example:

sin2 x · cos 3x =
 
1− cos 2x

2

 
cos 3x

= 1

2
cos 3x − 1

2
cos 2x · cos 3x

= 1

2
cos 3x − 1

2
· 1
2
[cos 5x + cos x]

Case d: When the function f (x) is an algebraic

rational function then using partial fractions f (x)

can be decomposed into real linear factors and

apply result Power Function. In case, f (x) gets

decomposed into complex linear factors, apply Case

(d) and useDeMoivre’s theorem (cos x ± i sin x)n =
cos nx ± i sin nx.

Example: 1

x2−5x+6 =
1

(x−2)(x−3) = 1
x−3 − 1

x−2 .

Example: x

x2+a2 =
1
2

 
1

x−ai + 1
x+ai
 
.

Higher Derivatives of Sum

We have the obvious formulas

dn

dxn

 
u(x)+ v(x)

 
= (u+ v)(n) = dnu

dxn
+ dnv

dxn

= u(n) + v(n)

and
dn

dxn

 
cu(x)

 
= (cu)(n) = c

dnu

dxn
= cu(n)

where c is any arbitrary constant.

WORKED OUT EXAMPLES

Example 1: Find the fifth derivative of x3 ln x.

Solution: Let y=x3 ln x so y1=3x2 ln x + x3 · 1
x
;

y2=6x ln x+3x2 1
x
+2x; y3=6 ln x+6 · x 1

x
+ 3+ 2;

y4 = 6
x
+ 0; y5 = − 6

x2
.

Example 2: If y = ax+b
cx+d prove that 2y1y3 = 3y22 .

Solution:

y1 =
(cx + d)a − (ax + b)c

(cx + d)2
= ad − bc

(cx + d)2

y2 =
−2c(ad − bc)

(cx + d)3

y3 =
6c2(ad − bc)

(cx + d)4
.

Now

2y1y3 = 2 · (ad − bc)

(cx + d)2
· 6c

2(ad − bc)

(cx + d)4

= 12c2(ad − bc)2

(cx + d)6
=3 ·
 −2c(ad − bc)

(cx + d)3

 2
=3y22 .

Example 3: If y= sinh
 
m log

 
x +
 
(x2 + 1)

  
,

prove that (x2 + 1)y2 + xy1 = m3y.

Solution:

y1 = cosh

 
m ln

 
x +
 
(x2 + 1)

  
·m×

× 1 
x +
 
x2 + 1

 
 
1+ 1

2

2x 
x2 + 1

 

y1 =
m 

x2 + 1
· cosh

 
m ln

 
x +
 
x2 + 1

  
.

Squaring on both sides

(1+ x2)y21 = m2 cosh2
 
m ln

 
x +
 
x2 + 1

  
.

Differentiating

(1+x2)2y1y2+2xy21 =m2·2· cosh
 
m ln
 
x+
 
x2+1

  
×
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× sinh
 
m ln
 
x+
 
x2+1

  
· m×

× 1

x+
 
x2+1

·
 
1+1

2

2x 
x2+1

 

... (1+ x2)2y1y2 + 2xy21 = 2m3y1 · y
or (1+ x2)y2 + xy1 = m3y.

Example 4: If x = a
 
cos t + 1

2
ln tan2

 
t
2

  
and

y = a sin t , then find
d2y

dx2
.

Solution:
dy

dt
= a cos t

dx

dt
=−a sin t+1

2
a

1

tan2 t
2

· 2 tan
 
t

2

 
· 1
2
sec2
 
t

2

 

= a

 
− sin t + 1

2 sin
 
t
2

 · cos  t
2

 
 

= a

 
− sin t + 1

sin t

 

dx

dt
= a(1− sin2 t)

sin t
= a cos2 t

sin t
.

So
dy

dx
=

 
dy
dt

 
 
dx
dt

 = a cos t · sin t

a cos2 t
= tan t

d2y

dx2
= d

dx

 
dy

dx

 
= d

dx
(tan t) = d

dt
(tan t)

dt

dx

d2y

dx2
= sec2 t · sin t

a cos2 t
= sin t

a cos4 t
.

Example 5: Find
d2y

dx2
if x3 + y3 = 3axy.

Solution: Differentiating the implicit equation

3x2 + 3y2y1 = 3ay + 3axy1

(y2 − ax)y1 = (ay − x2).

Differentiating

(2yy1 − a)y1 + (y2 − ax)y2 = ay1 − 2x.

Substituting y1

2y

 
ay−x2
y2−ax

 2
−2a
 
ay−x2
y2−ax

 
+(y2−ax)y2 = −2x

y(ay − x2)2 − a(ay − x2)(y2 − ax)+ y2

2
(y2 − ax)3

= −x(y2 − ax)2

(a2y3+x4y − 2ax2y2)− a(ay3 − a2xy − x2y2+ax3)
+y2

2
(y2 − ax)3 = −xy4 − a2x3 + 2ax2y2

or

−3a x2y2 + xy(x3 + y3)+ a3xy + y2

2
(y2 − ax)3 = 0.

Since x3 + y3 = 3axy, we have

y2 =
−2a3xy

(y2 − ax)3

Example 6: Show that D2n(x2 − 1)n = (2n)!

Solution: In the binomial series expansion of (x2

− 1)n, the highest power of x is x2n. All the remain-
ing terms will be degree less than 2n. So when (x2 −
1)n is differentiated 2n times, derivatives of all the
terms except x2n, become zero. Now

d2n

dx2n

 
x2n
 
= 2n · (2n− 1)(2n− 2) · · · (2n−(2n−1))

= 2n(2n− 1)(2n− 2) · · · 3 · 2 · 1 = (2n)!

Example 7: If y = sin3 x, find yn.

Solution:

y = sin3 x = sin x · sin2 x

= sin x

 
1− cos 2x

2

 

= 1

2
sin x − 1

2
· sin x · cos 2x

= 1

2
sin x − 1

4
sin 3x + 1

4
sin x

y = 3

4
sin x − 1

4
sin 3x

yn =
3

4
sin
 
x + n

π

2

 
− 1

4
· 3n · sin

 
3x + nπ

2

 
.

Example 8: Find the nth derivative of

y = e2x · cos x · sin2 2x.

Solution: Rewriting

cos x · sin2 2x = cos x ·
 
1− cos 4x

2
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= 1

2
cos x − 1

2
cos x · cos 4x

= 1

2
cos x − 1

4
cos 5x − 1

4
cos 3x.

So y = e2x
 
1

2
cos x − 1

4
cos 5x − 1

4
cos 3x

 

... yn =
1

2

dn

dxn
e2x cos x − 1

4

dn

dxn
e2x cos x −

−1

4

dn

dxn
e2x cos 3x

when y = eax cos(bx + c), then

yn = rneax cos(bx + c + nφ)

where r =
 
a2 + b2, φ = tan−1

 
b

a

 
.

So yn =
1

2

 √
5
 n

e2x · cos
 
x + n tan−1

1

2

 

−1

4

 √
29
 n

e2x · cos
 
5x + n tan−1

5

2

 

−1

4

 √
13
 3

e2x · cos
 
3x + n tan−1

3

2

 
.

Example 9: If y = x+1
x2−4 , find yn.

Solution:

y = x + 1

x2 − 4
= x + 1

(x − 2)(x + 2)
=3

4
· 1

x − 2
+ 1

4
· 1

x + 2

yn =
3

4
· (−1)nn!
(x − 2)n+1

+ 1

4
· (−1)nn!
(x + 2)n+1

Example 10: Determine yn(0) if y = x3

x2−1 .

Solution:

y = x3

x2−1=
x3−1+1
x2−1 = (x−1)(x2+x+1)

x2−1 + 1

x2−1

= x2 + x + 1

x + 1
+ 1

(x − 1)(x + 1)

= x2 − 1+ 1

x + 1
+ 1+ 1

(x − 1)(x + 1)

y = x + 1

x + 1
+ 1

2

 
1

x − 1
− 1

x + 1

 

yn =
dn

dxn

 
x3

x2−1

 
=0+1

2
· (−1)

nn!

(x+1)n+1+
1

2
· (−1)

n · n!
(x−1)n+1 .

At x = 0, yn(0) =
(−1)n · n!

2

 
1

1n+1
+ 1

(−1)n+1
 

when n is even, yn(0)=
(−1)nn!

2
[1− 1] = 0

when n is odd, yn(0)=
(−1)nn!

2
· 2 = −n!.

Example 11: If y = tan−1 2x

1−x2 , find yn.
(UPTU 2002)

Solution: Differentiating y w.r.t. x,

y1 =
d

dx
tan−1

2x

1− x2
= 1

1+
 

2x

1−x2
 2 · d

dx

 
2x

1− x2

 

y1 =
(1− x2)2

(1+ x4 − 2x2 + 4x2)
· (1− x2)2− 2x(−2x)

(1− x2)2

= 2(1+ x2)

(1+ x2)2
= 2

(1+ x2)
.

We know that

yn =
dn

dxn

 
1

x2 + a2

 
= (−1)nn!

an+2
sin(n+ 1)θ · sinn+1 θ

where θ = cot−1
 
x
a

 = tan−1
 
a
x

 
.

Now differentiating y1, (n− 1) times

yn =
dn−1

dxn−1
y1 =

dn−1

dxn−1

 
2

1+ x2

 

= 2(−1)n−1(n− 1)! sin nθ · sinn θ

where θ = tan−1
1

x
= cot−1 x.

Example 12: Find the nth derivative of

y = x

x2 + x + 1
.

Solution: The roots of x2 + x + 1 = 0 are

z1,2 = −1±√1−4
2

i.e., z1 =
−1+

√
3i

2
, z2 =

−1−
√
3i

2
.

In terms of linear complex factors,

y = x

(x − z1)(x − z2)
= A

x − z1
+ B

x − z2
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x = A(x − z2)+ B(x − z1)

when x = z1, z1 = A(z1 − z2) or A = z1
z1−z2

when x = z2, z2 = B(z2 − z1) or B = z2
z2−z1 .

Here z1 − z2 =
√
3i = ai where a =

√
3. So

y = 1

z1 − z2

 
z1

x − z1
− z2

x − z2

 
.

To find yn, apply Power Function Case (d), then

yn =
z1

z1 − z2
· (−1)

n · n! · 1n
(x − z1)n+1

− z2

z1 − z2
· (−1)nn!1n
(x − z2)n+1

(1)

Now x − z1 = x −
 
−1+

√
3i

2

 
= 2x+1−ai

2
.

Put 2x+1
2
= r cos θ , a

2
= r sin θ , then

r2=
 
2x + 1

2

 2
+a2

4
=4x2 + 1+ 4x

4
+3

4
= x2 + x + 1.

So r =
√
x2 + x + 1 and θ = tan−1

 √
3

2x+1

 
By De Moivre’s theorem

(x − z1)
n+1 = (r cos θ − i r sin θ )n+1

= (r e−iθ )n+1 = rn+1e−i(n+1)θ (2)

Similarly,

(x + z2)
n+1 = (r cos θ + i r sin θ )n+1

= (r eiθ )n+1 = rn+1ei(n+1)θ (3)

Also

z1

z1 − z2
= −1+

√
3i

2
· 1√

3i
= 3+

√
3i

6
(4)

and

z2

z1 − z2
= −1−

√
3i

2
· 1√

3i
= −3+

√
3i

6
(5)

Substituting (2), (3), (4), (5) in (1), we get

yn =
(−1)n · n!
rn+1

· 1
6

  
3+

√
3i
 
e+i(n+1)θ−

−(−3+
√
3i)e−i(n+1)θ

 

= (−1)n·n!
rn+1

·1
6

 
(3+

√
3i) {cos(n+1)θ+i sin(n+1)θ}

+(3−
√
3i) {cos(n+ 1)θ − i sin(n+ 1)θ}

 

= (−1)nn!
rn+1

· 1
6

 
6 cos(n+ 1)θ − 2

√
3 sin(n+ 1)θ

 

yn =
(−1)n · n!
rn+1

·
 
cos(n+ 1)θ − 1√

3
sin(n+ 1)θ

 
.

where r =
√
x2 + x + 1 and θ = tan−1

 √
3

2x+1

 
.

EXERCISE

Find the derivatives of y of indicated order (1 to 5).

1. y =  1
x

 x
, y2(1) . Ans. 0

2. y = 3x8, y(8). Ans. y(8) = 3 · 8!
3. y = 2

√
x, y(4). Ans. y(4) = − 15

8
√
x7

4. y=ax5+bx4+cx3+dx2+ex+f , y(6).

Ans. y(6) = 0

5. y = tan x, y    .

Ans. y    = 6 sec4 x − 4 sec2 x

6. If y = ex sin x, prove that y   − 2y  + 2y = 0.

7. If p2 = a2 cos2 θ + b2 sin2 θ , prove that

p + d2p

dθ2
= a2b2

p3
.

8. Show that y   + tan y · (y  )2 = 0 when

y = tan−1(sinh x).

9. If b2x2 + a2y2 = a2b2, then find y2 and y3.

Ans. y2 = − b4

a2y3
, y3 = − 3b6x

a4y5

10. If ρ = tan(φ + ρ), find d3ρ

dφ3
.

Ans. − 2(5+8ρ2+3ρ4)
ρ8

11. Find y2 when x=a(t− sin t), y=a(1− cos t).

Ans.
d2y

dx2
= − 1

4a sin4( t2 )

12. If x = a cos t , y = a sin t , find
d3y

dx3
.

Ans. − 3 cos t

a2 sin5 t

13. Find y2n and y2n+1 where y = sinh x.

Ans. d2n

dx2n
(sinh x)= sinh x, d2n+1

dx2n+1 (sinh x)= cosh x

14. Find yn where (a) y = 1−x
1+x ; (b) y = exx;

(c) y = x sin x.
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Ans. (a) 2(−1)n · n!

(1+x)n+1 ; (b) ex(x + n);

(c) x sin
 
x + nπ

2

 − n cos
 
x + nπ

2

 
.

15. If y = cos4 x, find yn.

Hint: y= cos4 x=  1+ cos 2x
2

 2= 3
8
+ 1

2
cos 2x+

+ 1
8
cos 4x.

Ans. 1
2
2n cos

 
2x + nπ

2

 + 1
8
4n cos

 
4x + nπ

2

 
16. Find nth derivative of y = eax cos2 x · sin x.

Hint: cos2 x · sin x= 1+cos 2x
2

sin x= 1
4
sin x+

+ 1
4
sin 3x.

Ans. 1
4
(a2 + 1)

n
2 eax · sin  x + n tan−1 1

a

 +
+ 1

4
(a2 + 9)

n
2 eax · sin  3x + n tan−1 3

a

 
17. If y = cos x · cos 2x · cos 3x find yn.

Hint: cos x · cos 2x · cos 3x = 1
4
[cos 6x +

cos 4x + cos 2x + 1].

Ans. 1
4

 
6n cos

 
6x + nπ

2

 + 4n cos
 
4x + nπ

2

 
+2n cos  2x + nπ

2

  
.

18. Determine yn if y = x2

(x−1)2(x+2) .

Hint: x2

(x−1)2(x+2)=
5
9

1
x−1+ 1

3
1

(x−1)2+
4
9

1
x+2 .

Ans.
(−1)nn!

9

 
5

(x−1)n+1 +
3

(x−1)n+2 +
4

(x+2)n+1
 

19. Calculate yn where y = x

x2+a2 .

Hint: x

x2+a2 =
1
2

 
1

(x−ai) + 1
x+ai

 
, use

De Moivre’s theorem.

Ans.
(−1)n·n!
rn+1 cos(n+ 1)θ , r =

√
x2 + a2,

θ = tan−1
 
a
x

 
.

20. If y = 1

x2+x+1 , then find yn.

Ans.
2(−1)n·n!√

3rn+1 sin(n+ 1)θ where r =
√
x2+x+1,

and θ = cot−1
 
2x+1√

3

 
.

21. Find the nth derivative of (a) y= tan−1
 
1+x
1−x
 
;

(b) y = sin−1
 

2x

1+x2
 
.

Ans. (a) (−1)n−1 · (n− 1)! sinn θ · sin nθ where

θ = cot−1 x; (b) same as (a).

2.2 LEIBNITZ’S THEOREM

(RULE or FORMULA)

Let u(x) and v(x) be two functions of x having
derivatives of nth order. Then the nth derivative of
the product of these two functions is

dn

dxn
{u(x)v(x)} = (uv)n=unv0+nc1un−1v1+nc2un−2v2

+ · · · + ncr un−rvr + · · · + ncnu0vn.

Proof by mathematical induction:
By direct differentiation, we have

d

dx
(uv)= (uv)1 =

du

dx
v + u

dv

dx
= u1v0 + u0v1

d2

dx2
(uv)= (uv)2 = u2v0 + u1v1 + u1v1 + u0v2

= u2v0 + 2u1v1 + u0v2.

Here the subscripts indicate the orders of deriva-
tive and zero indices in the end terms indicate the
functions themselves (i.e., derivatives of zero order).
Thus

(uv)3 = u3v0 + u2v1 + 2u2v1 + 2u1v2 + u1v2 + u0v3

= u3v0 + 3u2v1 + 3u1v2 + u0v3.

Similarly,

(uv)4 = u4v0 + 4u3v1 + 6u2v2 + 4u1v3 + u0v4.

Assume that the Leibnitz’s theorem is valid for k.
Then

(uv)k = ukv0 + kc1uk−1v1 + kc2uk−2v2 + · · ·
+kcr−1uk−r+1vr−1 + kcr uk−rvr + · · ·
+kcku0vk.

Differentiating the above both sides

(uv)k+1 = uk+1v0 + (ukv1 + kc1uk · v1)
+(kc1uk−1v2 + kc2uk−1v2)

+kc2uk−2v3 + · · · + kcr−1uk−r+2vr−1
+(kcr−1uk−r+1vr + kcr uk−r+1vr )

+kcruk−rvr+1 + · · · + kck u1vk + kcku0vk+1.

We know that

kcr−1 + kcr = (k + 1) cr ,

kck = (k + 1)c(k+1) = 1

1+ kc1 = 1+ k = (k + 1)c1.
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Therefore

(uv)k+1 = uk+1v0 + (k + 1)c1ukv1 + (k + 1)c2uk−1v2
+ · · · + (k + 1)cruk−r+1vr
+ · · · + (k + 1)c(k + 1)u0vk+1

i.e., theorem is valid for k + 1 also.

Hence by mathematical induction the result is

valid for any n.

Note: The Leibnitz’s rule (or formula) is obtained

by expanding (u+ v)n by the binomial theorem

and in the expansion obtained the exponents of the

powers ofu and v are replaced by (subscripts) indices

that are the orders of the derivatives.

WORKED OUT EXAMPLES

Example 1: Find the nth derivative of y = x2 sin x

at x = 0.

Solution: y = x2 sin x = sin x · x2 = u(x)v(x).
Applying Leibnitz’s rule with u = sin x, v = x2

yn =
dn

dxn
sin x · x2 + nc1

dn−1

dxn−1
(sin x) · 2x

+nc2 ·
dn−2

dxn−2
(sin x) · 2+ 0.

We know that

dn

dxn
{sin(ax + b)} = an sin

 
ax + b + nπ

2

 
yn = x2 · sin

 
x + nπ

2

 
+ 2nx · sin

 
x + nπ

2
− π

2

 
+

+n(n− 1) sin
 
x + nπ

2
− π
 

yn = (x2 − n2 + n) sin
 
x + nπ

2

 
− 2nx · cos

 
x + nπ

2

 

yn(at x = 0) = (n− n2) sin
 nπ

2

 
.

Example 2: Determine the nth derivative of

y = ex ln x.

Solution: Applying Leibnitz’s rule

yn(e
x )n · ln x + nc1 (e

x )n−1(ln x)1

+nc2 (ex )n−2(ln x)2 + · · · + ncn(e
x )(ln x)n.

Since
dn

dxn
ln(ax + b)= (−1)n−1(n− 1)!an

(ax + b)n

and
dn

dxn
emx = mnemx

yn = ex
 
ln x + nc1

1

x
− nc2x

−2 + 2!nc3x
−3 + · · ·

+(−1)n−1(n− 1)!ncnx
−n
 
.

Example 3: If y = a cos(ln x)+ b sin(ln x), prove

that x2yn+2 + (2n+ 1)xyn+1 + (n2 + 1)yn = 0.

Solution: Differentiating y w.r.t. x,

y1 =−a · sin(ln x) ·
 
1

x

 
+ b · cos(ln x) · 1

x

xy1 =−a sin(ln x)+ b cos(ln x).

Differentiating

xy2 + y1 =−a · cos(ln x) ·
1

x
− b sin(ln x) · 1

x

x2y2 + xy1 =−[a cos(ln x)+ b sin(ln x)] = −y

or x2y2 + xy1 + y = 0.

Differentiating n times using Leibnitz’s rule, we get 
x2yn+2 + nc1 · 2x · yn+1 + nc2 · 2 · yn

 
+

+  xyn+1 + nc1 · 1 · yn
 + yn = 0.

Rewriting

x2yn+2 + [2nx + x]yn+1 + [n(n− 1)+ n+ 1]yn = 0.

Example 4: Find the nth derivative of

y = xn−1 · ln x at x = 1
2
.

Solution: Differentiating

y1 = (n− 1)xn−2 · ln x + xn−1 · 1
x

xy1 = (n− 1)xn−1 ln x + xn−1

xy1 = (n− 1)y + xn−1.

Differentiating (n− 1) times using Leibnitz’s rule 
xyn + (n− 1)c1 · 1 · yn−1

 = (n− 1)yn−1 + (n− 1)!

since
dn(ax + b)m

dxn
= m!

(m− n)!
an(ax + b)m−n
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or xyn = (n− 1)! i.e., yn = (n−1)!
x

at x = 1
2
, yn

 
1
2

 = 2(n− 1)!.

Example 5: Determine yn(0) where y=em·cos−1 x .

Solution: Differentiating y w.r.t. x,

y1 = em·cos
−1 x ·m ·

 
−1 
1− x2

 
= − m 

1− x2
· y.

Squaring on both sides

(1− x2)y21 = m2y2.

Differentiating again

(1− x2)2y1y2 − 2xy21 = m2 · 2yy1
or (1− x2)y2 − xy1 = m2y.

Using Leibnitz’s rule, differentiate both sides n times 
(1− x2)yn+2 + nc1 (−2x)yn+1 + nc2 (−2)yn

 
−

−  xyn+1 + nc1 · 1 · yn
 = m2yn

or

(1− x2)yn+2 − (2n+ 1)xyn+1 − (n2 +m2)yn = 0.

Put x = 0, then

yn+2(0) = (n2 +m2)yn(0).

At x = 0, y(0)= e
mπ
2

y1(0)= −memπ
2

For n = 0, y2(0)= (02 +m2)y0(0) = m2e
mπ
2

For n = 1, y3(0)= (12 +m2)y1(0)

= (12 +m2)(−memπ
2 )

For n = 2, y4(0)= (22 +m2)y2(0)

= m2(22 +m2)e
mπ
2

For n = 3, y5(0)= (32 +m2)y3(0)

= −m(12 +m2)(32 +m2)e
mπ
2

In general, y2n(0)= m2(22 +m2)(42 +m2) · · · ×
×
 
(2n− 2)2 +m2

 
· e mπ

2

y2n+1(0)= −m(12 +m2)(32 +m2) · · · ×
×
 
(2n− 1)2 +m2

 
e
mπ
2 .

Example 6: If y = sin(m sin−1 x), prove that

(1− x2)yn+2 − (2n+ 1)xyn+1 − (n2 −m2)yn = 0.

(UPTU 2002)

Solution: Differentiating y w.r.t. x,

y1 = cos(m sin−1 x) ·m · 1 
1− x2

or
 
1− x2y1 = m · cos(m sin−1 x).

Differentiating again w.r.t. x,

 
1− x2y2 +

1

2

1 
1− x2

· (−2x) · y1

= −m sin(m sin−1 x) ·m · 1 
1− x2

or (1− x2)y2 − xy1 +m2y = 0.

Differentiating n times by Leibnitz’s rule 
(1− x2)yn+2 + n · (−2x)yn+1 +

n(n− 1)

2
(−2)yn

 
−

−  xyn+1 + n · 1 · yn
 +m2yn = 0.

Collecting the terms

(1− x2)yn+2 − (2n+ 1)yn+1 − (n2 −m2)yn = 0.

EXERCISE

1. Find the nth derivative of (a) y = eaxx2;

(b) y = ln(1+ x); (c) y = 1−x
1+x ; (d) x sin x;

(e) ex(2x + 3)3; (f) x2ex cos x.

Ans. a. y(n) = eax
 
anx2 + 2nan−1x

+n(n− 1)an−2
 

b. (−1)n−1(n− 1)!/(1+ x)n

c. 2(−1)nn!/(1+ x)n+1

d. x sin
 
x + nπ

2

 − n cos
 
x + nπ

2

 
e. ex

 
(2x + 3)2 + 6n(2x + 3)2

+ 12(n−1)(2x+3)+8n(n−1)(n−2)}
f. 2

(n−2)
2 ex

 
2x2 cos

 
x + nπ

4

 
+2 3

2 nx · cos  x + n− 1π
4

 
+n(n− 1) cos

 
x + n− 2π

4

  
.
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2. If y = tan−1
 
1+x
1−x
 
, show that the nth deriva-

tive yn = (−1)n−1(n− 1)! sinn θ · sin nθ
where θ = cot−1 x.

Hint: yn= 1
2i

 
1

x−i− 1
x+i
 
n−1=

(−1)n−1(n−1)!
2i

×
×
 

1
(x−i)n− 1

(x+i)n
 
, put x = r cos θ , 1=r sin θ ,

x = cot θ .

3. If y = ex sin x, prove that y   − 2y  + 2y = 0.

4. Using Leibnitz’s rule, differentiate n times, the
Chebyshev D.E.

(1− x2)y  − xy + a2y = 0.

Ans. (1−x2)yn+2−(2n+1)xyn+1+(a2−n2)yn=0
5. If cos−1

 
y

b

 = log
 
x
n

 n
, prove that

x2yn+2 + (2n+ 1)xyn+1 + 2n2yn = 0

6. Find yn(0) if y = (sin−1 x)2.

Hint: Put x = 0 in (1− x2)yn+2−
−(2n +1)xyn+1 − n2yn = 0.

Ans. yn(0) = 0 when n is odd and yn(0) = 2 · 22 ·
42 · 62 · · · (n− 2)2 when n is even and n  = 2.

7. Determine yn(0) if y = em sin−1 x .

Hint: Put x = 0 in

(1−x2)yn+2−(2n+1)xyn+1−(n2+m2)yn = 0.

Ans.

yn(0)=
 
m2(22+m2)(42+m2)· · ·  (n−2)2+m2

 
, n even

m(12+m2)(32+m2)· · ·  (n−2)2+m2
 
, n odd

8. If y
1
m + y−

1
m = 2x, prove that

(x2−1)yn+2+(2n+1)xyn+1+(n2−m2)yn=0.

9. Find yn(0) when y = cos(m sin−1 x).

Hint: Put x = 0 in

(1−x2)yn+2−(2n+1)xyn+1+(m2−n2)yn=0.

Ans. yn(0) = 0 if n is odd

yn(0)=m2(22−m2)(42−m2)· · ·  (n−2)2−m2
 

if n is even.

10. If sin−1 y = 2 log(x + 1), show that

(x + 1)2yn+2 + (2n+ 1)(x + 1)yn+1 + (n2 + 4)yn=0.

2.3 ANGLE BETWEEN THE RADIUS

VECTOR AND THE TANGENT

Let r = f (θ ) be the equation of the curve in polar

coordinates (r, θ ). The formulas for changing from

polar coordinates to the rectangular cartesian co-

ordinates are

Fig. 2.1

x = r cos θ = f (θ ) cos θ (1)

y = r sin θ = f (θ ) sin θ (2)

These are the parametric equations of the given curve
in terms of the parameter θ which is the polar angle.
Let PT be the tangent to the curve at a point P(r, θ ).
Let ψ be the angle between the tangent PT and the
positive x-axis. Letφ be the angle between the radius
vector OP and the tangent PT i.e.,  T PO = φ. We
know that

slope of the tangent PT = tanψ = dy

dx
=

dy
dθ
dx
dθ

(3)

Differentiating (1) and (2) w.r.t. the parameter θ

dx

dθ
= df

dθ
· cos θ − f sin θ = f  cos θ − f sin θ (4)

dy

dθ
= df

dθ
· sin θ + f cos θ = f  sin θ + f cos θ (5)

where  dash denotes differentiation w.r.t. θ .
Substituting (4) and (5) in (3), we have

tanψ = f  sin θ + f cos θ

f  cos θ − f sin θ
(6)



DIFFERENTIAL CALCULUS 2.11

From the triangle OPT,

θ + φ +  OTP = π

θ + φ + (π − ψ)= π

... φ = ψ − θ (7)

From (6)

tan φ = tan(ψ − θ ) = tanψ − tan θ

1+ tanψ · tan θ (8)

Substitute values of tanψ from (6) into (8)

tan φ =
f  sin θ+f cos θ
f  cos θ−f sin θ

− tan θ

1+ f  sin θ+f cos θ
f  cos θ−f sin θ

· tan θ

tan φ= (f  sin θ+f cos θ ) cos θ−(f  cos θ−f sin θ ) sin θ

(f  cos θ−f sin θ ) cos θ+(f  sin θ+f cos θ )· sin θ

= f (cos2 θ + sin2 θ )

f  (cos2 θ + sin2 θ )
= f

f  
= r

dr
dθ

... tan φ = r dθ
dr

(9)

or
dr

dθ
= r cot φ.

Geometricmeaning: Thus the derivative of the radius

vector r w.r.t. the polar angle θ is equal to the length

of the radius vectormultiplied by the cotangent of the

angle between the radius vector OP and the tangent

PT to the curve at the point P (r, θ ).

Corollary 1: Slope of the tangent PT :

For a given curve r = f (θ ), calculate dr
dθ
= f  (θ )

and substituting r, θ, f  (θ ) in (6), we get the slope of
the tangent tanψ .

Corollary 2: Angle of intersection of two curves

c1 and c2. LetPT1 andPT2 be the tangents to the two

curves c1 and c2 respectively at the common point of

intersection. Let φ1 and φ2 be the angles between

the radius vectorOP and tangents PT1 andOP and

PT2 respectively.
Angle of intersection of two curves =  T1PT2 = α

α =  OPT2 −  OPT1 = φ2 − φ1 (10)

Corollary 3: The curves are said to intersect at

right angle or intersect orthogonally if the angle be-

tween them α = 90◦.

Fig. 2.2

Polar Subtangent and Tangent and

Polar Subnormal and Normal

Let NOT be a straight line through the pole O and
perpendicular to the radius vector OP. The tangent
at P and the normal at P meets this line in T and
N respectively. Then OT and ON are known as the
polar subtangent and polar subnormal respectively,

polar subtangent = OT = r · tan φ = r · rdθ
dr

= r2
dθ

dr

(11)

Fig. 2.3

where (9) is used to replace tan φ.

Polar subnormal=ON=r· cot φ=r·1
r

dr

dθ
= dr

dθ
(12)
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Polar tangent=PT=r
 
1+ tan2 φ=r

 
1+r2

 
dθ

dr

 2

Polar normal=PN=r
 
1+ cot2 φ=

 
r2+
 
dr

dθ

 2
.

Length of the Perpendicular from

Pole on the Tangent

Let p be the length of the perpendicular OM drawn
from the pole on to the tangent PT. Then from the
right angle triangle OPM

p = r sin φ.

Rewriting

1

p2
= 1

r2 sin2 φ
= 1

r2
cosec2φ = 1

r2
(1+ cot2 φ)

1

p2
= 1

r2

 
1+ 1

r2

 
dr

dθ

 2 
= 1

r2
+ 1

r4

 
dr

dθ

 2

where (9) is used to replace cot φ.

WORKED OUT EXAMPLES

Example 1: For the parabola 2a
r
= 1− cos θ , show

that (i) φ = π − θ
2
; (ii) p = acosec θ

2
; (iii) polar sub-

tangent = 2acosecθ ; (iv) Find polar subnormal.

Solution: Differentiating the equation of parabola

2a

r
= 1− cos θ

w.r.t. θ , we get

−2a

r2
= sin θ

dθ

dr

or
dθ

dr
= − 2a

r2 sin θ

i. Now tan φ = r dθ
dr
= r
 
− 2a

r2 sin θ

 
= − 2a

r
· 1
sin θ

= − (1−cos θ )
sin θ

= − 2 sin2 θ
2

2 sin θ
2
·cos θ

2

= − tan θ
2

tan φ = tan
 
π − θ

2

 
... φ = π − θ

2

ii. p = r sin φ = 2a
1−cos θ · sin

 
π − θ

2

 = 2a sin θ
2

1−cos θ

= 2a sin θ
2

2 sin2 θ
2

= a cosec θ
2

iii. Polar subtangent = r2 dθ
dr
= − 2a

sin θ
=

=
  − 2a cosec θ

  = 2a cosec θ

iv. Polar subnormal = dr
dθ
= r2 sin θ

−2a =

= 4a2

(1− cos θ )2
· sin θ−2a=−

2a·2 sin θ
2
·cos θ

2

4 sin2 θ
2

=−a cot θ
2
.

Example 2: Show that the curves r = aeθ and

reθ = b intersect at right angles.

Solution: Point of intersection of the two curves

aeθ = r = be−θ or e2θ = b

a
.

So θ = 1

2
ln

 
b

a

 
.

For the curve r = aeθ , dr
dθ
= aeθ so

tan φ1 = r
dθ

dr
= (aeθ ) · a−1e−θ = 1 ... φ1 =

π

4
.

For the curve reθ = b, dr
dθ
= −be−θ so

tan φ2= r
dθ

dr
= be−θ · 1

−b e
θ = −1 ... φ2 = π − π

4
.

Angle of intersection of the two curves is

φ2 − φ1 =
 
π − π

4

 
−
 π
4

 
= π − π

2
= π

2

i.e., they cut orthogonally.

Example 3: Find the angle of intersection of the

curves r = a and r = 2a cos θ .

Solution: For the curve r = a, dr
dθ
= 0 so

tan φ1 = r
dθ

dr
= ∞ ... φ1 =

π

2

for the curve r = 2a cos θ , dr
dθ
= −2a sin θ

so

tan φ2 = r
dθ

dr
= r · 1

−2a sin θ =
2a cos θ

−2a sin θ = − cot θ

Points of intersection of the two curves are
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a = r = 2a cos θ ... cos θ = 1

2
.

So, θ = π

3
,

5π

3
.

Hence the points of intersection are
 
a, π

3

 
and 

a, 5π
3

 
.

At θ = π

3
, tan φ1 = ∞, so φ1 =

π

2

tan φ2 = − cot
π

3
= − 1√

3

Then φ2 =
π

2
+ θ = π

2
+ π

3

Angle of intersection is π
2
+ π

3
− π

2
= π

3
.

Example 4: Prove that (i) for the curve r = aθ , the

polar subnormal is constant; (ii) for the curve rθ = a

the polar subtangent is constant.

Solution:

i. For r = aθ , dr
dθ
= a = constant

Polar subnormal = dr
dθ
= a = constant.

ii. For rθ = a, dr
dθ
= − a

θ2

Polar subtangent = r2 dθ
dr
= r2θ2

−a = a2

−a = −a =
constant.

Example 5: For the curve r3 = a3 cos 3θ , show that

the normal at any point (r, θ ) to the curve makes an

angle 4θ with the initial line.

Solution: Differentiating w.r.t. r ,

3r2 =−3a3 sin 3θ · dθ
dr

dθ

dr
= −r2

a3 sin 3θ
.

Now tan φ = r
dθ

dr
= r

 
− r2

a3 sin 3θ

 
= −a3 cos 3θ

a3 sin 3θ

tan φ = − cot 3θ = tan
 π
2
+ 3θ
 

... φ = π

2
+ 3θ.

Slope of the tangent ψ = φ + θ = π
2
+ 3θ + θ

... Slope of the normal at any point (r, θ ) is 4θ .

Example 6: Find the polar tangent andpolar normal

to the curve θ = cos−1 r
k
−
 

k2−r2
r2

.

Solution: Differentiating w.r.t. r , we get

dθ

dr
=− 1 

1−  r
k

 2 · 1k−1

2

 
r2

k2−r2
r2(−2r)−(k2−r2)2r

r4

=
 
k2−r2
r2

.

Polar tangent= r

 
1+ r2

 
dθ

dr

 2

= r

 
1+ r2

(k2 − r2)

r4
= r

k

r
= k

Polar normal=
 
r2 +

 
dr

dθ

 2
=
 
r2 + r4

k2 − r2

=
 

k2r2

k2 − r2
= kr 

k2 − r2
.

EXERCISE

1. Show that, for the cardioid r = a(1− cos θ ),

(i)φ = θ
2
; (ii)p = 2a sin3 θ

2
; (iii) polar subtan-

gent = 2a sin2 θ
2
· tan θ

2
; (iv) polar subnormal

= a sin θ .

2. Prove that the curves rm = am cosmθ and

rm = am sinmθ intersects orthogonally.

Hint: r dθ
dr
= − cotmθ , φ1 = π

2
+mθ , r dθ

dr
=

tanmθ , φ2 = mθ , φ1 − φ2 = π
2

3. Determine the angle of intersection of the

curves r = 3 cos θ , and r = 1+ cos θ .

Hint: Points of intersection
 
r = 3

2
, θ = π

3

 
, 

3
2
, 5π

3

 
, tan φ1 = − cot π

3
= − 1√

3
, tan φ2 =

− cot θ
2
=− cot π

6
=−
√
3, tan(φ1−φ2)= 1√

3
,

... φ1 − φ2 = π
6

Ans. π
6



2.14 HIGHER ENGINEERING MATHEMATICS—II

4. Show that the angle of intersection of the

curves r = sin θ + cos θ , r = 2 sin θ is π
4
.

Hint: θ = π
4
is point of intersection, tan φ1 =

∞ ... φ1 = π
2
, tan φ2 = 1, ... φ2 = π

4
, φ1 −

φ2 = π
2
− π

4
= π

4
.

5. Prove that the tangent to the logarithmic spiral

r = eaθ intersects the radius vector at a con-

stant angle.

Hint: dr
dθ
= aeaθ , cot φ = 1

r
dr
dθ
= a ... φ =

cot−1 a = const.

6. Prove that for the curve r = aemθ
2
, the ratio of

polar subnormal to polar subtangent is propor-

tional to θ2.

7. Find φ for the following curves

(a) L
r
= 1+ e cos θ ; (b) r = a(1+ cos θ );

(c) 2a
r
= 1+ cos θ

Ans. (a) cot−1
 

e sin θ
1+e cos θ

 
; (b) π

2
+ θ

2
; (c) π

2
− θ

2
.

8. Show that the following pair of curves cut

orthogonally:

(a) 2a
r
= 1+ cos θ , 2b

r
= 1− cos θ ; (b) r =

a cos θ , r=a sin θ ; (c) r2 sin 2θ=a2, r2 cos 2θ
= b2; (d) r = a(1+ cos θ ), r = b(1− cos θ ).

2.4 ROLLE’S THEOREM

If f (x) is (i) continuous in [a, b] (ii) derivable in

(a, b) and (iii) f (a) = f (b), then there exists at least

one value c ∈ (a, b) such that f  (c) = 0.

Proof:

I. If f (x) = 0 for all x, then f  (x) = 0 for all x.

II. Since f is continuous in [a, b], it is bounded and
attains its maximum M and minimum m say at
two numbers c and d lying in between a and b
such that

f (c) = M and f (d) = m.

Case a: IfM = m, then f is a constant function so

that f  is zero for all x in (a, b).

Case b: IfM  = m, thenM = f (c) ≥ f (c + h) for
values of h both positive and negative. Then

f (c + h)− f (c)

h
≤ 0 for h > 0 (13)

and
f (c + h)− f (c)

h
≥ 0 for h < 0 (14)

Since f is differentiable in (a, b) from (1) and (2) as
h→ 0, we have

f  (c) ≤ 0 and f  (c) ≥ 0

Hence f  (c) = 0 for some value c in (a, b). Similarly
ifm = f (d) ≤ f (d + h) for values of hboth positive
and negative it follows that

f (d + h)− f (d)

h
≥ 0 for h > 0

and

f (d + h)− f (d)

h
≤ 0 for h < 0

As h→ 0, f  (d) ≥ and f  (d)≤ 0. Hence f  (d)= 0.

Note 1: Geometrically, Rolle’s theorem states that

the tangents at c1, c2, c3 are parallel to x-axis (see

Fig. 2.4).

Fig. 2.4

Note 2: The function y = f (x) = 1− x
2
3 in

[−1, 1] is not differentiable at origin O, it does not

satisfy the condition ofRolle’s theorem, sof  (c)  = 0

for any c ∈ (−1, 1) (refer Fig. 2.5).

Fig. 2.5

Note 3: Alternate form: Let b = a + h then c =
a + θh lies between a and b provided 0 < θ < 1.
Thus the result of Rolle’s theorem may be stated as

f  (c) = f (a + θh) = 0 with 0 < θ < 1.
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Note 4: For f (a) = f (b) = 0, it follows from

Rolle’s theorem that there exists at least on c ∈ (a, b)

where f  (c) = 0. Thus the real root c of the equation

f  (x) = 0 lies between a and b which are two adja-

cent real roots of the equation f (x) = 0, i.e., the real

roots of equation f  (x) = 0 separate the real roots of

the equation f (x) = 0.

WORKED OUT EXAMPLES

Verify Rolle’s theorem for the following functions:

Example 1: f (x) = x(x − 2)e
3x
4 in (0, 2)

Solution: f (0) = 0, f (2) = 0, f is continuous and
differentiable, so by Rolle’s theorem, 0 = f  (c).
Here

f  (x)= [(x − 2)+ x + 3

4
(x)(x − 2)]e

3
4
x

= 0 or 3x2 + 2x − 8 = 0

... c = −2 or 8
6
but c = −2 does not lie in (0, 2) thus

c = 8
6
∈ (0, 2).

Example 2: f (x) = x2m−1(a − x)2n in (0, a)

Solution: f (0) = f (a) = 0. f is continuous and
differentiable in [0, a]. By Rolle’s theorem, f  (c) =
0 for some c in (0, a).

f  (x)= (2m− 1)x2m− 2(a− x)2n

+ x2m− 1 · 2n(a− x)2n− 1 · (−1)

= x2m−1 · (a − x)2n
 
(2m− 1) · 1

x
− 2n

a − x

 

... f  (c)= 0 if (2m− 1)
1

c
− 2n

a − c
= 0

or c = a(2m− 1)

(2m+ 2n− 1)
.

Example 3: Find a root (solution) of the equation

x ln x − 2+ x = 0 lying in (1, 2).

Solution: Choose f (x) = (x − 2) ln x which is
continuous, differentiable in (1, 2) and further
f (1) = f (2) = 0. Thus f satisfies all the 3 conditions
of Rolle’s theorem. So there exists a ‘c’∈ (1, 2) such
that f  (c) = 0. Here

f  (x)= ln x + (x − 2) · 1
x

f  (x)= x ln x + x − 2

x

Thus f  (c) = c ln c+c−2
c = 0

or c is the root (solution) of the equation

x ln x − 2+ x = 0.

Example 4: Show that the equation f   (x) = 0 has

at least one real root between a and b if f, f  , f   

are continuous in a ≤ x ≤ b and the curve y = f (x)

crosses the x-axis at least at 3 distinct points between

a and b inclusive.

Solution: Let c, d, e be the three points where

y = f (x) crosses the x-axis. Then f (c) = f (d) =
f (e) = 0. Assume a < c < d < e < b. The func-

tion f satisfies Rolle’s theorem in the two intervals

(c, d) and (d, e), since f and f  are continuous and

f (c) = f (d) = f (e) = 0. Therefore there exists at

least one point in each interval (c, d) and (d, e) such

that derivative is zero.

Let c1 ∈ (c, d) such that f  (c1) = 0 and c2 ∈ (d, e)

such that f  (c2) = 0. Now the function f  satisfies
Rolle’s theorem because f  , f   are continuous and

f  (c1) = f  (c2) = 0. Therefore by Rolle’s theorem

there exists a number c3 in between c1 and c2 such

that f   (c3) = 0. Thus at least one root c3 of the equa-

tion f   (x) = 0 lies in the interval (a, b).

Example 5: Without solving, show that the equa-

tion x4 + 2x3 − 2 = 0 has one and only one real root

between 0 and 1.

Solution: Let f (x) = x4 + 2x3 − 2 which is con-

tinuous and differentiable in (0, 1). f  (x) = 4x3 +
6x2 = x2(4x + 6) = 0 only when x = 0 or x = − 6

4

both of which do not lie in between 0 and 1. Thus

f  (x)  = 0 for any x ∈ (0, 1). By Rolle’s theorem,

there do not exist a and b such that f (a) = 0 and

f (b) = 0 i.e., the equation f (x) = 0 can not have

two real roots. Further f (0) = −2 and f (1) = 1 are

of opposite signs and f  (x) > 0 for every x in (0, 1).

Therefore f (x) crosses the x-axis exactly once. In

other words, f (x) = 0 has one and only one root in

between 0 and 1.
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EXERCISE

Verify Rolle’s theorem for the following functions

f (x) in the indicated interval:

1. sin x/ex in [0, π]

Ans. c = π/4

2. x3 − 12x in [0, 2
√
3]

Ans. c = 2

3. sin x in [0, 2π ]

Ans. π
2
and 3π

2

4. |x| in [−1, 1]
Hint: Function is not differentiable at 0.

Ans. Rolle’s theorem is not valid

5. f (x) =
 
1, when x = 0

x,when 0 < x ≤ 1

Hint: Function is discontinuous at 0.

Ans. Rolle’s theorem not applicable.

6. x2 in [1, 2]

Hint: f (1) = 1  = f (2) = 4.

Ans. Rolle’s theorem not applicable

7. ln [(x2 + ab)/((a + b)x)] in [a, b].

Ans. c =
√
ab

8. 2+ (x − 1)
2
3 in [0, 2]

Hint: Not differentiable at x = 1 ∈ (0, 2).

Ans. Rolle’s theorem not applicable

9. ex(sin x − cos x) in [π
4
, 5π

4
]

Ans. c = π

10. 2x3 + x2 − 4x − 2 in [−
√
2,
√
2]

Ans. 2
3
and −1

11. (x − a)m(x − b)n in [a, b] with b > a,

n > 1,m > 1

Ans. c = mb+na
m+n

12. x3 − 4x in [−2, 2]
Ans. ±

√
2/3

13. x3 − 3x2 − x + 3 in [1, 3]

Ans. 1+ 2/
√
3

14. ln {(x2 + 6)/5x} in [2, 3]
Ans. c =

√
6

15. x(x + 3)e−x/2 in [−3, 0]
Ans. −2
16. (x + 2)3(x − 3)4 in [−2, 3]

Ans. 1/7

17. tan x in [0, π]

Hint: tan x is discontinuous at x = π/2.

Ans. Rolle’s theorem not applicable

18. 1− (x − 3)
2
3

Hint: f (2) = f (4) = 0, but f  does not exist
at x = 3 ∈ (2, 4).

Ans. Rolle’s theorem not applicable

19. x2−4x
x+2
Hint: The point of discontinuity x = −2 does
not belong to (0, 4) where f (0) = f (4) = 0.

Ans. c = 2(
√
3− 1)

20. Show that between any two roots of

ex cos x− 1 = 0, there exists at least one root

of ex sin x − 1 = 0.

Hint: Take f (x) = ex cos x − 1 in [a, b] so

f  = ex cos x − ex sin x. Since ex cos x = 1

so f  = 1− ex sin x. Let a, b be two roots of

f (x). Then by Rolle’s theorem c ∈ (a, b)∃
f  (c) = 0 i.e., c is a root of 1− ex sin x = 0.

21. Show that polynomial equation

a0x
n + a1x

n−1 + a2x
n−2 + · · · + an = 0

has at least one real root in (0, 1) if

a0

n+ 1
+ a1

n
+ · · · + an−1

2
+ an = 0

and a0, a1, . . . , an, are real numbers.

Hint: Take f (x) = ao
n+1 xn+1 + a1

n xn + · · ·
+ an−1

2
x2 + anx in [0, 1]. Apply Rolle’s

theorem.

22. Prove that if a rational integral function f (x)

has n zeros between a and b then f  (x) has
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(n− 1) zeros in (a, b).

Hint: Suppose x1, x2, . . . xn are the n zeros

of f in (a, b) so f (xi) = 0, for i = 1, 2, . . . n.

Then by Rolle’s theorem applied to the (n− 1)

intervals (x1, x2), (x2, x3), . . . (xn−1, xn)∃ci  
f  (ci) = 0, for i = 1, 2, . . . n− 1.

Without solving exactly, show that the fol-

lowing equations have one and only one real

root in the given interval.

23. x4 + 3x + 1 = 0 in (−2,−1).
24. 2x3 − 3x2 − 12x − 6 = 0 in (−1, 0).
25. If f andF are continuous in [a, b] and derivable

in (a, b) with F  (x)  = 0 for every x in (a, b)
then prove that there exists c ∈ (a, b) such that

f  (c)
F  (c)

= f (c)− f (a)

F (b)− F (c)
.

Hint: Choose φ(x) = f (x)[F (b)− F (a)]−
[f (x)−f (a)][F (x)−F (a)].

φ(b) = f (a)[F (b)−F (a)] = φ(a),

φ satisfies Rolle’s theorem. But

φ (x) = f  (x)[F (b)− F (a)]− f  (x)[F (x)−
F (a)]− F  (x)[f (x)− f (a)], φ (c) = 0.

2.5 LAGRANGE’S MEAN

VALUE THEOREM

Let f be (i) continuous in [a, b] and (ii) derivable in
(a, b). Then there exists at least one value c ∈ (a, b)
such that

f (b)− f (a)

b − a
= f  (c).

Proof: Choose φ(x) = f (x)+ x · A, x ∈ [a, b].
Since f and x are continuous in [a, b] and deriv-
able in (a, b), therefore φ is continuous in [a, b]
and derivable in (a, b). Now choose the unknown
constantA such that f (b)+ b · A = φ(b) = φ(a) =
f (a)+ a · A so that

A = f (b)− f (a)

a − b

Thus φ satisfies all the three conditions of the
Rolle’s theorem. Therefore by Rolle’s theorem there
exists a number c ∈ (a, b) such that

0 = φ (c) = f  (c)+ A

Thus f  (c) = −A = f (b)−f (a)
b−a .

Alternate Form of Lagrange’s

Mean Value Theorem

If b = a + h then

f (a + h)− f (a)

a + h− a
= f  (a + θh)

c = a + θh lies between a and b = (a + h) when

0 < θ < 1.

Thus f (a+h)= f (a)+hf  (a+ θh), 0<θ < 1.

Note 1: Lagrange’s Mean Value (LMV) theorem

is generalization of Rolle’s theorem. In the special

case when f (b) = f (a) then LMV theorem reduces

to Rolle’s theorem.

Note 2: Geometrically LMV theorem states that

the tangent to the curve at D is parallel to the chord

AB (see Fig. 2.6).

Fig. 2.6

Note 3: The average rate of change of f over the

interval (a, b) given by
f (b)−f (a)

b−a is equal to f  (c)
which is the actual rate of change of f at some point

of the interval (a, b).

Note 4: UsingLMVtheorem, approximate solution

of equation f (x) = 0 can be obtained by Newton’s

method as follows:
Suppose a + h is exact (actual) root so that

0 = f (a + h) = f (a)+ h f  (a + θh), 0 < θ < 1

Therefore h  − f (a)

f  (a) .
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Thus starting at a guess value ‘a’, h (correction)

can be calculated approximately. By iteration a better

root can be obtained.

Note 5: IfM∗ and m∗ are the maximum and mini-
mum of f  (x) in a < x < b then

m∗(b − a) < f (b)− f (a) < (b − a)M∗.

Note 6: Application of LMV theorem for sign of

derivative.

Let f (x) satisfy conditions of LMV theo-

rem in [a, b] and x1, x2 be any two points of

[a, b] such that x1 < x2. Applying LMV theo-

rem in [x1, x2], there exists a number c ∈ (x1, x2)

such that

f (x2)− f (x1) = (x2 − x1)f
 (c) (1)

I. If f  (x) = 0 for every x ∈ (x1, x2) then

f (x2)− f (x1) = 0

or f (x2) = f (x1) = constant

So f is a constant function in [x, x2].

II. If f  (x) > 0 then it follows from (1) that

f (x2)− f (x1) > 0 or f (x2) > f (x1)

since (x2 − x1) > 0. So f is strictly increasing

function.

III. If f  (x) < 0 then it follows from (1) that

f (x2)− f (x1) < 0 or f (x2) < f (x1)

i.e., f is strictly decreasing function.

WORKED OUT EXAMPLES

Verify the Lagrange’s Mean Value theorem:

Example 1: f (x) = x2 in (1, 5)

Solution: f is continuous and differentiable in
(2, 3) so by LMV theorem,

f (b)− f (a)

b − a
= f  (c)

for some c in (a, b).
Here f (5) = 25, f (1) = 1, f  (x) = 2x. Therefore

25− 1

5− 1
= 2c ... c = 3 ∈ (1, 5).

Example 2: f (x) = x
2
3 , (−1, 1)

Solution: LMV theorem is not applicable because

f is not differentiable at x = 0 ∈ (−1, 1).

Example 3: f (x) = cot πx, (− 1
2
, 1
2
)

Solution: LMV theorem is not valid because f is

discontinuous at 0 ∈ (− 1
2
, 1
2
).

Example 4: Deduce Lagrange’s Mean Value

theorem from Rolle’s theorem.

Solution: Choose g(x)= f (x)− f (a)−A(x− a)
where A is a constant and f is continuous in [a, b]
and derivable in (a, b). Then g(x) is also continuous
in [a, b] and derivable in (a, b). Further g(a) = 0 and
determine A such that

g(b)= f (b)− f (a)− A(b − a) = 0

Solving A= f (b)− f (a)

b − a

Thus g satisfies all the conditions of Rolle’s theo-
rem. Therefore there exists a number c ∈ (a, b) such
that

g (c) = 0

But g (x) = f  (x)− A

so 0 = g (c) = f  (c)− A

... f  (c) = A = f (b)− f (a)

(b − a)

which is the result of Lagrange’s Mean Value

theorem.

Example 5: Show that h

1+h2 < tan−1 h < h when

h  = 0 and h > 0.

Solution: Take f (x) = tan−1 ·x in 0 ≤ x ≤ h.
By LMV theorem

tan−1 h− tan−1 0
h− 0

= 1

1+ c2

where 0 < c < h.

or tan−1 h = h

1+c2 .
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Since 0 < c < h⇒ 02 < c2 < h2

1 < 1+ c2 < 1+ h2

or h >
h

1+ c2
>

h

1+ h2

or h >
h

1+ c2
= tan−1 h >

h

1+ h2
.

Example 6: Separate the intervals in which the

polynomial f (x) = (4− x2)2 is increasing or de-

creasing.

Solution: f  (x) = 2(4− x2)(−2x) = 4x(x2 − 4).

Since f (2) = 0 and f (−2) = 0, so y = f (x) crosses

x-axis at −2 and 2.

Note that

f  > 0 when x > 0 and x > 2 so f is increasing in

(2,∞)

f  < 0 when x > 0 and x < 2 so f is decreasing in

(0, 2)

f  > 0 when x < 0 and x > −2 so f is increasing

in (−2, 0)
f  < 0 when x < 0 and x < −2 so f is decreasing

in (−∞,−2).
Example 7: Show that, for any x ≥ 0

1+ x < ex < 1+ xex.

Solution: Take f (x) = ex − (1+ x). Then

f  (x) = ex − 1 ≥ 0 for any x ≥ 0, so f is an

increasing function and f (0) = 0. Therefore f > 0

for any x ≥ 0

i.e., ex − (1+ x) > 0 or 1+ x < ex (1)

Similarly choose g(x) = 1+ xex − ex .
g(0) = 0, and g (x) = ex + xex − ex = xex ≥ 0
for any x ≥ 0. Thus g is an increasing function and
therefore g > 0

i.e., 1+ xex − ex > 0

or ex < 1+ xex (2)

Results (1) and (2) form the required inequality.

Example 8: Show that for x ∈ (0, 1)

x < − ln(1− x) < x/(1− x)

Solution: Rewrite the inequality as

−x > ln(1− x) >
x

x − 1
(1)

or − 1>
ln(1− x)

x
>

1

x − 1

Now choose f (x) = ln (1− x) which is continuous
and differentiable in (0, 1). So applying LMV theo-
rem in (0, x) for any x between 0 and 1.

ln (1− x)− ln (1− 0)

x − 0
= f  (c) = − 1

1− c

= 1

xθ − 1
(2)

because c lies between 0 and x.

Here 0 < θ < 1.

Since θx < x ⇒ θx − 1 < x − 1

or
1

xθ − 1
>

1

x − 1
(3)

Also for θ > 0, x > 0, xθ > 0 or −xθ < 0

1− xθ < 1

so
1

1− xθ
> 1

or
1

xθ − 1
<−1 (4)

From (2), (3) and (4), we get the inequality (1)

i.e., − 1 >
1

xθ − 1
= ln (1− x)

x
>

1

x − 1
.

Example 9: Calculate approximately the root of

the equation x4 − 12x + 7 = 0 near 2.

Solution: Choose f (x) = x4 − 12x + 7 so

f  (x) = 4x3 − 12
By LMV theorem, f (a + h) = f (a)+ hf  (a + θh)

so h  − f (a)

f  (a)

f (2) = 16− 24+ 7 = −1, f  (2) = 32− 12 = 20

h  − (−1)
20

= +0.05

An approximate root x = a + h = 2+ 0.05 = 2.05
Applying LMV theorem again

h − f (2.05)

f  (2.05)
= −0.061

22.46

=−0.0027
A better approximated root

= a + h= 2.05− 0.0027

= 2.0473.
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Example 10: Calculate approximately
5
√
245 by

using LMV theorem.

Solution: Choose f (x) = x
1
5 , a = 243, b = 245

then f  (x) = 1
5
· x− 4

5 . By LMV theorem,

f (a + h) = f (a)+ h · f  (c)
Take c = 243 approximately

f (245)= f (243)+ (245− 243) · f  (243)

(245)
1
5 = (243)

1
5 + 2

1

5
(243)−

4
5

= 3+ 2

5
· 1

34
= 3.0049.

EXERCISE

Verify Lagrange’s Mean Value theorem for the fol-

lowing functions f (x) in the indicated interval:

1. x(x − 1)(x − 2) in (0, 1
2
)

Ans. c = 0.236

2. ln x in (e2, e3)

Ans. c = (e − 1)e2

3. x
1
3 in (−1, 1)

Hint: Derivative at x = 0 does not exist.

Ans. LMV theorem not applicable

4. 1− 3x in (1, 4)

Hint:
f (4)−f (1)

4−1 = −3 = f  (c) = −3, true

for any c.

Ans. any number in (1, 4)

5. e−x in (−1, 1)
Ans. c = ln

 
2e

e2−1

 
= −0.161

6. sin−1 x in (0, 1)

Ans. c =
√

π2−4
π

= 0.7712

7. cos x in (0, π
2
)

Ans. c = sin−1(2/π )

8. Iff (x) is a quadratic expression, then the value

of c of the Lagrange’s Mean Value theorem in

any interval [a, a + h] is the mid-point of that

interval.

Hint: Let f (x) = Ax2 + Bx +D, then c =
a + h

2
= a + θh so θ = 1

2
. Use LMV theorem

of the form

f (a + h) = f (a) = hf  (a + θh).

Separate the intervals in which the following

function f (x) is increasing or decreasing.

9. 2x3 − 15x2 + 36x + 1

Ans. increasing in (−∞, 2) and (3,∞) decreasing

in (2, 3)

10. x3 + 8x2 + 5x − 2

Ans. increasing in (−∞,−5) and (− 1
3
,∞) decreas-

ing in (−5,− 1
3
)

11. Show that x − x2

2
< ln(1+ x)<x − x2

2(1+x) ,
for any x > 0.

Hint: Choose f (x) = ln (1+ x)− (x − x2

2
)

and

g(x) = x − x2

2(1+ x)
− ln (1+ x)

prove that f and g are increasing (i.e., f  > 0,

g > 0).

Note: f (0) = g(0) = 0, so f > 0 and g > 0.

12. Show that tan x
x

> x
sin x

for 0 < x < π
2
.

Hint: Take f (x) = tan x · sin x − x2

f   > 0, f  (0), so f  > 0

Also f (0) = 0, so f > 0.

13. UseLMVtheorem toprove that if 0<u<v<1

v − u

1+ v2
< tan−1 v − tan−1 u <

v − u

1+ u2

Deduce that π
4
+ 3

25
< tan−1 4

3
< π

4
+ 1

6
.

Hint: Take f (x) = tan−1 x, u < x < v.

14. Show that for any x

x − x3

6
< sin x < x − x3

6
+ x5

120
.

15. For any x show that

1− x < e−x < 1− x + x2

2
.

16. Using LMV theorem prove that
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π

3
− 1

5
√
3
> cos−1

3

5
>

π

3
− 1

8
.

17. Determine the root of the equation x3 + 5x −
10 = 0 which lies in (1, 2) correct to two

decimal places.

Ans. 1.43

18. Using Mean Value theorem calculate approxi-

mately
6
√
65.

Hint: Take f (x) = x
1
6 in (64, 65).

Use f (a + h) = f (a)+ hf  (a).

Ans. 2.0052

19. A circular hole 4 inches in diameter and 1

foot deep in a metal block is drilled out to

increase the diameter to 4.12 inches. Estimate

the amount of metal removed.

Hint: V = f (x) = π (12)x2inches.
By LMV theorem

f (2.06)− f (2)= by MVT = 0.06 f  (x1)

= 0.06(24πx1)

where 2 < x1 < 2.06.

Ans. 2.88π in3

20. Find an approximate value of the root of the

equation x3 − 2x − 5 = 0 in (2, 3).

Hint:

h=− f (2)

f  (2)
= +0.1, root = 2+ 0.1

h=− f (2.1)

f  (2.1)
= −0.00543

root = 2.1− 0.00543 = 2.0946.

Ans. 2.0946

2.6 CAUCHY’S MEAN VALUE THEOREM

Let f (x) and g(x) be two functions which are both
derivable in [a, b] and g (x)  = 0 for any value of x
in [a, b]. Then there exists at least one value c in
between a and b such that

f (b)− f (a)

g(b)− g(a)
= f  (c)

g (c)

Proof: Define φ(x) = f (x)+ Ag(x) where A is an
unknown constant. φ is derivable in [a, b] because f
and g are derivable in [a, b] by hypothesis. Choose
A such that φ(b) = φ(a) i.e.,

f (b)+ Ag(b)= φ(b) = φ(a) = f (a)+ Ag(a)

or A= f (b)− f (a)

g(a)− g(b)

with g(a)− g(b)  = 0. If g(a)− g(b) = 0 then
g(a) = g(b) and g satisfies conditions of Rolle’s
theorem and then g (c) = 0 for some c. This con-
tradicts the hypothesis that g (x)  = 0 for any x. Thus
g(a)− g(b)  = 0. Now the new function φ satisfies
the conditions of Rolle’s theorem. Therefore there
exists at least one c ∈ (a, b) such that

0 = φ (c) = f  (c)+ Ag (c)

Thus

f  (c)
g (c)

= −A = f (b)− f (a)

g(b)− g(a)

with g(b)− g(a)  = 0 as g (c)  = 0 for any c.

Alternate Form of Cauchy’s

Mean Value Theorem

Replacing b by a + h,

f  (a + θh)

g (a + θh)
= f (a + h)− f (a)

g(a + h)− g(a)
, 0 < θ < 1

Note: Cauchy’s mean value theorem is a gener-

alization of Lagrange’s mean value theorem. When

g(x) = x, CMV theorem reduces to LMV theorem.

WORKED OUT EXAMPLES

Example 1: Verify Cauchy’s mean value (CMV)

theorem for the functions

i. f (x) = x4, g(x) = x2 in the interval [a, b]

ii. f (x) = ln x, g(x) = 1
x
in [1, e].

Solution: CMV theorem states that
f (b)−f (a)
g(b)−g(a) =

f  (c)
g (c)

i. f (x) = x4, g(x) = x2, [a, b]

f  = 4x3, g = 2x
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By CMV theorem,

b4 − a4

b2 − a2
= f  (c)

g (c)
= 4c3

2c

... c2 = 1

2
(a2 + b2) ... c = 1√

2

 
a2 + b2 ∈ (a, b)

ii. f  = ln x, g(x) = 1
x
, [1, e]

f  = 1

x
, g = − 1

x2

By CMV theorem,

ln e − ln 1

1
e
− 1

= 1

c
· (−c2) = −c

... c = e

e − 1
∈ (1, e)

Example 2: If 0 ≤ a < b < π/2 show that

0 < cos a − cos b < b − a.

Solution: Apply CMV theorem to functions
f (x) = cos x and g(x) = x in [a, b]. Then by CMV
theorem

cos b − cos a

b − a
=− sin c

cos a − cos b = (b − a) sin c

Since cos is decreasing in (0, π/2), so cos a > cos b
for a < b. Thus cos a − cos b > 0. Also in (0, π/2)
maximum value of sin x is 1. So since c ∈ (a, b), and
sin c < 1

so (b − a) sin c < (b − a)

Thus

0 < cos a − cos b < (b − a).

Example 3: Show that there exists a number c ∈
(a, b) such that

2c [f (a)− f (b)] = f  (c) · [a2 − b2]

when f is continuous in [a, b] and derivable in (a, b).

Solution: By applying CMV theorem to the two
functions f (x) and g(x) = x2 in [a, b],

f (b)− f (a)

b2 − a2
= f  (c)

2c

for some c in (a, b). Hence the result.

EXERCISE

Verify Cauchy’s mean value theorem for the follow-

ing pair of functions in the indicated interval:

1. ex, e−x , in the interval (a, b)

Ans. c = a+b
2

2. x2, x in (a, b)

Ans. c = a+b
2

3. sin x, cos x in (a, b)

Hint:

− cot c = cos c

sin c
= sin b − sin a

cos b − cos a

=
2 sin
 
b−a
2

 
· cos
 
b+a
2

 
−2 sin

 
b−a
2

 
· sin
 
b+a
2

 

=− cot

 
b + a

2

 

Ans. c = a+b
2

4.
√
x, 1√

x
in (a, b) Ans. c =

√
ab

5. 1

x2
, 1
x
in (a, b) Ans. c = 2ab

a+b

6. x3, x2 in (a, b) Ans. c = 2(b2+ab+a2)
3(a+b)

7. 2x + 1, 3x − 4 in (1, 3)

Ans. CMV theorem is satisfied for every point in the

interval (1, 3)

8. x3 − 3x2 + 2x, x3 − 5x2 + 6x in (0, 1
2
)

Ans. c = 5−
√
13

6

9. x3

4
− 4x, x2 in (0, 3) Ans. c = −1+

√
37

3

10. x2,
√
x in (1, 4) Ans. c =  15

4

 2
3

11. Show that sin b − sin a < b − a if 0 < a <

b < π
2
.

Hint: Take f (x) = sin x, g(x) = x in CMV

theorem.

12. Show that

 
1−x
1+x <

ln (1+x)
sin−1 x < 1 if 0 ≤ x < 1.

Hint: f (x) = ln (1+ x), g(x) = sin−1 x.
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2.7 GENERALIZED MEAN

VALUE THEOREM

Taylor’s Theorem

Let f (n−1) the (n− 1) th derivative of f is continuous
in [a, a + h], f (n) the nth derivative exists in (a, a +
h) and p be a given positive integer. Then there ex-
ists at least one number θ lying between 0 and 1
such that

f (a + h)= f (a)+ h
f  (a)
1!

+ h2

2!
f   (a)+ · · ·

+ hn−1

(n− 1)!
f (n−1)(a)+ Rn (1)

where Rn =
hn(1− θ )n−p

(n− 1)!p
f (n)(a + θh) (2)

and 0 < θ < 1

Proof: f, f  , f   , . . . , f (n−2) are continuous in

[a, a + h] by the hypothesis that f (n−1) is contin-

uous in [a, a + h].

Define

φ(x)= f (x)+ (a + h− x)f  (x)+ (a + h− x)2

2!
f   (x)

+ (a + h− x)3

3!
f    (x)+ · · ·

+ (a + h− x)n−2

(n− 2)!
f (n−2)(x)+ (a + h− x)n−1

(n− 1)!
×

f (n−1)(x)+ (a + h− x)pA (3)

where A is unknown constant. Put x = a + h in (3),
we get

φ(a + h) = f (a + h)+ 0+ 0 · · · + 0 (4)

Put x = a in (3), we get

φ(a)= f (a)+ h

1!
f  (a)+ h2

2!
f   (a)

+h3

3!
f    (a)+ · · · + hn−2

(n− 2)!
f (n−2)(a)

+ hn−1

(n− 1)!
f (n−1)(a)+ hpA (5)

Choose the constant A such that φ(a) = φ(a + h)

Equating (3) and (4),

f (a + h)= φ(a + h) = φ(a) = f (a)+ hf  (a)

+h2

2!
f   (a)+ · · · + hn−2

(n− 2)!
f (n−2)(a)

+ hn−1

(n− 1)!
f (n−1)(a)+ hpA (6)

The new function φ is continuous in [a, a + h],
derivable in (a, a + h) and φ(a) = φ(a + h) thus
satisfying all the conditions of Rolle’s theorem.
Therefore it follows from Rolle’s theorem that
there exists at least one c between a and a + h
where

φ (c) = φ (a + θh) = 0.

Differentiating (3) w.r.t. x, we get

φ = f  − f  + (a + h− x)f   + 2(a + h− x)

2!
(−1)f   

+ (a + h− x)2

2!
f    + 3(a + h− x)2

3!
(−1)f    + · · ·

+ (n−2)(a+h−x)n−3
(n−2)! f (n−2)

+ (a+h−x)n−2
(n−2)! · f (n−1)

+ (n− 1) · (a + h− x)n−2

(n− 1)!
(−1)f (n−1)

+ (a + h− x)n−1

(n− 1)!
f n + p(a + h− x)p−1A · (−1).

or

φ (x) = (a + h− x)n−1

(n− 1)!
f (n)(x)− pA · (a + h− x)p−1

Thus

0 = φ (a + θh)= hn−1

(n− 1)!
(1− θ )n−1f (n)(a + θh)

−pA(1− θ )p−1hp−1

Solving, A = hn−p(1− θ )n−p

(n− 1)!p
f (n)(a + θh) (7)

with h  = 0 and 1− θ  = 0. Substituting A from (7)
in (6), we get
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f (a + h)= f (a)+ hf  (a)+ h2

2!
f   (a)

+h3

3!
f    (a)+ · · · + hn−1

(n− 1)!
f (n−1)(a)

+hn(1− θ )n−p

(n− 1)!p
f (n)(a + θh) (8)

with 0 < θ < 1.

Taylor’s remainder after n terms Rn due to

1. Schlomilch & Roche: Rn = hn(1−θ )n−pf (n)(a+θh)
(n−1)!p

2. Cauchy: p = 1 : Rn = hn(1−θ )n−1
(n−1)! f (n)(a + θh)

3. Lagrange’s: p = n : Rn = hn

n!
f (n)(a + θh)

Putting a + h = x or h = x − a in (8) we get an-
other convenient form of Taylor’s theorem as

f (x)= f (a)+ (x − a)
f  (a)
1!

+ (x − a)2

2!
f   (a)

+ (x − a)3

3!
f    (a)+ · · · + (x − a)n−1

(n− 1)!
f (n−1)(a)

+ (x − a)n(1− θ )n−p

(n− 1)!p
f (n)(a + θ (x − a)) (9)

with 0 < θ < 1.
Maclaurin’s theorem is a special case of Taylor’s

theorem when a = 0. Thus putting a = 0 in (9)

f (x)= f (0)+xf  (0)+x2

2!
f   (0)+x3

3!
f    (0)+ · · ·

+ xn−1

(n−1)!f
(n−1)(0)+ xn(1− θ )n−p

(n− 1)!p
f (n)(θx)

(10)

Schlomilch remainder is givenby xn(1−θ )n−p
(n−1)!p ·f (n)(θx)

Lagrange’s Remainder for Maclaurin’s

Theorem: (Put p=n in Schlomilch Remain-

der)

xn

n!
f (n)(θx)

Cauchy’s Remainder for Maclaurin’s

Theorem: (Put p=1 in Schlomilch Remain-

der)

xn(1− θ )n−1

(n− 1)!
f (n)(θx)

WORKED OUT EXAMPLES

Example 1: State Maclaurin’s theorem with

Lagrange’s form of remainder for f (x) = cos x.

Solution: Maclaurin’s theorem with Lagrange’s
form of remainder is given by

f (x)= f (0)+ xf  (0)+ x2

2!
f   (0)+ x3

3!
f    (0)+ · · · +

+ xn−1

(n− 1)!
f (n−1)(0)+ xn

n!
f (n)(θx).

We know that dn

dxn
{cos(ax + b)} =

an · cos(ax + b + nπ
2
).

Here f (x) = cos x

so f (n)(x) = dn

dxn
(cos x) = cos(x + nπ

2
)

At a = 0, f (n)(0) = cos
 
nπ
2

 
Thus f (0)= cos 0 = 1,

f (2n)(0)= cos
 
2
nπ

2

 
= cos (nπ ) = (−1)n

f (2n+1)(0)= cos
 
(2n+ 1)

π

2

 
= 0

So coefficients of even powers of x will be (−1)n
while coefficients of odd powers of x are all zero.
Substituting these values of the f (n)(0) we have

cos x = f (x) = 1+ 0+ x2

2!
(−1)+ 0+ x4

4!
(+1)+ · · · +

+ x2n

(2n)!
(−1)n + x2n+1

(2n+ 1)!
(−1)n(−1) cos(θx)

so

cos x = 1− x2

2!
+ x4

4!
− x6

6!
+ · · · + (−1)n x2n

(2n)!

+ (−1)n+1x2n+1
(2n+ 1)!

cos(θx).

Example 2: Verify Taylor’s theorem for f (x) =
(1− x)

5
2 with Lagrange’s form of remainder up to 2

terms in the interval [0, 1].

Solution: f (x) = (1− x)
5
2 and f  (x) are contin-

uous in [0, 1] while f   (x) is differentiable in (0,

1). Thus f (x) satisfies the conditions of Taylor’s
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theorem. In Taylor’s theorem with Lagrange’s form

of remainder up to 2 terms, n = number of terms in

the remainder= 2 = p (sinceLagrange’s) anda = 0

and x = 1 (since interval is [0, 1]).
Thus

f (x)= f (0)+ xf  (0)+ x2

2!
f   (θx) with 0 < θ < 1

f  (x)=−5

2
(1− x)

3
2 , f   (x) = 5

2
· 3
2
(1− x)

1
2

so f (0)=1, f  (0)=− 5
2
, f   (θh)=f   (θ )= 15

4
(1−θ ) 12 ,

f (1) = 0
Substituting these values,

0 = 1+ 1.

 −5
2

 
+ 12

2!

15

4
(1− θ )

1
2

Solving for θ , we get θ = 9
25
= 0.36 which lies be-

tween 0 and 1, thus verifying the Taylor’s theorem.

Example 3: For every x ≥ 0, show that

1+ x + x2

2
≤ ex ≤ 1+ x + x2

2
ex.

Solution: The Maclaurin’s theorem with
Lagrange’s form of remainder for the function
f (x) = ex gives

ex = 1+ x + x2

2!
+ x3

3!
+ · · · + xn−1

(n− 1)!
+ xn

n!
eθx

where 0 < θ < 1. Note that ex and all its derivatives
are continuous for any x. Taking remainder up to 2
terms i.e., n = 2, we have

ex = 1+ x + x2

2!
eθx

For x ≥ 0 and 0 < θ < 1, eθx ≤ ex so that

1+ x + x2

2!
eθx ≤ 1+ x + x2

2!
ex

Also for x ≥ 0 and 0 < θ < 1, eθx > 1 so that

1+ x + x2

2!
≤ 1+ x + x2

2!
eθx

Thus

1+ x + x2

2!
≤ 1+ x + x2

2!
eθx = ex ≤ 1+ x + x2

2!
ex.

EXERCISE

1. Show that for any x

sin x = x − x3

3!
+ x5

5!
+ · · · + (−1)n−1 · x2n−1

(2n− 1)!

+(−1)n x2n

(2n)!
sin θx

where 0 < θ < 1

Hint: Apply Maclaurin’s theorem for f (x) =
sin x with Lagrange’s remainder.

Note: f (n)(x) = sin
 
x + nπ

2

 
and f 2n(θx) =

sin(θx + nπ ) = (−1)n sin θx.
2. Calculate the first four terms and the remainder

after n terms of the Maclaurin’s expression of

eax cos bx.

Hint:

dn

dxn
{eax cos bx}

= (a2 + b2)n/2eax · cos
 
bx + c + n tan−1

b

a

 

tan θ = b

a
, cos θ = a/

 
a2 + b2.

Ans. eax cos bx = 1+ ax + a2 − b2

2!
x2 + a(a2 − 3b2)

3!
x3

+ · · · + xn

n!
(a2 + b2)n/2eaθx ×

× cos
 
bθx + n tan−1

b

a

 
.

3. Verify Maclaurin’s theorem for

f (x) = (1− x)5/2

with Lagrange’s remainder up to 3 terms when

x = 1

Hint: f (x) = f (0)+ xf  (0)+ x2

2!
f   (0)+

x3

3!
f    (θh).

Ans. θ = 11
36
= 0.25 ∈ (0, 1)

4. Verify Taylor’s theorem for f (x) = x3 −
3x2 + 2x in [0, 1

2
] with Lagrange’s remainder

up to 2 terms.

Hint: f
 
1
2

 = f (0)+ 1
2
f  (0)+ (1/2)2

2!
f   (θ ).

Ans. θ = 1
6
∈  0, 1

2
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Using Taylor’s theorem prove the following:

5. ln (1+ x) < x − x2

2
+ x3

3
for x > 0

Hint: For Lagrange’s with 3 terms

ln (1+ x) = x − x2

2
+ x3

3(1+ θx)3
; 0 < θ < 1

and (1+ θx)3 > 1 for x > 0

Note: dn

dxn
ln (1+ x) = (−1)n−1(n−1)!

(1+x)n .

6. x − x3

6
< sin x < x − x3

6
+ x5

120
, for x > 0

Hint: Maclaurin’s with 2 and 5 terms

sin x = x − x3

3!
cos θ1x, 0 < θ1 < 1

and

sin x = x − x3

3!
+ x5

5!
cos θ2x, 0 < θ2 < 1

and cos θ1x ≤ 1 and cos θ2x ≤ 1.

7. 1− x2

2
≤ cos x ≤ 1− x2

2
+ x2

24
, for any x

8. x − x2

2
≤ sin x ≤ x, for x > 0

9. Show that for any x > 0 and a > 0

ax = 1+ x · ln a + x2

2!
(ln a)2 + · · ·

+ xn−1

(n− 1)!
(ln a)n−1 + xn

n!
aθx (ln a)n

9. Show that for any x > 0 and a > 0

ax = 1+ x · ln a + x2

2!
(ln a)2 + · · ·

+ xn−1

(n− 1)!
(ln a)n−1 + xn

n!
aθx (ln a)n

10. Find the first 3 terms and the Lagrange’s re-

mainder after n terms of the function f (x) =
eax sin bx.

Hint:

dn

dxn
{eax sin bx} = (a2 + b2)n/2eax sin(bx + nα)

so f (n)(0)= (a2 + b2)n/2 · sin nα.
Ans.

bx + abx2 + b(3a2 − b2)

3!
x3 + · · ·

+ xn

n!
(a2 + b2)n/2 · eaθx sin(bθx + nα)

where tan α = b

a
, sin α = b 

a2 + b2
,

cosα = a 
a2 + b2

2.8 TAYLOR’S SERIES AND

MACLAURIN’S SERIES EXPANSIONS

From the Taylor’s theorem with Lagrange’s form of
remainder, we get the Taylor’s formula

f (x)= f (a)+ (x − a)
f  (a)
1!

+ (x − a)2

2!
f   (a)

+ (x − a)3

3!
f    (a)+ · · ·

+ (x − a)n−1

(n− 1)!
f n−1(a)

+ (x − a)n

n!
f (n)(a + θ (x − a)) (1)

where 0 < θ < 1.

Note: Taylor’s formula for n = 1, reduces to the
Lagrange’s mean value theorem (the law of means).
Denote the first n terms of R.H.S. of (1) by Pn(x)
which is a polynomial of (n− 1)th degree in the
variable (x − a) and the last term on R.H.S. of (1)
by Rn(x) which is the Lagrange’s form of remainder
after n terms i.e.,

Pn(x)= f (a)+ (x − a)
f  (a)
1!

+ (x − a)2

2!
f   (a)+ · · ·

+ (x − a)n−1

(n− 1)!
f n−1(a) (2)

and

Rn(x) =
(x − a)n

n!
f n(a + θ (x − a)) (3)

Then f (x)= Pn(x)+ Rn(x)

or Rn(x)= f (x)− Pn(x)

i.e., BC = AC − AB

Thus for those values of x, for which Rn(x) is
small, the polynomial Pn(x) yields an approximate
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Fig. 2.7

C

B

A

representation of f (x). When a = 0, the Taylor’s
formula (1) at origin (0, 0) reduces to

f (x)= f (0)+ x
f  (0)
1!

+ x2

2!
f   (0)+ x3

3!
f    (0)+ · · · +

+ xn−1

(n− 1)!
f (n−1)(0)+ xn

n!
f (n)(θx) (4)

(4) is known as Maclaurin’s formula.
In (1) as n→∞ if Rn(x)→ 0, then f (x) is repre-
sented by infinite series in powers of (x − a) and is
given by

f (x)= f (a)+ (x − a)

1!
f  (a)+ (x − a)2

2!
f   (a)+ · · · +

+ (x − a)n

n!
f (n)(a)+ · · · (5)

The power series (5) is known as Taylor’s series.

Rewriting in the summation form

f (x) = f (a)+
∞ 
n=1

f (n)(a)

n!
(x − a)n (6)

Thus (5) or (6) is the Taylor’s series expansion

of f (x) about the point ‘a’ (or in powers of x − a).

When a = 0, (6) reduces to

f (x) = f (0)+
∞ 
n=1

f (n)(0)

n!
xn (7)

The infinite series in powers of x given by (7) is

called the Maclaurin’s series expansion of f (x) or

simply Maclaurin’s series of f (x) (about origin).

Maclaurin Series Expansion of

Some Elementary Functions

1. Exponential function f (x) = ex .

Differentiating n times, f (n)(x) = ex. So at x =
0, f (n)(0) = 1. Substituting in the Maclaurin’s
formula (4), we obtain

f (x)=ex=1+ x

1!
+x2

2!
+x2

3!
+ · · ·+ xn−1

(n− 1)!
+xn

n!
eθx

where 0 < θ < 1.

For 0 < θ < 1, eθx is bounded for any x(< ex for
x > 0 and < 1 for x < 0). Thus the Lagrange’s
remainder

Rn =
xn

n!
eθx → 0 as n→∞ for any x.

Hence the Maclaurin series expansion of ex is

ex=1+ x

1!
+x2

2!
+x3

3!
+ · · ·+xn

n!
+ · · · ;−∞<x<∞

Therefore ex can be evaluated to any degree of

accuracy by taking sufficient number of terms.

2. Expansion of f (x) = cos x

Differentiating n times, f (n)(x) = cos
 
x + nπ

2

 
,

so f (n)(0) = cos nπ
2
. The remainder

Rn(x)=
xn

n!
f (n)(θx)=xn

n!
cos
 
θx+nπ

2

 
→0 as n→∞

since
  cos  θx + nπ

2

   ≤ 1, for all values of x.

At x = 0, f (0) = 1, f (1)(0) = cos π
2
= 0, f (2)(0)

= cosπ = −1, f (3)(0) = cos 3π
2
= 0, f (4)(0) =

cos 2π = 1 and so on. Substituting these values
in the Maclaurin series given by (7), we get

f (x)= cos x = 1+ 0− x2

2!
+ 0+ x4

4!
+ 0− x6

6!
+ · · ·

= 1− x2

2!
+ x4

4!
− x6

6!
+ · · · ; −∞ < x <∞.

3. Expansion of f (x) = sin x.

We know that f n(x) = sin
 
x + nπ

2

 
. So f (n)(0)

= sin nπ
2
then f (0) = 0, f  (0) = sin π

2
= 1,

f (2)(0) = sin π = 0, f (3)(0) = sin 3π
2
= −1,

f (4)(0) = sin 2π = 0 etc.

Substituting these values in (7), we get the
Maclaurin series expansion of f (x) valid for any
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x as

f (x)= sin x=x−x3

3!
+x5

5!
−x7

7!
+ · · · , −∞<x<∞

Fig. 2.8

– 3 – 2 – 1 0 1 2 3
x

y x= sin

y x=
y

y = –x x
1

6

3

y = – +x
x x3 5

6 120

Figure 2.8 shows the graphs of the function
f (x) = sin x and the first three approximations

y = x, y = x − x3

3!
, y = x − x3

3!
+ x5

5!

4. Expansion of f (x) = sinhx.

Weknow that f (2n+1)(x) = coshx and f (2n)(x) =
sinhx so f (2n+1)(0) = 1, f (2n)(0) = 0, f (0) = 0.
Substituting in (7),

f (x)=sinhx=x+x3

3!
+x5

5!
+x7

7!
+ · · · ; −∞<x<∞

5. Expansion of f (x) = coshx.

Since f (2n)(x) = coshx and f (2n+1)(x) = sinhx,
we have f (2n)(0) = 1, f (2n+1)(0) = 0, f (0) = 1.
From (7),

f (x)=coshx=1+x2

2!
+x4

4!
+x6

6!
+ · · · ; −∞<x<∞

6. Expansion of f (x) = (ax + b)m where m is any
real number and x > − b

a
(i.e., ax + b > 0) and

a  = 0. The nth derivative of f is

f (n)(x)=m(m−1)(m−2) · · · (m−n+1)an(ax+b)m−n

At x = 0, f (n)(0) = m(m− 1)(m− 2) · · ·
(m− n+ 1)an · bm−n and f (0) = bm.

Substituting in (7), we obtain

f (x)= (ax + b)m = bm +m · a · bm−1x

+m(m− 1)a2 · bm−2 x
2

2!
+

+m(m− 1)(m− 2) · a3bm−3 · x
3

3!
+ · · ·

or (ax + b)m = bm
 
1+m

 a
b

 x

1!

+m(m− 1)
 a
b

 2 x2
2!
+

+m(m− 1)(m− 2)
 a
b

 3 x3
3!
+ · · ·

 

valid for any real m and for any x > − b
a
, a  = 0.

Corollary 1: When a = b = 1,

f (x)= (1+ x)m = 1+m
x

1!
+m(m− 1)

x2

2!

+m(m− 1)(m− 2)
x3

3!
+ · · ·

valid for any real m and for any x > −1.
7. Expansion of f (x) = ln(1+ x). We know that

f (n)(x) = (−1)n−1(n−1)!
(1+x)n so

f (n)(0)= (−1)n−1 · (n− 1)! and f (0) = 0. From(7),

f (x)= ln(1+x) = 0+ x−x2

2!
+2!x

3

3!
− 3!

x4

4!
+ · · ·

+(−1)n−1(n− 1)!
xn

n!
+ · · ·

or ln(1+ x)= x − x2

2
+ x3

3
− x4

4
+ x5

5
· · ·

+(−1)n−1 x
n

n
+ · · ·

valid for 1+ x > 0 i.e., x > −1.
8. Expansion of f (x) = ln(1− x).

Here f (n)(x) = (−1)n−1·(n−1)!(−1)n
(1−x)n , so f (n)(0) =

−(n− 1)!

From (7),

f (x) = ln(1−x)=−x−x2

2
−x3

3
−x4

4
−x5

5
−· · ·−xn

n
−· · ·

= −
 
x + x2

2
+ x3

3
+ x4

4
+ · · · + xn

n
+ · · ·

 

valid for x < 1.

Note: For any given function f (x), in general, the

nth derivative f (n)(x) can not be determined and

therefore the nature of Rn not known. Therefore by

assuming that Rn → 0 as n→∞, formal Maclau-

rin’s expansions of any given function is obtained
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from (7) by substituting f and its derivatives evalu-

ated at x = 0. If the nth derivative is not obtainable,

first few (5 to 6) terms are determined. Some times

f (x) can be expressed as sum or product of two or

more infinite series.

WORKED OUT EXAMPLES

Example 1: Expand the polynomial

f (x) = x5 + 2x4 − x2 + x + 1

in powers of x + 1.

Or

Obtain the Taylor’s series expansion of f (x) about

the point x = −1.

Solution: f (−1) = −1+ 2− 1− 1+ 1 = 0

f  (x)= 5x4 + 8x3 − 2x + 1, f  (−1) = 5−8+ 2+1 = 0

f   (x)= 20x3 + 24x2 − 2, f   (−1) = −20+ 24−2 = 2

f    (x)= 60x2 + 48x, f    (−1) = 60− 48 = 12

f     (x)= 120x + 48, f     (−1) = −120+ 48 = −72
f      (x)= 120, f      (−1) = 120

f n(x)= 0 for n > 5.

The Taylor series expansion of f (x) about x = a.

f (x)= f (a)+ (x − a)f  (a)+ (x − a)2
f   

2!
(a)

+ (x − 3)3

3!
f    (a)+ · · ·

Here a = −1. Substituting the above values
f (x)= x5 + 2x4 − x2 + x + 1

= 0+ 0+ (x + 1)2 · 2
2!
+ 12 · (x + 1)3

3!

−72 · (x + 1)4

4!
+ 120

(x + 1)5

5!

f (x)= (x + 1)2 + 2(x + 1)3 − 3(x + 1)4 + (x + 1)5.

Example 2: Write Taylor’s formula for the

function y = √x with Lagrange’s remainder with

a=1, n = 3.

Solution:

y = f (x) = √x, f (a) = f (1) = 1

f  (x)= 1

2
√
x
, f  (1) = 1

2

f   (x)=−1

4

1

x
3
2

= −1

4

f    (x)= 3

8

1

x
5
2

= 1

8

f     (x)=−15

16

1

x
7
2

Taylor’s formula with Lagrange’s remainder up to
4 terms (i.e., n = 3)

f (x)= f (a)+ (x − a)
f  (a)
1!

+ (x − a)2
f   (a)
2!

+(x − a)3
f    (a)
3!

+ (x − a)4

4!
f     (a + θ (x − a))

Substituting f and its derivatives at a = 1,

f (x)= 1+ (x − 1) · 1
2
+ (x − 1)2

 
−1

4

 
1

2!

+(x − 1)3 · 3
8
· 1
3!
+ (x − 1)4 ·

 
−15

16

 
×

× 1

[1+ θ (x − 1)]
7
2

· 1
4!

= 1+ 1

2
(x − 1)− 1

8
(x − 1)2 + 1

16
(x − 1)3

− 5

128
(x − 1)4[1+ θ (x − 1)]−

7
2 .

Example 3: Expand sin x in powers of
 
x − π

2

 
.

Solution:

sin(x)= sin
 
x − π

2
+ π

2

 
= sin

  
x − π

2

 
+ π

2

 
= sin(x − π

2
) · cos π

2
+ sin

π

2
· cos
 
x − π

2

 
= 0+ 1 · cos

 
x − π

2

 
.
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We know that cos x =
∞ 
n=0

(−1)n x2n

(2n)!
so

sin x = + cos
 
x − π

2

 
= +

∞ 
n=0

(−1)n
 
x − π

2

 2n
(2n)!

The Taylor series expansion of sin x about x = π
2
is

sin x = 1−
 
x − π

2

 2 1

2!
+
 
x − π

2

 4
· 1
4!

−
 
x − π

2

 6 1

6!
+ · · · .

Example 4: Obtain the first 4 terms of the Taylor’s

series of cos x about x = π
4
.

Solution: cos x = cos
 
x − π

4
+ π

4

 = cos
 
t + π

4

 
where t = x − π

4

cos x = cos t · cos π
4
− sin t · sin π

4
= 1√

2
(cos t − sin t)

= 1√
2

  
1− t2

2!
+ t4

4!
− t6

6!
· · ·
 

−
 
t − t3

3!
+ t5

5!
− t7

7!
+ · · ·

  

= 1√
2

 
1−t− t2

2!
+ t3

3!
+ t4

4!
− t5

5!
− t6

6!
+ t7

7!
+ · · ·

 

= 1√
2

 
1−
 
x−π

4

 
−
 
x−π

4

 2
· 1
2!
+
 
x−π

4

 3
· 1
3!
+

+
 
x − π

4

 4
· 1
4!
−
 
x − π

4

 5
· 1
5!
+ · · ·

 
.

Example 5: Using Taylor’s series expansion cal-

culate an approximate value of
√
10.

Solution: Let
√
10=√(9+1)=3  1+ 1

9

 1
2 using,

(1+ x)m = 1+mx + m(m− 1)

2!
x2

+m(m− 1)(m− 2)

3!
x3 + · · ·

with x = 1
9
,m = 1

2
, we get

3

 
1+ 1

9

 1
2

= 3


1+ 1

2
· 1
9
+

1
2

 
1
2
− 1
 

2!

 
1

9

 2

+
1
2

 
1
2
− 1
  

1
2
− 2
 

3!

 
1

9

 3
− · · ·




considering the first four terms,

≈ 3

 
1+ 1

18
− 1

8
· 1

81
+ 1

16
· 1

729

 
≈ 3.1629.

Example 6: Find the first seven terms of the

Maclaurin series of f (x) = ln sec x.

Solution: f (0) = ln sec 0 = ln 1 = 0
Differentiating w.r.t. x,

f  (x)= 1

sec x
· sec x · tan x = tan x, f  (0) = tan 0 = 0

f   (x)= sec2 x, f   (0) = sec2 0 = 1

f    = 2 sec x · sec x · tan x=2 sec2 x · tan x, f    (0)=0

f     = 4 sec x · sec x · tan x · x + 2 sec2 x · sec2 x
f     = 4 sec2 x · tan2 x + 2 sec4 x, f     (0) = 0+ 2 = 2

f      = 8 sec2 x · tan3 x + 16 sec 4x · tan x, f      (0) = 0

f       = 16 sec2 x · tan4 x + 88 sec4 x · tan2 x
+16 sec6 x, f       (0) = 16

The Maclaurin series is

f (x)= f (0)+ f  (0) · x
11
+ f   (0) · x

2

2!

+f    (0) · x
3

3!
+ · · ·

Substituting the above values

f (x)= ln sec x = 0+ 1 · x
2

2!
+ 0+ 2 · x

4

4!
+ 0

+16x6

6!
+ · · ·

f (x)= x2

2
+ x4

12
+ x6

45
+ · · · .

Example 7: If y = sin ln(x2 + 2x + 1), expand y

in ascending powers of x up to x6.

Solution: Differentiating y w.r.t. x,

y1 =+ cos ln(x2 + 2x + 1) ·
 

1

x2 + 2x + 1

 
· (2x + 2)

y1 =
2

x + 1
· cos ln(x2 + 2x + 1)
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(x + 1)y1 = 2 cos ln(x2 + 2x + 1)

Differentiating again w.r.t. x,

(x+1)y2+y1 = −2 · sin ln(x2 + 2x + 1)×

×
 

1

x2 + 2x + 1

 
· (2x + 2)

= − 4

x+1 · sin ln(x
2+2x+1) = − 4y

(x+1)
or (x + 1)2y2 + (x + 1)y1 + 4y = 0.

Differentiate ‘n’ times using Leibnitz’s rule, 
(x+1)2yn+2+n · 2(x+1)yn+1+

n(n−1)
2

· 2 · 1 · yn
 
+

+  (x + 1)yn+1 + n · 1 · yn
 + 4yn = 0

or

(x + 1)2yn+2 + (x + 1)(2n+ 1)yn+1 + (4+ n2)yn = 0.

Recurrence relation: At x = 0

yn+2(0) = −
 
(2n+ 1)yn+1(0)+ (4+ n2)yn(0)

 
Now y(0) = 0, y1(0) = 2,
Using recurrence relation

y2(0)=−[y1(0)+ 4y0(0)] = −[2+ 4 · 0] = −2
y3(0)=−[3y2(0)+ 5y1(0)] = −[3(−2)+ 5 · 2] = −4
y4(0)=−[5y3(0)+ 8y2(0)] = −[5(−4)+ 8(−2)] = 36

y5(0)=−[7y4(0)+ 13y3(0)]= −[7(36)+13(−4)]=− 200

y6(0)=−[9y5(0)+ 20y4(0)]= −[9(−200)+20(36)]=1080
Substituting these values in the Maclaurin series,

y = sin ln(x2 + 2x + 1) = 0+ 2 · x
11
− 2

x2

2!
− 4 · x

3

3!

+36 · x
4

4!
− 200 · x

5

5!
+ 1080 · x

6

6!
+ . . .

= 2x − x2 − 2

3
x3 + 3

2
x4 − 5

3
x5 + 3

2
x6 + · · · .

Example 8: Prove that

ex cos x = 1+ x − 2x3

3!
− 22

x4

4!
− 22

x5

5!
+ 23

x7

7!
+ · · · .

Solution: R.H.S. in a Maclaurin series expansion
of y = f (x) = ex cos x·We know that

yn = f (n)(x) = dn

dxn
{ex cos x} = 2

n
2 ex · cos

 
x + n

π

4

 
.

For n= 4, y4(x)= 22 · ex · cos(x + π )=−4ex cos x
= −4y i.e., y4 = −4y
Differentiating n times by Leibnitz’s rule, we get the
recurrence relation

yn+4(x)= −4yn(x)
At x = 0, yn+4(0)= −4yn(0).

Also y(0) = f (0) = e0 · cos 0 = 1; y1(0) = 1,

y2(0) = 0; y3(0) = −2, y4(0) = −4, y5(0) = −4,
y6(0) = 0, y7(0) = 8 etc.

With these values, the Maclaurin series expansion of

ex cos x=1+ x − 2
3!
x3− 4

4!
x4 − 4

5!
x5 + 8

7!
x7 + · · ·.

Example 9: Expand ex sin2 x in ascending powers

of x upto x5.

Solution: Let f (x) = ex · sin2 x.
We know that

ex =
∞ 
n=0

xn

n!
and sin x =

∞ 
n=1

(−1)n+1x2n−1
(2n− 1)!

f (x)= ex · sin2 x =
 ∞ 
n=0

xn

n!

  ∞ 
n=1

(−1)n+1 · x2n−1
(2n− 1)!

 

=
 
1+ x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

 
×

×
 
x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

 2

=
 
1+ x + x2

2!
+ x3

3!
+ · · ·

 
×

×
 
x2 + · · · − 2

x4

3!
+ · · ·

 

Both the series are truncated, because we are consid-
ering terms upto x5. Multiplying the series term by
term, we get

f (x)= ex sin2 x = x2−2x4

3!
+x3−2x

5

3!
+x4

2!
+x5

3!
+ · · ·

= x2 + x3 + 1

6
x4 + 1

6
x5 + · · · .

Example 10: Using Maclaurin series show that

ex cos x = 1+ x + x2

2
− x3

3
+ · · · .
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Solution: We know that ex = ∞
0
n=0

xn

n!

ex cos x =
∞ 
n=0

(x cos x)n

n!

= 1+ x cos x + (x cos x)2

2!
+ (x cos x)3

3!
+ · · ·

But x cos x =
∞ 
n=0

(−1)n x
2n+1

(2n)!
so

ex cos x = 1+
 ∞ 
n=0

(−1)n x
2n+1

(2n)!

 
+ 1

2!

 ∞ 
n=0

(−1)n x
2n+1

(2n)!

 2

+ 1

3!

 ∞ 
n=0

(−1)n x
2n+1

(2n)!

 3
+ · · ·

= 1+
 
x − x3

2!
+ x5

4!
− x7

6!
+ · · ·

 

+ 1

2!

 
x − x3

2!
+ x5

4!
− x7

6!
+ · · ·

 2

+ 1

3!

 
x − x3

2!
+ x5

4!
− x7

6!
+ · · ·

 3
+ · · ·

= 1+ x + 1

2!
x2 +

 
− 1

2!
+ 1

3!

 
x3 + · · ·

= 1+ x + x2

2
− x3

3
+ · · · .

EXERCISE

1. Expand the polynomial x4 − 5x3+5x2+x + 2

in powers of x − 2.

Ans. −7(x−2)− (x−2)2 + 3(x−2)3 + (x − 2)4

2. Expand 2x3 + 7x2 + x − 1 about x = 2.

Ans. 45+ 53(x − 2)+ 19(x − 2)2 + 2(x − 2)3

3. Find Taylor series expansion of f (x) about ‘a’

where

i. f (x) = ln x, a = 1

ii. f (x) = tan x, a = π
4

iii. f (x) = ln cos x, a = π
3

iv. f (x) = ex, a = 3

Ans. i. (x − 1)− (x−1)2
2!

+ 2!
3!
(x − 1)3 −

− 3!
4!
(x − 1)4 + · · ·

ii. 1+ 2(x − π
4
)+ 2(x − π

4
)2 + · · ·

iii. − ln 2−
√
3
 
x − π

3

 − 2
 
x − π

3

 2 + · · ·
iv. ex−3+3 = e3

 ∞ 
n=0

(x − 3)n

n!

 

4. Prove that

f (x)= f (a)+ 2
(x − a)

2
f  
 
x + a

2

 

+ (x − a)3

8(3!)
f    
 
(x + a)

2

 

+ (x − a)5

32(5!)
f      
 
(x + a)

2

 
+ · · ·

Hint: Expand f (x) = f
 
x+a
2
+ x−a

2

 
and

f (a) = f
 
x+a
2
+ a−x

2

 
and subtract.

5. Show that

tan−1(x + h)= tan−1 x

= h sin z · sin z
1
− (h sin z)2

sin 2z

2

+(h sin z)2 sin 3z
3

+ · · ·

where z = cot−1 x.

Hint: Use Taylor’s series, x = cot z,
dz
dx
= − sin2 z, take f (x) = tan−1 x.

6. Calculate the approximate value of cos 32◦

using Toylor series.

Hint: Expand f (30+ 2) = cos(30+ 2)

Ans. 0.8482

7. Obtain the Maclaurin series of ax

Hint: f (n)(x) = ax(log a)n, f (n)(0) = (log a)n

Ans. ax = 1+ x log a + 1
2!
(x log a)2 + 1

3!
(x log a)3

+ · · · + 1
n!
(x log a)n + · · ·

8. If f (x) = x3 + 3x2 + 15x − 10, calculate the

approximate value of f ( 11
10
).

Hint: Use Taylor’s series and expand f ( 11
10
)=

f (x + h) = f (1 + 1
10
); f (1) = 9, f  (1) = 24,
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f   (1) = 12, f    (1) = 6.

Ans. 11.461

9. Determine the approximate value of π using

the Maclaurin series expansion of sin−1 x.

Hint: y = sin−1 x = x + 12

3!
x2 + 12·32

5!
x5

+ 12·32·52
7!

· x7 + · · ·, (1− x2)yn+2 − (2n +
1)xyn+1 − n2yn = 0, yn+2(0) = n2yn(0).

Ans. π = 3.1386

10. Expand f (x) = eax · sin bx in ascending

powers of x.

Hint:

f (n)(0)= (a2 + b2)
n
2 sin nθ ;

sin θ = b 
a2 + b2

; cos θ = a 
a2 + b2

Ans. eax sin bx = bx + abx2 + b(3a2−b2)
3!

x3 + · · ·
11. Obtain the Maclaurin series of tan x.

Hint:f (x)= tan x, f (0)=0, f  (x)=1+ tan2 x,

f  (0) = 1, f   = 2(tan x+ tan3 x); f   (0) = 0,

f    = 2+ 8 tan2 x + 6 tan4 x, f    (0) = 2,

f     =16 tan x+40 tan3 x+24 tan5 x, f     (0)=0

f      = 16 sec2 x + 120 tan2 x sec2 x+
120 tan4 x sec2 x, f      (0) = 16

Ans. tan x = x + 1
3
x3 + 2

15
x5 + · · ·

12. Find the Maclaurin series of y = ex ln(1+ x).

Hint: (1+ x)yn+2 + (n− x)yn+1 − (n+ 1)yn
− ex = 0, y(0) = 0, y1(0) = 1, y2(0) = 1,

yn+2(0) = −nyn+1(0) + (n+ 1)yn(0) + 1

Ans. x + x2

2!
+ 2x3

3!
+ 9x5

5!
− 35

6!
x6 + · · ·

13. Write the Maclaurin formula for y = √1+ x

when n = 2 and with Lagrange’s remainder

Ans.
√
1+ x = 1 + 1

2
x − 1

8
x2 + x3

16
· (1 + θx)

−5
2 ,

0 < θ < 1.

14. Show that

ea sin
−1 x = 1+ ax + a2

2!
x2 + a(12 + a2)

3!
x3

+a2(22 + a2)

4!
x4 + · · · .

Hint: y = ea sin
−1 x , y(0) = 1, y1(0) = a, y2(0)

= a2, (1 − x2)yn+2 − (2n + 1)xyn+1 − (n2 +
a2)yn = 0 and yn+2(0) = (n2 + a2)yn(0)

15. Show that tan−1 x = x − 1
3
x3 + 1

5
x5 + · · · for

|x| < 1. (This series is known as Gregory’s

series).

Hint: (1 + x2)y1 = 1, (1 + x2)yn+1 +
2nxyn + n(n− 1)yn−1 = 0, yn+1(0)=−n(n−
1)yn−1(0).

2.9 INDETERMINATE FORMS

If two functions f (x) and g(x) are both zero at

x = a, the fraction
f (a)

g(a)
is said to assume the indeter-

minate form 0
0
.Although the functionF (x) = f (x)

g(x)
is

undefined (indeterminate) at x = a, it may however

approach a limit as x approaches a. The process of

determining such a limit, if it exists, is known as the

evaluation of indeterminate forms. The L’Hospital’s

rule (theorem) allows the evaluation of indeterminate

forms.

L’Hospital’s Rule

Let f (x) and g(x) be continuous in an interval (c, d)

containing x = a. Suppose f (a) = 0 and g(a) = 0.

Also the derivatives of f and g exist and gi(x)  = 0

in (c, d) except possibly at x = a. Then

lim
x→a

f (x)

g(x)
= lim

x→a

f  (x)
g (x)

(1)

provided the limit on R.H.S. of (1) exists.

Proof: Since f (x) and g(x) satisfy conditions of
Cauchy’s mean value theorem in (c, d), we have

f (x)− f (a)

g(x)− g(a)
= f  (e)

g (e)

where e1(c, d) such that x < e < a or a < e < x.
From hypothesis f (a) = 0, g(a) = 0. So

f (x)

g(x)
= f  (e)

g (e)

As x → a, e→ a, we have

lim
x→a

f (x)

g(x)
= lim

x→a

f  (x)
g (x)
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Note: In R.H.S. of (1) the functions f (x) and g(x)

are differentiatedw.r.t.x, separately,not by using the

quotient rule.

Corollary 1: Suppose f  (a) = 0, and g (a) = 0 in
addition to f (a) = 0 and g(a) = 0. Then applying
Cauchy’s mean value theorem to f  (x) and g (x), we
get the L’Hospital’s rule as

lim
x→a

f (x)

g(x)
= lim

x→a

f   (a)
g  (a)

Corollary 2: If f (a) = 0, g(a) = 0, f  (a) = 0,
g (a) = 0, . . ., f (n−1)(a) = 0, g(n−1)(a) = 0, and
g(n)(a)  = 0 then

lim
x→a

f (x)

g(x)
= lim

x→a

f (n)(a)

g(n)(a)

Corollary 3: As x →∞ if
f (x)

g(x)
assumes indeter-

minate form 0
0
then the L’Hospital’s rule is

lim
x→∞

f (x)

g(x)
= lim

x→∞
f  (x)
g (x)

Results similar to Corollary 1, and Corollary 2 are

valid as x →∞.

Indeterminate Forms of the Type ∞

∞

Suppose f (x) = ∞ and g(x) = ∞ as x → a (or

as x →±∞). Then
f (x)

g(x)
assumes the indeterminate

form ∞
∞ which can also be evaluated by L’Hospital’s

rule.

lim
x→a

(or x→±∞)

f (x)

g(x)
= lim

x→a
(or x→±∞)

f  (x)
g (x)

Results similar to Corollary 1 and Corollary 2 are

valid in this case also.

Important Note: While evaluating the indetermi-

nate form ∞
∞ , in many cases, it is advised to convert

the indeterminate from ∞
∞ to the form 0

0
as early as

possible (say by rewriting as
1

g(x)
1

f (x)

). Otherwise the

process of differentiation of the numerator f (x) and

denominator g(x) may never terminate, thus compli-

cating the problem.

Indeterminate Form 0 ·∞
As x→ a (or x→±∞) iff (x)→ 0 and g(x)→∞
then the product f (a) · g(a) is undefined and is said

to assume the indeterminate form 0 · ∞. This can
be converted to the indeterminate form 0

0
or ∞∞ by

rewriting

f (x) · g(x) = f (x) 
1

g(x)

 or
g(x) 
1

f (x)

 
and apply L’Hospital’s rule.

Indeterminate Form∞−∞

As x → a(or x →±∞) if f (x)→∞ and g(x)→
∞ then the difference f (a)− g(a) is indeterminate
of the form∞−∞. Rewriting the difference into a
fraction of algebraic means, we get

f (x)− g(x) =
1

g(x)
− 1

f (x)

1
f (x)g(x)

which 0
0

form. Applying L’Hospital’s rule, the

indeterminate form∞−∞ is evaluated.

Indeterminate Forms of the Type 00,∞0, 1∞

As x → a (or x → = ∞), the expression f (a)g(a) is
said to be (i) indeterminate formof type 00 iff (x)→
0 and g(x)→ 0 (ii) indeterminate form of type∞0

if f (x)→∞ and g(x)→ 0 (iii) indeterminate form
of type 1∞ if f (x)→ 1 and g(x)→∞. To evaluate
these forms consider.

y(x) = f (x)g(x)

Taking logarithm

ln y = g(x) ln f (x)

which is of the form 0 · ∞ and can be evaluated as in
IndeterminateForm0 · ∞. Taking the limit asx → a
(or x →±∞)

lim
x→a

ln y = k (say).

Then

k = lim
x→a

(ln y) = ln
 
lim
x→a

y
 
= ln
 
lim
x→a

f (x)g(x)
 

... lim
x→a

f (x)g(x) = ek.

Notes:

i. Maclaurin series expansion may be used to sim-

plify the expressions.
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ii. Standard limits such as lim
x→0

sin x

x
= 1,

lim
x→0

tan x

x
=1, lim

x→0
(1+ x)

1
x=e may also be used.

WORKED OUT EXAMPLES

Type 0
0

form

Example 1: Evaluate

(a) lim
x→1

1+ ln x − x

1− 2x + x2
(b) lim

x→0

eax − e−ax

ln(1+ bx)

(c) lim
x→ π

4

(sec2 x − 2 tan x)

1+ cos 4x

Solution:

a. At x = 1, 1+ln x−x
1−2x+x2 =

1+ln 1−1
1−2·1+12 =

0
0
, indeter-

minate. Applying L’Hospital’s rule

lim
x→1

1+ ln x − x

1− 2x + x2
= lim

x→1

(1+ ln x − x)i

(1− 2x + x2)i
1

= lim
x→1

0+ 1
x
− 1

−2+ 2x

which is again of the 0
0

form. Applying
L’Hospital’s rule again, we get

lim
x→1

1+ ln x − x

1− 2x + x2
= lim

x→1

( 1
x
− 1)i

(−2+ 2x)i

= lim
x→1

− 1

x2

2
= −1

2
.

b. At x = 0, eax−e−ax
ln(1+bx) = 1−1

ln 1
= 0

0
form.

Applying L’Hospital’s rule

lim
x→0

eax − e−ax

ln(1+ bx)
= lim

x→0

d
dx

(eax − e−ax )
d
dx

(ln(1+ bx))

= lim
x→0

aeax + ae−ax
b

1+bx
= a + a

b
1

= 2a

b

c. lim
x→ π

4

sec2 x−2 tan x
1+cos 4x : 0

0
form. Applying the rule

= lim
x→ π

4

d
dx

(sec2 x − 2 tan x)

d
dx

(1+ cos 4x)

= lim
x→ π

4

2 sec x · sec x · tan x − 2 sec2 x

−4 sin 4x

= lim
x→ π

4

sec2 x(tan x − 1)

−2 sin 4x :
0

0

= lim
x→ π

4

2 sec x·sec x· tan x(tan x−1)+ sec2 x·sec2 x
−8 cos 4x

= 2 · 2 · 1 · (1− 1)+ 2 · 2
−8 · (−1) = 1

2

(since cos 4π
4
= −1, sec2 π

4
= 2, tan π

4
= 1).

Example 2: Evaluate

i. lim
x→0

cos x−ln(1+x)−1+x
sin2 x

ii. lim
x→0

x2+2 cos x−2
x sin3 x

iii. lim
x→0

sin 2x+a sin x
x3

is finite. Find a and the limit.

Solution:

i. 0
0
form use Maclaurin series expansions for

cos x, ln(1+ x) and sin x. Then

lim
x→0

cos x − ln(1+ x)− 1+ x

sin2 x

= lim
x→0

 
1− x2

2!
+ x4

4!
− x6

6!
+· · ·
  
x− x2

2
+ x3

3
− x4

4
+· · ·
 
−1+x 

x− x3

3!
+ x5

5!
− x7

7!
+· · ·
 2

= lim
x→0

− x3

3
+ 7

24
x4 + · · ·

x2 − x6

(3!)2
+ x10

(5!)2
+ · · · − 2x4

3!
+ 2x6

5!
+ · · ·

= lim
x→0

− 1
3
x + 7

24
x3 + · · ·

1− 1
3
x2 − 1

36
x4 + · · ·

= 0

1
= 0.

ii. lim
x→0

x2 + 2 cos x − 2

x · sin3 x
= limx→0

x2+2 cos x−2
x·x3

x3

sin3 x

= lim
x→0

x2 + 2 cos x − 2

x4
· lim
x→0

 x

sin x

 3
= lim

x→0

x2 + 2 cos x − 2

x4
· 1 = 0

0

since lim
x→0

sin x
x
= 1·Now applying L’Hospital’s

rule

= lim
x→0

2x − 2 sin x

4x3
= lim

x→0

1− cos x

6x2
= lim

x→0

sin x

12x
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= 1

12
lim
x→0

sin x

x
= 1

12
· 1 = 1

12
.

iii. At x = 0, sin 2x+a sin x
x3

is 0
0
for any a.

Applying L’Hospital’s rule

lim
x→0

sin 2x + a sin x

x3

= lim
x→0

2 · cos 2x + a cos x

3x2
= ∞.

In order that the limit is finite, choose a = −2
in which case it reduces to 0

0
form. Applying

L’Hospital’s rule

= lim
x→0

−4 sin 2x + 2 sin x

6x
= 0

0

= lim
x→0

−4 cos 2x + cos x

3
= −4+ 1

3
= −1.

Type ∞

∞
form

Example 3: Evaluate (i) lim
x→∞

xn

ex

(ii) lim
x→∞

x√
1+ x2

(iii) lim
x→0

logtan x tan 2x.

Solution:

i. ∞
∞ form.Applying L’Hospital’s rule repeatedly
n times

lim
x→∞

xn

ex
= lim

x→0

dn

dxn
xn

dn

dxn
ex
= lim

x→∞
n!

ex
= 0.

ii. ∞
∞ form. Applying L’Hospital’s rule

lim
x→∞

x 
1+ x2

= 1

1
2
(1+ x2)−

1
2 · 2x

=
 
1+ x2

x
:

∞
∞ form.

Again applying L’Hospital’s rule

= lim
x→∞

1
2
(1+ x2)−

1
2 · 2x

1

= lim
x→∞

x 
1+ x2

:
∞
∞ : which is the original

function.

Instead introduce z = 1

x2
then

lim
x→∞

x 
1+ x2

= lim
z→0

x

x

 
1

x2
+ 1

= lim
z→0

1√
z+ 1

· = 1.

iii. ∞
∞ form.

lim
x→0

logtan x tan 2x = lim
x→0

log tan 2x

log tan x
:
∞
∞

Applying L’Hospital’s rule

= lim
x→0

1

tan 2x
· 2 · sec2 2x · tan x

sec2 x
:
0

0
form

= lim
x→0

sin x · cos x · 2
sin 2x · cos 2x = lim

x→0

2 · 1
2
sin 2x

1
2
sin 4x

= lim
x→0

· sin 2x
2x

· 4x

sin 4x
= 1 · 1 = 1.

Type 0 ·∞ form

Example 4: Evaluate

i. lim
x→1

log (1− x) · cot πx
2

ii. lim
x→a

(a − x) · tan πx

2a
.

Solution:

i. ∞ · 0 forms. Rewriting in ∞
∞ form

lim
x→1

log(1− x) · cot πx
2
= lim

x→1

ln(1− x)

tan πx
2

.

Applying L’Hospital’s rule

= lim
x→1

1
1−x · (−1)
π
2
· sec2 πx

2

:
∞
∞ form.

Rewriting in 0
0
form

= lim
x→1

−2
π

cos2 πx
2

1− x
:
0

0
form.

Applying L’Hospital’s rule

= lim
x→1

− 2

π
· 2 · cos

πx
2
· (− sin πx

2
) · π

2

−1 = 0.
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ii. 0 · ∞ form. Rewriting

lim
x→a

(a − x) · tan πx

2a
= lim

x→a

tan πx
2a

( 1
a−x )

:
∞
∞ form.

Applying L’Hospital’s rule

= lim
x→a

2a
π
· sec2 πx

2a

− 1

(a−x)2 (−1)
:
∞
∞ form.

Rewriting in 0
0
form

= lim
x→a

2a

π
· (a − x)2

cos2
 
πx
2a

 =
= lim

x→a

2a

π
· (−2)(a − x)

2 · cos  πx
2a

 ·  − sin πx
2a

 · π
2a

:
0

0

= lim
x→a

−1
π
2a
· cos2 πx

2a
− π

2a
sin2 πx

2a

= −1
0− π

2a

= 2a

π
.

Type ∞−∞ form

Example 5: Evaluate

i. lim
x→ π

2

(sec x − tan x)

ii. lim
x→1

 
x

x − 1
− 1

ln x

 

iii. lim
x→0

 
1

x2
− cot2 x

 
.

Solution:

i. ∞−∞ form. Rewriting

lim
x→ π

2

(sec x − tan x)= lim
x→ π

2

 
1

cos x
− sin x

cos x

 

= lim
x→ π

2

 
1− sin x

cos x

 
:
0

0

Applying L’Hospital’s rule

lim
x→ π

2

cos x

sin x
= 0

1
= 0.

ii. ∞−∞ form. Rewriting

lim
x→1

 
x

x−1−
1

ln x

 
= lim

x→1

x ln x−(x−1)
(x−1) ln x :

0

0
form.

= lim
x→1

x · 1
x
+ ln x − 1

1 · ln x + (x − 1) · 1
x

:
0

0
form

= lim
x→1

1
x

1
x
+ 1

x2

= 1

1+ 1
= 1

2
.

iii. ∞−∞ form. Rewriting

lim
x→0

 
1

x2
− cot2 x

 
= lim

x→0

 
1

x2
− cos2 x

sin2 x

 

= lim
x→0

 
sin2 x − x2 cos2 x

x2 sin2 x

 
:
0

0

= lim
x→0

sin2 x − x2 cos2 x

x4
· lim
x→0

x2

sin2 x
.

· Since lim
x→0

sin x

x
= 1,

= lim
x→0

 
1

x2
· sin

2 x

x2
− cos2 x

x2

 
· 1

= lim
x→0

 
1

x2
· 1− cos2 x

x2

 
:∞−∞

= lim
x→0

 
1− cos2 x

x2

 
:
0

0
form. Applying rule

= lim
x→0

−2 cos x · (− sin x)

2x

= lim
x→0

cos x · lim
x→0

sin x

x
= 1.1 = 1.

Types 00,∞0, 1∞

Example 6: Evaluate (00 form)

(i) lim
x→0

(x)x (ii) lim
x→ π

2

(cos x)(
π
2
−x)

(iii) lim
x→0

(x + sin x)tan x.

Solution:

i. 00 form. Put y = xx. Take logarithm, then

lim
x→0

ln y = lim
x→0

x ln x = 0 · ∞ form. Rewrit-

ing

= lim
x→0

ln x

1
x

:
∞
∞ form = lim

x→0

1
x

− 1

x2

= lim
x→0

−x = 0

... lim
x→0

xx = lim
x→0

y = e0 = 1.



2.38 HIGHER ENGINEERING MATHEMATICS—II

ii. 00 form. Put y = (cos x)(
π
2
−x). Take logarithm,

then

lim
x→ π

2

ln y = lim
x→ π

2

 π
2
− x
 
ln cos x : 0.∞ form

= lim
x→ π

2

ln cos x
1 

π
2
− x
 : ∞∞ form. Applying rule

= lim
x→ π

2

− sin x

cos x
· 1

−1
( π
2
−x)2 (−1)

= lim
x→ π

2

(π
2
− x)2

cot x
:
0

0
form

= lim
x→ π

2

2(π
2
− x) · (−1)
−cosec2x = 0

... lim
x→ π

2

(cos x)(
π
2
−x) = e0 = 1

iii. 00 form. Put y = (x + sin x)tan x . Take log

lim
x→0

ln y = lim
x→0

tan x · ln(x + sin x) : 0 · ∞ form.

= lim
x→0

ln(x + sin x)

cot x
:
∞
∞ form

= lim
x→0

1+ cos x

x + sin x
· 1

(−cosec2x)

= lim
x→0

− sin2 x · (1+ cos x)

(x + sin x)
:
0

0

= lim
x→0

− [2 sin x· cos x(1+ cos x)+ sin2 x·(− sin x)]

1+ cos x

= 0

2
= 0.

lim
x→0

(x + sin x)tan x = e0 = 1.

Example 7: Evaluate (∞0 form)

(i) lim
x→∞

(ex + x)
1
x (ii) lim

x→ π
2

(tan x)tan 2x

(iii) lim
x→∞

(coshx)
1
x

Solution:

i. Put y = (ex + x)
1
x . Take log

lim
x→∞ ln y = lim

x→∞
1

x
· ln(ex + x) : 0 · ∞ form

= lim
x→∞

ln(ex + x)

x
:
∞
∞ form

= lim
x→∞

ex+1
ex+x
1

:
∞
∞ form

= lim
x→∞

ex

ex + 1
= lim

x→∞
ex

ex
= 1.

... lim
x→∞(ex + x)

1
x = e1 = e.

ii. Put y = (tan x)tan 2x. Take log

lim
x→ π

2

ln y = lim
x→ π

2

tan 2x · ln(tan x) : 0 · ∞

= lim
x→ π

2

ln(tan x)

cot 2x
= lim

x→ π
2

sec2 x

tan x
· 1

−2·cosec22x :
∞
∞

= lim
x→ π

2

sin2 2x·
(−2) tan x cos2 x = lim

x→ π
2

sin2 2x

− sin 2x

= lim
x→ π

2

− sin 2x = 0.

... lim
x→ π

2

(tan x)tan 2x = e0 = 1.

iii. Put y = (coshx)
1
x , Take log

lim
x→∞ ln y = lim

x→∞
ln coshx

x
= lim

x→∞
sinhx

coshx
· 1
1
:
∞
∞

= lim
x→∞

ex−e−x
ex+e−x = lim

x→∞
e2x−1
e2x+1 = lim

x→∞
2e2x

2e2x
= 1 :

∞
∞

... lim
x→∞(coshx)

1
x = e1 = e.

Example 8: Evaluate (1∞ form)

(i) lim
x→1

 
tan

πx

4

 tan πx
2

(ii) lim
x→0

 
2x + 1

x + 1

 1
x

(iii) lim
x→0

 
sinhx

x

 1

x2

(iv) lim
x→0

 
ax + bx + cx

3

 1
x

Solution:

i. Put y = (tan πx
4
)tan

πx
2 . Take log

lim
x→1

ln y= lim
x→1

tan
 πx

2

 
· ln tan

 πx
4

 
· :∞ · 0 · form

= lim
x→1

ln tan
 
πx
4

 
cot
 
πx
2

 =

= lim
x→1

π
4
sec2(πx

4
)

tan πx
4

· 1

(−π
2
)cosec2 πx

2

:
0

0
form
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=
π
4
· (
√
2)2

1
· 1
−π
2
· 1 = −1

... lim
x→1

 
tan

πx

4

 tan πx
2 = e−1 = 1

e
.

ii. Put y =  2x+1
x+1
 1
x . Take log

lim
x→0

ln y = lim
x→0

1

x
· ln
 
2x + 1

x + 1

 
: 0 · ∞ form

= lim
x→0

ln
 
2x+1
x+1
 

x
= x+1
2x+1 ·

(x+1)2−(2x+1) · 1
(x+1)2 · 1

1

= 2− 1 = 1

... lim
x→0

 
2x + 1

x + 1

 1
x

= e1.

iii. Expanding sinhx in Maclaurin series

lim
x→0

 
sinhx

x

 1

x2

= lim
x→0


x + x3

3!
+ x4

4!
+ x5

5!
+ · · ·

x




1

x2

= lim
x→0

 
1+ x2

 
1

3!
+ x

4!
+ x2

5!
+ · · ·

  1

x2

Put t = 1
3!
+ x

4!
+ x2

5!
+ · · · , so lim

x→0
t = 1

6
·

Now

lim
x→0

 
sin hx

x

 1

x2 = lim
x→0

 
[1+ tx2]

1

tx2

 t
= lim

x→0
et

= e
lim
x→0

t = e
1
6

iv. Put y =
 
ax+bx+cx

3

 1
x
. Take log

lim
x→0

ln y = lim
x→0

1

x
· ln
 
ax + bx + cx

3

 
:

0

0
form

Apply rule

= lim
x→0

3

ax + bx + cx
×

× (ax loge a + bx loge b + cx loge c)

3
· 1
1

= 3

1+ 1+ 1

(1 · loge a + 1 · loge b + 1 · loge c)
3

= 1

3
loge abc

... lim
x→0

 
ax + bx + cx

3

 1
x

= e
1
3
loge abc = (abc)

1
3 .

EXERCISE

Evaluate

Type 0
0

i. lim
x→0

sinhx − x

sin x − x cos x

ii. lim
x→4

x2 − 16

x2 + x − 20

iii. lim
x→1

√
x − 1+√x − 1√

x2 − 1

iv. lim
x→0

2 tan x · sec x
xex

v. lim
x→0

ex − esin x

x − x cos x

vi. lim
x→0

xex − ln(1+ x)

x2

vii. lim
x→1

x2 − x

x − 1− ln x

viii. lim
x→0

ex − e−x − 2 ln(1+ x)

x sin x

ix. lim
x→∞

ax2 + b

cx2 − d

x. Determine a and b such that

lim
x→0

x(1+ a cos x)− b sin x

x3
= 1

xi. lim
x→0

(1+ x)
1
x − e

x

Hint: Expand ln(1+ x) in (viii)

Ans. (1) 1
2
(ii) 8

9
(iii) 1√

2
(iv) 2 (v) 1

3
(vi) 1

2
(vii) 2

(viii) 1 (ix) a
c
(x) a = − 5

2
, b = − 3

2
(xi) − e

2
.
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Type ∞

∞

(i) lim
x→ π

2

tan x

tan 3x
(ii) lim

x→a

ln(x − a)

ln(ex − ea)
(iii) lim

x→∞
x2

ex2

(iv) lim
x→0

ln x

cosecx
(v) lim

x→0

ln x

cot x
(vi) lim

x→∞
ex

xn
.

Ans. (i)3 (ii) e2a (iii) 0 (iv) 0 (v) 0 (vi)∞.

Type 0 ·∞
(i) lim

x→0
xn ln x witn n > 0 (ii) lim

x→0
x ln tan x

(iii) lim
θ→π

ln(θ − π ). tan θ (iv) lim
x→∞

xe−x

(v) lim
x→0

xe
1
x (vi) lim

x→ π
2

tan x · tan 2x.

Ans. (i) 0 (ii) 1 (iii) 0 (iv) 0 (v)∞ (vi) −2.

Type ∞−∞

(i) lim
x→0

(cosecx − cot) (ii) lim
x→1

 
x

ln x
− 1

ln x

 

(iii) lim
x→0

 
1

sin2 x
− 1

x2

 
(iv) lim

x→∞
(ex − x)

(v) lim
x→0

1

ex−1−
1

x
(vi) lim

x→2

 
1

x−2−
1

ln(x−1)

 

Ans. (i) 0 (ii) −1 (iii) 1
3
(iv) 0 (v) − 1

2
(vi) − 1

2
.

Type 00∞01∞

(i) lim
x→a

(x − a)x−a (ii) lim
x→0

(sin x)x

(iii) lim
x→ π

2

(sin x)tan x (iv) lim
x→0

 
tan x

x

 1

x2

(v) lim
x→0

(cos x)
1

x2 (vi) lim
x→a

 
2− x

a

 tan πx
2a

(vii) lim
x→0

(cot x)
1

ln x (viii) lim
x→ π

2

 π
2
− x
 tan x

(ix) lim
x→∞

(1+ x2)e−x (x) lim
x→ π

4

(tan x)tan 2x

(xi) lim
x→1

(1− x2)
1

ln(1−x) (xii) lim
x→0

 
ax + bx

2

 1
x

(xiii) lim
x→0

(cos x)
1

x2 (xiv) lim
x→0

 
sin x

x

 1

x2

.

Ans. (i)1 (ii) 1 (iii) 1 (iv) e
1
3 (v) e

−1
2

(vi) e
2
π (vii) e−1 (viii) 1 (ix)1 (x) 1

e
(xi) e

(xii)
√
ab (xiii) e

−1
2 (xiv) e

−1
6 .

2.10 DERIVATIVES OF ARCS

Arc Length

The graph AB of a function y = f (x) defined in the

interval (a, b) be the arc of the curve AB. Join the

(n+ 1) points a0, a1, a2, . . . , an on AB by broken

lines a0a1, a1a2, a2a3, . . . , an−1an.

Fig. 2.9

Length of arc AB is defined to be the limit of the

sum of the lengths of the n broken lines as the largest

broken line ai−1ai → 0.

Result:

lim
AB→0

Length of arc AB

Length of chord AB
= lim

AB→0

2
AB

AB
= 1.

Derivative of Arc

Equation of the curve in the cartesian form

LetA(x0, y0) be a fixed point of the curve y = f (x).

Let P (x, y) and Q(x +4x, y +4y) be any two

neighbouring points on curve AB. Let s be the arc

lengthAP measured from the fixed pointA along the

curve AB and denoted by
2
AP . As P moves to Q, x

changes to x +4x, y changes to y +4y, so the arc

length s changes s +4s where 4s =2
PQ. Thus s is

a function of x.
From the right angled triangle PQR

PQ
2 = (4x)2 + (4y)2
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Fig. 2.10

wherePQ = Length of the chordPQ, subtended by
the arc PQ. Rewriting and dividing by (4x)2 

PQ

4s

 2  
4s

4x

 2
= 1+

 
4y

4x

 2

As Q→ P,4x → 0 then chord PQ→ 0 and

lim
Q→P

2
PQ

PQ
= 1.

lim
4x→0

 
PQ
2
PQ

 2  
4s

4x

 2
= 1+ lim

4x→0

 
4y

4x

 2
 
ds

dx

 2
= 1+

 
dy

dx

 2

or
ds

dx
=
 
1+
 
dy

dx

 2
(2)

Here positive sign is taken before the radical, assum-

ing that s increases as x increases, so ds
dx

> 0. Thus

the differential of arc is

ds =
 
1+
 
dy

dx

 2
dx (3)

or ds =
 
(dx)2 + (dy)2 (2*)

Corollary 1: Let the equation of the curve be
x = f (y). Then

ds

dy
= ds

dx
· dx
dy
=
 
1+
 
dy

dx

 2
·
 
dx

dy

 

=
  

dx

dy

 2
+
 
dy

dx

 2  
dx

dy

 2

ds

dy
=
 
1+
 
dx

dy

 2
(3)

Corollary 2: Let ψ be the angle subtended by the
tangent PT at P to the curve with the x-axis. Then
dy

dx
= tanψ. Then

ds

dx
=
 
1+
 
dy

dx

 2
=
 
1+ tan2 ψ = secψ so

cosψ = dx

ds
and sinψ = tanψ · cosψ = dy

dx
· dx
ds
= dy

ds
.

Equation of the curve in the parametric form

x = x(t), y = y(t), then

ds

dt
= ds

dx
· dx
dt
=
 
1+
 
dy

dx

 2
· dx
dt

=
  

dx

dt

 2
+
 
dy

dx

 2  
dx

dt

 2

ds

dt
=
  

dx

dt

 2
+
 
dy

dt

 2
. (4)

Equation of the curve in

polar coordinates: r = r(θ )

On the curve AB, consider P (r, θ ) and Q(r +
4r, θ +4θ ) two neighbouring points. Let A be a

fixed point. Assume that
2
AP = s,

2
PQ = 4s.

Fig. 2.11
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Draw ⊥rPN from P on to OQ. From the right
angled triangle OPQ,

PN = r sin4θ, ON = r cos4θ

NQ=OQ−ON = (r +4r)− r cos4θ

=4r + 2r sin2
 
4θ

2

 
.

From the right angled triangle PNQ,

PQ2 = PN2 +NQ2

PQ2 = (r sin4θ )2 +
 
4r + 2r sin2

4θ

2

 2

Rewriting and dividing by (4θ )2, we get 
PQ
2
PQ

·
2
PQ

4θ

 2
= r2
 
sin4θ

4θ

 2

+
 
4r

4θ
+ r · sin

4θ
2

(4θ
2
)
· sin
 
4θ

2

  2

AsQ→ P,PQ→ 0 so PQ
2
PQ

→ 1.Also asQ→ P ,

4θ → 0 so lim
4θ→0

sin4θ

4θ
= 1. With this

lim
Q→P

 2
PQ

4θ

 2
= lim

4θ→0

 
4s

4θ

 2

= r2 · 1+
 
dr

dθ
+ r · 1 · 0

 2

Thus

 
ds

dθ

 2
= r2 +

 
dr

dθ

 2

or
ds

dθ
=
 
r2 +

 
dr

dθ

 2
(5)

Here positive sign is taken before the radical, since

it is assumed that s increases as θ increases so that
ds
dθ

> 0.

Corollary 1: Equation of the curve is θ = θ (r).
Then,

ds

dr
= ds

dθ
· dθ
dr
=
 
r2 +

 
dr

dθ

 2
· dθ
dr

=
 
r2

 
dθ

dr

 2
+
 
dr

dθ
· dθ
dr

 2

Thus
ds

dr
=
 
1+ r2

 
dθ

dr

 2
(6)

Corollary 2: Let φ be the angle between the tan-
gent PT at P and the radius vector OP. Then

r
dθ

dr
= tan φ.

So
ds

dr
=
 
1+
 
rdθ

dr

 2
=
 
1+ tan2 φ = secφ.

Then

cosφ = dr

ds
, sin φ = tan φ · cosφ = r

dθ

dr
· dr
ds
= r

dθ

ds
.

WORKED OUT EXAMPLES

Example 1: Find ds
dx

when y = c cosh x
c
.

Solution:
dy

dx
= c · 1

c
· sinh x

c

ds

dx
=
 
1+
 
dy

dx

 2
=
'
1+
 
sin h

x

c

 2
= cos h

x

c
.

Example 2: Find ds
dy

when ax2 = y3.

Solution: 2ax = 3y2
dy

dx
· So dx

dy
= 3y2

2ax

ds

dy
=
 
1+
 
dx

dy

 2
=
 
1+ 9

4

y4

a2x2
=
'
1+ 9

4

y

a
.

Example 3: Find ds
dt

for the curve x = et sin t ,

y = et cos t.

Solution: dx
dt
= et sin t + et cos t,

dy

dt
= et cos t −

et sin t 
ds

dt

 2
=
 
dx

dt

 2
+
 
dy

dt

 2
= e2t (sin t + cos t)2 + e2t (cos t − sin t)2

= e2t [1+ 2 sin t cos t + 1− 2 sin t cos t] = 2e2t

...
ds

dt
=
√
2 et .

Example 4: Find ds
dθ

for r = a(1− cos θ ).

Solution: dr
dθ
= +a sin θ

ds

dθ
=
 
r2 +

 
dr

dθ

 2
=
 
a2(1− cos θ )2 + a2 sin2 θ
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= a

 
1+ cos2 θ − 2 cos θ + sin2 θ

= a ·
√
2
√
1− cos θ

= 2a sin
θ

2
.

Example 5: Find ds
dr

for the curve rθ = a.

Solution: θ = a
r
, so dθ

dr
= − a

r2

ds

dr
=
 
1+ r2

 
dθ

dr

 2
=
 
1+ r2 · a

2

r4

=
 
1+ a2

r2
=
 
1+ θ2.

Example 6: For the curve

θ = cos−1
r

k
−
 
k2 − r2

r2

Show that r ds
dr

is a constant.

Solution: Differentiating

θ = cos−1
r

k
−
 
k2 − r2

r2

w.r.t. r , we get

dθ

dr
= −1 

1−  r
k

 2 · 1k − 1

2

 
r2

k2 − r2
×

× r2(−2r)− (k2 − r2)2r

r4

=− 1 
k2 − r2

+ 1 
k2 − r2

· k
2

r2

= (k2 − r2)

r2
 
k2 − r2

=
 
k2 − r2

r2

Now

ds

dr
=
 
1+
 
rdθ

dr

 2
=
 
1+ r2 · k

2 − r2

r4
= k

r

Then r ds
dr
= k = constant.

EXERCISE

1. Find ds
dx

for the curve

(i) y2 = 4ax (ii) 3ay2 = x2(a − x)

(iii) y = ln ex−1
ex+1 (iv) y = a ln

 
a2

a2−x2
 

Ans. (i)
 
1+ a

x
(ii)

 
1+ (2a−3x)2

12a(x−a) (iii) e2x+1
e2x−1

(iv) a2+x2
a2−x2

2. Find ds
dy

for the curve a2y2 = a3 − x3 at (a, 0).

Hint: dx
dy
= 2a2y

3x2
at (a, 0) is zero.

Ans. 1

3. Find ds
dx

and ds
dy

for the curve x3 + xy2 − 6y2 =
0 at (3, 3).

Hint: 3x2 + (x − 6)2yy1,+y2 = 0, At (3, 3),

y1 = dy

dx
= 2

Ans. ds
dx
=
√
5, ds

dy
=
 

5
2

4. Find ds
dx
, ds
dy

and ds
dθ

for the cycloid

x = a(θ − sin θ ), y = a(1− cos θ ).

Hint:
dy

dx
= y

.

x
. = a sin θ

a(1−cos θ ) = cot θ
2
,

dx
dy
= tan θ

2

ds

dx
=
'

2

1− cos θ
=
 
2a

y
,
ds

dy
= sec

θ

2
,

ds

dt
=
 
2a(1− cos θ ) =

 
2ay

Ans.
 

2a
y
,
 

2a
2a−y ,

√
2ay

5. Find ds
dt

for the astroid x = a cos3 t ,

y = a sin3 t.

Hint: dx
dt
= −3a cos2 t sin t,

dy

dt
= 3a sin2 t · cos t

Ans. 3a sin t · cos t
6. Determine ds

dt
for the ellipse x = a cos t,

y = b sin t.

Hint: x
. = −a sin t, y. = b cos t

Ans. a
√
1− e2 cos2 t where e = eccentricity,
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e = a2−b2
a2

7. Find ds
dθ

for (i) r = a(1+ cos θ )

(ii) r = aeθ cot α (iii) r2 sin 2θ = 2a2.

Hint: (iii) dr
dθ
= −r cot 2θ

Ans. (i) 2a cos θ
2
(ii) r cosec α (iii) r3

2a2

8. Find ds
dr

for (i) r = aθ (ii) r2 = a2 cos 2θ

Ans. (i)
√
1+ θ2 (ii)

√
1+ cot2 2θ = cosec 2θ.

2.11 CURVATURE

The shape of a plane curve c is characterized by

the degree of bentness or curvedness. A straight line

has no bending while a circle has constant bending.

Curvature of a curve is a measure of rate of change

of bentness.

Angle of contingence of the arc AB of a curve c

is the angle between the tangents at A and B to the

curve c (see Fig. 2.12).

Given two arcs of the same length, the arcwith gre-

ater angle of contingence is said to be more curved.

x

y

Average curvature of an arc AB is

kav =
4α
2
AB

= angle of contingence

length of the arc

Curvature of a curve c at a point A is denoted by
k and is given by

k = lim
B→A

kav = lim
AB→0

4α
2
AB

= lim
4S→0

4α

4S
=
    dαds
    .

Calculation of Curvature

Cartesian form Let the equation of the curve be
given in cartesian form y = f (x):

y = f (x) so tan α = dy

dx
= y1

Then α = tan−1 dy

dx
= tan−1 y1

dα

dx
= 1

1+ y21

· y2 where y2 =
d2y

dx2

we know that ds
dx
=
 
1+ y21

Thus

k = dα

ds
= (dα/dx)

(ds/dx)
= y2

(1+ y21 )
· 1 

1+ y21

... k =
     y2

(1+ y21 )
3/2

     > 0

Cartesian form when x = f (y):

k =
d2x

dy2 
1+
 
dx
dy

 2 3/2

Note: Useful when tangent is ⊥r to x-axis i.e.,
dy

dx
= ∞ or dx

dy
= 0.

Parametric form When equation of the curve is
x = x(t), y = y(t) where t is the parameter:

x
. = dx

dt
, y
. = dy

dt
so

dy

dx
=

dy
dt
dx
dt

= y
.

x
.

d2y

dx2
= d

dx

 
y
.

x
.

 
= d

dt

 
y
.

x
.

 
dt

dx
= 1

x
.

 
x
.
ÿ − ẍy

.

x
. 2

 

Substituting y1 and y2

k = |x. ÿ − ẍy
. |

(x
. 2 + y

. 2)3/2

Polar form When equation of the curve is r =
f (θ ), where r, θ are the polar coordinates given by
x = r cos θ, y = r sin θ . Then

k = |r2 + 2r21 − rr2|
(r2 + r21 )

3/2

where r1 = dr
dθ

and r2 = d2r

dθ2
.

Example: Curvature of a straight line y=mx+c.

Solution: y1 = dy

dx
= m, y2 = d2y

dx2
= 0, so k = 0

i.e., straight line has zero curvature.
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Example: Curvature of a circle of given radius r

(see Fig. 2.13).

Fig. 2.13

Solution:

kav =
angle of contingence

length of arc
= α

αr

k = curvature at any point A.

k = lim
B→A

kav = lim
B→A

1

r
= lim
2
AB→0

1

r
= 1

r
= constant

The curvature of a circle is constant and is the

reciprocal of the radius of the circle.

Implicit equation

Equation of the curve is f (x, y) = 0:

we know that
dy

dx
= − f x

fy
with fy  = 0.

and
d2y

dx2
= −

[fxxf
2
y − 2fxyfxfy + fyyf

2
x ]

f 3
y

with fy  = 0

Here fx, fy, fxx etc. are partial derivatives of f.
Substituting y1 and y2 we get

k =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

(f 2
x + f 2

y )
3
2

Definition

Radius of curvature to a curve at a point is de-
noted by R and is the reciprocal of the curvature at
that point. Thus

R = 1

k

Cartesian form y = f (x)

R = (1+ y21 )
3
2

y2

Cartesian form x = f (y)

R = [1+ (dx/dy)2]
3
2 

d2x

dy2

 
Parametric form x = x(t), y = y(t)

R = (x
. 2 + y

. 2)
3
2

|(x. ÿ − ẍy
.
)|

Polar form r = f (θ )

R = (r2 + r21 )
3
2

|r2 + 2r21 − rr2|

Implicit equation f (x, y) = 0

R =
(f 2

x + f 2
y )

3
2

|fxxf 2
y − 2fxyfxfy + fyyf 2

x |
.

WORKED OUT EXAMPLES

Radius of curvature: Cartesian form

Example 1: Find the radius of curvature y2 =
2x(3− x2) at the points where the tangents are

parallel to x-axis.

Solution: Differentiating the equation w.r.t. x,

2yy1 = 6− 6x2 = 6(1− x2) (1)

At the points where the tangents are parallel to

x-axis, y1 = 0 i.e., x = ±1 (2)

Differentiating (1). y21 + yy2 = −6x

At x = ±1, y2 = −
6x

y

Take x = 1, so that y2 = 4 or y = ±2, then
y2 = − 6

±2
Thus

R = (1+ y21 )
3
2

y2
= (1+ 0)

3
2

±3 =
    ±1

3

    = 1

3
.

Example 2: Calculate R at (a, 0) for a2y2 =
a3 − x3.
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Solution:

2a2yy1 = −3x2 so y1 = −
3x2

2a2y

At (a, 0), y1 = ∞. or
dx

dy
= 0

So consider x as the dependent variable and y as the

independent variable. i.e., x = f (y).
Differentiating a2y2 = a3 − x3 w.r.t. y, we get

2a2y = 0− 3x2
dx

dy
(1)

dx

dy
= 2a2y

3x2

At (a, 0) :
dx

dy
= 0 (2)

Differentiating (1) again w.r.t. y, we get

2a2 = −6x dx
dy
− 3x2

d2x

dy2

Using (2),

d2x

dy2
= −2

3

a2

x2

At (a, 0),
d2x

dy2
= −2

3

Then

R =

 
1+
 
dx
dy

 2 3
2

   d2x
dy2

   = (1+ 0)
3
2   − 2

3

   = 3

2
.

Example 3: Find R at (3, 3) for the implicit equa-

tion x3 + xy2 − 6y2 = 0.

Solution: Differentiating implicitly w.r.t. x,

3x2 + (x − 6) · 2yy1 + 1 · y2 = 0

At (3, 3), 27− 6 · 3y1 + 9 = 0, ...y1 = 2

Differentiating again w.r.t. x,

6x + 2yy1 + (x − 6)[2y21 + 2yy2]+ 2yy1 = 0

At (3, 3), 18+ 12+ (−3)[8+ 6y2]+ 12 = 0

... y2 = 1

Then R = (1+ 22)
3
2

1
= 5

3
2 .

Example 4: Determine the point on y = 4x − x2

where the curvature is maximum.

Solution:

y1 = 4− 2x, y2 = −2, k =
| − 2|

[1+ (4− 2x)2]
3
2

k is maximum when 1+ (4− 2x)2 is mini-

mum. The stationary point d
dx
[1+ (4− 2x)2] = 0,

2(4− 2x)(−2) = 0 i.e., x = 2. Thus curvature is

maximum at (2, 4).

EXERCISE

Find the radius of curvature of the following curves

at the indicated point:

1. x3 + y3 = 3axy at
 
3a
2
, 3a

2

 
Ans. 3a/(8

√
2)

2. y2 = 4ax at (x, y)

Ans. 2√
a
(x + a)

3
2

3. y = c ln sec( x
c
) at (x, y)

Ans. c sec(x/c)

4. x
2
3 + y

2
3 = a

2
3 at (x, y)

Hint: Use parametric equations x = a cos3 t ,

y = a sin3 t .

Ans. 3a
2
3 x

1
3 y

1
3

5. x2

a2
+ y2

b2
= 1 at (a, 0) and (0, b)

Ans. b2

a
and a2

b

6. x2y = a(x2 + y2) at (−2a, 2a)
Hint:

dy

dx
at (−2a, 2a) is∞. Treat x = f (y).

Ans. | − 2a|
7. xy2 = a3 − x3 at (a, 0)

Hint: Since
dy

dx
is∞, take x = f (y).

Ans. |−3a
2
|

8. y = c cosh(x/c) at (x, y)

Ans.
y2

c

9. xy = c2 at (x, y)

Ans. (x2 + y2)
3
2 /2xy
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10.
√
x +√y = √a at ( a

4
, a
4
)

Ans. a/
√
2

11. x
1
3 + y

1
3 = 1 at (1/8, 1/8)

Ans. 32/3

12. y2(2− x) = x3 at (1, 1)

Ans. 25/(3
√
5)

13. x3 + y3 = 2a3 at (a, a)

Ans. a/
√
2

14. Find the point of greatest curvature on the curve

y = ln x

Hint: Stationary points: dk
dx
= 1−2x2

(1+x2)
5
2

= 0.

Ans. ( 1√
2
,− 1

2
ln 2)

15. Prove that the ratio of the radii of curvature of

the curves xy = a2, x3 = 3a2y at pointswhich

have the same abscissa varies as the square root

of the ratio of the ordinates.

Hint: R1 = (x4
1
+a4)

3
2

2a2x3
1

, Radius of curvature to

the first curve xy = a2 with (x1, y1) point.
R2 at (x2, y2) on second curve x3 = 3a2y is

(x4
1
+a4)

3
2

2x1a
4 R1

R2
= a2

x21

= 1√
3

'
y1

y2
.

16. Find the point where the radius of curvature of

the curve x2y = a(x2 + a2/
√
5) is minimum.

Ans. x = a, minimum curvature is 9a/10

17. Show that R
− 2

3
1 + R

− 2
3

2 = L−
2
3 where R1 and

R2 are the radii of curvature at the extremities

of a focal chord of a parabola with latus rectum

2L.

Hint: y2 = 4ax or x = at2, y = 2at ,

Latus rectum L = 2a

ExtremitiesP (at t1) andQ(at t2) of focal chord

R = 2a(1+ t21 )
3
2 .

18. Prove that
 
2R
a

 2
3 =  y

x

 2 +  x
y

 2
where R is

the radius of curvature of the curve y =
ax/(a + x)

Hint: R = −[1+ (y/x)4]
3
2 /
  

2
a

  
y

x

 3 
.

19. Show that (R
2
3
1 + R

2
3
2 )(ab)

2
3 = a2 + b2 where

R1 and R2 are the radii of curvature at the

extremities of the conjugate diameters of an

ellipse (x2/a2)+ (y2/b2) = 1.

Hint: R = (b4x2 + a4y2)
3
2 /(a4b4).

Coordinates of the extremities of the con-

jugate diameters are (a cos θ, b sin θ ) and

(−a sin θ, b cos θ ).
20. The radius of curvature R = ds

dψ
for a curve

s = s(ψ) where ψ is the angle the tangent to

the curve makes with the x-axis. Find R for

i. catenary S = c tan ψ

Ans. c sec2 ψ

ii. cycloid S = 4a sin ψ
Ans. 4a cosψ
iii. cardioid S = 4a sin

ψ

3

Ans. 4
3
a cos

ψ

3
iv. parabola S = a ln (tanψ + secψ) +

a tanψ secψ
Ans. 2a sec3 ψ

v. S = c ln secψ
Ans. 1

c
cotψ .

WORKED OUT EXAMPLES

Radius of curvature for parametric curve

Find the radius of curvature for the following curves

in the parametric form.

Example 1: x = 6t2 − 3t4, y = 8t3.

Solution: Differentiating w.r.t. t

x
. = 12t − 12t3, ẍ = 12− 36t2, y

. = 24t2, ÿ = 48t

x
. 2 + y

. 2 = 122t2(1− t2)2 + 242t4 = 122t2(1+ t2)2

x
.
ÿ − ẍy

. = 12t(1− t2)(48t)− 12(1− 3t2)(24t2)

= 12 · 24 · t2(1+ t2)

R = (x
. 2+ y

. 2)
3
2

(x
.
ÿ− ẍy

.
)
= 123t3(1+ t2)3

12 · 24 · t2(1+ t2)
= 6t(1+ t2)2.

Example 2: x = et + e−t , y = et − e−t at t = 0.

Solution:
x
. = et − e−t , ẍ = et + e−t
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y
. = et + e−t , ÿ = et − e−t

At t = 0, x
. = 0, ẍ = 2, y

. = 2, ÿ = 0

R = (0+ 22)
3
2

| − 2 · 2| = 2.

Example 3: x = a cos t
t , y = a sin t

t .

Solution:

x
. = a[t(− sin t)− cos t · 1]

t2

y
. = a[t cos t − sin t · 1]

t2

x
. 2 + y

. 2 = (1+ t2)a2

t4

ẍ = a(−t2 cos t + 2t sin t + 2 cos t)/t3

ÿ = a(−t2 sin t − 2t cos t + 2 sin t)/t3

x
.
ÿ − ẍy

. = a2/t2

R = a3(1+ t2)
3
2

t6
· t

2

a2
= a(1+ t2)

3
2

t4
.

Example 4: x = a ln (sec t + tan t), y = a sec t .

Solution:

x
. = a

sec t + tan t
· (sec t tan t + sec2 t)

x
. = a sec t

y
. = a sec t tan t

ẍ = a sec t · tan t, ÿ= a[sec t · tan2 t + sec t · sec2 t]
ÿ = a sec t[tan2 t + sec2 t]

x
. 2 + y

. 2 = a2 sec2 t + a2 sec2 t tan2 t

= a2 sec2 t(1+ tan2 t) = a2 sec4 t

x
.
ÿ − ẍy

. = (a sec t)(a sec t)[tan2 t + sec2 t]

−(a2 sec2 t tan2 t)
= a2 sec4 t

R = (x
. 2 + y

. 2)
3
2

x
.
ÿ − ẍy

. = (a2 sec4 t)
3
2

a2 sec4 t
= a sec2 t.

EXERCISE

Find the radius of curvature of the following

parametric curves:

1. x = 1− t2, y = t − t3 at t = ±1
Ans. 2

√
2

2. x = 2t2 − t4, y = 4t3 at t = 1

Ans. 18

3. x = a(t − t3/3), y = at2

Ans. a
2
(1+ t2)2

4. x = ln t, y = 1
2
(t + t−1)

Ans. t
4
(1+ t2)2

5. Cycloid x = a(t + sin t), y = a(1− cos t)

Hint: y1 = tan t
2
, y2 = sec4 t/2

4a
.

Ans. 4a cos t
2

6. Cycloid x = t − sin t, y = 1− cos t at the

highest point of the arch

Hint: At t = π , highest point of arch.

Ans. 4

7. (a) Ellipse x = a cos t, y = b sin t , (b) circle

Ans. (a) (a2 sin2 θ + b2 cos2 θ )
3
2 /ab,

(b) a = b,R = a3

a2
= a

8. Tractrix x=a[cos t+ ln tan(t/2)], y=a sin t

Hint: y1 = tan t, y2 = (sec4 t · sin t)/a.
Ans. a cot t

9. x=3a cos t−a cos 3t, y=3a sin t−a sin 3t

Hint:

y1 = tan 2t

y2 = 1/(3a cos2 2t · sin t).

Ans. 3a sin t

10. x = 3 sin t + sin 3t, y = 3 cos t + cos 3t

Ans. 3 cot t

11. x = a(cos t + t sin t), y = a(sin t − t cos t)

Hint: x
. 2 + y

. 2 = a2t2, x
.
ÿ − ẍy

. = a2t2.

Ans. at
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12. x = a(cos t + ln tan t
2
), y = a sin t

Hint: y1 = a cos t, y2 = sin t/(a cos4 t).

Ans. a cot t

13. The tangents at two points A, B on the cycloid

x = a(t − sin t), y = a(1− cos t) are perpen-

dicular. Show that R2
1 + R2

2 = 16a2 where R1

andR2 are the radii of curvature at these points

A and B.

Hint: x
. 2+ y

. 2= 4a2 sin2 t
2
,

x
.
ÿ− ẍy

. =− 2a2 sin2 t
2
.

R = −4a sin t

2

Slope of tangent at t is cot t/2

use perpendicularity: cot
t1
2
· cot t2

2
= −1.

14. x = a cos t(1+ sin t), y = a sin t(1+ cos t)

at t = −π/4
Hint: x

. = a√
2
, y
. = a√

2
, ẍ = a(2

√
2−1)√
2

,

ÿ = a(2
√
2+1)√
2

, x
. 2 + y

. 2 = a2, x
.
ÿ − ẍy

. = a2.

Ans. a

15. x = a ln tan
 
π
4
+ θ

2

 
, y = a sec θ

Ans. a sec2 θ

16. Astroid x = a cos3 t, y = a sin3 t

Hint: x
. 2 + y

. 2 = 9a2 sin2 t cos2 t, x
.
ÿ − ẍy

. =
−9a2 sin2 t cos2 t .

Ans. | − 3a sin t cos t |.

WORKED OUT EXAMPLES

Radius of curvature for polar curve

Example 1: Find the radius of curvature r = e2θ

at θ = ln 2.

Solution: r1 = dr
dθ
= 2e2θ , r2 = d2r

dθ2
= 4e2θ

R = (r2 + r21 )
3
2

|r2 + 2r21 − rr2|
= (e4θ + 4e4θ )

3
2

(e4θ + 8e4θ − 4e4θ )
= e6θ5

3
2

e4θ5

R =
√
5e2θ =

√
5 · 4 =

√
80

or at θ = ln 2, r1 = 2e2 ln 2 = 8, r2 = 4e2 ln 2 = 16,

r = 4

R = (16+ 64)
3
2

16+ 128− 64
=
√
80.

Example 2: Show that the radius of curvature at

any point (r, θ ) on the curve r2 = a2 sec 2θ , is pro-

portional to r3.

Solution: Taking log: 2 ln r = ln a2 + ln sec 2θ .
Differentiating w.r.t. θ ,

2 · 1
r
· dr
dθ
= 0+ 1

sec 2θ
· sec 2θ · tan 2θ · 2

r1 =
dr

dθ
= r tan 2θ

so r2 =
d2r

dθ2
= tan 2θ · dr

dθ
+ r · 2 · sec2 2θ

r2 = r · tan2 2θ + 2r sec2 2θ

Then r2 + r21 = r2 + r2 tan2 2θ = r2 sec2 2θ

r2 + 2r21 − rr2 = r2 + 2 · r2 tan2 2θ
−r(r tan2 2θ + 2r sec2 2θ )

= −r2 sec2 2θ

R = (r2 sec2 2θ )
3
2

|− r2 sec2 2θ | = r sec 2θ = r · r
2

a2
= r3

a2
.

Example 3: Determine the radius of curvature

R at any point (r, θ ) on the curve rn = an sin nθ .

Deduce R for the curves (i) r = a sin θ and (ii)

r2 = a2 sin 2θ .

Solution: Taking log

n ln r = ln an + ln sin nθ

Differentiating w.r.t. θ ,

n · 1
r

dr

dθ
= 0+ 1

sin nθ
· n · cos nθ

r1 =
dr

dθ
= r cot nθ

Differentiating again w.r.t. θ ,

d2r

dθ2
= dr

dθ
· cot nθ + r · (−cosec2nθ ) · n

r2 =
d2r

dθ2
= r cot2 nθ − nrcosec2nθ
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So

r2 + 2r21 − rr2 = r2 + 2 · (r2 cot2 nθ )
−r(r cot2 nθ − nr cosec2nθ )

= r2[(1+ cot2 nθ )+ n cosec2nθ ]

= r2(1+ n) · cosec2nθ
Also

(r2 + r21 )
3
2 = [r2 + r2 cot2 nθ ]

3
2 = r3cosec3nθ

Thus

R = (r2 + r21 )
3
2

|r2 + 2r21 − rr2|
= r3cosec3nθ

r2(1+ n)cosec2nθ

= r

(1+ n)

1

sin nθ

R = r

(1+ n)
· a

n

rn
= an

(1+ n)rn−1

For n = 1: Radius of curvature of r = a sin θ is

r = a

2
= constant

For n = 2: Radius of curvature of r2 = a2 sin 2θ is

r = a2

2r
.

Example 4: Prove that at the points in which

the Archimedean spiral r = aθ intersects the

hyperbolical spiral rθ = a, their curvatures are in the

ratio 3 : 1.

Solution: For the curve r = aθ ,

r1 = a, r2 = 0

Let curvature of the curve r = aθ be k1

k1 =
r2 + 2r21 − rr2

(r2 + r21 )
3
2

= a2θ2 + 2a2 − 0

(a2θ2 + a2)
3
2

k1 =
θ2 + 2

a(θ2 + 1)
3
2

(1)

Let curvature of the curve rθ = a be k2.
Then r = a

θ
, r1 = − a

θ2
, r2 = 2a

θ3
so

k2=
 
a
θ

 2 + 2
 
− a

θ2

 2
−  a

θ

  
2a

θ3

 
  

a
θ

 2 +  − a

θ2

 2 3
2

= θ4

a(θ2+ 1)
3
2

(2)

The points of intersection of the two curves r = aθ
and r = a

θ
are given by

aθ = r = a

θ

or θ2 = 1 or θ = ±1
Now from (1) and (2)

k1|θ=±1 =
3

a2
3
2

(3)

k2|θ=±1 =
1

a2
3
2

(4)

Thus k1 and k2 are in the ratio 3 : 1.

Example 5: For the cardioid r = a(1+ cos θ )

show that the square of the radius of curvature at

any point (r, θ ) is proportional to r. Also find the

radius of curvature when θ = 0, π
4
, π
2
.

Solution: The pedal equation or p − r equation
(see Pages 2.51-2.52)

1

p2
= 1

r2
+ 1

r4

 
dr

dθ

 2
For the cardioid r = a(1+ cos θ ),

dr

dθ
= −a sin θ

So the pedal equation for cardioid is

1

p2
= 1

r2
+ 1

r4
(a2 sin2 θ ) = 1

r4
[r2 + a2 sin2 θ ]

= 1

r4
[a2(1+ cos θ )2 + a2 sin2 θ ] = 2a2

r4
(1+ cos θ )

1

p2
= 2a2

r4
· r
a
= 2a

r3

or 2ap2 = r3

Differentiating w.r.t., ‘r’,

4ap
dp

dr
= 3r2

Radius of curvature in pedal form is (see Pages 2.51-
2.52)

R = r
dr

dp
= r ·

 
4ap

3r2

 
= 4

3

a

r
p = 4

3

a

r
·
 
r3

2a

 1
2

... R = 2

3

 
(2ar)
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Thus R2 ∝ r

At θ = 0, r = 2a, so R = 2

3

√
2a ·

√
2a = 4

3
a

At θ = π

4
, r = a(1+ 1√

2
),

so R = 2

3

√
2a

 
a

 
1+ 1√

2

  1
2

At θ = π

2
, r = a, so R = 2

3

√
2a · √a = 2

√
2

3
a.

EXERCISE

Find the radius of curvature R for the following

curves at the indicated points

1. r = tan θ at θ = 3π
4

Ans.
√
5

2. r = 2 sin 3θ at θ = π
6

Ans. 1/5

3. r = 2 cos 2θ at θ = π
6

Ans. 13
√
13/58

4. r2 = a2 cos 2θ

Hint: Convert to pedal equation
dp

dr
= 3r2/a2.

R = r
dr

dp
= r

 
a2

3r2

 
= a2

3r
.

Ans. a2/3r

5. r2 cos 2θ = a2

Hint:Pedal equationp = a2/r, R = rdr
dp
= r ·

(−r
2

a2
).

Ans. r3/a2

6.
√
r cos θ

2
= √a

Hint: Rewrite r = a sec2 θ
2
.

Ans. 2r
√
r/a

7. r = aeθ cot α

Hint: Pedal equation: p = r sin α.

Ans. r cosecα

8. r(1+ cos θ ) = 2a

Hint: Pedal equation p2 = ar .

Ans. 2r
√
r/a

9. θ =
√

r2−a2
a

− cos−1 a
r

Hint: Pedal equation p2 = r2 − a2.

Ans.
√
r2 − a2

10. r = a(1− cos θ )

Aliter: Pedal equation 2ap2 = r3.

Ans. 2
√
2a
3

√
(r/a)

11. rm = am cosmθ

Ans. am/[(m+ 1)rm−1]

Deduce cases when,

i. m = −1, straight line a = r cos θ

ii. m = 2, r2 = a2 cos 2θ (Lemniscate of

Bernoulli)

iii. m = −2, r2 cos 2θ = a2 (Rectangular

hyperbola)

iv. m = 1, r = a cos θ (Circle of diameter a)

v. m = 1
2
, r = a

2
(1+ cos θ ) (Cardioid)

vi. m = − 1
2
, r(1+ cos θ ) = 2a (Parabola)

vii. m = 1
3
, Cardioid.

12. Show that 9(R2
1 + R2

2) = 16a2, where R1 and

R2 are the radii of curvature at the extremities

of the chord through the pole of the cardioid

r = a(1+ cos θ ).

Hint:

R=2
√
2a

3
r
1
2 = 2

√
2a

3
(1+ cos θ )

1
2 = 4a

3
cos

θ

2

R2=R|θ+π =
4a

3
cos

 
θ + π

2

 
= −4a

3
sin

θ

2

R1=R|θ =
4a

3
cos

θ

2
.

Pedal Equation:

Radius of Curvature for Pedal Curve

Let O be the pole and OX be the initial line (refer

Fig. 2.14). Let P (r, θ ) be any point on the curve c

whose polar equation is r = f (θ ). Let PT be the

tangent at P to the curve. Draw ON perpendicular

toPT and letON = length of the perpendicular from
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pole O to the tangent at P = p. Let φ be the angle

between the tangent PT and the radius vector OP .

Then from the right angled triangle ONP ,

Fig. 2.14

c
T

P r,( )q

x

N

O
q

p

r

f

y

sin φ = ON

OP
= p

r

... p = r sin φ (1)

Then

1

p2
= 1

r2 sin2 θ
=cosec2φ

r2
= 1+ cot2 θ

r2
= 1

r2
+ 1

r2 tan2 φ

we know that tan φ = r dθ
dr
= r

(dr/dθ )

Thus

1

p2
= 1

r2
+ 1

r2
 

r
dr/dθ

 2 = 1

r2
+ 1

r4

 
dr

dθ

 2
(2)

Pedal equation of curve c is the relation between p

and r given by (1) or (2). It is also known as p − r

equation to the curve.

Note: If the polar equation of the curve is known,

the pedal equation can be obtained by eliminat-

ing θ between r = f (θ ) and (2). Sometimes it is

more convenient to eliminate θ and φ between r =
f (θ ), tan φ = r dθ

dr
and p = r sin φ.

Radius of curvature R, for pedal curve

Let p = f (r) = r sin θ (1)

be the pedal equation and

ψ = θ + φ (2)

Differentiating (1) w.r.t. ‘r’, we get

dp

dr
= r cosφ

dφ

dr
+ sin φ

= r
dr

ds

dφ

dr
+ r

dθ

ds

since cosφ = dr
ds

and sin φ = r dθ
ds

Thus

dp

dr
= r

d

ds
(φ + θ ) = r

dψ

ds
by (2)

= r
1

R

... R = r
dr

dp
.

WORKED OUT EXAMPLES

Example 1: Find the radius of curvature at any

point (r, θ ) of the conic section L
r
= 1+ e cos θ .

Solution: Differentiating w.r.t. θ ,

− L

r2

dr

dθ
= 0− e sin θ

so
dr

dθ
= r2e sin θ

L

The pedal equation is

1

p2
= 1

r2
+ 1

r4
(
dr

dθ
)2 = 1

r2
+ 1

r4

r4e2

L2
sin2 θ

From the given conic equation, cos θ = L−r
er

, so

sin2 θ = 1− cos2 θ = 1−
 
L− r

er

 2
= e2r2− (L− r)2

e2r2

Thus

1

p2
= 1

r2
+ 1

L2

 
e2 − L2

r2
− 1+ 2L

r

 
= e2 − 1

L2
+ 2

Lr

Differentiating p w.r.t. r ,

− 2

p3
· dp
dr
= 0− 2

L

1

r2

R = Radius of curvature= r dr
dp
= r·Lr2

p3 = L( rp )
3.

Example 2: Determine R for r cos 2θ = a.
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Solution: Differentiating w.r.t. θ ,

dr

dθ
· cos 2θ − r · 2 · sin 2θ = 0

dr

dθ
= 2r tan 2θ

The pedal equation is

1

p2
= 1

r2
+ 1

r4

 
dr

dθ

 2
= 1

r2
+ 1

r4
(4r2 tan2 2θ )

= 1

r2
[1+ 4(sec2 2θ − 1)] = 1

r2

 
−3+ 4(

r

a
)2
 

since sec 2θ = r
a
from the given equation.

Thus

1

p2
= 4

a2
− 3

r2

Differentiating w.r.t. ‘r’,

− 2

p3

dp

dr
= 0− 3 · (−2)

r3

R = r
dr

dp
= r ·

 
r3

−3p3

 
=
     − r4

3p3

     .
Example 3: Find the pedal equation of the curve

r = a sec t, θ = tan t − t and find the radius of cur-

vature at any point (r, θ ).

Solution: r
a
= sec t , so cos t = a

r
or t = cos−1 a

r
.

Then tan2 t = sec2 t − 1 = r2

a2
− 1 = r2 − a2

a2

or tan t =
 
r2 − a2

a

Thus eleminating t, the polar equation is

θ = tan t − t =
 
r2 − a2

a
− cos−1

a

r
.

Differentiating θ w.r.t. r ,

dθ

dr
= 1

a
· 1
2
· 1 

r2−a2
· 2r−(−1) · 1 

1−( a
r
)2
·
 
− a

r2

 
×

r
dθ

dr
=
 
r2 − a2

a
= tan φ

So sin φ =
√

r2−a2√
a2+(r2−a2)

=
√

r2−a2
r

The pedal equation of the curve is

p = r sin φ =
 
r2 − a2

or p2 = r2 − a2

Differentiating w.r.t. r , 2p
dp

dr
= 2r or dr

dp
= d

r
.

The radius of curvature R is

R = r · dr
dp
= r · p

r
= p.

Example 4: Write the p − r equation of the polar

curve rn = an sin nθ and find the radius of curvature

to the curve.

Solution: Taking log

n ln r = n ln a + ln sin nθ

Differentiating w.r.t. θ ,

n · 1
r

dr

dθ
= 0+ 1

sin nθ
· n · cos nθ

dr

dθ
= r cot nθ

we know that

tan φ = r
dθ

dr
= r · 1

r · cot nθ = tan nθ

Thus

φ = nθ

The required p − r equation to the curve is

p = r sin φ = r sin nθ = r ·
 
rn

an

 
= rn+1

an

since sin nθ = rn

an
from the equation of curve.

Differentiating w.r.t. r ,

an · dp
dr
= (n+ 1)rn

R = r
dr

dp
= r · an

(n+ 1)rn
= an

(n+ 1)rn−1
.

Example 5: Find the pedal equation of r = aθ and

find R.

Solution:
dr

dθ
= a

so pedal equation is
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1

p2
= 1

r2
+ 1

r4

 
dr

dθ

 2
= 1

r2
+ 1

r4
(a2) = r2 + a2

r4

Thus p2 = r4

r2+a2

Differentiating w.r.t. r ,

2p
dp

dr
= (r2 + a2)4r3 − r4(2r)

(r2 + a2)

dp

dr
= r(r2 + 2a2)

(r2 + a2)
3
2

so R = r dr
dp
= (r2+a2)

3
2

(r2+2a2) .

EXERCISE

Find the pedal curve of the polar curve r = f (θ ) and

find the radius of curvature R at any point (r, θ ):

1. Ellipse x2

a2
+ y2

b2
= 1

(x = a cos θ, y = b sin θ )

Ans. Pedal equation 1

p2
= 1

a2
+ 1

b2
− r2

a2b2

R = a2b2/p3

2. Parabola: y2 = 4a(x + a) or 2a
r
= 1− cos θ

Ans. Pedal equation: p2 = ar

R = 2r
3
2 /
√
a

3. Cardioid: r = a(1+ cos θ )

Ans. Pedal equation: r3 = 2ap2

R = 2

3

√
2ar

4. Hyperbola: x2

a2
− y2

b2
= 1

Ans. Pedal equation: r2 = a2b2

p2
+ a2 − b2

R = a2b2/p3

5. Rectangular hyperbola: r2 cos 2θ = a2

Ans. Pedal equation: p = a2/r

R = r3/a2

6. Equiangular spiral: r = aeθ cot α

Ans. Pedal equation: p = r sin α

R = r cosec α

7. Lemniscate r2 = a2 cos 2θ

Ans. Pedal equation: r3 = a2p

R = a2/3r

8. x2 + y2 = 2ay

Ans. Pedal equation: r2 = 2ap

R = a

9. rm = am cosmθ

Ans. Pedal equation: rm+1 = amp

R = am/
 
(m+ 1)rm−1

 
10. Astroid: x = a cos3 t, y = a sin3 t

or x
2
3 + y

2
3 = a

2
3

with pedal equation: r2 = a2 − 3p2

Ans. R = | − 3p|.

Newton’s Method:

To Find Radius of Curvature at the Origin

Let the given curve pass through the origin O (0, 0).

Case 1: If the x-axis is tangent to the curve at O
then radius of curvature at origin is given by

R|at(0,0) = lim
x→0
y→0

 
x2

2y

 
.

Proof: Since x-axis is tangent ot the curve at 0,

y1(0) =
dy

dx
|at(0,0) = 0 (1)

Now

lim
x→0
y→0

 
x2

2y

 
= lim

 
2x

2y1

 
= lim

 
1

y2

 
= 1

y2(0)
(2)

where we have applied L’Hospital’s rule as the limit

is 0/0 indeterminate form.
Substituting y1(0) and y2(0) from (1) and (2) in

R

   
(0,0)

= [1+ y21 (0)]
3
2

y2(0)
= (1+ 0)

3
2

y2(0)
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= 1

y2(0)
= lim

x→0
y→0

 
x2

2y

 

Case 2: If the y-axis is a tangent to the curve at the
origin O then

R

   
(0,0)

= lim
x→0
y→0

 
y2

2x

 

Case 3: Both x-axis and y-axis are not tangents to

the curve y = f (x) at origin O(0, 0).
By Maclaurin’s theorem

y = f (0)+ x

1!
f1(0)+

x2

2!
f2(0)+ · · ·

f (0) = 0 since curve passes through the origin.
Then

R = (1+ y21 )
3
2

y2
= (1+ p2)

3
2

q

where p = f1(0) = y1(0) and q = f2(0) = y2(0).

Note: Tangents at the origin to a curve are obtained

by equating the lowest degree terms in the equation

of the curve to zero.

Case 4: Radius of curvature at the pole (origin)
when equation is in polar form: If the initial line is
tangent at pole then

Rat pole = lim
x→0
y→0

 
x2

2y

 
= lim

x→0
θ→0

 
r cos2 θ

2r sin θ

 

= lim
r→0
θ→0

 r
2θ

 
= lim

 
dr/dθ

2

 

Rat pole =
1

2
lim
r→0
θ→0

 
dr

dθ

 
.

WORKED OUT EXAMPLES

Example 1: Find the radius of curvature at the

origin for x4 − y4 + x3 − y3 + x2 − y2 + y = 0.

Solution: Equating to zero, the lowest term in the

equation we get y = 0 (x-axis) is a tangent to the

curve at the origin.

Divide the equation throughout by y, we get

x2 · x
2

y
− y3 + x · x

2

y
− y2 + x2

y
− y + 1 = 0

We know that lim x2

y
as x → 0 is 2R

Taking the limit as x → 0, y → 0

0 · 2R − 0+ 0 · 2R − 0+ 2R − 0+ 1 = 0

... R =
    −1

2

    .
Example 2: Determine R at (0, 0) to the curve

x3y− xy3+ 2x2y− 2xy2+ 2y2− 3x2+ 3xy− 4x= 0.

Solution: Observe that x = 0 (y-axis) is a tangent
to the curve at origin. Divide the equation throughout
by x, we get

x2y − y3 + 2xy − 2y2 + 2y2

x
− 3x + 3y − 4 = 0

As x → 0 and y → 0

0− 0+ 0− 0+ 2 · 2R − 0+ 0− 4 = 0

... R = 1.

Example 3: Calculate the radius of curvature at

origin to the curve a(y2 − x2) = x3.

Solution: Equating the lowest terms y2 − x2 to

zero, note that y = ±x are the tangents to the curve

at origin.

Substituting y = px + q x2

2
+ · · · in the given

equation

a



 
px + q

x2

2
+ · · ·

 2
− x2


 = x3

To find the unknowns p and q, equate to zero co-
efficients of x2 on both sides

ap2 − a = 0 ... p = ±1
Similarly equating to zero coefficients of x3, we get

apq = 1, q = ± 1

a

Now

R =
 
1+ y21

 3
2

y2
=
 
1+ p2

 3
2

q
= (1+ 1)

3
2

± 1
a

R =±2
√
2a.
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Example 4: Find the radius of curvature to the

curve x = at2, y = 2at at the origin.

Solution: The curve is a parabola y2 = 4ax with
y-axis as tangent at origin (0, 0).

R at origin = lim
x→0
y→0

 
y2

2x

 
= lim

t→0

 
4a2t2

2at2

 

= lim
t→0

2a = 2a.

EXERCISE

Find the radius of curvature at origin to the following

curves:

1. y4 + x3 + a(x2 + y2)− a2y = 0

Hint: y = 0 (x-axis) is tangent to curve at

origin.

Ans. a/2

2. x3 + y3 − 2x2 + 6y = 0

Hint: y = 0 is tangent to curve at origin.

Ans. 3/2

3. 2x4 + 3y4 + 4x2y + xy − y2 + 2x = 0

Hint: x = 0 (y-axis) is tangent to curve at

origin.

Ans. 1

4. y2 = x2(a + x)/(a − x)

Hint: y = ±x are tangents. p = ±1, q = ± 2
a
.

Ans.
√
2a

5. x3 − 2x2y + 3xy2 − 4y3 + 5x2 − 6xy + 7y2

−8y = 0

Hint: x-axis is tangent.

Ans. 4/5

6. y = x4 − 4x3 − 18x2

Hint: x-axis is tangent.

Ans. 1/36

7. x3 + 3x2y − 4y3 + y2 − 6x = 0

Hint: y-axis is tangent.

Ans. 3

8. 3x2y − 3xy2 + 2y3 + 3x2 − 3y2 − 9y = 0

Hint: x-axis is tangent.

Ans. 3/2

9. y2 − 3xy − 4x2 + x3 + x4y + y5 = 0

Ans. 85
√
17

2
, 5
√
2

10. xy2 = 4a2(2a − x) at vertex (2a, 0)

Hint: Put x = 2a +X, y = Y .

New equation (2a +X)Y 2 = −4a2X has

y-axis as tangent at origin.

Ans. | − a|
11. 5x3 + 7y3 + 4x2y + xy2 + 2x2 + 3xy +

y2 + 4x = 0

Ans. | − 2|
12. x3 + y3 = 3axy

Hint: Both x-axis and y-axis are tangents.

Ans. 3a/2

13. x = a(t + sin t), y = a(1− cos t)

Hint: Curve passes through origin. x-axis is
tangent to the curve at origin.

R = lim
x→0
y→0

x2

2y
= lim

θ→0

a2(0+ sin θ )2

2a(1− cos θ )
= 4a.

Ans. 4a

14. r = a sin nθ at pole

Hint: Curve passes through origin (pole)

Initial line is tangent to the curve at pole

R = lim
x→0
θ→0

 
1

2

dr

dθ

 
= lim

1

2
(na cos nθ ) = na

2
.

Ans. na
2

15. 2x4 + 4x3y + xy2 + 6y3 − 3x2 − 2xy +
y2 − 4x = 0

Hint: y-axis is tangent.

Ans. 2

16. y − x = x2 + 2xy + y2

Hint: y = x is tangent, p = 1, q = 8.

Ans. a/2.
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Radius of Curvature, Centre of Curvature

and Circle of Curvature

Let P(x, y) be any point on a curve y = f (x). Let

the tangent L at P makes an angle α with the x-axis

(see Fig. 2.15). Construct a circle such that circle is

tangent to L at P , lies on the same side of L as the

curve and has the same curvature k at P . Then this

circle is known as circle of curvature and its radius

R is known as radius of curvature and c is known as

the centre of circle of curvature with coordinates x

and y. Thus

Radius of curvature to the curve at the point P

is R = 1
k

In cartesian form

R = 1

k
= (1+ y21 )

3
2

y2
.

Centre of circle of curvature

X = x − R sin α = x − R · y1 
1+ y21

X = x − y1
(1+ y21 )

y2

Similarly

Y = y + R cos α = y + R · 1 
1+ y21

Y = y + (1+ y21 )

y2
.

The equation of the circle of curvature to the given

Fig. 2.15

Y

P

X

curve at the point P is the circle of radiusR and with
centre C(x, y) given by

(x −X)2 + (y − Y )2 = R2.

Parametric Form

Radius of curvature in parametric form is

R = 1

k
= (x

. 2 + y
. 2)

3
2

(x
.
ÿ − ẍy

.
)

Centre of circle of curvature is

X = x(t)− y
.
(x
. 2 + y

. 2)

(x
.
ÿ − ẍy

.
)

Y = y(t)+ x
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

. .

WORKED OUT EXAMPLES

Example 1: Find the centre of circle of curvature

for xy(x + y) = 2 at (1, 1).

Solution: The given curve is x2y + xy2 = 2
Differentiating w.r.t. x,

2xy + x2y1 + y2 + 2xyy1 = 0

y1 = −
(2xy + y2)

(x2 + 2xy)
, y1
  
(1,1) =

−(2+ 1)

(1+ 2)
= −1

Differentiating again w.r.t. x,

2y + 2xy1 + 2xy1 + x2y2 + 2yy1 + 2yy1

+ 2xy21 + 2xyy2 = 0

y2 =
2(y + 2xy1 + 2yy1 + xy21 )

−(2xy + x2)
, y2
  
(1,1) =

4

3

Centre of curvature

X = x − y1(1+ y21 )

y2
= 1− (−1)(1+ 1)

4/3
= 5

2

Y = y + (1+ y21 )

y2
= 1+ (1+ 1)

4/3
= 5

2

Coordinates of centre of curvature to the given curve

at (1, 1) are
 
5
2
, 5
2

 
.

Example 2: Determine the centre of curvature to

the curve in parametric form x = 3t2, y = 3t − t3.
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Solution: Differentiating x and y w.r.t. t ,

x
. = 6t, ẍ = 6, y

. = 3(1− t2), ÿ = −6t
x
. 2 + y

. 2 = 36t2 + 9(1− t2)2 = 9(t2 + 1)2

x
.
ÿ − ẍy

. = 6t(−6t)− 6(3)(1− t2) = −18(t2 + 1)

Coordinates of the centre of curvature

X = x(t)− y
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

= 3t2 − 3(1− t2)
9(t2 + 1)2

−18(t2 + 1)

X(t)= 3

2
[1+ 2t2 − t4]

Y = y + x
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

= (3t − t3)+ 6t · 9(t2 + 1)2

−18(t2 + 1)

Y = 3t − t3 − 3t(t2 + 1) = −4t3

Centre of curvature
 
3
2
(1+ 2t2 − t4),−4t3 .

EXERCISE

Find the centre of curvature of the following curve

at the indicated point:

I. Cartesian form

1. y2 = 4ax at (x, y)

Ans. (3x + 2a,−2x 3
2 /
√
a)

2. y = ex at (0,1)

Ans. (−2, 3)
3. y2 = x3 at (1, 1)

Ans.
 − 11

2
, 16

3

 
4. y = ln sec x at (π/3, ln 2)

Ans.
 
π
3
−
√
3, 1+ ln 2

 
5. y = (x2 + 9)/x at (3, 6)

Ans. (3, 15/2)

6. y = x3 − 6x2 + 3x + 1 at (1,−1)
Ans. (−36,−43/6)
7. x3 + xy2 − 6y2 = 0 at (3, 3)

Ans. (−7, 8)

8. y = c cosh(x/c) at (x, y)

Ans.

 
x − y

√
y2−c2
c

, 2y

 
9. x3 + y3 = 2 at (1, 1)

Ans.
 
1
2
, 1
2

 
10. xy = c2 at (c, c)

Ans. (2c, 2c)

11. y3 = a2x at (x, y)

Ans.
 
a4+15y4
6a2y

,
a4y+9y5

2a4

 
12. y = x4 − x2 at (0, 0)

Ans.
 
0,− 1

2

 
13. y = x/(x + 1) at (0, 0)

Ans. (1,−1)
14. y = e−x

2
at (0, 1)

Ans.
 
0, 1

2

 
15. y = x ln x at the point where tangent is

parallel to x-axis

Ans. (1/e, (e2 − 1)/e)

II. Parametric form

1. x = a(θ − sin θ ), y = a(1− cos θ )

Ans. X = a(θ + sin θ ), Y = −a(1− cos θ )

2. x = t2, y = t3

Ans. X = −t2 − 9t
4
2 , Y = 4t3 + 4t/3

3. x = 3t, y = t2 − 6 at (a, b)

Ans. X = −4a(20+ a2), Y = b + (81+ 4a2)/18

4. x = a (cos t + t sin t), y = a (sin t − t cos t)

Ans. X = a cos t, Y = a sin t

5. x = (1− at) cos t + a sin t ,

y = (1− at) sin t − a cos t

Ans. X = a sin t, Y = −a cos t .

WORKED OUT EXAMPLES

Circle of curvature

Example1: Find the circle of curvature of the curve

x + y = ax2 + by2 + cx3 at the origin.
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Solution: Differentiating the given curve

x + y = ax2 + by2 + cx3

w.r.t. ‘x’ implicitly, we get

1+ dy

dx
= 2ax + 2by

dy

dx
+ 3cx2 (1)

dy

dx
= y1 =

1− 2ax − 3cx2

2by − 1
(2)

Differentiating (1) w.r.t. x,

0+ d2y

dx2
= 2a + 2b

 
dy

dx

 2
+ 2by · d

2y

dx2
+ 6cx

d2y

dx2
= y2 = +

2a + 2by21 + 6cx

1− 2by
(3)

At origin (0, 0), y1 = −1, y2 = 2(a + b)

R = Radius of curvature = [1+ (−1)2] 32
y2

= 2
√
2

2(a + b)
=

√
2

a + b
(4)

The centre of circle of curvature is given by

X= x− y1(1+ y21 )

y2
= 0− (−1)(1+ (−1)2)

2(a+ b)
= 1

a+ b
(5)

Y = y + (1+ y21 )

y2
= 0+ (1+ (−1)2)

2(a + b)
= 1

a + b
(6)

The equation of the circle of curvature with centre
given by (5) and (6) and radius by (4) is

 
x − 1

a + b

 2
+
 
y − 1

a + b

 2
=
 √

2

a + b

 2

or (a + b)(x2 + y2) = 2(x + y).

Example 2: Determine the circle of curva-

ture of the folium x3 + y3 = 3axy at the point

P(3a/2, 3a/2).

Solution: By implicit differentiation

3x2 + 3y2y1 = 3ay + 3axy1

y1 =
ay − x2

y2 − ax

Differentiating w.r.t. x again

2x + 2yy21 + y2y2 = ay1 + ay1 + axy2

y2 =
2ay1 − 2x − 2yy21

y2 − ax

At the point P (3a/2, 3a/2)

y1 =
a · 3a

2
−
 
3a
2

 2
 
3a
2

 2
− a 3a

2

= −1

y2 =−
32

3a

R = Radius of curvature =
    [1+(−1)2] 32(−32/3a)

    
R = 3

√
2a

16
(1)

The centre of curvature

X = x − y1(1+ y21 )

y2
= 3a

2
− (−1)(2)

(−32) · 3a =
21a

16
(2)

Y = y + (1+ y21 )

y2
= 3a

2
+ 2

(−32) · 3a =
21a

16
(3)

The required circle of curvature with centre given by
(1) and (2) and radius (3) is

 
x − 21a

16

 2
+
 
y − 21a

16

 2
=
 
3
√
2a

16

 2

or (x2 + y2)− 21

8
a(x + y)+ 432

128
a2 = 0.

Example 3: Show that the parabolas y = −x2 +
x + 1, x = −y2 + y + 1 have the same circle of

curvature at the point (1, 1).

Solution: For the parabola

y = −x2 + x + 1 (1)

dy

dx
= −2x + 1,

d2y

dx2
= −2. At (1, 1), dy

dx
= −1,

d2y

dx2
= −2
R1 = Radius of curvature of parabola (1) at (1,1)

=
     [1+ (−1)2] 32

−2

     
R1 =

√
8

2
=
√
2
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Centre of circle for parabola (1) at (1, 1) is

X1 = 1− (−1) (1+ 1)

−2 = 1− 1 = 0,

Y1 = 1+ (1+ 1)

−2 = 1− 1 = 0

Thus the equation of circle of curvature for the
porabola (1) at the point (1,1) is

(x − 0)2 + (y − 0)2 = (
√
2)2 or x2 + y2 = 2 (2)

Similarly for the parabola

x = −y2 + y + 1 (3)

dx
dy
= −2y + 1, d2x

dy2
= −2 so at P(1, 1) dx

dy
= −1,

d2x

dy2
= −2
R2 = Radius of curvature for parabola (2) at (1, 1)

=
     [1+ (−1)2] 32

−2

     =
√
8

2
=
√
2

Centre of curvature for parabola (2) at (1, 1) is

X= 1− (−1)(1+ 1)

−2 = 1− 1= 0, Y = 1+ (1+ 1)

−2 = 0

So the equation of circle of curvature to the second
parabola (2) at point (1, 1) is same as (2) given by

(x − 0)2 + (y − 0)2 = (
√
2)2 or x2 + y2 = 2.

Example 4: Determine the circles of curvature at

the vertices of an ellipse with semi-axes a, b.

Solution: Equation of ellipse x2

a2
+ y2

b2
= 1

In the parametric form x = a cos t, y = b sin t
Differentiating w.r.t. the parameter ‘t’

x
. =−a sin t, ẍ = −a cos t, y

. = b cos t, ÿ = −b sin t

R = (x
. 2 + y

. 2)
3
2

|x. ÿ − ẍy
. | =

(a2 sin2 t + b2 cos2 t)
3
2

ab sin2 t + ab cos2 t

R = (a2 sin2 t + b2 cos2 t)
3
2

ab
(1)

Centre of curvature

X = x − x
. 2 + y

. 2

x
.
ÿ − ẍy

. · y.

= a cos t − b · cos t(a2 sin2 t + b2 cos2 t)

ab

X = a2b cos t + a2b cos3 t − a2b cos t − b3 cos3 t

ab

X = (a2 − b2) cos3 t

a
(2)

Similarly

Y = y + x
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

. = −(a2 − b2) sin3 t

b

The vertex A(a, 0) corresponds to t = 0.
So at A

R |t=0 =
b2

a
,X |t=0 =

a2 − b2

a
, Y |t=0 = 0

The circle of curvature at the vertex A(a, 0) is 
x − a2 − b2

a

 2
+ (y − 0)2 =

 
b2

a

 2

or x2 + y2 + 2x

 
b2 − a2

a

 
= (2b2 − a2)

Similarly the vertex B(0, b) corresponds to t = π
2

R = a2

b
,X = 0, Y = −(a2 − b2)

b

The circle of curvature at B is

(x − 0)2 +
 
y + (a2 − b2)

b

 2
=
 
a2

b

 2

or x2 + y2 + 2(a2 − b2)y

b
= (2a2 − b2)

EXERCISE

Circle of curvature

Determine the circle of curvature of the curve at the

indicated point:

1. 2xy + x + y = 4 at (1, 1)

Ans.
 
x − 5

2

 2 +  y − 5
2

 2 = 9
2

2. y2 = 12x at (3, 6) and (0, 0)

Ans. At (3, 6) : (x − 15)2 + (y − (−6))2 = (12
√
2)2

At (0, 0) : (x − 6)2 + (y − 0)2 = 62
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3.
√
x +√y = √a at (a/4, a/4)

Ans.
 
x − 3a

4

 2 +  y − 3a
4

 2 =  a√
2

 2
4. y2 = 4ax at (at2, 2at)

Ans. x2 + y2 − 6at2x − 4ax + 4at3y = 3a2t4

5. y = mx + x2

a
at (0, 0)

Ans. x2 + y2 = a(1+m2)(y −mx)

6. x3 + y3 = 2xy at (1, 1)

Ans.
 
x − 7

8

 2 +  y − 7
8

 2 =  √2
8

 2
7. xy(x + y) = 2 at (1, 1)

Ans. x2 + y2 + 5x − 5y + 8 = 0

8. y = x3 + 2x2 + x + 1 at (0, 1)

Ans. x2 + y2 + x − 3y + 2 = 0

9. y2 = 4ax at (a, 2a)

Ans. x2 + y2 − 10ax + 4ay = 3a2

10. Determine the values of a, b, c if y = a +
bx + cx2 and xy = 12 have same circle of cur-

vature at the point (3, 4)

Ans. a = −12, b = −4, c = 4/9.

2.12 EVOLUTE

As a point P moves along a given curve c1, the centre

of curvature corresponding to P describes another

curve c2. The curve c2 is known as theEvolute of the

given curve c1 and c1 is known as the Involute of c2.

Thus Evolute of a curve is the locus of the centres

of curvature corresponding to points on the curve c.

Determination of Evolute

I. Cartesian form Let y = f (x) be the equation
of the given curve c in cartesian form. Then the
coordinates of the centre of curvature given by

X = x − y1(1+ y21 )/y2 (1)

Y = y(x)+ (1+ y21 )/y2 (2)

form the parametric equations of the evolute of C

expressed in terms of the parameter x.

In many cases, the parameter x can be eliminated

between (1) and (2). This results in a relation be-

tween X and Y of the form f (X, Y ) = 0 which is

the equation of the required evolute.

II. Parametric form Let the equation of the curve
be in parametric form x = x(t), y = y(t) where t is
the parameter. Then the parametric equations of the
evolute are

X(t) = x(t)− y
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

Y (t) = y(t)+ x
.
(x
. + y

. 2)

x
.
ÿ − ẍy

.

where · denotes differentiation w.r.t. ‘t’.

Result 1: The length of the arc of the evoluteE be-

tween two pointsP1 andP2 equals toR1 − R2 where

R1 and R2 are the radius of curvatures of the given

curve c (involute) at the two points on c correspond-

ing to P1 and P2.

Result 2: Normal to a curve c (involute) is the

tangent to its evolute.

WORKED OUT EXAMPLES

Example 1: Determine the parametric equations

for the evolute of the curve x = t4

4
, y = t5

5
.

Solution: x
. = dx

dt
= t3, ẍ = 3t2, y

. = t4, ÿ = 4t3.
The coordinates of the centre of curvature in
parametric form is

X = x(t)− y
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

= t4

4
− t4(t6 + t8)

4t6 − 3t6
= −3

4
t4 − t6 (1)

Y = y(t)+ x
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

= t5

5
+ t3(t6 + t8)

4t6 − 3t6
= 6

5
t5 + t3 (2)

Note that the parameter t can not be eliminated

between (1) and (2). Therefore the equation of the
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required evolute in the parametric equations X =
x(t) and Y = y(t) are given by (1) and (2).

Example 2: Find the evolute of the hyperbola
x2

a2
− y2

b2
= 1. Deduce the evolute of a rectangular

hyperbola.

Solution: Differentiating the equation of hyperbola

x2

a2
− y2

b2
= 1 (1)

w.r.t. x, we get

2x

a2
− 2y y1

b2
= 0

or y1 =
dy

dx
= b2

a2

x

y
(2)

so

y2= y  = d2y

dx2
= b2

a4y3
(a2y2 − b2x2)=− b4

a2

1

y3
(3)

since from (1)

y2

b2
= x2 − a2

a2
or a2y2 − b2x2 = −b2a2

Now the centre of curvature is

X = x −
 
b2

a2

x

y

 
·
 
1+ b4x2

a4y2

 
·
 
a2y3

−b4

 

X = x

 
b2a4 + a2b2x2 − a4b2 + b4x2

b2a4

 

= x3(b2 + a2)

a4
(4)

Similarly,

Y = y +
 
1+ b4x2

a4y2

 
·
 
−a2y3
b4

 

Y = y

 
−b4a2 + a4y2 + b4x2

−b4a2

 
= −y3(a2 + b2)

b4
(5)

From (4) : x2 =
 

a4X

a2 + b2

 2
3

(6)

From (5) : y2 =
 

b4Y

a2 + b2

 2
3

(7)

Then

1 = x2

a2
− y2

b2
= 1

a2

 
a4X

a2 + b2

 2
3

− 1

b2

 
b4Y

a2 + b2

 2
3

Thus the required envelope is

(aX)
2
3 − (bY )

2
3 = (a2 + b2)

2
3

For a rectangular hyperbola with a = b the envelope
reduces to

X
2
3 − Y

2
3 = (2a)

2
3

Example 3: Show that the evolute of the deltoid
x = 2 cos t + cos 2t, y = 2 sin t − sin 2t is another
deltoid three times the size of the given deltoid and
has the equations

x = 3(2 cos t − cos 2t), y = 3(2 sin t + sin 2t)

Solution: Differentiating x and y w.r.t. ‘t’,

x
. =−2 sin t − 2 sin 2t, ẍ = −2 cos t − 4 cos 2t

y
. =−2 cos t − 2 cos 2t, ÿ = −2 sin t + 4 sin 2t

so x
. 2 + y

. 2 = 4(sin t + sin 2t)2 + 4(cos t − cos 2t)2

= 4(sin2 t + sin2 2t + 2 sin t · sin 2t)
+4(cos2 t + cos2 2t − 2 cos t · cos 2t)

x
. 2 + y

. 2 = 8(1+ sin t · sin 2t − cos t · cos 2t)
Also

x
.
ÿ − y

.
ẍ =−2(sin t + sin 2t)(−2 sin t + 4 sin 2t)

−2(cos t − cos 2t)(−2 cos t − 4 cos 2t)

= 4[sin2 t − 2 sin2 2t − sin t · sin 2t]
+4[cos2 t − 2 cos2 2t + cos t · cos 2t]

x
.
ÿ − y

.
ẍ =−4[1+ sin t · sin 2t − cos t · cos 2t]

so that (x
. 2 + y

. 2)/(x
.
ÿ − y

.
ẍ) = −2

Now the coordinates of the centre of curvature are

X = x(t)− y
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

X = (2 cos t + cos 2t)− (2 cos t − 2 cos 2t)(−2)
X = 3(2 cos t − cos 2t)

Similarly

Y = y(t)+ x
.
(x
. 2 + y

. 2)

x
.
ÿ − ẍy

.

= (2 sin t − sin 2t)+ (−2 sin t − 2 sin 2t)(−2)
Y = 3(2 sin t + 2 sin 2t)
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Thus the evolute given by X(t) and Y (t) is the

required deltoid.

Example 4: Calculate the total length of the evolute

of the astroid x
2
3 + y

2
3 = a

2
3 .

Solution: x = a cos3 t, y = a sin3 t are the para-
metric equations of the given astroid (also known as
four-cusped hypo-cycloid (refer Fig. 2.16).

y1 =
dy

dx
= dy/dt

dx/dt
= 3a sin2 cos t

−3a cos2 t · sin t = − tan t

y2 =
d2y

dx2
= d

dt
(− tan t)

dt

dx

= − sec2 t × 1

−3a cos2 t · sin t
so y2 =

1

3a cos4 t · sin t
Now the centre of curvature (X, Y ) are

X = x − y1
(1+ y21 )

y2

= a cos3 t + tan t(1+ tan2 t)3a cos4 t sin t

X = a cos3 t + 3a sin2 t cos t

Similarly

Y = y + 1+ y21

y2
= a sin3 t + 3a cos2 t · sin t

To eliminate the parameter t , consider

(X + Y )
2
3 + (X − Y )

2
3

= a
2
3

 
(cos t + sin t)2 + (cos t − sin t)2

 
Thus the required evolute for the astroid is given by

(X + Y )
2
3 + (X − Y )

2
3 = 2a

2
3

The radius of curvature R at any point of the given
astroid is

R = (1+ y21 )
3
2

y2

= (1+ tan2 t)
3
2 · 3a cos4 t · sin t = 3a

2
sin 2t

Total length of the evolute = L = 8 times the

length of arc of the evolute AB in the 1st quadrant.

Radius of curvature of the astroid at the pointAwith

t = 0 is R1 = 3a
2
· sin 2.0 = 0.

Fig. 2.16

Radius of curvature atB
 
with t = π

4

 
isR2 = 3a

2
.

Since the length of the arc of the evolute between two

points is the difference between the radii of curva-

tures of the curve at the corresponding points, the

length of the arc AB of the evolute = R2 − R1 =
3a
2
− 0 = 3a

2
.

Thus the total length of the evolute= 8· 3a
2
= 12a.

Example 5: Show that R2
1 + R2

2 = constant if R1

and R2 are the radii of curvatures at the correspond-

ing points of a cycloid and its evolute.

Solution: Consider a cycloid

x = a(t + sin t), y = −a(1− cos t) (1)

x
. = a(1+ cos t), y

. = −a sin t

y1 =
y
.

x
. = −

a sin t

a(1+ cos t)
= −−2 sin

t
2
· cos t

2

2 · cos2 t
2

= − tan
t

2

y2 =− sec2
t

2
· 1
2
· 1

a(1+ cos t)
= −1

2

sec2 t
2

2 · cos2 t
2

y2 =
−1

4a cos4 t
2

The centre of curvature of the given cycloid is

X = x −
 
− tan

t

2

 
·
 
1+ tan2

t

2

 
·
 
−4a cos4 t

2

 

X = a(t + sin t)− 2a · sin 2 t
2
= a(t − sin t)

Similarly

Y = y +
 
1+ tan2

t

2

  
−4a cos4

t

2
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=−a(1− cos t)− 4a ·
 
1+ cos t

2

 
Y =−a(3+ cos t)

Y + 2a =−a(1+ cos t)

Evolute of the given cycloid (1) is

X = a(t − sin t), Y = −a(3+ cos t) (2)

R1 = Radius of curvature of the cycloid (1)

R1 =
 
1+ tan2

θ

2

 3
2

·
 
−4a · cos4 t

2

 
= −4a cos

t

2

(3)

R2 = Radius of curvature of the evolute (2)

X
. = a(1− cos t), Y

. = a sin t

Y1 =
dY

dX
= Y

.

X
. = a sin t

a(1− cos t)

= 2 sin t
2
· cos t

2

2 · sin2 t
2

= cot
t

2

Y2 =
d2Y

dX2
= d

dt

 
cot

t

2

 
· dt
dX

=−cosec2 t
2
· 1
2
· 1

a(1− cos t)

Y2 =−
1

2a

cosec2 t
2

2 · sin2 t
2

= −1
4a sin4 t

2

... R2 =
 
1+ cot2

t

2

 3
2

·
 
−4a sin4 t

2

 
= −4a sin

t

2
.

(4)

From (3) and (4)

R2
1 + R2

2 = 16a cos2
t

2
+ 16a sin2

t

2
= 16a = constant.

EXERCISE

Find the evolute of the following curves:

1. y = x3

Ans. X(x) = x
2
− 9

2
x5, Y (x) = 5

2
x3 − 1

6x

2. y = ex

Ans. X(x) = x − 1− e2x, Y (x) = 2e2x + e−x

3. Cycloid x = a(t − sin t), y = a(1− cos t)

Hint: y1 = cot(t/2), y2 = 1/(4a sin4(t/2)).

Ans. X(t) = a(t + sin t), Y (t) = −a(1− cos t)

4. Cycloid x = a(t + sin t), y = a(1+ cos t)

Ans. X(t) = a(t − sin t), Y (t) = −a(1+ cos t)

5. Cardioid x=2 cos t± cos 2t, y=2 sin t± sin 2t

Hint:
x
. 2+y. 2
x
.
ÿ−ẍy. =

8(1−cos t)
12(1−cos t) (for − sign).

Ans. Cardioid X = 1
3
(2 cos t ∓ cos 2t),

Y = 1
3
(2 sin t ∓ sin 2t)

6. Nephroid x = 3 cos t + cos 3t ,

y = 3 sin t − sin 3t

Hint: y1 = +12 sin2 t ·cos t
−12 cos2 t ·sin t = − tan t ,

y2 = −1/ (12 cos4 t · sin t)
Ans. Nephroid X = 2(3 cos t − cos 3t),

Y = 2(3 sin t + sin 3t)

Note: In the above problems from 1 to 6 it

is not possible to eliminate the parameter t

between X and Y . Therefore the equation of

the evolute is given in the parametric form

X = X(t), Y = Y (t).

7. Show that the evolute of the curve

x = a(cos t + t sin t), y = a(sin t − t cos t)

is a circle x2 + y2 = a2.

Hint: y1 = tan t, y2 = 1/(at cos3 t).

Find the evolute of the following curves:

8. y2 = 4ax or in the parametric form

x = a cot2 t, y = 2a cot t

Ans. 27aY 2 = 4(X − 2a)3

9. x2

a2
+ y2

b2
= 1

Hint: y1 = −b cot t, y2 = −b/(a2 sin3 t)
Ans. (aX)

2
3 + (bY )

2
3 = (a2 − b2)

2
3

10. xy = c2/2

Ans. (X + Y )
2
3 − (X − Y )

2
3 = 2C

2
3

11. Calculate the length of the arc of the evolute

of the parabola y2 = 4ax which is intercepted

by the parabola.
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Hint: Evolute is 27ay2 = 4(x − 2a3). Centre

of curvature at any point (x, y) on parabola

is (3x + 2a,−y3/4a2). Points of intersection
of parabola and evolute are B(8a,−4

√
2a)

and C(8a, 4
√
2a). Length of evolute =

2(arc AC) = 2(R2 − R1) = 2(6
√
3a − 2a)

Ans. 4a(3
√
3− 1)

12. Prove that the whole length of the evolute of

the ellipse x2

a2
+ y2

b2
= 1 is 4

 
a2

b
− b2

a

 
Hint: Radius of curvature

R = (a2 sin2 t+b2 cos2 t)
3
2

ab
. Length of evolute of

ellipse = 4(R2 − R1) where R2, R1 are the

radii of curvature at t = 0, and t = π/2.

2.13 ENVELOPES

One-parameter Family of Curves

Let f (x, y, α) be a function of the three independent

variables x, y and α. For a particular given value of

α, the equation

f (x, y, α) = 0 (1)

represents a plane curve in the xy-plane. Thus the

one-parameter family of curves is the totality of all

the curves having one common property obtained

from (1) by assigning different values to α. The

variable α is known as the parameter and the equa-

tion (1) f (x, y, α) = 0 represents a one-parameter

family (or system or group) of curves.

Example: y = mx + 6 represents a family of

straight lines all passing through the point (0, 6) but

having different slopes assigned by the parameterm.

Example: (x − a)2 + y2 = 4 represents a family

of circles all with radius 2 but with different

centers lying on x-axis for different values of the

parameter a.

In a similar way, a two-parameter family of curves

is represented by the equation f (x, y, α, β) = 0

where α, β are the two parameters.

Example: Family of concentric and coaxial el-

lipses given by x2

a2
+ y2

b2
=1witha, b as the parameters.

Note: If the two parameters α, β are connected by

a relation, then the two-parameter family reduces to

a one-parameter family of curves.

Envelope E of a given family of curves c is a curve

which touches every member of the family of curves

c and at each point of the envelope E is touched by

some member of the family of curves c.

Example: The x-axis y = 0 is the envelope of the

family of semicubical parabolas y2 − (x + b)3 = 0

with b as the parameter (see Fig. 2.17).

Fig. 2.17

Example: The two lines x = a and x = −a are the
two envelopes to the family of circles

x2 + (y − b)2 = a2

with centres on y-axis and of given radius a. Here b

is the parameter (see Fig. 2.18).

Fig. 2.18

Example: The family of circles x2+(y−b)2=b2
with centres lying on y-axis, have no envelope (refer

Fig. 2.19).

Thus a family of curves may have no envelope or

unique envelope or several envelopes.

Envelope may be defined in a rigorous way as the

locus of the limiting position of point of intersection

of one member of the family with a neighbouring

member as the later tends to the former.



2.66 HIGHER ENGINEERING MATHEMATICS—II

Fig. 2.19

Method of Obtaining Envelope

I. Envelope is obtained generally by eliminating
the parameter α between the equation of the
given family curves

f (x, y, α) = 0 (1)

and
∂f

∂α
= fα(x, y, α) = 0 (2)

where
∂f

∂α
is the partial derivative of f w.r.t. α.

II. In case α can not be eliminated between (1) and
(2) then solve (1) and (2) for x and y in terms of
α. Then the envelope is given in the parametric
form by the equations

x = x(α) and y = y(α)

III. If the equation (1) is a quadratic in the parameter

α or quadratic in some parameter λ which is

a function of α, then the envelope is given by

discriminant equated to zero.

Suppose f (x, y, α) = 0 is rewritten as a

quadratic equation

Aλ2 + Bλ+ C = 0 (3)

where A,B,C are functions of x, y while λ is

either α or function of α. Differentiating (3)

w.r.t. λ,

2Aλ+ B = 0 or λ = − B

2A
(4)

Eliminating λ from (3) by using (4) we get the
equation of the required envelope as

A

 
− B

2A

 2
+ B

 
− B

2A

 
+ C = 0

i.e., B2 − 4AC = discriminant = 0

IV. Envelope of the family of normals to a given

curve C is the evolute of the curve C.

V. For a given two parameter family of curves

f (x, y, α, β) = 0 (5)

with a given relation g(α, β) = 0 between the

parameters α, β, (5) can be reduced to a one

parameter family by elimination of one of the

parameters say β in terms of α by using the

given relation g(α, β). Then proceed as in I.

WORKED OUT EXAMPLES

Example 1: Find the envelope of the one parame-

ter family of curves y = mx + amp where m is the

parameter and a, p are constants.

Solution: Differentiate the given curves

y = mx + amp (1)

with respect to the parameter ‘m’

O = x + apmp−1

solving m=
 
− x

pa

 1
(p−1)

(2)

using (2) eliminate m from (1)

y =
 −x
pa

 1
(p−1)

· x + a

 −x
pa

 p
(p−1)

y(p−1) =
 −x
pa

 
· x(p−1) + a(p−1) ·

 −x
pa

 p
or appyp−1 =−xp · pp−1 + (−x)p (3)

(3) is the equation of the required envelope of (1).

Example 2: Show that the family of straight lines

2y − 4x + α = 0 has no envelope, where α being

the parameter.

Solution: Differentiating the given equation w.r.t.

‘α’ we get 0+ 0+ 1 = 0 which is a contradic-

tion. Note that the given family of straight lines

y = 2x − α
2

are all parallel with common slope
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m = 2. Therefore no curve (envelope) exists which

touches each member of this parallel straight lines.

Example 3: Determine the envelope of

x sin t − y cos t = at (1)

where t is the parameter.

Solution: Differentiating (1) w.r.t. ‘t’, we get

x cos t + y sin t = a (2)

As ‘t’ the parameter can not be eliminated between
(1) and (2). Solve (1) and (2), for x and y in terms of
t . For this, multiply (1) by sin t and (2) by cos t

x sin2 t − y sin t cos t = at sin t

x cos2 t + y sin t cos t = a cos t

Adding, x(t)= a(t sin t+ cos t). Similarly multiply-
ing (1) by cos t and (2) by sin t and subtracting, we
get

y(t) = a(sin t − t cos t).

Example 4: (Leibnitz’s problem) calculate the en-

velope of family of circles whose centres lie on the

x-axis and radii are proportional to the abscissa of

the centre.

Solution: Let (b, 0) be the centre of any one of
the family of circles with b as the parameter. Then
the equation of the family of circles with centres on
x-axis and radius proportional to the abscissa of the
centre is

(x − b)2 + y2 = ab

where a is the proportionality constant.
Differentiating the above equation w.r.t. ‘b’,

−2(x − b)+ 0 = a ... b = x + a

2

Eliminating the parameter b 
−a

2

 2
+ y2 = a

 
x + a

2

 
or y2 = a

 
x + a

4

 
The required envelope is the parabola.

Example 5: Prove that every member of the fam-

ily of parabolas given by y2 = 4b(x − b) with b as

the parameter is touched by one or the other of the

straight lines y = ±x.
Solution: Differentiating

y2 = 4b(x − b)

w.r.t. ‘b’, we get

0= 4x − 8b

b = x

2

Substituting b in the given equation

y2 = 4
 x
2

  
x − x

2

 
= x2

The required envelopes are the straight lines y = ±x
which touch every parabola of the given family.

Example 6: Determine the envelope of the two
parameter family of parabolas'

x

a
+
'
y

b
= 1

where the two parameters a and b are connected by

the relation a + b = c where c is a given constant.

Solution: Using the given relation

a + b = c

eliminate b = c − a from the given family'
x

a
+
'

y

c − a
= 1 (1)

which is now a one-parameter family of parabolas

with a as the parameter.

Differentiating (1) w.r.t. ‘a’,

√
x ·
 
−1

2

 
1

a
3
2

+√y ·
 
−1

2

 

× 1

(c − a)
3
2

(−1) = 0

 
c − a

a

 3
2

=
 y
x

 1
2

c

a
= x

1
3 + y

1
3

x
1
3

or a = cx
1
3

x
1
3 + y

1
3

(2)

Substituting (2) in (1), we get the required envelope
as

 
x · x

1
3 + y

1
3

cx
1
3

 1
2

+


y ·

1 
c − cx

1
3

x
1
3 +y

1
3

 



1
2

= 1
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x

2
3

 
x

1
3 + y

1
3

  1
2 +
 
y

2
3

 
x

1
3 + y

1
3

  1
2 = c

1
2

or
 
x

1
3 + y

1
3

   
x

2
3

 1
2 +
 
y

2
3

 1
2

 
= c

1
2

 
x

1
3 + y

1
3

 3
2 = c

1
2

Thus the envelope is the astroid given by

x
1
3 + y

1
3 = c

1
3 .

Example 7: If a2 + b2 = c show that the envelopes

of the family of ellipses

x2

a2
+ y2

b2
= 1 (1)

with a, b as parameters are the straight lines

±x ± y = √c.

Solution: Unlike the previous problem 6, where

one parameter b is eliminated in terms of the other

parameter a, in this problem treat b as a function of

a. Thus differentiating equation of ellipses (1) w.r.t.

‘a’, we get

−2x2

a3
− 2y2

b3
· db
da
= 0 (2)

Differentiating the given relation

a2 + b2 = c (3)

w.r.t. ‘a’, we have

2a + 2b
db

da
= 0 (4)

or
db

da
= −a

b
(5)

Substituting (5) in (2)

x2

a4
= y2

b4

Rewriting

(x2/a2)

a2
= (y2/b2)

b2
= (x2/a2)+ (y2/b2)

(a2 + b2)
= 1

c

where equations (1) and (3) are used.

...
x2

a4
= 1

c
and

y2

b4
= 1

c

or a2 = ±√cx, b2 = ±√cy

Using (3) again

c = a2 + b2 = ±√cx ±√cy

so the required envelopes are

± x ± y = √c.

Example 8: Find the envelope of the family of
circles passing through the origin and with their
centres lying on the ellipse (in Fig. 2.20)

x2

a2
+ y2

b2
= 1

Fig. 2.20

O

P

Solution: Any point P (x, y) lying on the given
ellipse in the parametric form is P (a cos t, b sin t)
with t as the parameter. Since the family of circles
pass through the origin O(0, 0) and have their cen-
tres as a point P (x, y) on the ellipse, the equation
of such family of circles is given by (with x, y as
general point)

(x − a cos t)2 + (y − b sin t)2 = (radius)2 = (OP )2

= (a cos t − 0)2 + (b sin t − 0)2 (1)

Differentiating (1) w.r.t. the parameter ‘t’

2(x − a cos t)(+a sin t)+ 2(y − b sin t)(−b cos t)

= 2a2 · cos t(− sin t)+ 2b2 sin t · cos t

Dividing throughout by sin t · cos t

ax

cos t
− a2 − by

sin t
+ b2 = b2 − a2

so tan t = by

ax
(refer Fig. 2.21)
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Fig. 2.21

Then

sin t = by 
a2x2 + b2y2

= by

h
(2)

and

cos t = ax 
a2x2 + b2y2

= ax

h
(3)

where h=
 
a2x2 + b2y2

using (2) and (3) eliminate the parameter ‘t’ from (1)

 
x − a · ax

h

 2
+
 
y − b · by

h

 2

= a2 ·
 ax
h

 2
+ b2

 
by

h

 2
[x2h2 + a4x2 − 2a2x2h]+ [y2h2 + b4y2 − 2b2y2h]

= a4x2 + b4y2

(x2 + y2)(h2) = 2h(a2x2 + b2y2) = 2h · h2

so x2 + y2 = 2h = 2(a2x2 + b2y2)
1
2

Thus the required envelope is

(x2 + y2)2 = 4(a2x2 + b2y2).

Example 9: Determine the evolute of the hyperbola
x2

a2
− y2

b2
= 1.

Solution: We know that the evolute of a curve c is

the envelope of the family of normals to the given

curve c.
LetP (a cosh t, b sinh t) be any point on the given

hyperbola. Then

dx

dt
= x

. = d

dt
(a cosh t) = a sinh t, y

. = b cosh t so

dy

dx
= y

.

x
. =

a cosh t

a sinh t
= b

a
coth t

Thus the equation to (any) normal to hyperbola at a
point P is

(y − b sinh t)= −a
b coth t

(x − a cosh t) (1)

or
by

sinh t
− b2 = − ax

cosh t
+ a2 (2)

Differentiating (2) w.r.t. the parameter ‘t’, we get

−by cosh t

sinh t2
−O =−ax · sinh t

cosh2 t
+O

tanh t =−
 
by

ax

 1
3

Then

sinh t = ∓ (by)
1
3

h
and cosh t = ± (ax)

1
3

h
(3)

where h=
 
(ax)

2
3 − (by)

2
3

Using (3) eliminate ‘t’ from (2). Thus

by

−(by) 13
· h+ ax

(ax)
1
3

· h = a2 + b2

 
(ax)

2
3 − (by)

2
3

  
(ax)

2
3 − (by)

2
3

 1
2 = a2 + b2

The required envelope of the normals to the given
hyperbola

(ax)
2
3 − (by)

2
3 = (a2 + b2)

2
3

is the evolute of the hyperbola.

Example 10: Find the envelope of

x sec2 θ + y cosec2θ = a

where θ is the parameter.

Solution: The given equation is rewritten as

x(1+ tan2 θ )+ y(1+ cot2 θ ) = a

or x · tan4 θ + (x + y − a) tan2 θ + y = 0

which is a quadratic equation in the parameter
λ = tan2 θ . Therefore the required envelope is given
by discriminant = B2 − 4AC = 0

i.e., (x + y − a)2 − 4(x)(y) = 0

The envelope is

(x − y)2 − 2ax − 2ay + a2 = 0
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Example 11: Show that the envelope of the fam-

ily of circles described on the double ordinates of

the ellipse x2

a2
+ y2

b2
= 1 as diameters, is the ellipse

x2

a2+b2 +
y2

b2
= 1.

Solution: The double ordinates on the ellipse

x2

a2
+ y2

b2
= 1

are (a cos t, b sin t) and (a cos t,−b sin t) with ‘t’
as the parameter. The equation of the family of circles
described on the double ordinates as diameter is

(x− a cos t)(x− a cos t)+ (y− b sin t)(y+ b sin t)= 0.

[Note: (x − x1)(x − x2)+ (y − y1) (y − y2) = 0 is

equation of circle]
Rewriting the equation

x2 + y2 − 2ax cos t + a2 cos2 t − b2 sin2 t = 0

or

(a2 + b2) cos2 t − 2ax · cos t + (x2 + y2 − b2) = 0

which is a quadratic in the parameter λ = cos t .
Therefore the envelope to this family of circle is
B2 − 4AC = 0

i.e., (−2ax)2 − 4(a2 + b2)(x2 + y2 − b2) = 0

a2x2 = (a2x2 + b2x2)+ (a2 + b2)y2 − b2(a2 + b2)

Thus the envelope is the ellipse

x2

a2 + b2
+ y2

b2
= 1.

obtained by dividing throughout by b2(a2 + b2).

Example 12: Find the envelope of the family of

straight lines drawn through the extremities of and

at right angles to the radii vectors of the limacon

r = a + b cos θ (see Fig. 2.22)

Fig. 2.22

O

P

Q

Solution: Let P (L, α) be any point on the limacon

r = a + b cos θ (1)

so L= a + b cosα (2)

since P lies on (1). Let Q(r, θ ) be any point on the
line PQ, which is drawn through the extremity P of
the radius vectorOP and is at right angles toOP i.e.,
 OPQ = 90◦. The problem is to find the envelope
of the family of straight lines PQ. From the right
angled triangle OPQ,

cos(θ − α)= L

r

or L= r cos(θ − α) (3)

Thus the equation of line PQ is (3), with L and α as

parameters. Eliminate L, using (2) and (3).

a + b cosα = L = r cos(θ − α). (4)

So (4) is the equation of the family of straight lines

passing through extremity of and perpendicular to

the radius vectors. In (4) α is the only parameter.
Differentiating (4) w.r.t. ‘α’, we get

0+ b(−1) sin α = −r sin(θ − α) · (−1)

Solving for α

tan α = r sin θ

r cos θ − b
(5)

Let h=
 
(r sin θ )2 + (r cos θ − b)2 (6)

h=
 
r2 sin2 θ + r2 cos2 θ + b2 − 2rb cos θ

=
 
r2 − 2rb cos θ + b2

Then cosα = r cos θ − b

h
(7)

Rewrite (4) as

a

cosα
+ b = r cos θ + r sin θ · tan α. (8)

Eliminate the parameter ‘α’ from (8) using (5) and
(7)

a ·
 

h

r cos θ − b

 
+ b = r cos θ + r sin θ

 
r sin θ

r cos θ − b

 

ah= (r cos θ − b)2 + r2 sin2 θ

ah= r2 − 2rb cos θ + b2 = h2

a = h =
 
r2 − 2rb cos θ + b2
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Thus the required envelope is obtained by squaring

r2 − 2b cos θ + (b2 − a2) = 0.

Example 13: Find the envelope of the system of

straight lines 2y − 3tx + at3 = 0 where t is the pa-

rameter. Find the coordinates of the point of contact

of the envelope and the particular member of the

system when t = 2.

Solution: Differentiating the given system

2y − 3tx + at3 = 0 (1)

w.r.t. ‘t’, we get

0− 3x + 3at2 = 0 (2)

Multiplying (2) by t and subtracting from (1) we get

t = y
x . Substituting this value of t in (1) we get the

required envelope as

2y − 3x
 y
x

 
+ a

y3

x3
= 0

or ay2 = x3 (3)

From (2) x = at2

For t = 2, x = a(2)2 = 4a (4)

Substituting x in (3)

ay2 = 64a3 ... y = 8a

Thus the point of contact of the envelope with the

given family when t = 2 is (x = 4a, y = 8a).

EXERCISE

Find the envelope of the following family of curves

with m as the parameter:

1. y = mx + a
m

Ans. parabola y2 = 4ax

2. y = mx +
√
1+m2

Ans. circle x2 + y2 = 1

3. y = mx +
√
a2m2 + b2

Ans. ellipse x2

a2
+ y2

b2
= 1

4. y = mx + am3

Ans. 8x3 + 27ay2 = 0

5. y = mx − 2am− am3

Ans. 27ay2 = 4(x − 2a)3

Determine the envelope of following family of

curves with t as the parameter:

6. x cos t − y cot t = c

Ans. x2 − y2 = c2

7. x cosn t + y · sinn t = c

Ans. x
2

(2−n) + y
2

(2−n) = c
2

(2−n)

8. x cos t + y sin t = c sin t cos t

Ans. x
2
3 + y

2
3 = a

2
3

9. x
a
cos t + y

b
sin t = 1

Ans. x2

a2
+ y2

b2
= 1

10. ax
cos t

+ by

sin t
= a2 − b2

Ans. (ax)
2
3 + (by)

2
3 = (a2 − b2)

2
3

11. x tan t + y sec t = c

Ans. y2 = a2 + x2

12. a2 cos t
x − b2 sin t

y = c

Ans. a4

x2
+ b4

y2
= c2

13. Concentric circles of radius α

Hint: Equation x2 + y2 = α2, Differentiating

2α = 0, x2 + y2 = 0⇒ x = 0, y = 0 an iso-

lated point.

Ans. No envelope

14. Show that the envelope of the family of circles

which always pass through the vertex of the

parabola y2 = 4ax and with centres of circles

lying on the parabola is a cissoid x3 + y2(x +
2a) = 0.

Hint: Vertex of parabola is origin (0, 0)

centre of circle (−f,−g) lies on parabola, so

f 2 = −4ag or g = −f 2/4a.

Equation of circle is x2+ y2+ 2gx+ 2fy= 0

or x2 + y2 − f 2

2a
x + 2fy = 0 which is a

quadratic in the parameter f : xf 2 − 4ayf−
2a(x2 + y2) = 0.
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15. Find the envelope of the family of circles

whose diameter are double ordinates of a

parabola y2 = 4ax.

Hint: The Equation of required circle with
centre at (α, 0), end points of diameter
(α, y1), (α,−y1), diameter 2y, radius y1 is
(x − α)2 + y2 = y21 . Since θ (α, y1) lies on

parabola y21 = 4aα. So equation of family of
circles is

(x − α)2 + y2 = 4aα

which is a quadratic in α

α2 − 2(x + 2a)α + (x2 + y2) = 0.

Ans. Envelope is another parabola y2 = 4a(x + a)

16. Find the envelope of the family of straight lines

obtained by joining the feet of the two perpen-

diculars drawn from any point on the ellipse
x2

a2
+ y2

b2
= 1 to the two coordinate axes.

Hint: Any point P on ellipse is

(a cos θ, b sin θ ). Coordinates ofM andN the

feet of perpendiculars PM and PN on to the

x and y axis are (a cos θ, 0) and (0, b sin θ )

respectively. So equation of family of straight

linesMN is y − 0 =  b sin θ−0
0−a cos θ

 
(x − a cos θ ).

Ans.
 
x
a

 2
3 +  y

b

 2
3 = 1

17. A straight line of given length 2 slides with its

extremities on two fixed straight lines which

are at right angles. Determine the envelope of

the family of circles drawn on the sliding line

as diameter.

Hint: The sliding line AB of length L has
extremities A(L cosα, 0) and B(0, L sin α).
Equation of circle with AB as diameter is

(x − L cos t)(x − 0)+ (y − 0)(y − L sin t) = 0.

Ans. x2 + y2 = L2

18. Find the envelope of the family of straight lines

of given length L, whose extremities slide on

two fixed straight lines at right angles.

Hint: Equation of line is:

x secα + y cosec α = L

Ans. x
2
3 + y

2
3 = L

2
3 .

Quadratic equation in the parameter α or

λ = λ(α)

Aλ2 + Bλ+ c = 0, envelope is B2 − 4AC = 0.

Find the envelope of:

19. (y −mx)2 = a2m2 + b2, with m parameter

Ans. x2

a2
+ y2

b2
= 1

20. x cos t + y sin t = a sec t , t is parameter

Ans. y2 = 4a(a − x)

21. y = x tan t − gx2

2u2 cos t
, t is the parameter

Hint: Quadratic in λ = tan t is 
g2x2

2u2

 
tan2 t + (−x) tan t +

 
y + gx2

2u2

 
= 0

Envelope is

B2− 4AC= (−x)2− 4

 
g2x2

2u2

  
y+ gx2

2u2

 
= 0.

Ans. u4 = 2u2gy + g2x2

22. Straight lineswhichmove such that the product

of the intercepts on the two axes is constant.

Hint: x
a
+ y

b
= 1 with ab = c2 = constant.

Quadratic in parameter ‘a’ is

y

c2
a2 + (−1) · a + x = 0

Envelope is:

B2 − 4AC = (−1)2 − 4
 y
c2

 
(x) = 0.

Ans. xy = c2/4, rectangular hyperbola

23. x2

α2
+ y2

k2−α2 = 1, α is the parameter

Hint: Quadratic in α2 is

α4 − (x2 − y2 + k2)α2 + k2x2 = 0

Envelope:

B2 − 4AC = (x2 − y2 + k)2 − 4 · 1 · k2x2 = 0.

Ans. Square with four lines

x + y + k = 0, x + y − k = 0,

x − y + k = 0, x − y − k = 0

24. tx3 + t2y = a, where t is the parameter

Ans. x6 + 4ay = 0
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25. Prove that all circles having for their diameters

the radii vectors of a parabola touch a straight

line or the curve r cos θ + a sin2 θ = 0 ac-

cording as the radii vectors are drawn from

the focus or the vertex.

Hint: Parabola y2 = 4ax, vertex A(0, 0),
focusS(a, 0), general pointP (at2, 2at). Equa-
tion of circle on SP as diameter is (refer Fig.
2.23)

Fig. 2.23

Y

P

S
XA

(x − a)(x − at2)+ (y − 0)(y − at) = 0

This is a quadratic in t

a(a − x)t2 − 2ay · t + (x2 + y2 − ax) = 0

Envelope:

x[(x − a)2 + y2] = 0 ... x = 0

Equation circle on AP as diameter

(x − 0)(x − at2)+ (y − 0)(y − 2at) = 0

Quadratic in t :

axt2 + 2ayt − (x2 + y2) = 0

Envelope:

ay2 + x(x2 + y2) = 0

In polar coordinate:

r cos θ + a sin2 θ = 0.

Evolute as envelope of normals

Evolute of a curve c is the envelope of the normals

to that curve c. Using this, find the evolute of the

following curves:

26. Parabola y2 = 4ax

Hint: Equation of any normal to the parabola
is

y = mx − 2am− am3

where m is the parameter.

Ans. 27ay2 = 4(x − 2a)3

27. Ellipse x2

a2
+ y2

b2
= 1

Hint: Equation of normal at any point
(a cos t, b sin t) is

ax

cos t
− by

sin t
= a2 − b2.

Ans. (ax)
2
3 + (by)

2
3 = (a2 − b2)

2
3

28. x = a(3 cos t − 2 cos3 t),

y = a(3 sin t − 2 sin3 t).

Hint: Equation of normal at ‘t’ is
x

cos t
+ y

sin t
= 4a.

Ans. x
2
3 + y

2
3 = (4a)

2
3

29. Cycloid: x = a(cos t + t sin t);

y = a(sin t − a cos t)

Ans. x2 + y2 = a2

30. Hyperbola xy = c2

Ans. (x + y)
2
3 + (x − y)

2
3 = (2a)

2
3

31. Tractrix x = a
 
cos t + ln tan t

2

 
, y = a sin t

Ans. y = a cosh x
a

Two-parameter family of curves

32. If ab = 1, find the envelope of ax + by = 1.

Ans. 4xy = 1

33. Find the envelope of a system of concentric

and coaxial ellipses of constant area.

Hint: Equation of ellipses x2

a2
+ y2

b2
= 1 with

the two parameters a, b connected by ab = c2

(since area π ab = constant).

Ans. 2xy = c2

34. If a + b = c, determine the envelope of the

family of ellipses x2/a2 + y2/b2 = 1

Ans. x
2
3 + y

2
3 = c

2
3

35. Determine the envelop of the two parameter

family of straight lines x
a
+ y

b
= 1 when a and

b are related by

i. an + bn = cn

ii. ambn = cm+n

iii. a
c
+ b

d
= 1
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Ans. i. x
n

(n+1) + y
n

(n+1) = c
n

(n+1)

ii. (m+ n)m+n · xmyn = mnnncm+n

iii. (x/c)
1
2 + (y/d)

1
2 = 1

36. Find the envelope of the family of parabolas 
x
a
+
 

y

b
= 1 when ab = c2.

Ans. 16xy = c2, rectangular hyperbola

37. If an + bn = cn determine the envelop of the

family of curves xm

am
+ ym

bm
= 1.

Ans. xp + yp = cp where p = mn/(m+ n)

Polar form

38. Prove that the envelopes of circles described

on the central radii of a rectangular hyperbola

is a lemniscate r2 = a2 cos 2θ .

Hint: General point on x2 − y2 = a2 is
P(a cosh t, a sinh t). Equation of circle with
(0, 0) and P as ends of a diameter is

(x − 0)(x − a cosh t)+ (y − 0)(y − a sinh t) = 0

Envelope:

a2(x2 − y2) = (x2 + y2)2

In polar coordinates:

r2 = a2 cos 2θ.

39. Determine the envelope of the straight lines

drawn through the extremities of and at right

angles to the radii vectors of the equi-angular

spiral r = a eθ cot α .

Hint: If (R, φ) is any point on the straight line
through (r, θ ) and at right angles to radius vec-
tor is

R cos(φ − θ ) = r.

Ans. r sin α = a e(α−π/2) cot α · e(θ cot α)
40. Show that the envelope of circles described on

the radii vectors of r = 2a cos θ as diameter

is the cardioid r = a(1+ cos θ ).

Hint: Equation circle drawn on radius vector
corresponding to the point (r, θ ) on the curve
r = 2a cos θ as diameter is

R = r cos(φ − θ ) = 2a cos θ · cos(φ − θ )

41. Find the envelope of the family of circles

whose centres lie on the rectangular hyperbola

x2 − y2 = a2 and which pass through the

origin.

Hint: Any point on hyperbola is P (a sec θ,
a tan θ ). Equation of circle with P as centre
and OP as radius is

(x − a sec θ )2 + (y − a tan θ )2 = OP 2

= a2 sec2 θ + a2 tan2 θ

Envelope:

(x2 + y2)2 = 4a2(x2 − y2)

In polar coordinates is:

r2 = 4a2 cos 2θ

Ans. Envelope is lemniscate of Bernoulli

r2 = 4a2 cos 2θ

42. Prove that the envelope of the circles whose

centres lie on the rectangular hyperbola

xy = c2 and which pass through the origin is

the lemniscate r2 = 8c2 sin 2θ .

43. Determine the envelope of the straight lines

drawn through extremities of and at right

angles to the radii vectors of the curve

rn = an cos nθ .

Hint: P (L, α) be any point on rn = an cos nθ
so

Ln = an cos nα or L = a(cos nα)
1
n

Q(r, θ ) be any point on the line PQ drawn at
right angles to the radius vector OP , so

L

r
= cos(θ − α) or L = r cos(θ − α).

EliminatingL, Equation of required linePQ is

r cos(θ − α) = a(cos nα)
1
n .
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Ans. rp = ap · cospθ where p = n
1−n

Determine the envelope of the circles described on

the radii vectors as diameter of the curve:

44. rn = an cos nθ

Ans. rp = ap cospθ where p = n
1+n

45. r = L/(L+ e cos θ )

Ans. r2(e2 − 1)− 2Le r, cos θ + 2L2 = 0.



Chapter3

Partial Differentiation

INTRODUCTION

Real world can be described in mathematical terms

using parametric equations and functions such as

trigonometric functionswhich describe cyclic, repet-

itive activity; exponential, logarithmic and logistic

functionswhich describe growth and decay and poly-

nomial functions which approximate these and most

other functions. The problems in operations research,

computer science, probability, statistics, fluid dy-

namics, economics, electricity etc. deal with func-

tions of two or more independent variables. In this

chapter we study the limit, continuity, partial deriva-

tive of such functions, Euler’s theorem, Jacobians

which determine the functional dependence and de-

termination of errors and approximations of calcula-

tions.

3.1 FUNCTIONS OF SEVERAL

VARIABLES: LIMIT AND CONTINUITY

The area of an ellipse is πab. It depends on two vari-

ables a and b; The total surface area of a rectangular

parallelopiped is 2(xy + yz+ zx) and it depends on
3 variables x, y, z; The velocity u of a fluid particle

moving in space depends on 4 variables x, y, z, t .

In transportation problem in operations research the

cost function to be minimized is a function of several

(m · n: running into hundreds) variables (wherem is

the number of origins and n is the number of desti-

nations). Thus functions of several variables plays a

vital role in advanced Mathematics.

If u = f (x, y, z, t) then x, y, z, t are known as the
independent variables or arguments and u is known

as the ‘dependent variable’ or ‘value’ of the function.

In this section, we restrict to functions of two and

three variables, although the analysis can easily be

extended to several variables.

Function of Two Variables

If for every x and y a unique value f (x, y) is as-

sociated, then f is said to be a function of the two

independent variables x and y and is denoted by

z = f (x, y) (1)

Geometrically, in three dimensional xyz-coordi-

nate space (1) represents a surface. The values of x

and y for which the function is defined is known as

the domain of definition of the function:

Example: z =
�
a2 − x2 − y2

domain : x2 + y2 ≤ a2

Function not defined when x2 + y2 > a2.

Example: z = xy + yx

domain : x > 0 and y > 0

δ-neighbourhood of a point (a, b) in the xy-plane
is a square with centre at (a, b) bounded by the four
lines x= a− δ, x= a+ δ, y= b− δ, y= b+ δ i.e.,

a − δ ≤ x ≤ a + δ
b − δ ≤ x ≤ b + δ.

3.1
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Note: Neighbourhood of a point (a, b) may also be
defined as a circular disk with centre at (a, b) and of
radius δ given by

(x − a)2 + (y − b)2 < δ2

concept of limit is paramount in defining continuity

and differentiability of a function. Note that all the

three concepts of limit, continuity and differentiabil-

ity are point concepts i.e., defined at a point.

Limit: A function f (x, y) is said to have a limit L
as the point (x, y) approaches (a, b) and is denoted as

lim
(x,y)→(a,b)

f (x, y) = L

if the value of f (x, y) can be made as close (as we
please) to the given finite number L for all those
(x, y) in an appropriately chosen δ-neighbourhood
of (a, b), i.e., for a given  > 0 we can find a δ such
that

|f (x, y) − L| <  
for all (x, y) in the δ-neighbourhood

|x − a| < δ and |y − b| < δ

(or alternatively when (x − a)2 + (y − b)2 < δ2).
Important Note: The limit of a function f (x, y)

of two variables is said to exist only when the same

value is obtained for the limit along any path in the

xy-plane from (x, y) to (a, b) say along x → a and

y → b or along y → b and x → a, etc.

Limit may or may not exist. If it exists limit must

be unique.

Method of Obtaining Limit

Step I: Evaluate lim f (x, y) along path I: x → a

and x → b

Step II: Evaluate lim f (x, y) along path II: y → b

and x → a

If the limit values along path I and II are

same, the limit exist. Otherwise not.

Step III: If a = 0, b = 0, evaluate limit along say

path y = mx or y = mxn also.

Results: If lim
(x,y)→(a,b)

f (x, y) = L and lim
(x,y)→(a,b)

g(x, y) = M . Then

1. lim
(x,y)→(a,b)

(f ± g) = L±M

2. lim
(x,y)→(a,b)

(f · g) = L ·M

3. lim
(x,y)→(a,b)

(f/g) = L/M , providedM  = 0.

Continuity A function f (x, y) is said to be con-

tinuous at a point (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b) (2)

i.e., the limit of f as (x, y) tends to (a, b) = the value

of f at (a, b).

A function is said to be continuous in a domain if

it is continuous at every point of the domain.
(2) can also be written as

lim
(h,k)→(0,0)

f (a + h, b + k) = f (a, b)

If f is not continuous at (a, b), it is said to be

discontinuous at (a, b).

Result: If f (x, y) and g(x, y) are continuous at

(a, b) then f ± g, f · g and f/g are continuous at

(a, b).

Test for Continuity at a Point (a, b)

Step I: f (a, b) should be well defined

Step II: lim f (x, y) as (x, y)→(a, b) should exists

(must be unique and same along any path)

Step III: The limit of f = value of f at (a, b).

WORKED OUT EXAMPLES

Limits

Example 1: Evaluate lim
(x,y)→(0,0)

(x2 + y2)

Solution:

lim
x→0
y→0

(x2 + y2) = lim
y→0

(y2) = 0

lim
y→0
x→0

(x2 + y2) = lim
x→0

(x2) = 0
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Along y = mx
lim
y→mx
x→0

(x2 + y2) = lim
x→0

(x2 +m2x2)

= lim
x→0

(1 +m2)x2 = (1 +m2) lim
x→0

(x2) = 0

Along y = mx2

lim
y→mx2

x→0

(x2 + y2) = lim
x→0

x2(1 +m2x2) = 0.

Since the value of the limit along any path is same,

the limit exists and the limit value is zero.

Example 2: If f (x, y) = y2−x2
x2+y2 , show that

lim
x→0

�
lim
y→0

f (x, y)

�
 = lim
y→0

�
lim
x→0

f (x, y)

�

Solution: L.H.S. of the inequality:

lim
x→0

�
lim
y→0

f (x, y)

�
= lim
x→0

�
lim
y→0

y2 − x2
x2 + y2

�

= lim
x→0

−x2
x2

= lim
x→0

−1 = −1

R.H.S. of the inequality:

lim
y→0

�
lim
x→0

f (x, y)

�
= lim
y→0

�
lim
x→0

y2 − x2
x2 + y2

�

= lim
y→0

�
y2

y2

�
= lim
y→0

1 = 1

Thus L.H.S. = −1  = 1 = R.H.S.

[Note: Since the limits along two different paths are

not same, the limit does not exist.]

Example 3: Evaluate lim
(x,y)→(0,0)

x2y

x4+y2

Solution:

I. lim
x→0
y→0

x2y

x4 + y2 = lim
y→0

0 = 0

II. lim
y→0
x→0

x2y

x4 + y2 = lim
x→0

0 = 0

III. lim
y=mx
x→0

x2y

x4 + y2 = lim
x→0

mx3

x4 +m2x2

= lim
x→0

mx

x2 +m2
= 0

IV. lim
y=mx2
x→0

x2y

x4 + y2 = lim
x→0

mx4

x4 +m2x4

= lim
x→0

m

1 +m2
= m

1 +m2

Since the limit along the last path y = mx2 depends
on m, ... limit does not exist.

Continuity

Example 4: If f (x, y) = x3−y3
x2+y2 when x  = 0, y  =

0 and f (x, y) = 0 when x = 0, y = 0, find out

whether the function f (x, y) is continuous at

origin.

Solution: First calculate the limit of the function:

I. lim
x→0
y→0

x3 − y3
x2 + y2 = lim

y→0

�
−y3
y2

�
= lim
y→0

(−y) = 0

II. lim
y→0
x→0

x3 − y3
x2 + y2 = lim

x→0

�
x3

x2

�
= lim
x→0

(x) = 0

III. lim
y=mx
x→0

x3 − y3
x2 + y2 = lim

x→0

x3 −m3x3

x2 +m2x2

= lim
x→0

(1 −m3)

(1 +m2)
· x = 0

IV. lim
y=mx2
x→0

x3 − y3
x2 + y2 = lim

x→0

x3(1 −m3x3)

x2(1 +m2x2)

= lim
x→0

(1 −m3x3)

(1 +m2x2)
· x = 0.

Since the limit along any path is same, the limit exists

and equal to zero which is the value of the function

f (x, y) at the origin. Hence the function f is con-

tinuous at the origin.

Example 5: Discuss the continuity of the func-

tion f (x, y) = x√
x2+y2

when (x, y)  = (0, 0) and

f (x, y) = 2 when (x, y) = (0, 0).

Solution: At first, evaluate the limit

I. lim
x→0
y→0

x�
x2 + y2

= 0
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II. lim
y→0
x→0

x�
x2 + y2

= lim
x→0

x√
x2

= lim
x→0

1 = 1

Since the limits along paths I and II are different, the

limit itself does not exist. Therefore the function is

discontinuous at the origin.

Example 6: Examine for continuity at origin of the
function defined by

f (x, y) = x2�
x2 + y2

, for (x  = 0, y  = 0)

= 3, for (x = 0, y = 0)

Redefine the function to make it continuous.

Solution: Initially, find the limit

I. lim
x→0
y→0

x2�
x2 + y2

= lim
y→0

0 = 0

II. lim
y→0
x→0

x2�
x2 + y2

= lim
x→0

x2√
x2

= lim
x→0

x = 0

III. lim
y=mx
x→0

x2�
x2 + y2

= lim
x→0

x2

x
�
(1 +m2)

= 1�
1 +m2

lim
x→0

x = 0

IV. lim
y=mxn
x→0

x2�
x2 + y2

= lim
x→0

x2

x
�
(1 +m2x2n−2)

= 0√
1 + 0

= 0

Thus the limit along any path exists and is the same
and the common value equals to zero i.e.,

lim
(x,y)→(0,0)

x2�
x2 + y2

= 0

However the value of the functions at origin is 3 i.e.,

f (0, 0) = 3

Therefore f is discontinuous at origin because

lim
(x,y)→(0,0)

x2�
x2 + y2

= 0  = 3 = f (0, 0)

The function can be ‘made’ continuous at origin by
redefining the function as f (0, 0) = 0, since in this

case

lim
(x,y)→(0,0)

x2�
x2 + y2

= 0 = f (0, 0).

EXERCISE

Limits

Evaluate the following limits:

1. lim
x→2
y→3

x2+y3
2x2y

Ans. 31
24

2. lim
x→1
y→2

x2+y
3x+y2 Ans. 3

7

3. lim
(x,y)→(0,0)

xy

y2−x2

Hint: Along path y = mx, limit = m

m2−1
which is different for different values of m.

Ans. does not exist

4. lim
x→1
y→2

2x2y

x2+y2+1
Ans. 2

3

5. lim
x→1
y→1

x(y−1)

y(x−1)
Ans. does not exist

6. lim
x→0
y→0

xy

x2+y2 Ans. does not exist

7. lim
x→0
y→0

x−y
x2+y2 Ans. does not exist

8. lim
x→∞
y→3

2xy−3

x3+4y3
Ans. 0

Show that lim
x→0

�
lim
y→0
f (x, y)

�
 = lim
y→0

�
lim
x→0

f (x, y)
�

if

9. f (x, y) = x−y
2x+y Ans. 1

2
 = −1

10. f (x, y) = x−y
x+y Ans. 1  = −1.

Continuity

11. If f (x, y) = (x2−y2)
(x2+y2) when x  = 0, y  = 0

= 0 when (x = 0, y = 0)

show that f is discontinuous at origin.
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12. (a) Is the function f (x, y) = xy(x2−y2)
x2+y2 when

(x, y)  = (0, 0) and f (0, 0) = 4 continuous at

origin. (b) Redefine if necessary to make it

continuous at (0, 0).

Ans. a. not continuous: lim = 0  = 4 = f (0, 0)
b. continuous if f (0, 0) = 0

13. If f (x, y) = x3 + y2 determine where the

function is continuous.

Ans. continuous for every x and y i.e., everywhere

14. If f (x, y) = x3−y3
x3+y3 , for (x, y)  = (0, 0)

= 15, at (0, 0)

show that f is discontinuous at origin.

15. Findwhether f (x, y) = x3y3

x3+y3 is continuous at
(0, 0) when (a) f (0, 0)=−15, (b) f (0, 0)=0.

Ans. a. not continuous: lim = 0  = −15 = f (0, 0)
b. continuous since lim = 0 = 0 = f (0, 0)

16. Given f (x, y) = x3 + 3y2 + 2x + y for every
(x, y) except at (2, 3) where f (2, 3) = 10.

Examine whether f is continuous at (a) point

(2, 3) (b) at any other points (c) can the func-

tion bemade continuous at (2, 3) by redefining

f at (2, 3).

Ans. a. discontinuous at (2, 3)

b. continuous for every x and y i.e., every-

where except at (2, 3)

c. f becomes continuous by redefining f at

(2, 3) as f (2, 3) = 42

17. a. Show that f (x, y) = xy

x2+y2 , x = y  = 0 is

discontinuous at origin when f (0, 0) = 0.

b. Can it be made continuous by defining f ?

Ans. a. since limit along y = mx is m

1+m2 , not

unique, the limit does not exist, so discon-

tinuous

b. can not make f continuous by redefining f

at (0, 0) i.e., for any choice of f (0, 0), since

the limit at (0, 0) does not exist.

18. Prove that f (x, y)= x2−y3
x2−y2 when (x, y)  = (0, 0)

and f (0, 0) = 0 is discontinuous at origin.

Hint: lim f along y = mx is not unique, de-

pends on m. So limit does not exist.

Find out (and give reason) whether f (x, y) is conti-

nuous at (0, 0) if f (0, 0) = 0 and for (x, y)  = (0, 0)

the function f is equal to:

19. y/
�
x2 + y2

Ans. discontinuous

20. x/
�
1 +

�
x2 + y2

�
Ans. continuous

21. xy/(x2 + y2) 12
Ans. continuous

22. (x2 − y2)/
�
x2 + y2

Hint: continuous.

3.2 PARTIAL DIFFERENTIATION

A partial derivative of a function of several variables

is the ordinary derivative with respect to one of the

variables when all the remaining variables are held

constant. Partial differentiation is the process of find-

ing partial derivatives. All the rules of differentiation

applicable to function of a single independent vari-

able are also applicable in partial differentiation with

the only difference that while differentiating (par-

tially) with respect to one variable, all the other vari-

ables are treated (temporarily) as constants.

Consider a function u of three independent vari-

ables x, y, z, (refer Fig. 3.1)

u = f (x, y, z) (1)

Keeping y, z constant and varying only x, the partial
derivative of uwith respect to x is denoted by ∂u

∂x
and

is defined as the limit

∂u(x, y, z)

∂x
= lim
 x→0

f (x + x, y, z) − f (x, y, z)
 x

.

Partial derivatives of u w.r.t. y and z can be defined

similarly and are denoted by ∂u
∂y

and ∂u
∂z
.

Notation: The partial derivative ∂u
∂x

is also denoted

by
∂f

∂x
or fx(x, y, z) or fx or Dxf or f1(x, y, z)

where the subscripts x and 1 denote the variablew.r.t.
which the partial differentiation is carried out. Thus
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Fig. 3.1

Z

A

Y

C

P

O

X

B
D

we can have ∂u
∂y

= ∂f

∂y
= fy(x, y, z) = fy = Dyf =

f2(x, y, z) etc. The value of a partial derivative at a
point (a, b, c) is denoted by

∂u

∂x

����
x=a,y=b,z=c

= ∂u

∂x

����
(a,b,c)

= fx (a, b, c)

Geometrical interpretationof a partial derivative of

a function of two variables: z = f (x, y) represents
the equation of a surface in xyz- coordinate system.

Let APB the curve, which a plane through any point

P on the surface parallel to the xz-plane, cuts. As

point P moves along this curve APB, its coordinates

z and x vary while y remains constant. The slope of

the tangent line at P to APB represents the rate at

which z changes w.r.t. x.
Thus

∂z

∂x
= tan α = slope of the curve APB at the point P

Similarly,

∂z

∂y
= tan β = slope of the curve CPD at P.

Higher Order Partial Derivatives

Partial derivatives of higher order, of a function
f (x, y, z) are calculated by successive differentia-
tion. Thus if u = f (x, y, z) then

∂2u

∂x2
= ∂2f

∂x2
= ∂

∂x

�
∂f

∂x

�
= fxx = f11

∂2u

∂x∂y
= ∂2f

∂x∂y
= ∂

∂x

�
∂f

∂y

�
= fyx = f21

∂2u

∂y∂x
= ∂2f

∂y∂x
= ∂

∂y

�
∂f

∂x

�
= fxy = f12

∂2u

∂y2
= ∂2f

∂y2
= ∂

∂y

�
∂f

∂y

�
= fyy = f22

∂3u

∂z2∂y
= ∂

∂z

�
∂2f

∂z∂y

�
= ∂

∂z

�
∂

∂z

�
∂f

∂y

��

= fyzz = f233
∂4u

∂x∂y∂z2
= ∂

∂x

�
∂3f

∂y∂z2

�
= ∂

∂x

�
∂

∂y

�
∂2f

∂z2

��

= fzzyx = f3321.

The partial derivative
∂f

∂x
obtained by differenti-

ating once is known as first order partial derivative,

while
∂2f

∂x2
,
∂2f

∂y2
,
∂2f

∂x∂y
,
∂2f

∂y∂x
which are obtained by dif-

ferentiating twice are known as second-order deriva-

tives. 3rd order, 4th order derivatives involve 3, 4

times differentiation respectively.

Note 1: The crossed or mixed partial derivatives
∂2f

∂y∂x
and

∂2f

∂x∂y
are in general, equal

∂2f

∂y∂x
= ∂2f

∂x∂y

i.e., the order of differentiation is immaterial if the

derivatives involved are continuous.

Note 2: In the subscript notation, the subscripts are
written in the same order in which differentiation
is carried out, while in the ‘∂’ notation the order is
opposite, for example,

∂2u

∂y∂x
= ∂

∂y

�
∂u

∂x

�
= fxy

Note 3: A function of 2 variables has two first order

derivatives, four second order derivatives and 2n of

nth order derivatives. A function of m independent

variables will have mn derivatives of order n.

WORKED OUT EXAMPLES

Example 1: Find the first order partial derivatives
∂w
∂x

and ∂w
∂y

when:

(a)w= ex cos y (b)w= tan−1 y

x
(c)w= ln

�
x2 + y2
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Solution:

a.
∂w

∂x
= cos y

∂

∂x
(ex ) = ex cos y

∂w

∂y
= ex

∂

∂y
(cos y) = −ex sin y

b. ∂w

∂x
= 1

1 + � y
x

�2 · ∂
∂x

�y
x

�
= x2

x2 + y2 .
�−y
x2

�

= −y
x2 + y2

∂w

∂y
= 1

1 + � y
x

�2 · ∂
∂y

�y
x

�
= x2

x2 + y2 · 1
x

= x

x2 + y2

c.
∂w

∂x
= 1�

x2 + y2
· 1
2
(x2 + y2)− 1

2 · ∂
∂x

(x2)= x

x2 + y2

∂w

∂y
= 1�

x2 + y2
· 1
2
(x2 + y2)− 1

2 · ∂
∂y

(y2)= y

x2 + y2

Example 2: Find partial derivative of f with

respect to each of the independent variable:

a. f (x, y, z, w) = x2e2y+3z cos(4w)

b. f (r, θ, z) = r(2 − cos 2θ )/(r2 + z2).

Solution:

a. fx = ∂f

∂x
= e2y+3z · cos(4w) · ∂

∂x
(x2)

fx = 2x e2y+3z cos(4w) = 2f/x

fy = x2 e3z cos(4w)
∂

∂y
e2y = x2e3z cos(4w) · 2e2y

fy = 2f

fz = x2e2y cos(4w)
∂

∂z
e3z = x2e2y cos(4w)3e3z

fz = = 3f

fw = x2e2y+3z ∂

∂w
(cos(4w))

= x2e2y+3z · (− sin 4w) · 4
fw = −4x2e2y+3z sin 4w

b. f = r(2 − cos 2θ )

r2 + z2
∂f

∂r
= fr = (r2 + z2)(2− cos 2θ )− r(2− cos 2θ ) · 2r

(r2 + z2)2

fr = (z2 − r2)(2 − cos 2θ )

(r2 + z2)2
∂f

∂θ
= fθ = r

r2 + z2 · 2 sin 2θ

∂f

∂z
= fz = r(2 − cos 2θ )

(r2 + z2)2 (−2z).

Example 3: Find ∂3u
∂x∂y∂z

if u = ex2+y2+z2

Solution: ∂u
∂z

= 2z ex
2+y2+z2

∂2u

∂y∂z
= ∂

∂y

�
∂u

∂z

�
= ∂

∂y
(2z ex

2+y2+z2 )

∂2u

∂y∂z
= 2z · ex2+y2+z2 · 2y = 4yz ex

2+y2+z2

∂3u

∂x∂y∂z
= ∂

∂x

�
∂2u

∂y∂z

�
= ∂

∂x
(4yz ex

2+y2+z2 )

= 4yz ex
2+y2+z2 · 2x = 8xyz ex

2+y2+z2

Thus
∂3u

∂x∂y∂z
= 8xyzu.

Example 4: Show that

V (x, y, z) = cos 3x cos 4y sinh 5z

satisfies Laplace’s equation

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0.

Solution:

Vx = −3 sin 3x · cos 4y sinh 5z
Vxx = −9 cos 3x cos 4y sinh 5z = −9V (1)

Vy = −4 cos 3x sin 4y · sinh 5z
Vyy = −16 cos 3x · cos 4y sinh 5z = −16V (2)

Vz = 5 cos 3x cos 4y cosh 5z

Vzz = 25 cos 3x cos 4y sinh 5z = 25V (3)

Adding (1), (2) and (3), we get

Vxx + Vyy + Vzz = −9V − 16V + 25V = 0

Example 5: If u = eaθ cos(a ln r) show that

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0
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Solution:

ur = eaθ · (− sin(a ln r)
a

r
(1)

urr = −aeaθ
�

− 1

r2
sin(a ln r) + 1

r
cos(a ln r) · a

r

�

urr = −aeaθ
r2

[− sin(a ln r) + a cos(a ln r)] (2)

uθ = a eaθ cos(a ln r),

uθθ = a2 eaθ cos(a ln r) = a2u (3)

using (1), (2) and (3)

urr + 1

r
ur + 1

r2
uθθ =

�
aeaθ

r2
sin(a ln r) − a2

r2
u

�

+
�−a
r2
eaθ sin(a ln r)

�

+
�
a2

r2
u

�

= 0

Example 6: If u = ln(x3 + y3 − x2y − xy2) then
show that uxx + 2uxy + uyy = − 4

(x+y)2

Solution:

ux = 3x2 − 2xy − y2
(x3 + y3 − x2y − xy2) , (1)

uy = 3y2 − x2 − 2xy

(x3 + y3 − x2y − xy2) (2)

Adding (1) and (2), we get

ux + uy = (3x2 − 2xy − y2) + (3y2 − x2 − 2xy)

(x3 + y3 − x2y − xy2)

= 2(x − y)2
(x3 + y3 − x2y − xy2)

ux + uy = 2(x − y)2
(x + y)(x2 + y2 − 2xy)

= 2(x − y)2
(x + y)(x − y)2 = 2

x + y (3)

Now

uxx + 2uxy + uyy = ∂2u

∂x2
+ 2∂2u

∂x∂y
+ ∂2u

∂y2

=
�
∂

∂x
+ ∂

∂y

��
∂

∂x
+ ∂

∂y

�
u

=
�
∂

∂x
+ ∂

∂y

��
2

x + y

�
using (3)

= ∂

∂x

�
2

x + y

�
+ ∂

∂y

�
2

x + y

�

= −2

(x + y)2 − 2

(x + y)2 = −4

(x + y)2 .

EXERCISE

1. Find the first order partial derivatives of:

a. u = x−y
x+y c. ex sin y

b. u = ln(x +
�
x2 − y2) d. u = xxy

Ans. a. ux = 2y

(x+y)2 , uy = −2x

(x+y)2

b. ux = (1 + x(x2 − y2)− 1
2 )/(x +

�
x2 − y2)

uy = y(x2 − y2)− 1
2 /(x +

�
x2 − y2)

c. ux = ex sin y, uy = ex cos y

d. ux = xxy(y log x + y); uy = xxy+1 log x

2. Find the partial derivative of the given function

w.r.t. each variable:

a. f (x, y, z) = z sin−1(y/x)

b. f (u, v,w) = (u2 − v2)/(v2 + w2)

c. f (x, y, r, s) = sin 2x cosh 3r +
sinh 3y cos 4s

Ans. a. fx = −yz√
x4−x2y2

, fy = |x|z
x
√
x2−y2

,

fz = sin−1(y/x)

b. fu = 2u

v2+w2 , fv = −2v(u2+w2)

(v2+w2)2
,

fw = −2w(u2−v2)
(v2+w2)2

c. fx = 2 cos 2x cosh 3r ,

fy = 3 cosh 3y cos 4s

fr = 3 sin 2x sinh 3r ,

fs = −4 sinh 3y sin 4s

3. If w = ln(2x + 2y) + tan(2x − 2y)
prove that

∂2w

∂x2
= ∂2w

∂y2
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4. Verify that wxy = wyx when
a. w = ln(2x + 3y)

b. w = xy2 + x2y3 + x3y4
c. w = tan−1 y/x

d. w = ln(y sin x + x sin y).

5. Show that ux + uy = u if u = ex+y/(ex + ey).
6. Prove that w = f (x + ct) + g(x − ct) satis-

fies the wave equation ∂
2w

∂t2
= c2 ∂2w

∂x2
where c is

a constant. Verify this when

w = 7 sin(3x + 3ct) + 9 cosh(5x − 5ct).

7. Show that wx + wy + wz = 0 if

w = (y − z)(z− x)(x − y).
8. If w = x2y + y2z+ z2x, prove that

wx + wy + wz = (x + y + z)2.
9. Verify that V satisfies Laplace’s equation

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 0

if (a) V=x2 + y2 − 2z2, (b) V=e3x+4y cos 5z,

(c) V = (x2 + y2 + z2)− 1
2 .

10. Find ∂3w
∂x∂y∂z

if w = exyz.
Ans. exyz(x2y2z2 + 3xyz+ 1)

11. Show that xwx + ywy + zwz = 0 when

w = y

z
+ z

x

12. If w = rm prove that

wxx + wyy + wzz = m(m+ 1)rm−2

where r2 = x2 + y2 + z2.
13. Forn = 2 or−3 show thatu=rn(3 cos2 θ − 1)

satisfies the differential equation

∂

∂r

�
r2
∂u

∂r

�
+ 1

sin θ

∂

∂θ

�
sin θ

∂u

∂θ

�
= 0

14. Prove that
�
∂
∂x

+ ∂
∂y

+ ∂
∂z

�2
u = −9

(x+y+z)2 if

u = ln(x3 + y3 + z3 − 3xyz)

Hint: Prove and use the result ux + uy + uz =
3

(x+y+z)

15. Prove (theCauchy-Riemann equations in polar
coordinates) rur = vθ , rvr + uθ = 0 when

u = er cos θ cos(r sin θ ), v = er cos θ sin(r sin θ ).

16. Show that yzx + xzy = x2 − y2 if

e−z/(x2−y2) = (x − y)

Hint: Solve for z = (y2 − x2) ln(x − y).
17. If u = (x2 + y2 + z2)− 1

2 show that

(ux )
2 + (uy )

2 + (uz)
2 = u4.

18. Prove that f (x, t) = a sin bx · cos bt satisfies
∂2f

∂x2
= b2 ∂

2f

∂t2
.

19. Show that ∂3u

∂x2∂y
= ∂3u

∂x∂y∂x
if u = xy .

3.3 VARIABLE TREATED AS CONSTANT

Consider z = x2 − y2. Introducing polar coordi-
nates x = r cos θ, y = r sin θ , we have r2 = x2 +
y2 and θ = tan−1 y

x
. Tofind ∂z

∂θ
with different variable

treated as constant i.e., to find
�
∂z
∂θ

�
r
,
�
∂z
∂θ

�
x
,
�
∂z
∂θ

�
y
.

Variable treated as constant:
�
∂z
∂θ

�
r
usually read as

“partial derivative of zw.r.t. θ , with r held constant”.
However the important point is that z has been writ-
ten as a function of the variables θ and r only and
then differentiated w.r.t. θ , keeping r constant. Thus

z= x2 − y2 = r2 cos2 θ − r2 sin2 θ�
∂z

∂θ

�
r

= 2r2(cos θ (− sin θ ) − sin θ cos θ )

= −4r2 sin θ cos θ (1)

To find
�
∂z
∂θ

�
x
express z in terms of θ and x as

z2 = x2 − y2 = x2 − x2 tan2 θ .

Now

�
∂z

∂θ

�
x

= x2(0 − 2 tan θ · sec2 θ ) (2)

To find
�
∂z
∂θ

�
y
express z in terms of θ and y as

z = x2 − y2 = y2 cot2 θ − y2

Now

�
∂t

∂θ

�
y

= y2(2 · cot θ · (−cosec2θ )) (3)
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These three expressions (1), (2), (3) for ∂z
∂θ

have dif-

ferent values and are derivatives of three different

functions.

WORKED OUT EXAMPLES

Example 1: If z = x2 + 2y2, x = r cos θ,
y = r sin θ , find the partial derivatives:

a.

�
∂z

∂x

�
y

b.

�
∂z

∂x

�
θ

c.

�
∂z

∂θ

�
r

d.
∂2z

∂r∂y

Solution: Here z= x2 + 2y2, r2 = x2 + y2,
tan θ = y

x

a. To get
�
∂z
∂x

�
y
, z should be expressed as function

of x and y

i.e., z = x2 + 2y2

Differentiating partially w.r.t. x, with y held con-
stant �

∂z

∂x

�
y

= 2x

b. Express z as function of x and θ

z = x2 + 2y2 = x2 + 2x2 + tan2 θ

Differentiating partially w.r.t. x, keeping θ con-
stant�

∂z

∂x

�
θ

= 2x + 4x tan2 θ = 2x(1 + 2 tan2 θ )

c. Express z as function of r and θ

z= r2 cos2 θ + 2r2 sin2 θ�
∂z

∂θ

�
r

= 2r2 cos θ (− sin θ ) + 2r22 · sin θ · cos θ

= r2 · sin 2θ

d. z = (r2 − y2) + 2y2 = r2 + y2, ∂z
∂y

= 2y,

∂2z
∂r∂y

= 0.

Example 2: If x2 = au+ bv; y2 = au− bv
prove that�

∂u

∂x

�
y

�
∂x

∂u

�
v

= 1

2
=

�
∂v

∂y

�
x

�
∂y

∂v

�
u

Solution: Solving

x2 = au+ bv (1)

y2 = au− bv (2)

we get u= x2 + y2
2a

(3)

v = x2 − y2
2b

(4)

Differentiating (3) partially w.r.t. x, keeping y con-

stant, we get �
∂u

∂x

�
y

= 2x

2a
= x

a
(5)

Differentiating (1) partially w.r.t. u, keeping v con-
stant, we get

2x

�
∂x

∂u

�
v

= a ...

�
∂x

∂u

�
v

= a

2x
(6)

From (5) and (6)�
∂u

∂x

�
y

�
∂x

∂u

�
v

= x

a
· a
2x

= 1

2

Similarly differentiating (4) and (2) partially w.r.t. y
and v respectively, we get�

∂v

∂y

�
x

= −2y

2b
= −y
b

(7)

2y

�
∂y

∂v

�
u

= −b ...

�
∂y

∂v

�
u

= −b
2y

(8)

From (7) and (8)�
∂v

∂y

�
x

·
�
∂y

∂v

�
u

=
�−y
b

��−b
2y

�
= 1

2

EXERCISE

1. Let z = x2 − y2 andx = r cos θ, y = r sin θ .

Find a.

�
∂z

∂r

�
θ

b.

�
∂z

∂r

�
x

c.

�
∂z

∂r

�
y

a. Hint: z = r2 (cos2 θ − sin2 θ )

b. Hint: z = 2x2 − r2
c. Hint: z = r2 − 2y2

Ans. a. 2r(cos2 θ − sin2 θ )

b. −2r
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c. 2r

2. Let z = x2 + 2y2 and x = r cos θ,
y = r sin θ .

Find a.

�
∂z

∂y

�
r

b.

�
∂z

∂θ

�
x

c.

�
∂z

∂r

�
x

d.
∂2z

∂y∂θ
e.
∂2z

∂r∂θ
.

Ans. a. 2y b. 4r2 tan θ c. 2x d. −4x cosec2θ

e. 2r sin 2θ

3. If u = lx +my, v = mx − ly show that�
∂u

∂x

�
y

�
∂x

∂u

�
v

= l2

l2 +m2
,

�
∂y

∂v

�
x

�
∂v

∂y

�
u

= l2 +m2

l2

4. If f (p, v, t) = 0 show that�
∂p

∂T

�
v

= − �
∂v
∂T

�
p

�
∂p

∂v

�
T

Hint:
�
∂p

∂T

�
v

= −fT /fp,
�
∂v
∂T

�
p

= −fT /fv,�
∂p

∂v

�
T

= −fv/fp.
5. If E = f (p, T ) and T = g(p, v) show that�

∂E

∂p

�
v

= fp + fT gp

=
�
∂E

∂p

�
T

+
�
∂E

∂T

�
p

�
∂T

∂p

�
v

6. If x = r cos θ, y = r sin θ find
a.

�
∂x
∂r

�
θ

b.
�
∂x
∂θ

�
r

c.
�
∂θ
∂x

�
y

d.
�
∂θ
∂y

�
x

e.
�
∂y

∂x

�
r

f.
�
∂x
∂y

�
θ

g.
�
∂r
∂θ

�
x

h.
�
∂θ
∂r

�
y

Ans. a. cos θ b. −r sin θ c. −r−1 sin θ

d. r−1 cos θ e. − cot θ f. cot θ

g. r tan θ h. −r−1 tan θ .

3.4 TOTAL DERIVATIVE

Total differential of a function f of three variables

x, y, z is denoted by df and is defined as

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz (1)

whether or not x, y and z are independent of each

other. Several types of dependence among x, y and

z are considered now.

Chain Rules for Partial Differentiation

Total derivative Let u = f (x, y) and x and y are
themselves functions of a single independent vari-

able t . Then the dependent variable f may be con-

sidered as truly a function of the one independent

variable t via the intermediate variables x, y. Now

the derivative of f w.r.t. ‘t’ is known as the total

derivative of f and is given by

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
(2)

Generalizing this, if u = f (x, y, z) and
x = x(t), y = y(t), z = z(t) then the total derivative
of f is

df

dt
= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
+ ∂f

∂z

dz

dt
(3)

This can easily be extended to function of several

variables.
If u = f (x, y, z) and suppose y and z are function

of x, then f is a function of the one independent
variable x. Here y and z are intermediate variables.
Identifying t with x in (3), we obtain

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂z

dz

dx

df

dx
= ∂f

∂x
+ ∂f

∂y

dy

dx
+ ∂f

∂z

dz

dx
(4)

WORKED OUT EXAMPLES

Example 1: Find du
dt

as a total derivative and verify

the result by direct substitution if u = x2 + y2 + z2
and x = e2t , y = e2t cos 3t, z = e2t sin 3t .
Solution: Here u is a function of x, y, z and x, y, z
are in turn functions of t . Thus u is a function ‘t’ via
the intermediate variables x, y, z. Then

du

dt
= ∂u

∂x

dx

dt
+ ∂u

∂y

dy

dt
+ ∂u

∂z

dz

dt

= 2x · 2e2t + 2y · (2e2t cos 3t − 3e2t sin 3t)

+2z(2e2t sin 3t + 3e2t cos 3t)
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Rewriting in terms of x, y, z

= 2x · 2 · x + 2 · y(2y − 3 · z) + 2z(2z+ 3y)

= 4(x2 + y2 + z2)
or in terms of t

du

dt
= 4(e4t + e4t (cos2 3t + sin2 3t)) = 8e4t

verification by direct substitution:

u= x2 + y2 + z2 = e4t + e4t cos2 3t + e4t sin2 3t = 2e4t

du

dt
= 8e4t .

Example 2: Find the total differential coefficient
of x2y w.r.t. x when x, y are connected by

x2 + xy + y2 = 1.

Solution: Let u = x2y, then the total differential is

du = ∂u

∂x
dx + ∂u

∂y
dy

Thus the total differential coefficient of u w.r.t. x is

du

dx
= ∂u

∂x
+ ∂u

∂y

dy

dx

du

dx
= 2xy + x2 dy

dx

From the implicit relationf = x2 + xy + y = 1,we
calculate

dy

dx
= −fx

fy
= −2x + y

x + 2y

so

du

dx
= 2xy + x2 · dy

dx
= 2xy + x2

�
− (2x + y)
(x + 2y)

�

du

dx
= 2xy − x2(2x + y)

(x + 2y)
.

Example 3: The altitude of a right circular cone

is 15 cm and is increasing at 0.2 cm/sec. The radius

of the base is 10 cm and is decreasing at 0.3 cm/sec.

How fast is the volume changing?

Solution: Let x be the radius and y be the altitude
of the cone. So volume V of the right circular cone is

V = 1

3
πx2y.

Since x and y are changing w.r.t. time t , differentiate
V w.r.t. t .

dV

dt
= ∂V

∂x

dx

dt
+ ∂V

∂y

dy

dt

= 1

3
π

�
2xy

dx

dt
+ x2 dy

dt

�

It is given that at x = 10, y = 15, dx
dt

= −0.3 and
dy

dt
= 0.2, substituting these values,

dV

dt
= 1

3
π [2 · 10 · 15(−0.3) + 102(0.2)]

= −70

3
π cm3/ sec

i.e., volume is decreasing at the rate of 70π
3
.

EXERCISE

1. Find du
dt

when u = sin(x/y) and x = et ,
y = t2. Verify the result by direct substitution.

Ans. t−2

t3
et cos

�
et

t2

�
2. Find du

dt
given u = sin−1(x − y); x = 3t ,

y=4t3. Verify the result by direct substitution.

Ans. 3(1 − t2)− 1
2

3. If u = x3y ez where x = t, y = t2 and

z = ln t find du
dt

at t = 2.

Ans. 6t5; 192

4. Find du
dt

if u = tan−1(y/x) and x = et − e−t

and y = et + e−t .

Ans. −2

e2t+e−2t

5. If x, y are related by x2 − y2 = 2 and

u = tan(x2 + y2) find du
dx

Ans. 4x sec2(2x2 − 2)

6. If u = tan−1(y/x) and y = x4 find du
dx

at x = 1

Ans. 3x2

1+x6 ;
3
2
at x = 1

7. In order that the function u = 2xy − 3x2y

remains constant, what should be the rate of

change of y (w.r.t. t) given that x increases

at the rate of 2 cm/sec at the instant when

x = 3 cm and y = 1 cm.

Ans.
dy

dt
= − 32

21
cm/sec; y must decrease at the rate

of 32
21
cm/sec.

8. Find the rate at which the area of a rectangle

is increasing at a given instant when the
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sides of the rectangle are 4 ft and 3 ft and

are increasing at the rate of 1.5 ft/sec and

0.5 ft/sec respectively.

Ans. 6.5 sq. ft/sec

9. Find a. dz
dx

and b. dz
dy

given z = xy2+
x2y, y = ln x

Ans. a. Here x is the independent variable

dz

dx
= ∂z

∂x
+ ∂z

∂y

dy

dx
= y2 + 2xy + 2y + x

b. Here y is the independent variable

dz

dy
= ∂z

∂y
+ ∂z

∂x

dx

dy
= xy2 + 2x2y + 2xy + x2

Find the differential of the following functions:

10. f (x, y) = x cos y − y cos x

Ans. df = (cos y + y sin x)dx − (x sin y +
cos x)dy

11. u(x, y, z) = exyz
Ans. du = exyz(yz dx + zx dy + xy dz)
Find du

dt
for the following functions:

12. u = x2 − y2, x = et cos t, y = et sin t
at t = 0.

Ans. 2e2t (cos 2t − sin 2t); At t = 0, du
dt

= 2

13. u = ln(x + y + z); x = e−t , y = sin t, z =
cos t

Ans. cos t−sin t−e−t
cos t+sin t+e−t

14. u = sin(ex + y), x = f (t), y = g(t)
Ans. du

dt
= [cos(ex+y)]exf  (t) + [cos(ex+y)]g (t)

15. u = xy when y = tan−1 t, x = sin t

Ans. y · xy−1 cos t + xy ln x · 1

1+t2 .

3.5 PARTIAL DIFFERENTIATION OF

COMPOSITE FUNCTIONS:

CHANGE OF VARIABLES

In the study of heat equation, wave equation and

Laplace’s equation, it is very often required to trans-

form the representing partial differential equations in

cartesian coordinate system to cylindrical, spherical

or orthogonal curvilinear systems by changing the

variables through partial differentiation of compos-

ite functions (function of a function).

Let u = f (x, y, z) and x, y, z are functions of

two (or more) independent variables say s and t as

x = x(s, t), y = y(s, t), z = z(s, t). Then f is con-

sidered as function of s and t via the intermediate

variables x, y, z. Now the derivative of f w.r.t. t is

partial but not total. Keeping s constant, Equation (3)

is modified as�
∂f

∂t

�
s

= ∂f

∂x

�
∂x

∂t

�
s

+ ∂f

∂y

�
∂y

∂t

�
s

+ ∂f

∂z

�
∂z

∂t

�
s

(5)

The subscript s in (5) indicates the variable which

is held constant. With this convention
∂f

∂x
may be

written as
�
∂f

∂x

�
y,z

and so on. However following the

convention that
∂f

∂x
, without subscripts, indicates the

result of differentiating f w.r.t. the explicitely ap-

pearing variable x, while holding all other explicitly

appearing variables (here y and z) constant.With this

convention, the subscript s in (5) may be omitted and

rewritten as

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
(6)

In a similar way, we get

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
(7)

Equations (6) and (7) are known as chain rules for

partial differentiation.

WORKED OUT EXAMPLES

Example 1: If u = x2 − y2, x = 2r − 3s + 4,

y = −r + 8s − 5 find ∂u
∂r

and ∂u
∂s
.

Solution: Here u is a function of x, y which are
functions of s, t . So by chain rule

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r

= 2x · 2 + (−2y)(−1) = 2(2x + y)
∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u

∂y

∂y

∂s

= 2x · (−3) + (−2y)8 = −6x − 16y.
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Example 2: Find ∂w
∂θ

and ∂w
∂φ

given that

w(x, y, z)=f (x2+y2+z2) where x=r cos θ · cosφ,
y = r cos θ · sin φ, z = r sin θ .
Solution: Put u = x2 + y2 + z2. Then w(x, y, z)
= f (u) where u = u(x, y, z) and x, y, z are func-
tions of r, θ, φ. So

∂w

∂θ
= ∂w

∂u
· ∂u
∂θ

= ∂w

∂u

�
∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
+ ∂u

∂z

∂z

∂θ

�

= ∂w

∂u
(2x · (−r sin θ cosφ) + 2y(−r sin θ sin φ)

+2z(r cos θ ))

Substituting x, y, z in terms of r, θ, φ, we get

= 2
∂w

∂u
[−r2 sin θ cos θ cos2 φ − r2 sin θ cos θ sin2 φ

+r2 sin θ cos θ ]

= 2r2
∂w

∂u
[− sin θ cos θ + sin θ cos θ ] = 0

Now

∂w

∂φ
= ∂w

∂u

�
∂u

∂x

∂x

∂φ
+ ∂u

∂y

∂y

∂φ
+ ∂u

∂z

∂z

∂φ

�

= ∂w

∂u
(2x · (−r cos θ · sin φ)

+2y(r cos θ cosφ) + 2z · 0)

= 2
∂w

∂u
(−r2 cos2 θ · cosφ sin φ

+r2 cos2 θ sin φ cosφ)

∂w

∂φ
= 2r2

∂w

∂u
(0) = 0.

Example 3: If V = f (2x − 3y, 3y − 4z, 4z−
2x) prove that 6Vx + 4Vy + 3Vz = 0.

Solution: Put u = 2x − 3y, v = 3y − 4z,w =
4z− 2x. Then V = f (u, v,w) and u, v,w are func-
tions of x, y, z. So

Vx = ∂V

∂x
= ∂V

∂u

∂u

∂x
+ ∂V

∂v

∂v

∂x
+ ∂V

∂w

∂w

∂x

Vx = Vu · 2 + Vv · 0 + Vw(−2) = 2(Vu − Vw) (1)

Vy = ∂V

∂y
= ∂V

∂u

∂u

∂y
+ ∂V

∂v

∂v

∂y
+ ∂V

∂w

∂w

∂y

Vy = Vu(−3) + ∂V

∂v
(3) + ∂V

∂w
· 0 = 3(Vv − Vu) (2)

Similarly

Vw = Vu · 0 + Vv(−4) + Vw · 4 = 4(Vw − Vv) (3)

Multiplying (1), (2) and (3) by 6, 4, 3 respectively
and adding, we get

6Vx + 4Vy + 3Vz = 6(2(Vu − Vw)) + 4(3(Vv − Vu)
+3(4(Vw − Vv))

= 12(Vu − Vw + Vv − Vu + Vw − Vv)
= 0

Example 4: If V is a function of u, v where u =
x − y and v = xy prove that

x
∂2V

∂x2
+ y ∂

2V

∂y2
= (x + y)

�
∂2V

∂u2
+ xy ∂

2V

∂v2

�

Solution: SinceV = f (u, v) and u, v are functions
of x, y use chain rule, to differentiate V w.r.t. x.
Note that ux = 1, vx = y, uy = −1, vy = x
∂V

∂x
= ∂V

∂u

∂u

∂x
+ ∂V

∂v

∂v

∂x
= ∂V

∂u
· 1 + ∂V

∂v
· y

∂2V

∂x2
= ∂

∂x

�
∂V

∂x

�
= ∂

∂x

�
∂V

∂u
+ y ∂V

∂v

�

= ∂

∂u

�
∂V

∂u
+ y ∂V

∂v

�
∂u

∂x
+ ∂

∂v

�
∂V

∂u
+ y ∂V

∂v

�
∂v

∂x

∂2V

∂x2
=
�
∂2V

∂u2
+ y ∂

2V

∂u∂v

�
· 1 +

�
∂2V

∂v∂u
+ y ∂

2V

∂v2

�
y

(1)

Differentiating V w.r.t. y by chain rule

∂V

∂y
= ∂V

∂u

∂u

∂y
+ ∂V

∂v

∂v

∂y
= ∂V

∂u
(−1) + ∂V

∂v
x

∂2V

∂y2
= ∂

∂y

�
∂V

∂y

�
= ∂

∂y

�
−∂V
∂u

+ x ∂V
∂v

�

= ∂

∂u

�
−∂V
∂u

+ x ∂V
∂v

�
∂u

∂y

+ ∂

∂v

�
−∂V
∂u

+ x ∂V
∂v

�
∂v

∂y

∂2V

∂y2
=
�

−∂
2V

∂u2
+ x ∂

2V

∂u∂v

�
(−1)

+
�

− ∂2V

∂v∂u
+ x ∂

2V

∂v2

�
x (2)
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Multiply (1) by x and (2) by y and adding, we get

x
∂2V

∂x2
+ y ∂

2V

∂y2

=
�
x
∂2V

∂u2
+ xy ∂

2V

∂u∂v
+ xy ∂

2V

∂v∂u
+ xy2 ∂

2V

∂v2

�

+
�

+y ∂
2V

∂u2
− xy ∂

2V

∂u∂v
− xy ∂

2V

∂v∂u
+ x2y ∂

2V

∂v2

�

Since
∂2V

∂u∂v
= ∂2V

∂v∂u

The R.H.S. gets simplified to

x
∂2V

∂x2
+ y ∂

2V

∂y2
= (x + y)∂

2V

∂u2
+ xy(x + y)∂

2V

∂v2

= (x + y)
�
∂2V

∂u2
+ xy ∂

2V

∂v2

�
.

EXERCISE

1. If V = u2v and u = ex2−y2 , v = sin(xy2) find
∂V
∂x
, ∂V
∂y
.

Ans. Vx = e2(x
2−y2)[4x sin(xy2) + y2 cos(xy2)]

Vy = 2e2(x
2−y2)y[x cos(xy2) − 2 sin(xy2)]

2. Find ∂V
∂s

if V = (x + y)/(1 − xy) and
x = tan(2r − s2), y = cot(r2s).

Ans. −(1 + x2)(1 + y2)(2s + r2)/(1 − xy)2
3. If z = sin u

cos v
where u = cos y

sin x
and v = cos x

sin y
find

∂z
∂x
.

Ans. −(u cot x cos u sin y + z sin v · sin x)/
(cos v sin y)

4. Prove that ∂z
∂u

− ∂z
∂v

= x ∂z
∂x

− y ∂z
∂y

if z is a func-

tion of x and y and x= eu + e−v, y= e−u − ev .
5. If cos z = u+ v and u = sin x, v = cos x find

the total derivative of z w.r.t. x i.e., dz
dx
.

Ans. dz
dx

= ∂z
∂u
du
dx

+ ∂z
∂v
dv
dx

= sin x−cos x√
1−(u+v)2

6. Prove that y ∂V
∂y

− x ∂V
∂x

= x2V 3 if

V = (1 − 2xy + y2)− 1
2 .

7. Show that
�
∂u
∂x

�2 +
�
∂u
∂y

�2
= �

∂u
∂r

�2 + 1

r2

�
∂u
∂θ

�2
when u is a function of x, y where

x = r cos θ, y = r sin θ .
8. If V = f (r, s, t) and r = x/y, s = y/z,
t = z/x show that x dV

dx
+ y dV

dy
+ z dV

dz
= 0.

9. Change the Laplacian equation in cartesian

coordinates ∂2u

∂x2
+ ∂2u

∂y2
= 0 into polar coordi-

nates.

Hint: Use the change of variables

x = r cos θ, y = r sin θ or r =
�
x2 + y2,

θ = tan−1(y/x), calculate ux = urrx + uθθx
etc.

Ans. ∂2u

∂r2
+ 1

r
∂u
∂r

+ 1

r2
∂2u

∂θ2
= 0

10. If V = f (u, v) where u = a cosh x cos y,

v = a sinh x sin y prove that ∂2V

∂x2
+ ∂2V

∂y2
=

a2

2
(cosh 2x − cos 2y)

�
∂2V

∂u2
+ ∂2V

∂v2

�
.

11. Transform the Laplacian equation ∂2u

∂x2
+

∂2u

∂y2
= 0 by change of variables from x, y to

r, θ when x = er cos θ, y = er sin θ .
Hint: Use r = ln

�
x2 + y2, θ = tan−1(y/x).

Ans. e−2r
�
∂2u

∂r2
+ ∂2u

∂θ2

�
= 0

12. Transform the Laplacian ∂
2V

∂u2
+ ∂2V

∂v2
by chang-

ing the variables from u, v to x, y when

x = u cos θ−v sin θ, y = u sin θ+v cos θ .

Hint: Use chain rule ∂V
∂u

= ∂V
∂x
∂x
∂u

+ ∂V
∂y

∂y

∂u
.

Ans. ∂2V

∂x2
+ ∂2V

∂y2

13. Express ∇f = ∂f

∂x
i + ∂f

∂y
j in plane polar coor-

dinates.

Hint: Use x = r cos θ, y = r sin θ , use chain
rule.

Ans. ∇f = �
fr cos θ − fθ sin θr

�
i + �

sin θfr+
cos θ
r
fθ
�
j

14. If x = r cos θ, y = r sin θ prove that

�
∂2r

∂x2

��
∂2r

∂y2

�
=

�
∂2r

∂x∂y

�2
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Hint: rxx = 1
r

− x2

r3
, ryy = 1

r
− y2

r3
, rxy = −xy

r3
.

15. If u = x2 + 2xy − y ln z where

x = s + t2, y = s − t2, z = 2t

find ∂u
∂s
, ∂u
∂t

at (1, 2, 1)

Ans. ∂u

∂s
= 4x + 2y − ln z, at (1, 2, 1) : 8

∂u

∂t
= 4yt + 2t ln z− 2y

z
, at (1, 2, 1) : 8t − 4.

3.6 DIFFERENTIATION OF AN IMPLICIT

FUNCTION

An implicit function of x and y is an equation of the
form

f (x, y) = 0

which can not necessarily be solved for one of the

variables say x in terms of the other variable say y.

For example

x2 + y2 + a2 = 0 (1)

is an implicit functionwhich can not be solved for say

x in terms of y explicitly. If (1) defines y as a function

of x, the derivative of y w.r.t. x can be calculated in

terms of f , without solving (1) explicitly for x in the

form y = y(x), by differentiating (1) partially w.r.t.

to x as
∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
= 0 (2)

solving (2) we get

dy

dx
= −

∂f
∂x
∂f
∂y

= −fx
fy

provided fy  = 0 (3)

Higher derivative
d2y

dx2
of an implicit function (1)

can be obtained by differentiating (3) on both sides,

keeping in mind that the arguments on the right of

(3) are x and y and that y itself is the function of x

defined by (1).
Differentiating (3) w.r.t. x, noting that fx and fy

as composite functions of x, we have

d2y

dx2
=

�
∂2f

∂x2
+ ∂2f
∂y∂x

dy
dx

�
∂f
∂y

−
�
∂2f
∂x∂y

+ ∂2f

∂y2
dy
dx

�
∂f
∂x�

∂f
∂y

�3 (4)

Substituting from (3)
dy

dx
= − fx

fy
in (4) and rearrang-

ing, we get

d2y

dx2
= −

�
fxx (fy )

2 − 2fxyfxfy + fyy (fx )2
�

(fy )3
, (5)

if fy  = 0

Thus
dy

dx
and

d2y

dx2
, given by (3) and (5) respectively,

are expressed in terms of the partial derivatives

fx, fy, fxx, fxy, fyy .

Implicit Function of Three Variables

Let f (x, y, z) = 0 be the equation of an implicit

function of three variables x, y, z. Suppose y and

z are functions of x, then f is a function of one

independent variable x and y, z are intermediate

variables.
Keeping z constant, differentiating w.r.t. x, we get

∂f

∂x
+ ∂f

∂y

∂y

∂x
= 0

solving
∂y

∂x
= −fx

fy
, provided fy  = 0

Similarly differentiating w.r.t. x, holding y constant

∂f

∂x
+ ∂f

∂z

∂z

∂x
= 0

solving
∂z

∂x
= −fx

fy
, if fz  = 0.

WORKED OUT EXAMPLES

Implicit function of two variables

Example 1: Find
dy

dx
from the given implicit func-

tion f connecting x and y:

a. f (x, y) = x sin(x − y) − (x + y) = 0

dy

dx
= −

∂f
∂x
∂f
∂y

= − [sin(x − y) + x · sin(x − y) · 1 − 1]

x cos(x − y) · (−1) − 1
.

b. xy = yx
Taking log, f = y log x − x log y = 0

dy

dx
= −fx

fy
= −

y
x

− log y

log x − x
y

.
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Example 2: Find
dy

dx
when yx

y = sin x.

Solution:

Taking log, f (x, y) = xy ln y − ln sin x = 0 (1)

Put z = xy, so ln z = y ln x (2)

Differentiating (2) w.r.t. x and y, we get

1

z
zx = y · 1

x
so zx = y

x
· z = y

x
· xy = yxy−1 (3)

1

z
zy = ln x so zy = z ln x = xy ln x (4)

Differentiating (1) partially w.r.t. x and y, we get

∂f

∂x
= fx = ∂

∂x
(xy ) ln y − 1

sin x
· cos x

using result (3)

fx = yxy−1 · ln y − cot x (5)

∂f

∂y
= fy = ∂

∂y
(xy ) ln y + xy · 1

y
− 0

using result (4)

fy = xy ln x · ln y + xy

y
(6)

Substituting (5) and (6) in

dy

dx
= −fx
fy

= −(yxy−1 ln y − cot x)

xy ln x · ln y + xyy−1

Example 3: Find
d2y

dx2
if x5 + y5 = 5a3x2.

Solution: Let f (x, y) = x5 + y5 − 5a3x2 = 0
Differentiating f w.r.t. x, y, we get

fx = 5x4 − 10a3x, fxy = 0

fxx = 20x3 − 10a3,

fy = 5y4; fyy = 20y3

Substituting these values in

d2y

dx2
= −fxx (fy )

2 − 2fxy · fx · fy + fyy (fx )2
(fy )3

= − (20x3 − 10a3)(25y8) − 0 + 20y3(5x4 − 10a3x)2

125y12

= −y
5(20x3 − 10a3) + 20(x8 − 4a3x5 + 4a6x2)

5y9

Replace y5 = 5a3x2 − x5

= − (5a3x2 − x5)(4x3 − 2a3) + 4(x8 − 4a3x5 + 4a6x2)

y9

= 6a3x2(a3 + x3)
y9

.

Example 4: Compute ∂z
∂x

and
∂y

∂x
at (1,−1, 2) if

x2 + y2 + z2 = a2.

Solution: f (x, y, z) = x2 + y2 + z2 − a2 = 0 is
the equation of implicit function. Differentiating f
partially w.r.t. x,

∂f

∂x
= 2x,

∂f

∂x

����
1,−1,2

= 2

Differentiating w.r.t. z

∂f

∂z
= 2z,

∂f

∂z

����
1,−1,2

= 4

so
∂z

∂x

����
(1,−1,2)

= −fx
fz

����
(1,−1,2)

= −2

4
= −1

2

Differentiating w.r.t. y

∂f

∂y
= 2y,

∂f

∂y

����
1,−1,2

= −2

so
∂y

∂x
= −fx

fy
= −2

−2
= 1.

Example 5: If xy3 − yx3 = 6 is the equation of a

curve, find the slope and the equation of the tangent

line at the point (1, 2).

Solution: Differentiating xy3 − yx3 = 6 implicitly
w.r.t. x, we get

y3 + 3xy2
dy

dx
− dy

dx
x3 − 3yx2 = 0

At (x = 1, y = 2), 8 + 12y − y − 6 = 0

slope at (1, 2) is
dy

dx
= − 2

11
,

Equation of the tangent line at (1, 2) is

y − 2

x − 1
= − 2

11

or 2x + 11y − 24 = 0.
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EXERCISE

Find the derivative
dy

dx
from the given implicit

function f (x, y) = c. Hint : use dy

dx
= −fx

fy
:

1. x3 + y3 = 3ax2

Ans.
dy

dx
= (2ax − x2)/y2

2. (cos x)y = (sin y)x

Ans.
sin y(y sin x+cos x ln sin y)
cos x(sin y ln cos x−x cos y)

3. sin(xy) = exy + x2y
Ans.

−y(cos xy−exy−2x)
x(cos xy−exy−x)

4. ax2 + 2hxy + by2 = c
Ans. −(ax + hy)/(hx + by)
5. xy + yx = c

Ans. − yxy−1+yx ln y
xyx−1+xy ln x

Find
d2y

dx2
from the implicit function f (x, y) = c

6. x4 + y4 = 4a2xy

Ans.
2a2xy(3a4+x2y2)

(a2x−y3)3

7. ax2 + 2hxy + by2 + 2gx + 2fy + c = 0

Ans.
abc+2fgh−af 2−bg2−ch2

(hx+by+f )3

8. x
�
1 − y2 + y

√
1 − x2 = a

Ans. a

(1−x2)
3
2

9. Find
∂y

∂u
and

∂y

∂x
if ln uy + y ln u = x

Ans.
∂y

∂u
= −(y2 + y)/(u+ yu ln u)

∂y

∂x
= y/(1 + y ln u)

10. Find du
dx

given u = x ln xy and x3 + y3 +
3xy − 1 = 0

Ans. 1 + ln xy − x(x2 + y)/(y(y2 + x)) at
x = y = a

11. If z(z2 + 3x) + 3y = 0, prove that

∂2z

∂x2
+ ∂2z

∂y2
= 2z(x − 1)

(z2 + x)3

12. Find ∂u
∂x

and ∂u
∂y

if u = f (x + u, yu)

Ans.
∂u

∂x
= f1/(1 − f1 − yf2)

∂u

∂y
= uf2/(1 − f1 − yf2)

wheref1 is differentiationw.r.t. to thefirst vari-

able x + u; f2 is w.r.t. yu
13. If yexy = sin x, find

dy

dx
and

d2y

dx2
at (0, 0)

Ans.
dy

dx
= 1,

d2y

dx2
= 0

14. If xy = yx find dy

dx
at (2, 4)

Ans. y  = 4(ln 2 − 1)/(2 ln 2 − 1)

15. Find
∂y

∂x
and ∂z

∂x
at (0, 1, 2) if z3 + xy − y2z

= 6

Ans. ∂y

∂x
= − y

x − 2yz

����
(0,1,2)

= 1

4

∂z

∂x
= − y

3z2 − y2
����
(0,1,2)

= − 1

11

16. For the curve xey + yex = 0, find the equation

of the tangent line at the origin.

Ans. x + y = 0.

3.7 EULER’S THEOREM

Homogeneous Function

A polynomial in x and y is said to be homogeneous
if all its terms are of the same degree. Generaliz-
ing this property to include non-polynomials, a func-
tion f (x, y) in two variables x and y is said to be a
homogeneous function of degree n if for any positive
number λ,

f (λx, λy) = λnf (x, y)
This definition can be further enlarged to include

transcendental functions also as follows. A function
f (x, y) is said to be homogeneous of degree n if it
can be expressed as

xnφ
�y
x

�
or ynψ

�
x

y

�
Here n need not be an integer, n could be positive,

negative or zero.
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Example:

1. 3x2 − 2xy + 15
2
y2 is homogeneous of degree 2

2.
√
y+√

x

y+x is homogeneous of degree − 1
2

3. sin
�
y

x

� + tan−1
�
x
y

�
is homogeneous of degree

zero

4.
�
x+y
xy

+ x 2
3 e

x
y

�
y− 5

3 is not homogeneous

5. x
1
3 y− 2

3 + x 2
3 y− 1

3 is not homogeneous

Homogeneous function f of three variables x, y, z
of degree n can be expressed as

f = xnφ
�y
x
,
z

x

�
or ynψ

�
x

y
,
z

y

�
or znx

�
x

z
,
y

z

�

Euler’s Theorem on Homogeneous

Functions

Theorem: If f is a homogeneous function of x, y

of degree n then

x
∂f

∂x
+ y ∂f

∂y
= nf (1)

Proof: Since f is a homogeneous function of

degree n, f can be written in the form

f (x, y) = xnφ
�y
x

�
(2)

Differentiating partially w.r.t. x and y, we get

∂f

∂x
= nxn−1φ + xn · φ ·

�−y
x2

�
(3)

∂f

∂y
= xnφ · 1

x
(4)

Multiplying (3) by x and (4) by y and adding we
have

x
∂f

∂x
+ y ∂f

∂y
= nxnφ − xn−1yφ + yxn−1φ 

= ηxnφ = n.f
Thus differential operator x ∂

∂x
+ y ∂

∂y
operating on

a homogeneous function f of degree n amounts to

multiplication of f by n.

Corollary 1: If f is a homogeneous function of

degreen n, then

x2
∂2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2 ∂

2f

∂y2
= n(n− 1)f (5)

Proof: Differentiating Euler’s result (1) w.r.t. x and
y respectively, we get

∂f

∂x
+ x ∂

2f

∂x2
+ y ∂

2f

∂y∂x
= n∂f

∂x
(6)

x
∂2f

∂x∂y
+ ∂f

∂y
+ y ∂

2f

∂y2
= n∂f

∂y
(7)

Multiplying (6) by x and (7) by y and adding, we
have

x2fxx + y2fyy + 2xy fxy = (n− 1)(xfx + yfy )
= n(n− 1)f

wherewe have usedEuler’s theorem (1) and assumed

that fxy = fyx .

Euler’s Theorem for Three Variables

Theorem: If f is a homogeneous function of three

independent variables x, y, z of order n, then

x fx + y fy + z fz = nf (8)

Proof: Express f as

f = xnφ
�y
x
,
z

x

�
= xnφ(u, v) (9)

where u = y/x, v = z/x
Differentiating (9) partially w.r.t. x, y, z, respec-

tively

fx = ηxn−1φ + xn
�
∂φ

∂u

∂u

∂x
+ ∂φ

∂v

∂v

∂x

�

fx = ηxn−1φ + xn
�
∂φ

∂u
·
�−y
x2

�
+ ∂φ

∂v

�−z
x2

��
(10)

fy = xn
�
∂φ

∂u
· ∂u
∂y

+ ∂φ

∂v
· ∂v
∂y

�
= xn · ∂φ

∂u
· 1
x

+ 0

(11)

fz = xn
�
∂φ

∂u
· ∂u
∂z

+ ∂φ

∂v
· ∂v
∂z

�
= xn

�
0 + ∂φ

∂v

�
1

x

��
(12)

Multiplying (10), (11), (12) by x, y, z respectively
and adding the resultant equations, we get

x fx + y fy + z fz = ηxnφ − xn−1

�
y
∂φ

∂u
+ z ∂φ

∂v

�

+yxn−1 ∂φ

∂u
+ zxn−1 ∂φ

∂v

= ηxnφ = nf.
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WORKED OUT EXAMPLES

Example 1: Find the degree of the following

homogeneous functions:

a. x2 − 2xy + y2 d. x
1
3 y− 4

3 tan−1(y/x)

b. log y − log x e. 3x2yz+ 5xy2z+ 4x4

c. (
�
x2 + y2)3 f. [z2/(x4 + y4)] 13

Ans:

a. 2

b. log y − log x = ln
�
y

x

� = x0 ln � y
x

�
degree zero

c. (
�
x2 + y2)3 = x3

�
1 + �

y

x

�2
degree 3

d. x
1
3 y− 4

3 tan−1(y/x) = x−1 · x− 4
3 y− 4

3 tan−1 y

x
=

x−1
�
x
y

� 4
3
tan−1 y

x
. degree: −1

e. degree 4

f.
�

z2

x4+y4
� 1
3 =

�
1

z2
z4

x4+y4
� 1
3 = z− 2

3

�
1

( xz )
4+( yz )

4

�
degree = −2/3.

Example 2: Verify Euler’s theorem for the fol-

lowing functions by computing both sides of Euler’s

Equation (1) directly:

i. (ax + by) 13 ii. x+ 1
3 y− 4

3 tan−1(y/x)

Solution: i. f = (ax + by) 13 is homogeneous

function of degree 1
3

Differentiating f partially w.r.t. x and y, we get

fx = ∂f

∂x
= 1

3
(ax + by)− 2

3 · a

fy = ∂f

∂y
= 1

3
(ax + by)− 2

3 · b

Multiplying by x and y and adding, we get the L.H.S.
of (1)

x fx + y fy = 1

3
(ax + by)− 2

3 ax + 1

3
(ax + by)− 2

3 by

= 1

3
(ax + by)− 2

3 (ax + by)

= 1

3
(ax + by) 13 = 1

3
f.

Since f is homogeneous function of degree 1
3
the

R.H.S. of (1) is nf = 1
3
f .

Thus

x fx + y fy = L.H.S. = 1

3
f = R.H.S.

ii. f = x 1
3 y− 4

3 tan−1(y/x) is homogeneous func-
tion of degree −1

fx = 1

3
x− 2

3 y− 4
3 tan−1

�y
x

�
+ x 1

3 y− 4
3 · 1

1+ � y
x

�2 ·
�−y
x2

�

fy = x 1
3

�
−4

3

�
y− 7

3 tan−1
�y
x

�
+ x 1

3 y− 4
3 · 1

1+ � y
x

�2 1

x

so

xfx + yfy

= 1

3
· x 1

3 y− 4
3 tan−1(y/x) + x 4

3 y− 4
3

� −y
x2 + y2

�

−4

3
x

1
3 y− 4

3 tan−1(y/x) + x 4
3 y− 1

3 · 1

x2 + y2

= −x 1
3 y− 4

3 tan−1(y/x) = −f.

Example 3: If u = log
x2+y2
x+y , prove that

x ux + y uy = 1

Solution: Let

f = eu = x2 + y2
x + y =

x2
�
1 + � y

x

�2�
x
�
1 + y

x

� = xφ
�y
x

�
f is a homogeneous function of degree 1.

Applying Euler’s theorem for the function f , we
get

xfx + yfy = n · f = f.
Since f = eu, fx = eu · ux, fy = euuy

so x · euux + yeuuy = f = eu

since eu  = 0, x ux + y uy = 1.

Example 4: Show that x ux + y uy + z uz =
−2 cot u when

u = cos−1

�
x3 + y3 + z3
ax + by + cz

�

Solution: Let

f = cos u = x3 + y3 + z3
ax + by + cz

Here f is a homogeneous function of degree 2
in the three variables x, y, z. By Euler’s theorem
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x fx + y fy + z fz = 2f . Now differentiating f
w.r.t. x, y, z respectively, we get

fx = − sin u · ux, fy = − sin u uy, fz = − sin u uz.

Substituting

x fx + y fy + z fz = − sin u(x ux + y uy + z uz) = 2f

= 2 cos u

or

x ux + y uy + z uz = −2 cos u

sin u
= −2 cot u

Example 5: Prove that x ux + y uy = 5
2
tan u if

u = sin−1
�
x3+y3√
x+√

y

�
Solution: Let f = sin u = x3+y3√

x+√
y

then f is a

homogeneous function of degree 5
2
since

f = x3√
x

�
1 + (y/x)3

1 + (y/x)
1
2

�
= x 5

2 φ(y/x).

Applying Euler’s theorem for f , we have

x fx + y fy = nf = 5

2
f.

Since f = sin u, fx = cos u · ux, fy = cos u uy so
that

x · cos u ux + y cos u uy = 5

2
f = 5

2
· sin u

x ux + y uy = 5

2

sin u

cos u
= 5

2
tan u

Example 6: If u = x3y2 sin−1(y/x) show that

x ux + y uy = 5u

and x2uxx + 2xy uxy + y2uyy = 20u

Solution: Rewriting u = x2

x2
· x3y2 sin−1(y/x) =

x5
�
y

x

�2
sin−1 y

x

u = x5φ � y
x

�
so u is a homogeneous function of

degree 5.

Applying Euler’s theorem to u, we get

x ux + y uy = nu = 5u

Differentiating the above equation partially w.r.t. x
and y, we have

x uxx + ux + y uyx = 5ux

x uxy + uy + y uyy = 5uy

Multiplying by x and y and adding, we get

(x2uxx + xux + xy uyx ) + (xy uxy + yuy + y2uyy )
= 5(xux + yuy )

or

x2uxx + 2xy uxy + y2uyy = (5 − 1)(x ux + y uy )
= (5 − 1) · 5u = 20u

Here we replaced x ux + y uy by 5u (from Euler’s

theorem) and assumed uyx = uxy .

EXERCISE

1. Determine the degree of the following homo-

geneous functions:

a.
�
x2 − xy

b. sin−1
�
y

x

�
c.
x3−y3
x+y

d.
ax+by+cz

Ax6+By6+Cz6

e. x2(x2 − y2) 13 /(x2 + y2) 23
f. 2x3y2 + 3x2y3 + 6xy4 − 8y5

Ans. a. 1 b. 0 c. 2 d. −5 e. 4/3 f. 5

2. Verify Euler’s theorem

a.
�
x2 + y2

b. cos−1
�
x
y

�
c. (ax + by) 32
d. x2(x2 − y2)3/(x2 + y2)3
e. x2y2/(x + y)
f. cos−1

�
x
y

�
+ cot−1

�
y

x

�
g. (x

1
3 + y 1

3 )/(x
1
4 − y 1

4 )

h. xy/(x + y)
i. (x2 + xy + y2)−1

j. 1

x2
+ 1
xy

+ log x−log y

x2+y2

k. log
x4+y4
x+y
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3. If f (x, y) = sec−1
�
x3+y3
x−y

�
show that

x fx + y fy = 2 cot f .

4. If u = sin−1
�
x
y

�
+ tan−1

�
y

x

�
show that

x ux + y uy = 0.

5. If f = ln
�
x4+y4
x+y

�
then x fx + y fy = 3.

6. If u = sin−1
�
x2+y2
x+y

�
show that x ux + y uy =

tan u and x2uxx + 2xy uxy + y2uyy = tan3 u.

7. If u = sin−1
�
x2y2

x+y

�
then x ux + y uy =

3 tan u.

8. If f = x g � y
x

� + h � y
x

�
show that x2fxy +

2xy fyy + y2fyy = 0.

9. If u = y2e yx + x2 tan−1
�
x
y

�
show that

x ux + y uy = 2u

and x2uxx + 2xy uxy + y2uyy = 2u.

10. If tan u = x3+y3
x−y show that x ux + y uy =

sin 2u and x2uxx + 2xy uxy + y2 uyy =
2 cos 3u · sin u.

11. If cos u = x2+y2√
x+√

y
then x ux + y uy =

− 3
2
· cot u.

12. If ln u = x2y2/(x + y) then show that

x ux + y uy = 3u ln u.

13. If u = 3x4 cot−1
�
y

x

� + 16y4 cos−1
�
x
y

�
then

prove that x uxx + 2yx uxy + y2uyy = 12u.

14. Show that x2uxx + 2xy uxy + y2 uyy =
tan u
12

�
13
12

+ tan2 u
12

�
when (

√
x + √

y) sin2 u =
x

1
3 + y 1

3 .

15. Verify Euler’s theorem for

f = z

x + y + y

z+ x + x

y + z .

16. If u = cos−1

�
x5−2y5+6z5√
ax3+by3+cz3

�
then show that

x ux + y uy + z uz = − 7
2
cot u.

17. Prove that�
x
∂

∂x
+ y ∂

∂y

�3

f = x3fxxx + 3x2y fxxy

+3xy2 fxyy + y3 fyyy
= n(n− 1)(n− 2)f

if f (x, y) is a homogeneous function of

degree n.

18. Prove that 4x fx + 4y fy + sin 2f = 0 if

(
√
x + √

y) cot f − x − y = 0.

19. Show that x ux + y uy + z uz = 0 when u =
y

z
+ z
x
.

Hint: u is homogeneous function of degree

zero.

3.8 JACOBIAN

Jacobian* is a functional determinant (whose

elements are functions) which is very useful in

transformation of variables from cartesian to polar,

cylindrical and spherical coordinates in multiple

integrals (Chapter 7). Let u(x, y) and v(x, y) be two

given functions of two independent variables x andy.

The Jacobian of u, v with respect to x, y denoted

by J
�
u,v
x,y

�
or ∂(u,v)

∂(x,y)
is a second order functional de-

terminant defined as

J

�
u, v

x, y

�
= ∂(u, v)

∂(x, y)
=

��������
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

��������
Note: Obviously J

�
u,v
u,v

�
= ∂(u,v)

∂(u,v)
=

���1 0

0 1

��� = 1

Similarly the Jacobian of three functions u, v,w
of three independent variables x, y, z is defined as

J

�
u, v,w

x, y, z

�
= ∂(u, v,w)

∂(x, y, z)
=

�������������

∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z

�������������
* Carl Gustav Jacob Jacobi (1804–1851), German mathemati-
cian.



PARTIAL DIFFERENTIATION 3.23

In a similar way, Jacobian of n functions in n vari-

ables can be defined.

Two Important Properties of Jacobians

BookWork I. If J = ∂(u, v)

∂(x, y)
and J ∗ = ∂(x, y)

∂(u, v)
then JJ ∗ = 1

i.e., J = ∂(u, v)

∂(x, y)
= 1

J ∗ = 1

∂(x,y)
∂(u,v)

Proof: Let

u = f (x, y) and v = g(x, y) (1)

be two given functions in terms of x and y, which

are transformations from u, v to x, y. Solving (1) for

x and y, we get x and y as functions in terms of the

two independent variables u and v as

x = φ(u, v) and y = ψ(u, v) (2)

known as inverse transformation from x, y to u, v.
Differentiating partially w.r.t. u and v, we get

1 = ∂u

∂u
= ∂u

∂x

∂x

∂u
+ ∂u

∂y

∂y

∂u
= uxxu + uyyu (3)

0 = ∂u

∂v
= ∂u

∂x

∂x

∂v
+ ∂u

∂y

∂y

∂v
= uxxv + uyyv (4)

0 = ∂v

∂u
= ∂v

∂x

∂x

∂u
+ ∂v

∂y

∂y

∂u
= vxxu + vyyu (5)

1 = ∂v

∂v
= ∂v

∂x

∂x

∂v
+ ∂v

∂y

∂y

∂v
= vxxv + vyyv (6)

Consider

J · J ∗ =
����ux uyvx vy

����
����xu xvyu yv

����
=
����ux uyvx vy

����
����xu yuxv yv

���� By interchanging rows and col-umns in the second determinant.

Multiplying the determinant row-wise,

J · J ∗ =
�����uxxu + uyyu uxxv + uyyv
vxxu + vyyv vxxv + vyyv

�����
Substituting (3), (4), (5), (6) above, we get

J · J ∗ =
����1 0

0 1

���� = 1

Chain Rule for Jacobians

BookWork II. If u, v are functions of r, s and r, s
are themselves functions of x, y then

∂(u, v)

∂(x, y)
= ∂(u, v)

∂(r, s)

∂(r, s)

∂(x, y)

i.e., J

�
u, v

x, y

�
= J

�
u, v

r, s

�
J

�
r, s

x, y

�

Proof: Differentiating u, v partially w.r.t. x, y

∂u

∂x
= ∂u

∂r

∂r

∂x
+ ∂u

∂s

∂s

∂x
(1)

∂u

∂y
= ∂u

∂r

∂r

∂y
+ ∂u

∂s

∂s

∂y
(2)

∂v

∂x
= ∂v

∂r

∂r

∂x
+ ∂v

∂s

∂s

∂x
(3)

∂v

∂y
= ∂v

∂r

∂r

∂y
+ ∂v

∂s

∂s

∂y
(4)

From definition of Jacobian

∂(u, v)

∂(r, s)
· ∂(r, s)
∂(x, y)

=
����ur usvr vs

����
����rx rysx sy

����
By interchanging the rows and columns in second

determinant

=
����ur usvr vs

����
����rx sxry sy

����
Multiplying the determinant row-wise

=
����urrx + ussx ur ry + ussy
vr rx + vssx vr ry + vssy

����
Using (1), (2), (3), (4)

∂(u, v)

∂(r, s)
· ∂(r, s)
∂(x, y)

=
����ux uyvx vy

���� = ∂(u, v)

∂(x, y)

Thus Jacobians behave in a certain way like deri-

vatives.

Note: All the above results of Jacobian of two vari-

ables can be extended similarly to n (any number of)

variables.

Standard Jacobians

Jacobians for change of variables from cartesian co-

ordinates to

i. polar coordinate x = r cos θ, y = r sin θ
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ii. cylindrical coordinates x = r cos θ,
y = r sin θ, z = z

iii. spherical coordinates x = r sin θ cosφ,

y = r sin θ sin φ and z = r cos θ

i. x = r cos θ, y = r sin θ , so xr = cos θ,
xθ = −r sin θ, yr = sin θ, yθ = r cos θ

∂(x, y)

∂(r, θ )
=
����xr xθ
yr yθ

���� =
����cos θ −r sin θ
sin θ r cos θ

����
= r(cos2 θ + sin2 θ ) = r

Solving for r, θ we have

r =
�
x2 + y2, θ = tan−1

�y
x

�

so rx = x

r
, ry = y

r
, θx = −y

r2
, θy = x

r2

∂(r, θ )

∂(x, y)
=
�����rx ryθx θy

�����=
�����
x
r

y
r

−y
r2

x

r2

����� = x2

r3
+ y2

r3
= r2

r3
= 1

r

ii. x = r cos θ, y = r sin θ, z = z so xr = cos θ,
xθ = − r sin θ, xz = 0, yr = sin θ, yθ = r cos θ,
yz = 0, zr = 0, zθ = 0, zz = 1

J = ∂(x, y, z)

∂(r, θ, z)
=

�������
xr xθ xz

yr yθ yz

zr zθ zz

������� =

�������
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

�������
= r(cos2 + sin2 θ ) = r

J ∗ = ∂(r, θ, z)

∂(x, y, z)
= 1

J
= 1

r

iii. x = r sin θ cosφ, y = r sin θ sin φ,
z = r cos θ
∂(x, y, z)

∂(r, θ, φ)

=

�������
sin θ cosφ r cos θ cosφ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cosφ

cos θ −r sin θ 0

�������
= r2 sin θ cos2 θ + r2 sin θ sin2 θ = r2 sin θ

Using property (ii)

∂(r, θ, φ)

∂(x, y, z)
= 1

∂(x,y,z)
∂(r,θ,φ)

= 1

r2 sin θ
.

WORKED OUT EXAMPLES

Example 1: Find the Jacobian ∂(u,v)

∂(x,y)
in each of the

following:

i. u = x sin y, v = y sin x

ii. u = ex sin y, v = x + log sin y

Solution: By definition

∂(u, v)

∂(x, y)
=

��������
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

��������
i. u = x sin y, v = y sin x so ux = sin y, uy =
x cos y, vx = y cos x, vy = sin x

Jacobian =
����sin y x cos y

y cos x sin x

����
= sin x sin y − xy cos x cos y

ii. u = ex sin y, v=x+ log sin y so ux = ex sin y,
uy=ex cos y, vx = 1, vy = cos y

sin y

∂(u, v)

∂(x, y)
=

������
ex sin y ex cos y

1
cos y

sin y

������
= ex cos y − ex cos y = 0.

Example 2: Calculate J = ∂(u,v)

∂(x,y)
and J ∗ = ∂(x,y)

∂(u,v)
·

verify that J · J ∗ = 1 given

i. u = x + y2

x
, v = y2

x

ii. x = eu cos v, y = eu sin v

i. u = x + y2

x
, v = y2

x

J = ∂(u, v)

∂(x, y)
=

������
1 − y2

x2
2y
x

−y2
x2

2y
x

������
= 2y

x
− 2y3

x3
+ 2y3

x3
= 2y

x

Solving for x, y in terms of u and v, we have

u = x + y2

x
= x + v ... x = u− v, v = y2

x
,
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y2 = vx, y2 = v(u− v) ... y = √
v(u− v)

J ∗ = ∂(x, y)

∂(u, v)
=

�����xu xv

yu yv

�����=
�����

1 −1

1
2

v√
v(u−v)

1
2

(u−2v)√
v(u−v)

�����
J ∗ = 1

2

1√
v(u− v) [u− 2v+ v]= 1

2

u− v√
v(u− v) = 1

2

x

y

Verification: J · J ∗ = 2y

x
· 1
2
x
y

= 1

ii. x = eu cos v, y = eu sin v

J = ∂(x, y)

∂(u, v)
=

�����e
u cos v −eu sin v
eu sin v eu cos v

�����
= e2u(cos2 v + sin2 v) = e2u

Solving for u, v in terms of x, y

tan v = eu sin v

eu cos v
= y

x
... v = tan−1 y

x

x2 + y2 = e2u(cos2 v + sin2 v) = e2u

... u = 1

2
ln(x2 + y2).

J ∗ = ∂(u, v)

∂(x, y)
=

�������
x

x2 + y2
y

x2 + y2−y
x2 + y2

x

x2 + y2

�������
J ∗ = x2 + y2

(x2 + y2)2 = 1

x2 + y2 = 1

e2u

Verification: J · J ∗ = e2u 1

e2u
= 1.

Example 3: Calculate
∂(x,y,z)

∂(u,v,w)
if u = 2yz

x
, v = 3zx

y
,

w = 4xy

z
.

Solution:

∂(x, y, z)

∂(u, v,w)
=

�������
xu xv xw

yu yv yw

zu zv zw

�������

=

������������

−2yz

x2

2z

x

2y

x

3z

y

−3zx

y2

3x

y

4y

z

4x

z

−4xy

z2

������������

Expanding the determinant

= −2yz

x2

�
12x2yz

y2z2
− 12x2

yz

�
− 2z

x

�−12xyz

yz2
− 12xy

yz

�

+2y

x

�
12xz

yz
+ 12xyz

zy2

�
= 0 + 48 + 48 = 96.

Example 4: Calculate ∂(u,v)
∂(r,θ )

if u = 2axy,

v = a(x2 − y2) where x = r cos θ, y = r sin θ .

Solution: Since u, v are functions of x, y which
are themselves functions of r, θ , use chain rule for
Jacobians. Thus

∂(u, v)

∂(r, θ )
= ∂(u, v)

∂(x, y)

∂(x, y)

∂(r, θ )

Given u = 2axy, v = a(x2 − y2), ux = 2ay, uy =
2ax, vx = 2ax, vy = −2ay

∂(u, v)

∂(x, y)
=
����2ay 2ax

2ax −2ay

����
= −4a2(y2 + x2) = −4a2r2

Since x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2

Also
∂(x, y)

∂(r, θ )
=

�����cos θ −r sin θ
sin θ r cos θ

����� = r

Hence
∂(u, v)

∂(r, θ )
= ∂(u, v)

∂(x, y)

∂(x, y)

∂(r, θ )
= (−4a2r2)r = − 4a2r3.

Example 5: If x = √
vw, y = √

wu, z = √
uv

and u = r sin θ · cosφ, v = r sin θ sin φ,w = r
cos θ , calculate

∂(x,y,z)
∂(r,θ,φ)

.

Solution: Since x, y, z are functions of u, v,w
which are in turn functions of r, θ, φ, so use chain
rule for Jacobians. Thus

∂(x, y, z)

∂(r, θ, φ)
= ∂(x, y, z)

∂(u, v,w)

∂(u, v,w)

∂(r, θ, φ)

Consider

∂(x, y, z)

∂(u, v,w)
=

�������
xu xv xw

yu yv yw

zu zv zw

�������
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=

���������������

0
1

2

�
w

v

1

2

�
v

w

1

2

�
w

u
0

1

2

�
u

w

1

2

�
v

u

1

2

�
u

v
0

���������������
= 1

8

��
w

v

v

u

u

v
+
�
v

w

w

u

u

v

�
= 2

8
= 1

4

We know already that Jacobian for spherical coordi-
nates is

∂(u, v,w)

∂(r, θ, φ)
= r2 sin θ

thus
∂(x, y, z)

∂(r, θ, φ)
= ∂(x, y, z)

∂(u, v,w)

∂(u, v,w)

∂(r, θ, φ)
= 1

4
r2 sin θ

Example 6: Calculate
∂(u,v,w)
∂(x,y,z)

if

u = x/
�
(1 − r2), v = y/

�
(1 − r2), w = z/

�
(1 − r2)

where r2 = x2 + y2 + z2.

Solution: Given r2=x2+y2+z2, r=
�
x2+y2+z2,

rx = 1
2

2x√
x2+y2+z2

= x
r
. Similarly ry = y

r
, rz = z

r
.

Differentiating u = x/
�
(1 − r2) w.r.t. x, we get

ux = 1�
1 − r2

+ x ·
�

−1

2

�
· −2r

(1 − r2) 32
· rx

ux = 1�
1 − r2

+ rx

(1 − r2) 32
· x
r

= (1 − r2) + x2

(1 − r2) 32

Put e = (1 − r2)3/2, so ux = 1−r2+x2
e

By symmetry

vy = (1 − r2) + y2
e

, wz = (1 − r2) + z2
e

Differentiating u w.r.t. y, we get

uy = x ·
�

−1

2

�
· 1

(1 − r2) 32
(−2r) · ry = xr

(1 − r2) 32
· y
r

uy = xy

(1 − r2) 32
= xy

e

In a similar way, we have

uz = xz

e
, vx = yx

e
, vz = yz

e

wx = xz

e
, wy = yz

e

Thus

∂(u, v,w)

∂(x, y, z)
=

���������

(1−r2)+x2
e

xy
e

xz
e

xy
e

(1−r2)+y2
e

yz
e

xz
e

yz
e

(1−r2)+z2
e

���������
= 1

(1 − r2) 92

������
1 − r2 + x2 xy xz

xy 1 − r2 + y2 yz

xz yz 1 − r2 + z2

������
= (1 − r2)−9

2 [(1 − r2 + x2){(1 − r2 + y2)(1 − r2 + z2)
−y2z2} − (1 − r2)x2y2 − (1 − r2)x2z2]

= (1 − r2)−9
2 [(1 − r2 + x2)(1 − r2 + y2)(1 − r2 + z2)

−(1 − r2)(y2z2 + x2y2 + x2z2) − x2y2z2]

= (1 − r2)−9
2 [(1 − r2)3 + (1 − r2)2(x2 + y2 + z2)]

= (1 − r2)−9
2 (1 − r2)2 = (1 − r2)− 5

2 .

Example 7: Verify the chain rule for Jacobians if

x = u, y = u tan v, z = w.

Solution:

J = ∂(x, y, z)

∂(u, v,w)
=

�������
1 0 0

tan v u sec2 v 0

0 0 1

������� = u sec2 v

Solving for u, v,w in terms of x, y, z we have u=x,
tan v = y

u
= y

x
, v = tan−1 y

x
, w = z

J ∗ = ∂(u, v,w)

∂(x, y, z)
=

��������
1 0 0

−y
x2 + y2

x

x2 + y2 0

0 0 1

��������
J ∗ = x

x2 + y2 = 1

x
�
1 + � y

x

�2� = 1

u sec2 v

Thus J · J ∗ = u sec2 v · 1

u sec2 v
= 1.
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EXERCISE

Find the Jacobian ∂(u,v)

∂(x,y)
when

1. u = 3x + 5y, v = 4x − 3y

Ans. −29

2. x + y = u, y = uv
Ans. (x + y)−1

Hint: Solving u = x + y, v = y/(x + y)
3. u = (x + y)/(1 − xy), v = tan−1 x +

tan−1 y

Ans. 0

Verify the chain rule for Jacobians

i.e., J · J ∗ = ∂(u, v)

∂(x, y)

∂(x, y)

∂(u, v)
= 1 for the following

4. x = u(1 − v), y = uv
Ans. J = u, J ∗ = (x + y)−1 = u−1

5. u = x + y, v = xy
Ans. J = x − y

6. Show that ∂(u,v)
∂(r,θ )

=6r3 sin 2θ given u=x2−2y2,

v = 2x2 − y2 and x = r cos θ, y = r sin θ .
Hint: use ∂(u,v)

∂(r,θ )
= ∂(u,v)

∂(x,y)

∂(x,y)

∂(r,θ )
, Also

∂(x,y)

∂(r,θ )
= r .

7. Calculate Jacobian of u, v,w w.r.t. x, y, z

when u = yz/x, v = zx/y,w = xy/z
Ans. 4

8. Find ∂(u, v)/∂(r, θ ) if u = 2xy, v = x2 − y2
and x = r cos θ, y = r sin θ .

Ans. 4r3

9. u = x2 + y2, v = y, x = r cos θ,
y = r sin θ .

Ans. 2xr

10. If X = u2v, Y = uv2 and u = x2 − y2,
v = xy find ∂(X,Y )

∂(x,y)
.

Hint: Use ∂(X,Y )
∂(x,y)

= ∂(X,Y )

∂(u,v)

∂(u,v)

∂(x,y)
(chain rule).

Ans. 6x2y2(x2 + y2)(x2 − y2)2

11. Find ∂(u,v,w)

∂(x,y,z)
if u = x2, v = sin y,w = e−3z

Ans. −6e−3zx cos y

12. If u = x + y + z, uv = y + z, uvw = z find
∂(x,y,z)

∂(u,v,w)

Ans. u2v

13. u = xyz, v = xy + yz+ zx,w = x + y + z
Ans. (x − y)(y − z)(z− x)
14. x = 1

2
(u2 − v2), y = uv, z = w

Ans. (u2 + v2)−1

15. u = 3x + 2y − z, v = x − y + z,
w = x + 2y − z

Ans. −2.

3.9 FUNCTIONAL DEPENDENCE

Let u = f (x, y), v = φ(x, y) be two given differen-
tiable functions of the two independent variables x

and y. Suppose these functionsu and v are connected

by a relation F (u, v) = 0, where F is differentiable.

Then these functions u and v are said to be func-

tionally dependent on one another (i.e., one function

say u is a function of the second function v) if the

partial derivatives ux, uy, vx and vy are not all zero

simultaneously.
Necessary and sufficient condition for functional

dependence can be expressed in terms of a determi-
nant as follows:DifferentiatingF (u, v) = 0 partially
w.r.t. x and y, we get

∂F

∂u

∂u

∂x
+ ∂F

∂v

∂v

∂x
= 0

∂F

∂u

∂u

∂y
+ ∂F

∂v

∂v

∂y
= 0

A non-trivial solution Fu  = 0, Fv  = 0 to this system
exists if the coefficient determinant is zero.�����ux vx

uy vy

����� =
�����ux uy

vx vy

����� = 0

Result: Two functions u and v are functionally
dependent if their Jacobian
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J

�
u, v

x, y

�
= ∂(u, v)

∂(x, y)
=

�����ux uy

vx vy

����� = 0

If Jacobian is not equal to zero, then u and v are

said to be functionally independent.
Extending this concept, three given functions

u(x, y, z), v(x, y, z), w(x, y, z) of three indepen-
dent variables x, y, z, connected by the relation
F (u, v,w) are functionally dependent if first order
derivatives of u, v,w w.r.t. x, y, z are not all zero
simultaneously or if

J

�
u, v,w

x, y, z

�
= ∂(u, v,w)

∂(x, y, z)
=

�������
ux uy uz

vx vy vz

wx wy wz

������� = 0

If Jacobian is non-zero, the functions u, v,w are

said to be functionally independent.

Note: m functions of n variables are always func-

tionally dependent when m > n.

WORKED OUT EXAMPLES

Determine which of the following functions are

functionally dependent. Find a functional rela-

tion between them in case they are functionally

dependent.

Example 1: u = ex sin y, v = ex cos y.
Solution:

Jacobian = ∂(u, v)

∂(x, y)
=

�����ux uy

vx vy

�����
=
�����e
x sin y ex cos y

ex cos y −ex sin y

�����
= ex (− sin2 y − cos2 y) = −ex  = 0

... u, v are functionally independent.

Example 2: u = x
y
, v = x+y

x−y .

Solution:

J = ∂(u, v)

∂(x, y)
=

������
1
y

−x
y2

−2y

(x−y)2
2x

(x−y)2

������

= 2xy

(x − y)2 − 2xy

(x − y)2 = 0

... u, v are functionally dependent

v = x + y
x − y =

y
�
x
y

+ 1
�

y
�
x
y

− 1
� = u+ 1

u− 1

... v = u+1
u−1

is the functional relation between u and

v.

Example 3: u = x2e−y cosh z, v = x2e−y sinh z,
w = 3x4e−2y .

Solution:

J

�
u, v,w

x, y, z

�
= ∂(u, v,w)

∂(x, y, z)
=

�������
ux uy uz

vx vy vz

wx wy wz

�������

=

�������
2xe−y cosh z −x2e−y cosh z x2e−y sinh z

2xe−y sinh z −x2e−y sinh z x2e−y cosh z

12x3e−2y −6x4e−2y 0

�������
= 12x7e−4y (cosh2 z− sinh2 z)

−12x7e−4y (cosh2 z− sinh2 z) = 0

... u, v,w are functionally dependent

3u2 − 3v2 = 3(x4e−2y cosh2 z− x4e−2y sinh2 z)

= 3x4e−2y = w.
EXERCISE

Determine whether the following functions are func-

tionally dependent or not. If functionally dependent,

find the functional relation between them:

1. u = x2−y2
x2+y2 , v = 2xy

x2+y2

Ans. dependent, u2 + v2 = 1

2. u = sin x + sin y; v = sin(x + y)
Ans. independent

3. u = x+y
x−y , v = xy

(x−y)2

Ans. dependent, u2 = 1 + 4v

4. u = x−y
(x+a) , v = (x+a)

(y+a) , a = const

Ans. dependent, v = 1
1−u
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5. u = x2 + y2 + 2xy + 2x + 2y, v = ex · ey

Ans. dependent, u = (log v)2 + 2 log v

6. u = x + y + z, v = x2 + y2 + z2,
w = x3 + y3 + z3 − 3xyz

Ans. dependent, 2w = u(3v − v2)
7. u = xey sin z, v = xey cos z,w = x2e2y

Ans. dependent, u2 + v2 = w
8. u = x + y + z, v = x3 + y3 + z3 − 3xyz,

w = x2 + y2 + z2 − xy − yz− zx
Ans. dependent, uw = v

9. u = 4x2 + 9y2 + 16z2, v = 2x + 3y + 4z,

w = 12xy + 16xz+ 24yz

Ans. dependent, v2 − u− w = 0

10. u = 3x2

2(y+z) , v = 2(y+z)
3(x−y)2 , w = x−y

x

Ans. dependent, uvw2 = 1

11. u = x
y−z , v = y

z−x , w = z
x−y

Ans. dependent, vw + wu+ uv + 1 = 0

12. u = sin−1 x + sin−1 y, v = x
�
1 − y2 +

y
√
1 − x2

Ans. dependent, v = sin u.

3.10 ERRORS AND APPROXIMATIONS

If z = f (x, y), then the total differential of z, denoted
by dz, is given by

dz = ∂f

∂x
dx + ∂f

∂y
dy (1)

If x increases by an increment  x and y increases
by an increment  y, then the total increment in z,
denoted by  z, is

 z = f (x + x, y + y) − f (x, y)
or f (x + x, y + y) = f (x, y) + z

But  z ≈ dz.
Replacing dz by (1), we have the approximate

formula

f (x + x, y + y) ≈ f (x, y)+

+∂f (x, y)
∂x

dx + ∂f (x, y)

∂y
dy

(2)

Thus the value of a function at a point can be ob-

tained approximately if the value of the function and

its derivatives at a neighbouring point are known.

Errors in measured data will result in error in

the estimated value. For example, small error in the

measurement of radius of a sphere will introduce

a corresponding error in the volume of the sphere

V = 4π
3
r3. Absolute error, denoted by  x, is the

error in x. Error may be positive or negative.Relative

or proportional error inx is  x
x
or dx

x
since x = dx.

Percentage error in x is given by 100 dx
x
.

Example: If the error is 0.05 cm in measuring a

dimension of length of 2 cm, then the absolute error

is 0.05 cm, the relative error is 0.05
2

= 0.025 cm and

the percentage error is 100 × 0.025 = 2.5.

For a function z = f (x, y), the actual error  z

in z can be calculated approximately by using the

differential dz, for given errors  x, y in x and y

respectively.

WORKED OUT EXAMPLES

Example 1: Using differentials, calculate

approximately the value of f (0.999) where

f (x) = 2x4 + 7x3 − 8x2 + 3x + 1.

Solution: Choose x = 1 and  x = −0.001 so that
x + x = 1 + (−0.001) = 0.999. Thus to calculate

f (0.999) = f (x + x) = f (x) + f
≈ f (x) + f  (x) x ≈ f (1) + f  (1)(−0.001).

Here f (1) = 2.1 + 7.1 − 8.1 + 3.1 + 1 = 5 and

f  (x) = 8x3 + 21x2 + 16x + 3 so

f  (1) = 8.1 + 21.1 + 16.1 + 3 = 16.

Thus the approximate value of

f (0.999) ≈ 5 + 16(−0.001) = 5 − 0.016 = 4.984.
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Example 2: Considering the volume of a spherical

shell as an increment of volume of a sphere, calculate

approximately the volume of a spherical shell whose

inner diameter is 8 inches and whose thickness is 1
16

inch (Fig. 3.2).

Fig. 3.2

Solution: Volume of a sphere of radius r is V =
4
3
πr3. Now volume of the spherical shell  V is the

difference between volume Vo of outer sphere and
volumeVi of inner sphere. Thus volume of the spher-
ical shell =  V = Vo − Vi . Here radius of the outer
sphere r = 4 in (diameter is 8 inches) choose r = 4
and dr = 1

16
. Then

V

�
4 + 1

16

�
− V (4) = V (r + r) − V (r) =

=  V ≈ dV = 4

3
· 3πr2dr at r = 4 and dr = 1

16

= 4π (4)2
�

1

16

�
= 4π cubic inches.

Example 3: The time T of a complete oscillation

of a simple pendulum of length L is governed by the

equation T = 2π
�
L
g
where g is a constant.

i. Find the approximate error in the calculated value

of T corresponding to an error of 2% in the value

of L.

ii. Bywhat percentage should the length be changed

in order to correct a loss of 2 minutes per day?

Solution:

i. Taking log: ln T = ln 2π + 1
2
ln L
g
.

Differentiating dT
T

= 0 + 1
2

g

L
· dL
g

= 1
2
dL
L

Error relation: dT
T

= 1
2
dL
L

Error in value of L is 2% i.e., dL
L

× 100 = 2.

Then 100 × dT
T

= 1
2
dL
L

× 100 = 1
2
2 = 1. The

percentage error in calculate value of T is 1.

ii. Loss of error in value of T is 2 minutes per day
i.e., dT

T
= (−2) × 1

60
× 1

24
From the error relation

dT

T
× 100 = −2 × 1

60
× 1

24
× 100 = 1

2

dL

L
× 100

or 100×dL
L

= − 1

360
×100= − 0.2777 ≈ −0.278%

Example 4: The diameter and height of a right

circular cylinder are measured to be 5 and 8 inches

respectively. If each of these dimensions may be in

error by ±0.1 inch, find the relative percentage error

in volume of the cylinder.

Solution: Let x be the diameter and y be the height
of the cylinder then

V = volume of cylinder = π
�x
2

�2
y

= 1

4
πx2y.

�
... radius = x

2

�

Differential : dV = 1

4
π · 2xy · dx + 1

4
πx2 dy

100 × dV

V
= 2

dx

x
× 100 + dy

y
× 100

Given x = diameter=5 inches, height=y=8 inches,
error dx = dy = ±0.1. So

100 × dV

V
= ±

�
2 · 0.1

5
+ 0.1

8

�
= ±0.0525

Thus the percentage error in volume is ±0.0525.

EXERCISE

1. Using differential calculate approximately

(a) (2.98)3 (b)
√
4.05 (c) 1

2.1
(d) (83.7)

1
4

(e) y(1.997) where y(x)=x4 − 2x3 + 9x + 7

Hint: Choose y = f (x), x and  x as follows
a. x3, x = 3, x = −0.02

b y = √
x, x = 4, x = 0.5

c. y = 1
x
, x = 2, x = 0.1

d. y = x 1
4 , x = 81, x = 2.7
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Ans. (a) 26.46 (b) 2.13 (c) 0.475 (d) 3.025 (e) 24.949

2. If the radius of a sphere is measured as 5

inches with a possible error of 0.02 inches,

find approximately the greatest possible error

and percentage error in the computed value of

the volume.

Hint: V = 4
3
πr3, dV = 4πr2dr, r = 5,

dr = 0.02, dV = ±2π, V = 500π
3

.

Ans. ±0.012,±1.2%

3. The quantity Q of water flowing over a V -

notch is given by the formulaQ = cH 5
2 where

H is the head of water and c is a constant.

Find the error inQ if the error in H is 1.5%.

Hint: dQ
Q

= 5
2
dH
H

= 5
2
(1.5)

Ans. 3.75%

4. Calculate the percentage increase in the

pressure p corresponding to a reduction of
1
2
% in the volume V , if the p and V ae related

by pV 1.4 = c where c is a constant:
Hint: 100 × dp

p
= −1.4 dV

V
× 100 =

= −(1.4) × �− 1
2

�
Ans. 0.7

5. Find the possible error in (a) surface area (b)

volume of a sphere of radius r if r is measured

as 18.5 inches with a possible error of 0.1 inch.

Ans. (a) 14.8π sq. in (b) 136.9π cubic inch

6. Show that the relative error in c due to a

given error in θ is minimum when θ = 45◦ if

c = k tan θ .
Hint: dc

c
= 2dθ

sin 2θ
minimum when sin 2θ is

greatest i.e., 2θ = 90.

7. Considering the area of a circular ring as an in-

crement of area of a circle, find approximately

the area of a ring whose inner and outer radii

are 3 in and 3.02 in respectively.

Hint: A = πr2, Area of circular ring

=A(3.02)−A(3)=2πr dr with r=3, dr=0.02

Ans. 0.12π

8. Find the percentage error in calculated value of

volume of a right circular cone whose attitude

is same as the base radius and is measured as

5 inches with a possible error of 0.02 inches.

Hint:V = πr2h = πr3 (... r = h), dV
V

=3 dr
r
,

r = 5, dr = 0.02

Ans. 1.2%

9. Calculate the error inR ifRI = E and possible

errors inE and I are 20%and 10% respectively

Hint: dR
R

× 100 = �
dE
E

− dI
I

� × 100 =
20 − 10 = 10

Ans. 10%

10. The diameter and the height of a right circular

cylinder are measured as 4 cm and 6 cm re-

spectively, with a possible error of 0.1 cm. Find

approximately the maximum possible error in

the computed value of the volume and surface

area.

Hint:V = πr2h = π
4
D2H, dV =

π
4
[2DHdD +D2dH ]

S = 2πrh = πDH, ds = π [HdD +DdH ].

Ans. 1.6π cu. cm;π sq. cm

3.11 DIFFERENTIATION UNDER INTE-

GRAL SIGN: LEIBNITZ’S RULE

We know from the fundamental theorem on integral

calculus that if f (x) is a continuous function and

φ(x) = � x
a
f (t)dt , then

dφ

dx
= φ (x) = d

dx

� x

a

f (t)dt = f (x) (1)

i.e., the derivative of a definite integralw.r.t. the upper

limit is equal to the integrand in which the variable

of integration t  is replaced by the upper limit ‘x’

Example 1: (i)
d

dx

� x

0

e−t2dt = e−x2

(ii)
d

dx

� x

1

1

t
dt = 1

x
, x > 0

Now if F (x) is some antiderivative of a contin-

uous function f (x), then the Newton-Leibnitz for-

mula
� b
a
f (x)dx = F (b) − F (a) yields a practical

and convenient method of computing definite inte-

grals in cases where the anti-derivative of the inte-

grand is known. This general method has extended
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the range of applications of definite integral to tech-

nology, mechanics, astronomy etc.

Differentiating integrals depend on a param-

eter:

Consider the definite integral

I (α) =
� b

a

f (x, α)dx (2)

in which the integrand f (x, α) is dependent on a

parameter α. The value of the definite integral (2)

changes as the parameter α varies. It is difficult to

integrate (2) in many cases.

Now to differentiate the integral (2) w.r.t. the pa-

rameter α, without having to first carry out integra-

tion and then differentiation, we use the Leibnitz’s

rule.

Book work 1. Leibnitz’s formula (rule)

If f (x, α) and
∂f

∂α
are continuous functions when

c ≤ α ≤ d and a ≤ x ≤ b, then
d
dα

� b
a
f (x, α)dx = � b

a

∂f (x,α)

∂α
dx (3)

i.e., the order of differentiation and integration can

be interchanged.

Proof: Consider

I (α + α) − I (α)
 α

= 1

 α

�� b

a

f (x, α + α)dx−

−
� b

a

f (x, α)dx

�

=
� b

a

f (x, α + α) − f (x, α)
 α

dx

By Lagrange’s mean value theorem

f (x, α + α) − f (x, α)
 α

= ∂f

∂α
(x, α + θ α)

= ∂f

∂α
(x, α) + ε

Here 0 < θ < 1 and ε which depends on x, α,  α

tends to zero as  α → 0.

As  α → 0

lim
 α→0

I (α + α) − I (α)
 α

= lim
 α→0

�� b

a

∂f

∂α
(x, α)dx+

+
� b

a

ε dx

�

Thus

dI

dα
= d

dα

� b

a

f (x, α)dx =
� b

a

∂f (x, α)

∂α
dx

General Leibnitz’s rule

Bookwork 2. If f (x, α) and fα(x, α) are continuous

and if the limits of integration a and b are functions

of α then

d

dα

� b(α)

a(α)

f (a, α)dx =
� b(α)

a(α)

∂f (x, α)

∂α
dx

+ f [b(α), α]
db

dα
− f [a(α), α]

da

dα

�
(4)

Proof: Consider the definite integral

I (α) =
� b(α)

a(α)

f (x, α)dx = φ(α, a(α), b(α))

which depends on the parameter α through the in-

tegrand and intermediate arguments a(α), b(α), the

limits of integration. From chain rule,

dI

dα
= ∂φ

∂α
+ dφ

∂a

∂a

dα
+ ∂φ

∂b

db

dα
(5)

Using (1), the fundamental theorem on integral cal-

culus, we have

∂φ

∂b
= ∂

∂b

� b

a

f (x, α)dx = f (b(α), α) (6)

∂φ

∂a
= ∂

∂a

� b

a

f (x, α)dx = − ∂

∂a

� a

b

f (x, α)dx

= − f (a(α), α) (7)

Now we know from (3) (in the above book work.

∂φ

∂α
= ∂

∂α

� b

a

f (x, α)dx =
� b

a

∂f (x, α)

∂α
dx (8)

Here the limits of integration a and b are treated as

constants since the dependence of φ on α here is

through the integrand f (x, α) substituting (6), (7),

(8) in (5), we get the result.
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Note: Leibnitz’s rule is applicable even when one

of the limits of integration is infinite.

WORKED OUT EXAMPLES

Example 1: Apply Leibnitz’s rule d
dα

� −α
−2α2

eαx
3
dx.

Solution: Here I (α) =
� −α

−2α2
eαx

3
dx

=
� b(α)

a(α)

f (x, α)dx, so b(α) = −α, a(α)

=−2α2 ·f (x, α)=eαx3 . Applying Leibnitz’s rule
dI

dα
= d

dα

� −α

−2α2
eαx

3
dx =

� −α

−2α2
x3 · eαx3dx+

+ (−1) · eα·(−α)3 − (−4α)eα(−2α2)3

=
� −α

−2α2
x3eαx

3
dx − e−α4 + 4αe−8α7

Example 2: Using Leibnitz’s rule, show that
d
dα

� α2
0

tan−1 x
α
dx = 2α tan−1 α − 1

2
log(α2 + 1).

Verify this result by direct integration followed by

differentiation.

Solution: Here b(α) = α2, a(α) = 0, f (x, α) =
tan−1 x

α
. Using Leibnitz’s rule

d

dα

� α2

0

tan−1 x

α
dx =

� α2

0

1

1 + �
x
α

�2 ·
�−x
α2

�
dx

+2α · tan−1 α
2

α
− 0

= −
� α2

0

1

2

d(x2 + α2)
(x2 + α2) + 2α tan−1 α

= − 1

2
ln(x2 + α2)

����
α2

x=0

+ 2α tan−1 α

= −1

2
ln(α4 + α2) + 1

2
ln α2 + 2α tan−1 α

= 2α tan−1 α − 1

2
ln(α2 + 1)

Direct verification:

Integrating

� α2

0

tan−1 x

α
dx = α

�
x

α
tan−1 x

α
− log

�
x2

α2
+ 1

������
α2

x=0

= α2 tan−1 α
2

α
− α log

�
α2 + 1

Now differentiating w.r.t. ‘α’

d

dα

� α2

0

tan−1 x

α
dx = 2α · tan−1 α + α2 · 1

1 + α2

−α · 1√
α2 + 1

· 1
2

1√
α2 + 1

− log
�
α2 + 1

= 2α · tan−1 α + α2

1 + α2 − α2

α2 + 1
− log

�
α2 + 1

= 2α tan−1 α − 1

2
ln(α2 + 1)

Example 3: Using Leibnitz rule evaluate the defi-

nite integral
� 1

0
xm(log x)ndx.

Solution: Consider I (m) = � 1

0
xmdx. Using Leib-

nitz rule

dI

dm
= d

dm

� 1

0

xmdx =
� 1

0

∂

∂m
(xm)dx

=
� 1

0

xm · log xdx

Differentiating w.r.t. ‘m’ again

d2I

dm2
= d

dm

� 1

0

xm log x dx =
� 1

0

∂

∂m
(xm log x)dx

=
� 1

0

xm · log x · log x dx =
� 1

0

xm(log x)2dx

Thus differentiating ‘n’ times w.r.t. m

dnI

dmn
=

� 1

0

xm(log x)ndx

From reduction formula we know that� 1

0

xm(log x)ndx = xm+1

m+ 1
· (log x)n

����
n

x=0

− n

m+ 1
·
� 1

0

xm(log x)n−1dx
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= − n

(m+ 1)
·
� 1

0

xm(log x)n−1dx

Applying reduction formula again

= −n
m+ 1

�
xm+1

m+ 1
· (log x)n−1

− n− 1

m+ 1

� 1

0

xm(log x)n−2dx

�

= (−1)2
n(n− 1)

(m+ 1)2

�� 1

0

xm(log x)n−2dx

�

By repeated application

= (−1)(n−1) · n · (n− 1)(n− 2) · · · (n− (n− 1))

(m+ 1)n
×

×
�� 1

0

xmdx

�

= (−1)(n−1) · n!
(m+ 1)n

· x
m+1

m+ 1

����
1

x=0

= (−1)n · n!
(m+ 1)n+1

Thus � 1

0

xm(log x)ndx = (−1)nn!

(m+ 1)n+1

Example 4: Evaluate
� ∞
0
xne−xdx

Solution: Consider I (α) = � ∞
0
e−αxdx.

Differentiating w.r.t. ‘α’ by Leibnitz’s rule we get

dI

dα
= d

dα

� ∞

0

e−αxdx =
� ∞

0

∂

∂x
(e−αx)dx

= −
� ∞

0

xe−αxdx

Differentiating successively (n− 1) times,

dnI

dαn
= (−1)n

� ∞

0

xn · e−αxdx (1)

But we know that I (α) = � ∞
0
e−αxdx

I (α) = e−αx

−α

����
∞

0

= 1

α
(2)

So differentiating (2) n times and equating with (1)

we get

(−1)n
� ∞

0

xne−αxdx = dnI

dαn
= dn

dαn
(α−1)

= (−1)n · n!

αn+1

Thus
� ∞
0
xne−αxdx = n!

αn+1 for n = 0, 1, 2, . . .

when α = 1,
� ∞
0
xne−xdx = n!; for n = 0, 1, 2, . . .

Example 5: If
� ∞
0

xα

1+x3 dx = π
3
cosec

�
α+1
3
π
�
, eval-

uate
� ∞
0

(ln x)2

(1+x3)dx. Hence or otherwise evaluate� ∞
0

x ln x

(1+x3)dx.

Solution: Consider I (α) = � ∞
0

xα

1+x3 dx. Differen-
tiating w.r.t. ‘α’ by Leibnitz rule
dI
dα

= d
dα

� ∞
0

xα

1+x3 dx = � ∞
0

∂
∂x

�
xα

1+x3
�
dx

dI
dα

= � ∞
0

xα

(1+x3) (log x)dx (1)
�
... dx

α

dα
= xα log x

�
Differentiating once more with respect to ‘α’

d2I

dα2
= d

dα

� ∞
0

xα (log x)

(1+x3) dx = � ∞
0
∂
∂α

�
xα log x

1+x3
�
dx

d2I

dα2
= � ∞

0

xα ·log x
1+x3 · log x dx = � ∞

0

xα (log x)2

1+x3 dx (2)

since

I (α) =
� ∞

0

xα

1 + x3 dx = π

3
cosec

�
α + 1

3
π

�
(3)

differentiating the RHS of (3) twice wrt α we have

dI

dα
= π

3
[−cosecyπ · cot yπ ] · π

3
(4)

where y =
�
α + 1

3

�
π

and
d2I

dα2
= −π2

9
[cot y(−cosecy) · cot y+

+ (− cosec2y) · cosecy� π
3

d2I

dα2
= π3

27

�
cot2 y + cosec2y] · cosec y (5)

Equating (2) and (5)� ∞

0

xα(log x)2

1 + x3 dx = d2I

dα2
=
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π3

27
[cot2 y + cosec2y]cosec y (6)

Put α = 0 in (6) then y = π
3
, so� ∞

0

(log x)2

1 + x3 dx = π3

27

�
cot2

π

3
+ cosec2

π

3

�
· cosecπ

3

= π3

27

�
1

3
+ 4

3

�
2√
3

= 10π3

8
√
3

Put α = 1 in (1) and (4)� ∞

0

x log x

1 + x3 dx = dI

dα

����
α=1

= −π2

9
cosec

2π

3
· cot 2π

3

= −π2

9
· 2√

3

�
− 1√

3

�
= 2π2

27

Example 6: Show that y(x) satisfies the initial

value problem (IVP) where

(a) y(x) = 1
6

� x
a
(x − t)3f (t)dt ,

IVP : y     (x) = f (x), y(a) = y  (a) = y   (a)
= y    (a) = 0

(b) y(x) = ex + � x
0
t2 cosh(x − t)dt ,

IVP: y   − y = 2x; y(0) = y  (0) = 1

Solution: (a) Differentiating w.r.t. (the parameter)

‘x’ four times, we get
dy

dx
= 1

6

d

dx

� x

a

(x − t)3f (t)dt

= 1

6

� x

a

∂

∂x

�
(x − t)3f (t)� dt

dy

dx
= 1

6

�� x

a

3(x − t)2f (t)dt + 1 · (x − x)3f (x) − 0

�
d2y

dx2
= 1

6

�� x

a

3 · 2·(x−t)f (t)dt + 3(x−x)2f (x)−0

�

d3y

dx3
= d

dx

� x

a

(x − t)f (t)dt

d3y

dx3
=

� x

a

1 · f (t)dt + 1 · (x − x)f (x) − 0

d4y

dx3
= y     = d

dx

� x

a

f (t)dt = f (x)

Thus y satisfies the D.E. y     = f (x).
At x = a, from the above results, y(a) = y  (a) =
y   (a) = y    (a) = 0

(b) Differentiating w.r.t. x twice

dy

dx
= ex +

� x

0

t2 · sinh(x − t)dt

+ 1 · x2 cosh(x − x) − 0

d2y

dx2
= ex +

� x

0

t2 cosh(x − t)dt

+ 1 · x2 · sinh(x − x) − 0 + 2x = y(x) + 2x

... y   − y = 2x, the DE is satisfied.

Note that at x = 0, y(0) = y (0) = 1 from the above.

EXERCISE

Evaluate the following integrals I (α) using Leib-

nitz’s rule

1.
� ∞
0
x2e−x2dx

Ans.
√
π

4

Hint: Differentiate w.r.t. ‘α’ the well-known

result � ∞

0

e−αx2dx = 1

2

�
π

α

2. I (α) = � ∞
0
e−x sin αx

x
dx

Ans. tan−1 α

Hint: I  (α) = � ∞
0
e−x cosαx dx = 1

1+α2 , in-
tegrating I (α) = tan−1 α + c, use I (0) = 0

3. I (α) = � 1

0
xα−1
log x

dx, α ≥ 0

Ans. log(1 + α)
Hint: I  (α) = � 1

0
xαdx = 1

1+α , integrate and

use I (0) = 0

4. I (α) = � α
0

log(1+αx)
1+x2 dx and deduce� 1

0

log(1+x)
1+x2 dx

Ans. 1
2
log(1 + α2) tan−1 α; with α = 1, π

8
loge 2

Hint: I  (α) = � α
0

x

(1+αx)(1+x2)dx + log(1+α2)
1+α2 ,

use partial fraction x

(1+αx)(1+x2) =
− α

1+α2
1

1+αx + 1

2(1+α2) · 2x

1+x2 + α

1+α2
1

1+x2 .
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Integrating (R.H.S.), I  (α) = log(1+α2)
2(1+α2) +

α·tan−1 α

1+α2 .

Integrating both sides and use I (0) = 0.

5. If I (α) = � α2
−α cos(αx

2)dx. Find I  (α).

Ans. I  (α) = − � α2
−α x

2 sin(αx2)dx + 2α cos(α5)

+ cos(α3)

6.
� ∞
0

tan−1 αx

x(1+x2) dx where α ≥ 0.

Ans.
π

2
log(1 + α)

Hint: I  (α) =
� ∞

0

1

(1 + x2)(1 + α2x2)dx

= 1

1 − α2
� ∞

0

�
1

1 + x2 − α2

1 + α2x2
�
dx

= π
2(1+α) , Integrate and use I (0) = 0.

7.
� ∞
0
e−x2 cosαx dx

Ans. 1
2

√
πe− 1

4
α2

Hint: I  (α) = −α
2
, Integrating I (α) =

ce− 1
4
α2 , use I (0) =

√
π

2
.

8.

� π

0

log(1 + sin α · cos x)
cos x)

dx

Ans. πα

9.

� ∞

0

xe−x2 sin αx dx

Ans.
√
π

4
· αe−α2/4

10.

� 1

0

x3 − 1

ln x
dx

Ans. ln 4

Hint: I (α) = � 1

0
xα−1
ln x
dx, I  (α) = 1

α+1
, Inte-

grate and use I (0) = 0

11. Show that y(x) = 1
x

� x
a
(x − t)f (t)dt satisfies

the initial value problem (xy)  = f (x),y(a) =
y  (a) = 0.

12. Show that x(t) = 1
mω

� t
0
sinω(t − τ )f (τ )dτ

satisfies forced harmonic oscillator: mx   +
kx = f (t), x(0) = x  (0) = 0; ω =

�
k
m



Chapter4

Maxima and Minima

INTRODUCTION

To optimize something means to maximize or min-

imize some aspects of it. An important application

of multivariable differential calculus is finding the

maximum and minimum values of functions of sev-

eral variables and determining where they occur. In

the study of stability of the equilibrium states of

mechanical and physical systems, determination of

extrema is of greatest importance. Lagrange multi-

pliers method developed by Lagrange in 1755 is a

powerful method for finding extreme values of con-

strained functions in economics, in designing multi-

stage rockets in engineering, in geometry etc.

4.1 TAYLOR’S THEOREM FOR FUNCTION

OF TWO VARIABLES

Functions of two or more variables often can be

expanded in power series which generalize the

familiar one-dimensional expansion. Let f (x, y) be

a function of two independent variables x and y. Let

P (x, y) and Q(x + h, y + k) be two neighbouring

points. Then, f (x + h, y + k), the value of f at Q

can be expressed in terms of f and its derivatives

at P .
Keeping y temporarily constant, f (x + h, y + k)

is treated as a function of the single variable x and
expanded as follows using Taylor’s theorem.

f (x + h, y + k)= f (x, y + k)+ h ∂f (x, y + k)
∂x

+h
2

2!

∂2f (x, y + k)
∂x2

+h
3

3!

∂3f (x, y + k)
∂x3

+ · · · . (1)

Now the first term on the R.H.S. of (1) is expanded
as function of y, treating x temporarily constant

f (x, y + k)= f (x, y)+ k ∂f (x, y)
∂y

+k
2

2!

∂2f (x, y)

∂y2
+ k

3

3!

∂3f (x, y)

∂y3
+ · · · (2)

To get the 2nd, 3rd, 4th terms on the R.H.S. of (1),
differentiate (2) partially w.r.t. x, once, twice, thrice,
etc., yielding

∂f (x, y + k)
∂x

= ∂f (x, y)
∂x

+ k∂
2f (x, y)

∂x∂y

+k
2

2!

∂3f (x, y)

∂x∂y2
+ k

3

3!

∂4f (x, y)

∂x∂y3
+ · · ·

(3)

∂2f (x, y + k)
∂x2

= ∂
2f (x, y)

∂x2
+ k∂

3f (x, y)

∂x2∂y

+k
2

2!

∂4f (x, y)

∂x2∂y2
+ k

3

3!

∂5f (x, y)

∂x2∂y3
+ · · ·

(4)

∂3f (x, y + k)
∂x3

= ∂
3f (x, y)

∂x3
+ k∂

4f (x, y)

∂x3∂y

+k
2

2!

∂5f (x, y)

∂x3∂y2
+ k

3

3!

∂6f (x, y)

∂x3∂y3
+ · · ·

(5)

4.1
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Using (2), (3), (4), (5), Equation (1) becomes after
rearrangement,

f (x + h, y + k)= f (x, y)+
�
h ∂f (x, y)

∂x
+ k ∂f (x, y)

∂y

�

+ 1

2!

�
h2∂2f (x, y)

∂x2
+ 2hk ∂2f (x, y)

∂x∂y

+k
2 ∂2f (x, y)

∂y2

�
+ 1

3!

�
h3 ∂3f (x, y)

∂x3

+ 3h2k ∂3f (x, y)

∂x2∂y
+ 3hk2 ∂3f (x, y)

∂x∂y2

+k
3 ∂3f (x, y)

∂y3

�
+ higher order terms.

(6)

In the suffix notation,

f (x + h, y + k)= f (x, y)+ [hfx (x, y)+ kfy (x, y)]

+ 1

2!

�
h2fxx (x, y)+ 2hkfxy (x, y)

+ k2fyy (x, y)
�
+ 1

3!

�
h3fxxx (x, y)

+3h2kfxxy (x, y)+ 3hk2fxyy (x, y)

+ k3fyyy (x, y)
�
+ · · · (7)

Equation (7) represents f (x + h, y + k) in a

power series of ascending powers of h and k.
For any specific point (a, b) replace (x, y) by (a, b)

in (7) resulting in

f (a + h, b + k)= f (a, b)+ [hfx (a, b)+ kfy (a, b)]

+ 1

2!

�
h2fxx (a, b)+ 2hkfxy (a, b)

+ k2fyy (a, b)
�
+ 1

3!
[h3fxxx (a, b)

+3h2kfxxy (a, b)+ 3hk2fxyy (a, b)

+k3fyyy (a, b)]+ · · · (8)

Alternative Form

Equation (8) can be expressed in ascending powers
of (x − a) and (y − b) by replacing h by x − a and
k by y − b which gives
f (x, y)= f (a, b)+ [(x − a)fx (a, b)

+(y − b) · fy (a, b)]+
1

2!

�
(x − a)2fxx (a, b)

+ 2(x−a)(y−b)fxy (a, b)+ (y−b)2fyy (a, b)
�

+ 1

3!

�
(x − a)3fxxx (a, b)+ 3(x − a)2(y − b) ×

× fxxy (a, b)+ 3(x − a)(y − b)2fxyy (a, b)

+ (y − b)3fyyy (a, b)
�
+ · · · (9)

Equation (9) which expands f (x, y) in infinite

power series in powers (terms) of (x − a) and (y − b)
is known as Taylor’s series or Taylor’s expansion or

Taylor’s series expansion of f (x, y) about the point

(a, b).
Introducing the operator notation,

 = h ∂
∂x
+ k ∂

∂y

so that

 2 =
�
h
∂

∂x
+ k ∂

∂y

�2
= h2 ∂

2

∂x2
+ 2hk

∂2

∂x∂y
+ k2 ∂

2

∂y2

 3 =
�
h
∂

∂x
+ k ∂

∂y

�3
= h3 ∂

3

∂x3
+ 3h2k

∂3

∂x2∂y
+

+ 3hk2
∂3

∂x∂y2
+ k3 ∂

3

∂y3

Equation (6) can be rewritten now as

f (x + h, y + k)= f (x, y)+ f (x, y)+ 1

2!
 2f (x, y)

+ 1

3!
 3f (x, y)+ · · ·

Alternativelyf (x, y)=
∞�
n=0

1

n!

�
h
∂

∂x
+ k ∂

∂y

�n
f (a, b)

=
∞�
n=0

 n

n!
f (a, b).

Maclaurin’s series expansion is a special case of
Taylor’s serieswhen the expansion is about the origin
(0, 0). Thus putting a = 0, b = 0 in (9), we get

f (x, y)= f (0, 0)+ [x · fx (0, 0)+ yfy (0, 0)]

+ 1

2!

�
x2fxx (0, 0)+ 2xy fxy (0, 0)

+ y2fyy (0, 0)
�
+ 1

3!

�
x3fxxx (0, 0)

+3x2yfxxy (0, 0)+ 3xy2fxyy (0, 0)
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+ y3fyyy (0, 0)
�
+ · · · (10)

Thus the Maclaurin’s series expansion of f (x, y)

given by (10) is a series of powers of x and y.

WORKED OUT EXAMPLES

Example 1: Use Taylor’s theorem to expand

f (x, y) = x2 + xy + y2 in powers of (x − 1) and

(y − 2).

Solution: Differentiating f (x, y) = x2 + xy + y2
partially w.r.t. x and y, we get

fx = 2x + y, fy = x + 2y, fxy = 1, fxx = 2, fyy = 2,

fxxx = 0, fxxy = 0, fyyx = 0, fyyy = 0

The Taylor’s series expansion of f (x, y) in powers
of (x − 1) and (y − 2) is

f (x, y)= f (1, 2)+ [(x − 1)fx (1, 2)

+(y − 2)fy (1, 2)]+
1

2!

�
(x − 1)2fxx (1, 2)

+ 2(x − 1)(y − 2)fxy (1, 2)+ (y − 2)2fyy (1, 2)
�

+ 1

3!

�
(x − 1)3fxxx (1, 2)

+3(x − 1)2(y − 2)fxxy (1, 2)

+3(x − 1)(y − 2)2fyyx (1, 2)

+ (y − 2)3fyyy (1, 2)
�
+ · · ·

Here, f (1, 2) = 7, fx(1, 2) = 4, fy(1, 2) = 5,

fxy(1, 2) = 1, fxx = fyy = 2, etc.
Substituting these values

f (x, y)= 7+ 4(x − 1)+ 5(y − 2)+ 1

2!

�
2(x − 1)2

+ 2(x − 1)(y − 2)+ 2(y − 2)2
�
+ 0+ · · · .

Example 2: Expand f (x, y) = ex+y in Taylor’s

series up to terms of second degree in the form

a0 + b1x + b2y + c1x2 + c2xy + c3y2 + · · ·

a. by direct use of Taylor’s theorem

b. by expanding ex+y in a series of powers of x + y
c. by multiplying together the separate expansions

of ex and ey .

Solution:

a. f = ex+y, fx = ex+y, fy = ex+y, fxx = ex+y ,
fyy = ex+y, fxy = ex+y etc. Since the se-

ries in powers of x and y, the expansion

is about (0, 0) (i.e., Maclaurin’s series) so

f = fx = fy = fxx = fyy = fxy at (0, 0) = 1.

By Taylor’s theorem

ex+y = 1+ x + y + x
2 + 2xy + y2

2!
+ · · ·

b. Expanding in powers of x + y

ex+y =
∞�
n=0

(x + y)n
n!

= 1+ (x + y)

+ (x + y)2
2!

+ (x + y)3
3!

+ · · ·

c. Termwise series multiplication

ex+y = ex · ey =
� ∞�
n=0

xn

n!

�� ∞�
n=0

yn

n!

�

=
�
1+ x + x

2

2!
+ x

3

3!
+ · · ·

�
�
1+ y + y

2

2!
+ y

3

3!
+ · · ·

�

= 1+ (x + y)+ x
2

2!
+ xy + y

2

2!
+ · · ·

Example 3: Expand f (x, y) = ey ln(1+ x) in

powers of x and y and verify the result by direct ex-

pansion.

Solution: f = ey ln(1+ x)

fx = ey
1

1+ x , fy = ey ln(1+ x), fxy =
ey

1+ x
fxx =

−ey
(1+ x)2 , fyy = ey ln(1+ x),

fxxx =
2ey

(1+ x)3 , fyyy = ey ln(1+ x),

fxxy =
−ey

(1+ x)2 , fyyx =
ey

1+ x
Evaluating these derivations at x = 0, y = 0,

f (0, 0)= 0, fx (0, 0) = 1, fy (0, 0) = 0, fxy = 1

fxx (0, 0)=−1, fyy (0, 0) = 0, fxxx (0, 0) = 2
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fyyy (0, 0)= 0, fxxy (0, 0) = −1, fyyx (0, 0) = 1

The Taylor’s series expansion up to 3rd degree terms
is

ey ln(1+ x)= f (0, 0)+ xfx (0, 0)+ yfy (0, 0)

+ 1

2!

�
x2fxx (0, 0)+ 2xy fxy (0, 0)

+ y2fyy (0, 0)
�
+ 1

3!

�
x3fxxx (0, 0)

+3x2yfxxy (0, 0)+ 3xy2fyyx (0, 0)

+ y3fyyy (0, 0)
�
+ · · ·

= 0+ x · 1+ 0+ 1

2!

�
−x2 + 2.1.xy + 0

�
+ 1

3!

�
2x3 − 3x2y + 3xy2 + 0

�

= x − x
2

2
+ xy + x

3

3
− x

2y

2
+ xy

2

2
+ · · ·

Verification by series multiplication:

we know that ex =
∞�
n=0

xn

n!
and

ln(1+ x)= x − x
2

2
+ x

3

3
− · · ·

so ey ln(1+ x)=
�
1+ y + y

2

2!
+ y

3

3!
+ · · ·

�

×
�
x − x

2

2
+ x

3

3
· · ·
�

Multiplying term by term up to 3rd degree

ey ln(1+ x) = x − x
2

2
+ x

3

3
+ xy − x

2y

2
+ xy

2

2
+ · · ·

Example 4: Find Taylor’s expansion of f (x, y) =
cot−1 xy in powers of (x + 0.5) and (y − 2) up to

second degree terms. Hence compute f (−0.4, 2.2)
approximately.

Solution: Here f (x, y) = cot−1 xy

fx =
−y

1+ x2y2 , fy =
−x

1+ x2y2 ,

fxx =
2xy3

(1+ x2y2)2 , fyy =
2x3y

(1+ x2y2)2 ,

fxy =
(x2y2 − 1)

(1+ x2y2)2

Evaluating these derivatives at the point x = − 1
2
,

y = 2

f (x, y)= cot−1(x, y) at x = −1

2
, y = 2,

f

�
−1

2
, 2

�
= cot−1

�
−1

2
· 2
�
= cot−1(−1) = 3π

4

fx =−1, fy =
1

4
, fxy = 0

fxx =−2, fyy = −
1

8

Expanding cot−1 xy in Taylor’s series in powers
of (x + 0.5) and (y − 2), we get

f (x, y)= cot−1 xy = f (−0.5, 2)+ (x + 0.5)fx (−0.5, 2)
+(y − 2)fy (−0.5, 2)+

1

2!
[(x + 0.5)2 ×

fxx (−0.5, 2)+ 2(x + 0.5)(y − 2)×
fxy (−0.5, 2)+ (y − 2)2fyy (−0.5, 2)]+ · · ·

= 3π

4
− (x + 0.5)+ y − 2

4
+ 1

2
[−2(x + 0.5)2

−1

8
(y − 2)2]+ · · ·

Put x = −0.4 and y = 2.2 to compute

cot−1((−0.4), (2.2))= f (−0.4, 2.2)
= 3π

4
− (0.1)+ .2

4

−(0.1)2 − 1

16
(.2)2

= 2.29369.

EXERCISE

1. Expand f (x, y) = x3 + y3 + xy2 in powers

of (x − 1) and (y − 2) using Taylor’s series.

Ans. 13+ 7(x − 1)+ 16(y − 2)+ 3(x − 1)2 +
4(x − 1)(y − 2)+ 7(y − 2)2 + (x − 1)3 +
(x − 1) · (y − 2)2 + (y − 2)3

2. Obtain Taylor’s expansion of (1+ x − y)−1 in
powers of (x − 1) and (y − 1).

Ans. 1− x + y + x2 − 2xy + y2 + · · ·
3. Expand cos x cos y in powers of x and y up to

fourth degree terms

Ans. 1− 1
2
(x2 + y2)+ 1

24
(x4 + 6x2y2 + y4)+ · · ·
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4. Obtain the expansionof exy in powers of (x−1)
and (y − 1).

Ans. e
�
1+ (x − 1)+ (y − 1)+ (x−1)2

2!

+(x − 1)(y − 1)+ (y−1)2
2!

+ · · ·
�

5. Find the Taylor’s expansion of ex cos y about

the point x = 1, y = π
4
.

Ans. e√
2

�
1+ (x− 1)− �y− π

4

� + (x− 1)2

2!

−(x − 1)
�
y − π

4

�− (y− π
4
)2

2!
+ · · ·

�
6. Find the Maclaurin’s expansion of ex ln(1+y)

up to terms of 3rd degree.

Ans. y + xy − y2

2
+ (x2y−xy2)

2
+ y3

3
+ · · ·

7. Expand eax sin by about origin up to 3rd degree

terms

Ans. (by + abxy)+ 1
6
(3a2bx2y − b3y3)+ · · ·

8. Find Taylor’s expansion of xy about (1, 1).

Ans. 1+ (x−1)+ (x−1)(y−1)+ 1
2
(x−1)2 + · · ·

9. Expand (xy+hk+hy+ xk)/(x+ y+h+ k)
in powers of h and k up to second degree

terms.

Hint: Take f (x, y) = xy

x+y .

Ans.
xy

x+y + y2

(x+y)3 h+
x2

(x+y)2 k −
y2

(x+y)3 h
2 +

2xy

(x+y)3 hk −
x2

(x+y)3 k
2 + . . .

10. Calculate ln
�
(1.03)

1
3+(0.98) 14−1

�
approxi-

mately by using Taylor’s expansion up to first

order terms.

Hint: Take f (x, y) = ln
�
x

1
3 + y 1

4 − 1
�
and

expand f (x + h, y + k) in powers of h and k.
Choose x = 1, y = 1, h = 0.03, k = −0.02.

Ans. 0.005

11. Compute tan−1(0.9/1.1) approximately.

Hint: Take f (x, y) = tan−1(y/x), ex-

pand in Taylor’s series about (1,1)

tan−1(y/x) = π
4
− 1

2
(x − 1)+ 1

2
(y − 1)+

1
4
(x − 1)2 − 1

4
(y − 1)2. Now put x = 1.1 and

y = 0.9.

Ans. 0.6904

12. Find Taylor’s expansion of
�
1+ x + y2 in

powers of (x − 1) and (y − 0).

Ans.
√
2
�
1+ x−1

4
− (x−1)2

32
+ y2

4
+ · · ·

�
.

4.2 MAXIMA AND MINIMA OF FUNCTIONS

OF TWO VARIABLES:

WITH AND WITHOUT CONSTRAINTS

Let z = f (x, y) be a function of two independent

variables x and y.
Relative maximum: f (x, y) is said to have a rel-

ative maximum at a point (a, b) if

f (a, b) > f (a + h, b + k)

for small positive or negative values of h and k i.e.,

f (a, b) the value of the function f at (a, b) is greater

than the value of the function f at all points in some

small neighbourhood of (a, b).
Relative minimum is similarly defined. f (x, y)

has a relative minimum at (a, b) if

f (a, b) < f (a + h, b + k).
Denote [f (a + h, b + k)− f (a, b)] by  f (a, b)

or simply by  

i.e.,  = f (a + h, b + k)− f (a, b)
then f has a maximum at (a, b) if  has the same
negative sign for all small values of h, k; i.e., < 0
a minimum at (a, b) if  has the same positive sign

i.e.,  > 0.

Extremum is a point which is either a maximum

or minimum. The value of the function f at an ex-

tremum (maximum or minimum) point is known as

the extremum (maximum or minimum) value of the

function f.

Geometrically, z = f (x, y) represents a surface.

Themaximum is a point on the surface (hill top) from

which the surface descends (comes down) in every

direction towards the xy-plane (see Fig. 4.1). The

minimum is the bottom of depression fromwhich the

surface ascends (climbs up) in every direction (refer

Fig. 4.1). In either case, the tangent planes to the sur-

face at a maximum or minimum point is horizontal

(parallel to xy-plane) and perpendicular to z-axis.
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Fig. 4.1

Z

X

Y

Z

Saddle point or minimax is a point where func-

tion is neithermaximumnorminimum.At such point

f is maximum in one direction while minimum in an-

other direction.

Geometrically such a surface (looks like the

leather seat on back of a horse) (Fig. 4.2) forms a

ridge rising in one direction and falling in another

direction.

Fig. 4.2

Y

X

Z

Example: z = xy, hyperbolic paraboloid has a

saddle point at the origin.

Necessary and Sufficient Conditions for

Extrema of a Function f of Two Variables

By Taylor’s theorem,

f (a + h, b + k)= f (a, b)+ �hfx (a, b)+ kfy (a, b)�

+ 1

2!

�
h2fxx (a, b)+ 2hkfxy (a, b)

+k2fyy (a, b)
�
+ · · · (1)

Neglecting higher order terms of h2, hk, k2, etc.
since h, k are small, the above expansion reduces to

 = [f (a + h, b + k)− f (a, b)]
= hfx (a, b)+ kfy (a, b) (2)

The necessary condition that  has the same

positive or same negative sign is when fx(a, b) = 0

and fy(a, b) = 0 (even though h and k can take both

positive and negative values).
With fx(a, b) = 0 and fy(a, b) = 0, expansion

(1), neglecting higher order terms h3, k3, h2k etc. re-
duces to

 = 1

2!

�
h2fxx (a, b)+ 2hkfxy (a, b)+ k2fyy (a, b)

�
(3)

Denote fxx(a, b)= r, fyy(a, b)= t, fxy(a, b)= s.
From (3) we observe that the nature of sign of  

depends on the nature of sign of h2r + 2hks + k2t .
Rewriting

sign of  = sign of (h2r + 2hks + k2t)

= sign of

�
h2r2 + 2hkrs + k2tr

r

�

= sign of

�
(hr + ks)2 + k2(rt − s2)

r

�
(4)

If rt − s2 > 0 then the numerator in R.H.S. of

(4) is positive. In that case sign of  = sign of r.

Thus  < 0 if rt − s2 > 0 and r < 0

and  > 0 if rt − s2 > 0 and r > 0.

Therefore the sufficient (Lagrange’s) conditions

for extrema are:

I. f attains (has) a maximum at (a, b) if

rt − s2 > 0 and r < 0.

II. f attains a minimum at (a, b) if

rt − s2 > 0 and r > 0.

III. Saddle point: If rt − s2 < 0 then > 0 or< 0
depending on h and k. Therefore f has a saddle
point (minimax) at (a, b) if

rt − s2 < 0
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IV. Failure case: If rt − s2 = 0, further inves-

tigation is needed to determine the nature of

function f.

Method of Finding Extrema of f (x, y )

1. Solving fx = 0 and fy = 0 yields critical or sta-

tionary point P of f.

2. Calculate r = fxx, s = fxy, t = fyy at the critical
point P.

3. a. Maximum: If rt − s2 > 0 and r < 0 then f has

a maximum at P.

b. Minimum: If rt − s2 > 0 and r > 0 then f has

a minimum at P.

c. Saddle point: If rt − s2 < 0 then f has neither

maximum nor minimum.

d. Failure case: If rt − s2 = 0, further investiga-

tion needed.

Note: Extrema occur only at stationary points.

However stationary points need not be extrema.

Examples

a. f = 1− x2 − y2, fx = −2x, fy = −2y
... Stationary point (0, 0), r = rxx = −2, t =
fyy = −2, s = 0 so rt − s2 = (−2)(−2)− 0 =
4 > 0 and r = −2 < 0. (0, 0) is maximum point

of f and the maximum value of f is 1.

b. f = x2 + y2, fx = 2x, fy = 2y, fxx = 2,

fyy = 2, fxy=0 ... stationary point (0, 0).

rt − s2 = 2.2− 0 = 4 > 0 and r = 2 > 0.

(0, 0) is a minimum point of f and the minimum

value of f is 0.

c. f = xy; fx = y, fy = x, fxx = 0, fyy = 0,
fxy = 1 ... stationary point (0, 0).

rt − s2 = 0.0− 1 = −1 < 0

So (0, 0) is a saddle point of f

d. i. f = 1− x2y2,
fx = −2xy2, fy = −2x2y
... stationary point (0, 0)

fxx = −2y2, fyy = −2x2, fxy = −4xy
At stationary point (0, 0), fxx = fyy = fxy = 0

By inspection f has a maximum at (0, 0).

ii. f = x2y2, fx = 2xy2, fy = 2x2y,

... stationary point (0, 0), fxx = 2y2, fyy =
2x2, fxy = 4xy

At stationary point (0, 0), fxx = fyy = fxy = 0

However observe that f has a minimum at

(0, 0).

iii. f = x3y2, fx = 3x2y2, fy = 2x3y

... stationary point (0, 0)

fxx = 6xy2, fyy = 2x3, fxy = 6x2y

At stationary point (0, 0), fxx = fyy = fxy = 0.

Note that (0, 0) is a saddle point.

WORKED OUT EXAMPLES

Example 1: Find the maximum and minimum

values of f (x, y) = x3 + 3xy2 − 15x2 − 15y2

+72x.

Solution: Differentiating f partially w.r.t. x and y,

fx =
∂f

∂x
= 3x2 + 3y2 − 30x + 72

fy =
∂f

∂y
= 6xy − 30y

The stationary (critical) points are given byfx = 0

and fy = 0
From

fy = 6xy − 30y = 0

so 6y(x − 5)= 0

Thus either y = 0 or x = 5
Since fx = 3x2 + 3y2 − 30x + 72 = 0,

for y = 0, 3x2 − 30x + 72 = 0

so x = 6 or 4

for x = 5, 75+ 3y2 − 150+ 72 = 0

so y =±1
Thus the four stationary points are given by

(6, 0), (4, 0), (5, 1), (5,−1)
To determine the nature of these points, calculate
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fxx, fyy and fxy

fxx =A= 6x− 30, fxy =B = 6y, C= fyy = 6x− 30

so AC − B2 = (6x − 30)2 − 36y2 = 36{(x − 5)2 − y2}

i. At the stationary point (6, 0), we haveA = 36−
30 = 6 > 0 and AC − B2 = 36 > 0. So (6, 0)

is a minimum point of the given function f and

the minimum value of f at (6, 0) is

63 + 0− 15.36+ 72.6 = 108.

ii. At (4, 0) : A = 24− 30 = −6 < 0 and AC −
B2 = 36 > 0. So a maximum occurs at the point

(4, 0) and the maximum value of f at (4,0) is 112.

iii. At (5, 1), A = 0, AC − B2 = −36 < 0.

(5, 1) is a saddle point (it is neither maximum

nor minimum).

iv. At (5,−1), A = 0, AC = B2 = −36 < 0.

So (5,−1) is neither a maximum nor aminimum

(it is a saddle point).

Example 2: Find the shortest distance from origin

to the surface xyz2 = 2.

Solution: Let d be the distance from origin (0, 0, 0)
to any point (x, y, z) of the given surface then

d =
�
(x − 0)2 + (y − 0)2 + (z− 0)2

or d2 = x2 + y2 + z2

Eliminate z2 using the equation of the surface
xyz2 = 2. So replace z2 by 2

xy

... d2 = x2 + y2 + 2

xy
= f (x, y)

fx = 2x − 2

x2y
, fy = 2y − 2

xy2
·

Solving fx = 0 and fy = 0, we get

x3y − 1

x2y
= 0 and

xy3 − 1

xy2
= 0

x3y = 1 = xy3 or xy(x2 − y2) = 0

since x  = 0, y  = 0, so x = ±y = 1
Thus the two stationary points are (1, 1) and

(−1,−1)

fxx = 2+ 4

x3y
, fyy = 2+ 4

xy3
, fxy =

2

x2y2

At (1, 1) : fxx = 6 > 0, fxx · fyy − f 2
xy = 6 ·

6− 4 = 32 > 0

At (−1,−1), fxx = +6, fxxfyy − f 2
xy = 32

So minimum occurs at (1, 1,
√
2) and

(−1,−1,
√
2). The shortest distance is�

12 + 12 + (
√
2)2 =

√
4 = 2.

Example 3: The temperature T at any point
(x, y, z) in space is T (x, y, z) = kxyz2 where k is a
constant. Find the highest temperature on the surface
of the sphere

x2 + y2 + z2 = a2.

Solution: Eliminating the variable z, using z2 =
a2 − x2 − y2, we get
T (x, y, z)= kxyz2 = kxy(a2 − x2 − y2) = F (x, y)

Fx = ky(a2 − 3x2 − y2), Fy = kx(a2 − x2 − 3y2)

The stationary points are given by (x = 0, y = 0)
or solution of

3x2 + y2 = a2

x2 + 3y2 = a2

Solving x = y = ± a
2

Fxx = −6kxy, Fyy = −6kxy, Fxy = k(a2 − 3x2 − 3y2)

At (0, 0), Fxx = 0 = Fyy, Fxy = ka2
... 0.0− ka2 < 0 so (0, 0) is a saddle point.

At both the points
�
a
2
, a
2

�
and

�−a
2
, −a

2

�
,

Fxx = −6 ka24 < 0 and

Fxx · Fyy − F 2
xy =

9

4
k2a4 − a

4k2

4
= 2k2a4 > 0

... T attains a maximum value at both these points�
a
2
, a
2

�
and

�− a
2
,− a

2

�
. The maximum value of T is

k · a2
4

�
a2

2

�
= ka4

8
.

Example 4: Find the shortest distance between the
lines

x − 3

1
= y − 5

−2 = z− 7

1
(1)

and
x + 1

7
= y + 1

−6 = z+ 1

1
(2)

Solution: Equating each of the fractions of (1) to
λ, we get x = 3+ λ, y = 5− 2λ, z = 7+ λ. Thus
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any point P on the first line (1) is given by

(3+ λ, 5− 2λ, 7+ λ).

Similarly any point Q on the second line (2) is
(−1+ 7µ,−1− 6µ,−1+ µ).
The distance between the given two lines is

PQ=
�
(3+λ+1−7µ)2+(5−2λ+1+6µ)2+(7+λ+1−µ)2

Consider f (λ,µ) = (PQ)2 = 6λ2 + 86µ2 − 40λµ
+105. The problem is to find minimum value of f
as a function of the two variables λ,µ.

fλ = 12λ− 40µ, fµ = 172µ− 40λ.

Solving 12λ− 40µ = 0 and 172µ− 40λ = 0, we
get, λ = 0, µ = 0 as the only stationary point

fλλ = 12, fµµ = 172, fλµ = −40
Now fλλ · fµµ − f 2

λµ = (12) · (172)− (−40)2 > 0

Since fλλ = 12 > 0 and fλλfµµ − f 2
λµ > 0, a

minimum occurs at λ = 0, µ = 0. The minimum,
(shortest) distance is given by

PQ =
�
42 + 62 + 82 =

√
116 = 2

√
29

EXERCISE

1. Test the functions for maxima, minima and

saddle points:

a. x4 + y4 − x2 − y2 + 1

b. x2 + 2y2 + 3z2 − 2xy − 2yz− 2

Ans. a. maximum at (0,0)

maximum value is 1.

minima at four points (±1/
√
2,±1/

√
2)

minimum value at these 4 points is 1
2
.

Saddle points at four points (0,±1/
√
2),

(±1/
√
2, 0)

b. maximum at (1,1), minimum at (−1,−1)
2. Find the extrema of f (x, y):

(x2 + y2)e6x+2x2

Ans. minima at (0,0) (minimum value 0) and at

(−1, 0) (minimum value e−4).
Saddle point at

�− 1
2
, 0
�

3. Examine the following function f (x, y) for
extrema:

sin x + sin y + sin(x + y)

Ans. Maximumat (π/3, π/3), maximumvalue 3
√
3

2
.

4. Find the shortest distance from the origin to

the plane x − 2y − 2z = 3.

Ans. Shortest distance is 1 (from (0,0,0)) to the

point
�
1
3
,− 2

3
,− 2

3

�
on the plane.

5. Given ax + by + cz = p find the minimum

value of x2 + y2 + z2.
Ans. p2/(a2 + b2 + c2)
6. Find the shortest distance between the lines

x − 2

3
= y − 6

−2 = z− 5

−2

and
x − 5

2
= y − 3

1
= z− 8

6
.

Ans. Shortest distance is 3 between the points

(5, 4, 3) and (3, 2, 2).

7. If the perimeter of a triangle is constant, prove

that the area of this triangle is maximumwhen

the triangle is equilateral.

Hint: 2s = a + b + c where a, b, c are sides
Area of  = √s(s − a)(s − b)(s − c)
Maximum when a = b = c = 2s

3
.

8. Find the volume of the largest rectangular

parallelopiped with edges parallel to the axes,

that can be inscribed in the:

a. ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1

b. sphere

c. equation of ellipsoid is 4x2 + 4y2 + 9z2

= 36.

Ans. a. volume 8abc

3
√
3
, parallelopiped has dimensions

x = a√
3
, y = b√

3
, z = c√

3

b. special case a = b = c

volume :
8a3

3
√
3
, x = y = z = a√

3

c. volume: 16
√
3 (with a = 3, b = 3, c = 2)

9. Show that the rectangular solid of maximum

volume that can be inscribed in a sphere is a

cube.
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Hint: V be the volume of the rectangular
solid with length, breadth and height x, y, z

V = xyz

diagonal of solid =
�
x2 + y2 + z2= d =

diameter of sphere. Eliminate z =�
d2 − x2 − y2 so

v = xy
�
d2 − x2 − y2 = f (x, y).

10. Find the dimensions of a rectangular box,

with open top, so that the total surface area of

the box is a minimum, given that the volume

of the box is constant say V.

Hint: S = xy + 2xz+ 2yz, eliminate z = V
xy

where V is a given constant so that

S = xy + 2V

y
+ 2V

x
= f (x, y).

Ans. x = y = 2z = (2V )1/3

11. Find the dimensions of the rectangular box,

with open top, of maximum capacity whose

surface area is 432 sq. cm.

Ans. 12, 12, 6

12. If the total surface area of a closed rectangular

box is 108 sq. cm, find the dimensions of the

box having maximum capacity.

Ans.
√
18,
√
18,
√
18

13. An aquarium with rectangular sides and

bottom (and no top) is to hold 32 litres. Find

its dimensions so that it will use the least

amount of material.

Hint: Work as Example 10 with V = 32.

Ans. 4, 4, 2.

4.3 LAGRANGE’S∗ METHOD OF

UNDETERMINED MULTIPLIERS

In many practical and theoretical problems, it is
required to find the maximum or minimum of a
function of several variables, where the variables
are connected by some given relation or condition

∗Joseph Louis Lagrange (1736–1813).

known as a constraint. Thus if f (x, y, z) is a function
of 3 independent variables, where x, y, z are related
by a known constraint g(x, y, z) = 0, then the prob-
lem of constrained extrema consists of finding the

Extrema of u = f (x, y, z) (1)

subject to g(x, y, z) = 0 (2)

This problem can be solved by (a) elimination

method (b) Implicit differentiation method (c) La-

grange’s multiplier’s method.

a. In eliminationmethod, the constraint (2) is solved

for say one variable z in terms of the other vari-

ables x and y. Then z is eliminated from f (x, y, z)

resulting in a function of two variables x and

y only. The disadvantage of this method is that

many times, (2) may not be solvable and in case

of solution also the amount of algebra will be

generally enormous.

b. In implicit differentiation method, no elimination

of variables is done but derivatives are eliminated

by calculating them through implicit differentia-

tion. This method also suffers due to more labour

involved.

c. The very useful Lagrange’s method of unde-
termined multiplier’s introduces an additional
unknown constant λ known as Lagrange mul-
tiplier. Since the stationary values occur when
fx = fy = fz = 0, so the total differential

df = fxdx + fydy + fzdz = 0 (3)

Differential of the constraint (2) is

dg = gxdx + gydy + gzdz = 0 (4)

Multiplying (4) by λ and adding to (3), we get

(fx + λgx )dx + (fy + λgy )dy
+ (fz + λgz)dz = 0 (5)

Since x, y, z are independent variables (5) im-
plies that

fx + λgx = 0 (6)

fy + λgy = 0 (7)

fz + λgz = 0 (8)

Solving the four Equations (2), (6), (7), (8) for

the four unknowns x, y, z, λ, we get the required

stationary points of f (x, y, z) subject to the
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constraint (2). Thus the method of Lagrange’s

multipliers consists of:

Step I. From the auxiliary equation

F (x, y, z) = f (x, y, z)+ λφ(x, y, z) (9)

Step II. Partially differentiate F in (9) w.r.t. x, y, z

respectively
Step III. Solve the four equations

Fx = 0, Fy = 0, Fz = 0

and the constraint (2) for the Lagrange multiplier

λ and stationary values x, y, z.

Advantages

1. The stationary value f (x, y, z) can be determined

from (2), (6), (7), (8) even without determining

x, y, z explicitly.

2. This method can be extended to a function of sev-
eral ‘n’ variables x1, x2, x3, . . . xn and subject to
many (more than one) ‘m’ constraints by forming
the auxiliary equation

F (x1, x2, . . . , xn)= f (x1, x2, . . . , xn)

+
m�
i=1
λiφi (x1, x2, . . . , xn).

The stationary values are obtained by solving the

n+m equations consisting of n equations ∂F
∂xi
=

0, for i = 1, 2, 3, . . . n and them constraint, φi =
0 for i = 1, 2, 3, . . . m.

Disadvantages

1. Nature of the stationary points can not be deter-

mined. Further investigation needed.

2. Equations (6), (7), (8) are only necessary condi-

tions but not sufficient.

WORKED OUT EXAMPLES

Example 1: Find the maximum value of xmynzp

when x + y + z = a.

Solution: This is a constrained maximum problem

where the function f (x, y, z) = xmynzp, subjected

to the constraint x + y + z = a. So consider the aux-
iliary function

F (x, y, z) = xmynzp + λ(x + y + z− a) (1)

Differentiating (1) partially w.r.t. x, y, z and
equating to zero we get

Fx =
∂F

∂x
= mxm−1ynzp + λ = 0 (2)

Fy =
∂F

∂y
= nxmyn−1zp + λ = 0 (3)

Fz =
∂F

∂z
= pxmynzp−1 + λ = 0 (4)

Solving for x, y, z, m
x
f + λ = 0 so x = −mf

λ
.

Similarly y = − nf

λ
and z = −pf

λ
.

Substituting these values of x, y, z in the given
constraint, we have

x + y + z = −
�m
λ
+ n
λ
+ p
λ

�
f = a

Solving, we get the value of λ as

λ = − (m+ n+ p)
a

f.

Using this λ, we get

x =−mf
λ
= − mf · (−a)

f (m+ n+ p) =
am

m+ n+ p

Similarly y =−nf
λ
= an

m+ n+ p

and z=−pf
λ
= ap

m+ n+ p
Thus the maximum value is

xmynzp =
�

am

m+ n+p

�m �
an

m+ n+p

�n �
ap

m+ n+p

�p

= a
m+n+p ·mm · nn · pp
(m+ n+ p)m+n+p .

Example 2: Find the maximum and minimum dis-
tances from the origin to the curve

3x2 + 4xy + 6y2 = 140.

Solution: The distance d from the origin (0, 0) to
any point (x, y) is given by

d2 = x2 + y2 = f (x, y)
To find extrema of f (x, y) subject to the condition

that the point (x, y) lies on the curve 3x2 + 4xy +
6y2 = 140.
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So the auxiliary function is

F (x, y)= (x2 + y2)+ λ(3x2 + 4xy + 6y2 − 140)

Fx = 2x + λ(6x + 4y) = 0,

Fy = 2y + λ(12y + 4x) = 0

Solving for λ = − x
(3x+2y) = − y

6y+2x

−λ= x2

3x2 + 2xy
= y2

6y2 + 2xy
= x2 + y2

3x2 + 4xy + 6y2

... − λ = f

140

Substituting λ in Fx = 0 and Fy = 0, we get

(140− 3f )x − 2fy = 0

−2f x + (140− 6f )y = 0

This system has non-trivial solution if����140− 3f −2f
−2f (140− 6f )

����= 0

i.e., (140− 3f )(140− 6f )− 4f 2 = 0

14f 2 − 1260f + 1402 = 0

f 2 − 90f − 1400= 0

(f − 70)(f − 20)= 0

... f = 70, 20

Thus the maximum and minimum distances are√
70,
√
20.

Example 3: Awire of length b is cut into two parts

which are bent in the form of a square and circle

respectively. Find the least value of the sum of the

areas so found.

Solution: Let x and y be two parts into which the

givenwire is cut so thatx + y = b. Suppose the piece
of wire of length x is bent into a square so that each

side is x
4
and thus the area of the square is x

4
· x
4
= x2

16
.

Suppose the wire of length y is bent into a circle
with the perimeter y. So the area of this circle so
formed is

π (radius)2 = π
� y
2π

�2
= πy

2

4π2
= y2

4π

Thus to find the minimum of the sum of the two
areas subject to the constraint that sum is b. So the

auxiliary equation is

F (x, y)=
�
x2

16
+ y2

4π

�
+ λ(x + y − b)

Fx =
x

8
+ λ = 0, Fy =

y

2π
+ λ = 0

Solving x = −8λ, y = −2πλ.
Substituting these values in the constraint x + y =

−8λ− 2πλ = b

... + λ = − b

8+ 2π

Thus x∗ = −8λ = 8b
8+2π , y

∗ = −2πλ = 2πb
8+2π

The least value of the sumof the areas of the square
and circle is

f (x, y)= x2

16
+ y2

4π

�����
x∗,y∗

= 64b2

16(8+ 2π )2
+ 4π2b2

(8+ 2π )2

= b
2(π + 4)

4(π + 4)2
= b2

4(π + 4)
.

Example 4: Find the dimensions of a rectangu-

lar box of maximum capacity whose surface area is

givenwhen (a) box is open at the top (b) box is closed.

Solution: Let x, y, z be the dimensions of the rect-

angular box so that its volume V is

V = xyz (1)

The total surface area of the box is

nxy + 2yz+ 2zx = S = given constant (2)

Here n = 1, the box is open at the top

n = 2, the box is closed (on all sides)

The constrained maximum problem is to maxi-

mize V subject to constraint (2).
So the auxiliary function is

F (x, y, z)= xyz+ λ(nxy + 2yz+ 2zx − S) (3)

Fx = yz+ λ(ny + 2z) = 0 (4)

Fy = xz+ λ(nx + 2z) = 0 (5)

Fz = xy + λ(2y + 2x) = 0 (6)

Multiplying (4), (5), (6) by x, y, z respectively and
adding, we get

3xyz+ λ[2(nxy + 2yz+ 2zx)] = 0
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or 3 · V + 2λ · S = 0 using (1) and (2)

solving, λ = −3V

2S
(7)

Substituting value of λ from (7) in (4), (5), (6)

yz− 3V

2S
(ny + 2z)= 0 or yz− 3xyz

2S
(ny + 2z) = 0

nxy + 2xz= 2S

3
(8)

Similarly nxy + 2yz= 2S

3
(9)

2yz+ 2zx = 2S

3
(10)

From (8)− (9), x = y (11)

From (9)− (10), ny = 2z (12)

Substituting (11) and (12) in the given constraint (2)

n · x · x + 4x
nx

2
= S ... 3nx2 = S

... x2 = S

3n

a. When box is open at the topes n = 1

... x2 = S
3

or x =
�
S

3

The dimensions of the open top box are

x = y =
�
S

3
, z = 1

2

�
S

3

b. When the box is closed: n = 2

x2 = S
6
or x =

�
S

6
, x = y = z

The dimensions are

x = y = z =
�
S

6
.

Example 5: Suppose a closed rectangular box has

length twice its breadth and has constant volume V.

Determine the dimensions of the box requiring least

surface area (sheet metal).

Solution: Let xbe thebreadth so that the length is 2x
and y be the height of the closed rectangular box. Its
volume is x · 2x · y = 2x2y = V (given). The sur-
face area (6 faces) S is given by

S = 2(2x.x)+ 2(2x.y)+ 2(x.y) = 4x2 + 6xy

Thus the problem is to minimize

f (x, y) = 4x2 + 6xy (1)

Subject to the condition that

x2y = V
2
(known) (2)

The auxiliary function is

F (x, y) = 4x2 + 6xy + λ
�
x2y − V

2

�
(3)

Differentiating (3) w.r.t. x and y and equating to
zero, we get

Fx = 8x + 6y + 2λxy = 0 (4)

Fy = 6x + λx2 = 0 (5)

Solving (5), λ=− 6

x
or x = − 6

λ
(6)

Substituting x from (6) in (4), we get

−48
λ
+ 6y − 12y = 0 or y = − 8

λ
(7)

Substituting (6) and (7) in (2), we have

λ3 = −576

V
or λ = −

�
576

V

� 1
3

(8)

using (8); from (6) and (7), we get

x = −6
λ
= 6 ·

�
V

576

� 1
3

=
�
3V

8

� 1
3

(9)

y = −8
λ
= 8

�
V

576

� 1
3

=
�
8V

9

� 1
3

(10)

The least surface area with these dimensions (9)
(10) is

S = 4x2 + 6xy = 4 ·
�
3V

8

� 2
3

+ 6 ·
�
3V

8

� 1
3
�
8V

9

� 1
3

On simplification

S = (35V 2)
1
3 = (243V 2)

1
3 .

EXERCISE

1. Find the extremum values of
�
x2 + y2 when

13x2 − 10xy + 13y2 = 72.

Ans. maximum 3, minimum 2



4.14 HIGHER ENGINEERING MATHEMATICS—II

2. Find the minimum value of x2 + y2 + z2 sub-
ject to the condition 1

x
+ 1
y
+ 1

z
.

Ans. minimum is 27

3. Divide 24 into three parts such that the contin-

ued product of the first, square of the second

and the cube of the third may be maximum.

Ans. 4, 8, 12, maximum value: 4 · 82 · 123
4. Determine the perpendicular distance of the

point (a, b, c) from the plane lx+my+nz=0
by the Lagrange’s method.

Ans. minimum distance= la+mb+nc√
l2+m2+n2

5. Determine the point in the plane 3x − 4y +
5z = 50 nearest to the origin.

Ans. (3,−4, 5)
6. Find the maximum and minimum distances of

the point (3, 4, 12) from the unit sphere with

centre at origin.

Hint:

F = (x − 3)2 + (y − 4)2 + (z− 12)2

+λ(x2 + y2 + z2 − 1),

x = 3

1±√f , y =
4

1±√f , z =
12

1±√f
where f = (x − 3)2 + (y − 4)2 + (z− 12)2.

Ans. maximum 14 and minimum 12

7. Determine the point on the paraboloid z =
x2 + y2 which is closest to the point (3,−6, 4).

Ans. (1,−2, 6)
8. a. Find the dimensions of the rectangular box,

without top, of maximum capacity whose

surface is 108 sq. cm.

b. What are the dimensions when the box is

closed (on all sides).

Ans. a. 6, 6, 3 maximum capacity (volume)= 6 ·
6 · 3 = 108

b.
√
18,
√
18,
√
18

9. a. If the surface of a rectangular box,with open

top, is 432 sq. cm, find the dimensions of the

box having maximum capacity (volume).

b. If the box is closed (on all sides) what are

the dimensions.

Ans. a. 12, 12, 6 for open top box

b.
√
72,
√
72,
√
72 for closed box

10. Find the length and breadth of a rectangle of

maximum area that can be inscribed in the el-

lipse 4x2 + 9y2 = 36.

Ans. length= 3
√
2/2, breadth:

√
2, maximum area

of the rectangle is 12

11. Find the volume of the largest rectangular par-

allelopiped that can be inscribed in the ellip-

soid of revolution 4x2 + 4y2 + 9z2 = 36.

Ans. maximum volume of rectangular parallelop-

iped 16
√
3

12. Find the dimensions of a rectangular box, with

open top, of given capacity (volume) such that

the sheet metal (surface area) required is least.

Hint: Auxiliary function.

F (x, y, z) = xy + 2xz+ 2yz+ λ(xyz− V ).

Ans. x = y = 2z = (2V )
1
3 where V = Volume of

the box (given).



Chapter5

Curve Tracing

INTRODUCTION

Curve tracing is an analytical method of drawing an

approximate shape of a curve by the study of some of

its important characteristics such as symmetry, inter-

cepts, asymptotes, tangents, multiple points, region

of existence, sign of the first and second derivatives.

Knowledgeof curve tracing is useful in applicationof

integration in finding length, area, volume etc. In this

chapter,we study tracingof standard andother curves

in the (a) cartesian (b) polar and (c) parametric form.

5.1 CURVE TRACING : CURVES IN

CARTESIAN FORM

Plane algebraic curve of nth degree is represented by

f (x, y)= ayn + (bx + c)yn−1 + (dx2 + ex + f )yn−2

+ . . .+ un(x) = 0 (1)

where a, b, c, d, e, f . . . are all constants and un(x)

is a polynomial in x of degree n.

General procedure for tracing the algebraic curve

(1) consists of the study of the following character-

istics of the curve.

Symmetry

A plane algebraic curve (1) is

a. Symmetric about x-axis: if only even powers of
y occur in (1) i.e., if y is replaced by−y in (1), the
Equation (1) remains unaltered or in other words

f (x,−y) = f (x, y).

Example: y2 = 4ax (see Fig. 5.1).

Fig. 5.1

b. Symmetric about y-axis: if only even powers of

x appear in (1) i.e., f (−x, y) = f (x, y).

Example: x2 = 4ay (refer Fig. 5.2).

Fig. 5.2

c. Symmetric about both x- and y-axes: if only

even powers of x and y appear in (1) i.e.,

f (−x,−y) = f (x, y).

Example: x2 + y2 = a2 (see Fig. 5.3).

Fig. 5.3

5.1
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d. Symmetric about origin: if equation remains un-

altered when x and y are replaced by −x and −y

i.e., f (−x,−y) = f (x, y)

Example: x5 + y5 = 5a2x2y (Fig. 5.4).

Fig. 5.4

Note: Curve symmetric about both x- and y-

axes is also symmetric about origin but not the

converse (because of the presense of odd powers)

e. Symmetric about the line y = x: if the equation
remains unaltered if x and y are replaced by y and
x i.e., x, y are interchanged or

f (x, y) = f (y, x)

Example: x3 + y3 = 3axy (Fig. 5.5).

Fig. 5.5

f. Symmetric about the line y = −x: if

f (x, y) = f (−y,−x)

i.e., x is replaced by−y and y is replaced by−x.

Example: x3 − y3 = 3axy (Fig. 5.6).

Fig. 5.6

Region or Extent

is obtained by solving y in terms of x or vice versa.

Real horizontal extent is defined by values of x for

which y is defined. Real vertical extent is defined by

values of y for which x is defined.

Imaginary region: is the region in which the curve

does not exist. In such region y becomes imaginary

(undefined) for values of x or vice versa.

Asymptotes

a. Parallel tox-axis: are obtained by equating to zero

the coefficients of the highest powers of x in (1).

b. Parallel toy-axis: are obtained by equating to zero

the coefficients of the highest powers of y in (1).

Example: x2y − y − x = 0 is of 3rd degree

has maximum number of 3 asymptotes.

y is the coefficient of highest power of x i.e.,

of x2. Thus asymptote parallel to x-axis is y = 0.

(x2 − 1) is the coefficient of highest power of y

i.e., of y. Thus asymptotes parallel to y-axis are

x2 − 1 = 0 or x = ± are two asymptotes parallel

to y-axis.

c. No vertical or horizontal asymptotes: In cases (a)

and (b) if the coefficients are constants or has

imaginary (no real) factors, then curve has no

asymptotes.

Example: x3 + y3 = 3axy, no asymptotes par-

allel to x- and y-axes because coefficients of x3

and y3 are constant one.

d. Oblique asymptotes (not parallel to x-axes and

y-axes): are given by y = mx + c where m =
lim
x→∞

�
x
y

�
and c = lim

x→∞
(y −mx)

Example:

y = x2 + 2x − 1

x
,m = lim

x→∞

�y
x

�

= lim

�
x2 + 2x − 1

x2

�
= 1

c = lim
x→∞(y −mx) = lim

�
x2 + 2x + 1

x
− x

�
= 2

So y = x + 2 is an oblique (inclined) asymptote.
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e. Oblique asymptotes (when curve is represented

by implicit equation f (x, y) = 0): are given by

y = mx + c where

m is solution of φn(m) = 0 and

c is solution of cφ n(m)+ φ(n−1)(m) = 0 or

c = −φn−1(m)

φ n(m)

Here φn(m) and φn−1(m) are obtained by putting

x = 1 and y = m in the collection of highest

degree terms of degree n and in the collection of

the next highest degree terms of degree (n− 1).

Example: x3 + y3 = 3axy, highest degree

n = 3.
φ3(m) = 1+m3 (obtained by putting x = 1

and y = m in x3 + y3). Real solution m = −1.
φ2(m) = −3am (obtained by putting x = 1 and
y = m in the next highest degree 2 term −3axy)

c = − (−3am)

(3m2)
= a

m
, At m = −1, c = −a

Thus,

y = mx + c = −x − a or y + x + a = 0

is the oblique asymptote.

Origin

If origin (0, 0) lies on the curve then there will be no

constant term in equation (1).

Tangents to the Curve at the Origin

When the curve passes through origin, then the

tangents to the curve at this origin are obtained by

equating to zero the group (or collection) of the

lowest degree terms in (1).

Example: y2 = 4ax, lowest degree term 4ax

equated to zero gives x = 0 (y-axis) as tangent to

curve at origin.

Example: x3 + y3 = 3axy, lowest degree term

3axy equated to zero gives xy = 0 or x = 0 and

y = 0 are the two tangents to the curve at origin.

Example: a2y2 = a2x2 − x4, lowest degree term

(y2 − x2) equating to zero gives y = ±x as the two

tangents at origin.

Intercepts

a. The x-intercept (i.e., the point where the curve

meets the x-axis) is obtained by putting y = 0 in

(1) and solving for x. Similarly y-intercept (where

curve crosses y-axis) is obtained by putting x = 0

in (1) and solving for y.

b. Points of intersection: when curve is symmetric

about the line y = ±x, the points of intersection

are obtained by putting y = ±x in Equation (1).

c. Tangents to the curve at other points (h, k) can

be obtained by shifting the origin to these points

(h, k) by the substitution x = X + h, y = Y + k

and calculating the tangents at origin in the new

XY -plane.

Note: At pointwhere
dy

dx
= 0, the tangent is parallel

to x-axis i.e., horizontal. At pointwhere
dy

dx
= ∞, the

tangent is vertical i.e., parallel to y-axis.

Sign of First Derivative dy

dx

In an interval a ≤ x ≤ b if

a.
dy

dx
> 0 then curve is increasing in [a, b]

b.
dy

dx
< 0 then curve is decreasing in [a, b]

c. If at x = x0,
dy

dx
= 0 then (x0, y0) is a stationary

point where maxima and minima can occur.

Sign of Second Derivative d2y

dx2

In an interval a ≤ x ≤ b if

a.
d2y

dx2 > 0 then curve is convex or concave upward

(holds water)

b.
d2y

dx2 < 0 then curve is concave downward (spills

water)

c. A point at which
d2y

dx2 = 0 is known as an inflec-

tion point where the curve changes the direction

of concavity from downward to upward or vice

versa.

Multiple Point (or Singular Point)

A point through which r branches of a curve pass

is called a multiple point of the rth order and has r
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tangents. Thus at a double point two branches of the

curve pass.

Double point is classified as a node, a cusp or an

isolated (or conjugate) point according as the two

tangents are real distinct, coincident or imaginary.
Multiple points are obtained by solving for (x, y)

the three equations

fx (x, y) = 0, fy (x, y) = 0, f (x, y) = 0

The slopes of the tangents at a double point are the
roots of

fyy

�
dy

dx

�2

+ 2fxy
dy

dx
+ fxx = 0

Thus the point (x, y) will be a double point and

will be a node, cusp or conjugate according as

values of
�

dy

dx

�
are real/distinct, equal or imaginary

i.e., according as (fxy)
2 − fxxfyy > 0,= 0,< 0.

Example: y2 = x2(x − 1). So f (x, y) = y2 −
x3 + x2 = 0, fx = −3x2 + 2x = 0, fy = 2y = 0.

... (0, 0) is a double point. Equating to zero lowest

degree terms x2 + y2, we get imaginary tangents. So

(0, 0) is a conjugate point.

Example: y2(a − x) = x3. So f (x, y) = x3 −
ay2 + xy2 = 0, fx = 3x2 + y2 = 0, fy = 2y(x − a)

= 0, (0, 0) is a double point. Tangents at origin are

given by equating to zero the lowest degree terms

i.e., y2 = 0.

... x-axis is coincident tangent: (0, 0) is a cusp.

Example: f (x, y) = x3 − y2 − 7x2 + 4y + 15x

−13 = 0, fx = 3x2 − 14x + 15 = 0, fy = −2y+
4 = 0, out of (3, 2), (5/3, 2) only (3, 2) lies on

curve. fxy = 0, fxx = 6x, fyy = −2. At (3, 2),

fxx = 18, fxy = 0, fyy =− 2 so (fxy)
2− fxxfyy > 0.

... (3, 2) is a node.

WORKED OUT EXAMPLES

Example 1: Trace the curve y= (x2−x−6)(x−7).

Solution: Equation is y = (x + 2)(x − 3)(x − 7)

1. No symmetry.

2. Origin does not lie on curve.

3. No asymptotes.

4. Intercepts: x-intercepts: x = −2, 3, 7. Curve

crosses x-axis at A(−2, 0), B(3, 0) and C(7, 0)

y-intercepts: y = 42.

Curve crosses y-axis at D(0, 42).

5. Maxima and Minima:

dy

dx
= 3x2 − 16x + 1 = 3(x − x1)(x − x2)

where

x1 =
8−

√
61

3
= 0.063, x2 =

8+
√

61

3
= 5.27

Thus the stationary points where y  = 0 are x1

and x2.

d2y

dx2
= 6x − 16 = 2(3x − 8)

At x1 = .063, y   < 0, so y attains maximum

value 42.0314 at x1 = 0.063 i.e., at B(0.063,

42.0314). At x2 = 5.27, y   > 0, so y attains

minimum value −28.152 at x2 = 5.27 i.e.,

E(5.27,−28.152).

6. Inflection point: is at x = 8
3
= 2.66 since y   = 0

at x = 8
3
.

7. Extent:−∞<x<∞ since y is defined for all x.

8. Sign of first derivative:

Fig. 5.7
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Sign of y

y = Sign of y  

(x + 2) y  = 3

(x − 3) Quad- (x − x1) Nature of

Interval (x − 7) rant (x − x2) curve

−∞ < x < −2 y < 0 III y1 > 0 increasing

−2 < x < 0 y > 0 II y  > 0 increasing

0 < x < .063 y > 0 I y  > 0 increasing

.063 < x < 3 y > 0 I y  < 0 decreasing

3 < x < 5.27 y < 0 IV y  < 0 decreasing

5.27 < x < 7 y < 0 IV y  > 0 increasing

7 < x <∞ y > 0 I y  > 0 increasing

A(−2, 0), B(0.063, 42.0314). C(2.66, 6.74),

D(3, 0), E(5.27, −28.152), F (7, 0), x1 = 0.063,

x2 = 5.27

Using the above knowledge the graph of the

given curve is as shown above (in Fig. 5.7).

Example 2: Trace the curve y = x2−3x
(x−1)

.

Solution:

1. Curve is not symmetric

2. Origin lies on the curve

3. Tangent at origin is y = 3x obtained by equating

the lowest degree term y − 3x to zero.

4. Intercepts: x-intercept: put y = 0, then

x(x − 3) = 0.

... Curve crosses x-axis at x = 0 and x = 3

y-intercepts: put x = 0, then y = 0,

Fig. 5.8

Thus curve meets the x-axis at O(0, 0), A(3, 0)

(see Fig. 5.8)

5. Extent or Region: y is defined for all x, except

at x = 1 where it is discontinuous. Thus the re-

gion of definition is {−∞ < x <∞} − {1} or

R − {1}.
6. Asymptotes

a. No horizontal asymptote because co-efficient

of x2 is constant.

b. x = 1 is the vertical asymptote which is ob-

tained by equating to zero the coefficient of

the highest power in y i.e., (x − 1) = 0.

c. Oblique asymptote:m= lim
x→∞

y

x
= lim x(x−3)

(x−1)
· 1

x

= 1

c = lim
x→∞(y −mx) = lim

x→∞

� −2x

x − 1

�
= −2.

Oblique asymptote is y = mx + c = x − 2.

7. Maxima and Minima:
dy

dx
= x2−2x+3

(x−1)2
, y  > 0 for

any x except x= 1. y  = 0 when x2− 2x+ 3= 0

whose roots are imaginary.Sono stationarypoints

and therefore no maximum and no minimum.

8. Inflection point:

d2y

dx2
= − 4

(x − 1)3

No inflection points since y    = 0.

9. Sign of derivative:

Sign of Quad- Sign of Nature

Interval y rant y  of curve

−∞ < x < 0 y < 0 III y  > 0 increasing

0 < x < 1 y > 0 I y  > 0 increasing

1 < x < 3 y < 0 IV y  > 0 increasing

3 < x <∞ y > 0 I y  > 0 increasing

Example 3: Trace the curve

a2y2 = x2(2a − x)(x − a)

Solution: Equation is a2y2=− x4+3ax3−2a2x2.

1. Curve is symmetric about x-axis only.

2. Origin lies on the curve.

3. Intercepts: y-intercept: (0, 0).

x-intercepts: (0, 0), (a, 0), (2a, 0).
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4. Region: Solving for y, we get

y = ± 1

a

�
x2(2a − x)(x − a)

y is not imaginary if both x − a > 0 and

(2a − x) > 0 i.e., a < x < 2a

Thus curve exists only between x = a and

x = 2a. Curve has two branches one above and

other below x-axis.

5. Multiple point:

Tangents at origin are obtained by equating to

zero terms of lowest degree i.e., a2y2 + 2a2x2 =
0 which has imaginary values. Thus tangents at

origin are imaginary. Therefore origin O is an

isolated point.

6. Asymptotes: No horizontal and no vertical

asymptotes because coefficients of x4 and y2 are

constants. No oblique asymptotes because m =
lim
x→∞

y

x
= lim

x→∞
√

(2a−x)(x−a)=∞ (Fig. 5.9).

Fig. 5.9

7. Loop: curve crosses at A(a, 0) and B(2a, 0) and

is symmetric about x-axis. Therefore curve has

a loop between A and B.

8. Maxima and Minima: Derivative
dy

dx
= ±

2x2− 9
2
ax+2a2

a(x−a)1/2(2a−x)1/2
stationary points where y  = 0

are given by 2x2 − 9
2
ax + 2a2 = 0 or x =

a(9±
√

17)

8
= a

8
(9± 4.1231). Out of these x1 =

a
8
(9− 4.1231) = 0.6096a does not lie in the re-

gion of interest a < x < 2a. The other value

x2 = a
8
(9+ 4.1231) = 1.64a is the required

value where a maximum value M = 0.7872a

occurs on the upper branch of the curve.

Similarly the minimum value m = −0.7872a

occurs on the lower branch at x2 = 1.64a

(because of symmetry). C(1.64a,±.7872a).

9. Tangents at A and B are vertical because
dy

dx
= ∞ at x = a and x = 2a. Thus x = a

and x = 2a are the tangents to the curve at the

points A and B.

10. Sign of derivative:

For y = + 1
a

�
x2(2a − x)(x − a)

the derivative is y  = −2(x−x1)(x−x2)

a(x−a)
1
2 (2a−x)

1
2

For x1 = .6a < a < x < x2 = 1.64a, then

y > 0, y  > 0, increasing.

For x2 = 1.64a < x < 2a, then y > 0, y  < 0,

decreasing.

Similar arguments for the other branch of the

curve below the x-axis i.e., y < 0.

EXERCISE

Trace the following curves giving the salient points:

1. y = x3 − 12x − 16.

Ans. Not symmetric, does not pass through origin,

(−2, 0), (0,−16), (4, 0) are intercepts, max-

imum at x = −2 and minimum at x = 2,

inflection point at (0,−16), y is increasing

in (−∞,−2], and [2,∞) and decreasing in

(−2, 2), no asymptotes (Fig. 5.10).

Fig. 5.10

2. y = c cosh x
c
= c

2
[e

x
c + e−

x
c ].

Ans. Symmetric about y-axis, origin does not lie on

the curve, (0, c) is the intercept, no asymptotes,

y  = sinh x
c
> 0 for x > 0,< 0 for x < 0.

Curve increasing in (0,∞) and decreasing in

(−∞, 0), tangent at origin y = c is horizontal

(Fig. 5.11).
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Fig. 5.11

3. y = (x2 + 1)/(x2 − 1).

Ans. Symmetric about y-axis, origin not on curve,

(0,−1) intercept point, x=± 1 vertical asym-

ptotes, y=1 horizontal asymptote, no inclined

asymptote,maximumvalue−1 atx = 0, curve

does not exist between the lines y = −1 and

y = 1, no inflection points (Fig. 5.12).

Fig. 5.12

4. y2x2 = x2 − a2.

Ans. Symmetric about both axes, origin not on

curve, (−a, 0), (a, 0) are intercepts and x =
a, x = −a are tangents at these points, y =
±1 are asymptotes, curve is defined only when

x ≥ a or x ≤ −a, no curve between x = −a

and x = a, y  = ±a2/(x2
√
x2 − a2)  = 0, for

y  > 0 in (−∞,−a) and (a,∞) curve is in-

creasing in these intervals (Fig. 5.13).

Fig. 5.13

5. y2(x2 − 1) = 2x − 1.

Ans. Symmetric about x-axis, not through origin,

(0, 1), (0,−1), ( 1
2
, 0) are intercepts, x = 1

2
is

tangent at ( 1
2
, 0), x = ±1, y = 0 are asymp-

totes; curve exists in the region −1 < x < 1
2

and x > 1, y = ±
�

2x−1

x2−1
, y  = ±(−x2 + x +

1)/[(2x − 1)1/2(x2 − 1)3/2] (Fig. 5.14).

Fig. 5.14

6. x3 + y3 = 3ax2, a > 0.

Ans. Not symmetric, origin is cusp; x = 0 is tangent

thereat, (0, 0), (3a, 0) are intercepts; x = 3a

is tangent at (3a, 0); y + x = a is asymptote,

meets curve at
�
a
3
, 2a

3

�
; curve does not exist in

3rd quadrant because both x and y cannot be

negative, y  = x(2a − x)/y2 (Fig. 5.15).

Fig. 5.15

(3 ,0)a

7. 9ay2 = x(x − 3a)2.

Ans. Symmetric about x-axis, origin on curve; x =
0 is tangent at origin 0; (3a, 0) is intercept; tan-

gents at (3a, 0) are y = ±(x − 3a)/
√

3; curve

exists only for x > 0 (in Ist and IV quadrants),

no asymptotes; y = √x(x − 3a)/(3
√
a); y  =

(x − a)/(2
√
ax) (Fig. 5.16).
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Fig. 5.16

8. Hypocycloid or Astroid�x
a

�2/3
+
�y
b

�2/3
= 1.

Ans. Symmetric about both axes. Origin not on

curve; Intercepts are (±a, 0), (0,±b) tangents

at (±a, 0) are parallel to x-axis, tangents

at (0,±b) are parallel to y-axis; curve ex-

ists when −a < x < a and −b < y < b; no

asymptotes (Fig. 5.17).

Fig. 5.17

9. (x2 − a2)(y2 − b2) = a2b2.

Ans. Symmetric about both x and y axes, and about

the lines y = ±x; origin lies on curve, has

imaginary tangents at origin, origin is iso-

lated point; curve does not exist when −a ≤
x ≤ a, and−b ≤ y ≤ b; x = ±a, y = ±b are

asymptotes (Fig. 5.18).

Fig. 5.18

10. y3 = a2x − x3 or y3 = x(a2 − x2)

Ans. f (−x,−y) = f (x, y), symmetry in opposite

quadrants, (0, 0)(±a, 0) are intercepts, y-axis

tangent at origin, y = −x asymptote. For

0 < x < a, y > 0. For x > a, y < 0. When

−a < x < 0 then y < 0, also −a > x then

y > 0; y  = a2−3x2

3y2 Max at x = a√
3
, min at

x = −a√
3
. Also y  < 0 when (−∞, −a√

3
] and

( a√
3
,∞) so curve is decreasing. Finally y  >

0 in
�
−a√

3
to a√

3

�
so curve is increasing (Fig.

5.19).

Fig. 5.19

5.2 CURVE TRACING: STANDARD

CURVES IN CARTESIAN FORM

WORKED OUT EXAMPLES

Example 1: Folium of Descartes: x3+y3=3axy.

Solution:

1. Symmetry: Curve is symmetric about the line

y = x because f (x, y) = f (y, x).

2. Asymptotes: Since the coefficients of the high-

est powers of x and y are constants, there are no

asymptotes parallel to the coordinate axis.

To obtain oblique asymptote, put y = mx +
c in the equation x3 + (mx + c)3 = 3ax(mx +
c) or (1+m3)x3 + 3x2(m2c − am)+ 3x(cm−
ca)+ c3 = 0 This equation will give

1+m3 = 0 and m2c − am = 0.
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Solvingm = −1 and c = −a. Oblique asymptote

is y = −x − a or y + x + a = 0.

3. Origin: O(0, 0) is a point on the curve. Tangents

at origin: Equating to zero the lowest degree term

xy i.e., xy = 0, observe that x = 0 and y = 0 are

tangents to the curve at the origin.

4. Intercepts: there are no x-intercepts and no y

intercepts except the origin (0, 0) (Fig. 5.20)

because by putting x = 0 in equation 0+ y3 = 0

so y = 0 (similarly by putting y = 0, x3 + 0 = 0

so x = 0).

Fig. 5.20

5. Intersection of curve with the line y = x: put y =
x in equation: x3 + x3 = 3a · x · x or x2(2x −
3a) = 0 so x = 0 or x = 3a

2
= y. Thus line y = x

meets the curve in two points (0, 0) and
�
3a
2
, 3a

2

�
.

Derivative :
dy

dx
= ay − x2

y2 − ax

At
�
3a
2
, 3a

2

�
,

dy

dx
= −1.

Equation of tangent to the curve at the point�
3a
2
, 3a

2

�
is�

y − 3a

2

�
= −

�
x − 3a

2

�
or x + y − 3a = 0

Thus this tangent is parallel to the asymptote x +
y + a = 0

6. Region:
a. When both x and y are negative simultaneously

equation of the curve is not satisfied

(−x)3 + (−y)3 = 3a(−x)(−y)

−(x3 + y3) = 3axy

(R.H.S. is positive while L.H.S. is negative).

Thus no part of the curve exists in the 3rd quad-

rant.
b. To study the variation of y with x,

put x = r cos θ, y = r sin θ in the equation.

r3(cos3 θ + sin3 θ ) = 3ar2 sin θ cos θ

r = 3a sin θ cos θ

cos3 θ + sin3 θ

θ=0 π/4 π/3 π/2 2π/3 3π/4 π

r=0 3
√

2a
2
= 2.12a 6

√
3a

1+3
√

3
= 1.51a 0 −6

√
3a

3
√

3−1
=− 2.46a ∞ 0

dr

dθ
= 3a(cos θ − sin θ )[1+ sin θ cos θ + sin2 θ cos2 θ ]

(cos3 θ + sin3 θ )

dr

dθ
= 0 when cos θ = sin θ i.e., at θ = π

4
.

dr

dθ
> 0 in (0, π/4) and < 0 in (π/4, π/2).

Thus the curve has a loop between θ = 0 to π
2

since r increases first as θ increases from 0 to π/2

from 0 to 3
√

2a/2 as θ increases from 0 to π/4, then

r decreases from 3
√

2a/2 to 0 as θ varies from π/4

to π/2.

Example 2: Cissoid: y2(a − x) = x3, a > 0.

Solution:

1. Curve is symmetric about x-axis since y2 is

present in the equation.

2. Origin lies on the curve.

3. Tangents at origin: Equating to zero the lowest

degree terms i.e., y2 = 0. Thus x-axis is a coin-

cidental tangent to the curve at the origin. Hence

origin is a cusp.

4. Intercepts: only intercept point is x = 0, y = 0.

i.e., origin is the only point where curvemeets the

coordinate axes.
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5. Asymptotes: Asymptotes parallel to y-axis are

given by equating to zero, the coefficient of the

highest degree terms in y i.e., a − x = 0. Thus

x = a is the asymptote. For a > 0 the asymptote

x = a is parallel to y-axis and lies to the right

(y > 0).
Since coefficient of x3 is constant, no asymp-

totes parallel to x-axis.

6. Extent: solving y = ±x
�

x
a−x

� 1
2 .

y is imaginary when x < 0.

y is imaginary when x > a.

Thus curve does not exist for x < 0 and x > a.

Hence curve exists only for 0 ≤ x < a.

7. Sign of derivative

dy

dx
= ±

√
x( 3

2
a − x)

(a − x)(a − x)1/2

In the first qauadrant for 0 < x < a,
dy

dx
> 0

curve increases in the first quadrant (Fig. 5.21).

Fig. 5.21

Example 3: y = 8a3/(x2 + 4a2)

Solution:

1. Curve is symmetric about y-axis.

2. Curve does not pass through origin.

3. y-intercept: curve meets y-axis at (0, 2a).

x-intercept: curve does not cross x-axis.

4. Tangent at (0, 2a) :
dy

dx
= −16a3x

(x2+4a2)2

So
dy

dx
= 0 when x = 0. (then y = 2a).

Thus at (0, 2a), the tangent is parallel to

x-axis i.e., the horizontal line y = 2a is tangent

at (0, 2a).

5. Region: y is always positive for any value of x

(because of the presence of x2 term). Thus curve

lies above the x-axis (y > 0). Also solving the

equation x = 2a
�

2a−y

y

� 1
2
.

x is imaginary when y < 0 or y > 2a.

Curve does not exist below the x-axis (i.e., y <

0) and above the horizontal line y = 2a (i.e., y >

2a). So region is 0 < y < 2a,−∞ < x <∞.

6. Asymptotes: Asymptote parallel to x-axis is ob-

tained by equating the coefficient of highest

power of x i.e., coefficient of x2 namely y to zero.

Thus y = 0 (x-axis) is the asymptote.

No asymptote parallel to y-axis because the co-

efficient of y namely x2 + 4a2 has no real factors.

7. Sign of derivative:
dy

dx
= − 16a3x

(x2+4a2)2
.

For x > 0,
dy

dx
< 0 curve is decreasing.

For x < 0,
dy

dx
> 0 so curve is increasing.

For x = 0,
dy

dx
= 0 is stationary point which is

a maximum point (since
d2y

dx2 = 16a3(3x2−4a2)

(x2+4a2)3
< 0

at x = 0).

8. Inflection points occur at 3x2 − 4a2 = 0 where

d2y

dx2
= 0 i.e., at x1, 2 = ±2a/

√
3

9. Variation of y w.r.t. x (Fig. 5.22)

Fig. 5.22
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x = −∞ −2a −a 0 a 2a ∞
y = 0 a 1.6a 2a 1.6a a 0

Example 4: Lemniscate of Bernoulli

y2(a2 + x2) = x2(a2 − x2)

or x2(x2 + y2) = a2(x2 − y2).

Solution:

1. Curve is symmetric about both x-axis and y-axis

since it contains even powers of x and y.

2. Origin lies on the curve.

3. Tangents at origin are obtained by equating the

lowest degree term (y2 − x2)a2 to zero. Thus y =
±x are the two tangents to the curve at origin.

Hence origin is a node because there two real

distinct tangents.

4. Asymptotes: no asymptotes parallel to x-axis

because the coefficient of x4 is constant. No

asymptotes parallel to y-axis because the coef-

ficient of y2 has no real factors.

5. Intercepts: x-intercept is (0, 0).

y-intercept is x2(a2 − x2) = 0 or x = 0 or x ± a.

Fig. 5.23

Thus curve meets the x-axis at A(−a, 0) and
B(a, 0). To find the tangents at A and B, shift the
origin to (±a, 0). So put X = x + a, Y = y + 0 in
the equation of the curve.

Then Y 2[a2 + (X + a)2] = (X + a)2[a2 − (X ± a)2]

or Y 2[2a2 + 2aX +X2] = (X + a2)2[−2aX −X2]

Equating to zero the lowest degree terms the tangent

at the next origin i.e., −2aX3 = 0 i.e., new y-axis.

Thus X = x ± a = 0 or x = ±a are the tangents to

the curve at B and A.

6. Region: Solving the equation for y, we get

y = ±x

�
a2 − x2

a2 + x2

y is defined only when a2 − x2 ≥ 0 or−a ≤ x ≤ a.
Thus curve exists only when−a ≤ x ≤ a i.e., curve
lies between the lines x = −a and x = a.

Sign of derivative:
dy

dx
= ±[a4 − 2a2x2 − x4]

(a2 + x2)3/2(a2 − x2)1/2
.

Stationary points:
dy

dx
= 0 when x4+ 2a2x2− a4= 0

or at x = ±a
√

2− 1, x1 =
�
−1+

√
2a,

and x2 = −
�
−1+

√
2a

or x1 = ·64a and x2 = −·64a
Also

dy

dx
→∞ when x →+a and x →−a.

Thus tangents are parallel to x-axis at x1 and x2

while parallel to y-axis at x = a and x = −a.

Suppose y > 0 then y is considered with +

sign. Then for−a < x < x2 and 0 < x < x1, y
 > 0

curve is increasing in these two intervals.

For x2 < x < 0 and x1 < x < a, y  < 0 curve is

decreasing in these two intervals. Similarly for y < 0

take y  with −ve sign. Then for −a < x < x2 and

0 < x < x1, y
 < 0, curve decreasing.

For x2 < x < 0 and x1 < x < a, y  > 0, curve

increasing. M1,M2,m1,m2 are the extrema at

x1, x2 (Fig. 5.23).

Example 5: y = x + 1
x

Solution:

1. Curve is symmetric about the origin since

f (−x,−y) = f (x, y) (but is not symmetric

about both x- and y-axis because of the odd pow-

ers of x and y).

2. Origin does not lie on the curve.

3. No intercepts: Rewriting the equation we get

x2 − xy + 1 = 0. This has no solutions when

x = 0 (1 = 0) and y = 0, (x2 + 1 = 0).
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4. Region: y is defined for any value of x except

x = 0 where it is discontinous. Thus Region is

{−∞ < x <∞} − {0} i.e., R − {0}.
5. Asymptotes:As x → 0, y →±∞ so y-axis is an

asymptote. No horizontal asymptote because co-

efficient of x2 is constant 1.

Oblique asymptote: y = mx + c

m= lim
x→∞

y

x

m= lim
x→∞ 1+ 1

x2
= 1

c = lim
x→∞(y −mx) = lim

x→∞
1

x
= 0

Thus the oblique asymptote is the line y = x.

6. No multiple points: f (x, y) = x2 − xy + 1 = 0.

fx(x, y) = 2x − y = 0, fy(x, y) = −x = 0 has

no solution.

7. Sign of derivative:
dy

dx
= x2−1

x2 = (x−1)(x+1)

x2

(Fig. 5.24)

Fig. 5.24

a. Stationary points: x2 − 1 = 0 or x = ±1

d2y

dx2 = 2

x3 , so at x = 1, y   > 0, attains mini-

mum. At x = −1, y   < 0, attains maximum.

ThusA(1, 2) is minimum, while B(−1,−2) is

maximum.

b. Tangents to curve atA,B are parallel to x-axis.

c. For 0 < x < 1, y  < 0, curve is decreasing.

For 1 < x <∞, y  > 0, curve is increasing.

Similarly (also by symmetry about origin).

For −∞<x<−1, y  >0, curve is increasing.

−1 < x < 0, y  < 0, curve is decreasing.

8. No inflection points: since y    = 0.

Example 6: y2(x − a) = x2(x + a), a > 0

Solution:

1. Curve is symmetric about x-axis only.

2. Curve passes through origin.

3. Tangents at origin: Equating to zero group of

terms with lowest degree i.e., a(x2 + y2) = 0.

The two tangents y = ±ix are imaginary.

4. Therefore origin is an isolated point.

5. Intercepts: y-intercept: x = 0 then y = 0 so

origin (0, 0) is the y-intercept point.

x-intercept: y = 0 then x = 0 or x = −a. Thus

A(−a, 0) is x-intercept.

The tangent at A is x = a which is obtained by

putting x = X − a and Y = y = 0 in the equa-

tion resulting in y2X = (X + a)2(X + 2a) and

equating to zero the lowest term i.e., X = 0 or

x + a = 0 i.e., x = −a (Fig. 5.25).

Fig. 5.25

6. Equation of curve is of third degree. The maxi-

mum number of asymptotes is three. Asymptote

parallel to y-axis: equating to zero coefficient of

y2 i.e., x − a = 0 or x = a is the vertical asymp-

tote.
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Asymptotes parallel to x-axis: no horizontal

asymptote since coefficient of x3 is constant.

Oblique asymptotes: φ3(m) = m2 − 1 (obtained

by putting) x = 1 and y = m in 3rd degree terms

xy2 − x3. Som = ±1 are solution of φ3(m) = 0.

φ2(m) = −a(x2 + y2) = −a(1+m2), (put

x = 1, y = m).

c = − (−a)(1+m2)

2m
. At m = ±1, c = ±a.

Thus the two oblique asymptotes are

y = x + a and y = −x − a.

7. Region: Solving for y, we get two branches of
the curve as

y = ±x

�
x + a

x − a

y is imaginary when −a < x < a. Curve does

not exist between the lines x = −a and x = a

(except the isolated point 0).

8. Sign of derivative:
dy

dx
= ± (x2−ax−a2)

(x−a)
3
2 (x+a)

1
2

a. Stationary points:
dy

dx
= 0 when x2 − ax−

a2 = 0. Out of the two stationary points

x = 1
2
(1±

√
5)a only x∗ = 1

2
(1+

√
5)a

= 1.62a is considered, because for

x = 1
2
(1−

√
5)a, y becomes imaginary.

Maximum and minimum occur at x∗.

b. For the branch of curve y = +x
�

x+a
x−a

, the

derivative
dy

dx
= + x2−ax−x2

(x−a)3/2(x+a)
1
2

·
Then for −∞ < x < −a,

dy

dx
< 0, curve is

decreasing, for a < x <∞,
dy

dx
> 0, curve is

increasing.

c. x = a and x = −a are vertical tangents to the

curve because
dy

dx
=∞when x = a or x =−a.

Example 7: Strophoid: y2(a + x) = x2(b − x).

Solution:

1. Curve is symmetric about x-axis.

2. It passes through origin O(0, 0).

3. Tangents at origin: are y = ±
�

b
a
x which are

obtained by equating the lowest degree terms

bx2 − ay2 to zero.

4. Origin is a node since there are two real distinct

tangents.

5. Intercepts: x-intercept: Put y = 0

x2(b − x) = 0 or x = 0 or b.

The curve meets x-axis at (0, 0) and A(b, 0).

y-intercept: put x = 0 then y = 0, so O(0, 0) is

the y-intercept (Fig. 5.26).

Fig. 5.26

6. Asymptotes:No horizontal asymptote since coef-

ficient of x3 is constant.

x = −a is the vertical asymptote obtained by

equating the coefficient of y2 namely a + x to

zero.

7. Loop: since curve crosses the x-axis (x-

intercepts) at O(0, 0) and A(b, 0) and is sym-

metric about x-axis, a loop exists between O

and A.

8. Region: solving for y, we get

y = ±x

�
b − x

a + x

� 1
2

y becomes imaginary when x > b and when x <

−a. Thus the curve exists only between x = −a

and x = b i.e., for −a < x < b.

9. Derivative:

dy

dx
= (−2x2 − 3ax + bx + 2ab)

2(a + x)
3
2 (b − x)

1
2
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dy

dx
= ∞ at x = b. So the tangent to the curve

at (b, 0) is vartical (parallel to y-axis). Therefore

curve cuts the x-axis at right angle at (b, 0).

Case 1: b = a (Fig. 5.27) equation is

y2(a + x) = x2(a − x).

Fig. 5.27

Case 2: b = a and x is replaced by −x, then

equation is y2(a − x) = x2(a + x) (Fig. 5.28).

Fig. 5.28

Example 8: y2 = (x − a)(x − b)(x − c) with

a, b, c all positive.

Solution: Case 1: Let a < b < c.

1. Curve is symmetric about x-axis only.

2. Does not pass through origin.

3. Intercepts: x-intercept: put y = 0. Then

(x − a)(x − b)(x − c) = 0.

Curve crosses the x-axis at A(a, 0), B(b, 0) and

D(c, 0).

y-intercept: put x = 0.

y2 = −abc

no solution, no y-intercepts. Curve does not cut

the y-axis (Fig. 5.29).

Fig. 5.29

4. Tangents at pointsA,B,D: are obtained by shift-

ing the origin to these points. For example put

x = X + a, equation becomes

Y 2=X(X+(a−b))(X+(a−c)). Terms of least

degree in x are (a−b)(a−c)X. The tangent at A

is X=0 or x−a=0 or x=a. Similarly x=b and

x=c are the tangents to the curve at B and D.

5. Region: Solving for y, we get

y = ±
�

(x − a)(x − b)(x − c)

when x < a, y is imaginary when b < x < c, y

is imaginary. Thus curve exists when

i. a < x < b

ii. x > c.

6. No horizontal or vertical asymptotes since coef-

ficients of x3 and y2 are constants.

7. Loop: Curve crosses the x-axis between A and B

and is symmetric about x-axis. Therefore curve

has a loop between A and B.

8. y2 increases and tends to infinity as x takes values

bigger than c and tends to infinity.

9. Derivative:
dy

dx
= (x−b)(x−c)+(x−c)(x−a)+(x−a)(x−b)

2
√

(x−a)(x−b)(x−c)

dy

dx
→∞ at x = a, b, c
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Thus the tangents atA,B,D are vertical as proved

already in 4.

Case 2: Let b = c and a < b. Then the equation

reduces to y2 = (x − a)(x − b)2.

1. Curve is symmetric about x-axis.

2. Origin does not lie on the curve.

3. Intercepts: no y-intercepts x-intercepts: put

y = 0, (x − a)(x − b)2 = 0. Curve meets x-axis

at x = a and x = b. i.e., at A(a, 0) and B(b, 0).

4. Region: solving for y,

y = ±(x − a)
1
2 (x − b)

y is imaginary when x < a.

Curve exists only when x ≥ a.

5. Loop: curve has a loop betweenA andB as curve

crosses x-axis atA andB and is symmetric about

x-axis (see Fig. 5.30).

Fig. 5.30

6. For x > b and x tends to∞, y2 also tends to∞.

7. Derivative:
dy

dx
= ± [3x−2a−b]

2(x−a)
1
2

8. Tangents at A and B. At A(a, 0),
dy

dx
= ∞, so

tangent at A, x = a is vertical. At B(b, 0),
dy

dx
=

±(b − a)
1
2 . So there are two distinct tangents at

B given by

y = ±m(x − b) = ±(b − a)
1
2 (x − b)

9. B is a node because there are two real distinct

tangents to the curve.

Case 3: Let a = b = c. Then the equation is

y2 = (x − a)3

1. Curve is symmetric about x-axis.

2. Origin does not lie on the curve.

3. No y-intercepts. x = a is the x-intercept.

4. Region: For x < a, y is imaginary. So curve exists

only when x ≥ a.

5. No asymptotes because coefficients of y2 and x3

are constants.

6. Derivative:
dy

dx
= ± 3

2
(x − a)

1
2 .

At x = a,
dy

dx
= 0 twice.

So x-axis is common tangent to the two

branches of the curve at the point A(a, 0). Thus

A is cusp (Fig. 5.31).

Fig. 5.31

7. As x > b and x tends to infinity, y also tends to

infinity.

5.3 CURVE TRACING: POLAR CURVES

The general equation of a curve in polar coordinates

(r, θ ) in the explicit form is r = f (θ ) or θ = f (r)

and in the implicit form is F (r, θ ) = 0.

Salient points to trace polar curves.

Symmetry

a. Curve is symmetric about the initial line θ = 0

(usually the positive x-axis in the cartesian form)

if the equation remains unaltered when θ is re-

placed by −θ i.e., f (r,−θ ) = f (r, θ ).
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Example: r = a(1± cos θ ).

b. Curve is symmetric about the line θ = π
2
(passing

through the pole and perpendicular to the initial

line) which is usually the positive y-axis in the

cartesian form if the equation does not change

when θ is replaced by π − θ i.e., f (r, θ ) =
f (r, π − θ ).

Example: r = a(1± sin θ ).

c. Curve is symmetric about the pole (usually the

origin) if equation remains unchanged when r is

replaced by −r i.e., f (r, θ ) = f (−r, θ).

Equation contains only even powers of r.

Example: r2 = a cos 2θ .

d. Curve is symmetric about pole if

f (r, θ ) = f (r, θ + π )

Example: r = 4 tan θ , kappa curve.

e. Symmetric about the line θ = π
4

(the line y = x
in the cartesian form) if

f (r, θ ) = f (r,
π

2
− θ )

f. Symmetric about the line θ = 3π
4

(the line y =
−x in cartesian form) if

f (r, θ ) = f (r,
3π

2
− θ )

Pole

If r = f (θ1) = 0 for some θ = θ1 = constant then

curve passes through the pole and the tangent at the

pole is θ = θ1

Example: At θ = π, r = a(1+ cos θ ) = 0

Asymptote

If lim
θ→θ1

r = ∞ then an asymptote to the curve exists

and is given by the equation

r sin (θ − θ1) = f 1(θ1)

where θ1 is the solution of 1
f (θ )

= 0.

Points of Intersection

Points of intersection of the curve with the initial line

and line θ = π/2 are obtained by putting θ = 0 and

θ = π/2 respectively in the polar equation.

Region or Extent

a. If a and b are the least and greatest values of r

such that a < r < b then curve lies in the annulus

region between the two circles of radii a and b.

Example: r = a sin 2θ ; since max sin 2θ = 1,

curve lies in the circle r = a.

b. Curve does not exist for values of θ for which r

is imaginary.

Example: r2 = a2 cos 2θ ; for π
4
< θ < 3π

2
,

cos 2θ is −ve so r is imaginary, hence no curve

exists in this region.

c. For equations involving periodic functions gen-

erally θ varies from 0 to 2π .

Direction of Tangent

At any point (r, θ ): Tangent at a point on the curve is
determined from

tan φ = r
dθ

dr
where φ is the angle between radius vector and the

tangent.

The tangents at φ = 0 and φ = π
2
are parallel and

perpendicular to the initial line respectively.

Derivative

If dr
dθ

> 0, then r increases while,

if dr
dθ

< 0, then r decreases.

Loop

If curve meets the initial line at points A and B and

the curve is symmetric about the initial line, then a

loop of the curve exists between A and B.

Curves of the type r = a sin nθ and r = a cos nθ

(are called roses) consist of either n or 2n equal (sim-

ilar) loops (leaves) according as n is odd or even. Di-

vide each quadrant into n equal parts and plot r for

θ .

n = 1 corresponds to a circle.
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Some times it may be advantageous to convert

polar curves to cartesian curves by the transromation

x = r cos θ, y = r sin θ .

Result:

θ = 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 7π/6 4π/3 3π/2 2π

0 30 45 60 90 120 135 150 180 210 240 270 360

sin θ =
�

0
4

�
1
4

�
2
4

�
3
4

�
4
4

�
3
4

�
2
4

�
1
4

�
0
4

− 1
2

−
√

3
2

−1 0

cos θ =
�

4
4

�
3
4

�
2
4

�
1
4

�
0
4

−
�

1
4

−
�

2
4

−
�

3
4

−
�

4
4

−
�

3
4

−
�

2
4

0 1

Max Min Max Min Max

WORKED OUT EXAMPLES

Example 1: Lemniscate r2 = a2 sin 2θ (Fig.

5.32).

Solution:

1. Symmetry: a. Curve is symmetric about the pole

since equation contains even power of r i.e.,

f (−r, θ) = f (r, θ ).

Fig. 5.32

b. Curve is symmetric about the line θ = π
4
since

f (r,
π

2
− θ )= r2 − a2 sin 2

�π
2
− θ

�

= r2 − a2 sin (π − 2θ )

= r2 − a2 sin 2θ = f (r, θ )

2. Pole: Curve passes through the pole (ori-

gin 0) since at θ = 0 and θ = π
2
, the value of

r2 = a2 sin 2 · 0 = 0.Thus the two tangents to the

curve at the pole are given by θ = 0 and θ = π
2

(i.e., x and y-axis). Thus pole is a node.

3. No asymptote since r is finite for any value of θ .

4. Intersection: Curve meets the lines θ = π
4

and

θ = 5π
4

at A(a, π
4
) and B(−a, 5π

4
) respectively

since r2 = a2 sin 2(π
4
) = a2 sin π

2
= a2 i.e.,

r = ±a

5. Region:

a. Curve lies completely within a circle of radius

‘a’ since the maximum value of sin 2 θ is 1.

b. Imaginary: sin θ curve is negative when θ is

between π and 2π , then sin 2θ is negative be-

tween π
2

to π . Thus r2 is negative and there-

fore r is imaginary for π
2
< θ < π . Similarly

r is imaginary for 3π
2

< θ < 2π . Hence curve

does not exist in the 3rd and 4th quadrants.

6. Loop: θ : 0 π
8

π
4

3π
8

π
2

2θ : 0 π
4

π
2

3π
4

π

r : 0 ·7a a ·7a 0

Point: 0 C A D 0

Since curve is symmetric about the line θ=π
4

(y = x in the cartesian form), the arc OCA gets

reflected about the line θ = π
4
and thus forms the

loop OCADO in the first quadrant.

Due to symmetry about the pole (origin) this

loop OCADO in the first quadrant gets reflected

to a loop OFBEO in the third quadrant.

7. Tangent: tan φ = r dθ
dr
= a

√
sin 2θ ·

√
sin 2θ

a cos 2θ
= tan 2θ .
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Then φ = 2θ . So when θ = π
4
, φ = π

2
, tan φ =

∞. Thus the tangent to curve atA(a, π
4
) is perpen-

dicular to the initial line. On a similar argument,

tangent to curve at B(−a, 3π
4
) is perpendicular to

initial line.

Example 2: Three leaved rose r = a cos 3θ .

Solution:

Fig. 5.33

1. Symmetry: Curve is symmetric about the initial

line, since r(−θ ) = a cos 3(−θ ) = a cos 3θ =
r(θ )

2. Pole: Curve passes through the pole O when
r = a cos 3θ = 0 i.e., when cos 3θ = 0 or for

3θ = π

2
,
3π

2
,
5π

2
,
7π

2
,
9π

2
,
11π

2

Thus the curve passes through the pole when

θ = π

6
,
3π

6
= π

2
,
5π

6
,
7π

6
,
9π

6
= 3π

2
,
11π

6

The tangents to the curve at pole O are given

by the 6 lines I: θ = π
6
; II: θ = π

2
; III: θ = 5π

6
;

IV: θ = 7π
6
; V: θ = 3π

2
; VI: θ = 11π

6
.

Hence pole is a node.

3. Asymptote: No asymptote since r is finite for

any θ

4. Curve intersects the initial line θ = 0 at A(a, 0)

only (Fig. 5.33).

5. Region: curve lies completely within a circle

r = a since maximum value of cos 3θ is one.

6. Tangent: tan φ = r dθ
dr
= cos 3θ

−3 sin 3θ
. At θ = 0,

tan φ = ∞. So the tangent at the point A(a, 0) is

perpendicular to the initial line.

7. For n = 3, the curve has 3 loops.

8. Variation of r:

θ : 0 π
12

π
6

3π
12

4π
12

5π
12

6π
12

3θ : 0 π
4

π
2

3π
4

π 5π
4

3π
2

r: a ·7a 0 −·7a −a −·7a 0

point: A B O C D E O.

9. Loop: As θ varies from π
6

to π
2
, r varies from

0 to −a to 0 thus forming a loop OCDEO. Due

to symmetry about initial line, this loop OCDEO

gets reflected to the loop in the second quadrant.

Similarly the arc ABO gets reflected as OFA thus

forming the loop ABOFA. Hence the three loops

(or leaves).

Example 3: Limacon r = 2 (1− 2 sin θ ).

Solution:

1. Curve is symmetric about the line θ = π
2

through pole and perpendicular to the initial line

because sin(π − θ ) = sin θ i.e., f (r, π − θ ) =
f (r, θ ) (Fig. 5.34).

Fig. 5.34

2. Pole: Curve passes through the pole (origin 0)

since r = 2(1− 2 sin θ ) = 0 when θ = π
6

and
5π
6

�
... sin π

6
= sin 5π

6
= 1

2

�
. The tangents to the

curve at pole are given by two lines θ = π
6

and

θ = 5π
6
. Thus pole is a node.
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3. Curvemeets the initial line θ = 0 at the twopoints

A(2, 0) andH (2, π). Curve meets the line θ = π
2

at the two points E(−2, π
2
) and K(6, 3π

2
).

4. Asymptote: No asymptote since r is finite for

any θ .

5. Region: Since | sin θ | ≤ 1, the entire curve lies

within a circle r = 6 (of radius 6).

6. Variation of r:

θ = 0 π
12

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π 7π
6

4π
3

3π
2

2π

sin θ = 0 ·26 0·5 1√
2

√
3

2
1

√
3

2
1√
2

1
2

0 − 1
2

−
√

3
2

−1 0

r = 2 ·965 0 −·83 −1·46 −2 −1·46 − · 83 0 2 4 5·464 6 2

Point: A B O C D E F G O H I J K A

As θ varies from 3π
2

to π
2
, r varies from 6 to

−2, traversing the curve KABOCDE which due

to symmetry about θ = π
2

gives a limacon with

an inner loop.

EXERCISE

Trace the following curves stating the salient points:

1. r = a sin 2θ .

Ans. Symmetric about the lines θ = π
4
, and θ =

3π
4

and about the line θ = π
2
; pole lies on

curve, pole is node, four tangents at pole are

θ = 0, π
2
, π, 3π

2
; r ≤ a; θ = π

4
meets curve at

A(a, π
4
); for 0 ≤ θ ≤ π

2
, 0 ≤ r ≤ a, first loop

in first quadrant; other 3 loops by symmetry:

for n = 2 there are 4 similar loops (refer Fig.

5.35).

Fig. 5.35

2. r2 = a2 sec 2θ or r2 cos 2θ = a2.

Ans. Symmetric about θ = 0, θ = π
2
, and θ = π

4
.

Curve exists for r > a; θ = ±π
4

are asymp-

totes (r →∞ as θ →±π
4
); meets θ = 0 line

at A(a, 0) (Fig. 5.36).

Fig. 5.36

3. r = a(1+ sin θ ).

Ans. Symmetric about θ = π
2
, pole O lies on curve,

θ = −π
2

is tangent at 0; curve meets A(a, 0),

andB(0, 2a);φ = π
4
+ θ

2
; tangent θ = π

2
is⊥r

to initial line; r ≤ 2a (Fig. 5.37).

Fig. 5.37

4. r = a(1− cos θ ).

Ans. Symmetric about θ = 0, pole lies on curve,

θ = 0 is tangent at pole, intersection points

(a, π
2
), (a, 3π

2
), (2a, π); tangent at θ = π , ver-

tical, curve lies within r = 2a (Fig. 5.38).

Fig. 5.38

5. r = 1+
√

2 cos θ .

Ans. Symmetric about θ = 0, pole lies on the

curve when θ = 2π
3
, 7π

6
; lies within r = 2·414

(Fig. 5.39).
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Fig. 5.39

6. Cissoid: r = a sin2 θ/ cos θ

Ans. Cartesian form r = a
(y/r)2

(x/r)
or (x2 + y2)x =

ay2 or y2(a − x) = x3. Symmetric about

x-axis, passes through origin, origin is a

cusp, x = a is asymptote. Curve exists for

0 < x < a (refer Fig. 5.40).

Fig. 5.40

5.4 CURVE TRACING: STANDARD

POLAR CURVES

Example: Lemniscate of Bernoulli,

r2 = a2 cos 2θ.

Solution:

I. Symmetry:

a. Curve is symmetric about the initial line be-

cause f (r,−θ ) = f (r, θ ).

b. Curve is symmetric about the line θ = π/2

because f (r, π − θ ) = f (r, θ ).

c. Curve is symmetric about the pole because

f (−r, θ) = f (r, θ ).

II. Pole: Pole lies on the curve because r = 0

when cos 2θ = 0 or 2θ = ±π
2

or θ = ±π
4
.

Thus there two distinct real tangents θ = ±π
4

to the curve at the pole. Hence pole is a node.

III. Asymptote: No asymptote because r is finite

for any value of θ .

IV. Points of intersection of the curve with the ini-

tial line are A(a, 0), B(−a, 0) which are ob-

tained by putting θ = 0 in the equation. (i.e.,

r2= a2. cos 2·0= a2 ... r = ± a and θ = 0).

V. Region: Cosine curve is positive between −π
2

and π
2
. Thus cos 2θ ≥ 0 when −π

2
≤ 2θ ≤ π

2

or −π
4
≤ θ ≤ π

4
.

Similarly, cosine curve is negative between
π
2
to 3π

2
. Thus cos 2θ < 0 when π

2
< 2θ < 3π

2

or π
4
< θ < 3π

4
. Thus r2 = a2 cos 2θ < 0

when π
4
< θ < 3π

4
. Hence curve does not

exist between the lines θ = π
4

and θ = 3π
4

(Fig. 5.41).

Fig. 5.41

VI. Direction of tangent:Differentiating the given
equation

r2 = a2 cos 2θ

w.r.t. θ , we get dr
dθ
=−2a2 sin 2θ

r =−a sin 2θ√
cos 2θ

.

We know that tan φ = r
dθ
dr
= r· (−r)

a2 sin 2θ
.

tan φ=−a2 cos 2θ
a2 sin 2θ

=− cot 2θ = tan (2θ+π
2
).

Thus φ = π
2
+ 2θ .

When θ = 0, φ = π
2

or tan θ = ∞. Thus

the tangents when θ = 0 i.e., at r = ±a are

perpendicular to the initial line.

When θ = π
4
, φ = π

2
+ 2. π

4
= π so the

radius vector itself is the tangent to curve at

pole (corresponding to θ = π/4).

VII. Derivative:
dr

dθ
= − a sin 2θ√

cos 2θ
.
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Variation Variation Sign of Nature Curve

of θ of r derivative of curve traced

0 ≤ θ ≤ π
4

a, 0·70a, 0 Negative Decreasing ACO

π
4
< θ < 3π

4
r is imagi- Does not

nary exist
3π
4

< θ < π 0, −0·70a, Positive Increasing ODB

−a

VIII. Loop: Since curve crosses the initial line at

A and O and is symmetric about the initial

line, a loopof the curveACOEA exists between

O and A. Since curve is symmetric about the

line θ = π
2
, this loop ACOEA is reflected as

another loop ODBFO.

Example: Four leaved Rose: r=a cos 2θ, a>0.

Solution: Since n = 2 the curve consists of

2n = 2·2 = 4 equal (similar) loops. Divide each

quadrant into (n =)2 equal parts (Fig. 5.42).

Fig. 5.42

1. Symmetry:
a. Curve is symmetric about the initial line since

r(−θ )= a cos (2(−θ )) = a cos 2θ = r(θ )

b. Curve is symmetric about the line θ = π
2

which is perpendicular to the initial line

since r(π − θ ) = a cos 2(π − θ ) = a cos 2π ·
cos 2θ = a cos 2θ = r(θ ).

2. Pole: Curve passes through the pole when

r = a cos 2θ = 0 i.e., cos 2θ = 0 so when

2θ = π
2
, 3π

2
, 5π

2
, 7π

2
.

Thus curve passes through the pole when

θ = π
4
, 3π

4
, 5π

4
, 7π

4
.

The tangents to the curve at pole are given by

the lines θ = π
4
, θ = 3π

4
, θ = 5π

4
and θ = 7π

4
.

3. Asymptote: No asymptote since r is finite for any

θ . In fact r ≤ a sincemaximumvalue of cos 2θ =
1. Thus the entire θ curve lies within the circle

r = a.

4. Value of r : The following table gives values of

r = a cos 2θ for different values of θ . (Note:
1√
2
= 0 · 70).

θ = 0 π
8

π
4

3π
8

π
2

5π
8

3π
4

7π
8

π

2θ = 0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

r = a ·7a 0 − · 7a −a − · 7a 0 ·7a a

θ = 9π
8

5π
4

11π
8

3π
2

13π
8

7π
4

15π
8

2π

2θ = 9π
4

5π
2

11π
4

3π 13π
4

7π
2

15π
4

4π

r = ·7a 0 − · 7a −a − · 7a 0 ·7a a

As θ varies from0 to π
4
, r varies from a to 0 thus

traversing the curveABO. Due to symmetry about

initial line ABO gets reflected as OCA. The loop

ABOCA gets reflected asOEDFO due to symme-

try about line θ = π
2
. Similarly OGH forms loop

OGHIO due to symmetry about the line θ = π
2
.

This loop gets reflected as another loop OLJKO

due to symmetry about the initial line.

Example: Three leaved Rose; r = a sin 3θ .

Solution: For n = 3 odd, the curve consists of three

loops (Fig. 5.43).

Fig. 5.43
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1. Symmetry: Curve is symmetric about the line
θ=π

2
passing through thepole0andperpendicular

to the initial line, since

r(π − θ )= a sin(3(π − θ ))

= a sin 3θ = r(θ )

2. Pole: Curve passes through the pole 0 when r =
a sin 3θ = 0 i.e., when 3θ = 0, π , 2π , 3π , 4π ,

5π . Thus for θ = 0, π
3
, 2π

3
,π , 4π

3
, 5π

3
, curve passes

through the pole. The tangents to the curve at the

pole are given by the lines θ = 0, θ = π
3
, θ = 2π

3
,

θ = π , θ = 4π
3

and θ = 5π
3
. Pole is a node since

θ = π
3

and θ = 2π
3

are two real distinct tangents

at 0.

3. Asymptote: No asymptote since r is always finite

for any θ . In fact maximum value of r is a since

maximum value of sin 3θ is 1. Thus the entire

curve lies within the region of the circle r = a.

4. Intersection: Curve meets the line θ = π
2

at

r = a sin 3(π
2
) = −a.

5. Variation of r: Variation of r as θ varies from 0

to π
3
.

θ : 0 π
12

π
6

π
4

π
3

3θ : 0 π
4

π
2

3π
4

π

r: a ·7a a ·7a 0

6. Loops: As θ varies from 0 to π
3
, r varies from 0

to a to 0. So the curve traverses the loop OAO

in the first quadrant. This loop OAO is reflected

as the second loop OBO in the second quadrant

because curve is symmetric about the line θ = π
2
.

Thus the second loopOBO is obtained as θ varies

from 2π/3 to π .

7. Third loop:

θ : π
3

5π
12

π
2

7π
12

2π
3

3θ : π 5π
4

3π
2

7π
4

2π

r: 0 − · 7a −a − · 7a 0

As θ varies from 0 to π
2
the arcOC is traversed

which gets reflected to form the third loopOCO in

the third quadrant because the curve is symmetric

about the line θ = π
2
.

Example: Limacon of pascal r = a + b cos θ .

Solution: Limacons are polar curves whose equa-
tions are of the form

r = a + b sin θ, r = a − b sin θ,

r = a + b cos θ, r = a − b cos θ

with a > 0 and b > 0. We get a

Limacon with inner loop when a/b < 1 or a < b;

a cardioid when a = b; dimpled Limacon when

1 < a/b < 2 and convex Limacon when a
b
≥ 2.

For the curve r = a + b cos θ consider three cases

a < b, a = b and a > b

Case 1: a < b: Limacon with inner loop:

r = 1+ 2 cos θ ; a = 1 < 2 = b
Solution:

1. Symmetry: Curve is symmetric about the

initial line since r(−θ ) = 1+ 2 cos (−θ ) =
1+ 2 cos θ = r(θ ).

2. Pole: Curve passes through the pole when

θ = 2π
3

and θ = 4π
3

because r = 1 + 2 cos 2π
3

= 1 − 1 = 0 and r = 1 + 2 cos 4π
3
= 1 − 1 = 0.

3. Tangents: The lines θ = 2π
3

and θ = 4π
3

are the

tangents to the curve at pole 0.

4. Pole (origin) is a node point since there are two

real distinct tangents at pole.

5. Intercepts: Curve meets the initial line θ = 0 at

the points A(3, 0) and f (π, 1).

Curve meets the line θ = π
2
(perpendicular to the

initial line) at D(π
2
, 1) and H ( 3π

2
, 1) (Fig. 5.44).

Fig. 5.44
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6. Asymptote: No asymptote since r is finite for

any θ .

7. Region: Since maximum value of cos θ is 1,

r ≤ 3. Thus the entire curve lies inside the cir-

cle r = 3.

8. Derivative: tan φ = r dθ
dr
= 1+2 cos θ

−2 sin θ
. For θ = 0

and π
2
, tan φ = ∞ i.e., φ = π

2
. Thus the tangents

to the curve at θ = 0 and θ = π
2
are perpendicular

to the initial line.

9. Value of r:

θ = 0 π
6

π
3

π
2

2π
3

5π
6

π 7π
6

4π
3

3π
2

5π
3

11π
6

2π

r = 3 1+
√

3 2 1 0 1−
√

3 −1 1−
√

3 0 1 2 1+
√

3 3

Point: A B C D O E F G O H I J A

Note:
√

3 = 1.732.

10. Loops: Inner loop:As the curve crosses the initial

line atO and F and is symmetric about the initial

line, a loop exists between O and F . Similarly

another loop exists between O and A. The curve

is traced as shown in the figure.

Case 2: a = b: Cardioid: r = a(1+ cos θ ).

Solution:

1. Symmetric: Curve is symmetric about the initial

line.

2. Pole: Curve passes through pole O since

r = a(1+ cos(π )) = a(1− 1) = 0when θ = π .

The tangent to the curve at the pole is θ = π .

3. Asymptote: No asymptote since r is finite for

any θ .

4. Region: Curve lies within the circle r = 2a since

maximum value of cos θ is 1.

5. Intersection: Curve meets the initial line at

A(2a, 0) and 0(0, π) curve intersects the line

θ = π
2

at C(a, π
2
) and F (a, 3π

2
).

6. Value of r:

θ : 0 π
3

π
2

2π
3

π 4π
3

3π
2

11π
6

2π

r: 2a 3a
2

a a
2

0 a
2

a 3a
2

2a

Point: A B C D O E F G A

(Fig. 5.45)

Fig. 5.45

7. Tangent:

tan φ = r
dθ

dr
= a(1+ cos θ )

−a sin θ

=− cot
θ

2

= tan(
θ

2
+ π

2
).

So φ = θ
2
+ π

2
. When θ = 0, φ = π

2
, tan φ =

∞. Then tangent at A(2a, 0) is perpendicular to

the initial line.

Case 3: a > b:Dimpled limacon r = 3+ 2 cos θ

1. Curve is symmetric about the initial line.

2. Curve does not pass through pole because for

any θ, r = 3+ 2 cos θ  = 0 (otherwise | cos θ | =
|−3

2
| > 1 which is not true for any θ ).

3. Curve meets the initial line at A(5, 0) and at

E(1, π).

Curve meets the line θ = π
2

at C(3, π
2
) and

F
�
3, 3π

2

�
.

4. No asymptote since r is finite.

5. Region:Curve lieswithin a circle of radius 5 since

cos θ maximum value is 1.

6. Tangent: tan φ = r dθ
dr
= 3+2 cos θ

−2 sin θ
.

No tangent to the curve is parallel to the initial line

since tan φ  = 0 for any θ . The tangent at A(5, 0)
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is perpendicular to the initial line since tan θ = ∞
when θ = 0

7. Value of r:

θ = 0 π
3

π
2

2π
3

π

r = 5 4 3 2 1

Point: A B C D E

Since the curve is symmetric about the initial line

EFGA is obtained as a reflection of ABCDE (see

Fig. 5.46).

Fig. 5.46

5.5 CURVE TRACING:

PARAMETRIC CURVES

Let x = f (t) and y = g(t) be the parametric equa-

tions of a curve with t as parameter.

Case 1: If t can be eliminated between x = f (t)

and y = g(t) we may obtain a cartesian equation in

x and y.

Example: x = a cos t, y = b sin t , Eliminating t,
x2

a2 + Y 2

b2
= 1 is the cartesian equation.

Example: x = a sin2 t, y = a sin2 t
cos t

, Eliminating t,

y2(a − x) = x3 is cartesian equation, of cissoid.

Case 2: Suppose t can not be eliminated.

1. Symmetry: Symmetric about x-axis if x = f (t) is

even and y = g(t) is odd function of t. Symmetric

about y-axis if x = f (t) is odd and y = g(t) is an

even function of t.

2. Origin: Determine t for which x = 0 and y = 0.

3. Intercept: y-intercept obtained for values of t for

whichx = 0, x-intercept for values of t forwhich

y = 0.

4. Find the least and greatest values of x and y.

5. Asymptotes: lim x
t→t1

= ∞, lim y
t→t1

= ∞. Then t = t1

is an asymptote.

6. Tangents: Vertical and horizontal tangents exist

at points where
dy

dx
= (dy/dt)

(dx/dt)
is∞ or 0.

7. Curve does not exist when x or y is imaginary.

8. If x = f (t) and y = g(t) are periodic functions

of t having a common period, it is enough to trace

the curve for one period.

WORKED OUT EXAMPLES

Example 1: Cycloid

x = a(t − sin t); y = a(1− cos t)

Solution: y = 0 when cos t = 1 i.e., when

t = 0, 2π, 4π , etc. Curve meets x-axis when

t = 0, 2π, 4π, 6π , etc.

Since | cos t | ≤ 1, 0 ≤ y ≤ 2a, curve lies above

the x-axis and below the horizontal line y = 2a.

At t = 0, x = 0, y = 0. Thus origin O lies on the

curve. Curve is symmetric about y-axis since x is an

odd function and y is an even function of t. For any

t, x and y are finite, no asymptote.

dx

dt
= a(1− cos t)

dy

dt
= a sin t

dy

dx
= (dx/dt)

(dy/dt)
= a sin t

a(1− cos t)

= 2 · sin t
2
· cos t

2

2 · sin2 t
2

= cos t
2

sin t
2

= cot
t

2
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t: 0 π
2

π 3π
2

2π

x: 0 a(π
2
− 1) aπ a( 3π

2
+ 1) 2πa

(0.57a) (5.71a) (6.28a)

y: 0 a 2a a 0

dy
dx

: ∞ 1 0 −1 ∞
point: O A B C D

x and y are defined for all t.

Tangents at the points O and D are vertical while

tangent at B is horizontal (y = 2a) and tangents at

A and C are of slope 1 and −1. B is known as ver-

tex and x-axis as base. Curve is periodic of period

2π in the interval [0 to 2π ] with t as the parame-

ter. Curve repeats over intervals of [0, 2aπ ] (refer

Fig. 5.47).

Fig. 5.47

EXERCISE

Trace the following curves:

1. Cycloid x = a(t + sin t), y = a(1− cos t).
Ans. t = 0, then x = 0, y = 0, origin lies. Symmet-

ric about y-axis since x is odd and y is even

function of t. Curve lies between y = 0 and

y = 2a. Periodic of period 2π . Tangent at O

horizontal, tangents at t = ±π are vertical. No

asymptote, dy/dx = tan(t/2) (Fig. 5.48).

Fig. 5.48

2. Tractrix: x = a[cos t + 1
2
ln tan2( t

2
)];

y = a sin t .

Ans. Symmetric about x-axis since x is even and y

odd function of t (Fig. 5.49). Symmetric about

y-axis, origin does not on curve, y lies between

±a, x-axis is asymptote (0,±a) are intersec-

tion with y-axis at t = ±π
2
, at which tangents

are parallel to y-axis since
dy

dx
= tan t .

Fig. 5.49

3. x = a(t + sin t), y = a(1+ cos t).

Ans. Symmetric about y-axis, since x is odd and y

is even function of t . Origin does not lie on

curve. (0, 2a) is y-intercept.

Curve lies between y = 0 and y = 2a. No

asymptote,
dy

dx
= − tan θ

2
. Tangent at (0, 2a) is

horizontal. Tangent, at θ = ±π i.e., (±aπ, 0)

are vertical (refer Fig. 5.50).

Fig. 5.50

4. x = a sin 2t(1+ cos 2t), y = a cos 2t(1−
cos 2t) (see Fig. 5.51).

Fig. 5.51

Ans. x and y are periodic of period π . Origin

lies on curve. y-intercept B(0, 2a); dx
dt
=

4a cos 3t cos t ,
dy

dt
= 4a cos 3t sin t ,

dy

dx
=

tan t , A( 3
√

3a
4

, a
4
), C(−3

√
3a

4
, a

4
).
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Nature
Range Range Range Sign of of curve Sign Type
of t of x of y Quadrant y  y = h(x) of y   of curve

0 < t < π
2

0 < x < a 0 < y < a I −ve Decreases > 0 Concave
π
2
< t < π −a < x < 0 0 < y < a II +ve Increases > 0 Concave

π < t < 3π
2

−a < x < 0 −a < y < 0 III −ve Decreases < 0 Convex
3π
2

< t < 2π 0 < x < a −a < y < 0 IV +ve Increases < 0 Convex

5.6 CURVE TRACING: STANDARD

PARAMETRIC CURVES

Example: Four Cusped Hypocycloid or As-

troid. x = a cos3 t, y = a sin3 t , with a > 0 (Fig.

5.52).

Fig. 5.52

Solution: x and y are defined for all values of t. It is
enough to consider t in [0, 2π ] since cos3 t and sin3 t
are periodic functions of period 2π . As x and y vary
in [−a, a] curve has no asymptotes.

dx

dt
=−3a cos2 t sin t,

dy

dt
= 3a sin2 t cos t

dy

dx
= 3a sin2 t cos t

−3a cos2 t sin t
= − tan t.

dy

dx
at t = π/2, 3π/2 is∞. Therefore the tangents at

t = π/2 and t = 3π/2 are vertical. Similarly hori-

zontal tangents occur at t = 0, π, 2π where
dy

dx
= 0.

d2y

dx2 = 1/(3a cos4 t sin t).

Example: Folium of Descartes: x=3at/(1+t3);

y = 3at2/(1+ t3), a > 0.

Solution: x and y are defined for all values of t
except at t = −1.
x = 0, y = 0 when t = 0. As t →±∞, x → 0 and
y → 0

dx

dt
= 6a(

1

2
− t3)/(1+ t3)2

Range of t Range of x Range of y Sign of y Nature of curve Quadrant

−∞ < t < −1 0 < x <∞ −∞ < y < 0 −ve Decreases IV

−1 < t < 0 −∞ < x < 0 0 < y <∞ −ve Decreases II

0 < t < 1
3√
2

0 < x < a
3
√

4 0 < y < a
3
√

2 +ve Increases I

1
3√
2
< t <

3
√

2 a
3
√

4 > x > a
3
√

2 a
3
√

2 < y < a
3
√

4 −ve Decreases I

3
√

2 < t <∞ a
3
√

2 > x > 0 a
3
√

4 < y < 0 +ve Increases I

dy

dt
= 3at(2− t3)/(1+ t3)2

dy

dx
= t(2− t3)/[2(

1

2
− t3)].

Tangents at (x = a
3
√

2, y = a
3
√

4) is horizontal since
dy
dx
=

0 at this point t = 3
√

2. Tangent at (x = a
3
√

4, y = a
3
√

2)

is vertical since
dy
dx
= ∞ at this point t = 3

√
2.
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Asymptote: m = lim
x→∞

y
x
= lim

t→−1

3at2(1+t3)

3at(1+t3)
= −1

c= lim
x→∞(y −mx)= lim

t→−1

�
3at2

1+t3
−(−1) · 3at

1+t3

�
=− a.

So y = −x − a or y + x + a = 0 is the asymptote

(Fig. 5.53).

Fig. 5.20



Chapter6

Integral Calculus

INTRODUCTION

Integral calculus is the study of finding a function

from information about its rate of change. Appli-

cation of integral calculus includes finding areas of

irregular plane regions, length of curves, volume,

surface area of solid of revolution, mass, moment of

inertia, centre of gravity. Successive application of a

reduction formula, which connects an integral with

another integral of lower order, enables to evaluate

the given integral. Sine-integral function (useful in

optics), gamma, beta, functions are some important

improper integrals.

6.1 REDUCTION FORMULAE

Reduction formulae reduces a given integral to a

known integration form by the repeated application

of integration by parts. Here reduction formulae

of only trigonometric functions sinn x, cosn x,

tann x, cotn x, secn x, cosecnx, sinn x · cosn x are

considered.

Reduction Formula for
  
sinn x dx ; n > 0

Consider

I =
 

sinn x dx =
 

sinn−1 x · sin x dx

=−
 

sinn−1 x · d(cos x)

Integrating by parts.
 
udν = uν −  νdu

I = sinn−1 x(− cos x)−
−
 
(− cos x) · (n− 1) sinn−2 x · cos x dx

=− cos x · sinn−1 x + (n− 1)

 
sinn−2 x · cos2 x dx

=− cos x · sinn−1 x + (n−1)
 

sinn−2 x(1− sin2 x)dx

I =− cos x · sinn−1 x − (n− 1)

 
sinn x dx +

+ (n− 1) ·
 

sinn−2 x dx or

(1+n−1)I =− cos x · sinn−1 x + (n−1)
 

sinn−2 x dx 
sinn x dx =− 1

n
cos x · sinn−1 x+n−1

n

 
sinn−2 x dx

(1)

Reduction Formula for
  
cosn x dx ; n > 0

Put x = π
2
− y, dx = −dy in (1) then 

cosn y dy = 1

n
sin y cosn−1 y + n− 1

n

 
cosn−2 y dy

(2)

Note 1: In the reduction formulae (1) and (2), the

powers of sin x and cos x are reduced by 2.

Note 2: Instead of reduction formulae, alternatively

the following substitution methods can also be used,

to evaluate (1) and (2).

a. Put cos x = t in
 
sinn x dx when the power

(index) n is odd and integrate the integral in t.

Then replace t by cos x.
b. Put sin x = t in

 
cosn x dx when the power

(index) n is odd.

c. When the index n is an even positive inte-

ger and n is small, then express powers

of sin x and cos x in terms of multiple

6.1
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angles using sin2 x = 1−cos 2x
2

, cos2 x = 1+cos 2x
2

,

sin x · cos x = sin 2x
2

d. When n is large positive integer, use DeMoivre’s

theorem to express sinn x and cosn x in

terms of multiple angles as follows: put

z = cos x + i sin x, then 1
z
= cos x − i sin x,

2 cos x = z+ 1
z
, and 2i sin x = z− 1

z
so that

2 cos nx = zn + 1
zn

and 2i sin nx = zn − 1
zn
.

Now (2 cos x)n = 2n cosn ·x =  z+ 1
z

 n =
= zn + nc1zn−2 + · · · + ncn−1 1

zn−2 +
1
zn
.

Using nc1 = ncn−1, nc2 = ncn−2 etc.

2n cosn x = (zn + 1

zn
)+ nc1(zn−2 +

1

zn−2
)+ · · ·

= 2 cos nx + nc1 · 2 · cos(n− 2)x + · · ·

2n
 

cosn x dx = 2

 
sin nx

n
+ nc1

(n−2) · sin(n−2)x+ · · ·
 

Similarly, (2i sin x)n =
 
y − 1

y

 n
.

Wallis’ Formula*

Prove that

In =
 π/2
0

sinn x dx =
 π/2
0

cosn x dx

=



n−1
n
·n−3
n−2 ·

n−5
n−4 · · ·

2

3
·I1 when n is odd

n−1
n
·n−3
n−2 ·

n−5
n−4 · · ·

1

2
·I0 when n is even.

(3)

Here

I1 =
 π/2
0

sin x dx =
 π/2
0

cos x dx = 1

and I0 =
 π/2
0

dx = π
2
.

Solution: Taking the limits 0 to π
2
in the reduction

formula (1), we have

In =
 π/2
0

sinn x dx = − cos x · sinn−1 x
n

    π/2
0

+

+ n− 1

n

 π/2
0

sinn−2 x dx

In = 0+ n− 1

n
· In−2

∗John Wallis (1616–1703), English mathematician.

Using this recurrence relation

In−2 =
n− 3

n− 2
In−4

In−4 =
n− 5

n− 4
In−6

−−−−−−−−−
−−−−−−−−−

I3 =
2

3
I1 when n is odd

I2 =
1

2
I0 when n is even

Substituting these values and using I1 = 1, I0 = 1
2

In =
n−1
n
· n−3
n−2 ·

n−5
n−4 · · ·

2

3
· when n is odd

(3)

In =
n−1
n
· n−3
n−2 ·

n−5
n−4 · · ·

1

2
· π
2

when n is even.

By the substitution x = π
2
− y, we have

In =
 π

2

0

sinn x dx =
 π

2

0

cosn x dx

Note: The numerator of In consists of products of

numbers starting from (n− 1) and decreasing by 2.

The denominator of In consists of products of num-

bers starting from n and decreasing by 2. In either

case the process terminates with the last quotient as
2
3
or 1

2
according as n is odd or even. In the event

when n is even the last factor 1
2
is multiplied by π

2
.

Corollary 1: Certain definite integrals can be

reduced to Wallis’s formula (3) by simple trigono-

metric substitution. Let n be a positive integer. Then

a. Putting x = a sin θ , a
0

xndx 
a2 − x2

=
 π/2
0

an · sinn θ · a cos θdθ
cos θ

= an
 π/2
0

sinn θdθ

b. Putting x = a tan θ , ∞

0

dx

(a2 + x2)n =
 π/2
0

a sec2 θdθ

a2n(sec2 θ )n

= 1

a2n−1

 π/2
0

cos2n−2 θdθ

c. Putting x = a tan θ ∞

0

dx

(a2 + x2)n+ 1
2

= 1

a2n+1

 π/2
0

a sec2 θdθ

sec2n+1 θ

= 1

a2n

 π/2
0

cos2n−1 θdθ
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Reduction Formula for
  
tann x dx 

tann x dx =
 

tann−2 x · tan2 x dx

=
 

tann−2 x · (sec2 x − 1)dx

=
 

tann−2 x · sec2 x dx −
 

tann−2 x dx

=
 

tann−2 x · d(tan x)−
 

tann−2 x dx

 
tann x dx = tann−1 x

n− 1
−
 

tann−2 x dx (4)

This formula reduces power of tan x by 2. After

repeated application, the integral on R.H.S. reduces

to I1 =
 
tan x dx = log sec x if n is odd or reduces

to I2 =
 
tan2 x dx = tan x − x if n is even. Simi-

larly,

Reduction Formula for
  
cotn x dx

 
cotn x dx =

 
cotn−2 x(cosec2x − 1)dx

=−cotn−1 x
n− 1

−
 

cotn−2 x dx (5)

If n is odd, I1 =
 
cot x dx = ln sin x or

If n is even, I2 =
 
cot2 x dx = − cot x − x

Reduction Formula for
  
secn x dx 

secn x dx=
 

secn−2 x· sec2 x dx=
 

secn−2 x·d(tan x).

Integrating by parts

= tan x· secn−2 x−
 

tan x·(n−2)· secn−3 x· sec x· tan x dx

= tan x · secn−2 x − (n− 2)

 
tan2 x · secn−2 x dx

= tan x · secn−2 x − (n− 2)

 
secn−2 x · (sec2 x − 1)dx

= tan x· secn−2 x−(n−2)
  

secn x dx−
 

secn−2 x dx
 

[1+(n−2)]
 

secn x dx = tan x· secn−2 x +

+(n−2)
 

secn−2 x dx

 
secn x dx = tan x· secn−2 x

n−1 +

+n−2
n−1

 
secn−2 x dx (6)

The powers of sec x are reduced by 2.

If n is odd, I1 =
 
sec x dx = ln (sec x + tan x) or

If n is even, I2 =
 
sec2 x dx = tan x

Reduction Formula for
  
cosecn

· x dx

Similarly, we get 
cosecnx dx =−cot x · cosecn−2x

n− 1
+

+n− 2

n− 1

 
cosecn−2x dx (7)

If n is odd, I1 =
 
cosec x dx = ln tan x

2
or

If n is even, I2 =
 
cosec2x dx = − cot x.

Reduction Formula for  
sinm x ·cosn x dx ; m, n > 0

Consider 
sinm x · cosn x dx =

 
sinm−1 x · sin x · cosn x dx

=
 

sinm−1 x · d
 
−cosn+1 x
n+ 1

 

Integrating by parts

=− sinm−1 x · cosn+1 x
(n+ 1)

+
 

cosn+1 x
n+ 1

· (m− 1)×

× sinm−2 x · cos x dx

=− sinm−1 x · cosn+1 x
(n+ 1)

+ m− 1

n+ 1

 
cosn x · sinm−2 x ×

× (1− sin2 x) dx

=− sinm−1 x · cosn+1 x
(n+ 1)

+

+m−1
n+1

  
cosn x· sinm−2 x dx−

 
cosn x · sinm x dx

 
 
1+m−1
n+1

  
sinm x · cosn x dx

= − sinm−1 x · cosn+1 x
(n+1) +m−1

n+1

 
cosn x · sinm−2 x dx
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Therefore the reduction formula is 
sinm x · cosn x dx =− sinm−1 x · cosn+1 x

m+n +

+m−1
m+n

 
sinm−2 x · cosn x dx

(8)

Similary considering 
sinm x cosn x dx =

 
cosn−1 x · cos x · sinm x dx

=
 

cosn−1 x · d
 
sinm+1x
m+ 1

 

and integrating by parts as abovewe get another form
of the reduction formula as 

sinm x · cosn x dx = sinm+1 x · cosn−1 x
m+ n +

+ n− 1

m+ n

 
sinn x · cosm−2 x dx

(9)

In addition to (8) and (9), we can obtain the following
other four reduction formulae. 

sinm x · cosn x dx = sinm+1 x cosn−1 x
m+ 1

+

+ n−1
m+1

 
sinm+2 x · cosn−2 x dx

(10)

Note 1: (10) is useful when m is negative integer
and n is positive integer 

sinm x· cosn x dx =− sinm+1 x · cosn+1 x
n+ 1

+

+m+n+2
n+1

 
sinm x· cosn+2 x dx

(11)

Note 2: (11) is useful when n is a negative integer.
See WE 16 on Page 6.11. 

sinm x · cosn x dx = sinm+1 x · cosn+1 x
m+ 1

+

+m+n+2
m+1

 
sinm+2 x· cosn x dx

(12)

Note 3: (12) is useful when n is a negative integer 
sinm x · cosn x dx =− sinm−1 x · cosn+1 x

n+ 1
+

+m−1
n+1

 
sinm−2 x· cosn+2 x dx

(13)

Note 4: (13) is useful when m is positive and n is

negative integer.

Evaluation of Definite Integral  π

2 sinmx·cosn x dx when both

m and n are Positive Integers

Introduce the notation

Im,n =
 π

2

0

sinm x · cosn x dx (14)

and using the reduction formula (8), we obtain

Im,n =
 π

2

0

sinm x · cosn x dx

=− sinm−1 x · cosn+1 x
m+ n

    
π
2

0

+

+m− 1

m+ n

 π
2

0

sinm−2 x · cosn x dx

Since the first term on R.H.S. is zero at both the

limits, we get

Im,n =
m− 1

m+ n · Im−2,n (15)

Using this recurrence relation, we obtain

Im−2,n =
m− 3

m+ n− 2
Im−4,n

Im−4,n =
m− 5

m+ n− 4
Im−6,n

−−− −−−−−−−−−

I3,n =
2

3+ nI1,n when m is odd.

I2,n =
1

2+ nI0,n when m is even.

Observe that

I1,n =
 π

2

0

sin x · cosn x dx = − cosn+1 x
n+ 1

   π2
0
= 1

n+ 1

(16)
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and

I0,n =
 π

2

0

cosn x dx (17)

Substituting these values, we have

(a) When m is odd and n may be odd or even

Im,n =
(m− 1)

(m+ n) ·
(m− 3)

(m+ n− 2)
×

× (m− 5)

(m+ n− 4)
· · · 2

3+ n ·
1

1+ n
Rewriting

Im,n =
(m− 1)(m− 3)(m− 5) · · · 2 · 1

(m+n)(m+n−2)(m+n−4)· · ·(n+3)(n+1) ×

×
 
(n− 1)(n− 3)(n− 5) · · ·
(n− 1)(n− 3)(n− 5) · · ·

 

(b) When m is even and n is odd

Im,n =
(m− 1)(m− 3)(m− 5) · · ·
(m+ n)(m+ n− 2) · · · ×

× 1

2+ n

 
n− 1

n
· n− 3

n− 2
· · · · 2

3

 

(c) When m is even and n is even

Im,n =
(m− 1)(m− 3) · · · · 1

(m+ n)(m+ n− 2) · · · (n+ 2)
×

×
 
n− 1

n
· n− 3

n− 2
· · · · 1

2
· π
2

 

General result

Im,n =
 π

2

0

sinm x · cosn x dx = NR
DR

· e

whereNR =product of two sets of factors each com-

mencing from (m− 1) and (n− 1) and decreasing by

2 at a time, while DR = product of factors starting

from (m+ n) and decreasing by 2 at a time, descend-

ing ultimately to 1 or 2 according as the first factor

of the set is odd or even. Here e = π
2
only when both

m and n are even. In all other cases e = 1.

Corollary 1: Certain definite (proper and

improper) integrals reduce to the Im,n form by simple

substitutions. Let n and m be positive integers.

a. Putting x = 2a sin2 θ 2a

0

xm
 
2ax − x2dx

=
 2a

0

xm+
1
2
√
2a − xdx =

 π
2

0

(2a)m+
1
2 sin2m+1 θ ×

×
√
2a · cos θ · 4a · sin θ · cos θdθ

= (2a)m+2 · 2
 π

2

0

sin2m+2 θ · cos2 θdθ

b. Putting x = a tan θ ∞

0

xndx

(a2 + x2)m =
a2n

a2m

 π/2
0

tan2 θ · a · sec2 θ
sec2m θ

dθ

= a2n−2m+1
 π/2
0

sinn θ · cos2m−n−2 θdθ

c. Putting x = a tan θ ∞

0

xndx

(a2 + x2)m+ 1
2

=
 π/2
0

an sinn θ

cosn θ
· 1

a2m+1·(sec2 θ ) 2m+1
2

·a· sec2 θdθ

= an−2m
 π/2
0

sinn θ · cos2m−n−1 θdθ

Note: Instead of the six reduction formu-

lae (8), (9), (10), (11), (12), (13), the integral 
sinm x · cosn x dx can be evaluated using certain

substitutions as follows.

a. If the power (index) m of sin x is odd, then put

cos x = t .
b. If the power n of cos x is odd, then put sin x=t .
c. Ifm+n is negative even integer, then put tan x=t .

In all the three above cases, integrand becomes a

function of t and is easily integrated.

d. If both m and n are even integers and

i. m, n are small, then convert cos x and sin x

into cosine and sines of multiple angles

using cos2 x = 1+cos 2x
2

, sin2 x = 1−cos 2x
2

,

sin x · cos x = sin 2x
2

.

ii. m, n are large, use DeMoivre’s theorem and

use z = cos x + i sin x, (2 cos x) = (z+ 1
z
)

and (2i sin x) = z− 1
z
etc.
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WORKED OUT EXAMPLES

Reduction formulae for  
sinn x dx,

  
cosn x dx

Example 1: Evaluate
 
sin5 x dx

a. by reduction formula

b. by substitution

c. Hence find
 π/2
0

sin5 x dx.

Solution:

a. From reduction formula (1) on page 6.1 
sinn x dx =− sinn−1 x

n
· cos x

+n− 1

n

 
sinn−2 x dx

Put n = 5 
sin5 x dx =−1

5
sin4 x · cos x + 4

5

 
sin3 x dx

Put n = 3 
sin3 x dx =− sin2 x

3
· cos x + 2

3

 
sin x dx

 
sin5 x dx =−1

5
· sin4 x · cos x

+4

5

 
− sin2 x· cos x

3
+2

3
(− cos x)

 

=−1

5
sin4 x · cos x

− 4

15
sin2 x · cos x − 8

15
cos x

b. Since the index n = 5 is odd, put cos x = t 
sin5 x dx =

 
sin5 x · dt

− sin x
= −

 
sin4 xdt

=−
 
(1− cos2 x)2dt = −

 
(1− t2)2dt

=−
 
(1+t4−2t2)dt=−

 
t+ t

5

5
−2t3

3

 

=−
 
cos x + 1

5
cos5 x − 2

3
cos3 x

 

This result can be rewritten as in (a).

=−
 
cos x + 1

5
· cos x(1− sin2 x)2 · −

−2

3
· cos x(1− sin2 x)

 

=− 8

15
cos x− 4

15
sin2 x · cos x−1

5
sin4 x· cos x.

c.

 π
2

0

sin5 x dx =
 
− 8

15
cos x− 4

15
sin2 x· cos x

−1

5
· sin4 x · cos x

 π
2

0

= 0+ 0+ 0−
 
− 8

15

 
= 8

15

Example2: Without using reduction formula, eval-

uate
 
sin6 x dx and hencefind

 π/2
0

sin6 x dx. Verify

by Wallis’s formula.

Solution: Since power n = 6 is even, use sin2 x
= 1−cos 2x

2
to rewrite 

sin6 x dx =
 
(sin2 x)3dx

=
  

1− cos 2x

2

 3
dx

= 1

8

 
(1− 3 cos 2x + 3 cos2 2x − cos3 2x)dx

Using cos2 x = 1+cos 2x
2

, we have

= 1

8

  
1− 3 cos 2x + 3

 
1+ cos 4x

2

 

− cos 2x

 
1+ cos 4x

2

  
dx

= 1

8

  
5

2
−7

2
cos 2x+3

2
cos 4x−1

2
· cos 2x· cos 4x

 
dx

= 1

8

  
5

2
− 7

2
cos 2x + 3

2
cos 4x

−1

2
· 1
2
[cos 6x + cos 2x]

 
dx

= 1

8

  
5

2
− 15

4
cos 2x + 3

2
cos 4x − 1

4
cos 6x

 
dx

= 1

8

 
5

2
x − 15

8
sin 2x + 3

8
sin 4x − 1

24
sin 6x
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So π/2
0

sin6 x dx

= 1

8

 
5

2
x − 15

8
sin 2x + 3

8
sin 4x − 1

24
sin 6x

 π/2
0

= 1

8
· 5
2
· π
2
= 5π

32

Verification: π/2
0

sin6 x dx = (6− 1)(6− 3)(6− 5)

6 · (6− 2)(6− 4)
· π
2

= 5 · 3 · 1
6 · 4 · 2 ·

π

2
= 5π

32

Example 3: Evaluate
 
cos3 x dx (i) by reduc-

tion formula (ii) by substitution (iii) hence find π/2
0

cos3 x dx.

Solution:

i. Use the reduction formula (2) on page 6.1 
cosn x dx= 1

n
sin x· cosn−1 x+n−1

n

 
cosn−2 x dx

Put n = 3 
cos3 x dx = 1

3
sin x · cos2 x + 2

3

 
cos x dx

= 1

3
sin x · cos2 x + 2

3
· sin x

ii. Since the power of cos is n = 3 is odd, use the
substitution sin x = t , cos x dx = dt 

cos3 x dx =
 

cos2 x · cos x · dx

=
 
(1− sin2 x) cos x · dx

=
 
(1−t2)dt=t− t

3

3
= sin x−1

3
sin3 x

Rewriting

= sin x − 1

3
· sin x · (1− cos2 x)

= 2

3
sin x + 1

3
sin x · cos2 x

iii.
 π/2
0

cos3 x dx = (3−1)
3
= 2

3
from Wallis’s for-

mula

From above integral (ii) also

 π/2
0

cos3 x dx = 2

3
sin x + 1

3
sin x · cos2 x

   π/2
0

= 2

3
+ 0− 0− 0 = 2

3

Example 4: Evaluate
 5

0
x6·dx√
25−x2

.

Solution: Put x = 5 sin θ, x = 0 then θ = 0,
x = 5, then θ = π

2
·

 5

0

x6dx 
25− x2

=
 π/2
0

56 sin6 θ

5 cos θ
· 5 · cos θdθ

= 56 · 5
6
· 3
4
· 1
2
· π
2
= 57

32
π = 78125

32
π

(by Wallis’s formula, with n = 6, even).

Example 5:  ∞

0

dx

(a2 + x2)7

Solution: Put x = a tan θ , dx = a sec2 θdθ , when
x = 0, then θ = 0; when x = ∞, then θ = π

2
.

 ∞

0

dx

(a2 + x2)7

=
 π/2
0

a · sec2 θ · dθ
a14 sec14 θdθ

= 1

a13

 π/2
0

cos12 θdθ

= 1

a13
· 11
12
· 9

10
· 7
8
· 5
6
· 3
4
· 1
2
· π
2
= 1

a13
· 231

2048
.

Example 6: Evaluate
 ∞
0

dx

(16+x2)
9
2

Solution: Put x = 4 tan θ , limits: θ : 0 to π
2
,

dx = 4 · sec2 θdθ ∞

0

dx

(16+ x2) 92
=
 π/2
0

4 · sec2 θ · dθ
49 sec9 θ

= 1

48

 π/2
0

cos7 θdθ = 1

48
· 6
7
· 4
5
· 2
3

= 1

46 · 7.5 =
1

143360
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Reduction formula for
  
tann x dx,  

cotn x dx,
  
secn x dx,

  
cosecn x dx

Example 7: Evaluate
 π/4
0

tan6 x dx.

Solution: Use the reduction formula (4) on page 6.3 
tann x dx = tann−1 x

n− 1
−
 

tann−2 x dx

Put n = 6,

 
tan6 x dx = tan5 x

5
−
 

tan4 x dx

Put n = 4,

 
tan4 x dx = tan3 x

3
−
 

tan2 x

Put n = 2,

 
tan2 x dx = tan x

1
−
 
dx

Substituting,

 
tan6 x dx = tan5 x

5
− tan3 x

3
+ tan x−x

Now, π/4
0

tan6 x dx = tan5 x

5
− tan3 x

3
+ tan x − x

   π4
0

=
 
1

5
− 1

3
+ 1− π

4

 
− 0 = 13

15
− π

4

Example 8: Find
 π/2
π/4

cot4 x dx.

Solution: Use the reduction formula (5) on page 6.3 
cotn x dx = − cotn−1 x

(n− 1)
−
 

cotn−2 x dx

Put n = 4,

 
cot4 x dx = −cot3 x

3
−
 

cot2 x dx

Put n = 2,

 
cot2 x dx = −cot x

1
−
 
dx

Substituting, 
cot4 x dx =−cot3 x

3
+ cot x + x

 π
π
4

cot4 x dx =
 
−cot3 x

3
+ cot x + x

     π
π
4

=
 
0+ 0+ π

2

 
−
 
−1

3
+ 1+ π

4

 

= π
4
− 2

3
= 3π − 8

12

Example 9: If In =
 π/4
0

tann x dx, prove that

i. (n− 1)(In + In−2) = 1

ii. (n− 1)(In+1 + In−1) = 1

iii. Evaluate I5

iv. Hence find
 a
0
x5(2a2 − x2)−3 dx.

Solution: Fromthereductionformula (4)onpage 6.3

i. In = tann−1 x
n−1

  π/4
0
− In−2 = 1

n−1 − In−2
So (n− 1)(In + In−2) = 1

ii. Put n = n+ 1

n(In+1 + In−1) = 1

iii. Put n = 5 in (i): 4 (I5 + I3) = 1

Put n = 3 in (i): 2 (I3 + I1) = 1

I5 = + 1
4
· −I3 = 1

4
− ( 1

2
− I1) = − 1

4
+ I1

But I1 =
 π/4
0

tan x dx = ln sec x
  π/4
0
= ln

√
2

Thus I5 = − 1
4
+ ln

√
2

iv. Put x =
√
2a sin θ , dx =

√
2a · cos θdθ

Limits: x = 0 then θ = 0, x = a then θ = π
4 a

0

x5(2a2 − x2)−3dx

=
 π/4
0

(
√
2a)5 sin5 θ (2a2)−3 cos−6 θ ·

√
2a· cos θdθ

=(
√
2a)6(

√
2a)−6

 π/4
0

sin5 θ

cos5 θ
dθ=I5

= ln
√
2−π

4
[from (iii)]

Example 10: Determine (i)
 π/4
0

sec5 x dx

(ii)
 π/2
π/4

cosec3x dx

Solution: i. Use reduction formula (6) on page 6.3 
secn x dx = tan x · secn−2 x

n− 1
+ n− 2

n− 1

 
secn−2 x dx

Putting n = 5, 3, 1 and substituting π/4
0

sec5 x dx = 1

4

 
sec3 x · tan x

+3

2

 
sec x· tan x+ ln (tan x+ sec x)

  π/4
0

= 1

4

 
(
√
2)3·1+3

2

 √
2·1+ ln (1+

√
2)
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ii. Use reduction formula (7) on page 6.3

(n− 1)

 
cosecnx dx =− cot x · cosecn−2x ·

+(n− 2)

 
cosecn−2x dx

Putting n = 3, 1 and substituting π/2
π/4

cosec3x dx

= −1
2

[cosec x · cot x + ln(cosec x + cot x)]
π/2
π/4

= −1

2

 
(0−

√
2)+ ln (1)− ln (

√
2+ 1)

 

iii. Put x = a tan θ , dx = a sec2 θdθ , limits: θ : 0
to π

2 ∞

0

x4

(a2 + x2)5 dx =
 π

2

0

· tan
4 θ

a10
· sec2 θ

sec10 θ
dθ

= 1

a10

 π
2

0

sin4 θ · cos4 θdθ

= 1

a10
· 3 · 3
8 · 6 · 4 · 2 ·

π

2
= 3π

256

Reduction formulae for
  
sinm x ·cosn x dx

Example 11: Evaluate

i.
 π/2
0

sin4 x · cos5 x dx

ii.
 π/2
0

sin8 x · cos12 x dx

iii.
 ∞
0

x4dx

(a2+x2)5

Solution:

i. Here m = 4 = even, n = 5 = odd π/2
0

sin4 x · cos5 x dx = 3 · 1 · 4 · 2·
9 · 7 · 5 · 3 · 1 =

8

315

ii. Here m = 8, n = 12 are both even. π
2

0

sin8 x · cos12 x dx

= 7 · 5 · 3 · 11 · 9 · 7 · 5 · 3
20 · 18 · 16 · 14 · 12 · 10 · 8 · 6 · 4 · 2 ·

π

2

= 539π

3670016

Example 12: Find
 
sin5 x · cos 3

4 x dx.

Solution: Since m = 5 is odd, put cos x = t , so
− sin x dx = dt . 

sin5 x · cos 34 x dx

=
 

sin4 x · sin x · cos 34 x dx

=
 
(1− cos2 x)2 sin x · cos 34 x dx

=
 
(1− t2)2 · t 34 (−dt)

= −
 
t
3
4 (1+ t4 − 2t2)dt

= −
 
4

7
t
7
4 + 4

23
t
23
4 − 8

15
t
15
4

 

= −4

7
cos

7
4 x − 4

23
cos

23
4 x + 8

15
cos

15
4 x

Example 13: Evaluate
 
cosecx · cot5 x dx.

Solution: 
cosec x · cot5 x dx =

 
1

sin x
· cos

5 x

sin5 x
dx

=
 

sin−6 x · cos5 x dx

Here n = 5 is odd, so put sin x = t , cos x dx = dt

=
 

sin−6 x · (1− sin2 x)2 · cos x dx =
 

1

t6
(1− t2)2dt

=
 

1+ t4 − 2t2

t6
dt = −1

5

1

t5
− 1

t
− 2

3

1

t3

=−cosec x − 2

3
cosec3x − 1

5
cosec5x

Example 14: Calculate
 

dx

sin3 x·cos5 x .

Solution: Here m = −3, n = −5, so m+ n =
−3− 5 = −8 is a negative even integer. Put

tan x = t , sec2 x dx = dt , then sin x = t√
1+t2

, and

cos x = 1√
1+t2

(Fig. 6.1).

 
dx

sin3 x · cos5 x
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Fig. 6.1

=
  

t 
1+ t2

 −3  
1 

1+ t2

 −5
1

(1+ t2)dt

=
 

(1+ t2)3
t3

dt =
 

1+ 3t2 + 3t4 + t6
t3

dt

= −1

2

1

t2
+ 3 ln t + 3

t2

2
+ t

4

4

= 3 ln tan x + 3

2
tan2 x − 1

2
cot2 x + 1

4
tan4 x

Example 15: Evaluate
 π

4
0 sin2 x · cos4 x dx by

(i) substitution method (ii) using DeMoivre’s the-

orem.

Solution: Since m = 2, n = 4 are both even inte-

gers

i. Replace sin2 x by 1−cos 2x
2

and cos2 x by 1+cos 2x
2

 π/4
0

sin2 x · cos4 x dx

=
 π/4
0

(1− cos 2x)

2

 
1+ cos 2x

2

 2
dx

= 1

8

 π/4
0

(1+ cos 2x − cos2 2x − cos3 2x)dx

Put 2x = t , dx = 1
2
dt , limits: t : 0 to π

2

= 1

16

 π
2

0

(1+ cos t − cos2 t − cos3 t)dt

= 1

16

 
π

2
+ 1− 1

2
· π
2
− 2

3

 
= 1

8

 
π

8
+ 1

6

 

ii. Put z = cos x + i sin x, then 1
z
= cos x −i sin x,

z+ 1
z
= 2 cos x, z− 1

z
= 2i sin x.

Consider

(2i sin x)2(2 cos x)4 =
 
z− 1

z

 2  
z+ 1

z

 4

=
 
z2 − 1

z2

 2  
z+ 1

z

 2

=
 
z4 + 1

z4
− 2

  
z2 + 1

z2
+ 2

 

=
 
z4 + 1

z4

  
z2 + 1

z2

 

+2
 
z4+ 1

z4

 
−2
 
z2+ 1

z2

 
−4 (∗)

Now,

zn = (cos x + i sin x)n = cos nx + i sin nx
1

zn
= (cos x + i sin x)−n = cos nx − i sin nx

zn + 1

zn
= 2 cos nx and zn − 1

zn
= 2i sin nx

(2i sin x)2(2 cos x)4

= −22 sin2 x · 24 · cos4 x = −26 sin2 x · cos4 x
using (*)

= (2 cos 4x)(2 cos 2x)+ 2.2 · cos 4x − 2.2 cos 2x−4

sin2 x · cos4 x =− 1

26

 
4 · 1

2
(cos 6x + cos 2x)

+4 cos 4x − 4 cos 2x − 4

 

=− 1

24

 
1

2
cos 6x + cos 4x−1

2
cos 2x−1

 

Integrating both sides w.r.t. x, π/4
0

sin2 x · cos4 x dx

= − 1

16

 
1

2
· sin 6x

6
+ sin 4x

4
− 1

2
· sin 2x

2
− x
 π/4
0

=− 1

16

  
1

12
sin

3π

2
+1

4
sin π−1

4
sin
π

2
−π

4

 
−0
 

= − 1

16

 
− 1

12
+ 0− 1

4
− π

4

 
= 1

8

 
π

8
+ 1

6
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Example 16: Find
 π/4
0

sin2 x

cos3 x
dx.

Solution: Use the reduction formula (11) on page 6.4 
sinm x · cosn x dx =− sinm+1 x · cosn+1 x

n+ 1
·

+m+n+2
n+1

 
sinm x· cosn+2 x dx

Here m = 2, n = −3 π/4
0

sin2 x cos−3 x dx

= − sin3 x · cos−2 x
−2 +

 
1

−2

  
sin2 x cos−1 x dx

= 1

2

sin3 x

cos2 x
− 1

2

 
1− cos2 x

cos x
dx

= 1

2

sin3 x

cos2 x
− 1

2

 
(sec x − cos x)dx

= 1

2

sin3 x

cos2 x
− 1

2
ln (sec x + tan x)+ 1

2
sin x

= 1

2
sin x

 
sin2 x

cos2 x
+ 1

 
− 1

2
ln (sec x + tan x)

= 1

2
sec x · tan x − 1

2
ln (sec x + tan x)

   π/4
0

= 1

2

 √
2− 1

2
ln (
√
2+ 1)− ln

√
2

 

EXERCISE

1. Evaluate

(a)
 
sin4 x dx; (b)

 π/2
0

sin7 x dx;

(c)
 π/4
0

cos6 2tdt ; (d)
 π/2
0

cos9 x dx

Hint: a. Put n = 4, 2

c. Put 2t = x, limits: 0 to π
2

Ans. a. − cos x sin2 x
4

− 3
8
cos x · sin x + 3

8
x

b. 6
7
· 4
5
· 2
3
= 16

35

c. 1
2

 
5
6
· 3
4
· 1
2
· π
2

 = 5π
64

d. 8
9
· 6
7
· 4
5
· 2
3
· 1 = 128

315
, Note: n = 9 is odd

2. Solve Example 1 without using reduction for-

mulae

Hint:

a. Express sin4 x = (sin2 x)2 =  1−cos 2x
2

 2 =
1
8
(3− 4 cos 2x + cos 4x)

b. Since n= 7 is odd, put cos x = t ,− sin x dx

= dt , sin7 x dx = sin6 x · sin x dx =
= (1 − cos2 x)6 sin x dx = − (1 − t2)6dt

c. Express cos6 x = (cos2 x)3 =  1+cos 2x
2

 3
d. Since n=9=odd, put sin x=t, cos x dx=dt

cos9 x dx = (1 − sin2 x)8 · cos x dx =
= (1 − t2)dt

Ans. Same as in Example 1

3. Use Wallis’s formula to evaluate

(i)
 π/2
0

sin8 x · cos4 x dx; (ii)
 π/2
0

sin2 x×
× cos6 x dx; (iii)

 π/4
0

8 cos4 x · sin4 x dx
Hint:

i. sin8 x·cos4 x=sin8 x(1−sin2 x)2=sin8 x−
2 sin10 x + sin12 x, I8 − 2I10 + I12

ii. sin2 x cos6 x=(1− cos2 x)(cos6 x), I6−I8
iii. (cos x · sin x)4 =  sin 2x

2

 4
, put 2x = t ,

1
4

 π/2
0

sin4 tdt

Ans. i. 7π
2048

ii. 5π
256

iii. 3π
64

4. Evaluate the integrals

(i)
 a
0

x7dx√
a2−x2

; (ii)
 ∞
0

dx

(a2+x2)
7
2

;

(iii)
 2a

0
x3dx√
2ax−x2

; (iv)
 1

0
x

3
2 (1− x) 12 dx

Hint:

i. Put x = a sin θ, θ ; 0 to π
2

ii. Put x = a tan θ, θ ; 0 to π
2

iii. x3√
2ax−x2

= x3·x−1/2√
2a−x , put x = 2a sin2 θ ,

limits: θ : 0 to π
2
,
 π/2
0

16a3 sin6 θdθ

iv. Put x = sin2 θ, dx = 2 sin θ · cos θdθ
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Limits: θ : 0 to π
2
, 2[
 π/2
0

sin4 θdθ− π/2
0

sin6 θdθ ]

Ans. (i) 16
35
a7 (ii) 8

15a6
(iii) 5πa3

2
(iv) π

16

5. Evaluate

(i)
 π/4
0

tan4 x dx; (ii)
 π/4
0

tan5 x dx

(iii)
 π/2
π/4

cosec5x dx; (iv)
 
sec4 x dx

(v)
 π/2
π/6

cosec5x dx; (vi)
 a
0
(a2 + x2)5/2dx

Hint: Put x = a tan θ ,
Limits: θ : 0 to π

4
, a6
 π/4
0

sec7 θdθ for (vi)

Ans. i − 2
3
+ π

4

ii. − 1
4
+ 1

2
ln 2

iii. 7

4
√
2
+ 3

8
ln (
√
2+ 1)

iv. 1
3
sec2 x tan x + 2

3
tan x

v. 11
√
3

4
+ 3

8
ln (2+

√
3)

vi. a6
 
67
√
2

48
+ 5

16
ln (1+

√
2 )
 

6. Evaluate

(i)
 
sec x · tan5 x dx; (ii)  sec 4

3 cosec
8
3 dx

Hint:

i. Put cos x = t,  sin4 x·sin x dx
cos6 x

=  (1−t2)(−dt)
t6

ii.
 

dx

cos
4
3 x·sin

8
3 x

=  dx

cos
4
3 x·cos

8
3 x·tan

8
3 x

=
 

sec4 x dx

tan
8
3 x

, put tan x = t,  (1+t2)
t
8
3

dt

Ans. i. 1
5
sec5 x − 2

3
sec3 x + sec x

ii. − 3
5
cot

5
3 x + 3 tan

1
3 x

7. Evaluate

i.
 π/2
0

sin9 x · cos3 x dx
ii.
 π/2
0
· sin8 x · cos4 x dx

iii.
 π/2
0

sin5 x · cos6 x dx
iv.
 π/2
0

sin6 x · cos8 x dx
v.
 π/6
0

sin3 6θ · cos4 3θdθ

Hint: cos4 3θ (2 sin 3θ cos 3θ )3, put 3θ=t for (v)
Ans. i 8·6·4·2·2·

12·10·8·6·4·2 = 1
60

ii. 7·5·3·3·
12·10·8·6·4·2· · π2 = 7π

2048

iii. 4·2·5·3·
11·9·7·5·3· = 8

693

iv. 5·3·7·5·3
14·12·10·8·6·4·2 · π2 = 5π

4096

v. 1
15

8. Evaluate the integrals in Example 7 without

using reduction formulae.

Hint:

i. Put cos x = t sin θm = 9 is odd or put

sin x = t since n = 3 is odd

ii. Sincem = 8, n = 4 are both even integers,

sin8 x · cos4 x =
 
1− cos 2x

2

 4
·
 
1+ cos 2x

2

 2

iii. Since m = 5 is odd put cos x = t
iv. Since m = 6, n = 8 are both even integers

sin6 x · cos8 x =
 
1− cos 2x

2

 3  1+ cos 2x

2

 4

Ans. Same as in Example 7

Note: (ii) and (iv) can also be solved

using demoveis theorem: see WOE 15 (ii) on

Page 6.10.

9. Evaluate

(i)
 
sin3 x · sec7 x dx; (ii)  cos3 x

cosec3/4x
dx

Hint:

i. Put tan x = t since m+ n = 3− 7 = −4
ii. put sin x = t since n = 3 is odd

Ans. i. 1
4
tan4 x + 1

6
tan6 x

ii. 4
7
sin7/4 x − 4

15
sin15/4 x

10. Evaluate the following integral

(i)
 2a

0
x
√
2ax − x2dx; (ii)

 ∞
0

x2

(1+x2)4 dx;

(iii)
 1

0
x4(1− x2)3/2dx
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Hint:

i. Put x = 2a sin2 θ

ii. Put x = tan θ

iii. Put x = sin t

Ans. i. πa3

2

ii. π
32

iii. 3π
256

11. Evaluate

(i)
 
cos3 x· cosec4x dx

(ii)
 
sin2 x · sec6 x dx

Hint:

i. Put sin x = t
ii. Put tan x = t

Ans. i. − 1
3
cosec3x + cosec x

ii. tan3 x
3
+ tan5 x

5
.

6.2 AREA OF A PLANE REGION:

QUADRATURE

Quadrature is the process of determining the plane

area bounded by a given set of plane curves.

Area of a Curvilinear Trapezoid

Suppose y = f (x) be a function defined on the inter-
val [a, b] and assume that f (x) ≥ 0.

Fig. 6.2

Then the areaAof the curvilinear trapezoidMLQN

bounded by the given curve (graph of) y = f (x),
the x-axis and the two ordinates (straight lines)

x = a and x = b is numerically equal to the definite

integral:

A =
 b
a

f (x)dx (1)

Similarly, if the curve is defined by the function x =
f (y) on the interval [c, d], then

Area =
 d
c

f (y)dy

If f (x) ≤ 0 on [a, b], then
 b
a
f (x)dx ≤ 0. Then

A =
    
 b
a

f (x)dx

    

Fig. 6.3

Thus if f (x) changes sign on the interval [a, b]
a finite number of times i.e., if the graph (curve)
of y = f (x) crosses the x-axis several times, then
the total area bounded by the curve is the sum of
the areas above and below the x-axis, with absolute
value taken for the areas when f (x) ≤ 0 i.e., below
the x-axis or equivalently

A =
 b
a

|f (x)|dx

Example: For the curve shown in the figure

A=
    
 a1
a

f (x)dx

    +
 b1
a1

f (x)dx +
    
 b
b1

f (x)dx

    
=
 b
a

|f (x)|dx
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Area between Two Curves

The area bounded by the curves y = f2(x),
y= f1(x), and the ordinates x= a, x= b is given by

A=
 b
a

f2(x)dx −
 b
a

f1(x)dx

=
 b
a

 
f2(x)− f1(x)

 
dx (2)

Provided
 
2
(x) ≥ f1(x).

Fig. 6.4

Area Bounded by a Parametric Curve

Suppose the curve is represented by the parametric
equations

x = x(t), y = y(t)

with α ≤ t ≤ β and x(α) = a, x(β) = b. Then

A=
 b
a

f (x)dx =
 b
a

y dx =
 β
α

y(t)
dx

dt
dt (3)

Area Bounded by a Polar Curve

Suppose the equationof the given curve in polar coor-
dinates (r, θ ) be

r = f (θ )

where α ≤ θ = β. Let ri be the length of the radius
vector corresponding to some angle θi between θi−1
and θi . Divide the given area OAB into n parts by
radius vectors θ0 = α, θ = θ1, . . . , θn = β. Then the
area of the sector OAB bounded by the polar curve
r = f (θ ) and the radius vectors θ = α and θ = β is

A= lim
n→∞

n 
i=1

1

2
r2i  θi =

1

2

 β
α

r2dθ = 1

2

 β
α

[f (θ )]2 dθ

Fig. 6.5

since the area of any typical circular sector with
radius ri and central angle  θi is given by

 Ai =
1

2
r2i  θi

Thus area of sector OAB is

A = 1

2

 β
α

[f (θ )]2dθ (4)

WORKED OUT EXAMPLES

Example 1: Find the area bounded by the parabolic

arc
√
x +√y = √a and the coordinate axes.

Solution: Curve intersects x-axis at (a, 0) and
y-axis at (0, a) (Fig. 6.6). So area is

Fig. 6.6

A=
 a
x=0

y dx =
 a
0

(
√
a −√x)2dx

=
 a
0

(a + x − 2
√
a
√
x)dx
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= ax+ x
2

2
− 2
√
a
2

3
x

3
2 ·
    a
0

= a2+ a
2

2
− 4

3
a2= 1

6
a2

Example 2: Find the total area between the cubic

y = 2x3 − 3x2 − 12x, x-axis and its maximum and

minimum ordinates.

Solution: y  = 6x2 − 6x − 12, y   = 12x − 6

Stationary points: y  = 6x2 − 6x − 12 = 0
... x = −1, 2
y  
    
x=−1

= −18 < 0 and y  
    
x=2

= 18 > 0

Thus y attains maximum at x = −1 and minimum

at x = 2 (Fig. 6.7).

Fig. 6.7

The cubic crosses the x-axis when

0 = y = 2x3 − 3x2 − 12x or when x = 0,
3±

√
104

4
.

Here only x = 0 lies between −1 and 2.

Further y

    
x=− 1

2

= 5 > 0 and

y

    
x=1

= −13 < 0

Thus f (x) ≥ 0 in [−1, 0] and f (x) ≤ 0 in [0, 2]

A=
 2

−1
f (x)dx =

 0

−1
f (x)dx +

    
 2

0

f (x)dx

    
=−

 
1

2
+ 1− 6

 
+
    (8− 8− 24)

    = 9

2
+ 24 = 57

2

Example 3: Determine the area between the cubic

y = x3 and the parabola y = 4x2.

Solution: The points of intersection of the two
curves are

4x2 = y = x3

x2(x − 4)= 0

i.e., x = 0 and x = 4.

Since at x = 1, y

    
x=1

= 4x2
    
x=1

= 4,

while y

    
x=1

= x3
    
x=1

= 1

so y = 4x2 is the upper curve and y = x3 is the lower
curve (Fig. 6.8). The area bounded between the two

curves is

Fig. 6.8

A =
 4

x=0
(4x2 − x3)dx = 4x3

3
− x

4

4

    4
x=0

= 64

3

Example 4: Show that the area bounded by

the three straight lines x + 2y = 2, y − x = 1 and

2x + y = 7 is 6.

Solution: The points of intersection of the two lines

x + 2y = 2 (I) and − x + y = 1 (II)

isB(0, 1) and of (I) and 2x + y = 7 (III) isC(4,−1)

Fig. 6.9
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and of II and III is A(2, 3) (refer Fig. 6.9).

Area ABC = Area ABD + Area BDC

=
 1

y=−1

  
7− y
2

 
− (2− 2y)

 
dy

+
 3

y=1

  
7− y
2

 
− (y − 1)

 
dy

= 3+ 3 = 6

Aliter: Area ABC = Area ABE + Area AEC

=
 2

x=0

 
(x + 1)−

 
2− x
2

  
dx

+
 4

x=2

 
(7− 2x)−

 
2− x
2

  
dx = 6

Example 5: Calculate the area between the curve

y2(a + x) = (a − x)3 and its asymptotes.

Solution: x = −a is the only asymptote to the given
curve. Since the curve is symmetric about the x-axis,
area bounded by the given curve and the asymptote
MN is twice the area BAN (Fig. 6.10).

Fig. 6.10

A= 2

 a
x=−a

y dx = 2

 a
−a

 
(a − x)3
(a + x) dx

= 2

 a
−a

(a − x)
 
a − x
a + x dx = 2

 a
−a

(a − x)2
a2 − x2 dx.

Put x = a sin θ, dx = a cos θdθ , limits: −π
2
to π

2
.

A= 2

 π
2

− π
2

a2(1− sin θ )2

a · cos θ · a cos θdθ

= 2a2
 π

2

− π
2

(1+ sin2 θ )dθ − 2a2
 π

2

π
2

2 sin θdθ

= 4a2
 π

2

0

(1+ sin2 θ )dθ = 4a2
 
π

2
+1

2
· π
2

 
= 3πa2

Example 6: Find the whole area bounded by the
four infinite branches of the tractrix.

x = a cos t + 1

2
a ln tan2

t

2
, y = a sin t.

Solution: Variation of x, y w.r.t. t ,

t : 0 π
2

π −π
2

x: −∞ 0 ∞ 0

y: 0 a 0 −a
Thewhole area bounded by the four infinite branches

of the tractrix, by symmetry, equals 4 times the area

under one infinite branch say AD for which x varies

from−∞ to 0 while t varies from 0 to π
2
(Fig. 6.11).

Fig. 6.11

Required area A= 4

 π
2

0

y(t)
dx

dt
dt (1)

Now
dx

dt
= −a sin t + 1

2
a · 2

tan t
2

· 1
2
· sec2 t

2

= −a sin t + a

2 sin t
2
· cos t

2

= −a sin t + a

sin t
= a

sin t
(1− sin2 t)

= a

sin t
· cos2 t (2)

Substituting (2) in (1), we have

A= 4

 π
2

0

(a sin t)
 a

sin t
· cos2 t

 
dt
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= 4a2
 π

2

0

cos2 tdt = 4a2 · 1
2
· π
2
= πa2.

Example 7: Find the common area included

between the parabolas y2 = 4a(x + a), and

y2 = 4b(b − x).
Solution: The points of intersection of the two

parabolas are 4a(x + a) = y2 = 4b(b − x) or x =
b2−a2
b+a i.e., x = (b − a) or in B and D (Fig. 6.12).

Fig. 6.12

The parabola I: y2 = 4b(b − x) meets the x-axis
in A(b, 0), meets the parabola II: y2 = 4a(x +
a) in B(b − a, 2

√
ab) and in D(b − a,−2

√
ab)·

Here E(b − a, 0). Also parabola II meets x-axis in
C(−a, 0). Since both the parabolas I and II are sym-
metric about the x-axis, the required common area A
between the two parabolas I and II is twice the area
ABCEA.

A= 2 Area of ABCEA = 2[Area of ABE+ Area of BCE]

= 2

  A
E

yIdx +
 E
C

yIIdx

 

where suffix I, II indicate the respective parabolas.

A= 2

 b
b−a

2
√
b
 
(b − x)dx + 2

 b−a
−a

2
√
a
 
(x + a)dx

= 4
√
b · (b − x) 32 · 2

3
(−1) ·

   b
x=b−a

+

+4√a · (x + a) 32 ·2
3
·
   b−a
−a

= 8

3

√
b
 
0+(b−(b−a))3/2

 
+8

3

√
a
 
(b−a+a) 32+0

 

= 8

3

√
ba3/2 + 8

3

√
ab3/2 = 8

3

√
ab · (a + b).

Example 8: Find the whole area of the curve

(i) r = a cos nθ (ii) r = a sin nθ (iii) r = a sin 3θ
(iv) r = a cos 4θ (v) r = a cos 3θ + b sin 3θ

Solution: The curves of the type r = a sin nθ or

r = a cos nθ consists of either n or 2n equal loops

respectively based on whether n is odd or even

(Fig. 6.13).

Fig. 6.13

i. Consider the curve r = a cos nθ
Area of one loop = twice the area of OBC

= 2
 π

2n
0

1
2
r2dθ = a2  π

2n
0 cos2 nθdθ

Put nθ = t, so dθ = 1
n
dt and limits are θ = 0,

then t = 0, θ = π
2n

then t = π
2
. So area of one

loop = a2

n

 π
2

0 cos2 t · dt = a2

n
· 1
2
· π
2
= πa2

4n
.

Then the whole area of the curve = (number of
loops) × (area of one loop)

= n · πa
2

4n
= πa

2

4
when n is odd

= 2n · πa
2

4n
= πa

2

2
when n is even

ii. When r = a sin nθ,
Area of one loop= a2

n

 π
2

0 sin2 t dt= a2

n
· 1
2
π
2
=πa2

4n
.

So whole area = πa2

4
or πa

2

2
according as n is

odd or even.

iii. When r = a sin 3θ , take n = 3 (odd). Then the

entire area = πa2

4
.

iv. When r = a cos 4θ, take n = 4 (even). Then the

entire area = πa2

2
.

v. When r = a cos 3θ + b sin 3θ, introduce

sin 3α = a 
a2 + b2

, cos 3α = b 
a2 + b2

· Then
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r =
 
a2 + b2 [sin 3α · cos 3θ + cos 3α · sin 3θ ]

r =
 
a2 + b2 · sin {3(θ + α)}

This curve is obtained by the rotation of the curve

r =
√
a2 + b2 sin 3θ through an angle α. Then

entire area of the loops of the two curves is same.

Thus entire area of the curve r = a cos 3θ +
b sin 3θ is the same as the entire area of the curve

r =
√
a2 + b2 sin 3θ .

Required area = π
 √

a2+b2
 2

4
= π (a2+b2)

4

since n = 3 is odd.

Example 9: Determine the common area between

the circle r = 3
2
a and the cardioid r = a(1+ cos θ ).

Deduce the area which is external to the circle but

inside the cardioid.

Solution: The points of intersection of the
two curves are 3

2
a = a(1+ cos θ ) i.e., θ = ±π

3

or B
 
3
2
a, π

3

 
, C
 
3
2
a,−π

3

 
. Here D

 
3
2
a, 0
 

and

A(2a, 0), E
 
a, π

2

 
. Common area included between

the circle and the cardioid is twice the area of
the shaded region ODBEO because both the curves
circle and cardioid are symmetric about the initial
line (x-axis) (Fig. 6.14). Again area of ODBEO =
Area of ODB + Area of OBEO common area

Fig. 6.14

= 2

  π
3

0

1

2
r2dθ +

 π
π/3

1

2
r2dθ

 

=
 π

3

0

9

4
a2dθ +

 π
π
3

a2(1+ cos θ )2dθ

= 9

4
a2θ

   π3
0
+ a2

 π
π
3

 
1+ 2 cos θ + 1+ cos 2θ

2

 
dθ

= 3πa2

4
+ a2

 
3

2
θ + 2 sin θ + sin 2θ

4

 π
π
3

= 3πa2

4
+a2

 
3

2
·2π
3
+2
 
0−
√
3

2

 
+1

4

 
0−
√
3

2

  

A= 7πa2

4
− 9

8

√
3a2 =

 
7π

4
− 9

√
3

8

 
a2

Now area of the cardioid= twice of area of OABEO

= 2 · 1
2

 π
0

r2dθ = 1

2

 π
0

a2(1+ cos θ )2dθ

= a2
 π
0

 
1+ 2 cos θ + 1+ cos 2θ

2

 
dθ

= a2
 
3

2
θ+2 sin θ+ sin 2θ

4

 π
0

=a2
 
3

2
π+0+0

 
=3πa2

2

Now area outside the circle but inside the cardioid is

= 3πa2

2
−
 
7π

4
− 9

√
3

8

 
a2

EXERCISE

Find the area bounded by the following curve

(1 to 7).

1. y = 2x + x2 − x3, x-axis, x = −1, x = 1

Hint: Curve crosses x-axis at −1, 0, 2. So
Area =

    0

−1

   +  1

0
=
  − 5

12

  + 13
12
= 3

2

Ans. 3
2

2. y = 2x4 − x2, x-axis, its two minimum

ordinates.

Hint: x = ± 1
2
minimum ordinates

Ans. 7
120

3. Parabola y = x2 and the line y = x.
Hint: =  1

0
(x − x2)dx

Ans. 1
6
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4. x2 = 2ay, y = 2a.

Hint:
 2a

0

 √
2ay −  −√2ay

  · dy
Ans. 16

3
a2

5. y = sin x, x-axis, 0 ≤ x ≤ 2π .

Hint:
 π
0
sin x dx +

    2π

π
sin x dx

   
Ans. 4

6. y2 = x, y = x2.
Hint:

 1

0
(
√
x − x2)dx

Ans. 1
3

7. Ellipse x
2

a2
+ y2

b2
= 1 or x = a cos t ,

y = b sin t.
Hint:

 a
0
b
a

√
a2 − x2dx or 2

 0

π
(b sin t)

(−a sin t)dt
Ans. πab

8. Find the area of the loop of the curve

a4y2 = x5(2a − x)
Hint: Loop between x = 0, x = 2a, curve is

symmetric about x-axis,

A = 2
 2a

0
1

a2
x

5
2

√
2a − xdx

Ans. 5πa2

4

9. Show that the area of the loop of the curve

ay2 = x2(a − x) is 8a2

15
.

Hint: A = 2
 a
0
x

 
a−x
a
dx

10. Find the area included between the curve

y2(2a − x) = x3 and its asymptote.

Hint: x=2a is asymptote. A=2  2a

0

 
x3

2a−x dx

Ans. 3πa2

11. Determine the area enclosed by the curve

a2x2 = y3(2a − y)

Hint: Loop between y = 0 to y = 2a. Curve

is symmetric about y-axis

A = 2
 2a

0
1
a
y
√
y(2a − y) dy

Ans. πa2

12. Obtain the area enclosed between one arch

of the cycloid x = a(θ ∓ sin θ ), y = a(1−
cos θ ) and its base.

Hint:
 2πa

x=0 y dx=
 π

2
0 y(t)

dx
dθ
, dθ=  π/2

0
a(1−

cos θ ) · a(1− cos θ )dθ or 2a2
 π
0
(θ + sin θ )

(sin θ )dθ

Ans. 3πa2

13. Find the area of the loop and area between

the curve x(x2 + y2) = a(x2 − y2) and its

asymptote.

Ans. 4−π
2
a2, 4+π

2
a2; x = −a is the asymptote. Loop

is between x = 0 to x = a, symmetry about

x-axis.

14. Find the area of the hypocycloid. Deduce the

area of the astroid.

Hint: Eq. x
2
3

a
2
3

+ y
2
3

b
2
3

= 1, parametric

x = a cos3 t, y = b sin3 t

A= 4

 0

π/2

(b sin3 t)(−3a cos2 t · sin t) dt

Ans. 3
8
πab, 3

8
πa2 (Put a = b)

15. Find the area common to the parabola y2 = ax
and the circle x2 + y2 = 4ax.

Hint: A = 2
 3a

0

√
axdx

+ 2
 4a

3a

√
4ax − x2 dx

Ans.
 
3
√
3+ 4

3
π
 
a2

16. Compute the area bounded by the lemniscate

r2 = a2 cos 2θ.

Hint: A = 4 ·  π40 1
2
· a2 · cos 2θ dθ

Ans. a2
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17. Find the area of the limacon r = a +
b cos θ (with a > b). Deduce the area of

the cardioids r = a(1+ cos θ ), and r = a(1−
cos θ ). When a < b find the sum of the areas

of the loops of the curve r = a + b cos θ .

Ans. π
 
a2 + b2

2

 
, 3πa

2

2
(with b = a), 3πa2

2

(with b = −a), π
 
a2 + b2

2

 
18. Find the area common to the circles r = a

√
2

and r = 2a cos θ .

Hint:

A = 2

 
1

2

 π
4

0

(a
√
2)2dθ +

 π
2

π
4

(2a cos θ )2dθ

 

Ans. a2(π − 1)

19. Find the common area between the cardioids

r = a(1+ cos θ ) and r = a(1− cos θ )

Hint: A = 4
 π

2
0

1
2
a2(1− cos θ )2 dθ

Ans. a2

2
· (3π − 8)

20. Let PQ be the common tangent to the two

loops of the lemniscate r2 = a2 cos 2θ with

pole at 0. Then find the area bounded by the

line PQ and the arcsOP andOQ of the curve

(Fig. 6.15).

Fig. 6.15

Hint: φ = π = θ + φ, cot φ = − tan 2θ , π =
φ = θ + π

2
+ 2θ ... θ = 30◦, OP = a√

2
=

OQ. A =  OPQ− 2
 π

4
π
6

1
2
a2 cos 2θ dθ .

Ans. a2

8
(3
√
3− 4)

6.3 LENGTH OF PLANE CURVE:

RECTIFICATION

Rectification is the process of determining the length

of arc of a plane curve whose equation may be

given in cartesian, parametric cartesian or polar

form.

Cartesian Form

Let S be the length of the arc of the plane curve c
included between two pointsA andB whose abscissa
are a and b. Let y = f (x) be the equation of the curve
c in the cartesian form, with a ≤ x ≤ b. Divide the
curve into n segments by n points Pk(xk, yk). Then
the length S = limit of the sum of the lengths of
the n line segments = AP1 + P1P2 + · · · + Pn−1B.
By mean value theorem the length of the kth line
segment is (refer Fig. 6.16)

Fig. 6.16

Pk−1Pk =
 
(xk − xk−1)2 + (yk − yk−1)2

=
 
(xk − xk−1)2 + {f  (x∗k )(xk − xk−1)}2

=
 
1+ (f  (x∗k ))2 · xk where  xk=xk−xk−1

Therefore,

S = lim
n→∞

n 
k=1

 
1+ [f  (x∗k )]

2
 1

2
 xk

S =
 b
a

 
1+ [f  (x)]2dx

=
 b
a

 
1+

 
dy

dx

 2
dx.
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Corollary 1: If the equation of the curve is x =
f (y) then the length of the arc of the plane curve
includedbetween twopointswhose ordinates are c, d
is

S =
 d
c

 
1+

 
dx

dy

 2
dy

Parametric Form

When the equation of the curve is in the parametric
formx = x(t), y = y(t)with the parameter t varying
from t1 to t2, then

S =
 t2
t1

  
dx

dt

 2
+
 
dy

dt

 2
dt

=
 t2
t1

 
x
. 2 + y. 2dt

since
dy

dx
= dy/dt

dx/dt
= y

.

x
. Here dot (·) denotes

differentiation w.r.t. the parameter t .

Polar Form

The length of the arc of the curve r = f (θ ) included
between two points whose vectorial angles are
θ = θ1, and θ = θ2 is

S =
 θ2
θ1

 
r2 +

 
dr

dθ

 2
dθ

Corollary 1: When the equation of the curve is
θ = g(r) then the length included between two
points whose radii vectors are r1 and r2 is

S =
 r2
r1

 
1+ r2

 
dθ

dr

 2
dr

WORKED OUT EXAMPLES

Example 1: Find the length of the curve

y = ln (ex + 1)− ln (ex − 1) from x = 1 to x = 2

Solution: Differentiating y w.r.t. x

dy

dx
= ex

ex + 1
− ex

ex − 1
= − 2ex

e2x − 1

1+
 
dy

dx

 2
= 1+ 4e2x

(e2x − 1)2
= e

4x + 1− 2e2x + 4e2x

(e2x − 1)2

=
 
e2x + 1

e2x − 1

 2

Length of the curve:

S =
 b
a

 
1+

 
dy

dx

 2
dx =

 2

1

e2x + 1

e2x − 1
dx

S =
 2

1

(e2x − 1)+ 1+ 1

e2x − 1
dx

=
 2

1

dx + 2

 2

1

1

e2x − 1
dx

= 1+ 2

 2

1

dx

(ex )2 − 1

Put ex = sec t, dx = tan t dt, cos t = 1
ex

Consider 2

1

dx

(ex )2 − 1
=
 

tan t dt

tan2 t
=
 

cot t dt = ln sin t

= ln

  
e2x−1

ex

      
2

1

= ln
e4−1

e2
− ln e2−1

e

= ln
e2 + 1

e

Fig. 6.17

Thus the length of the curve S = 1+ 2 ln e
2+1
e

.

Example 2: Find the length of the curve
8x = y4 + 2y−2 from y = 1 to y = 2

Solution: Here y is the independent variable. Dif-
ferentiating w.r.t. y, we get

dx

dy
= 4y3 − 4y−3

8
= 1

2

 
y3 − 1

y3

 
Length of the curve:

S =
 y2
y1

 
1+

 
dx

dy

 2
dy
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=
 2

1

 
1+ 1

4

 
y3 − 1

y3

 2
dy =

 2

1

y6 + 1

2y3
dy

S = 1

2

 
y4

4
− y

−2

2

 2
1

= 33

16

Example 3: Determine the length of the curve
whose parametric equation is

x = e−t cos t, y = e−t sin t, 0 ≤ t ≤ π
2

Solution: Differentiating x and y w.r.t. ‘t’

dx

dt
=−e−t cos t − e−t sin t,

dy

dt
=−e−t sin t + e−t cos t

 
dx

dt

 2
+
 
dy

dt

 2
= e−2t cos2 t + e−2t sin2 t
+2e−2t sin t cos t + e−2t sin2 t
+e−2t cos2 t − 2e−2t sin t cos t

= 2e−2t

Length of the curve

S =
 t2
t1

  
dx

dt

 2
+
 
dy

dt

 2
dt

=
 π

2

0

 
2e−2t dt =

√
2 · e

−t

−1

    
π
2

0

=
√
2(1− e− π2 )

Example 4: Calculate the distance travelled by the
particle P(x, y) after 4 minutes if the position at any
time is given by

x = t
2

2
, y = 1

3
(2t + 1)

3
2 .

Solution: The distance travelled by the particle
P (x, y) is the length of the curve whose paramet-
ric equation is given above when t varies from
0 to 4. So differentiating x, y w.r.t. t

dx

dt
= t ; dy

dt
= (2t + 1)

1
2

 
dx

dt

 2
+
 
dy

dt

 2
= t2 + 2t + 1 = (t + 1)2

distance travelled by P =Length of the curve

=
 4

0

 
(t + 1)2dt = t2

2
+ t
     
4

0

= 12

Example 5: Determine the length (perimeter) of

one loop of the curve 6ay2 = x(x − 2a)2.

Solution: The curve is symmetric about the x-axis
and crosses the x-axis at the points x = 0 and x =
2a. The length of the loop of the curve is twice the
length of OBA (see Fig. 6.18).

Fig. 6.18

Length of curve OBA =
 2a

0

 
1+ y 2dx

Differentiating y w.r.t. x

dy

dx
= 3x − 2a√

2 · 4ax
, so 1+ y 2 = (3x + 2a)2

24ax

Length of the loop

= 2

 2a

0

3x + 2a√
24ax

dx

= 2√
24a

 
3
x

3
2

3
2

+ 2a
x

1
2

1
2

 2a
0

= 4√
24a

 
(2a)

3
2 + 2a · (2a) 12

 
= 8a√

3

Example 6: Find the perimeter of the curve

r = a(cos θ + sin θ ); 0 ≤ θ ≤ π

Solution: Differentiating r w.r.t. θ

dr

dθ
= a(− sin θ + cos θ )

r2 +
 
dr

dθ

 2
= a2(cos θ + sin θ )2

+a2(− sin θ + cos θ )2

= 2a2

Length of the curve=
 π
0

 
r2 +

 
dr

dθ

 2
dθ

=
√
2a · θ |π0 =

√
2aπ
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Example 7: Find the length of the spiral r = eαθ
from the pole to the point (r, θ ).

Solution: dr
dθ
= αeαθ

 
r2 +

 
dr

dθ

 2
=
 
e2αθ + α2e2αθ

Length of the spiral=
 θ
0

 
[e2αθ + α2e2αθ ]dθ

=
 
1+ α2

 θ
0

eαθdθ

=
 
1+ α2 e

αθ

α

    
θ

0

=
 
1+ α2
α

(eαθ − 1) =
 
1+ α2
α

(r − 1)

Example 8: What is the length of the loop of the

curve x = t2, y = t − t3

3
.

Solution: t = √x, y = √x − x
3
2

3
so the equation

in cartesian form is

3y = 3
√
x − x 3

2 = √x(3− x)

So loop of the curve lies between x = 0 and x = 3.
Differentiating x and y w.r.t. t

dx

dt
= 2t,

dy

dt
= 1− t2

  
dx

dt

 2
+
 
dy

dt

 2
=
 
(2t)2 + (1− t2)2

=
 
(1+ t2)2 = 1+ t2

Length of the loop=
 √

3

−
√
3

(1+ t2)dt

= 2

 
t3

3
+ t
      
√
3

0

= 4
√
3

Example 9: Determine the length of the loop of

the curve r = a(θ2 − 1).

Solution: As θ varies from −1, 0, 1, r takes the
values 0,−a, 0. Thus travelling the loop of the given

curve. Differentiating r w.r.t. θ , we get

dr

dθ
= 2aθ, so r2 +

 
dr

dt

 2
= a2(θ2 − 1)2 + (2aθ )2

...

 
r2 +

 
dr

dθ

 2
=
 
a2(θ2 + 1)2 = a(θ2 + 1)

Length of the loop of the curve is

=
 1

−1
a(θ2 + 1)dθ = a

 
θ3

3
+ θ
      

1

−1
= 8a

3

Example 10: Show that the curve

x = a(θ − sin θ ), y = a(1− cos θ )

is divided in the ratio 1:3 at θ = 2π/3.

Solution: dx
dθ
= a(1− cos θ ),

dy

dθ
= a sin θ 

dx

dθ

 2
+
 
dy

dθ

 2
= a2(1− cos θ )2 + a2 sin2 θ

= 2a2(1− cos θ ) = 4a2 sin2
θ

2

Length of the curve as θ varies from 0 to 2π is

L=
 2π

0

 
4a2 sin2

θ

2
dθ = 2a

 2π

0

sin
θ

2
dθ

=−2a · 2 cos θ
2
= −4a cos

θ

2

    2π
0

=−4a [−1− 1] = 8a

Length of the curve as θ varies from 0 to 2π
3
isM

M =
 2π

3

0

2a sin
θ

2
dθ = −4a cos

θ

2

    
2π
3

0

=−4a
 
1

2
− 1

 
= 2a

Thus L is divided in the ratio 1:3 when θ = 2π
3
.

EXERCISE

Cartesian form

Find the length of the curve

1. y = x√x from x = 0 to x = 4/3

Ans.
56

27
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2. 3y = 2(x2 + 1)
3
2 from x = 0 to

x = 3

Ans. 21

3. x = ln y, between the points whose ordinates

are 3
4
and 4

3

Hint: Treat y as the independent variable.

Ans. ln 3
2
+ 5

12

4. Find the perimeter of a circle of radius b.

Hint:Take equation of circle as x2 + y2 = a2,
S = 2

 a
−a
 
1+ y12dx

Ans. 2πb

5. Calculate the length of the arc of parabola

y2 = 4ax cut-off by the latus rectum.

Ans. 2a
 √

2+ ln (1+
√
2)
 

6. What is the length of the catenary (hanging

chain; hyperbolic cosine curve) y = 1
2
a(e

x
a +

e−
x
a ) from x = −a to x = a.

Hint: y = a cosh
 
x
a

 
Ans. a(e − e−1)

7. Show that the length of the arc of the curve

y = ln tanh (x/2)

from x = 1 to x = 2 is ln [(e2 + 1)/e].

8. Determine the distance a particle whichmoves

along a curve 20x = 3(4t2 − 20t + 9) is 4

minutes starting at t = 1
2
.

Ans. 5
6

 
156
25
+ ln 5

 
9. Find the length of the curve y2 = x(1− x

3
)2

from origin to the ordinate when x = a.
Ans.

(3+a)
3

√
a

10. Find the perimeter of the loop of the curve

3ay2 = x(x − a)2

Hint: Perimeter = 2
 a
0

 
1+ y  2dx since

curve is symmetric about x-axis and lies

between 0 to 9.

Ans. 4a√
3

11. Calculate the perimeter of the loop of the curve

9ay2 = (x − 2a)(x − 5a)2.

Hint: Curve lies between x = 2a and x = 5a

and is symmetric about y-axis. Perimeter is

2
 5a

2a

 
1+ y  2dx.

Ans. 4
√
3a

12. Determine the total length of the curve

x2(a2 − x2) = 8a2y2

Hint: Curve is symmetric about both x-axis
and y-axis and lies between x = −a to x = a.

Total length = 4×
 a
0

 
1+ y 2dx

Ans. πa
√
2

13. What is the length of the arc of the parabola

y2 = 12x cut-off by its latus rectum.

Hint: Length is twice that form (0, 0) to (3, 6).

Ans. 6
 √

2+ ln
 
1+

√
2
  

14. Find the length of an arc of the curve

x2 = a2(1− e ya )
measured from (0, 0) to any point (x, y).

Ans. a ln
 
a+x
a−x
 − x

15. Determine the length of the parabola y2 = 4ax

cut-off by the line 3y = 8x.

Ans.
 
15
16
+ ln 2

 
a

16. Find the length of the loop of the curve

9ay2 = x(x − 3a)2.

Hint: Curve is symmetric about x-axis and
meets x-axis at x = 0, and x = 3a

S = 1

2
√
a

 3a

0

x + a√
x
dx

Ans. 2a
√
3

Parametric form

Find the length of the curve whose equation is given

in the parametric form:

1. x = t3 − 3t ; y = 3t2; t : from 0 to 1

Ans. 4
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2. x= a(t + sin t); y= a(1− cos t), t : −π to π

Ans. 8a

3. x = et sin t, y = et cos t, t : 0 to π
2

Ans.
√
2(e

π
2 − 1)

4. x = a(cos t + t sin t), y = a(sin t − t cos t)
from t = 0 to t = π/2

Ans. aπ2

8

5. Find thedistance travelledby aparticleP (x, y)
whose position at any time t is given by

x = 1

3
(2t + 3)

3
2 , y = t

2

2
+ t

in 3 minutes commencing from t = 0.

Ans. 21
2

6. (a) Determine the total length of the four-
cusped hypocycloid given by

x = a cos3 θ, y = b sin3 θ

or  x
a

 2
3 +

 y
b

 2
3 = a 2

3 .

Hint: (a)Curve is symmetric about both x-axis
andy-axis. For one cusp: θ varies from0 toπ/2

Total length = 4

 π
2

0

  
dx

dθ

 2
+
 
dy

dθ

 2
dθ

Ans. 4(a2 + ab + b2)/(a + b).
6. (b)Deducewhole length of the astroid given by

x = a cos3 θ,= y = a sin3 θ

Hint: take a = b
Ans. 6a

7. Calculate the length of the arc of the cycloid

x = a(t − sin t), y = a(1− cos t) between

two cusps.

Hint:Between two cusps t varies from0 to 2π .

Ans. 8a

8. Determine the length of the curve given by

x = a sin 2t(1+ cos 2t); y = a cos 2t(1− cos 2t)

measured from origin to any point (x, y).

Ans. 4a
3
sin 3t

Polar coordinates

1. Find the perimeters of the curves:

a. r = a cos θ (circle with centre at origin and

radius a)

b. r = a sin θ

c. r = 2a cos θ (circle with centre at r = a
and radius a).

Ans. (a) πa (b) πa (c) 2aπ

2. Show that the arc of the upper half of the curve

r = a(1− cos θ )

is bisected at θ = 2π/3.

3. Calculate the length of the curve

r = a sin θ + b cos θ, 0 ≤ θ ≤ 2π

Ans. π
√
a2 + b2

4. a. Find the perimeter of the cardioid

r = (1+ cos θ ).

b. Show that the arc of the upper half is

bisected at θ = π/3.
c. Also show that the length of the part of

the curve which lies on the side of the line

4r = 3a sec θ remote from the pole is

equal to 4a.

Hint: (b) Curve is symmetrical about initial

line θ = 0 and for the upper half of the curve,

θ varies from 0 to π . The length of the curve

as θ varies from 0 to π
3
is 2a i.e., half of 4a,

therefore, bisected at θ = π/3.
Hint: (c) Line meets cardioid at θ = π

3
;

length = twice
 π

3
0

 
r2 +  dr

dθ

 2
dθ .

Ans. (a) 8a

5. Determine the perimeter of the curve

r = a sin3
 
θ

3

 

Hint: As θ varies from 0, 3π
2
, 3π, r takes

c, a, c, perimeter = 2 length from θ = 0 to 3π
2

Ans. 3aπ
2
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6. Find the length of the arc of the parabola

r = 2a/(1+ cos θ )

cut-off but its latus rectum.

Ans.
 √

2+ ln (1+
√
2)
 
· 2a

7. Prove that the length of the curve

r = a cos3
 
θ

3

 
is 8aπ/2

8. Determine the whole length of the lemniscate

r2 = a2 cos 2θ

Hint: 4 times the length as θ varies from 0 to
π
4
since curve is symmetric about both x-axis

and y-axis (i.e., θ = 0 line and θ = π
2
line).

Ans.
√
2πa

 
1+  1

2

 2 +  1·3
2·4
 2 ·  1

2

 2
+  1·3·5

2·4·6
 2  1

2

 2 + · · · 
9. Find the length of the arc of the equiangu-

lar spiral r = a eθ cot α between the points for

which the radii vectors are r1 and r2.

Hint: dr
dθ
= r cot α, dθ

dr
= 1

r
tan α

length =
 r2
r1

 
1+ r2

 
dθ

dr

 2
dr

=
 r2
r1

 
1+ tan2 α dr =

 r2
r1

secα dr

Ans. (r2 − r1) secα
10. Calculate the length of the arc of the hyperbolic

spiral r = a/θ between r = a and r = 2a.

Ans. a
 √

5−
√
2+ ln

 
2+
√
8

1+
√
5

  
11. Determine the whole length of a loop of the

curve

r = a(1+ cos 2θ )

Ans. 2
3

√
3
 
2
√
3+ ln

 √
3+ 2

  
a

6.4 VOLUME OF SOLID OF

REVOLUTION

A solid of revolution is generated by revolving a

plane area R about a line L in the plane. Line L

is known as the axis of revolution. Line L does not

intersect the plane area R but may touch the bound-

ary of R.

Examples:

1. Sphere is a solid of revolution generated by

revolving the semicircular region R about its

diameter L (Fig. 6.19).

Fig. 6.19

2. Right circular cylinder is a solid of revolution

obtained by revolving a rectangle R about its

edge L (Fig. 6.20).

Fig. 6.20

3. Parabola about x-axis generates paraboloid

(Fig. 6.21).

Fig. 6.21

4. Circular region R about L not touching it,

produces a torus (see Fig. 6.22).

The volume of solid of revolution may be obtained

by (a) cylindrical disc (C.D.) method (b) cylindrical

shell (C.S.) method.
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Fig. 6.22

Cartesian Form

Cylindrical disc method

I. Axis of revolution L is a part of the boundary of
the plane area. Consider the plane area ABCD
bounded by the curve y = f (x), x-axis, ordi-
nates x = a and x = b as shown in Fig. 6.23.
When the plane area ABCD is revolved about
x-axis, a solid of revolution is obtained, one
quarter of which is shown in Fig. 6.23. The
volume of an element circular disk of radius y

Fig. 6.23

and thickness dx is πy2dx. Integrating these
elements, the volume V of solid of revolu-
tion obtained by revolving about the x-axis the
plane area bounded by y = f (x), x = a, x = b,
x-axis is

V =
 b
a

πy2 dx

Similarly, when plane area bounded by the curve
x = g(y), y = c, y = d , y-axis, is revolved
about y-axis,

V =
 d
c

πx2 dy

II. Any axis of revolution:

V =
 b
a

πr2 dh

where r=perpendicular distance from the curve

to the axis of revolution AB (Fig. 6.24).

Fig. 6.24

III. The plane area is bounded by two curves: Let
the plane area bounded by two curves y = y1(x)
lower curve, y = y2(x) upper curve, the ordi-
nates x = a, x = b is revolved about x-axis,
then volume of solid of revolution generated
is the difference between the volume generated
by the upper curve and lower curve. Thus

V =
 b
a

πy22 dx−
 b
a

πy21 dx=
 b
a

π (y22 − y21 )dx

where y2 and y1 are the ordinates of the upper

and lower curves.

Cylindrical shell method

Axis of rotation AB is not part of the boundary of

the plane area DEFG, volume element generated

by revolving a rectangular strip about an axis AB

(Fig. 6.25).

Fig. 6.25

dr

dV = (mean circumference)× (height)× (thickness)

dV = (2πr)(h)(dr)

So V =
 r=b
r=a

2πrh dr
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If area DEFG is rotated about y-axis (AB) thus

V =
 x=b
x=a

(2πx)(y)dx

Similarly, about x-axis,

V =
 y=d
y=c

(2πy)(x)dy

Parametric Form

If the equation of the curve binding the plane area is
given in parametric form

x = f (t), y = g(t)
with the parameter t varying between t1 and t2, then
the volume about x-axis

V =
 t2
t1

πy2
dx

dt
dt =

 t2
t1

πg2(t)
df (t)

dt
dt

Similarly, about y-axis

V =
 t2
t1

πx2
dy

dt
dt =

 t2
t1

πf 2(t)
dg(t)

dt
dt

Polar Form

The volume of the solid of revolution generated by

revolving the plane area R, bounded by the curve

c whose equation is given in polar form r = f (θ ),
and radii vectors θ = θ1, θ = θ2 (Fig. 6.26).

Fig. 6.26

I. About the initial line OX(θ = 0)

V =
 θ2
θ1

2π

3
r3 sin θ dθ

II. About the line through the pole and perpendicu-
lar to the initial line i.e., OY

 
θ = π

2

 
V =

 θ2
θ1

2π

3
r3 cos θ dθ

WORKED OUT EXAMPLES

Cartesian Form

Example 1: The equation of the curve OP is y =
x2. Find the volume of solid of revolution generated

when the areaOAP , bounded by y = x2, x = 3 and

x-axis, is revolved about (a) x-axis (b) y-axis (c) line

AP (d) Line BP (Fig. 6.27).

Fig. 6.27

Solution:

a. About x-axis: (cylindrical disk method)

(Fig. 6.28).

Fig. 6.28
A rectangle of height y and thickness  x

revolved about x-axis (Line OA), generates a
solid of revolution, a circular disk, of volume
πy2dx. Since x varies from 0 to 3, the volume V
of solid of revolution obtained by revolving the
area OAP about x-axis is

V =
 3

x=0
πy2 dx = π

 3

0

(x2)2dx = 243π

5
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b. About y-axis: (cylindrical shell method)
(Fig. 6.29) when a rectangle of height y and
thickness  x is revolved about y-axis (line

Fig. 6.29

OB), it generates a cylindrical shell whose
circumference is 2πx, height y and thickness
 x so that its volume is

2πx · y · x
Thus the volume of solid of revolution gener-

ated by revolving the area OAP about y-axis is

V =
 3

0

(2πx)(y)dx =
 3

0

2πx · x2dx

= 2π
x4

4

     
3

0

= 81π

2

c. About the line AP (Fig. 6.30).

Fig. 6.30

i. By cylindrical diskmethod:When a horizontal
rectangle of length (3− x) and thickness y is
revolved about the line AP , it generates a cir-
cular disk of volume π (3− x)2, so the volume
generated by revolving OAP about AP is

V =
 9

0

π (3− x)2dy =
 9

0

π (3−√y)2dy

= π
 
9y + y

2

2
− 12y

3
2

      
9

0

= 27π

2

ii. Aliter: By cylindrical shell method:
(Fig. 6.31): By revolving a vertical rect-
angle of height y and thickness  x about the

Fig. 6.31

line AP , a cylindrical shell of circumference
2π (3− x), height y and thickness  x is
generated. Its volume is

2π (3− x) · y · x
So the volume required is

V =
 3

0

2π (3− x) · y dx =
 3

0

2π (3− x)(x2)dx

= 2π

 
x3 − x

4

4

 3
0

= 27π

2

d. About the line BP (Fig. 6.32). A horizontal
strip of length (3− x) and width  y, revolved
about the line BP generates a cylindrical shell
of circumference 2π (9− y), height (3− x) and
width  y. Thus the required volume

V =
 9

0

2π (9− y) · (3− x)dy

= 2π

 9

0

(9− y)(3−√y)dy = 567π

5

Fig. 6.32

Example 2: Determine the volume of solid gener-

ated by revolving the plane area bounded by y2 = 4x

and x = 4 about the line x = 4.
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Solution: OACB is the plane region bounded by
y2 = 4x and x = 4 (Fig. 6.33). A typical horizontal
element of length (4− x) and width dy rotated
about the line x = 4 generates a circular disk of

Fig. 6.33

volume π (4− x)2dy. Here y varies from −4 to
4. Thus the required volume generated by rotating
OACB about x = 4 is

V =
 4

−4
π (4− x)2 · dy =

 4

−4
π

 
4− y

2

4

 2

dy

= 2π

 4

0

 
16+ y

4

16
− 2y2

 
dy

= 2π

 
16y + y

5

80
− 2

3
y3

 4
0

= 1024

15
π

Example 3: Calculate the volume of the solid of

revolution generated by revolving about y-axis the

plane area bounded by the straight lines y = x + 2,

y = 2x − 1 and outside of the parabola y = x2.

Solution: The plane area which is outside of the

parabola and included between the two straight lines

is ACDB shown shaded in Fig. 6.34.

Fig. 6.34

[The points of intersection are:

A(1, 1) between parabola y= x2 and the st line 2x− 1= y
B(2, 4) between parabola y = x2 and the line y = x + 2

D(3, 5) between the lines y = 2x − 1 and y = x + 2]

Since ACBD is revolved about y-axis, apply cylin-

drical shell method. Divide the plane arcACBD into

two parts ACB and CDB since the variation y is

different in these two parts. Thus volume V gener-

ated by revolving ACDB about y-axis is sum of the

volumes V1 and V2 generated by revolvingACB and

CDB about y-axis respectively. These volumes V1
and V2 are obtained by cylindrical shell method.

For the plane area ACB, the height of a verti-
cal element is (x2)− (2x − 1). So the volume V1 of
the solid of revolution generated by revolving ACB
about y-axis is

V1 =
 2

1

(2πx)[(x2)− (2x + 1)]dx

= 2π

 
x4

4
− 2x3

3
+ x

2

2

 2
1

= 7π

6

Similarly, for CDB, we have

V2 =
 3

2

(2πx)[(x + 2)− (2x − 1)]dx

=
 3

2

2π (−x2 + 3x)dx = 7π

3

Thus the required volume of solid generated by
revolving ACDB about y-axis is

V = V1 + V2 =
7π

6
+ 7π

3
= 7π

2

Example 4: Find the volume generated when the

plane area bounded by the parabola y+ x2+ 3x− 6

= 0 and the line x+ y= 3 is revolved about the line.

Solution: For the representative rectangle of

the Fig. 6.35, the height is
x+y−3√

2
and the width

is
 
( x)2 + ( y)2 =

√
2 x. By circular disc

method, the volume of the solid of revolution
generated by revolving the plane area ACBD about
the line BDA is

V =
 1

−3
π

 
x + y − 3√

2

 2
· (
√
2dx)
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Fig. 6.35

=
√
2π

2

 1

−3
[x + (−x2 − 3x + 6)− 3]2dx

= π√
2

 1

−3
(−x2 − 2x + 3)2dx = 256

15

√
2π

Example 5: Find the volume of the solid gener-

ated by revolving about the x- axis, the smaller area

bounded by the circle x2 + y2 = 2 and the semicu-

bical parabola y3 = x2.

Solution: The smaller area OACB bounded by the
circle and parabola is shaded in the Fig. 6.36. Con-
sider a typical vertical element whose length is
y2 − y1 where y2 and y1 are the ordinates of the outer
curve circle and the inner curve parabola respec-

Fig. 6.36

tively. This vertical element revolved about x-axis
generates a circular ring whose outer and inner radii
are the respective ordinates of the outer and inner
curves. Thus the volume generated by OACB by
revolving about x-axis is

V =
  

πy22dy

 
−
  

πy21dy

 

= π
 
(y22 − y21 )dy

V = π
 1

−1
[(2− x2)− (x

4
3 )]dx

= π
 
2x − x

3

3
− 3

7
x

7
3

 1
−1
= 52

21
π

Example 6: What is the volume generated by

revolving the area enclosed by the loop of the curve

y4 = x(4− x) about x-axis.

Solution: Curve meets the x axis at x = 0 and

x = 4 and is symmetric about the x-axis. The area

OAO enclosed by the loop of the curve is shaded in

Fig. 6.37. By circular disc method

Fig. 6.37

V =
 
πy2dx = π

 4

0

 
x(4− x)dx

Put
√
x = 2 cos t

V = π
 0

− π
2

2 cos t · 2 sin t · (−4)2 cos t · sin t dt

V = 32π

 π
2

0

cos2 t sin2 t dt = 32π · 1 · 1
4 · 2 ·

π

2
= 2π2

Example 7: Determine the volume of the solid of

revolution generated by revolving the loop of the

curve ay2 = x2(a − x) about the straight line y = b.

Solution: The loop lies between the pointsO(0, 0)
and A(a, 0). Solving the given equation for y,

Fig. 6.38
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y = ±x
 
a − x
a

So the lower part of the loop below (x-axis) (see
Fig. 6.38)

OBA is y = −x
 
a − x
a

and

the upper part of the loop above (x-axis)

OCA is y = x
 
a − x
a

The volume V obtained by revolving the loop about
the line y = b is the difference of the two volumes
VOBA and VOCA obtained by revolving the arcs OBA
and OCA about y = b. Volume obtained by revolv-
ing the arc OBA about y = b is

VOBA =
 a
0

πy2dx = π
 a
0

 
b −

 
−x
 
a − x
a

  2
dx

Similarly,

VOCA =
 a
0

πy2dx = π
 a
0

 
b − x

√
a − x√
a

 2
dx

V = VOBA − VOCA = π
 a
0

4bx(a − x) 12√
a

dx

Put x = a cos2 t . As x varies from 0 to a, t varies
from π

2
to 0

V = 4πb√
a

 0

π
2

a cos2 t
√
a sin t · 2a · cos t(− sin t)dt

= 8πa2b

 π
2

0

sin2 t · cos3 t dt = 8πa2b · 2
5
· 1
3

V = 16πa2b

15

Example 8: Find the volume of the solid of rev-

olution obtained by the revolution of the curve

yx = a(x − b) about its asymptote (Fig. 6.39).

Solution: y = a is the asymptote of the curve. The
perpendicular distance PM from any point P (x, y)
on the curve to the asymptote is

PM = a − y

x varies from b to∞.

Fig. 6.39

The volume of solid of revolution obtained

V =
 
π (PM)2dx =

 ∞

b

π (a − y)2dx

=
 ∞

b

π

 
a − a(x − b)

x

 2
dx = πa2

 ∞

b

b2

x2
dx

= πa2b2
 
− 1

x

 ∞
b

= πa2b

Parametric Form

Example 1: Calculate the volume of the solid of
revolution generated by revolving the hypocycloid

 x
a

 2
3 +

 y
b

 2
3 = 1

a. about x-axis

b. about y-axis

Deduce the results when Astroid

x
2
3 + y 2

3 = a 2
3

is revolved.

c. about x-axis

d. about y-axis

Solution: The parametric equations of hypocycloid

are

x = a cos3 t, y = b sin3 t (1)

The curve is symmetric about both x-axis and y-axis

and meets them at the points ABCD (Fig. 6.40).
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Fig. 6.40

a. Revolution about x-axis: The solid of revolu-

tion obtained by revolving the plane area BACOB

enclosed by the arc BAC is the same as the solid

obtained by revolving the plane area ABOA con-

tained by the arc BA in the first quadrant. Also

due to symmetry about y-axis, the required vol-

ume V is twice the volume obtained by revolving

arc BA in the first quadrant. Thus

V = 2

 a
0

πy2dx = 2

 a
0

πy2
dx

dt
dt (2)

Using the parametric Equation (1)
dx

dt
= 3a · cos2 t(− sin t)

and t varies from π
2
to 0 as x varies from 0 to a.

With this (2) becomes

V = 2

 0

π
2

π (b2 sin6 t) · (−3a cos2 t · sin t)dt

= 6πab2
 π

2

0

sin7 t · cos2 t dt

= 6πab2
6 · 4 · 2 · 1
9 · 7 · 5 · 3 =

32

105
πab2

b. Revolution about y-axis: By similar arguments,
volume generated by revolving hypocycloid
about y-axis is

V = 2 ·
 b
0

πx2dy = 2π

 b
0

x2
dy

dt
dt

= 2π

 π
2

0

a2 cos6 t · 3b · sin2 t · cos t dt

= 6πa2b

 π
2

0

sin2 t cos7 t dt = 6πa2b
1 · 6 · 4 · 2
9 · 7 · 5 · 3

= 32πa2b

105

c. Astroid is special case of hypocycloid for b = a
volume generated by revolving astroid about

x-axis is V = 32

105
a3

d. Due to symmetry about both x and y-axis volume

generated by revolving astroid abouty-axis is also

V = 32
105
a3.

Example 2: Determine the volume of solid of rev-
olution generated by revolving the curvewhose para-
metric equation are

x = 2t + 3, y = 4t2 − 9

about x-axis for t1 = − 3
2
to t2 = 3

2
.

Solution: Required volume V is

V =
 
πy2dx =

 
πy2

dx

dt
dt

using the parametric equations

=
 3

2

− 3
2

π (4t2 − 9)2(2)dt = 4π

 3
2

0

(16t4 + 81− 72t2)

V = 1296π

Aliter: Eliminating t , the equation of the curve in
the cartesian form is y = x2 − 6x whichmeet x-axis
at x = 0 and x = 6 and is shown in the Fig. 6.41.
Revolving the arc OBA about x-axis

V = π
 6

0

y2dx = π
 6

0

(x2 − 6x)2dx

= 1296π.

Fig. 6.41

Polar Form

Example 1: Find the volume generated by the rev-

olution of the curve r = 2a cos θ about the initial

line.
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Solution: Volume generated by revolution about
initial line is given by

V =
 θ2
θ1

2

3
πr3 sin θ dθ

= 2

3
π

 π
2

0

(2a cos θ )3 sin θ dθ

= 16πa3

3

 π
2

0

cos3 θ · sin θ dθ

= 16πa3

3
· 2
4
· 1
2
= 4πa3

3

Example 2: The arc of the cardioid:

r = a(1+ cos θ ) included between θ = −π/2 and

θ = π/2 is rotated about the line θ = π/2. Find the

volume of the solid of revolution.

Solution: Volume of solid generated by revolution
about the line θ = π/2 is

V =
 θ2
θ1

2

3
πr3 cos θ dθ

= 2

3
π

 π
2

− π
2

a3(1+ cos θ )3 · cos θ dθ

= 2πa3

3
· 2
 π

2

0

(cos4 θ + 3 cos3 θ + 3 cos2 θ + cos θ )dθ

= 4πa3

3

 
1+ 3

4
· 1
2
· π
2
+ 3 · 2

3
+ 3 · 1

2
· π
2

 

= πa
3

4
[16+ 5π ]

EXERCISE

Cartesian Form

Find the volume of the solid of revolution generated

by revolving the plane area bounded by the given

curves about the indicated line.

1. y = x3, y = 0, x = 2 about x-axis

Ans. 128π
7

2. y = 2x + 1, y = 0, x = 1, x = 2 about

x-axis

Ans. 49π
3

3. y = x3, y = 8, x = 0 about y-axis

Ans. 96π
5

4. y2 = 4ax, cut off by its latus rectum, about

y-axis

Ans. 4πa3

5

5. y = ex sin x, x-axis about x-axis
Ans. π

8
(e2π − 1)

6. Parabola y2 = 8x, latus rectum x = 2

a. About x-axis

Hint: V =  2

0
πy2 dx =  2

0
8x dx

Ans. 16π

b. About its latus rectum x = 2

Hint 1: V =  4

−4 π (2− x)2dy
by cylindrical disc method.

Ans. 256
15
π

Hint 2: By cylindrical shell method

V =
 2

0

(2π (2− x)) ·
 
4
√
2x
 
· dx

Ans. 256
15
π

7. y = 1− x2, y = 0 about x = 1

Ans. 8π
3

8. Circle x2 + y2 = a2 about a diameter

Ans. 4
3
πa3

9. 2x + y = 2, x = 0, y = 0 about y-axis

Ans. 2π
3

10. Parabola y2 = 4ax, x = 0, x = ah about

x-axis

Ans. 2πah2

11. a. Ellipse x
2

a2
+ y2

b2
= 1 about x-axis

Ans. 4
3
πab2

b. About y-axis

Ans. 4
3
πa2b

12. y = x sinmx, x = 0, x = 2π
m

about x-axis

Ans. π2

6

(8π2−3)
m3

13.
√
x +√y = √a, x = 0, y = 0 about

x-axis
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Ans. πa3

12

14. y2 = x(2x − 1)2 about x-axis

Ans. π
48

15. y = 2x, y = x, x + y = 6 about x-axis

Hint: The plane region OBAC where
O(0, 0), B(3, 3), A(2, 4), C

 
3
2
, 3
 
; is to be

divided into two parts OBC and CBA and
each volume to be calculated by shell method.

VOBC =
 3

0

(2πy) ·
 
y − y

2

 
dy

VABC =
 4

3

(2πy) ·
 
(6− y)− y

2

 
· dy

Ans. 14π

Bounded by two curves:
 b
a
π (y22 − y21 )dx:

16. y = x2, y = 2x about x-axis

Hint: V =  2

0
π
 
(2x)2 − (x2)2

 
dx

Element of volume generated by a vertical ele-

ment of area is a circular ring with outer radius

y2 = 2x and inner radius y1 = x2.
Ans. 64π

15

17. y = x2, y = x about y-axis
Hint: V =  1

0
π
 
(
√
y)2 − (y)2

 
dy

As above outer radius x2 = √y and inner

radius x1 = y.
Ans. π

6

18. y2 = ax3, x2 = ay3 about x-axis

Hint: V =  1/a

0
π

  
x
2
3

a
1
3

 2

−
 √
ax

3
2

  
dx

since points of intersection of the two curves

are (0, 0), (1/a, 1/a).

Ans. 5π

28a3

19. y2 = 4ax, x = 2, about y-axis

Hint: V =  4

−4 π (2)
2dy −  4

−4 π (x)
2dy

y varies from−4 to 4 since y2 = 4ax and x =
2 intersects at (2, 4) and (2,−4).

Ans. 128
5
π

20. y = 4x − x2, x-axis, about the line y = 6

Hint: V = π  4

0

 
(6)2 − (6− y)2 dx =

π
 4

0
(48x − 28x2 + 8x3 − x4)dx.

Ans. 1408π/15

21. y2 = 4ax, 27ay2 = 4(x − 2a)3, about x-axis

Hint: Points of intersection of the two curves

are B(8a, 4a
√
2), C(8a,−4a

√
2)

second curve meets the x-axis when x = 2a
(i.e., A(2a, 0) is point on the 2nd curve).

volume= volume generated by the area under arc OB

−volume generatd by the area under arc AB

=
 8a

0

π (4ax)dx −
 8a

2a

π
4(x − 2a)3

27a
dx

Ans. 80πa3

Loop Volumes

Find the volume of the solid of revolution generated

by revolving the plane area enclosed by the loop of

the following curve about the indicated line

22. y2(a − x) = x2(a + x), about the x-axis
Hint: V =  0

−a πy
2dx = π  0

−a
x2(a+x)
(a−x) dx

= π  0

−a

 
−x2 − 2ax − 2a2 + 2a3

(a−x)

 
dx

Ans. 2πa3
 
ln 2− 2

3

 
23. y2(a + x) = x2(3a − x), 0 ≤ x ≤ 3a, about

x-axis

Hint: V =  3a

0
πy2dx = π  3a

0
x2(3a−x)
(a+x) dx

= π  3a

0

 
−x2+4ax−4a2+ 4a3

x+a

 
dx

Ans. πa3(4 ln 4− 3)

24. 2ay2 = x(x − a)2, about x-axis
Ans. πa3

24

25. y2 = x2(1− x2), about x-axis
Ans. 2π

15

26. a2x2 = y3(2a − y), about y-axis
Ans. 8

5
πa3

27. a2y2 = x2(2a − x)(x − a), about x-axis
Ans. 23πa3

60
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28. 2ay2 = x(x − a)2, about the line y = a
Hint: Loop lies between O(0, 0) and A(a, 0)

Since, y = ±
√
x(x − a)√

2a

lower part of the loop (below x-axis)

be OBA : y = −
√
x(a − x)√
2a

upper part OCA : y =
√
x(a − x)√

2a

volume = volumeOBA − volumeOCA

= π
 a
0

 
a −

 
−
√
x(a − x)√

2a

  2
dx

−π
 a
0

 
a −

√
x(a − x)√

2a

 2
dx

Ans. 8
√
2πa3

15

29. ay2 = x2(a − x), about x-axis
Ans. πa3/12

30. y2 = x2(1− x2) about y-axis
Hint: Use shell method: V=  1

0
(2πx) · (2y) · dx

Ans. π2/4.

Any Axis of Revolution: Asymptote

Find the volume of the solid obtained by the rev-

olution of the area enclosed by the curve about its

asymptote (or any axis)

31. Cissoid y2(2a − x) = x3
Hint: x = 2a is the asymptote to the given

curve.

MP = perpendicular distance between curve

and asymptote = (2a − x)

V = 2π

 ∞

0

(2a − x)2dy

= 2π

 2a

0

(3a − x)
 
(2a − x)√xdx

Ans. 2π2a3

32. xy2 = a2(a − x)

Hint: y-axis is the asymptote.
Curve is symmetric above x-axis

V = twice

 ∞

0

πx2dy = 2πa6
 ∞

0

(y2 + a2)−2dy

Ans. π2a3/2

33. (a2 + x2)y = a3
Hint: x-axis is the asymptote, curve symmet-
ric about y-axis

V = twice

 ∞

0

πy2dx = 2πa6
 ∞

0

(a2 + x2)−2dx

Ans. π2a3/2

34. y2(2a − x) = x3, a > 0

Hint: x = 2a is the asymptote.
Curve is symmetric about x-axis

V = twice

 ∞

0

π (2a − x)2dy. Put x = 2a cos2 t

Ans. 2π2a3

35. Witch of Agnesi: xy2 = 4a2(2a − x), a > 0

Hint: y-axis is the asymptote.
Curve is symmetric about x-axis

V = twice

 ∞

0

πx2dy= 128πa6
 ∞

0

dy

(y2+ 4a2)2

Ans. 4π2a3

36. Cissoid y2(a − x) = a2x
Hint: x = a is the asymptote. Curve is sym-
metric about x-axis

V= twice

 ∞

0

π (a− x)2dy= 2πa2
 ∞

0

dy

(y2+ a2)2

Ans. π2a3/2

37. Parabola y2 = 4ax, cut-off by its latus rectum,

revolved about its directrix.

Hint: Curve is symmetric about x-axis. Latus

rectummeets parabola atx = 2a and x = −2a
PM = perpendicular distance from parabola to

directrix = a + x

V = twice

 2a

0

π (ax)2dy

= 2π

 2a

0

 
a+ y

2

4a

 2

dy
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Ans. 128πa3/15.

Parametric Form

38. Find the volume of the solid obtained by
revolving about x-axis, the plane area enclosed
by one arch of the cycloid

x = a(t + sin t)

y = a(1+ cos t)

and the x-axis.

Hint: t varies from 0 to π .

Ans. 5πa3

39. Determine the volume the (reel shaped) solid
formed by the revolution of the cycloid

x = a(t + sin t)

y = a(1− cos t)

about x-axis.

Hint: t varies from 0 to π .

Ans. π2a3

40. The cycloid x = a(t − sin t), y = a(1− cos t)

rotates about its base. Calculate the volume of

the solid generated.

Hint: t varies from 0 to 2π .

Ans. 5π2a3

41. Find the volume of solid generated by revolv-
ing the loop of the curve

x = t2, y = t − t
3

3

Hint: t varies from 0 to
√
3
 
since y = t3−3t

3

= 0
 

Ans. 3π/4

42. The tractrix x = a cos t + a ln tan t
2
,

y = a sin t is revolved about its asymptote.

Find the volume of the solid so generated.

Hint: x-axis is the asymptote. Curve is sym-
metric about both x-axis and y-axis. t varies
from 0 to π/2 for one arc

Volume= twice

 π
2

0

πy2
dx

dt
dt

= 2

 π
2

0

πa3 cos2 t sin tdt

Ans. 2πa3/3

43. Prove that the volume of solid generated by
revolving the cissoid

x = 2a sin2 t, y = 2a
sin3 t

cos t

(with −π/2 < t < π/2) about its asymptote,

is 2πa3.

44. If the ellipse x = a cos t, y = b sin t is

revolved about the line x = 2a, show that the

volume of the solid generated is 4π2a2b.

45. If one arch of the cycloid

x = a(t + sin t), y = a(1− cos t)

(with −π < t < π ) is revolved about y-axis,

prove that the volume of the solid generated is
π3

6
(9a3 − 16).

Polar Form

Find the volume of the solid generated by revolving

the given curve in polar form about the indicated

line:

46. Cardioid r = a(1+ cos θ ) about the initial line

Hint: θ varies from 0 to π .

Ans. 8πa3/3

47. Cardioid r = a(1− cos θ ) about the initial line

Hint: θ varies from 0 to π .

Ans. 8πa3/3

48. r2 = a2 cos 2θ about the initial line

Hint: Curve is symmetric about both x-axis
and y-axis. θ varies from 0 to π

4
.

volume= twice volume generated by one arch in

the 1st quadrant

= 2

 π
4

0

2

3
πr3 sin θ dθ

V = 2πa3
 π/4
0

sin2 θ (3 sin θ − 4 sin3 θ )

×
√
cos 2θdθ

Ans. πa3

2

 
1√
2
ln (
√
2+ 1)− 1

3
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49. r2 = a2 cos 2θ , about the line θ = π
2

Hint:

V = twice

 π
4

0

2

3
πr3 cos θ dθ, put

√
2 sin θ = sin φ

= 4πa3

3
√
2

 π
2

0

cos4 φ dφ

= 4πa3

3
√
2
· 3 · 1
4 · 2 ·

π

2

Ans. π2a3

4
√
2

50. r2 = a2 cos 2θ about a tangent at the pole
Ans. πa3

12

 
3√
2
ln (1+

√
2)− 1

 
51. r2 = a2 cos θ about initial line

Ans. 8πa3

15

52. Loop of the curve r = a cos 3θ lying between

θ = −π/6 and θ = π/6 about the initial line.
Ans. 19πa3/960

53. Area lying within the cardioid

r = 2a(1+ cos θ )

and outside the parabola.

r = 2a

1+ cos θ

about the initial line (Fig. 6.42).

Fig. 6.42

Hint: Points of intersection are θ = −π
2
and π

2
.

Both curves are symmetric about x-axis.

volume= volume generated by area under the

cardioidODAO

−volume generated by area under the

parabolaOBAO

=
 π

2

0

2

3
πr32 sin θ dθ −

 π
2

0

2

3
πr31 sin θ dθ

where r2 is r of cardioid, r1 is r of parabola.

Ans. 18πa3

54. r = a + b cos θ with a < b about the initial

line.

Hint: θ varies from 0 to π , curve symmetric
about the initial line

V = 2π

3

 π
0

r3 sin θ dθ

= 2π

3

 π
0

(a + b cos θ )3 sin θ dθ

V = 2π

3

 a−b
a+b

t3
dt

b
with a + b cos θ = t

Ans. 4πa(a2 + b2)/3

6.5 AREA OF THE SURFACE OF A SOLID

OF REVOLUTION

Let y = f (x) be a plane curve c in the xy-plane

included between the ordinates x = a and x = b. Let
P(x, y) be any point on c (Fig. 6.43).When the chord

PQ =  S is revolved about the x-axis, a solid of

revolution is generated which is the frutum of cone

of slant height PQ =  S and radii y and y + y.
Hence the area (of the surface of solid of revolution

of) of this elementary belt is 2πy S. Dividing the

curve c into n parts and summing up the areas, of

these elementary belts from x = a to x = b, we get
the surface area of solid of revolution.

Fig. 6.43
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Cartesian Form

a. Area of the surface of the solid of revolution
generated by revolving the arcAB of the curve
y = f (x) about the x-axis is given by

S =
 
AB

2πy ds =
 x=b
x=a

2πy

 
1+

 
dy

dx

 2
dx


Note that ds

dx
=
 
1+

 
dy

dx

 2
b. Area of the surface generated by revolving an

arc AB of the curve x = g(y) about y-axis is

S =
 
AB

2πx ds =
 y=d
y=c

2πx

 
1+

 
dx

dy

 2
dy


Note that ds

dy
=
 
1+

 
dx

dy

 2 

Parametric Form: x= x (t ), y= y (t )

a. About x-axis:

S =
 t2
t=t1

2πy(t) ·
  

dx

dt

 2
+
 
dy

dt

 2
dt

b. About y-axis

S =
 t2
t=t1

2πx(t)

  
dx

dt

 2
+
 
dy

dt

 2
dt

Polar Form: r= f (θ )

a. About the x-axis: initial line θ = 0

S =
 θ2
θ=θ1

2πy
ds

dθ
dθ

=
 θ2
θ=θ1

2π (r sin θ )

 
r2 +

 
dr

dθ

 2
dθ

Here replace r by f (θ ).

b. About the y-axis perpendicular line through
the pole θ = π/2

S =
 θ2
θ=θ1

2πx
ds

dθ
dθ

=
 θ2
θ=θ1

2π (r cos θ )

 
r2 +

 
dr

dθ

 2
dθ

Here replace r by f (θ ).

About Any (axis) Line L

S =
 

2π (PM)ds

where PM is the perpendicular distance from a

point P of the given curve to the axis of revolution

(Line L) (Fig. 6.44)

Fig. 6.44

Curve

a. Limits for x: If limits for x are given as x = a to
x = b then

S =
 x=b
x=a

2π (PM)

 
1+

 
dy

dx

 2
dx

Here PM is expressed in terms of x.

b. Limits for y: If limits for y are given as y = c to
y = d then

S =
 y=d
y=c

2π (PM)

 
1+

 
dx

dy

 2
dy

Here PM is expressed in terms of y.

WORKED OUT EXAMPLES

Example 1: Find the area of the surface of the solid

of revolution generated by revolving the parabola

y2 = 4ax, 0 ≤ x ≤ 3a about the x-axis.

Solution: 2yy  = 4a, y  = 2a
y
, 1+ y  2= 1+

 
2a
y

 2
= y2+4a2

y2
. 

1+ y  2 = 4ax+4a2
y2

= 2
√
a

y

√
a + x

The area S of the curved surface of the solid gener-

ated by revolving the arc of the parabola y2 = 4ax
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included between the ordinates x = 0 and x = 3a,

about the x-axis is given by

S =
 

2πy

 
1+

 
dy

dx

 2
dx

= 2π

 3a

0

y

 
2
√
a

y
· √a + x

 
dx

= 4π
√
a

 3a

0

√
a + x dx

put x = a tan2 t, dx = 2a · tan t · sec2 t dt

S = 4π
√
a

 
(
√
a sec t)(2a tan t sec2 t dt)

= 8πa2
 

sec2 t d(sec t)

S = 8πa2 · sec
3 t

3
= 8πa2

3
·
 
1+ x

a

 3
2

    3a
x=0

= 56πa2

3
.

Example 2: Determine the surface area of the

paraboloid generated by revolving the curve y = x2
included between x = 0 and x = 6

5
about y- axis.

Solution: y  = 2x,
 
1+ y  2 =

√
1+ 4x2

Surface area = S =
 6

5

0

2πx

 
1+

 
dy

dx

 2
· dx

S =
 6

5

0

2πx
 
1+ 4x2dx

put 1+ 4x2 = t

= 2π

8

 
t
1
2 dt = π

6
t
3
2

= π

6
(1+ 4x2)

3
2

   65
0

S = 1036π

375

Example 3: Show that the area of the surface gen-
erated when the loop of the curve

9ay2 = x(3a − x)2

revolves about the x-axis is 3πa2.

Solution: Curve is symmetric about x-axis. The

loop of the curve lies between x = 0 and x = 3a

(Fig. 6.45).
Differentiating the equation of the curve

18ay y = (3a − x)2 − 2x(3a − x)

Fig. 6.45

1+ y 2 = 1

182a2y2

 
(3a − x)2 − 2x(3a − x)

+182a2y2
 

 
1+ y 2 = 1

18ay

 
(3a − x)29(a − x)2

+36ax(3a − x)2
 1
2

= 3

18ay
(3a − x)(a + x)

Surface area obtained by revolution about x-axis is

S =
 

2πy

 
1+

 
dy

dx

 2
dx

=
 3a

0

2πy · 3

18ay
(3a − x)(a + x)dx

S = π

3a

 
3a2x + 2a

x2

2
− x

3

3

 3a
0

= 3πa2

Example 4: Calculate the area of the surface

of revolution generated by revolving the cardioid

x = 2 cos θ − cos 2θ ; y = 2 sin θ − sin 2θ about the

x-axis.

Fig. 6.46
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Solution: The required surface is generated by
revolving the arc of the curve from θ = 0 to θ = π
(Fig. 6.46).

dx

dθ
=−2 sin θ + 2 sin 2θ,

dy

dθ
= 2 cos θ − 2 cos 2θ

 
dx

dθ

 2
+
 
dy

dθ

 2
= 8(1− sin θ · sin 2θ − cos θ · cos 2θ )

= 8(1− cos θ )

The area of surface by revolving about x-axis is

S =
 θ2
θ1

2π y(θ ) ·
  

dx

dθ

 2
+
 
dy

dθ

 2
dθ

= 2π

 π
0

(2 sin θ − sin 2θ )2
√
2
 
(1− cos θ )dθ

= 8
√
2π

 π
0

sin θ (1− cos θ )
3
2 dθ

S = 16
√
2

5
π (1− cos θ )

5
2

     
π

0

= 128π

5

Example 5: Find the area of the surface generated
by revolving the curve with parametric equations

x(t) = 3t(t − 2), y(t) = 8t
3
2

with 0 ≤ t ≤ 1, about the y-axis.

Solution: dx
dt
= 6t − 6,

dy

dt
= 12t

1
2  

dx

dt

 2
+
 
dy

dt

 2
=
 
36(t − 1)2 + 144t

=
 
36(t + 1)2 = 6(t + 1)

Surface area obtained by revolving about y-axis is

S =
 

2π x(t)

  
dx

dt

 2
+
 
dy

dt

 2
dt

= 2π

 1

0

[3t(t − 2)][6(t + 1)]dt

S = 12π

 
3t4

4
− 3t3

3
− 6t2

2

 1
0

= 39π

Example 6: The arc of the cardioid

r = a(1+ cos θ )

included between −π
2
≤ θ ≤ π

2
is rotated about the

line θ = π
2
. Show that the area of the surface thus

generated is 48
√
2πa2/5.

Solution: Cardioid is symmetric about the initial

lineOB. As θ varies from−π
2
to π

2
, the part of arc of

the cardioid is ABC (Fig. 6.47). Since this arc ABC is

revolved about the line AOC
 
θ = π

2

 
, the area of the

surface of the solid of revolution generated is twice

the area of the surface generated by revolving the

Fig. 6.47

arc BC about the line θ = π
2
(OC). Thus the area of

the surface of the solid of revolution generated by

rotating the arc ABC (for which θ varies from−π
2
to

π
2
) about the line θ = π

2
(OC) is

S = twice

 π
2

0

2π x

 
r2 +

 
dr

dθ

 2
dθ

S = 2

 π
2

0

2π (r cos θ )

 
r2 +

 
dr

dθ

 2
dθ

Differentiating dr
dθ
= −a sin θ

r2 +
 
dr

dθ

 2
= a2(1+ cos θ )2 + a2 sin2 θ

 
r2 +

 
dr

dθ

 2
=
 
a22(1+ cos θ ) = a

 
2(1+ cos θ )

= a
 
2 · 2 · cos2 θ

2
= 2a cos

θ

2

Substituting this value and replacing r by

a(1+ cos θ )

S = 4π

 π
2

0

[a(1+ cos θ )](cos θ )

 
2a cos

θ

2

 
dθ

= 8πa2
 π

2

0

2 cos2
θ

2

 
cos2

θ

2
− sin2

θ

2

 
cos

θ

2
dθ
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= 32πa2

  π
4

0

cos5 t dt −
 π

4

0

cos3 t · sin2 t dt
 

where θ
2
= t, dθ = 2 dt, t : varies from 0 to π

4

= 32πa2

 
cos4 t · sin t

5
+ 4

5

#
sin t · cos2 t

3
+ 2

3
sin t

$ π
4

0

−32πa2
 
sin3 t · cos2 t

5
+ 2

5

sin3 t

3

 π
4

0

Since sin π
4
= cos π

4
= 1√

2

S = 32πa2
%

1

5
√
2

 
1

4
+ 4

3

 
1

2
+ 2

  

− 1

2
√
25

 
1

2
+ 2

3

 &

S = 48
√
2πa2

5

EXERCISE

Cartesian Form

1. Find the surface area of a sphere of radius a.

Hint:

S = 2π

 a
−a
y

 
1+

 
dy

dx

 2
dx

= 2π

 a
−a
y

 
1+ x

2

y2
dx = 2πa

 a
−a
dx

Ans. 4πa2

2. Determine the area of the curved surface of

the reel generated by revolving the part of the

parabola y2 = 4ax, cut-off by the latus rectum

about the tangent at the vertex.

Hint:y-axis is the tangent to the parabola at the

origin. Required surface area= twice surface

area generated by the upper half of the parabola

= 2

 a
0

2πx

 
1+
 
dy

dx

 2
dx=4π

 a
0

x

 
1+ a

x
dx

= 4π

 a
0

  
x + a

2

 2
−
 a
2

 2
dx.

Ans. πa2
 
3
√
2− ln

 √
2+ 1

  
3. Calculate the area of the surface of revolution

generated by revolving the arc of the parabola

y2=12x from x=0 to x=3 about x-axis.

Ans. 24(2
√
2− 1)π

4. Find the cost of plating of the front portion of

the parabolic reflector (Fig. 6.48) of an auto-

mobile head light of 12 cm diameter and 4 cm

deep if the cost of plating is Rs. 5/cm2.

Fig. 6.48

Hint: 62 = 4a · 4 ... a = 9
4

Equation of parabola: y2 = 9x

Surface area =
 4

0

2πy

 
1+

 
dy

dx

 2
dx

= 6π

 4

0

√
x

 
1+ 9

4x
dx=154 cm2

Cost of plating= Rs. (154× 5) = Rs. 770.

Ans. Rs. 770

5. Show that the area of the surface of revolution

generated by revolving about the x-axis the

arc of y2 + 4x = 2 ln y from y = 1 to y = 3

is 32π/3.

6. Determine the surface area of the solid

“catenoid” obtained by revolving the catenary

y = c cosh x
c
from the vertex to any point

(x, y), about the x-axis.

Ans. πc
'
x + c

2
sinh

 
2x
c

 (
7. Prove that the area of the surface generated by

revolving the curve x = y3 included between

the ordinates y = 0 and y = 1, about the

y-axis, is π
27
[10

3
2 − 1].
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8. Find the area of the surface of revolution gen-

erated by revolving one arch of the curve

y = sin x about the x-axis.

Hint: x varies from 0 to π/2.

Ans. π
 √

2+ ln (1+
√
2)
 

9. Show that the area of the surface formed by

rotating the curve y2 = x3 from x = 0 to x =
4 about the y-axis is 128π

1215
(1+ 125

√
10).

10. Calculate the area of the surface generated by

revolving the arc of the curve 9y2 = (2x − 1)3,

with 1
2
≤ x ≤ 2 about the y-axis.

11. A sphere of radius ‘b’ is cut by two parallel

planes which are at a distance ‘h’ apart. Find

the surface area of the sphere included between

the planes. Deduce the surface area of a hemi-

sphere.

Hint: Area =  x=c+h
x=c 2πy

 
1+

 
dy

dx

 2
dx = c+h

c
2πy ·

 
b
y

 
dx=2πbh since x2+y2= b2.

Special case: hemisphere: h = b,
Area = 2πb · b = 2πb2.

Ans. 2πbh; hemisphere: 2πb2

12. Determine the surface area of the prolate

spheroid generated by revolving an ellipse of

eccentricity e about the major axis.

Hint:Given e < 1, b2 = a2(1− e2), equation
of ellipse x

2

a2
+ y2

b2
= 1. Required area= twice

the surface area of revolution generated by
revolving the arc of the ellipse in the first quad-
rant about x-axis

= 2

 a
0

2πy

 
1+

 
dy

dx

 
dx

= 4πb

a

 a
0

 
a2 − x2

 
1+ (1− e2)2 x

2

y2
dx

= 4πb

a

 a
0

 
a2 − e2x2dx

= 4πbe

a

 a
0

  a
e

 2
− x2 dx

Ans. 2 · πab ·
  

(1− e2)+ sin−1 e
e

 
Find the area of the surface of the solid generated

by revolution of the loop of the curve about x-axis:

13. 3ay2 = x(x − a)2

Hint: Loop lies between x = 0 and x = a.
Ans. πa2/3

14. 8a2y2 = a2x2 − x4 about x-axis
Ans. πa2/4

15. If the closed portion of the curve

9ay2 = (a − x)(x + 2a)2 with a > 0

is revolved through two right angles about the

x-axis, find the area of the surface of revolution

so generated

Ans. 3πa2.

Parametric Form

Find the area of the surface of revolution of the

solid generated by the revolving, the curve whose

parametric equations are given, about the indicated

line:

1. x = t3 − 3t, y = 3t2, 0 ≤ t ≤ 1, about x-axis

Ans. 48π/5

2. x = t2, y = t − t3

3
, 0 ≤ t ≤

√
3, about x-axis

Ans. 3π

3. Tractrix x = a cos t + 1
2
a ln tan2 t

2
,

y = a sin t about the x-axis

Hint: Curve is symmetric about bothX and Y
axis (Fig. 6.49).

Fig. 6.49

Area = twice

 π
2

t=0
2πy

  
dx

dt

 2
+
 
dy

dt

 2
dt
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= 4π

 π
2

0

a sin t · a cos t
sin t

· dt

Ans. 4πa2

4. A quadrant of a circle of radius b about its

chord.

Hint: x = b cos t, y = b sin t

Area = twice

 π
4

0

2π (PL)

  
dx

dt

 2
+
 
dy

dt

 2
dt

= 4π

 π
4

0

 
x − b cos

π

4

 
(b)dt

where PL is the perpendicular distance from

circle to chord.

Ans. 2
√
2πb2

 
1− π

4

 
5. x = a cos2 t, y = a sin2 t , about x-axis

Ans. 12πa2/5

6. x = a cos3 t, y = a sin3 t about x-axis

Ans. 12πa2/5

7. Cycloid x = a(t − sin t), y = a(1− cos t),

about the base

Ans. 64πa2/3

8. Arch of cycloid x = a(t − sin t),

y = a(1− cos t) about the line y = 2a.

Hint:

Area = twice

 π
0

2π (PL)

  
dx

dt

 2  
dy

dt

 2
dt

= 4π

 π
0

(2a − y)
  

2(1− cos t)
 
dt

= 4π

 π
0

[2a − a(1− cos t)]

 
2 sin

t

2

 
dt

where PL = perpendicular distance from

cycloid to the line y = 2a.

Ans. 32πa2/3

9. Cycloid x = a(t + sin t), y = a(1− cos t)

about the tangent at the vertex.

Hint: Curve is symmetric about y-axis.

Area = twice

 π
0

2πy

  
dx

dt

 2
+
 
dy

dt

 2
dt

= 16π

 π
0

a2(1− cos θ ) · cos θ
2
dθ

Ans. 32πa2/3

10. Show that the ratio of the areas of the

surface formed by revolving the arch of

the cycloid x = a(t + sin t), y = a(1+ cos t)

between two consecutive cusps about the x-

axis to the area enclosed by the cycloid and

x-axis is 64/9.

Polar Form

Find the area of the surface of the solid generated by

revolving the curve in polar form about the indicated

line:

1. r = a(1± cos θ ), about the initial line

Hint: For r = a(1+ cos θ )

Area =
 π
0

2πy

 
r2 +

 
dr

dθ

 2
dθ

=
 π
0

2π [a sin θ (1+ cos θ )] 2a
cos θ

2
dθ

where y = r sin θ = a(1+ cos θ ) sin θ . Simi-

lar result for r = a(1− cos θ ).

Ans. 32πa2/5

2. r = 2a cos θ , about the initial line

Hint:

Area =
 π

2

0

2π (r sin θ )[4a2 cos2 θ

+4a2 sin2 θ ] 12 dθ

Ans. 4πa2

3. r2 = a2 cos 2θ , about the initial line

Hint:

Area = twice

 π
4

0

2π
 
a
√
cos 2θ · sin θ

 
dθ ×

× a√
cos 2θ

dθ
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Ans. 4πa2
 
1− 1√

2

 
4. r2 = a2 cos 2θ , about the line θ = π

2

Ans. π2a3/(4
√
2)

5. r2 = a2 cos 2θ , about a tangent at the pole
Hint: θ = π

4
and θ = 3π

4
are the tangents to

curve at the pole.

Ans. 4πa2

6. r = 4+ 2 cos θ about the intial line

Ans. 375π/5

6.6 IMPROPER INTEGRALS

Bydefinition of a regular (or proper) definite integral b

a

f (x)dx (1)

it is assumed that the limits of integration are finite

and that the integrand f (x) is continuous for every

value of x in the interval a ≤ x ≤ b. If at least one
of these conditions is violated, then the integral is

known as an improper integral (or singular or gener-

alized or infinite integral). More generally improper

integrals are classified into three kinds.

Improper Integral

Improper integral of the first kind. It is a definite

integral in which one or both limits of integration

are infinite ie. the interval of integration is not finite.

These are defined by the following relations.

(a)

 ∞

a

f (x)dx = lim
b→∞

 b
a
f (x)dx (2)

It is said to have a singularity at the upper limit

(b)

 b

−∞
f (x)dx = lim

a→−∞

 b

a

f (x)dx (3)

(c)

 ∞

−∞
f (x)dx = lim

b→∞
a→−∞

 b

a

f (x)dx (4)

or ∞

−∞
f (x)dx = lim

a→−∞

 0

a

f (x)dx + lim
b→∞

 b

0

f (x)dx

(4∗)

If both the limits exist, we can write ∞

−∞
f (x)dx = lim

r→∞

 r

−r
f (x)dx (4∗∗)

The improper integral is said to converge (or exist)

when the limits in RHS of (2), (3), (4) or (4∗) or (4∗∗)
exists (and are finite). Otherwise it is said to diverge

(when either of the limits fail to exist). The limit in

the RHS of (4∗∗) is known as the Cauchy’s principal

value of the improper integral.

Geometrically for f (x) ≥ 0, the improper integral ∞
a
f (x)dx denotes the area of an unbounded (infi-

nite region) lying between the curve y = f (x), the
ordinate x = a and axis of abscissa, i.e. x-axis.

Example 1: Consider the improper integral ∞
0

dx

1+x2 . Here y = f (x) =
1

1+x2 .

Solution: By definition of improper integral ∞
0

dx

1+x2 = lim
b→∞

 b
0

dx

1+x2 = lim
b→∞

tan−1 x
  b
0

= lim
b→∞

tan−1 b = π
2

1

1 + x2

y

0
x

b

Fig. 6.50

Thuswhile the shaded area in Fig. 6.50 represents the

definite integral
 b
0

dx

1+x2 , the shaded area in Fig. 6.51

represents the improper integral
 ∞
0

dx

1+x2 . Thus this
integral represents the area of an infinite curvilinear

trapezoid cross-hatched in Fig. 6.51.

1

1 + x2

y

x
0

Fig. 6.51

For a convergent integral ∞

0

f (x)dx =
 b

a

f (x)dx +
 ∞

b

f (x)dx

the basic contribution is made by its finite (proper)

part (the first integral in the RHS) while the contri-
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bution of (the 2nd integral in RHS), the singularity

is arbitrarily small for large values of b.

Whereas for a divergent integral, the value of the

integral tends to infinity or oscillates (without hav-

ing a definite limit) since the value of the integral

essentially depends on b.

Comparison Test for Convergence or Diver-

gence of an Improper Integral by p-Integral

Book work: Prove that the p-integral ∞

1

dx

xp

converges when p > 1 and diverges when p ≤ 1.

Proof: For p  = 1,
 b
1
dx
xp
= 1

1−p x
1−p
   b
1

= 1

1− p (b
1−p − 1)

Now ∞

1

dx

xp
= lim
b→∞

 b

1

dx

xp
= lim
b→∞

1

1− p (b
1−p − 1).

Consequently.

y

O
x

p < 1

p = 1

p > 1

y =
1

xp

1

Fig. 6.52

If p > 1, then
 ∞
1

dx
xp
= 1

p−1 and the integral con-
verges.

If p < 1, then
 ∞
1

dx
xp
= ∞ and the integral

diverges.

When p = 1,
 ∞
1

dx
x
= ln x

  ∞
1
= ∞ and the inte-

gral diverges

Results

Theorem 1. Let f (x) and g(x) be non-negative

functions. Suppose

1. 0 ≤ f (x) ≤ g(x) for x ≥ a.

If
 ∞
a
g(x)dx converges, then

 ∞
a
f (x)dx also

converges and
 ∞
a
f (x)dx ≤  ∞

a
g(x)dx.

Theorem 2. Suppose 0 ≤ g(x) ≤ f (x). If ∞
a
g(x)dx diverges, then

 ∞
a
f (x)dx also diverges.

Thus the convergence or divergence of an

improper integral is determined by comparing it with

a simple integral, the p-integral (of book work I)

Theorem 3. For a function f (x) which changes

its sign, if
 ∞
a
|f (x)|dx converges, then

 ∞
a
f (x)dx

also converges, ie.
 ∞
a
f (x)dx is said to converge

absolutely.

Improper Integral of the Second Kind

It is one in which both the limits of integration are

finite, but the integrand f (x) is not defined (infinite)

or discontinuous at a point between a and b inclusive.

Suppose f (x)→∞ as x → a, then the integral has

a singularity at the lower limita. Then this singularity

is ‘cut-off’ by considering b

a+ε
f (x)dx

where ε is a small positive number. Thus for a con-

vergent improper integral of the second kind b

a

f (x)dx = lim
ε→0

 b

a+ε
f (x)dx (6)

which ignores the contribution of the singularity.

Similarly when f (x) is discontinuous at the upper

limit b then b

a

f (x)dx = lim
ε→0

 b−ε

a

f (x)dx (7)

Finally when f (x) has a singularity at an intermedi-

ate point c, i.e. a < c < b, then b

a

f (x)dx = lim
ε→0

 c−ε

a

f (x)dx + lim
ε→0

 b

c+ε
f (x)dx (8)

The RHS limit above is known as the Cauchy’s prin-

cipal value of the integral.

When the limits in the RHS of (6), (7) or (8) fails

to exist (or infinite) then the improper integral is said

to diverge.
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WORKED OUT EXAMPLES

Example 1: Consider the improper integral of

the second kind
 3

0
dx

(x−2)2/3 whose integrand f (x) =
(x − 2)−2/3 has a singularity at x = 2 which lies in

the interval (0, 3). By (8) 3

0

dx

(x − 2)2/3
= lim
c→2−ε

 c

0

dx

(x − 2)2/3

+ lim
c→2+ε

 3

c

dx

(x − 2)2/3

The first integral in RHS is

lim
c→2−ε

[3(6− 1)1/3 − 3(0− 1)1/3] = 6

The second integral in RHS is

lim
c→2+ε

[3(3− 1)1/3 − 3(0− 1)1/3] = 3(21/3)− 3

Thus the value of the improper integral is 6+
3

3
√
2− 3 = 3+ 3

3
√
2

0 1 2 3

2 – e 2 + e

Fig. 6.53

Example 2: Consider
 2

−2
dx

x2
which has a singular-

ity at x = 0. The point of discontinuity x = 0 of the

integrand f (x) = x−2 lies in the interval of integra-

tion (−2, 2). Now by (8) 2

−2

dx

x2
= lim
c→0−

 c

−2

dx

x2
+ lim
c→0+

 +2

c

dx

x2

Now lim
c→0−

 2

−2
dx

x2
= − lim

c→0−
1
x

  c
−2

= − lim
c→0−

 
1
c
− 1

−2
 = ∞

The integral diverges in [−2, 0].
Similarly

lim
c→0+

 +2

c

dx

x2
= − lim

c→0+

 
2− 1

c

 
= ∞

This integral also diverges in [0, 2].

Hence the given integral
 2

−2
dx

x2
diverges on the

interval [−2, 2].

1

x2

–2 2O
x

y

Fig. 6.54

Suppose ignoring the presence of the discontinuity

at x = 0, we evaluate the integral obtaining 2

−2

dx

x2
= − 1

x

    
2

−2
= −

 
1

2
− 1

−2

 
= −1

which is impossible as is evident from the figure.

Comparison Test for Convergence or Diver-

gence of Improper Integral of the Second

Kind

Book work: Prove that
 c
a

k dx
(x−c)p converges for p <

1 and diverges for p ≥ 1.

Here k is constant.

Proof: For p = 1, c

a

k dx

(x − c)p =
 c

a

k
dx

x − c = k ln(x − c)
    
c

a c

a

k dx

(x − c) = lim
c→c+

k ln (x − c)|ca
= k[ln (a − c)− ln 0] = ∞

For p  = 1. c

a

k dx

(x − c)p = lim
c→c+

 
k
(x − c)−p+1
−p + 1

     
c

a

= infinity when p > 1

= finite when p < 1.

Hence the result.

Note 1: Suppose f (x) has several points of discon-

tinuity at a1, a2, . . . an in the interval [a, b]. Then the

improper integral is defined by b
a
f (x)dx =  a1

a
f (x)dx +  a2

a1
f (x)dx + . . .

+  b
an
f (x)dx,

converges only when each of the improper integrals

on the RHS above converges. Even if one of these

integrals diverge, then
 b
a
f (x)dx is said to diverge.
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Note 2: Theorems similar to theorems 1, 2, 3 are

applicable to improper integrals of second kind also.

Example 1: The improper integral
 ∞
0

cos x dx

diverges by oscillation since ∞

0

cos x dx = lim
b→∞

 b

0

cos x dx = lim
b→∞

sin b

which takes all values between −1 and 1 as b varies
between 2nπ − π

2
and 2nπ + π

2
for any integer n.

Thus integral diverges without becoming infinite.

In the improper integral of third kind, either the

limits of integration may be infinite or the integrand

is discontinuous or both.

Example 2:
 ∞
0
e−xxn−1 dx has an infinite upper

limit and the integrand e−xxn−1 is discontinuous at
the lower limit 0.

WORKED OUT EXAMPLES

Test for convergence or divergence of the following

improper integrals and hence evaluate them.

Example 1:

 ∞

−∞

dx

a2 + x2

Solution: Improper integral of first kind, with both

limits infinite. Now ∞
−∞

dx

a2+x2 = lim
r→∞

 r
−r

dx

a2+x2 = lim
r→∞

1
a
tan−1 x

a

  r
−r

= lim
r→∞

 
1
a

  
tan−1 r

a
− tan−1 (−r)

a

 
= 2

a
lim
r→∞

tan−1 r
a
= 2

a
· π
2
= π

a

Integral convergent.

Example 2:

 1

0

dx

x0.9999

Solution: Second kind with singularity (disconti-

nuity) at the lower limit 0. So 1

0
dx

x0.9999
= lim
a→0+ε

 1

a
dx

x0.9999
= lim
a→0+

x−0.9999+1
−0.9999+1

   1
a

= lim
a→0+

1
0.0001

 
10.0001 − a0.0001 

= 1
0.0001

[1− 0] = 10000

Integral convergent.

Example 3:

 π/2

0

tan x dx

Solution: Second kind with discontinuty at upper

limit π
2
. Now π/2

0
tan x dx = lim

a→ π
2
−ε

 a
0
tan x dx

= lim
a→ π

2
−
ln sec x|a0 = lim

a→ π
2
−
[ln sec a − ln sec 0]

=  ln sec π
2
− ln 1

 = ln∞− 0 = ∞
Integral divergent.

Example 4:

 a

−a

dx√
a2 − x2

Solution: Second kind with discontinuites at both

the limits. Now a
−a

dx√
a2−x2

= lim
c→−a+

 0

c
dx√
a2+x2

+ lim
c→a−

 c
0

dx√
a2−x2

= lim
c→−a+

sin−1
x

a

   0
c
+ lim
c→a−

sin−1
x

a

   c
0

=  sin−1 0− sin−1
 −a
a

  +  sin−1 a
a
− sin−1 0

 
= sin−1 1+ sin−1 1 = 2 sin−1 1 = 2π

2
= π

Example 5:

 1

−1

dx

x2/3

Solution: Second kind has discontinuity at an inter-

mediate point x = 0 in the interval (−1, 1) 1

−1

dx

x2/3
= lim
a→0−

 a

−1

dx

x2/3
+ lim
a→0+

 1

a

dx

x2/3

= lim
a→0−

 
3x1/3

  a
−1

 
+ lim
a→0+

 
3x1/3

  1
a

 
= [3 · 0− 3(−1)1/3]+ [3 · 11/3 − 3 · 0] = 3+ 3

= 6

Example 6:

 ∞

0

dx

x3

Solution: This is third kind involving infinite upper

limit and unboundedness at the lower limit 0. Now ∞
0

dx

x3
= lim

b→∞
a→ 0+

 b
a
dx

x3
= lim

b→∞
a→ 0+

 
− 1

2x2

    b
x=a

= lim
b→∞
a→ 0+

− 1
2

 
1

b2
− 1

a2

 
= − 1

2
[0−∞] = ∞

Integral diverges.
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EXERCISE

Evaluate the following improper integrals

1.

 ∞

0

e−xdx

Ans. 1, converges

2.

 t

0

ln x dx

Ans. −1, converges

3.

 1

0

x dx√
1− x2

Ans. 1, converges

4.

 ∞

1

dx

x
√
x2 − 1

Ans.
π

2
, converges

5.
 1

−1
dx

x5

Ans. Diverges

6.

 ∞

1

ln

 
1

x

 
dx

Ans. Diverges

7.
 0

−∞
dx

(1−3x)2

Ans. 1
3
, converges

8.

 0

−∞
cos hx dx

Ans. Diverges.

9.

 ∞

0

dx

(1+ x)√x
Ans. π , converges

10.

 1

−1

 
1+ x
1− x dx

Ans. π , converges

Hint: sin−1 b −
√
1− b2

11.

 ∞

0

4z2dz

(z2 + 1)2

Ans. π , converges

(Integrals 10 and 11 are same. Use substitution

z =
 

1+x
1−x

 

12.

 ∞

5

dx

x log x

Ans. Diverges

13.
 3

0
dx

(x−1)2/3

Ans. 3+ 3
3
√
2, converges

14.
 ∞
1

dx

x1.00001

Ans. 100000, converges

15.

 1

−1

dx

x2/5

Ans. converges

16.
 1

−∞ e
x dx

Ans. e, converges

17.
 ∞
−∞

dx

a+2bx+cx2
Ans. π√

ac−b2
, converges

Hint: 1
c

 
1

)  
x + b

c

 2 +   ac−b
c2

 2  
Test for convergence

18.
 ∞
0

dx
3
√
x2+1

Ans. Diverges

Hint: Compare with x−2/3 which is divergent,
p = 2

3
< 1

19.
 ∞
0

dx√
x3+1

Ans. Converges

Hint: Compare with x−3/2 which is conver-

gent, p = 3
2
> 1

20.

 ∞

2

3x + 5

x5 + 7
dx

Ans. Converges

Hint: Compare with 3

x4
which is convergent,

p = 4 > 1

21.

 5

0

sin 3x

x5/2
dx

Ans. Diverges

Hint: As x → 0 sin 3x

x5/2
∼ 3x

x5/2
= 3

x3/2
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22.

 ∞

0

dx

x4 + 2

Ans. Converges

Hint:
 ∞
0
=  1

0
+  ∞

1
, first integral con-

verges, second integral converges by compari-

son with integrand 1

x4
which is p-integral with

p = 4 > 1.

23.
 ∞
0

x3·2dx
x4+100

Ans. Diverges

Hint:
 ∞
0
=  1

0
+  ∞

1
, first integral con-

verges,
 ∞
1

diverges by comparison with inte-

grand x−0·8 which is p-integral with p < 1.

24.
 4

0
sin2 x dx√
x(x−1)

Ans. Converges

Hint: Compare with x−3/2 which is p integral

with p = 3
2
> 1 and is convergent.

25.

 1

0

dx

x2 cos x

Ans. Diverges

Hint: As x → 0, 1

x2 cos x
∼ 1

x2
which is diver-

gent for p > 1.



Chapter7

Multiple Integrals

INTRODUCTION

Double integrals are sometimes easier to evaluate

when we change the order of integration or when

we change to polar coordinates, over regions whose

boundaries are given by polar equations. General

change of variables involves evaluation of multiple

integrals by substitution. The aim of substitution is to

replace complicated integrals by one that are easier

to evaluate. Change of variables simplifies the inte-

grand, the limits of integration or both. Evaluation of

triple integral is simplified by the use of cylindrical

or spherical coordinates in problems of physics, en-

gineering or geometry involving a cylinder, cone, or

sphere. Dirichlet’s integral is useful in the evaluation

of certain double and triple integrals by expressing

them in terms of beta and gamma functions.

Multiple integral is a natural extension of an (ordi-

nary) definite integral to a function of two variables

(double integral) or three variables (triple integral) or

more variables. Double and triple integrals are use-

ful in evaluating area, volume, mass, centroid and

moments of inertia of plane and solid regions.

7.1 DOUBLE INTEGRAL

Let D be a closed∗ and bounded∗∗ domain in the
XY -plane bounded by a simple closed curve c. Let

∗Boundary included i.e., part of the region.
∗∗Can be enclosed in a circle of finite radius.

f (x, y) be a given continuous function inD. Divide
D into n parts and form the sum

n 
i=1
f (Pi ) Si

where f (Pi) is the value of f at an arbitrary point Pi
of the subdomain whose area is Si . Double integral
of f (x, y) over the domainD is the limit of the above
sum as n→∞ and is denoted by ID as

ID =
  
D

f (P ) dS =
  
D

f (x, y) dx dy

= lim
 Si→0

n 
i=1
f (Pi ) Si (1)

Here D is known as the domain (region) of inte-

gration.

The following properties of double integrals fol-

low from the definition (1).

Properties of Double Integral

1.

  
D

a f (x, y)dS = a
  
D

f (x, y)dS, a = constant.

2.

  
D

[f (x, y)+ g(x, y)]dS =
  
D

f (x, y)dS.+

+
  
D

g(x, y)dS

3.

  
D

f (x, y)dS =
  
D1

f (x, y)dS +
  
D2

f (x, y)dS

whereD is the union of disjoint domainsD1 andD2.

7.1
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Regular Domain

A domain D in XY -plane bounded by a curve c is

said to be regular in the Y-direction, if straight lines

passing through an interior point (a point which does

not lie on the boundary c) and parallel toY-axismeets

c in two points A and B (Fig. 7.1).

Fig. 7.1

In such a case, the domainD is bounded by the two
curves c2 : GHE : y = y2(x) and c1 : EFG : y =
y1(x) and the ordinates x = a and x = b such that

y2(x) ≤ y1(x)
and a < b

Here c is the sum of the two curves c1 and c2.

In otherwords, “AdomainD is said to be “regular”

domain if it is regular in both X and Y directions”.

Examples of Regular Domain: Regions bounded

by rectangle, triangle, circle, ellipses.

Example of Non-regular Domain:Annulus region.

Evaluation of a Double

Integral

Adouble integral can be evaluated by successive sin-

gle integrations i.e., as a two-fold iterated (repeated)

integral as follows (if D is regular in y-direction):

ID =
 b

x=a

  y2(x)

y=y1(x)
f (x, y)dy

 
dx (2)

where integration is performed firstwith respect to y

(within the braces).With the substitution of the limits

y1(x) and y2(x), the integrand becomes a function of

x alone, which is then integrated with respect to x

from a to b.

In a similar way, for a domain D (regular in x-

direction) which is bounded above by EHF x =
x2(y) and bounded below by EGF: x = x1(y) and
the abscissa y = d and y = e (Fig. 7.2).

Fig. 7.2

The double integral is evaluated as

ID =
 e

y=d

  x2(y)

x=x1(y)
f (x, y)dx

 
dy (3)

In this case the integration is first performed with

respect to x and then later with respect to y.

Note 1: The braces in (2) and (3) can be omitted,

since it is conventional to integrate first with respect

to a variable whose differential appears first (for ex-

ample in (2) the order of integration is first y and

later x).

Note 2: If all the four limits are constants then the

order of integration can be done in either way i.e.,

integration first with respect to x and later w.r.t. y

or first w.r.t. y and later w.r.t. x, yielding the same

result, provided the limits are taken (for x and y)

accordingly.

Note 3: When D is regular (in both x and y di-

rections), draw a rough sketch of D the domain of

integration to fix the limits of integration. Choose

(or change) the order of integration (see Section 7.5)

and use (2) or (3) whichever is easier for integ-

ration.

Note 4: Suppose D is such that the lower
curve AFE : y = y1(x) consists of two different
curves

AF : y1 = φ(x), a ≤ x ≤ e
FE : y1 = ψ(x), e ≤ x ≤ b
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while the upper curve is AGB : y = y2(x) (Fig.

7.3). Then D=AFEBGA=AFGA+FEBG=
D1 +D2, so that

Fig. 7.3

  
D

f (x, y)dy dx =
 b

a

 y2(x)

y1(x)

f (x, y)dy dx

=
  
D1

f (x, y)dy dx

+
  
D2

f (x, y)dy dx

=
 e

a

 y2(x)

φ(x)

f (x, y)dy dx

+
 b

e

 y2(x)

ψ(x)

f (x, y)dy dx.

(see Worked Out Example 4).

WORKED OUT EXAMPLES

Evaluate the following double integrals as two-fold

iterated integral:

Example 1: ID =
 ln 8

1

 ln y

0
ex+ydx dy

Solution:

ID =
 ln 8

1

ex+y
     
ln y

0

dy =
 ln 8

1

(ey+ln y − ey )dy

ID =
 ln 8

1

ey (y − 1)dy =
 
yey − ey − ey )

   ln 8

1

= 8 ln 8− 16+ e

Example 2: ID =
  
D
(x2 + y2)dx dy where D is

bounded by y = x and y2 = 4x.

Solution:

Fig. 7.4

ID =
 4

0

 2
√
x

x

(x2 + y2)dy dx

=
 4

0

x2y + y
3

3

     
2
√
x

x

dx

=
 4

0

 
2x

5
2 + 8

3
x

3
2 − 4

3
x3
 
dx

= 768

35

Example 3: ID =
  
D
x3y dx dy where D is the

region enclosed by the ellipse x2

a2
+ y2

b2
= 1 in the

first quadrant.

Fig. 7.5

Solution:

ID =
 a

0

 b
a

√
a2−x2

y=0
x3y dy dx

ID =
 a

0

x3y2

2

     
b
a

√
a2−x2

0

dx = b2

2a2

 a

0

(a2x3 − x5)dx

ID =
b2

2a2

 
a2x4

4
− x

6

6

 a
0

= b
2a4

24

Example 4: ID =
  
D
x2dx dy where D is the re-

gion in the first quadrant bounded by the hyperbola

xy = 16 and the lines y = x, y = 0 and x = 8.

Solution: If horizontal strips are considered, the
upper curve ABE consists of two curves AB and
BE. It is necessary to consider the region D as the
union of two disjoint regions D1 and D2 as
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Fig. 7.6

D =OGE BAFO = D1 +D2 = FBAF +OGEBF

ID =
  
D

x2dx dy =
  
D1

+
  
D2

=
 4

2

 16/y

x=y
x2dx dy +

 2

0

 8

x=y
x2dx dy

= 1

3

 4

0

 
163

y3
− y3

 
dy + 1

3

 2

0

(83 − y3)dy = 448

Note: This example can also be considered

with vertical strip as follows: D = R1 + R2 =
OGAFO +GEBAG with limits for R1: y : 0 to x;

x : 0 to 4, for R2: y : 0 to 16/x; x : 4 to 8.

EXERCISE

Evaluate the following double integrals as two-fold

iterated integrals:

1.
 4

3

 2

1

dy dx

(x+y)2

Ans. ln (25/24)

2.
 a
0

 y2/a
o

ex/ydx dy

Ans. a2/2

3.
 1

− 1
2

 1+x
−x (x2 + y)dy dx

Ans. 63
32

4.
 π
0

 x
o
x sin y dy dx

Ans. 2+ π2/2

5.
  
D
(4xy − y2)dx dy where D is the rectangle

bounded by x = 1, x = 2, y = 0, y = 3.

Ans. 18

6.
  
D
(x2 + y2)dx dy where D is the region

bounded by y = x, y = 2x and x = 1 in the

first quadrant.

Ans. 5
6

7.
  
D
(1+ x + y)dx dy where D is the re-

gion bounded by the lines y = −x, x = √y,
y = 2, y = 0.

Hint: Limits: x : −y to√y; y : 0 to 2.

Ans. 44
15

√
2+ 13

3

8.
  
D
xy dx dy where D is the domain bounded

by the parabola x2 = 4ay, the ordinates x = a
and x-axis.

Ans. a4/3

9.
 1

0

 √1+x2
0

(1+ x2 + y2)−1dx dy
Ans. π

4
log(1+

√
2)

10.
  
D
(x + y)2dx dy where D is the region

bounded by the ellipse x
2

a2
+ y2

b2
= 1.

Ans. πab(a2 + b2)/4
11.

 a
0

 x
x/a

x dy dx

x2+y2

Ans. a
 
π
4
− tan−1

 
1
a

  
12.

  
R

√
xy(a − x − y) where R is the region

bounded by x = 0, y = 0, x + y = a.
Ans. 2πa7/2/105

7.2 APPLICATION OF DOUBLE INTEGRAL

Area of a Plane Region

The area A of a plane regular region (domain) D is
given by a two-fold iterated integral

A=
  
D

ds =
  
D

dx dy

=
 b

x=a

 y2(x)

y=y1(x)
dy dx =

 e

y=d

 x2(y)

x=x1(y)
dx dy

Mass Contained in a Plane Region

Let f (x, y) > 0 be the surface density (mass/unit
area) of a given plane region D. Then the amount
(quantity) of mass M contained in the plane region
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D is given by

M =
  
D

f (x, y)dx dy

Centre of Gravity (Centroid) of a Plane Re-

gion D

The coordinates (xc, yc) of the centre of gravity
(centroid) of a plane region D with surface density
f (x, y) and containing massM are

xc =
  
D x · f (x, y)dx dy

M
, yc =

  
D y · f (x, y)dx dy

M

Moment of Inertia of a Plane Region

Moments of inertia of a plane regionD (with surface
density f (x, y)) relative to x-axis, y-axis and origin
O are respectively given by

Ixx =
  
D

y2f (x, y)dx dy

Iyy =
  
D

x2f (x, y)dx dy

Io = Ixx + Iyy −
  
D

(x2 + y2)f (x, y)dx dy

Io is also known as polar moment of inertia.

Volume under a Surface of a Solid as a

Double Integral

Let z = f (x, y) > 0 be the equation of a surface. Let

the curve c be the boundary of the plane domain D

in the XY-plane. Further let V be the volume of the

solidQ, under the surface z = f (x, y) (i.e., bounded
above by the surface) and above the XY-plane (i.e.,

bounded below by z = 0) and a cylindrical surface

whose generator are parallel to the z-axis, while the

directrixQ is c (see Fig. 7.7).

Then the double integral of f (x, y) taken over D
gives the volume V under the surface z = f (x, y)

V =
  
D

f (x, y)dx dy.

Fig. 7.7

WORKED OUT EXAMPLES

Area of Plane Region: Cartesian

Coordinates

Example 1: Find the area bounded by the curves

y2 = x3 and x2 = y3.
Solution: Area = A =   

D
dx dy =   

D
dy dx the

plane region D can be covered by varying y from

the upper curve y = y2(x) = x
2
3 to the lower curve

y = y1(x) = x
3
2 , while x varies from 0 to 1 (refer

Fig. 7.8). Thus

Fig. 7.8

A=
 1

0

 x
2
3

x
3
2

dy dx

=
 1

0

(x
2
3 − x 3

2 )dx = 3

5
x

5
3 − 2

5
x

5
2

    1
0

A= 3

5
− 2

5
= 1

5



7.6 HIGHER ENGINEERING MATHEMATICS—II

Aliter: Alternatively D can be considered as Do-

main enclosed between the upper curve x = y 2
3 and

lower curve x = y 3
2 and obscissa y = 0 and y = 1.

Thus

A=
 1

0

 y
2
3

x=y
3
2

dx dy

=
 1

0

(y
2
3 − y 3

2 )dy

= 3

5
y

5
3 − 2

5
y

5
2

    1
0

= 1

5

Example 2: Determine the area bounded by the

curves xy = 2, 4y = x2 and y = 4.

Solution: Here A
 
1
2
, 4
 
, B(4, 4), E(2, 1), F (2, 4)

observe that one of (lower) curve consists of more

than one curve (equation) (Fig. 7.9), so the given

domain D = D1 +D2 where D1 : AEFA bounded

by y = 2
x
, y = 4, x = 1

2
, x = 1 and D2 : FEBF

bounded by y = x2

4
, y = 4, x = 1 and x = 4, so that

A=
  
D

dx dy =
  
D1

+
  
D2

=
 2

1
2

 4

y= 2
x

dy dx +
 4

2

 4

y= x2
4

dy dx

=
 2

1
2

 
4− 2

x

 
dx +

 4

2

 
4− x

2

4

 
dx

= 4x − 2 ln x|21
2

+ 4x − x3

12

     
4

2

A= 28

3
− 2 ln 4

Fig. 7.9

Note: Alternatively by conveniently taking y = x2

4

as the upper curve and y = 2/x as the lower curve

(refer Fig. 7.10), this problem can be solved easily

as follows:

Fig. 7.10

Aliter : A=
 4

y=1

 2
√
y

x= 2
y

dx dy =
 4

1

 
2
√
y − 2

y

 
dy

= 2

 
y

3
2

(3/2)
− 2 ln y

 4
1

= 28

3
− 2 ln 4

EXERCISE

Area of plane region: Cartesian coordinates

Find the area of the following domains in XY -plane

bounded by the indicated curves

1. y = x, y = x2

Ans.
1

6

2. y = 3x − x2, y = x

Ans.
4

3

3. 3x = 4− y2, x = y2

Hint: Easy to integrate with,

limits: x : y2 to (4− y2)/3, y : −1 to 1.

Ans.
16

9

4. y = x2 and y = x + 2

Hint: Easy to integrate with

limits: y : x2 to x + 2; x : −1 to 2.
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Ans.
9

2

5. Ellipse x
2

a2
+ y2

b2
= 1.

Hint: Limits: y : ±b
 
1− x2

a2
; x = ± a or

x : ± a
 
1− y2

b2
, y = ± b.

Ans. πab

6.
√
x +√y = √a and x + y = a

Hint: Limits: y : a + x − 2
√
ax to (a−x),

x : 0 to a.

Ans.
a2

3

7. Parabola y2 = 4ax and straight line x + y =
3a

Hint: Easy to integrate with

limits: x : 3a − y to y2/4a; y : 0 to a.

Ans.
10a2

3

8. Common to the two parabolas

y2 = 4a(x + a), y2 = 4b(b − x)

Ans.
8(a + b)

√
ab

3

9. y = sin x, y = cos x, x = 0

Ans.
√
2− 1

10. 3y2 = 25x and 5x2 = 9y

Hint: Limits: y : 5
9
x2 to 5

√
x/
√
3, x : 0 to 3

Ans. 5

11. x = y − y2 and x + y = 0

Ans.
4

3

WORKED OUT EXAMPLES

Mass, centroid and moments of inertia

Example 1: Find the mass, coordinates of the

centre of gravity and moments of inertia relative to

x-axis, y-axis and origin of a rectangle 0 ≤ x ≤ 4,

0 ≤ y ≤ 2 having mass density xy (see Fig. 7.11).

Fig. 7.11

Solution: Here density f (x, y) = xy

MassM =
  
R

f (x, y)dx dy

M =
 4

0

 2

0

(xy)dy dx =
 4

0

xy2

2

     
2

0

dx

=
 4

0

2x dx = 16

Let xc, yc be the coordinates of the centre of gravity
of R then

xc =
1

M

  
R

x f (x, y)dx dy = 1

16

 4

0

 2

0

x(xy)dy dx

xc =
1

16

 4

0

x2
y2

2

     
2

0

dx = 1

8

 4

0

x2dx = 8

3

yc =
1

M

  
R

yf (x, y)dx dy = 1

16

 4

0

 2

0

y(xy)dy dx

= 1

16

 4

0

x
y3

3

     
2

0

dx = 1

6

 4

0

x dx = 4

3

Moment of inertia relative to x-axis

Ix =
  
R

y2f (x, y)dx dy =
 4

0

 2

0

y2(xy)dy dx

=
 4

0

x
y4

4

     
2

0

dx = 4

 4

0

x dx = 4
x2

2

     
4

0

= 32

Similarly

Iy =
  
R

x2f (x, y)dx dy =
 4

0

 2

0

x2(xy)dy dx

Iy =
 4

0

x3
y2

2

     
2

0

dx = 2

 4

0

x3dx = 2
x4

4

     
4

0

= 128
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I0 =
  
R

(x2 + y2)f (x, y)dx dy

=
 4

0

 2

0

(x2 + y2)xy dy dx

=
 4

0

 
x3y2

2
+ xy

4

4

      
2

0

dx

=
 4

0

(2x3 + 4x)dx

I0 =
 
2x4

4
+ 4x2

2

      
4

0

= 128+ 32 = 160

Thus I0 = Ix + Iy .

Example 2: Find the mass, centroid and moments

of inertia relative to x-axis, y-axis and origin of the

plane regionR having mass density x + y and boun-
ded by the parabola x = y − y2 and the straight line

x + y = 0

Solution: The plane region R shown in the (Fig.

7.12) isOAB withO(0, 0), A(0, 1), B(−2, 2) since
the points of intersection of the parabola x = y − y2
and x + y = 0 are (−2, 2) and (0, 0).

Fig. 7.12

This region R can be covered with x varying from
x = y − y2 to x = −y and y from 0 to 2. Here the
density function is f (x, y) = x + y. Thus the mass
M contained in R is

M =
  
R

f (x, y)dx dy =
 2

0

 y−y2

x=−y
(x + y)dx dy

=
 2

0

 
x2

2
+ xy

      
y−y2

−y
dy

=
 2

0

 
1

2
y4 − 2y3 + 2y2

 
dy

=
 
1

2

y5

5
− 2y4 + 2

y3

3

      
2

0

M = 8

15

xc =
1

M

  
R

xf (x, y)dx dy

= 15

8

 2

0

 y−y2

−y
x(x + y)dx dy

=
 2

0

 
x3

3
+ x

2

2
y

 y−y2
−y

dy

=
 2

0

y3

6
[4− 12y + 9y2 − 2y3]dy

= 1

6

 
4y4

4
− 12y5

5
+ 9y6

6
− 2y7

7

 2
0

= −8
35

yc =
1

M

  
y f (x, y)dx dy

= 15

8

 2

0

 y−y2

−y
y(x + y)dx dy

= 15

8

 2

0

 
yx2

2
+ y2x

      
y−y2

−y
dy

= 15

8

 2

0

1

2

 
y5 − 3y4 + 5

2
y3
 
dy

yc =
15

16

 
y6

6
− 3y5

5
+ 5

2

y4

4

 2
0

= 15

16

22

15
= 11

8

Ix =
 2

0

 y−y2

−y
y2(x + y)dx dy

=
 2

0

 
y2x2

2
+ y3x

      
y−y2

−y
dy

Ix =
 2

0

 
y6

2
− 2y5 + 2y4

 
dy

= y7

14
− 2y6

6
+ 2y5

5

     
2

0

= 64

105

Iy =
 2

0

 y−y2

−y
x2(x + y)dx dy
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=
 2

0

 
x4

4
+ x

3

3
y

      
y−y2

−y
dy

= 1

12

 2

0

(3y8 − 16y7 + 30y6 − 24y5 + 8y4)dy

Iy =
1

12

 
3y9

9
− 16y8

8
+ 30y7

7
− 24y6

6
+ 8y5

5

 2
0

= 28

7× 3× 5
= 256

105

I0 = Ix + Iy =
64

105
+ 256

105
= 320

105
= 64

21

EXERCISE

Mass, Centroid, and Moments of Inertia

1. Determine the mass of a circular lamina of ra-

dius b if the surface density of the material at

any point P (x, y) is proportional to the dis-

tance of the point (x, y) from the centre of the

circle.

Hint: Density = f (x, y) = k
 
x2 + y2,

k constant.

Ans. 2
3
kπb3

2. Find the mass contained in the ellipse
x2

a2
+ y2

b2
= 1 with surface density (x + y)2.

Hint: Limits: y = ± b
a

√
a2 − x2, x : ± a.

Ans. πab
4
(a2 + b2)

3. Find the centroid of the region in the first quad-

rant bounded by
 
x
a

 2
3 +  

y

b

 2
3 = 1,

x = 0, y = 0 and having surface density kxy

with k constant.

Hint: Put x = a cos3 θ, y = b sin3 θ with θ

varying from 0 to π
2
.

Ans.
 
128
429
a, 128

429
b
 

4. Find the centroid of the upper half of the circle

x2 + y2 = a2.
Ans.

 
0, πa

2

2

 

5. Find the centroid of the plane region bounded

by y2 + x = 0 and y = x + 2.

Hint: Points of intersection: (−1, 1),
(−4,−2).
Limits: x = y − 2 to −y2, y : −2 to 1.

Ans.

 
−8

5
,−1

2

 
6. Determine the coordinates of the centre of

gravity of the plane region bounded by

y = ln x, y = 1, y = 0, x = 0

Hint: Points of intersection (1, 0), (e, 1).

Limits: x : 0 to ey ; y : 0 to 1.

Ans.

 
e + 1

4
,

1

e − 1

 
7. Calculate the centroid of the area bounded by

the parabola x2 + 4y − 16 = 0 and x-axis.

Hint: xc = 0 due to symmetry about y-axis.

Limits: y : 0 to (16− x2)/4; x : ± 4.

Ans.

 
0,

8

5

 
8. Find the centroid of the area bounded by the

parabolas y2 = 20x, x2 = 20y.

Hint: Limits: y :
√
20x to x2

20
; x : 0 to 20.

Ans. (9, 9)

9. Find moment of inertia of circular region of

radius b relative to its centre O.

Ans.
πb4

2

10. Compute the moment of inertia relative to the

origin of the area of a rectangle bounded by

the straight lines x = 0, x = a, y = 0, y = b.

Ans.
ab(a2 + b2)

3

11. Compute the moment of inertia of the area of

the circle (x − a)2 + (y − b)2 = 2a2 relative

to the y-axis.

Ans. 3πa4

12. Find the moment of inertia of the region

bounded by the parabola y2 = ax and the

straight line x = a relative to the straight line
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y = −a.
Ans. 8

5
a4

Calculate Ix, Iy for the regions bounded by

13. 4y = x3, y = |x|

Ans. Ix =
4

5
, Iy =

4

3

14. y = ex, y = e, x = 0

Ans. Ix = (1+ 2e3)/9

Iy = 2(3− e)/3
15. Find the centre of gravity and the moments

of inertia Ix, Iy, I0 of the region, 0 ≤ y ≤√
1− x2, 0 ≤ x ≤ 1 and f (x, y) = 1 be the

density of mass.

Ans. Mass M = π
4
, x = y = 4

3π
(by symmetry),

Ix =
π

16
, Iy =

π

16
, Iv = Ix + Iy =

π

8
.

16. A thin plate of uniform thickness and constant

density ρ covers the region of xy-plane and is

bounded by y = x2 and y = x + 2. Find the

mass M . Find its moment of inertia Iy about

the y-axis.

Hint: Limits: y : x2 to x + 2, x : −1 to 2.

Ans. Iy =
63

20
ρ, MassM = 9

2
ρ.

WORKED OUT EXAMPLES

Volume of solid by double integral

Example 1: Find the volume of the tetrahedron

in space cut from the first octant by the plane

6x + 3y + 2z = 6.

Solution: The tetrahedron is bounded below by

z = 0 (xy-plane) and bounded above by the surface

z = 6−6x−3y
2

= f (x, y).
The projection R of this surface z = f (x, y) onto

the xy-plane is the triangular region OAB bounded

by the lines x = 0, y = 0 and 6x + 3y = 6. This

injected region R can be covered by varying y from

0 to 2− 2x, and x from 0 to 1. Thus the required

volume V of the tetrahedron is given by (Fig. 7.13)

Fig. 7.13

V =
  
R

f (x, y)dx dy

=
 1

0

 2−2x

y=0

6− 6x − 3y

2
dy dx

=
 1

0

(3− 3x)y − 3

2

y2

2
|2−2x0 dx

= 3

 1

0

(1− x)2dx = 1

Example 2: Calculate the volume of a solid whose

base is in a xy-plane and is bounded by the parabola

y = 4− x2 and the straight line y = 3x, while the

top of the solid is in the plane z = x + 4 (see Fig.

7.14).

Solution: The points of intersection of the two

curves y = 4− x2 and y = 3x are (−4,−12), (1, 3).
The projection R of z = x + 4 in the xy-plane is

bounded by these curves. So R can be covered by

varying y from3x (lower curve) to 4− x2 (top curve)
and x from −4 to 1. Thus the required volume V is

Fig. 7.14

V =
 1

−4

 4−x2

3x

(x + 4)dy dx
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=
 1

−4
(x + 4)(4− x2 − 3x)dx

=
 1

−4
(−x3 − 7x2 − 8x + 16)dx

= −x4
4
− 7x3

3
− 8x2

2
+ 16x|1−4 =

625

12

Example 3: Determine the volume of the space

below the paraboloid x2 + y2 + z− 4 = 0 and

above the square in the xy-plane with vertices at

(0, 0), (0, 1), (1, 0), (1, 1).

Solution: As shown in Fig. 7.15 the top surface is

z = 4− x2 − y2 = f (x, y).The projectionR of this

surface on the xy plane into the square is the square

itself with verticesO(0, 0),A(1, 0),B(1, 1),C(0, 1).

Thus,

Fig. 7.15

V =
  
R

f (x, y)dx dy =
 1

0

 1

0

(4− x2 − y2)dx dy

V =
 1

0

 
4y − x2y − y

3

3

    1
0
dx

=
 1

0

 
11

3
− x2

 
dx = 11

3
x − x

3

3

   1
0
= 10

3

Example 4: Find the volume of the solid under the

surface az = x2 + y2 and whose base R is the circle

x2 + y2 = a2 (Fig. 7.16).
Solution: Here f (x, y) = (x2 + y2)/a.

V =
  
R

f (x, y)dx dy

V =
 a

−a

 √a2−x2
−
√
a2−x2

x2 + y2
a

dy dx

Fig. 7.16

Integration in cartesian coordinates x, y will be

cumbersome. Instead by introducing polar coor-

dinates, x = r cos θ, y = r sin θ, then x2 + y2 =
r2 cos2 θ + r2 sin2 θ = r2. The base R is covered

by varying r from 0 to a and θ from 0 to 2π . Thus,

(see Fig. 7.16)

V =
 2π

0

 a

0

 
r2

a

 
r dr dθ

=
 2π

0

r4

4a

     
a

0

dθ = a
3

4
2π = πa

3

2

EXERCISE

Volume of Solids by Double Integral

By means of double integral, find the volume V of

the following solids bounded by

1. x = 0, y = 0, z = 0, x
a
+ y

b
+ z
c
= 1

Ans. abc
6

2. The cylinder: x2 + y2 = 4 and the planes

y + z = 4 and z = 0.

Hint: z = f (x, y) = 4− y.
Limits: x : 0 to

 
4− y2, y : −2 to 2.

Ans. 16π

3. y = x2, x = y2, z = 0; z = 12+ y − x2.
Ans. 549/144

4. z = 0, x2 + y2 = 1, x + y + z = 3.

Ans. 3π

5. Vertical plane zx + y = z, coordinate planes,
top plane z = 1+ y.
Hint: z = f (x, y) = 1+ y.
Limits: y : 0 to 2− 2x, x : 0 to 1.

Ans. 5
3
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6. Above the square with vertices at (0, 0), (2, 0),

(0, 2), (2, 2) and under the plane z = 8− x +
y.

Ans. 32

7. Above the triangle with vertices (0, 0), (2, 0)

and (2, 1) and below the paraboloid

z = 24− x2 − y2
Ans. 131

6

8. Under the surface z = y(x + 2) and over the

area bounded by x + y = 0, y = 1, y = √x.
Ans. 9/8

9. Paraboloid z = 4− x2 − y2 and the xy-plane.
Hint: z = f (x, y) = 4− x2 − y2;

R : x2 + y2 = 4.

Limits: y = ±
√
4− x2 and x : ±2.

Ans. 8π

10. z = 0, z = x + y + 2 and inside the cylinder

x2 + y2 = 16.

Hint: z = f (x, y) = x + y + z.
Limits: y : 0 to

√
16− x2, x : 0 to 4.

Ans.
 
128
3
+ 8π

 
11. Above by paraboloid x2 + 4y2 = z, below

by plane z = 0 and laterally by the cylinder

y2 = x and x2 = y.
Hint: z = f (x, y) = x2 + 4y2.

Limits: y : x2 to
√
x, x : 0 to 1.

Ans. 3/7

12. Find the volume of a sphere of radius b.

Hint: f (x, y) =
 
b2 − x2 − y2.

Limits: y = ±
√
a2 − x2, x = ±b.

Ans. 4
3
πb3.

7.3 CHANGE OF ORDER OF

INTEGRATION: DOUBLE INTEGRAL

As already seen, for the double integral with variable

limits

ID =
  
D

f (x, y)ds (1)

The limits of integration can be fixed from a rough

sketch of the domain of integration. Then (1) can be

evaluated as a two-fold iterated integral using either

ID =
 b

x=a

 y2(x)

y=y1(x)
f (x, y)dy dx (2)

or

ID =
 e

y=d

 x2(y)

x=x1(y)
f (x, y)dx dy (3)

In each specific problem, depending upon the type

of the domain D and/or the nature of integrand,

choose either of the form (2) or (3) whichever is

easier to evaluate. Thus in several problems, the

evaluation of double integral becomes easier with

the change of order of integration, which of course,

changes the limits of integration also.

WORKED OUT EXAMPLES

Change the order of integration and then evaluate the

following double integrals:

Example 1:
 2

0

 ex
1
dy dx

Solution: Here integration is done first w.r.t. y and

later w.r.t. x. So y varies from 1 to ex while x varies

from 0 to 2. Thus the domain of integration ABE is

shaded as shown in Fig. 7.17, and is bounded by the

curve y = ex and the straight line y = 1, x = 0 and

x = 2. Here A(0, 1),B(2, 1),E(2, e2).

Fig. 7.17

When the order of integration is changed, integrate

first w.r.t. x and later w.r.t. y. For this purpose, con-

sider a horizontal strip whose length x varies from

x = ln y to x = 2 and width y varies from y = 1 to
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y = e2. Thus the given integral can be written with

change of order of integration as follows:

ID =
 2

0

 ex

1

dy dx =
 e2

1

 2

x=lny
dx dy

=
 e2

1

(2− lny)dy

= (2y − ylny + y)|e21 = e2 − 3

Example 2:
 1

−2
 3x+2
x2+4x dy dx

Solution: Since the integration is done first w.r.t.

y and later w.r.t. x, the domain D of integration is

bounded by the following curves: y = x2 + 4x, and

the straight lines y = 3x + 2, x = −2 and x = 1 as

shown shaded in Fig. 7.18. HereA(−2,−4),B(0, 0),
E(1, 5), F (0, 2), G(− 2

3
, 0). Considering horizontal

strip, x varies from the upper curve x = √4+ y − 2

to the lower curve x = (y − 2)/3 and then y varies

from −4 to 5. Changing the order of integration to

first x and later to y, the double integral becomes

Fig. 7.18

 1

−2

 3x+2

y=x2+4x
dy dx

=
 5

−4

 √
y+4−2

x= y−2
3

dx dy

=
 5

−4

  
y + 4− 2−

 
y − 2

3

  
dy

=
 
2

3
(y + 4)3/2 − y

2

6
− 4

3
y

 5
−4
= 9

2

EXERCISE

Change (reverse) the order of integration and then

evaluate the following double integrals:

1.
 2

1

 4

3
(x + y)dx dy.

Hint:
 4

3

 2

1
(x + y)dx dy.

Ans. 5

2.
 1

0

 √x
x
xy dy dx

Hint: Limits: x : y2 to y; y : 0 to 1.

Ans. 1
24

3.
 1

0

 2−x
x2

xy dy dx.

Hint:D = Domain = sum of two domains=
D1 +D2.

Limits:D1 : x : 0 to
√
y, y : 0 to 1;D2 : x : 0

to 2− y; y : 1 to 2.

Ans. 3
8

4.
 2

0

 4
√
2y

y3
y2dx dy.

Hint:

Limits: y : x2/32 to x
1
3 ; y : 0 to 8.

Ans. 160
21

5.
 a
0

 2a−y
y2

a

xy dx dy.

Hint: Domain D = D1 +D2.

Limits: D1 : y : 0 to
√
ax, x : 0 to a;D2 : y :

0 to 2a − x, x : 0 to 2a.

Ans. 3a4

8

6.
 1

0

 y1/3
y2

f (x, y)dx dy.

Ans.
 1

0

 √x
x3
f (x, y)dy dx

7.
 2

−1
 2−x2
−x f (x, y)dy dx.

Ans.
 1

−2
 √2−y
−y f (x, y)dx dy

+  2

1

 √2−y
−√2−y f (x, y)dx dy

8.
 a
0

 √2ay−y2
0 f (x, y)dx dy.

Ans.
 a
0

 a
a−
√
a2−x2 f (x, y)dy dx
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9.
 √2

0

 √4−2y2

−
√

4−2y2
y dx dy.

Hint:

Limits: y : 0 to
 
(4− x2)/2, x : −2 to 2.

Ans. 8
3

10.
 a
0

 √ x
a

x
a

(x2 + y2)dy dx.
Hint:

Limits: x : ay2 to ay; y : 0 to 1.

Ans. a3

28
+ a

20

11.
 a
0

 √a2−x2
0

 
a2 − x2 − y2 dy dx.

Hint:

Limits: x : 0 to
 
a2 − y2, y : 0 to a.

Ans. πa3

6

12.
 2a

0

 √2ay−y2
0 dx dy.

Hint:

Limits: y : a ±
√
a2 − x2, x : 0 to a.

Ans. πa2

2

7.4 GENERAL CHANGE OF VARIABLES

IN DOUBLE INTEGRAL

In several cases, the evaluation of double integrals

becomes easy when there is a change of variables.

Let D be domain in xy-plane and let x, y be the

rectangular cartesian coordinates of any point P in

D. Let u, v be new variables in domainD∗ such that
x, y and u, v are connected through the continuous

functions (transformations).

x = g(u, v), y = h(u, v) (1)

Then u, v are said to be curvilinear coordinates of

point P ∗ in D∗ which uniquely corresponds to P in

D. Solving (1) for u and v, we get

u = g∗(x, y), v = h∗(x, y) (2)

Then a given double integral in the given (old)

variables x, y can be transformed to a double integral

in terms of new variables u, v as follows:  
D

f (x, y)dx dy =
  
D∗
F (u, v)|J |du dv (3)

Here f (x, y) = f (x(u, v), y(u, v)) = F (u, v)
and J is the Jacobian (functional determinant) de-
fined as

J = J
 
x, y

u, v

 
= ∂(x, y)
∂(u, v)

=

        
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

        
(3) is knows as formula for transformation of coor-

dinates in double integral.

WORKED OUT EXAMPLES

Example 1: Evaluate
  
R
(x + y)2dx dy where R

is region bounded by the parallelogram x + y = 0,

x + y = 2, 3x − 2y = 0, 3x − 2y = 3.

Solution: By changing the variables x, y to the new

variables u, v, by the substitution (transformation)

x + y = u, 3x − 2y = v, the given parallelogramR
reduces to a rectangle R∗ as shown in the (Fig.

7.19):

∂(u, v)

∂(x, y)
=

        
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

        
=
    1 1

3 −2

    = −5

Fig. 7.19

So required Jacobian J = ∂(x,y)

∂(u,v)
= − 1

5
.

Since, u = x + y = 0 and u = x + y = 2,
u varies from 0 to 2, while v varies from 0 to 3
since 3x − 2y = v = 0, 3x − 2y = v = 3. Thus the
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given integral in terms of the new variables u, v is  
R

(x + y)2dx dy =
  
R∗
u2
    1

−5

    du dv
= 1

5

 3

0

 2

0

u2du dv

= 1

5

 3

0

u3

3

    2
0

dv = 8

15
· v
    3
0

= 8

5

Example 2: Evaluate
  
R
(x2 + y2)dx dy where R

is the region in the first quadrant bounded by x2 −
y2 = a, x2 − y2 = b, 2xy = c, 2xy = d,
0 < a < b, 0 < c < d .

Solution: Introducing x2 − y2 = u, xy = v, the
given region R gets transformed to a rectangle R∗

in the uv plane given by

a < u < b;
c

2
< v <

d

2
Since

∂(u, v)

∂(x, y)
=

        
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

        
=
    2x −2y
y x

    = 2(x2 + y2)

Fig. 7.20

so that Jacobian = J = ∂(x,y)

∂(u,v)
= 1

2(x2+y2) . Thus,  
R

(x2 + y2)dx dy

=
  
R∗

(x2 + y2)
    1

2(x2 + y2)

    du dv
=
 d

2

c
2

 b

a

du dv = 1

2
(b − a) ·

 
d

2
− c

2

 

= (b − a)(d − c)
4

Fig. 7.21

Example 3: Evaluate
  
R
e−(x+y) sin

 
πy

x+y

 
dx dy

where R is the entire first quadrant in the xy-plane.

Solution: In the first quadrant both x and y vary

from 0 to∞. Put x + y = u, y = v so that
x = u− v, y = v (Fig. 7.22).

Fig. 7.22

i. Origin O(0, 0) in xy-plane: 0 = u− v,
0 = v, u = 0. Thus (0, 0) in xy-plane corre-

sponds to (0, 0) in u, v-plane.

ii. x-axis: y = 0 i.e., v = 0, so x = u− 0 = u
since x ≥ 0, u = x ≥ 0.

Thus x-axis gets transformed to u-axis

(v = 0, u ≥ 0)

iii. y-axis: x = 0 so 0 = x = u− v, so that u = v
since y ≥ 0, u = v = y ≥ 0.

Thus y-axis gets mapped to the line u = v in the
uv-plane.

iv. Any point x > 0, y > 0.

Since v = y > 0 and u− v = x > 0 so that

u > v.

Thus any point (x > 0, y > 0) corresponds to (u, v)

where u > v > 0. Thus the entire first quadrant in

xy-plane gets transformed to the region between

u-axis and the line u = v.
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Thus

I =
  
R

e−(x+y) sin
 
πy

x + y

 
dx dy

=
 ∞

0

 ∞

0

e−(x+y) sin
 
πy

x + y

 
dy dx

=
 ∞

0

 u

v=0
e−u sin

 πv
u

 
· 1 · dv du

since

the Jacobian = J = ∂(x, y)
∂(u, v)

=

        
∂x

∂u

∂x

∂u

∂y

∂u

∂y

∂v

        
=
     1 −10 1

     = 1

=
 ∞

0

e−u ·
 
− cos

πv

u

 
· u
π
·
    u
0

du

=
 ∞

0

− u
π
e−u · (−1− 1)du

= 2

π

 ∞

0

ue−udu

= 2

π

 
ue−4

−1 − e−u
 ∞
0

= 2

π

Example 4:
 1

0

 x
0

 
x2 + y2dx dy

Solution: Region of integration R is the triangle

bounded by y = 0, x = 1 and y = x (Fig. 7.23).

Fig. 7.23

Put x = u, y = uv

J = Jacobian = ∂(x, y)
∂(u, v)

=

        
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

        
=
    1 0

v u

    = u

In the given region R, x: varies from 0 to 1 while y

varies from 0 to x. Since u = x, so u varies from 0

to 1. Similarly since 0 ≤ y = uv ≤ x = u so v varies
from 0 to 1. Thus, 1

0

 x

0

 
x2 + y2dx dy

=
 1

0

 1

0

u
 
1+ v2u du dv = 1

3

 1

0

 
1+ v2dv

= 1

3

 
v
 
(1+ v2)
2

+ 1

2
sinh−1 v

      
1

0

= 1

3

 √
2

2
+ 1

2
sinh−1 1

 

EXERCISE

Evaluate the following integrals by changing the

variables:

1.
  
D
(y − x)dx dy; D: region in xy-plane

bounded by the straight lines y = x + 1,

y = x − 3, y = − 1
3
x + 7

3
, y = − 1

3
x + 5.

Hint: Put u = y − x, v = y + 1
3
x; J = − 3

4

D∗ : Rectangle :− 3 ≤ u ≤ 1, 7
3
≤ v ≤ 5.

Ans. −8
2.

  
R
(x + y)2dx dy; R: parallelogram in the

xy-plane with vertices (1, 0), (3, 1), (2, 2), (0,

1).

Hint: Put u = x + y, v = x − 2y, J = − 1
3

D∗ : Rectangle : −2 ≤ u ≤ 1, 1 ≤ v ≤ 4.

Ans. 21

3.
 1

0

 1−x
0

e
y

(x+y) dy dx.

Hint: Put u = x + y, uv = y.
Ans.

(e−1)
2

4.
  
D
[xy(1− x − y)] 12 dx dy; D: is region

bounded by the triangle with the sides

x = 0, y = 0, x + y = 1.

Hint: Put u = x + y, uv = y, J = u,
D∗ : square 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Ans. 2π
105
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5.
  
R
(x − y)4ex+ydx dy;R : square with ver-

tices at (1, 0), (2, 1), (1, 2), (0, 1).

Hint: Since the square is bounded by the

lines x + y = 1, x + y = 3; x − y = 1,

x− y=−1, put x+ y= u, x− y= v;
J=− 1

2
,

D∗ : rectangle :1 ≤ u ≤ 3,−1 ≤ v ≤ 1.

Ans.
(e3−e)

5

6.
  
R
xy dx dy; R: Region in the first quadrant

bounded by the hyperbolas x2 − y2 = a2 and
x2 − y2 = b2 and the circles x2 + y2 = c2,
x2 + y2 = d2 with 0 < a < b < c < d .
Hint: Put x2 − y2 = u, x2 + y2 = v;
J = 8xy, R∗: rectangle a2 ≤ u ≤ b2,
c2 ≤ v ≤ d2.

Ans. 1
8
(b2 − a2)(d2 − c2)

7. Find the area of the curvilinear quadrilateral

bounded by the four parabolas y2 = ax,
y2 = bx, x2 = cy, x2 = dy.
Hint: Put y2 = u3x, x2 = b3y; J = −3u2v2.
Limits: u : a

1
3 to b

1
3 ; v : c

1
3 to d

1
3 .

Ans.
(b−a)(d−c)

3

8.
  
D
e(x−y)/(x+y)dx dy;D: triangle bounded by

y = 0, x = 1 and y = x. Use x = u− uv,
y = uv to transform the double integrals.

Ans.
(e2−1)
4e

9.
 e
0

 βx
αx
f (x, y)dy dx.

Ans.
 β

1+β
α

1+α

 e
1−v
0 f (u− uv, uv)u du dv

10.
 c
0

 b
0
f (x, y)dy dx.

Ans.
 b
b+c
0

 c
1−v
0 f (u− uv, uv)u du dv

+  bb
b+c

 b
v
0 f (u− uv, uv)u du dv

11.
 ∞
0

 ∞
0

x2+y2
1+(x2−y2)2 e

−2xydx dy.

Hint: Use the substitution: u = x2 − y2,
v = 2xy.

Ans. π
4

12. Evaluate
  
R
(x2 + y2)dx dy whereR is the re-

gion shown in Fig. 7.24.

Fig. 7.24

Hint: Use x + y = u, x − y = v, so that
x = 1

2
(u+ v), y = 1

2
(u− v), J = − 1

2
,

0 ≤ u ≤ 2, 0 ≤ v ≤ 2.

Ans. 8
3

Change of Variables: Cartesian to Polar Co-

ordinates

Double Integrals in Polar Coordinates

For a double integral in cartesian coordinates x, y,
the change of variables to polar coordinates r, θ can
be done through the transformation

x = r cos θ, y = r sin θ
(i.e., u = r, v = θ in general change of variables.)

The Jacobian in this case is

J = J
 
x, y

r, θ

 
= ∂(x, y)
∂(r, θ )

=

        
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

        
=
     cos θ −r sin θ
sin θ r cos θ

     
J = r(cos2 θ + sin2 θ ) = r

Thus the double integral in cartesian coordinates

x, y gets transformed to double integral in polar co-

ordinates as follows:  
D

f (x, y)dx dy =
  
D∗
f (r cos θ, r sin θ )|r|dr dθ

=
 β

θ=α

 φ2(θ )

r=φ1(θ )
F (r, θ ) r dr dθ

where F (r, θ ) = f (r cos θ, r sin θ ) = f (x, y) and
D∗ is the corresponding domain in polar coordinates.
Area in polar coordinates

A =
  
D

ds =
  
D

dx dy =
  
D∗
r dr dθ
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WORKED OUT EXAMPLES

Area, Mass, Centroid and Moments of

Inertia: In Polar Coordinates

Example 1: Evaluate, I =  2π

0

 a
a sin θ

r dr dθ .

Solution:

I =
 2π

θ=0

 a

r=a sin θ
r dr dθ

I =
 2π

0

r2

2

     
a

a sin θ

dθ = 1

2

 2π

0

(a2 − a2 sin2 θ )dθ

= a
2

2

 2π

0

cos2 θ dθ = a
2

2

 2π

0

 
1+ cos 2θ

2

 
dθ

I = a
2

4
[θ − sin 2θ ]2π0 = πa

2

2

Example 2: I =  ∞
0

 ∞
0
e−(x

2+y2)dx dy.

Solution: Using polar coordinates

I =
 π

2

0

 ∞

0

e−r
2
r dr dθ

Fig. 7.25

since the first quadrant in xy-plane (x : 0 to∞ and
y : 0 to∞) is covered when r : 0 to∞ and θ = 0 to
π/2 (refer Fig. 7.25)

I = π

2

1

2

 ∞

0

e−r
2
d(r2) = π

4

e−r
2

−1

     
∞

0

= π
4

Example 3: Calculate the area which is inside

the cardioid r = 2(1+ cos θ ) and outside the circle

r = 2.

Solution: r = 2 is a circle centred at origin and of

radius 2. The shaded area in Fig. 7.26 is the region

R which is outside the given circle and inside the

cardioid. So r varies from the circle 2 to the cardioid

2(1+ cos θ ),while θ varies from−π/2 toπ/2. Since
R is symmetric about x-axis, the required area A of

the region R is given by

Fig. 7.26

A=
  
R

dA =
 π

2

− π
2

 2(1+cos θ )

r=2
r dr dθ

= 2

 π
2

0

 2(1+cos θ )

2

r dr dθ = 2

 π
2

0

r2

2

     
2(1+cos θ )

2

dθ

= 4

 π
2

0

(2 cos θ + cos2 θ )dθ

= 4

 
2 sin θ + 1

2
θ + 1

4
sin 2θ

 π
2

0

= π + 8.

Example 4: Find the centroid of the area inside

ρ = sin θ and outside ρ = 1− cos θ .

Solution: In the required region R, shaded in Fig.

7.27, r varies from the top curve the circle r = sin θ

to the lower curve the cardioid r = 1− cos θ ; while

θ varies from 0 to π
2
. Thus,

Fig. 7.27

Area of region R = A =
  
R

dA =

A =
 π

2

0

 sin θ

r=1−cos θ
r dr dθ =

 π
2

0

r2

2

     
sin θ

1−cos θ
dθ

A = 1

2

 π
2

0

(2 cos θ − 1− cos 2θ )dθ = 4− π
4
.
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Let the coordinates of the centroid be (xc, yc).

Then

xc =
  
R x dA

A
= 4

(4− π )

 π
2

0

 sin θ

1−cos θ
r cos θ r dr dθ

= 4

4− π

 π
2

0

r3

3

     
sin θ

1−cos θ
dθ

= 4

3(4− π ) ·
 π

2

0

(sin3 θ − 1+ 3 cos θ − 3 cos2 θ

+ cos3 θ ) cos θ dθ

xc = (15π − 44)/48

yc =
  
R y dA

A
= 4

4− π

 π
2

0

 sin θ

1−cos θ
(r sin θ )r dr dθ

= 4

(4− π ) ·
1

3

 π
2

0

(sin3 θ − 1+ 3 cos θ − 3 cos2 θ

+ cos3 θ ) sin θ dθ

yc =
3π − 4

12(4− π ) .

Example 5: Determine the moments of Inertia

Ix, Iy and I0 of the plane region in the first quadrant

which is inside the circle r = 4a cos θ and outside

the circle r = 2a.

Solution: For the shaded region R shown in Fig.

7.28, r varies from (inside) curve r = 2a to the (out-

side) curve r = 4a cos θ , while θ varies from 0 to
π
3

(since θ = π/3 is the point of intersection of

the two circles in the first quadrant i.e., 2a = ρ =
4a cos θ ; cos θ = 1

2
so θ = π

3
).

Thus area A is

A=
  
R

dA =
 π

3

0

 4a cos θ

2a

r dr dθ

= 1

2

 π
3

0

 
(4a cos θ )2 − (2a)2

 
dθ

= 2a2
 π

3

0

 
4(1+ cos 2θ )

2
− 1

 
dθ

A= 2a2
π

3
+ 4a2 · sin 2π

3
= 2π + 3

√
3

3
a2.

Now

Ix =
  
R

y2dA =
 π

3

0

 4a cos θ

2a

(r sin θ )2r dr dθ

= 1

4

 π
3

0

 
(4a cos θ )4 − (2a)4

 
sin2 θ dθ

Ix = 4a4
 π

3

0

(16 cos4 θ − 1) sin2 θ dθ = 4π + 9
√
3

6
a4

Fig. 7.28

Similarly,

Iy =
  
R

x2dA =
 π

3

0

 4a cos θ

2a

(r cos θ )2r dr dθ

= 1

4

 π
3

0

 
(4a cos θ )4 − (2a)4

 
cos2 θ dθ

Iy = 4a4
 π

3

0

(16 cos6 θ − cos2 θ )dθ = 12π + 11
√
3

2
a4

Then,

I0 = Ix + Iy =
20π + 21

√
3

3
a4

EXERCISE

Area, mass centroid and moments of inertia: In

polar coordinates

Using polar coordinates, evaluate the following dou-

ble integrals:

1.
 b
b
2

 π
2

0 ρ dθ dρ.

Ans. 3πb2

16

2.
 π
0

 4 sin θ

2 sin θ
r3 dr dθ .

Ans. 45π
2

3.
 π
0

 cos θ

0
ρ sin θ dρ dθ .

Ans. 1
3
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4.
 2a

0

 √2ax−x2
0

dy dx.

Hint: Limits: r : 0 to 2a cos θ, θ : 0 to π
2
.

Ans. πa2

2

5.
 a
0

 √a2−y2
0 (x2 + y2)dx dy.

Hint: Limits: r : 0 to a, θ : 0 to π
2
.

Ans. πa4

8

6.
 a
0

 √a2−x2√
ax−x2

dy dx√
a2−x2−y2

.

Ans. a

7.
  
R

x2y2dx dy

(x2+y2) ;R : annulus region between the

circles x2 + y2 = a2 and x2 + y2 = b2, with
b > a.

Ans.
π (b4−a4)

16

8.
  
D
xy(x2 + y2) n2 dx, dy;D is the region in

the first quadrant bounded by the circle

x2 + y2 = 4. Assume that n+ 3 > 0.

Ans. 2n+3
n+4

9. Evaluate
 π
0

 a
0
r3 sin θ cos θ dr dθ by trans-

forming it into cartesian coordinates.

Hint:
 a
−a
 √a2−x2
0

xy dy dx = 0.

Ans. 0

10. Find the area inside the circle ρ = 4 sin θ and

outside the Lemniscate ρ2 = 8 cos 2θ .

Hint: A = A1 + A2.

Limit:

A1 : ρ : 2
√
2 cos 2θ to 4 sin θ ; θ : π

6
to π

4

A2 : ρ : 0 to 4 sin θ ; θ : π
4
to π

2

Ans.
 
8π
3
+ 4
√
3− 4

 
11. Compute the area of a loop of the curve

r = a sin 2θ .
Ans. πa2

8

12. Find the entire area bounded by the lemniscate

ρ2 = a2 cos 2θ .
Ans. a2

13. Find the centre of gravity of the area of the

cardioid r = a(1± cos θ ).

Hint: Solve r = a(1+ cos θ ), results for

r = a(1− cos θ ) is exactly similar. y = 0 due

to symmetry.

Limit: r = 0 to a(1− cos θ ); θ : −π to π .

Ans.
 ± 5a

6
, 0
 

14. Determine Ix for the region: 0 ≤ y ≤√
1− x2, 0 ≤ x ≤ 1 and f (x, y) = 1 density

mass.

Hint: Use polar coordinates, 0 ≤ r ≤ 1,

0 ≤ θ ≤ π
2
.

Ans. Ix = π
16

15. Find the moment of inertia, about the y-axis of
the area enclosed by the cardioid

r = a(1− cos θ )

Hint: Put x = r cos θ, Jacobian : r .

Limit: r : 0 to a(1− cos θ ), θ : 0 to 2π . Use
the reduction formula

 2π

0

cosn θ dθ = cosn−1 θ sin θ
n

     
2π

0

+n− 1

n

 2π

0

cosn−2θ dθ

for n = 2, 3, 4, 5, 6.

Ans. Iy = 49πa4

32

16. Find the area of the cardioid r = a(1+ cos θ ).

Hint: Limits: r : 0 to a(1+ cos θ ), θ : −π to

π

Ans. 3πa2

2

17. Find the area which is inside the circle

r = 3a cos θ and outside the cardioid

r = a(1+ cos θ )

Hint: Limits: r : a(1+ cos θ ) to 3a cos θ,

θ : −π
3
to π

3
.

Ans. πa2

18. Find the centroid of a loop of the lemniscate

r2 = a2 cos 2θ .
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Hint: Limits: r : 0 to a
√
cos 2θ, θ : −π

4
to

π
4
(one loop) use polar coordinates (put x =

r cos θ ; J = r).
Ans. x = πa

√
2

8
, centroid lies on the initial line.

7.5 TRIPLE INTEGRALS

Triple integral is a generalization of a double inte-

gral. Let V be a given three-dimensional domain in

space, bounded by a closed surface S. Let f (x, y, z)

be a continuous function in V of the rectangular co-

ordinates x, y, z.

Divide V into subdomains  vi . Let f (Pi) be the

value of f at an arbitrary point Pi of  vi . Then a

triple integral of f over the domain V , denoted by   
V
f (P )dV , is defined as

lim
 vi→0

6f (Pi ) vi =
   

V

f (P )dV

=
   

V

f (x, y, z)dx dy dz (1)

However, the triple integral is seldom evaluated

directly from its definition (1) as a limit of a sum.

Evaluation of a Triple Integral

Regular three-dimensional domain

V is said to be a regular three-dimensional domain

if (i) every straight line parallel to z-axis and drawn

through an interior (i.e., not lying on the boundary

S) point of V cuts the surface S at two points (ii)

entire V is projected on the xy-plane into a regular

two-dimensional domain D.

Examples: Parallelopiped, ellipsoid, tetrahedron.

Let the equations of the surfaces bounding a reg-

ular domain V below and above be z = z1(x, y) and
z = z2(x, y) respectively (see Fig. 7.29).

Let the projection D of V onto xy-plane be

bounded by the curves y = y1(x) and y = y2(x) and
x = a, x = b.

Then the three fold integral IV of a continu-

ous function f (x, y, z) over a regular domain V is

Fig. 7.29

defined as

IV =
 x=b

x=a

  y=y2(x)

y=y1(x)

  z=z2(x,y)

z=z1(x,y)
f (x, y, z) dz

 
dy

 
dx

Here the limits of integration are chosen to cover

the domain V by varying z from lower surface

z = z1(x, y) to the upper surface z = z2(x, y) and
covering the projection D by varying y from y1(x)

to y2(x) and x from a to b.

In the three-fold iterated integral, integration is

done first with respect to z (i.e., within the braces)

with the substitution of limits for z, the next inte-

gration is carried with respect to y (i.e., within the

square brackets). This results in an integrand which

is a function of x alone which is then integrated w.r.t.

x between a and b.

Note: When V is projected on to xz-plane or yz-

plane instead of xy-plane, then the order of integra-

tion and the limits are to be rewritten appropriately.

Applications of Triple Integrals

Volume

Volume of a solid contained in the domain V is

given by the triple integral (1) with f (x, y, z) = 1

i.e., volume =    
V
dx dy dz.

Mass

If γ (x, y, z) > 0 is the volume density (mass/unit
volume) of distribution ofmass overV then the triple



7.22 HIGHER ENGINEERING MATHEMATICS—II

integral (1) gives the entire mass contained in V

Mass =
   

V

γ (x, y, z)dx dy dz

Moment of inertia of a solid

Themoment of inertia of a solid relative to the z-axis
is

Izz =
   

V

(x2 + y2) γ (x, y, z) dx dy dz

where γ (x, y, z) is the density of the substance. Sim-

ilarly, moment of inertia of a solid relative to x-axis

and y-axis are respectively

Ixx =
   

V

(y2 + z2)γ · dx dy dz

Iyy =
   

V

(x2 + z2)γ dx dy dz

Centre of gravity of a solid: (xc, yc, zc)

xc =
   
V xγ dV   
V γ dV

, yc =
   
V yγ dV   
γ dV

zc =
   
zγ dV   
γ dV

.

WORKED OUT EXAMPLES

Example 1: Evaluate

IV =
 1
0

 x
0

 x+y
0 (x + y + z)dz dy dx

Solution: First integrating with respect to z, we get

IV =
 1

0

 x

0

(x + y)z+ z
2

2

     
x+y

0

dy dx

= 3

2

 1

0

 x

0

(x + y)2dy dx

= 3

2

 1

0

 x

0

(x2 + y2 + 2xy)dy dx

Integrating now with respect to y, we get

IV =
3

2

 1

0

x2y + y
3

3
+ xy2

     
x

0

dx = 7

2

 1

0

x3dx

Finally integrating with respect to x

IV =
7

2

x4

4

     
1

0

= 7

8

Example 2: Find the volume bounded by the ellip-

tic paraboloids z = x2 + 9y2 and

z = 18− x2 − 9y2

Solution: The two surfaces intersect on the el-

liptic cylinder x2 + 9y2 = z = 18− x2 − 9y2 i.e.,

x2 + 9y2 = 9. The projection of this volume onto

xy-plane is the plane region D enclosed by ellipse

having the same equation x2

32
+ y2

12
= 12 as shown in

(Fig. 7.30).

(a)

(b)

Fig. 7.30

This volume can be covered as follows:

z: from z1(x, y) = x2 + 9y2 to

z2(x, y) = 18− x2 − 9y2

y: from y1(x) = −
 

9−x2
9

to y2(x) =
 

9−x2
9

x: from −3 to 3
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Thus the volume V bounded by the elliptic
paraboloids

V =
 3

−3

 y2(x)

y1(x)

 z2(x,y)

z1(x,y)

dz dy dx

=
 3

−3

 y2(x)

y1(x)

 
(18− x2 − 9y2)− (x2 + 9y2)

 
dy dx

= 2

 3

−3

 y2(x)

y1(x)

(9− x2 − 9y2)dy dx

= 2

 3

−3
(9y − x2y − 3y3)

     
 

9−x2
9

−
 

9−x2
9

dx

= 8

9

 3

−3
(9− x2) 32 dx

= 72

 π

0

sin4 θ dθ where x = 3 cos θ

= 72

 π

0

 
1− cos 2θ

2

 2

dθ = 27π

Example 3: Find the total mass of the region in the

cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 with density

at any point given by xyz.

Solution:

Mass =
 1

0

 1

0

 1

0

xyz dx dy dz

=
 1

0

 1

0

x2

2
yz

     
1

0

dy dz

= 1

2

 1

0

z
y2

2

     
1

0

dz = 1

4

 1

0

z dz

= 1

4

z2

2

     
1

0

= 1

8

Example 4: Find the mass, centroid of the tetrahe-

dron bounded by the coordinate planes and the plane
x
a
+ y

b
+ z
c
= 1.

Solution: Yet ρ be the constant density of the

substance (mass/unit volume). Mass M in the

tetrahedron =    
V
ρdx dy dz (refer Fig. 7.31).

M = ρ
 a

x=0

 b
 
1− xa

 
y=0

 c
 
1− xa−

y
b

 
z=0

dz dy dx

= ρ
 a

0

 b
 
1− xa

 
0

c
 
1− x

a
− y
b

 
dy dz

= ρc
 a

0

  
1− x

a

 
y − y

2

2b

      
b
 
1− xa

 

0

dx

= cbρ
2

 a

0

 
1− x

a

 2
dx = ρbc

2
· a
3
= ρabc

6

Fig. 7.31

Let (xc, yc, zc) be the coordinates of the centroid.

Then,

M · xc = ρ
 a

0

 b
 
1− xa

 
0

 c
 
1− xa−

y
b

 
0

x dz dy dx

= ρ
 a

0

 b
 
1− xa

 
0

cx
 
1− x

a
− y
b

 
dy dx

= cρ
 a

0

 
x
 
1− x

a

 
y − xy

2

2b

      
b
 
1− xa

 

0

dx

= cρb
 a

0

x
 
1− x

a

 2
dx = ρbc · a

2

12

xc =
ρa2bc

12
· 6

ρabc
= a

4

Similarly, yc =
b

4
, zc =

c

4
.

EXERCISE

Evaluate the following triple integrals:

1.
 2

0

 z
1

 yz
0
xyz dx dy dz.

Ans. 7
2
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2.
 2

1
y dy

 y2
y
dx

 lnx
0
ezdz = 2

1

 y2
y

 lnx
0
ezdz dx dy.

Ans. 47
24

3.
 a
0

 x
0

 y+x
0

ex+y+zdz dy dx.

Ans. e4a

8
− 3

4
e2a + ea − 3

8
.

4.
 π

2
0

 π
2
x

 xy
0

cos z
x
dz dy dx.

Ans. π
2
− 1

5.
   

V

dx dy dz

(x+y+z+1)3 taken over the volume

bounded by the planes x = 0, y = 0, z = 0

and the plane x + y + z = 1.

Ans. ln 2
2
− 5

16

6.
   

x2yz dx dy dz taken over the volume

bounded by the surface x2 + y2 = 9,

z = 0, z = 2.

Ans. 648
5

7.
 a
0

 x
0

 y
0
xyz dz dy dx.

Ans. a6

48

8. Compute the three-fold iterated integral of the

function xyz over the domain bounded by the

planes x = 0, y = 0, z = 0, x + y + z = 1.

Hint: I =  1

0

 1−x
0

 1−x−y
0

xyz dz dy dx.

Ans. 1
720

9. Find the volume of the tetrahedron bounded by

the plane x
a
+ y

b
+ z
c
= 1 and the coordinate

planes.

Hint: Limits: z : 0 to c
 
1− x

a
− y

b

 
, y : 0 to

b
 
1− x

a

 
, x : 0 to a.

Ans.
|abc|
6

10. Compute the volume of the ellipsoid of semi-

axes a, b, c. Hence derive the volume of a

sphere.

Hint: Limits: z : ±c
 
1− x2

a2
− y2

b2
,

y = ±b
 

1−x2
a2

, x = ±a.
For sphere: put a = b = c.

Ans. V = 4πabc
3

V of sphere = 4πa3

3

11. Compute the volume of the solid enclosed

between the two surfaces elliptic paraboloids

z = 8− x2 − y2 and z = x2 + 3y2.

Hint: Projection of the volume on to xy-plane

is the ellipse x2 + 2y2 = 4, so limits are z:

x2 + 3y2 to 8− x2 − y2; g: ±
 

4−x2
2

, x: ±2.

Ans. 8π
√
2

12. Compute the volume of the solid bounded by

the plane 2x + 3y + 4z = 12, xy-plane and

the cylinder x2 + y2 = 1.

Hint: Limits: z : 0 to 1
4
(12− 2x − 3y), x, y :

x2 + y2 ≤ 1.

Ans. 3π

13. Find the volume of the solid common to the

two cylinders x2 + y2 = a2, x2 + z2 = a2.
Hint: Limits: z: ±

√
a2 − x2, y: ±

√
a2 − x2,

x : ± a.
Ans. 16a3

3

14. Compute the volume in the first octant

bounded by the cylinder x = 4− y2 and the

planes z = y, x = 0, z = 0.

Ans. 4

15. Find the volume of the solid bounded by

y = x2, x = y2, z = 0, z = 12+ y − x2

Hint: Limits: z : 0 to 12+ y − x2, y :
√
x to

x2, x : 0 to 1.

Ans. 549
144

16. Compute the volume bounded by

xy = z, z = 0 and (x − 1)2 + (y − 1)2 = 1

Ans. π .

7.6 GENERAL CHANGE OF VARIABLES IN

A TRIPLE INTEGRAL

Let the functions x = f (u, v,w), y = g(u, v,w)
and z = h(u, v,w) be the transformations from
cartesian coordinates x, y, z to the curvilinear coor-

dinates u, v,w. Then the Jacobian J
 
x,y,z

u,v,w

 
is given
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by the 3rd order determinant.

J = J
 
x, y, z

u, v,w

 
=

            

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w
.

            
Let F (x, y, z) be a continuous function defined

in a domain V in the xyz coordinate system. Then
a triple integral in cartesian coordinates x, y, z can
be transformed to a triple integral in the curvilinear
coordinates u, v,w as follows:   

V

F (x, y, z)dx dy dz=
   

V ∗
F ∗(u, v,w)

× |J |du dv dw
where F ∗(u, v,w) = F (f (u, v,w), g(u, v,w),

h(u, v,w)) and V ∗ is the corresponding domain in

the curvilinear coordinates u, v,w.

Triple Integral in Cylindrical Coordinates

Cylindrical coordinates ρ, θ, z are particularly use-

ful in problems of solids having axis of symmetry.

The transformation of cartesian coordinates x, y, z in

terms of cylindrical coordinates ρ, θ, z are given by

x= ρ cos θ , y= ρ sin θ , z= z(ρ= u, θ = v, z=w)
so that the Jacobian is given by

J = J
 
x, y, z

ρ, θ, z

 
=

       
cos θ −ρ sin θ 0

sin θ ρ cos θ 0

0 0 0

       = ρ
Thus,    

V

F (x, y, z)dx dy dz

=
   

V ∗
F ∗(ρ, θ, z)|ρ|dρ dθ dz

where F (x, y, z) = F (ρ cos θ , ρ sin θ , z)
= F ∗ (ρ, θ, z)

Triple Integral in Spherical Coordinates

In problems having symmetry with respect to a point

0 (generally the origin), it would be convenient to

use spherical coordinates with this point chosen as

origin.

Coordinate transformations from x, y, z to

the spherical coordinates ρ, θ, φ are given by

x= ρ sin θ cosφ, y= ρ sin θ sin φ, z= ρ cos θ (i.e.,

u = ρ, v = θ,w = φ) so that the Jacobian

J = J
 
x, y, z

ρ, θ, φ

 

=

       
sin θ cosφ ρ cos θ cosφ −ρ sin θ sin φ
sin θ sin φ ρ cos θ sin φ ρ sin θ cosφ

cos θ −ρ sin θ 0

       = ρ
2 sin θ

Thus    
V

F (x, y, z)dx dy dz

=
   

V ∗
F ∗(ρ, θ, φ)|ρ2 sin θ |dρ dθ dφ

where F (x, y, z) = F (ρ sin θ cosφ, ρ sin θ sin φ,
ρ cos θ ) = F ∗(ρ, θ, φ).

WORKED OUT EXAMPLES

Example 1: By transforming into cylindrical co-

ordinates evaluate the integral   
(x2 + y2 + z2)dx dy dz taken over the region

0 ≤ z ≤ x2 + y2 ≤ 1.

Solution: Introducing cylindrical polar coordinates

x = r cos θ, y = r sin θ, z = z, the given integral

becomes 1

0

  
R

(x2 + y2 + z2)dx dy dz

=
 1

0

 2π

0

 1

0

(r2 cos2 θ + r2 sin2 θ + z2)r dr dθ dz

where R: circular region bounded by the circle of

radius one and centre at origin: x2 + y2 = 1, so that

r varies from 0 to 1 and θ from 0 to 2π .

= 2π

 1

0

r4

4
+ r

2

2
z2

     
1

0

dz = 2π

 1

0

 
1

4
+ z

2

2

 
dz

= 2π

 
z

4
+ z

3

6

 1
0

= 2π

 
1

4
+ 1

6

 
= 5π

6

Example 2: Use spherical coordinates to evaluate

the integral
   

dx dy dz√
x2+y2+z2

taken over the region V
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in the first octant bounded by the cones θ = π
4
and

θ = arc tan z and the sphere x2 + y2 + z2 = 6 (Fig.

7.32).

Solution: Introducing spherical coordinate

x = ρ sin θ cosφ,
y = ρ sin θ sin φ
z= ρ cos θ

we have 
x2 + y2 + z2

=
 
ρ2 sin2 θ cos2 ρ + ρ2 sin2 θ sin2 φ + ρ2 cos2 θ

= ρ

Jacobian = ρ2 sin θ .
Radius of the sphere is

√
6.

Thus the given integral in spherical coordinates is

I =
   

dx dy dz 
x2 + y2 + z2

=
 π

2

0

 arc tan 2

π
4

 √
6

0

1

ρ
· ρ2 sin θ · dρ dθ dφ

since restricted to first octant, ρ varies from 0 to√
6, θ : cone angle varies from θ1 = π

4
to

θ2 = arc tan 2 and φ from 0 to π
2
.

I = 3

 π
2

0

 arc tan 2

π
4

sin θ dθ dφ

=−3
 π

2

0

 
1√
5
− 1√

2

 
dφ

= 3π

2

 
1√
2
− 1√

5

 
.

Fig. 7.32

Example 3: Evaluate   
V

xyz(x2 + y2 + z2) n2 dx dy dz

taken through the positive octant of the sphere x2 +
y2 + z2 = b2 provided n+ 5 > 0.

Solution: Since the geometry involves sphere, in-

troduce spherical coordinates x = ρ sin θ cosφ,
y = ρ sin θ sin φ, z = ρ cos θ and the Jacobian
J = ρ2 sin θ . Substituting these transformations.   

V

xyz(x2 + y2 + z2) n2 dx dy dz

=
 π

2

φ=0

 π
2

θ=0

 b

0

(ρ sin θ cosφ)(ρ sin θ sin φ)×

× (ρ cos θ ) · (ρ2) n2 ρ2 sin θdρ dθ dφ

=
 b

0

ρn+5dρ
 π

2

0

sin3 θ cos θ dθ

 π
2

0

cosφ sin φ dρ

= ρn+6

n+ 6

     
b

0

2

4 · 2 ·
1 · 1
2

= bn+6

8(n+ 6)
provided n+ 5 > 0.

Example 4: Find the volume of the solid sur-

rounded by the surface
 
x
a

 2
3 +  

y

b

 2
3 +  

z
c

 2
3 = 1.

Solution: The desired volume V of the solid is

V =
   

dx dy dz

Here the limits of integration is not easy. Instead, by

a transformation the given surface becomes a sphere

as follows.
Put x

a
= u3, y

b
= v3, z

c
= w3 so that

 x
a

 2
3 +

 y
b

 2
3 +

 z
c

 2
3 = u2 + v2 + w2 = 1

which is the equation of a sphere of radius 1 and with

centre at origin in the new variables u, v,w.
The Jacobian J

J = ∂(x, y, z)

∂(u, v,w)
=

           

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

           
=

      
3au2 0 0

0 3bv2 0

0 0 3cw2

      
J = 27abc u2 v2 w2.
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Thus the required volume in terms of the new vari-
ables u, v,w is

V =
   

V

dx dy dz

=
   

V ∗
27abc u2 v2 w2 du dv dw

where V ∗ is sphere u2 + v2 + w2 = 1.
To evaluate this integral, introduce again spherical

coordinates

u= r sin θ cosφ, v = r sin θ sin φ,w = r cos θ

V = 27abc 8

 π
2

0

 π
2

0

 1

0

(r2 sin2 θ cos2 φ)×

× (r2 sin2 θ sin2 φ)(r2 cos2 θ )(r2 sin θ )dr dθ dφ

since the Jacobian J ∗ = ∂(u,v,w)

∂(r,θ,φ)
= r2 sin θ and since

to describe the positive octant of the sphere, 0≤r≤1,
0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ π

2
.

Since all the limits are constant,V can be rewritten
as

V = 216abc

 1

0

r8 dr

 π
2

0

sin5 θ cos2 θ dθ

 π
2

0

sin2 φ cos2 φ dφ

V = 216abc
r9

9

    1
0

 π
16

 
·
 

8

35.3

 

= 216 · abc
9
· π
16
· 8

35.3
= 4abc

35
.

Example 5: Evaluate
    

(1−x−y−z)
xyz

 1
2
dx dy dz

taken over the volume bounded by the planes

x= 0, y= 0, z= 0 and x+ y+ z= 1 (Fig. 7.33).

Fig. 7.33

Solution: Put

x + y + z = u, y + z = uv and z = uvw (1)

Solving (1)

x = u(1− v), y = uv(1− w) and z = uvw (2)

The Jacobian J is

J = ∂(x, y, z)

∂(u, v,w)
=

      
1− v −u 0

v(1− w) u(1− w) −uv
vw uw uv

      = u2v
(3)

Let D, the triangular region OAB be the projection

of the surface on the zy-plane. Then the tetrahedral

volume is covered with the following limits:

0 ≤ z ≤ 1 (4)

0 ≤ y ≤ 1− z (5)

0 ≤ x ≤ 1− z− y (6)

Since z = uvw, from (4),

0 ≤ uvw ≤ 1 (7)

Since y = uv(1− w), from (5),

0 ≤ uv(1− w) ≤ 1− uvw
or 0 ≤ uv ≤ 1 (8)

Since x = u(1− v), from (6)

0 ≤ u(1− v) ≤ 1− uvw − uv(1− w)
or 0 ≤ u ≤ 1 (9)

Using (9) in (7) and (8) the limits of integration for

the new variables u, v,w are

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 (10)

Using (1), (2) and (10) the given integral gets trans-
formed to

I =
 1

0

 1−z

0

 1−z−y

0

 
1− x − y − z

xyz

 1
2

dx dy dz

=
 1

0

 1

0

 1

0

 
(1− u)

[u(1− v)][uv(1− w)][uvw]

 1
2

×

× u2v du dv dw

Since all the limits are constants, this integral can be
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rewritten as

=
 1

0

 
u(1− u)du

 1

0

dv√
1− v

 1

0

dw√
w(1− w)

put u = sin2 θ, v = sin2 φ,w = sin2 t

=
 π

2

0

sin θ · cos θ · 2 sin θ cos θ dθ

·
 π

2

0

2 sin φ cosφ

cosφ
dφ

 π
2

0

2 sin t cos t

sin t cos t
dt

= 2 · 1 · 1
4 · 2 ·

π

2
· 2 · 1 · 2 · π

2
= π

2

4
.

Example 6: Determine the mass M of a hemi-

sphere of radiusbwith centre at the origin (Fig. 7.34),

if the densityF of its substance at each point (x, y, z)

is proportional to the distance of this point from the

base i.e., F = kz.

Solution: Equation of sphere x2 + y2 + z2 = b2.
Equation of the upper part of the hemisphere

z =
 
b2 − x2 − y2.

In cylindrical coordinates x = r cos θ,
y = r sin θ the equation of the hemisphere becomes

z =
 
b2 − r2 cos2 θ − r2 sin2 θ =

 
b2 − r2.

Hence massM is

M =
   

V

(kz)r dr dθ dz

Fig. 7.34

The hemisphere can be covered as follows:

z: varying from z = 0 to z =
 
b − x2 − y2 (up-

per surface)

r: varying from 0 to b

θ : varying from 0 to 2π .

Thus

M =
 2π

0



 b

0


 

√
b2−r2

0

kz dz


 r dr


 dθ

= 2π

 b

0

k
z2

2

     
√
b2−r2

0

r dr

= πk
 b

0

(b2 − r2)r dr = πk
 
b2
r2

2
− r

4

4

 b
0

M = πkb
4

4
.

Example 7: Compute themass of a sphere of radius

b if the density varies inversely as the square of the

distance from the centre.

Solution: Density F (x, y, z) = k

x2+y2+z2 .

M =
   

V

F (x, y, z)dv

In spherical coordinates

M =
   

k

x2 + y2 + z2 dx dy dz

= 8

 π
2

0

 π
2

0

 b

0

k

r2
(r2 sin θ )dr dθ dφ

= 8kb · 1 · π
2
= 4kπb.

Example 8: Compute the moment of inertia of a

right circular cylinder of altitude 2h and radius b,

relative to the diameter of its median section with

density equals to k, a constant.

Solution: Choose z-axis along the axis of the cylin-
der and the origin at its centre of symmetry as shown

Fig. 7.35
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in Fig. 7.35. Moment of inertia of the cylinder rela-
tive to the x-axis:

Ixx =
   

V

(y2 + z2)k dx dy dz

Introducing cylindrical coordinates x = r cos θ ,
y = r sin θ , we have

Ixx = k
 2π

0

 b

0

 h

−h
(z2 + r2 sin2 θ )dz r dr dθ

= k
 2π

0

 b

0

z3

3
+ zr2 sin2 θ

     
h

−h
r dr dθ

= k
 2π

0

 b

0

 
2h3

3
+ 2h r2 sin2 θ

 
r dr dθ

= k
 2π

0

2
h3

3

r2

2
+ 2h

r4

4
sin2 θ

     
b

0

dθ

= k
 2π

0

 
h3b2

3
+ hb

4

2
sin2 θ

 
dθ

= k
 
2πh3b2

3
+ hb

4

2

 
.

EXERCISE

1. Find the volume of the portion of the sphere

x2 + y2 + z2 = b2 lying inside the cylinder

x2 + y2 = bx.
Hint: Use cylindrical coordinate x = r cos θ ,
y = r sin θ , z = z then equation of sphere is
r2 + z2 = b2 and equation of cylinder is
r = b cos θ .

Volume V = 2

 π

0

 b cos θ

0

 √b2−r2
0

r dz dr dθ.

Ans.
2b3(3π−4)

9

2. Evaluate
   

xyz dx dy dz over the positive

octant of the sphere x2 + y2 + z2 = b2 by

transforming to spherical polar coordinates.

Hint: Limits: r : 0 to a; θ : 0 to π
2
, φ : 0 to π

2

Ans. b6

48

3. Evaluate
   

dx dy dz√
(x2+y2+z2)

taken over the com-

mon region between the cone z = x2 + y2 and
the cylinder x2 + y2 = 1 bounded by the plane

z = 1 in the positive octant.

Hint: Limits:

a. In cartesian coordinates

z : 1 to
 
x2 + y2, y : 0 to

√
1− x2; x : 0 to 1

b, In spherical coordinates

r : 0 to secθ ; θ : 0 to π
4
;φ : 0 to π

2
.

Ans.
(
√
2−1)π
4

4. Evaluate
   

z2 dx dy dz taken over the vol-

ume bounded by the surfaces x2 + y2 = a2,
x2 + y2 = z and z = 0.

Hint: Transform into spherical coordinates.

Ans. πa8

12

5. Evaluate
   

(x2 + y2 + z2)−1 dx dy dz
taken throughout the volume of the sphere

x2 + y2 + z2 = b2.
Hint: Limits: r : 0 to b, θ : 0 to π, φ : 0 to 2π .

Ans. 4πb

6. Use cylindrical coordinates, to evaluate   
V

(x2 + y2)dx dy dz

taken over the region V bounded by the

paraboloid z = 9− x2 − y2 and the plane

z = 0.

Hint: Equation of paraboloid is z = 9− ρ2 so
that z varies from 0 to 9− ρ2, ρ : 0 to 3, θ : 0
to 2π Jacobian: r , and integrandx2 + y2 = ρ2.
Thus,  2π

0

 3

0

 9−ρ2

0

(ρ2)(ρ dz dρ dθ ).

Ans. 243π
2

7. Use spherical coordinates to evaluate

 1

0

 √1−x2

0

 √1−x2−y2

0

dx dy dz 
1− x2 − y2 − z2

Ans. π2

8
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8. Evaluate the triple integrals taken over the

tetrahedral volume enclosed by the planes

x = 0, y = 0, z = 0 and x + y + z = 1.

a.
   

[xyz(1− x − y − z)] 12 dx dy dz.
b.
   

(x + y + z)2xyz dx dy dz.
c.
   ·e(x+y+z)3dx dy dz.

Hint: Use the transformation u = x + y + z,
uv = y + z, uvw = z, so that x = u(1− v),
y = uv(1− w) and z = uvw with limits for

u, v,w : 0 to 1 and Jacobian u2v.

See Worked Out Example 5 on Page 192.

Ans. a. π2

1920

b. 1
960

c. (e−1)
6

9. Find the volume cut from the sphere of radius b

by the cone φ = α. Hence deduce the volumes

of the hemisphere and sphere.

Hint: Use spherical coordinates.

Limit: r : 0 to a; θ : 0 to 2π, φ : 0 to α.

Ans.
2πb3(1−cosα)

3

hemisphere volume: (α = π
2
) : 2πb3

3

sphere volume: (α = π ) : 4πb3

3

10. Find the mass M of the tetrahedron bounded

by the coordinate planes and the plane
x
a
+ y

b
+ z
c
= 1 given that the density F at any

point (x, y, z) is kxyz.

Hint: Limits: z : 0 to 1− x
a
− y

b
; y : 0 to

b
 
1− x

a

 
, x : 0 to a.

Ans. ka2b2c2

720

11. Find the mass of a solid in the form of the

positive octant of the sphere x2 + y2 + z2 = 9

given that the density at any point is 2xyz.

Ans. 30.375

12. Find the centroid of the tetrahedron bounded

by the coordinate planes and the plane x + y +
z = 1. The density at any point is varying as

its distance from the face z = 0.

Ans.
 
1
5
, 1
5
, 2
5

 

13. Find the centroid of the solid octant of the el-

lipsoid
 
x
a

 2 +  
y

b

 2 +  
z
c

 2 = 1 if the density

at any point of the solid varies as xyz.

Ans.
 
16a
35
, 16b

35
, 16c

35

 
14. Find the centre of gravity of a homogeneous

solid sphere of radius b.

Hint: With cylindrical coordinates, the equa-

tion of hemisphere is z =
 
b2 − x2 − y2 =√

b2 − r2 so that limits are: z : 0 to√
b2 − r2; r : 0 to a, θ : 0 to 2π .

Ans. x = y = 0; z = 3b
8

15. Compute the moment of inertia of a circular

cone relative to the diameter of the base.

Ans.
πhr2(2h2+3r2)

60

Note: h is the altitude and r is the radius of the

base of the cone.

16. Find the moment of inertia of a right circular

cone relative to its axis.

Ans. πhr4

10

17. Find the volume of the cone

0 ≤ z ≤ h(a − r)/a.
Hint: Limits: r : 0 to a, θ : 0 to 2π .

Ans. πa2h
3

18. Find the volume and mass contained in a

solid below the plane z = 1+ y, bounded by

the coordinate planes and the vertical plane

2x + y = 2 and having density

f (x, y, z) = x + z.
Hint: Limits: z : 0 to 1+ y, y : 0 to 2− 2x,

x : 0 to 1.

Ans. Volume: 5
3
, Mass: 2

19. Find the z-coordinate of the centroid of a uni-

form solid cone of height h equal to the radius

of the base r (i.e.,h = r).Alsofind themoment

of inertia of the solid about its axis. Assume ρ

to be the constant density of the solid.

Ans. MassM = ρπh3

3

z coordinate of centroid = z = 3h
4

M.I. about z-axis: I = ρπh5

10
= 3

10
Mh2
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20. Find the moment of inertia about the z-axis of
the solid ellipsoid inside

x2

a2
+ y

2

b2
+ z

2

c2
= 1

Hint: Make the change of variables

x = ax∗, y = by∗, z = cz∗ than equa-

tion is x∗2 + y∗2 + z∗2 = 1 i.e., sphere

of radius 1. By symmetry
   

x∗2dV ∗ =   
y∗2dV ∗ =    

z∗2dV ∗ = 1
3

   
r∗2dV ∗

where r∗2 = x∗2 + y∗2 + z∗2.
Ans. I = ρabc(a2 + b2) 4π

15
= 1

5
M(a2 + b2)

whereM = mass = 4
3
πρabc.

7.7 DIRICHLETS∗ INTEGRAL

Dirichlet’s integral is useful in the evaluation of cer-

tain double and triple integrals by expressing them

in terms of beta and gamma functions which can be

evaluated numerically.

Using Dirichlet integral, plane area, volume of a

solid region, mass, centroid can be calculated in a

simpler way.

Book work I Let D be the triangular region in the

xy-plane bounded by x ≥ 0, y ≥ 0, x + y ≤ b. Then
prove that the double integral over D

x
y

b

+

=

y

b

O b x

Fig. 7.36  
D

xpyqdxdy = bp+q+2<(p + 1)<(q + 1)

<(p + q + 3)

Proof: Introducing X = x
b
, Y = y

b
the given inte-

gral in X, Y becomes 
D

 
xpyqdx dy =

  
D∗

(bX)p(bY )qb2dX dY

∗ Peter Gustav Lejeune Dirichlet (1805-1859), German mathe-
matician

where the transformed region D∗ is the triangular

region bounded by X ≥ 0, Y ≥ 0, X + Y ≤ 1.

= bp+q+2
 1

X=0

 1−X

Y=0
XpY qdY dX

= bp+q+2
 1

X=0
Xp

Y q+1

q + 1

    
1−X

Y=0
dX

= b
p+q+2

q + 1

 1

0

Xp(1−X)q+1dX

= bp+q+2
q+1 · β(p + 1, q + 2) from the definition of

β function

= bp+q+2
(q+1) ·

<(p+1)<(q+2)
<(p+q+3) = bp+q+z

(q+1)
<(p+1)(q+1)<(q+1)

<(p+q+3)
since <(q + 2) = (q + 1)<(q + 1). Hence the re-

sult.

Book work II Dirichlet’s integral

Let V be the solid region, tetrahedron in the first

octant, boundedby the coordinate plane and theplane

x + y + z = b. Then the triple integral taken overV .  
V

 
xpyqzrdx dy dz = bp+q+r+3 · <(p+1)<(q+1)<(r+1)

<(p+q+r+4)

Proof: Introducing X = x
b
, Y = y

b
, Z = z

b
, the re-

gion V ∗ in xyz-system transforms to V ∗ in XYZ

coordinate system given by X ≥ 0, Y ≥ 0, Z ≥ 0

and X + Y + Z ≤ 1, which is a tetrahedron in the

first octant. Then the triple integral T.I.

O B

b y

b
A

x

b

z

Fig. 7.37

T.I. =   
V

 
xpyqzrdx dy dz

=   
V ∗

 
(bX)p(bY )q(bZ)rb3dX dY dZ

= bp+q+r+3
 1

X=0
 1−X
Y=0

 1−X−Y
Z=0 XpY qZr dZ dY dX

= bp+q+r+3
r+1

 1

X=0
 1−X
Y=0 X

pY q(1−X − Y )r+1dY dX

Introducing the variablesu = X + Y anduv = Y ,
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the triangular region AOX in the XY -plane (given

byX = 0, Y = 0,X + Y = 1) gets transformed to a

square in the uv-plane (given by u = 0, v = 0, u =
1, v = 1). The jacobian ∂(X,Y )

∂(u,v)
=
    1− v v−u u

    = u and
X = u(1− v), Y = uv with this,
T.I. = bp+q+r+3

r+1
 1

v=0
 1

u=0 u
p(1− v)p(uv)q×

×(1− u)r+1 · u du dv
= bp+q+r+3

r+1

  1

u=0 u
p+q+1(1− u)r+1du

 
×

×
  1

v=0 v
q(1− v)pdv

 
= bp+q+r+3

r+1 β(p + q + 2, r + 2)·β(q + 1, p + 1)

= bp+q+r+3
(r+1)

<(p+q+2)(<(r+2)
<(p+q+r+4) ·<(q+1)<(p+1)

<(p+q+2)

= bp+q+r+3 · <(p+1)<(q+1)<(r+1)
<(p+q+r+4)

since <(r + 2) = (r + 1)<(r + 1). Hence the result.

Note: This triple integral can also be evaluated di-

rectly by putting x + y + z = u, y + z = uv, z =
uvw.

WORKED OUT EXAMPLES

Example 1: Find the area and the mass contained

in the first quadrant enclosed by the curve
 
x
a

 α + 
y

b

 β = 1, where α > 0, β > 0 given that density at

any point p(x, y) is k
√
xy.

Solution: The area A of the plane region is

A =
 
D

 
dx dy

put
 
x
a

 α = X,  y
b

 β = Y then x = aX1/α , y =
bY 1/β . Then

A =   
D∗
a 1
α
X

1
α−1 · dX · b · 1

β
Y

1
β
−1
dY

where X ≥ 0, Y ≥ 0, X + Y ≤ 1. So

A = ab
αβ

  
D∗
X

1
α−1Y

1
β
−1
dX dY

Using book work I

A = ab
αβ
· β

 
1
α
, 1
β

 
= ab

αβ

<
 
1
α

 
<
 
1
β

 
<
 
1
α+ 1

β

 
Now the total massM contained in the plane region

A is

M =   
D

P (x, y)dx dy =   
D

k
√
xydx dy

= k
  
D∗

√
aX

1
2α ·

√
bY

1
2β · a

α
X

1
α−1 b

β
Y

1
β
−1
dX dY

= k
(ab)

3
2

αβ

  
D∗
X

3
2α
−1Y

3
2β
−1
dX dY

= k
(ab)

3
2

αβ
· <

 
3
2α

 
<
 

3
2β

 
<
 

3
2α
+ 3

2β

 

Example 2: Find the volume and the mass con-

tained in the solid region in the first octant of the el-

lipsoid x2

a2
+ y2

b2
+ z2

c2
= 1 if the density at any point

ρ(x, y, z) is kxyz. Also find the coordinates of the

centroid (UPTU 2002).

Solution: Volume V of the solid region is V =  
V

 
dx dy dz. Here V is the region x ≥ 0, y ≥ 0,

z ≥ 0, x
2

a2
+ y2

b2
+ z2

c2
≤ 1.

Put
 
x
a

 2 = X,  y
b

 2 = Y ,  z
c

 2 = Z. Then
x = a

√
X, y = b

√
Y , z = c

√
Z. The new region in

XYZ-system is X ≥ 0, Y ≥0, Z≥0, X+Y+Z≤1

V =   
V ∗

 
a
2

1√
X

b
2

1√
Y

c
2

1√
Z
dX dY dZ

= abc
8

  
V ∗

 
X−

1
2 Y−

1
2Z−

1
2 dX dY dZ

= abc
8

<
 
1
2

 
<
 
1
2

 
<
 
1
2

 
<
 
− 1

2
− 1

2
− 1

2
+4

 = abc
8

π3/2

<
 
5
2

 

V = abc
8

π ·√π
3
2
· 1
2

√
π
= πabc

6

Now the massM contained is

M =    
ρ(x, y, z)dx dy dz = k   

V

 
xyz dx dy dz.

With the change of variables.

M = k   
V ∗

 
a
√
Xb
√
Yc
√
Z×

× a

2
√
X
· b

2
√
Y

c

2
√
Z
dX dY dZ
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= k a
2b2c2

8

  
V ∗

 
dX dY dZ. Using book work II

= k a2b2c2
8

<(1)<(1)<(1)

<(0+0+0+4) since p = q = r = 0

M = ka2b2c2

8
· 1
3!
= ka2b2c2

48

Let (X, Y ,Z) be the coordinates of the centroid of

the solid region V . Then

X =

  
V

 
xρ(x, y, z)dx dy dz

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
V

 
ρ(x, y, z)dx dy dz

The denominator integral is the mass M calculated

as ka2b2c2/48. Now consider  
V

 
xρ(x, y, z)dx dy dz

= k   
V ∗

 
a ·
√
X · a ·

√
X · b ·

√
Y · c ·

√
Z ×

× a

2·
√
X
· b

2·
√
Y
· c

2·
√
Z
· dX dY dZ

= ka3b2c2

8

  
V ∗

 
X

1
2 dX dY dZ. Using book work II

with p = 1
2
, q = r = 0

= ka3b2c2

8

<
 
3
2

 
·<(1)<(1)

<
 
1
2
+0+0+4)

 = ka3b2c2

8

1
2
<
 
1
2

 
<
 
9
2

 

= ka3b2c2

8

1
2
·<
 
1
2

 
7
2
· 5
2
· 3
2
· 1
2
·<
 
1
2

 = ka3b2c2

105

X = ka
3b2c2

105

48−−−−−−−−−
ka2b2c2

= 16

35
a. Similarly Y = 16

35
b,

Z = 16
35
c

EXERCISE

1. Evaluate
  
D

xpyq dx dy whereD is the region

bounded by x = 0, y = 0 and
 
x
a

 m+ y
b

 n=1.

Ans. ap+1bq+1
mn

<
 
p+1
m

 
<
 
q+1
n

 
<
 
p+1
m + q+1n +1

 
2. Find the mass of the region in the xy-plane

bounded by x = 0, y = 0, x + y = 1 with

density k
√
xy.

Ans. k
π

24

3. Find the area enclosed by the curve
 
x
a

 2m + 
y

b

 2n = 1, m, n being positive integers

Ans.
ab

4mn

<
 

1
2m

 
<
 

1
2n

 
<
 

1
2m
+ 1

2n
+ 1

 
Hint: Put

 
x
a

 2m = X,  y
b

 2n = Y , area =  
a 1
2m
X

1
2m
−1 · b 1

2n
Y

1
2n
−1dX dY .

Hence find the area bounded by the astroid 
x
a

 2/3 +  
y

b

 2/3 = 1

Ans. 3abπ
32

. Hint put m = n = 1
3
.

4. Determine the area enclosed by the curve 
x
a

 4 +  
y

b

 10 = 1

Ans. ab
40

<
 
1
4

 
<
 

1
10

 
<
 
27
20

 
Hint: Takem = 2, n = 5 in above example 3.

5. Express
  
D

xpyq dx dy in terms of gamma

functions where D is the region of the ellipse
x2

a2
+ y2

b2
= 1 in the first octant.

Ans. 1
4
ap+1bq+1

<
 
p+1
2

 
<
 
q+1
2

 
<
 
p+1+q+1

2
+1

 
Hint: Takem = 2, n = 2 in above example 1.

6. Evaluate
  
V

 
xα−1yβ−1zγ−1dx dy dz where

V is the closed region in the first octant

bounded by the surface
 
x
a

 p +  
y

b

 q +  
z
c

 r =
1 and coordinate planes x = 0, y = 0, z = 0.

Ans. aαbβcγ

pqr

<
 
α
p

 
<
 
β
q

 
<( γr )

<
 
α
p+

β
q +

γ
r +1

 

Hint: Put
 
x
a

 p = X,  y
b

 q = Y ,  z
c

 r = Z,
then X + Y + Z = 1. Integrand of the triple

integral is

aα−1X(α−1)/p ·bβ−1Y (β−1)/qcγ−1Z(γ−1)/r×
× a
p
X

1
p−1 · b

q
Y

1
q− · c

y
Z

1
r −1

= aαbβcγ

pqr

   
X
α
p−1Y

β
q −1Z

γ
r −1dX dY dZ.

Apply book work II.

7. Find the volume of the solid bounded by

the coordinate planes and the surface
 
x
a

 1
2 + 

y

b

 1
2 +  

z
c

 1
2 = 1

Ans. abc
90

Hint: Put p = q = r = 1
2
, α = β = γ = 1 in
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above example
a1·b1·c1
1
2
· 1
2
· 1
2

· <(2)<(2)<(2)
<(2+2+2+1) = 8abc

6!
= abc

90

8. If V is the solid region in the first octant

bounded by the unit sphere x2 + y2 + z2 = 1.

Find the mass of the ellipsoid 
x
a

 2 +  
y

b

 2 +  
z
c

 2 = 1 with density

ρ(x, y, z) = (x + y + z)4

Ans. 4π (a2 + b2 + c2)abc/35
Hint: Put x + y + z = u, y + z = uv, z =
uvw.

Jacobian =
∂(x,y,z)

∂(u,v,w)
= u2v, x = u(1− v), y =

uv, z = uvw
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Chapter8

Ordinary Differential Equations:
First Order and First Degree

INTRODUCTION

To describe, understand and predict the behaviour

of a physical process or system, a "mathematical

model" is constructed by relating the variables by

means of one or more equations. Usually these equa-

tions describing the system in motion are "differen-

tial equations" involving derivatives which measures

the rates of change. The behaviour and interaction of

components of the system at later times is described

by the "solutions" of these differential equations.

In this chapter we consider the simplest of

these differential equations which is of first or-

der. We study the solutions of differential equations

which are: variables separable, homogeneous, non-

homogeneous, exact, non-exact using integrating

factors, linear, Bernoulli, higher degree, Clairaut’s,

Lagrange’s. We consider geometrical applications

and physical problems of law of natural growth, nat-

ural decay, Newton’s law of cooling, velocity of es-

cape from earth and simple electrical circuits.

8.1 INTRODUCTION TO MATHEMATICAL

MODELING

Scientific model is an abstract and simplified descrip-

tion of a given phenomenon and is most often based

on mathematical structures.

Historically following the invention of calcu-

lus by Newton (1642-1727) and Leibnitz (1646-

1716), there is a burst of activity in mathemati-

cal sciences. Early mathematical modeling problems

include boundary value problems in vibration of

strings, elastic bars and columns of air due to Taylor

(1685-1731), Daniel Bernoulli (1700-1782), Euler

(1707-1783) and d’Alembert (1717-1783).

Modeling is a technique of transforming a phys-

ical problem to a “mathematical model”. Thus a

mathematical model describes a natural process or a

physical system in mathematical terms, representing

an idealization by simplifying the reality by ignor-

ing negligible details of the natural process and em-

phasizing on only its essential manifestations. Such

model yielding reproducible results, can be used for

prediction. Thus a mathematical model essentially

expresses a physical system in terms of a functional

relationship of the kind:
Dependent variable = function of independent

variables, parameters and forcing functions

A model should be general enough to explain

the phenomenon but not too complicated precluding

analysis. Mathematical formulation of problems in-

volving continuously or discretely changing quanti-

ties leads to ordinary or partial differential equations,

linear or non-linear equations, integral equations or

a combination of these.

Example of a Mathematical Model of a

Mechanical System

Consider a mechanical oscillator consisting of a

block of a mass m lying on a table and restrained lat-

erally by an ordinary spring. The displacement x(t)

of the spring as a function of time t is governed by

8.1
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Ready for prediction
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Solution

Real-world
problem

Mathematical
model
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more
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Analysis

Interpretation

YES

NO

Fig. 8.1 Scheme of mathematical modeling

a second order differential equation which arises out

of the Newton’s second law as follows:

(mass)(acceleration) = sum of forces

or

m
d2x

dt2
= F − Fs − Ff − Fa

m

x

Mechanical oscillator

F
Fa

Ff

Fs

Fig. 8.2

Here F (t), the applied force, is the forcing func-

tion. The force Fs exerted by the spring on the mass

is generally assumed to be of the form Fs(x) = kx;

where k the spring stiffness is the parameter of the

material. The sliding friction force Ff exerted on

the bottom of the mass may be assumed to be pro-

portional to the velocity i.e. Ff = c dx
dt

, where c is

known as the damping coefficient, another parame-

ter. Neglecting the aerodynamic drag Fa we get an

approximate model of the system described by

m
d2x

dt2
= F − kx − c

dx

dt
− 0

or m
d2x

dt2
+ c

dx

dt
+ kx = f (t)

Thus the mathematical model of the physical me-

chanical oscillator is described by a differential equa-

tion which expresses the relationship between the

dependent variable, x the displacement as a function

of the independent variable t , the parameters k and c

and the forcing F (x). Models representing the elec-

trical, chemical, mechanical, and civil systems are

abundant.

A mechanical system describing the forced oscil-

lations of a mass-spring system and an electrical sys-

tem describing an RLC-circuit are both represented

by a linear second order non-homogeneous ordinary

differential equation. This demonstrates the unifying

power of “mathematical modeling” through which

entirely different physical systems can be studied

by the same mathematical model. The analogy be-

tween mechanical and electrical systems simplifies

the study of mechanical systems since the electrical

systems are easy to construct and easy to measure

accurately.

The power of modeling is seen from the differen-

tial equation

d2x

dt2
+ ω2x = 0

which represents simple harmonic motion, also the

motion of a particle with constant angular velocity

along a circle and also the free undamped vertical

motion of a mass-spring system and finally the mo-

tion of the bob of a simple pendulum in a vertical

plane.

8.2 BASIC DEFINITIONS

A “differential equation” (D.E.) is an equation in-

volving (connecting) an unknown (or sought-for)

function y of one or more independent variables

x, t, . . . and its derivatives.

Differential equations are classified into two

categories “ordinary and partial” depending on the

number of independent variables appearing in the

equation.

Ordinary Differential Equation (O.D.E.)

An ordinary differential equation is a D.E. in which

the dependent variable y depends only on one inde-
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pendent variable say x (so that the derivatives of y

are ordinary derivatives).

Example: F (x, y, y  , y   , . . . , y(n)) = 0.

Notation: The first derivative
dy

dx
is denoted by y  ,

second derivative
d2y

dx2 by y   , etc.

Partial Differential Equation (P.D.E.)

A partial differential equation is one in which y

depends on two or more independent variables

say x, t, . . . (so that the derivatives of y are partial

derivatives.)

Example: F
�
x, t, y,

∂y

∂x
,
∂y

∂t
,
∂2y

∂x2 , . . . ,
∂my

∂xk∂tl

�
= 0.

Order

of a D.E. is the order of the highest derivative ap-

pearing in the equation.

Degree

of a D.E. is the degree of the highest ordered deriva-

tive (when the derivatives are cleared of radicals and

fractions).

Linear

An nth order O.D.E. in the dependent variable y is

said to be linear in y if

i. y and all its derivatives are of degree one.

ii. No product terms of y and/or any of it derivatives

are present.

iii. No tanscendental functions of y and/or its deriva-

tives occur.

Non-linear

O.D.E. is an O.D.E. that is not linear. The general

form of an nth order linear O.D.E. in ywith variables

coefficient is

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ . . .

+ an−1(x)
dy

dx
+ an(x)y = b(x)

where R.H.S. b(x) and all the coefficients

a0(x), a1(x), . . . , an(x) are given functions of x and

a0(x)  = 0.

If all the coefficients a0, a1, . . . , an are constants

then the above equation is known as nth order linear

O.D.E. with constant coefficients.

Note: A linear D.E. is of first degree but a first

degree D.E. need not be linear since it may contain

nonlinear terms such as y2, y
−1
2 , ey, sin y, etc.

[see Examples 3 and 6 in Exercise]

Solution or integral or primitive

Solution or integral or primitive of a D.E. is

any function which satisfies the equation i.e., reduces

it to an identity.

Note 1: A D.E. may have a unique solution or sev-

eral solution, or no solution.

In Explicit solutions the dependent variable can be

expressed explicitly in terms of the independent vari-

able, like y = f (x). Otherwise the solution is said

to be an implicit solution where F (x, y) = 0 where

F (x, y) is an implicit function.

Note 2: General (or complete) solution of an nth

order D.E. will have n arbitrary constants.

Particular solution

Particular solution is a solution obtained from the

general solution by choosing particular values of

the arbitrary constants. Integral curve of D.E. is the

graph of the general/particular solution of D.E.

Initial (boundary) value problem

Initial (boundary) value problem is one in which a

solution to a D.E. is obtained subject to conditions on

the unknown function and its derivative specified at

one (two or more) value(s) of the independent vari-

able. Such conditions are called initial (boundary)

conditions.

General (or complete) integral of a D.E. is an im-

plicit function φ(x, y, c) = 0.
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Particular integral

Particular integral is one obtained from general inte-

gral for a particular value of constant C.

Singular solutions of a D.E. are (unusual or odd)

solutions of D.E. which can not be obtained from the

general solution.

In Chapter 8, first order first degree (both linear

and non-linear) O.D.E’s are studied.

EXERCISE

Classify each of the following D.Es by its kind,

order, degree and linearity:

S. Differential Ans: Or- Deg-

No. Equation Kind der ree Linearity

1.
dy
dx
= kx2 ordinary 1 1 yes

2.
dy
dx
+P (x)y ordinary 1 1 no (yes for

= ynQ(x) n = 0, 1)

3. exdx + eydy = 0 ordinary 1 1 nonlinear

(in x and y)

4.

�
d3y

dx2

�4

− 6x2

�
dy
dx

�8

ordinary 3 4 no

+ey = sin xy

5. y
d2y

dx2 + sin x = 0 ordinary 2 1 no

6. x2dy + y2dx = 0 ordinary 1 1 no

7.
d4y

dx4 + 3

�
d2y

dx2

�5

+ 5y ordinary 4 1 no

= 0

8. y2dx + (3xy − 1)dy ordinary 1 1 nonlinear in y

= 0 linear in x

9. k(y   )2 = [1+ (y   )2]3 ordinary 2 2 no

10.
∂u
∂t
= k

�
∂2u

∂x2 + ∂2u

∂y2

�
partial 2 1 yes

11.
∂2Y

∂t2
= a2 ∂2Y

∂x2 partial 2 1 yes

12.

�
dr
ds

�3

=
�

d2r

ds2 + 1 ordinary 2 1 no

8.3 FIRST ORDER FIRST DEGREE

DIFFERENTIAL EQUATIONS

A first order first degree ordinary differential
equation contains only y  , known functions of x and
perhaps terms of y itself. Thus the general form is

F (x, y, y ) = 0

which may be solved for y  and rewritten in the
explicit form

dy

dx
= f (x, y)

The Cauchy or initial value problem (IVP) is the

problem of finding the solution (function) y = y(x)

of the above D.E. satisfying the initial condition

y(x0) = y0 (i.e., value of y is y0 when x = x0 where

x0 and y0 are given number). Thus for the first or-

der D.E., the general solution (G.S.) y = φ(x, c)

contains one arbitrary constant C. Geometrically,

infinitely many (integral) curves are obtained by

varying the one “parameter” C, forming a “one-

parameter family of (integral) curves.” So a particu-

lar solution is a particular (specific) integral curve of

this family.
Normally it is easy to verify that a given function

is a solution of a D.E. while it is very difficult to
find the solution of even the first order first degree
O.D.E.

dy

dx
= f (x, y)

But on the other hand, there are certain standard

types of first order first degree D.E’s for which so-

lutions can be readily obtained by standard methods

such as
A. Variables separable (Section 8.4)

B. Homogeneous equation (Section 8.5)

C. Non-homogeneous equation reducible to homo-

geneous equation (Section 8.6)

D. Exact differential equation (Section 8.7)

E. Non-exact differential equations that can be

made exact with the help of integrating factors

(Section 8.8)

F. Linear first order equation (Section 8.9)

G. Bernoulli’s equation (Section 8.10).

8.4 VARIABLES SEPARABLE OR

SEPARABLE EQUATION

An equation of the form

F (x)G(y) dx + f (x) g(y) dy = 0 (1)

is called an equation with variables separable or sim-

ply a separable equation, because the variables x and

y can be separated.
Rewriting

F (x)

f (x)
dx + g(y)

G(y)
dy = 0 (2)
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or M(x)dx +N (y)dy = 0 (3)

where M(x) = F (x)/f (x) is a function of x only and

N (y) = g(y)/G(y) is a function of y only.
Integrating, we get the one-parameter family of

solutions as�
M(x)dx +

�
N (y)dy = C (4)

where C is the arbitrary constant. Since division by

f (x) and G(y) are involved in (2), meaningful valid

solutions can be obtained provided f (x)  = 0 and

G(y)  = 0.

Note: In an equation of the form
dy

dx
= f (ax + by + c)

(i.e., R.H.S. is a function of the variable ax + by +
c) can be changed into a separable equation by the

substitution z = ax + by + c.

WORKED OUT EXAMPLES

Variables separable

Solve the following:

Example 1: tan x· sin2 y dx+ cos2 x· cot ydy=0

Solution: Rewriting

tan x · sec2 x · dx + cot y · cosec2ydy = 0

Integrating

tan x · d(tan x)− cot yd(cot y) = 0

...
tan2 x

2
− cot2 y

2
= C

Example 2:
dy

dx
= e2x−y + x3e−y

Solution: Rewriting
dy

dx
= (e2x + x3)e−y

Separating the variables, we get

eydy = (e2x + x3)dx

Integrating

ey = e2x

2
+ x4

4
+ C

Example 3: y  = sin2(x − y + 1)

Solution: Put z = x − y + 1, so dz
dx
= 1− dy

dx
+ 0.

Substituting z and
dy

dx
, we get a separable equation as

1− dz
dx
= sin2 z

or dz
dx
= 1− sin2 z = cos2 z

Separating the variables

sec2 zdz = dx

Integrating

tan z = x + c

or tan (x − y + 1) = x + c

Example 4: Show that the particular solution of

(x2 + 1)
dy

dx
+ (y2 + 1) = 0, y(0) = 1, is y = 1− x

1+ x

Solution: Separating the variables

dy

y2 + 1
+ dx

x2 + 1
= 0

Integrating tan−1 y + tan−1 x = c0.
tan(tan−1 y + tan−1 x) = tan c

Using tan (a + b)= tan a + tan b

1− tan a · tan b

y + x

1− xy
= tan c

when x = 0, y = 1 then 1+0
1−0

= tan c

...
y + x

1− xy
= 1

Solving, y = 1−x
1+x

is the required particular solution.

EXERCISE

Variables separable

Solve the following:

1. 4xydx + (x2 + 1)dy = 0

Ans. y(x + 1)2 = c

2. (x + 4)(y2 + 1)dx + y(x2 + 3x + 2)dy = 0

Ans. 3(x2 + x)y = x3 − 3x + c

3. (xy + x)dx = (x2y2 + x2 + y2 + 1)dy

Ans. ln (x2 + 1) = y2 − 2y + 4 ln |c(y + 1)|
4. y  = x tan (y − x)+ 1

Ans. log sin (y − x) = x2

2
+ c

5. (x − y)2y  = a2
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Ans. a log(
x−y−a

x−y+a
) = 2y + c

6. Obtain particular solution 2xyy  = 1+ y2;

y(2) = 3.

Ans. y2 = 5x − 1

7. y  = (x + y)2

Hint: Put x + y = z.

Ans. (x + y) = tan (x + c)

8. (2x − 4y + 5)y  + x − 2y + 3 = 0

Hint: Put z = x − 2y.

Ans. 4x − 8y + ln |4x − 8y + 11| = c

9. Solve
dy

dx
= (4x + y + 1)2, y(0) = 1.

Hint: Put 4x + y + 1 = z.

Ans. 4x + y + 1 = 2 tan (2x + π
4
)

10. xyy  =
�

1+y2

1+x2

�
(1+ x + x2)

Ans. 1
2

ln (1+ y2) = ln x + tan−1 x + c

11. x3e2x2+3y2
dx − y3e−x2−2y2

dy = 0

Ans. 25(3x2 − 1)e3x2 + 9(5y2 + 1)e−5y2 = c

12. y  = (y−1)(x−2)(y+3)

(x−1)(y−2)(x+3)

Ans. (x + 1)(y + 3)5 = c(y − 1)(x + 3)5.

8.5 HOMOGENEOUS EQUATION–

REDUCTION TO SEPARABLE FORM

Differential Equation of the Form y 
= g(

y

x
)

Homogeneous function

A function f (x, y) is said to be homogeneous func-
tion of degree n in the variables x and y if for any t,

f (tx, ty) = tnf (x, y)

Examples:

1. f (x, y) = 4x2 − 3xy + y2, homogeneous of
degree 2

since f (tx, ty)= 4t2x2 − 3tx.ty + t2y2

= t2(4x2 − 3xy + y2) = t2f (x, y)

2. f (x, y) = (x3 + y3)e
2x
y + 4xy2, homogeneous

of degree 3.

3. f (x, y) = x3 + sin x · ey is not homogeneous.

A first order equation y  = f (x, y) is said to be

homogeneous* if f (x, y) is a homogeneous function

of degree zero. i.e., f (x, y) will depend only on
y

x

i.e., f (x, y) is of the form g(
y

x
).

AlternativelyM(x, y)dx +N (x, y)dy = 0 is said

to be homogeneous if M(x, y) and N (x, y) are both

homogeneous of the same degree.

Method to Solve Homogeneous Equation

y 
= f (x, y) = g(

y

x
)

I. Put

u= y

x
or y = ux

and
dy

dx
= u+ x

du

dx

in the given D.E., which reduces to a separable
equation.

u+ x
du

dx
= g(u)

II. Separating the variables and integrating, the so-
lution is obtained as�

du

g(u)− u
=
�

dx

x
+ c

III. Replace u by y/x, in the solution obtained in II.

WORKED OUT EXAMPLES

Solve the following:

Example 1: (x + 2y)dx + (2x + y)dy = 0

Solution: Rewriting y  = − (x+2y)

(2x+y)
= f (x, y)

This D.E. is a homogeneous, as the R.H.S. func-

tion f (x, y) is homogeneous of degree 0.

Put u = y
x , xdu

dx
+ u = dy

dx
in given D.E., we get

* The term “homogeneous” is used here loosely in the sense that
f (x, y) or M(x, y), N(x, y) are homogeneous functions. But
strictly speaking homogeneous D.E. is defined later in a more
appropriate way.
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u+ xdu

dx
= −(1+ 2u)

(2+ u)

Rearranging

xdu

dx
= −(1+ 2u)

(2+ u)
− u = −(u2 + 4u+ 1)

u+ 2

Separating the variables, we get

−dx

x
= (u+ 2)du

(u2 + 4u+ 1)
= 1

2

d(u2 + 4u+ 1)

(u2 + 4u+ 1)

Integrating

−2 ln x = ln (u2 + 4u+ 1)+ c0

x2(u2 + 4u+ 1) = c

x2

�
y2

x2
+ 4

y

x
+ 1 = c

�

Thus y2 + 4xy + x2 = c

Example 2: (1+ 2e
x
y )+ 2e

x
y · (1− x

y
)y  = 0

Solution: Rewriting

(1+ 2e
x
y )dx + 2e

x
y (1− x

y
)dy = 0

Put x
y
= u, so that dx = ydu+ udy

D.E. becomes

(1+ 2eu)(udy + ydu)+ 2eu(1− u)dy = 0

(u+ 2eu)dy + y(1+ 2eu)du= 0

Separating the variables

dy

y
+ 1+ 2eu

u+ 2eu
du = 0

Integrating

ln y + ln (u+ 2eu)= ln c

y(u+ 2eu)= c

Replacing u, we get

y

�
x

y
+ 2e

x
y

�
= c

Example 3: (y +
�
x2 + y2)dx − xdy = 0,

y(1) = 0.

Solution: Rewriting

dy

dx
= y +

�
x2 + y2

x
= y

x
+
�

1+
�y
x

�2

is homogeneous. Put y = ux and
dy

dx
= u+ x du

dx
in

D.E., we get

u+ x
du

dx
= u+

�
1+ u2

or x
du

dx
=
�

1+ u2

Separating the variables

dx

x
= du�

u2 + 1

Integrating

ln |x| + ln |c| = ln |u+
�
u2 + 1|

or u+
√
u2 + 1 = cx

Replacing u, we have

y

x
+
�

y2

x2
+ 1= cx

or y +
�
x2 + y2 = cx2

Put y = 0, when x = 1, then c = 1
So the required solution is

y +
�
x2 + y2 = x2.

EXERCISE

Solve the following:

1. (2xy + 3y2)dx − (2xy + x2)dy = 0

Ans. y2 + xy = cx3

2. (x3 + y2
�
x2 + y2)dx − xy

�
x2 + y2dy = 0

Ans. (x2 + y2)
3
2 = x3 ln cx3

3. (2x − 5y)dx + (4x − y)dy = 0, y(1) = 4

Ans. (2x + y)2 = 12(y − x)

4. x · sin y

x

dy

dx
= y sin

y

x
+ x

Ans. cos
y

x
+ log cx = 0

5. x2y1 = 3(x2 + y2) tan−1 y

x
+ xy

Ans. y = x tan cx3
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6. (x2 + xy)dy = (x2 + y2)dx

Ans. (x − y)2 = cx · e−y
x

7. x2ydy + (x3 + x2y − 2xy2 − y3)dx = 0

Ans. log
�

c(y−x)

x4(y+x)

�
= 2x

x+y

8. xy1 = y + x · cos2(
y

x
), y(1) = π

4

Ans. 1+ ln x = tan
y

x

9. y1 = 6x2−5xy−2y2

6x2−8xy+y2

Ans. (y − x)(y − 3x)9 = c(y − 2x)12

10. [2x · sin y

x
+2x · tan

y

x
−y cos

y

x
−y sec2 y

x
]dx

+ [x · cos
y

x
+ x sec2 y

x
]dy = 0.

Ans. x2(sin
y

x
+ tan

y

x
= c).

8.6 NON-HOMOGENEOUS

EQUATIONS REDUCIBLE

TO HOMOGENEOUS FORM

Consider the non-homogeneous equation

dy

dx
= a1x + b1y + c1

a2x + b2y + c2
(1)

where a1, b1, c1, a2, b2, c2 are all constants.

Case 1: If
a1
a2
 = b1

b2
, i.e.,

����a1 b1

a2 b2

����  = 0 then the

transformation, (shift of origin)

x = x1 + h, y = y1 + k (2)

reduces the non-homogeneous Equation (1) to the
homogeneous equation of the form

dy1

dx1
= a1x1 + b1y1

a2x1 + b2y2
(3)

Here the unknown constants h, k in (2) are deter-
mined by solving the pair of equations

a1h+ b1k + c1 = 0

a2h+ b2k + c2 = 0

Now that Equation (3) is homogeneous in the new

variables x1 and y1, it can be solved as in 8.5.

Case 2: If
a1
a2
= b1

b2
, i.e.,

����a1 b1

a2 b2

���� = 0, then the

transformation

z = a1x + b1y

reduces (1) to a separable equation in the variables x

and z, which can be solved as in 8.4.

WORKED OUT EXAMPLES

Solve the following:

Example 1: (2x2 + 3y2 − 7)xdx = (3x2 + 2y2 −
8)y dy

Solution: Put x2 = X, y2 = Y , so that 2x dx =
dX, 2y dy = dY

(2X + 3Y − 7)dX = (3X + 2Y − 8)dY

dY
dX
= 2X+3Y−7

3X+2Y−8
, not homogeneous

Put X = X1 + h, Y = Y1 + k

dY1

dX1
= 2X1 + 3Y1 + (2h+ 3k − 7)

3X1 + 2Y1 + (3h+ 2k − 8)

To convert this into a homogeneous equation,

Put 2h+ 3k − 7 = 0, 3h+ 2k − 8 = 0.
Solving h = 2, k = 1, with these values

dY1

dX1
= 2X1 + 3Y1

3X1 + 2Y1

To solve this put u = Y1
X1

u+X1
du

dX1
= 2X1 + 3uX1

3X1 + 2uX1
= 2+ 3u

3+ 2u

X1
du

dX1
= 2+ 3u

3+ 2u
− u = 2(1− u2)

3+ 2u

Separating

2dX1

X1
=
�

3+ 2u

1− u2

�
du = 3du

1− u2
+ 2udu

1− u2

But
1

1− u2
= 1

(1− u)(1+ u)
= 1

2

�
1

(1− u)
+ 1

1+ u

�

Integrating

2

�
dX1

X1
= 3 ·1

2

��
du

1− u
+ du

1+ u

�
− 2

�
udu

u2 − 1

4 ln X1 + 2 ln c = 3 ln

�
u+ 1

u− 1

�
− 2 ln (u2 − 1)
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c2X4
1 =

(u+ 1)3

(u− 1)3
· 1

(u2 − 1)2

c2X4
1 =

u+ 1

(u− 1)5

Replacing u = Y1
X1

, we get

c2 = (Y1 +X1)

(Y1 −X1)5

Replacing X1 = X − 2, Y1 = Y − 1, we have

c2 = (Y − 1+X − 2)

[Y − 1− (X − 2)]5

c2(x2 − y2 + 1)5 = (x2 + y2 − 3)

Example 2:
dy

dx
= y−x

y−x+2

Solution: Since this is non-homogeneous, if x =
x1 + h, y = y1 + k then

dy

dx
= y1 + k − (x1 + h)

y1 + k − (x1 + h)+ 2

= (y1 − x1)+ (k − h)

(y1 − x1)+ (k − h)+ 2

To convert this to homogeneous, put

k − h = 0

k − h = 2

which has no solution. So this substitute method fails
in this case. But on the other hand observe that by
introducing

z = y − x

The given equation becomes separable.

dz

dx
= dy

dx
− 1

or
dy

dx
= dz

dx
+ 1 = z

z+ 2

dz

dx
= z

z+ 2
− 1 = −2

z+ 2

Separating the variables and integrating�
(z+ 2)dz+ 2

�
dx = c

z2

2
+ 2z+ 2x = c

Replacing z by y − x, we get

(y − x)2 + 4(y − x)+ 4x = c

or (y − x)2 + 4y = c

Example 3: (x−2y+1)dx+(4x−3y−6)dy= 0

Solution: This equation is nonhomogeneous.

Since
a1

a2
= 1

4
 = b1

b2
= −2

−3
= 2

3

i.e.,

����1 −2

4 −3

���� = 5  = 0

we can make the substitution

x = x1 + h, y = y1 + k

with this, the given equation becomes

[x1 + h− 2(y1 + k)+ 1]dx1

+[4(x1 + h)− 3(y1 + k)− 6]dy1 = 0

or [(x1 − 2y1)+ (h− 2k + 1)]dx1 + [(4x1 − 3y1)

+(4h− 3k − 6)]dy1 = 0
This reduces to homogeneous if

h− 2k + 1 = 0 and 4h− 3k − 6 = 0

Solving h = 3, k = 2.
Thus the homogeneous equation in the new vari-

ables x1 and y1 is

dy1

dx1
= x1 − 2y1

3y1 − 4x1

Introduce u = y1
x1
, x1

du
dx1
+ u = dy1

dx1

x1
du

dx1
+ u= 1− 2u

3u− 4

x1
du

dx1
= 1− 2u

3u− 4
− u = 1− 2u− 3u2 + 4u

3u− 4

x1
du

dx1
= 1+ 2u− 3u2

3u− 4

Separating the variables�
3u− 4

3u2 − 2u− 1

�
du = −dx1

x1

Integrating

1

2
ln |3u2 − 2u− 1| − 3

4
ln

����3u− 3

3u+ 1

����=− ln |x1| + ln |c1|
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ln (3u2 − 2u− 1)2 − ln

����3u− 3

3u+ 1

����3 = ln

�
c4

1

x4
1

�

ln

����� (3u+ 1)5

3(u− 1)

�����= ln

�
c4

1

x4
1

�

x4
1 (3u+ 1)5 = c|u− 1| where c = 3c4

1

Replacing u, |3y1 + x1|5 = c|y1 − x1|.
Replacing y1 = y − 2, x1 = x − 3,

we get |x + 3y − 9|5 = c|y − x + 1|.

EXERCISE

Solve the following:

1. (3x − y − 9)y  = (10− 2x + 2y)

Ans. y − 2x + 7 = c(x + y + 1)4

2. y  = ax+by−a

bx+ay−b

Ans. (y − x + 1)(a+b)/a(y + x − 1)(a−b)/a

3. (2x − 5y + 3)dx − (2x + 4y − 6)dy = 0

Ans. (4y − x − 3)(y + 2x − 3)2 = c

4. (3y − 7x + 7)dx + (7y − 3x + 3)dy = 0

Ans. (y − x + 1)2(y + x − 1)5 = c

5. y  = 2x+3y+1

3x−2y−5

Ans. ln [(x − 1)2 + (y + 1)2]− 3 tan−1
�

y+1

x−1

�
=

c

6. y  = 2x+y−1

4x+2y+5

Hint: Put 2x + y = z

Ans. 10y − 5x + 7 ln(10x + 5y + 9) = c

7. (2x + 2y + 1)dx + (x + y − 1)dy = 0

Hint: Put x + y = z.

Ans. 3 ln (x + y + 2)− 2x − y = c

8. y  = (x − 2y + 3)/(2x − 4y + 5)

Hint: Put x − 2y = z.

Ans. x2 − 4xy + 4y2 + 6x − 10y = c

9. y  + ax+hy+g

hx+by+f
= 0

Ans. ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

8.7 EXACT DIFFERENTIAL EQUATIONS

The (total) differential of a function f (x, y) is de-
noted by df and is given by

df = ∂f

∂x
dx + ∂f

∂y
dy (1)

Consider the differential equation

M(x, y)dx +N (x, y)dy = 0 (2)

Suppose there exists a function f (x, y) such that

∂f

∂x
=M(x, y) (3)

and
∂f

∂y
=N (x, y) (4)

Using (3) and (4) then the given D.E. (2) becomes

0 = Mdx +Ndy = ∂f

∂x
dx + ∂f

∂y
dy = df

i.e., df = 0

Integrating f (x, y) = c = arbitrary constant.

In this case, the L.H.S. expression of (2) Mdx +
Ndy is said to be an exact differential and the dif-

ferential Equation (2) is called an exact differential

equation.

Necessary Condition for Exactness

Differentiating (3) and (4) partially w.r.t. y and x re-

spectively, we get

∂M

∂y
= ∂

∂y

�
∂f

∂x

�
= ∂2f

∂y∂x
= ∂2f

∂x∂y

= ∂

∂x

�
∂f

∂y

�
= ∂N

∂x

Thus the necessary condition for D.E. (1) to be an
exact D.E. is

∂M

∂y
= ∂N

∂x

Method of Finding f

Step I. Integrating (3) partially w.r.t. x, we get

f (x, y) =
�

M(x, y)dx + g(y) (5)

where g(y) is the constant of integration which

depends only on y.
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Step II. To find f (y).

Differentiate (5) partially w.r.t. y and equating it to
(4), we get

∂

∂y

�
Mdx + dg

dy
= ∂f

∂y
= N

so that

dg

dy
= N − ∂

∂y

�
Mdx

Integrating w.r.t. y, we have

g(y) =
� �

N − ∂

∂y

�
Mdx

�
dy + c1 (6)

Note: Similar result can be obtained from the above

procedure starting with (4) also.

Step III. Substituting g(y) from (6) in (5)

The required general solution of the exact D.E. (2)
is

f (x, y) = c2

To sum up:

Test for exactness of D.E. (1): ∂M
∂y
= ∂N

∂x

Method to find f : f is determined from (5) and (6).
Then the general solution of (1) is the equation

f (x, y) = c

(and not simply the function f (x, y)).

WORKED OUT EXAMPLES

Determine which of the following equations are

exact and solve the ones that are exact:

Example 1: eydx + (xey + 2y)dy = 0

Solution: M = ey,N = xey + 2y

so that
∂M

∂y
= ey = ∂N

∂x

Hence the given equation is exact.

Integrating w.r.t. x,
∂f

∂x
= ey = M yields

f =
�

eydx + g(y) = xey + g(y)

Differentiating w.r.t. y

xey + dg

dy
= ∂f

∂y
= N = xey + 2y

i.e.,
dg

dy
= 2y

Integrating g(y) = y2 + c1.
Substituting g(y) in f

f = xey + y2 + c1

Thus the desired solution is

f = xey + y2 + c1 = c2

i.e., xey + y2 = c3 where c3 = c2 − c1.

Example 2: (3x2y + y

x
)dx + (x3 + ln x)dy = 0.

Solution: M = 3x2y + y

x
, N = x3 + ln x

∂M

∂y
= 3x2 + 1

x
= ∂N

∂x

So equation is exact.

Integrating w.r.t. x,
∂f

∂x
= M = 3x2y + y

x
yields

f = x3y + y ln x + g(y)

Differentiating w.r.t. y and equating the result to N,
we have

x3 + ln x + dg

dy
= ∂f

∂y
= N = x3 + ln x

so that
dg

dy
= 0

i.e., g(y) = constant = c1.
Required solution is

x3y + y ln x + c1 = c2

i.e., x3y + y ln x = c3, where c3 = c2 − c1.

Example 3: (cos x−x cos y)dy− (sin y+y sin x)

dx = 0

Solution: M = − sin y − y sin x
N = cos x − x cos y

∂M

∂y
= − cos y − sin x = ∂N

∂x
, exact.

Integrating
∂f

∂x
= M = − sin y − y sin x w.r.t. x we

get

f (x, y) = −x sin y + y cos x + h(y)
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Differentiating w.r.t. y and equating it to N

−x · cos y + cos x + ∂h

∂y
= ∂f

∂y
= N

= cos x − x cos y

... dh
dy
= 0 i.e., h = constant.

The required solution is

y cos x − x sin y = c

Example 4: xdy + 2y2dx = 0

Solution: M = 2y2, N = x, Differentiating

∂M

∂y
= 4y,

∂N

∂x
= 0

So that
∂M

∂y
 = ∂N

∂x

The D.E. is not exact.

EXERCISE

Determine which of the following equations are

exact and solve the ones that are exact:

1. (2x3− xy2− 2y+ 3)dx− (x2y+ 2x)dy= 0

Ans. x4 − x2y2 − 4xy + 6x = c

2. (cos x. cos y− cot x)dx− (sin x sin y)dy= 0

Ans. sin x · cos y = ln (c sin x)

3. (y − x3)dx + (x + y3)dy = 0

Ans. 4xy − x4 + y4 = c

4. (y + xy2 + x2y3)dx + (x − x2y + x3y2)dy

= 0

Ans. not exact

5. (y2exy
2 + 4x3)dx + (2xyexy

2 − 3y2)dy = 0

Ans. x4 − y3 + exy
2 = c

6. (sin x · tan y + 1)dx + cos x · sec2 ydy = 0

Ans. not exact

7. (sin x · sin y−xey)dy = (ey+cosx · cos y) dx

Ans. xey + sin x · cos y = c

8. (x2+ y2− a2)xdx+ (x2− y2− b2)ydy= 0

Ans. x4 + 2x2y2 − y4 − 2a2x2 − 2b2y2 = c

9. (sin x · cosh y)dx − (cos x sinh y)dy = 0,

y(0) = 3

Ans. cos x · cosh y = 10.07

10.
�

y

(x+y)2
− 1

�
dx +

�
1− x

(x+y)2

�
dy = 0

Ans. x + y2 − x2 = c(x + y)

11. y  = y−2x

2y−x
; y(1) = 2

Ans. x2 − xy + y2 = 3.

8.8 REDUCTION OF NON-EXACT

DIFFERENTIAL EQUATIONS:

USING INTEGRATING FACTORS

Consider a D.E.

M(x, y)dx +N (x, y)dy = 0 (1)

which is not exact. Suppose there exists a function
F (x, y) such that

F (x, y)[Mdx +Ndy] = 0 (2)

is exact, then F (x, y) is called an integrating factor

(I.F.) of D.E. (1). There may exist several integrat-

ing factors or may not, since exact D.E. are relatively

rare.

Some methods to find an I.F. to a nonexact D.E.

Mdx +Ndy = 0 are

Case 1: Method of inspection (or “Grouping” of

terms)

Case 2: (My −Nx)/N = g(x)

Case 3: (Nx −My)/M = h(y)

Case 4: Homogeneous D.E. with xM + yN  = 0

Case 5: D.E. of the form

yg(xy)dx + xh(xy)dy = 0

Case 6: D.E. of the form

xayb(mydx + nxdy)+ xcyd (pydx + qxdy) = 0
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Case 1: Integrating Factors by Inspection

(Grouping of Terms)

Not very often, but sometimes I.F. can be obtained

by inspection largely upon experience and recogni-

tion of “regrouping” the terms of the given equation

appropriately such that they form the part of certain

common exact differentials listed below for ready

reference:

Inte-

S. Group of grating

No. terms factor Exact differential

1 xdy+ydx 1 d(x, y)

2 xdy+ydx
1
xy

xdy+ydx
xy = d{ln (xy)}

3 xdy+ydx
1

(xy)n
,

xdy+ydx
(xy)n

= d

�
(xy)1−n

(1−n)

�
n  = 1

4 xdx+ydy
1

x2+y2

xdx+ydy

x2+y2 = 1
2
d{ln (x2+y2)}

5 xdx+ydy
1

(x2+y2)n
,

xdx=ydy

(x2+y2)n
= d

�
(x2+y2)1−n

2(1−n)

�
n  = 1

6 xdx+ydy 2 2(xdx + ydy)=d(x2+y2)

7 xdy−ydx
1
x2

xdy−ydx

x2 = d

�
y
x

�

8 xdy−ydx
1
y2

−(ydx−xdy)

y2 = −d

�
x
y

�

9 xdy−ydx
1
xy

dy
y −

dx
x = d

�
ln
y
x

�

10 xdy−ydx
1

x2+y2

xdy−ydx

x2+y2 =
xdy−ydx

x2

1+� y
x

�2
= d

�
tan−1 y

x

�
Note: A very simple D.E. ydx − xdy = 0 has several I.F. like x−2,

y−2, (xy)−1, (x2 + y2)−1. Use the appropriate D.E. depending on

the given D.E.

WORKED OUT EXAMPLES

Case 1: Solve the following:

Example 1: y(y3 − x)dx + x(y3 + x)dy = 0

Solution: y4dx − xydx + xy3dy + x2dy = 0
Regrouping the terms,

y3(ydx + xdy)+ x(xdy − ydx) = 0

y3d(xy)+ x · x2d
�y
x

�
= 0

d(xy)+
�
x

y

�3

d
�y
x

�
= 0

or d(xy)+
�y
x

�−3
d

�
x

y

�
= 0

Integrating

xy − 1

2

�y
x

�−2
= c1

Rearranging 2xy3 − x2 = cy2 where c = 2c1

Example 2: (x3y3 + 1)dx + x4y2dy = 0

Solution: x3y3dx + dx + x4y2dy = 0
Dividing by x throughout

x2y3dx + dx

x
+ x3y2dy = 0

Regrouping

x2y2(ydx + xdy)+ dx

x
= 0

(xy)2d(xy)+ dx

x
= 0

(xy)3

3
+ ln x = c.

Example 3: y(x3exy−y)dx+x(xy+x3exy)dy= 0.

Solution: yx3exydx−y2dx+xydy+x4exydy = 0.

Regrouping, x3exy(ydx+xdy)+y(xdy−ydx) = 0

x3d(exy )+ y · x2 ·
�
xdy − ydx

x2

�
= 0.

Dividing throughout by x3,

d(exy )+ y

x
· d
�y
x

�
= 0

Integrating exy + � y
x

�2 1
2
= c.

Example 4:

(xn+1 · yn + ay)dx + (xnyn+1 + ax)dy = 0

Solution: Regrouping the terms
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xnyn(xdx + ydy)+ a(ydx + xdy) = 0

Dividing throughout by xnyn

(xdx + ydy)+ a d(xy)

(xy)n
= 0

If n  = 1, Integrating

x2 + y2

2
+ a · 1

(−n+ 1)(xy)n−1
= c0

(n− 1)(x2 + y2 − c)(xy)n−1 = 2a, where c = 2c0

If n = 1,
x2+y2

2
+ a ln xy = c.

Example 5: y(x2y2− 1)dx+ x(x2y2+ 1)dy= 0.

Solution: x2y3dx − ydx + x3y2dy + xdy = 0
Regrouping x2y2(ydx + xdy)+(xdy−ydx) = 0

x2y2d(xy)+ x2 (xdy − ydx)

x2
= 0

x2y2d(xy)+ x2d
�y
x

�
= 0

The second term in L.H.S. is not an exact differential,

Dividing by x2; y2d(xy)+ d
�
y

x

� = 0.

Now multiply throughout by xkyn, we get

xkyn+2d(xy)+ xkynd
�y
x

�
= 0

The first term in the L.H.S. becomes an exact differ-

ential if k = n+ 2, while the second term in L.H.S.

becomes an exact differential if n = −k. Solving

these two equations

k = n+ 2

n = −k

We get n = −1, k = 1.
Substituting these values, the D.E. reduces to

x1 · y−1+2d(xy)+ x1y−1d
�y
x

�
= 0

or xyd(xy)+ x

y
d
�y
x

�
= 0

xyd(xy)+ d
� y
x

�
� y
x

� = 0

Integrating

(xy)2

2
+ ln

�y
x

�
= c

Example 6: (y + x)dy = (y − x)dx

Solution: ydy + xdy − ydx + xdx = 0
Regrouping (ydy + xdx)+ (xdy − ydx) = 0

1

2
d(y2 + x2)+ (xdy − ydx) = 0

Dividing throughout by (x2 + y2), we get

1

2

1

(x2 + y2)
d(x2 + y2)+ xdy − ydx

x2 + y2
= 0

Rewriting 1
2
d (ln (x2 + y2))+

�
xdy−ydx

x2

1+( y
x )

2

�
= 0

1

2
d (ln (x2 + y2))+ d

�
tan−1

�y
x

��
= 0

Integrating

ln

�
x2 + y2 + tan−1 y

x
= c

EXERCISE

Solve the following D.E. (by regrouping the terms):

1. (4x3y3 − 2xy)dx + (3x4y2 − x2)dy = 0

Ans. x4y3 − x2y = c

2. 3x2ydx + (y4 − x3)dy = 0

Ans. 3x3 + y4 = cy

3. (x3 + xy2 + y)dx + (y3 + x2y + x)dy = 0

Ans. (x2 + y2) = c − 4xy

4. ydx + (x + x3y2)dy = 0

Ans. 2x2y2 · ln (cy) = 1

5. y(x3 − y)dx − x(x3 + y)dy = 0

Hint: After regrouping multiply by xkyn and

determine k and n to make the D.E. exact.

Ans. x2 + 2y = cxy2

6. ydx − xdy = xy3dy

Ans. ln x
y
= 1

3
y3 + c

7. xdy = (x5 + x3y2 + y)dx

Ans. tan−1 x
y
= − 1

4
x4 + c

8. xdy = (y + x2 + 9y2)dx
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Ans. tan−1 3y

x
= 3x + c

9. y(2xy + ex)dx = exdy

Ans. ex

y
+ x2 = c

10. (y2exy
2 + 4x3)dx + (2xyexy

2 − 3y2)dy = 0

Ans. exy
2 + x4 − y3 = c.

Case 2: When I.F. is a Function of x alone:

(My−Nx)/N=g (x)

When F (x, y) is an I.F. then

F (Mdx +Ndy) = 0

is exact therefore

∂

∂y
(FM)= ∂

∂x
(FN )

or F
∂M

∂y
+M

∂F

∂y
= F

∂N

∂x
+N

∂N

∂x

Solving we get the formula for I.F. f (x, y) as

1

F

�
N

∂F

∂x
−M

∂F

∂y

�
= ∂M

∂y
− ∂N

∂x
(1)

(which is a very difficult partial D.E.)

Suppose I.F. ‘F’ is a function of x alone. In this

case (1) reduces to

1

F

dF

dx
= 1

N

�
∂M

∂y
− ∂N

∂x

�
(2)

Since L.H.S. of (2) is a function of x alone say g(x)

i.e.,
1

F

dF

dx
= g(x) = 1

N

�
∂M

∂y
− ∂N

∂x

�
(3)

Then integrating 1
F

dF
dx
= g(x), we get

F (x) = e
�
g(x)dx

where g(x) = (My −Nx)/N .

Case 3: When I.F. is a Function of y alone:

(Nx −My)/M = h(y)

Suppose I.F. ‘F ’ is a function of y alone, in which
case (1) reduces to

1

F

dF

dy
= −

�
∂M
∂y
− ∂N

∂x

�
M

= h(y)

then the I.F. ‘F ’ is obtained by integration as

F (y) = e
�
h(y)dy

where h(y) = (Nx −My)/M .

Case 4

If M(x, y) and N (x, y) are homogeneous functions

of the same degree then (xM + yN )−1 is an I.F. of

Mdx +Ndy=0, provided xM+yN  = 0.

In case xM + yN = 0 then 1

x2 or 1

y2 or 1
xy

are

I.F’s.

WORKED OUT EXAMPLES

Case 2:

Solve the following:

Example 1: y(2x2− xy+ 1) dx+ (x− y) dy= 0

Solution: Here M = 2yx2 − xy2 + y,N = x − y

∂M

∂y
= 2x2 − 2xy + 1  = 1 = ∂N

∂x
, not exact

Since

1

N

�
∂M

∂y
− ∂N

∂x

�
= 2x2 − 2xy + 1− 1

x − y
= 2x = f (x),

is a function of x only, we get an I.F. as

IF = e
�

2xdx = ex
2

Multiplying the given D.E. by I.F. ex
2
, we get

yex
2
(2x2 − xy + 1)dx + ex

2
(x − y)dy = 0

which is of the form

M∗dx +N∗dy = 0�
This is exact since ∂M∗

∂y
=(2x2−2xy+1)ex

2= ∂N∗
∂x

�
Integrate

∂f

∂y
= ex

2
(x − y) = N∗

partially w.r.t. y, we have

f (x, y) = ex
2 ·
�
xy − y2

2

�
+ h(x)

Differentiating partially w.r.t. x and equating it toM∗,
we get

ex
2

�
xy − y2

2

�
· 2x + ex

2
[y]+ dh

dx

= M∗ = yex
2
(2x2 − xy + 1)
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Simplifying, dh
dx
= 0 so h = constant.

Thus the general solution is

ex
2
(2xy − y2) = c

Example 2: (x − y)dx − dy = 0, y(0) = 2.

Solution: M = x − y,N = −1,My = −1,
Nx = 0, not exact.
1
N

(My −Nx) = 1
−1

[−1− 0] = 1 is a function of x.

I.F.= e
�

1dx = ex .
Multiplying D.E. by I.F.
(x − y)exdx − exdy = 0

Rewriting xexdx − yexdx − exdy = 0

xexdx − �d(yex )
�= 0

xexdx + exdx − exdx − d(yex )= 0

(x − 1)exdx + exdx − d(yex )= 0

d((x − 1)ex )− d(yex )= 0

Solution

(x − 1)ex − ye−x = c

Put x = 0, y = 2, so that c = −3.

... (x− 1)ex − ye−x =−3 is the particular solution.

Case 3:

Solve the following:

Example 3: (3x2y4+2xy)dx+(2x3y3−x2)dy = 0

Solution: Here M = 3x2y4+2xy, N=2x3y3−x2.

My = 12x2y3 + 2x  = 6x2y3 − 2x = Nx , not exact.
Since

1

M
(Nx −My )= 6x2y3 − 2x − (12x2y3 + 2x)

3x2y4 + 2xy

=− 2

y
= g(y) = function of y alone,

we get an I.F.= e
�
g(y)dy

= e
− � 2

y dy = e−2 ln ye = 1

y2

Multiplying the given D.E. throughout by 1

y2 , we

have �
3x2y2 + 2x

y

�
dx +

�
2x3y − x2

y2

�
dy = 0

[Since M∗
y = 6x2y − 2x

y2 = N∗
x , this D.E. is exact]

Rearranging the terms

(3x2y2dx + 2x3ydy)+ (
2x

y
dx − x2

y2
dy) = 0

y2d(x3)+ x3d(y2)+ 1

y
d(x2)+ x2d(

1

y
) = 0

Regrouping

d(x3y2)+ d

�
x2

y

�
= 0

Integrating

x3y2 + x2

y
= c

is the general solution.

Case 4:

Example 4: y(y2− 2x2)dx+ x(2y2− x2)dy= 0

Solution: Here M = y(y2 − 2x2) and
N = x(2y2 −x2) are both homogeneous functions
of degree 3.
Since xM + yN = xy(y2 − 2x2)+ yx(2y2 − x2)
= 3(xy)(y2 − x2)  = 0 unless y = x, D.E. has an

I.F = 1

xM + yN
= 1

3xy(y2 − x2)

Multiplying the D.E. by I.F., we get

y(y2 − 2x2)

3xy(y2 − x2)
dx + x(2y2 − x2)

3xy(y2 − x2)
dy = 0

Rewriting

(y2 − x2)− x2

x(y2 − x2)
dx + y2 + (y2 − x2)

y(y2 − x2)
dy = 0

or
dx

x
− xdx

y2 − x2
+ ydy

y2 − x2
+ dy

y
= 0

Regrouping

d(ln xy)+ 1

2

d(y2 − x2)

(y2 − x2)
= 0

Integrating

d
�
ln
�
x2y2(y2 − x2)

��
= 0
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we get

ln x2y2(y2 − x2) = c

or x2y2(y2 − x2) = c1, where c1 = ec.

Case 5: D.E. of the Form—

yg(xy)dx+ xh(xy)dy= 0

If the D.E. Mdx +Ndy = 0 is in the form

yg(xy)dx + xh(xy)dy = 0

where g(xy) and h(xy) are functions of the argument
(product) xy and g(xy)  = h(xy) then

1

xM − yN
= 1

xy{g(xy)− h(xy)}
is an integrating factor provided xM − yN  = 0.

Note: If xM − yN = 0 then M
N
= y

x
and the given

D.E. reduces to xdy + ydx = 0 with xy = c as its

solution.

WORKED OUT EXAMPLES

Example 1:

(x2y2 + xy + 1)ydx + (x2y2 − xy + 1)xdy = 0

Solution: Here M = (x2y2 + xy + 1)y,
N = (x2y2 − xy + 1)/x so

My = 3x2y2 + 2xy + 1  = 3x2y2 − 2xy + 1 = Nx

D.E. is not exact. But M = yg(xy) and N = xh(xy)
so the given D.E. is of the form

yg(xy)dx + xh(xy)dy = 0

which has an integrating factor given by

1

xM − yN
= 1

xy(x2y2 + xy + 1)− xy(x2y2 − xy + 1)

= 1

2x2y2

Multiplying D.E. with I.F. 1

x2y2 , we get

(x2y2 + xy + 1)ydx

x2y2
+ (x2y2 − xy + 1)x

x2y2
dy = 0

Rearranging

�
ydx + dx

x
+ dx

x2y

�
+
�
xdy − dy

y
+ dy

xy2

�
= 0

Regrouping the terms

(ydx + xdy)+
�

ydx

x2y2
+ xdy

x2y2

�
+
�
dx

x
− dy

y

�
= 0

or d(xy)+ d(xy)

(xy)2
+ d(ln

x

y
)= 0

Integrating

xy − 1

xy
+ ln

x

y
= c

Case 6

The D.E. is of the form

xayb(mydx + nxdy)+ xcyd (pydx + qxdy) = 0

where a, b,m, n, c, d, p, q are all constants and
mp − nq  = 0 has an integrating factor of the form

xhyk

where the unknown constants h, k are determined
from the two equations

a + h+ 1

m
= b + k + 1

n

and
c + h+ 1

p
= d + k + 1

q

WORKED OUT EXAMPLES

Example 1: (2y2+4x2y)dx+(4xy+3x3)dy=0

Solution: Here M = 2y2+ 4x2y,N = 4xy+ 3x3,
My = 4y + 4x2  = 4y + 9x2 = Nx , not exact. It is
also not homogeneous. It is not M = yh(xy) and
N = xg(xy) form. So let us try to find an integrating
factor of the form

xhyk

Consider the D.E.

2y2dx + 4x2ydx + 4xydy + 3x3dy = 0

Rearranging the terms

x2(4ydx + 3xdy)+ y(2ydx + 4xdy) = 0

Comparing this with

xayb(mydx + nxdy)+ xcyd (pydx + qxdy) = c

here a = 2, b = 0,m = 4, n = 3,
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c = 0, d = 1, p = 2, q = 4

Also mp − nq = 8− 12 = −4  = 0

The unknown constants in the integrating factor are

determined from the following:

a + h+ 1

m
= b + k + 1

n
i.e.,

2+ h+ 1

4
= 0+ k + 1

3

i.e., 4k − 3h = 5

c + h+ 1

p
= d + k + 1

q
i.e.,

0+ h+ 1

2
= 1+ k + 1

4

i.e., k − 2 = 0

Solving for h, k, we get h = 1, k = 2.
Thus the required integrating factor is

x1 · y2.

Multiplying the given D.E. by this integrating factor

xy2, we get

xy2(2y2 + 4x2y)dx + xy2(4xy + 3x3)dy = 0

2xy4 + 4x3y3dx + 4x2y3dy + 3x4y2dy = 0

Regrouping the terms (1st and 3rd) and (2nd and 4th)

d(x2y4)+ d(x4y3) = 0

Integrating x2y4 + x4y3 = c is the solution.

EXERCISE

Case 2: Solve the following:

1. (4xy + 3y2 − x)dx + x(x + 2y)dy = 0

Ans. x3(4xy + 4y2 − x) = c

2. y(x + y)dx + (x + 2y − 1)dy = 0

Ans. y(x − 1+ y) = ce−x

3. 2xydy − (x2 + y2 + 1)dx = 0

Ans. y2 − x2 + 1 = cx

4. (3xy − 2ay2)dx + (x2 − 2axy)dy = 0

Ans. x3y − ax2y2 = c

5. 2 sin (y2)dx + xy cos (y2)dy = 0, y(2) =�
π
2

Ans. x4 sin (y2) = 16

6. (2x3y2 + 4x2y + 2xy2 + xy4 + 2y)dx +
2(y3 + x2y + x)dy = 0

Ans. (2x2y2 + 4xy + y4)ex
2 = c.

Case 3: Solve the following:

1. (y + xy2)dx − xdy = 0

Ans. x
y
+ x2

2
= c

2. y(x + y + 1)dx + x(x + 3y + 2)dy = 0

Ans. xy2(x + 2y + 2) = c

3. 3(x2 + y2)dx + x(x2 + 3y2 + 6y)dy = 0

Ans. xey(x2 + 3y2) = c

4. (xy3 + y)dx + 2(x2y2 + x + y4)dy = 0

Ans. 3x2y4 + 6xy2 + 2y6 = c

5. (y4 + 2y)dx + (xy3 + 2y4 − 4x)dy = 0

Ans. (y3 + 2)x + y4 = cy2

6. 2xydx + (y2 − x2)dy = 0, y(2) = 1

Ans. x2 + y2 = 5y.

Case 4: Solve the following:

1. x2ydx − (x3 + y3)dy = 0

Ans. y = ce−x3/(3y3)

2. (x2y − 2xy2)dx − (x3 − 3x2y)dy = 0

Ans. x
y
− 2 log x + 3 log y = c

3. (x4 + y4)dx − xy3dy = 0

Ans. y4 = 4x4 ln x + cx4

4. y2dx + (x2 − xy − y2)dy = 0

Ans. (x − y)y2 = c(x + y)

5. (y − x)dx + (y + x)dy = 0

Ans. ln (x2 + y2)
1
2 − tan−1

�
x
y

�
= c.

Case 5: Solve the following:

1. y(x2y2 + 2)dx + x(2− 2x2y2)dy = 0

Ans. x = cy2e
1

(x2y2)

2. y(xy + 2x2y2)dx + x(xy − x2y2)dy = 0
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Ans. 2
3

ln x − 1
3

ln y − 1
3xy
= c

3. (xy sin xy + cos xy)ydx + (xy sin xy −
cos xy)xdy = 0

Ans. x sec xy = cy

4. y(1+ xy)dx + (1− xy)xdy = 0

Ans. ln x
y
− 1

xy
= c

5. (x3y3 + x2y2 + xy + 1)ydx +
(x3y3 − x2y2 + xy + 1)xdy = 0

Ans. x2y2 − 2xy log cy = 1

6. (2xy2 + y)dx = (x + 2x2y − x4y3)dy = 0

Ans. y = ce
(−3xy+1)

(3x3y3)

Case 6: Solve the following:

1. x(4ydx + 2xdy)+ y3(3ydx + 5xdy) = 0

Ans. x4y2 + x3y3 = c

2. (8ydx + 8xdy)+ x2y3(4ydx + 5xdy) = 0

Ans. 4x2y2 + x4y5 = c

3. x3y3(2ydx + xdy)− (5ydx + 7xdy) = 0

Ans. x3y3 + 2 = cx
5
3 y

7
3

4. y(xy + 2x2y2)dx + x(xy − x2y2)dy = 0

Ans. 2 ln x − ln y − 1
xy
= c

8.9 LINEAR DIFFERENTIAL EQUATION:

FIRST ORDER

“Leibnitz’s Linear Equation”

The general form of a first order linear differential
equation in the dependent variable y is

A(x)
dy

dx
+ B(x)y = c(x)

By dividing throughout by A(x) we get the stan-
dard form of the linear equation of first order which
is also known as Leibnitz’s∗ linear equation.

dy

dx
+ P (x)y = Q(x) (1)

* Gottfried Wilhelm Leibnitz (1646–1716), German mathemati-
cian.

The important feature of this equation is that it is

linear (i.e., of first degree) in y and its derivative y  ,
and does not contain product terms of y and y  .

Here P (x) and Q(x) may be any given functions

of x.

Because of this, note that a linear equation is of

first degree but first degree equation need not be lin-

ear (in y i.e., it can contain terms like y
23
5 y sin y, ey

etc.)

Homogeneous: If the R.H.S. Q(x) is zero for all

x then Equation (1) is said to be homogeneous;

otherwise (i.e., Q(x)  = 0) it is said to be non-

homogeneous.

The non-homogeneous Equation (1) has an inte-

grating factor v(x) depending only on x. Multiplying

(1) by v(x) and rewriting it, we get

[v(x)P (x)y − v(x)Q(x)]dx + v(x)dy = 0 (2)

This Equation (2) which is in the form Mdx +
Ndy = 0 with M = vPy − vQ and N = v is exact
and should satisfy the condition.

∂M

∂y
= ∂N

∂x
i.e., vP = dv

dx

which is a separable equation.

To get v, we integrate�
dv

v
=
�

Pdx i.e., ln v =
�

Pdx

or v(x) = e
�
P (x)dx (3)

Thus v(x) given by (3) is the required integrat-

ing factor of the first order non-homogeneous linear

differential Equation (1).
To find the solution of (1), multiply (1) throughout

by the integrating factor (3).

dy

dx
· e
�
Pdx + Py · e

�
Pdx = Q · e

�
Pdx

Rewriting

d(ye
�
Pdx ) = Qe

�
Pdx

Integrating, we get

ye
�
Pdx =

�
Qe

�
Pdxdx (4)
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Method of solving linear equation:

I. Put the given equation in the standard form (1).

II. Determine the integrating factor v(x) = e
�
Pdx .

III. Multiply equation throughout by the integrating

factor v(x).

IV. Solve the resultant exact equation.

Note 1: The L.H.S. of (4) is always the product of

y and the integrating factor v(x).

Note 2: In some cases, when given D.E. in non-

linear in y, it would be much convenient to treat x

as the dependent variable instead of y and solve the

equation dx
dy
+ P ∗(y)x = Q∗(y) which is linear in x

(see Worked Out Examples 6, 7 and also Exercise

Examples 11–15).

WORKED OUT EXAMPLES

Example 1: Solve y  = 4y + 2x − 4x2.

Solution: Standard form y  − 4y = 2x − 4x2 with

P (x) = −4,Q(x) = 2x − 4x2

I.F: e
�
Pdx = e

� −4dx = e−4x

Multiplying by I.F.

e−4x · y − 4ye−4x = (2x − 4x2)e−4x

Rewriting

d

dx
(ye−4x ) = (2x − 4x2)e−4x

Integrating

ye−4x =
�

(2x − 4x2)e−4xdx

= 2

�
xe−4xdx +

�
x2d(e−4x )

Integrating by parts

ye−4x =
�

2xe−4xdx + x2e−4x −
�

e−4x · 2xdx + c

ye−4x = x2e−4x + c

Solution is y = x2 + ce4x .

Example 2: Solve xy  + 2y − x sin x = 0.

Solution: Standard form y  + 2y

x
= sin x

with Q = sin x, P = 2/x

I.F.= e
�
Pdx = e

�
2
x dx = eln x2 = x2

Multiplying by I.F. x2

x2y + 2xy = x2 sin x

d
dx

(yx2) = x2 sin x

Integrating

yx2 =
�

x2 sin x · dx =
�

x2d(cos x)

Integrating by parts

yx2 =−x2 cos x +
�

2x · cos xdx

yx2 =−x2 cos x + 2x sin x + 2 cos x + c

Example 3:

{y(1− x tan x)+ x2 cos x}dx − xdy = 0.

Solution: Standard form

y + (x tan x − 1)

x
y = x cos x

with P (x) = x tan x − 1

x
,Q(x) = x cos x

I.F. exp
�� �

x tan x−1
x

�
dx
� = exp {− ln cos x − ln x}

I.F. = 1

x cos x

1
x cos x

· y  + (x tan x−1)

x
· 1
x cos x

· y = 1

Rewriting

d

dx

� y

x cos x

�
= 1

Integrating

y

x cos x
=
�

dx + c = x + c

Solution is y = x2 cos x + cx cos x.

Example 4: Solve x(1− 4y)dx − (x2 + 1)dy = 0

with y(2) = 1.

Solution: Standard form

y + 4x

x2 + 1
· y = x

x2 + 1
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with P (x) = 4x

x2+1
and Q(x) = x

x2+1

I.F.= e
�
Pdx = e

�
4x

x2+1
dx = e2 ln (x2+1) = (x2 + 1)2

Multiplying by I.F. (x2 + 1)2, we get an exact equa-
tion

(x2 + 1)2y + 4x(x2 + 1)y = x(x2 + 1)

Rewriting

d

dx
{y(x2 + 1)2} = x3 + x

Integrating

y · (x2 + 1)2 =
�

(x3 + x)dx + c = x4

4
+ x2

2
+ c

4y(x2 + 1)2 = x4 + 2x2 + 4c

Since y(2) = 1, put x = 2 and y = 1

4.25 = 16+ 8+ 4c ... c = 19

The particular solution is

4y(x2 + 1)2 = x4 + 2x2 + 76

Example 5: Solve
dy

dx
= 1

(1+x2)
(etan−1 x − y).

Solution: Standard form

dy

dx
+ 1

1+ x2
y = etan−1 x

1+ x2

with P (x) = 1

1+x2 ,Q(x) = etan−1 x

1+x2 .

I.F. = e
�
P (x)dx = e

�
dx

1+x2 = etan−1 x

Multiplying by I.F. etan−1 x , we get

etan−1 x · dy
dx
+ 1

1+ x2
· y · etan−1 x = (etan−1 x )2

(1+ x2)

Rewriting

d

dx
{y · etan−1 x} = (etan−1 x)2

(1+ x2)

Integrating

y · etan−1 x =
�

(etan−1 x )2

(1+ x2)
dx + c

=
�

(etan−1 x )2 · d · (tan−1 x)+ c

y · etan−1 x = (etan−1 x )2

2
+ c

Example 6: Solve y2dx + (3xy − 1)dy = 0.

Solution: Rewriting in standard form

dy

dx
= y2

1− 3xy

This is not linear in y (because of the presence of the
term y2). This is also not exact, not homogeneous,
nor separable. Instead if we swap the roles of x and
y by treating x as dependent variable and y as the
independent variable, the given equation can be re-
arranged as

dx

dy
+ 3

y
x = 1

y2

with P (y) = 3
y

and Q(y) = 1

y2

Now we get.

I.F.= e
�
P (y)dy = e

�
3
y dy = e3 ln y = eln y3 = y3

Multiplying by I.F. y3, we have

y3 dx

dy
+ 3xy2 = y

Rewriting

d

dy
(xy3) = y

Integrating w.r.t. y

xy3 =
�

ydy + c = y2

2
+ c

2xy3 − y2 = 2c

Example 7: Solve
dy

dx
+ y ln y

x−ln y
= 0.

Solution: This equation is not linear in y because
of the presence of the term ln y. It is neither separa-
ble, nor homogeneous nor exact. But with x taken as
dependent variable the equation can be rewritten as

dx

dy
+ 1

y ln y
· x = 1

y

which is the standard form of first order linear differ-

ential equation with P (y) = 1
y ln y

,Q(y) = 1
y

so that

I.F. is e
�
P (y)dy = exp

��
dy

y ln y

�
= eln(ln y) = ln y

Multiplying with the I.F. ln y, we get the exact
equation

ln y · dx
dy
+ 1

y
x = ln y

y
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or
d

dy
(x · ln y) = ln y

y

Integrating w.r.t. y

x · ln y =
�

ln y

y
dy =

�
ln yd(ln y) = (ln y)2

2
+ c

So the solution is

2x ln y = (ln y)2 + 2c

EXERCISE

Solve the following:

1. 2(y − 4x2)dx + xdy = 0

Ans. x2y = 2x4 + c

2. y  + y cot x = 2x cosec x

Ans. y = (x2 + c) cosec x

3. y  + y = 1

1+e2x

Ans. y = e−x · tan−1 ex + ce−x

4. (1+ x2)dy + 2xydx = cot xdx

Ans. y = log (sin x)+c

(1+x2)

5. y  + 2y = ex(3 sin 2x + 2 cos 2x)

Ans. y = ce−2x + ex · sin 2x

6. y  + y tan x + sin 2x, y(0) = 1

Ans. y = 3 cos x − 2 cos2 x

7. y  + y = ee
x

Ans. yex = ee
x + c

8. [y + (x + 1)2e3x]dx − (x + 1)dy = 0

Ans. y = ( 1
3
e3x + c)(x + 1)

9. dx + (3y − x)dy = 0

Ans. x − 3y − 3 = cey

10. dI
dt
+2I = 10e−2t , I = 0 when t = 0

Ans. I = 10te−2t

11. ydx + (3x − xy + 2)dy = 0

Hint: Examples 11 to 15 are linear when x is

considered as the dependent variable.

Ans. xy3 = 2y2 + 4y + 4+ cey

12. (1+ y2)dx + (x − tan−1 y)dy = 0

Ans. x = tan−1 y − 1+ ce− tan−1 y

13. y2dx + (xy − 2y2 − 1)dy = 0

Ans. xy = y2 + ln y + c

14. dx − (x + y + 1)dy = 0

Ans. x = −(y + 2)+ cey

15. ydx − (x + 2y3)dy = 0

Ans. x = y3 + cy

8.10 BERNOULLI∗ EQUATION

Nonlinear Equation Reducible to

Linear Form

A first order first degree differential equation of the
form

dy

dx
+ P (x)y = Q(x) · ya (1)

is known as Bernoulli equation, which is nonlinear

for any value of the real number a (except for a = 0

and 1).

For a = 0, (1) reduces to Linear first order D.E.

discussed in Section 8.9.

For a = 1, (1) reduces to linear separable D.E.,

considered in Section 8.4.
For any a, other than 0 and 1, the nonlinear first

order D.E. (1) can be reduced to linear D.E. by the
substitution

z = y1−a (2)

Substituting dz
dx
= (1− a)y−a dy

dx
and (2) in (1),

we get

1

1− a
ya dz

dx
+ P (x) · yaz = Q(x)ya

Simplifying, we get

dz

dx
+ (1− a)P (x)z = (1− a)Q(x)

which is a linear first order D.E. in the standard form,

discussed in Section 8.9.

* Jakob Bernoulli (1654–1705), Swiss mathematician.
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Method of finding solution to Bernoulli equation.

Step I. Rewrite the given equation in standard

Bernoulli equation.

Step II. Identify a, P (x) and Q(x).

Step III. Introduce a new variable

z = y1−a

and obtain the resultant first order linear

equation in z.

Step IV. Solve linear equation in z by the method

discussed in Section 8.9.

Note: A nonlinear equation of the form

f  (y)
dy

dx
+ P (x)f (y) = Q(x) (3)

can be reduced to linear equation in z by the substi-
tution

z = f (y)

(see Worked Out Example 5 and Exercise Examples

7, 8, 9, 10 on pages 8.24 and 8.25)
Now consider the Bernoulli equation

dy

dx
+ P (x)y = Q(x)ya (1)

Multiplying throughout by (1− a)y−a , we get

(1− a)y−a dy

dx
+ (1− a)P (x)y1−a = (1− a)Q(x) (4)

Let f (y) = y1−a , so that f  (y) = (1− a)y−a

The Equation (4) becomes

f  (y)
dy

dx
+ (1− a)P (x)f (y) = (1− a)Q(x)

Thus we observe that Bernoulli Equation (1) is a

special case of Equation (3).

WORKED OUT EXAMPLES

Example 1: Solve 3y  + xy = xy−2.

Solution: Rewriting y  + x
3
y = x

3
y−2

This is a Bernoulli equation with a = −2

Introducing z = y1−a = y1−(−2) = y3, so that

dz

dx
= 3y2 dy

dx

Substituting in D.E.

1

3

dz

dx
+ 1

3
xz = 1

3
x

This is a linear equation but is also a separable equa-
tion

dz

dx
= x(1− z)

or
dz

z− 1
= −xdx

Integrating ln (z− 1) = − x2

2
+ c0

(z− 1) = e−
x2

2 · c

where c = ec0

Replacing z, we get the solution as

y3 = 1+ ce−
x2

2

Example 2: Solve cos xdy = y(sin x − y)dx.

Solution: y  − y · tan x = − sec x · y2

Bernoulli with a = 2

Put z = y1−a = y1−2 = y−1,

dz

dx
= − 1

y2

dy

dx

Substituting

dz

dx
+ z · tan x = sec x

which is a linear equation with I.F.= e
�

tan xd =
sec x.

Multiplying throughout by I.F. sec x, we get

sec x · dz
dx
+ z · sec x · tan x = sec2 x

or
d

dx
(z sec x)= sec2 x

Integrating z sec x = �
sec2 x dx + c

z sec x = tan x + c
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Replacing z,

1

y
sec x = tan x + c

or sec x = y(tan x + c).

Example 3: Solve 2xyy  = y2 − 2x3, y(1) = 2.

Solution: Rewriting y  − 1
2x
y = −x2y−1 which is

a Bernoulli equation with a = −1 so that the substi-

tution is z = y1−a = y1−(−1) = y2, and dz
dx
= 2y

dy

dx
.

With these the D.E. takes the linear form as

dz

dx
− 1

x
z = −2x2

The I.F. is e
� − 1

x dx = e− ln x = eln 1
x = 1

x

By multiplying D.E. with I.F.: 1
x
, we get

1

x

dz

dx
− 1

x2
z=−2x

or
d

dx
(z · 1

x
)=−2x

Integrating z · 1
x
= � −2xdx + c = −x2 + c

z = −x3 + cx

Replacing z, y2 = cx − x3

Since y(1) = 2, 22 = c · 1− 13 ... c = 5. Thus the

required solution is y2 = x(5− x2).

Example 4: Solve (xy5 + y)dx − dy = 0.

Solution: Rewriting y  − y = xy5. This is

Bernoulli equation with a = 5 so that put z = y1−a

= y1−5 = y−4. Also dz
dx
= −4 · y−5 dy

dx
·

Substituting in the D.E., we get

dz

dx
+ 4z = −4x

I.F. for this linear equation is e
�

4dx = e4x

Multiplying D.E. with I.F. e4x , we get

e4x · dz
dx
+ 4z · e4x =−4xe4x

or
d

dx
(z · e4x )=−4xe4x

Integrating z · e4x = −4
�
xe4xdx + c

Integrating by parts

ze4x = −xe4x + 1

4
e4x + c

Replacing z by y−4, we have

y−4e4x = −xe4x + 1

4
e4x + c

Example 5: Solve

y − 2 cos x · coty + sin2 x · cosec y · cos x = 0

Solution: Rewriting sin y · y  = 2 cos x · cos y −
cos x. sin2 x or
− sin y

dy

dx
+ (cos y)(2 cos x) = sin2 x · cos x

Put v = cos y, so that
dv

dy
= − sin y

with this substitution the given equation becomes

dv

dx
+ 2v cos x = sin2 x · cos x

This is a linear equation for which the I.F. is

e
�

2 cos xdx = e2 sin x

Then the solution is

ve2 sin x =
�

e2 sin x · sin2 x · cos xdx

= 1

2
e2 sin x · sin2 x− 1

2
e2 sin x · sin x+ 1

4
e2 sin x + c

Replacing v by cos y, we get the required solution as

cos y = 1

2
sin2 x − 1

2
sin x + 1

4
+ ce−2 sin x

EXERCISE

1. (y − y2x2 sin x)dx + xdy = 0

Ans. yx(c + cos x) = 1

2. y1 + y + y2(sin x − cos x) = 0

Ans. y(cex − sin x) = 1

3. dz
dx
+ � z

x

�
log z = z

x
(log z)2

Hint: Put v = log z

Ans. (1+ cx) log z = 1

4. y1 + y

2x
= x

y3 , y(1) = 2

Ans. x2y4 = x4 + 15

Hint: Take x as dependent variable in exam-

ples 5, 6.

5. dx − (x2y3 + xy)dy = 0
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Ans. x(2− y2)+ cxe
−y2

2 = 1

6. y2dx + (xy − x3)dy = 0

Ans. 2x2 − 3y = cx2y3

7. xy   − 3y  = 4x2

Hint: Put y  = v

Ans. y = c1x
4 − 4

3
x3 + c2

8. y  = Ay − Byn with A,B, n; constants and

n  = 0, 1

Ans. y1−n = �
B
A
+ ce(1−n)Ax

�
9. xy  + y = x3y6

Ans. (cx2 + 2.5)x3y5 = 1

10. y2 · y  − y3 tan x − sin x · cos2 x = 0

Ans. 2y3 + cos3 x = 2c sec3 x

Hint: Putf (y) = v in Examples 11, 12, 13, 14,

to reduce the given equation to linear form.

11. y  + x sin 2y = x3 cos2 y

Ans. 2y = (x2 − 1)+ 2ce−x2

12. [(x + 1)4 + 2 sin y2]dx − 2y(x + 1)

× cos y2dy = 0

Ans. 2 sin y2 = (x + 1)4 + 2c(x + 1)2

13. (4e−y sin x − 1)dx − dy = 0

Ans. ey = 2(sin x − cos x)+ ce−x

14. y  − cot y + x cot y = 0

Ans. sec y = x + 1+ cex

15. x(4y − 8y−3)dx + dy = 0

Ans. y4 = (2+ ce−8x2
).

8.11 FIRST ORDER NONLINEAR

DIFFERENTIAL EQUATIONS

A differential equation of first order and higher (more

than first) degree is of the form

f (x, y, y  ) = 0 (1)

or f (x, y, p) = 0 (1∗)

where
dy

dx
≡ y  = p. The degree of D.E. (of p) in (1)

is more than one. So (1∗) is a nonlinear first order

D.E.

Example: p3 − p2 (cos x + ex)+ 5py + 2y2 = 0,

first order, 3rd degree, nonlinear

A first order D.E. of nth degree has the general

form

pn + a1(x, y)pn−1 + a2(x, y)pn−2 + · · ·
+ an−1(x, y)p + an(x, y) = 0 (2)

Here the coefficients a1(x, y), a2(x, y), . . . an(x, y)

are functions of x and y.

In several cases, (2) can be solved by reducing (2)

to first order and first degree (n) equation (s), by (a)

solving for p (b) solving for y (c) solving for x.

Equations Solvable for p

If the LHS of (2), which is an nth degree polynomial

in p, can be resolved into n linear real factor then (2)

takes the form

(p − b1)(p − b2) · · · (p − bn) = 0 (3)

where b1, b2, . . ., bn are all functions of x and y.

Equating the n factors in the RHS of (3) to zero, the

solution of the nth degree equation (2) reduces to

the problem of solving n first order and first degree

differential equations given by

dy

dx
= b1(x, y),

dy

dx
= b2(x, y), · · · , dy

dx
= bn(x, y)

Solving these n equations, we obtain

f1(x, y, c) = 0, f2(x, y, c) = 0,· · · , fn(x, y, c) = 0

(4)

Thus the solution of (2) is given by (4) or by the

product of the functions in (4)

i.e., f1(x, y, c) · f2(x, y, c) · · · fn(x, y, c) = 0

Equations Solvable for y

Solving the given equation f (x, y, p) = 0 for y, we

get

y = F (x, p) (1)

Differentiating (1) w.r.t. ‘x’ we get

dy

dx
= ∂F

∂x
+ ∂F

∂p

dp

dx
.
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Since p = dy

dx
, this equation takes the form

p = φ

�
x, p,

dp

dx

�
(2)

which is a first order and first degree differential

equation in the variable p. Solving (2), suppose we

obtain its solution as

ψ(x, p, c) = 0 (3)

Then eliminating ‘p’ between (1) and (3), we get the

required solution of (1). When it is not possible to

eliminate p, equations expressing x and y interms

of p as x = x(p, c), y = y(p, c) will give the para-

metric representation of the solution of (1) in the

parameter p.

Equations Solvable for x

Solving f (x, y, p) = 0 for x, we obtain

x = F (y, p) (4)

which on differentiation w.r.t. y gives

dx

dy
= 1

p
= ∂F

∂y
+ ∂F

∂p

dp

dy
(5)

which is first order and first degree differential equa-

tion in p,

1

p
= φ

�
x, p,

dp

dy

�
. (6)

Suppose ψ(x, p, c) = 0 be the solution of (6). Then

the required solution is obtained by eliminatingp be-

tween the equations x = F (y, p) and ψ(x, p, c) =
0. When elimination of p is not possible we can ex-

press x = x(p, c) and y = y(p, c) which will be the

parametric representation of the solution.

WORKED OUT EXAMPLES

Equations Solvable for p

Example 1: Solve x2
�

dy

dx

�2

+ xy
dy

dx
− 6y2 = 0

Solution: This is a first order, second degree, non-

linear homogeneous DE (all the three terms are

non-linear). Introducing
dy

dx
= p, the given equation

takes the form

x2p2 + xyp − 6y2 = 0

Factorizing, (px + 3y)(px − 2y) = 0

or (px + 3y) = 0 and (px − 2y) = 0

Solving

x
dy

dx
+ 3y = 0,

dy

y
+ 3

dx

x
= 0, yx3 = c

x
dy

dx
− 2y = 0,

dy

y
− 2dx

x
= 0,

y

x2
= c

The primitive of the given DE is

(yx3 − c)(y − cx2) = 0

Example 2: Solve p3+2xp2−y2p2−2xy2p=0

Solution: This is a first order, 3rd degree, nonlinear

homogeneous DE. Rewriting�
p2(p + 2x)− y2p(p + 2x) =
= (p + 2x)p(p − y2) = 0

Thus p + 2x = 0, p = 0, p − y2 = 0.

Solving y + x2 = c, y = c, −1

y
= x + c.

So the general solution is

(y + x2 − c)(y − c)(xy + cy + 1) = 0

Example 3: Solve 2p3−(2x+4 sin x−cos x)·p2

−(x cos x − 4x sin x+sin 2x)p+x · sin 2x=0

Solution: Observe that p = x satisfies the given

DE. i.e., 2x3 − (2x + 4 sin x − cos x) x2

− (x cos x − 4x sin x + sin 2x)x + x sin 2x

= 0. Thus (p − x) is factor. Rewriting the given DE

(p − x)[2p2 − (4 sin x − cos x)p − sin 2x] = 0 or

(p − x)[2p(p − 2 sin x)+ cos x(p − 2 sin x)] = 0

Thus (p − x)(p − 2 sin x)(2p + cos x) = 0.

Equating the three factors to zero

p − x = 0 or
dy

dx
= x ... y = x2

2
+ c
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p − 2 sin x = 0 or dy − 2 sin xdx = 0

... y + 2 cos x = c

2p + cos x = 0 or 2dy + cos xdx = 0

... 2y + sin x = c

The general solution is

(2y − x2 − c)(y + 2 cos x − c)(2y + sin x − c) = 0

Equations Solvable for p

EXERCISE

Solve

1. p2 − 5p + 6 = 0

Ans. (y − 3x − c)(y − 2x − c) = 0

Hint: (p − 3)(p − 2) = 0

2. 4y2p2 + 2pxy(3x + 1)+ 3x3 = 0

Ans. (x2 + 2y2 − c)(x3 + y2 − c) = 0

Hint: (2py + x)(2py + 3x2) = 0

3. p2 + 2py cot x − y2 = 0

Ans. [y(1+ cos x)− c][y(1− cos x)− c] = 0

Hint: (p + y cot x − y cosec x)(p + y cot x

+y cosec x) = 0

4. p − 1
p
− x

y
+ y

x
= 0

Ans. (xy − c)(x2 − y2 − c) = 0

Hint:
�
p + y

x

� �
p − x

y

�
= 0

5. xyp2 + p(3x2 − 2y2)− 6xy = 0

Ans. (y − cx2)(y2 + 3x2 + c) = 0

Hint: (py + 3x)(px − 2y) = 0

6. p3 − (y + 2x − ex−y)p2 + (2xy − 2xex−y

− yex−y)p + 2xyex−y = 0

Ans. (y − cex)(y − x2 − c)(ey + ex − c) = 0

Hint: (p − y)(p − 2x)(p + ex−y) = 0

7. yp2 + (x − y)p − x = 0

Ans. (y − x − c)(y2 + x2 − c) = 0

Hint: (p − 1)
�
p + x

y

�
= 0

8. p4 − (x + 2y + 1)p3 + (x + 2y + 2xy)p2

− 2xyp = 0

Ans. (y − c)(y − x − c)(2y − x2 − c)×
×(y − ce2x) = 0

Hint: p(p − 1)(p − x)(p − 2y) = 0

9. xyp2 + (x2 + xy + y2)p + x2 + xy = 0

Ans. (2xy + x2 − c)(x2 + y2 − c) = 0

Hint: (xp + x + y)(yp + x) = 0

10. (x2 + x)p2 + (x2 + x − 2xy − y)p + y2−
−xy = 0

Ans. [y − c(x + 1)][y + x ln cx] = 0

Hint: [(x + 1)p − y][xp + x − y] = 0

WORKED OUT EXAMPLES

Equations Solvable for y

Example 1: Find the general solution of 3x4p2 −
xp − y = 0

Solution: This is a first order, second degree, non-

linear homogeneous DE which can be solved for y.

Thus

y = 3x4p2 − xp

Differentiating w.r.t. x both sides, we get

dy

dx
= 12x3p2 + 6x4p

dp

dx
− p − x

dp

dx

or (2p − 12x3p2)+ (x − 6x4p)
dp

dx

= (1− 6x3p)

�
2p + x

dp

dx

�
= 0

Equating the second order to zero we have

2p + x
dp

dx
= 0 or 2

dx

x
+ dp

p
so px2 = c

Eliminating p from the given DE by using p

= c

x2 , we get

y = 3x4
� c

x2

�2

− x · c

x2
= 3c2 − c

x
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The required general solution is

xy = c(3cx − 1)

Example 2: Solve p tan p − y + log cosp = 0

Solution: Solving y = p tan p + log cosp.

Differentiating w.r.t. x both sides, we get

dy

dx
= tan p · dp

dx
+ p · sec2 p · dp

dx

+ 1

cosp
· (− sin p) · dp

dx

or p

�
1− sec2 p · dp

dx

�
= 0

Considering the second factor,

1− sec2 p
dp

dx
= 0

solving dx = sec2 pdp or x = tan p + c.

Since p cannot be eliminated, the general solution

in the parametric form (with parametric p) is x =
tan p + c, y = p tan p + log cosp

EXERCISE

Solve

1. p2x4 − px − y = 0

Ans. y = c2x − c

Hint:
�
2p + x

dp

dx

�
(1− 2x3p) = 0

2. 2p2y − p3x + 16x2 = 0

Ans. 2+ c2y − c3x2 = 0

Hint: (p3 + 32x)
�
p − x

dp

dx

�
= 0

3. yp + p2 − x = 0

Ans. x = − p

p1
ln (p + p1)+ cp

p1
, y = −p

− 1
p1

ln (p + p1)+ c
p1

where p1 =
�
p2 − 1

Hint: dx
dp
+ x · 1

p3−p
= − p

p2−1

4. 2x + p2 − y + px = 0

Ans. x = 2(2− p)+ ce−p /2, y = 8− p2 + (2+
p)ce−p /2

Hint: dx
dp
+ 1

2
x = −p

5. p3 +mp2 − ay − amx = 0

Ans. ax = c + 3p2

2
−mp +m2 log (p +m) and

ay = − m[c + 3
2
p2 −mp +m2 log (p +m)]

+ mp2 + p3

Hint: adx = p(3p+2m)

(p+m)
dp

=
�
3p −m+ m2

p+m

�
dp

6. 2px + tan−1(xp2)− y = 0

Ans. y = 2
√
cx + tan−1 c

Hint:
�
p + 2x

dp

dx

� �
1+ p

1+x2p4

�
= 0

WORKED OUT EXAMPLES

Equations Solvable for x

Example 1: Find the primitive ofp2 − xp + y = 0

Solution: Solving for x, we obtain

x = p2 + y

p

Differentiating w.r.t. ‘y’, we get

dx

dy
= 1

p
= dp

dy
+

�
p − y

dp

dy

�
p2

(p2 − y)
dp

dy
= 0

so
dp

dy
= 0 with solution p = c = constant. Eliminat-

ing p from the given equation

c2 − xc + y = 0 or y = cx − c2

which is the required primitive.

Example 2: Solve xp2 − yp − y = 0

Solution: Solving for x we obtain

x = y(1+ p)

p2
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Differentiating w.r.t. ‘y’, we get

dx

dy
= 1

p
= 1+ p

p2
+ y

�
p2 − (1+ p)2p

p4

�
dp

dy

or
dp

dy
= p

2+p
· 1
y

Separating the variables and integrating

2+ p

p
dp = dy

y

ln p2 + p = ln y + c1 or

ln (p2ep) = ln y + c1 so

y = cp2ep and x = 1+p

p2 · y = c(1+ p)ep which is

required primitive in the parametric form.

EXERCISE

Equation Solvable for x

Obtain the primitive for the following equatons:

1. 6p2y2 − y + 3px = 0

Ans. y3 = 3cx + 6c2

Hint: 2p + y
dp

dy
= 0, py2 = c

2. 4y2 + p3 = 2xyp

Ans. 2y = c(c − x)2

Hint: p − 2y
dp

dy
= 0, p2 = cy

3. 3py + 4x = p3y

Ans. y = c · P, x = 1
4
cp(p2 − 3) · P where

P−1 = −(p2 − 4)9/10 · (p2 + 1)3/5

Hint:
dy

y
+ 3p(p2−1)dp

(p2−4)(p2+1)
= 0;

3p(p2−1)

(p2−4)(p2+1)
=

9
10

�
1

p+2
+ 1

p−2

�
+ 3

5

2p

p2+1

4. y2p3 − y + 2px = 0

Ans. y2 = 2cx + c3

Hint: p + y
dp

dy
= d

dy
(py) = 0, py = c

5. 3px − y + 6p2y2 = 0

Ans. y3 = 3c(x + 2c)

Hint: 2p + y
dp

dy
= 0, py2 = c

6. p2 + y − x = 0

Ans. x = c − 2[p + log (p − 1)],

y = c − 2
�

1
2
p2 + p + log (p − 1)

�
Hint:

dp

dy
= 1−p

2p2

8.12 CLAIRAUT’S∗ EQUATION

Clairaut’s equation is a first order and higher degree

DE of the form

y = x
dy

dx
+ ψ

�
dy

dx

�
(1)

This equation (1) is linear in y and x. Here ψ is a

known function of
dy

dx
.

Introducing
dy

dx
= p, equation (1) takes the form

y = xp + ψ(p) (2)

Differentiating both sides of (2) w.r.t. x, we have

dy

dx
= p + x

dp

dx
+ dψ

dp
· dp
dx

since p itself is a function of x. On simplification�
x + dψ

dp

�
dp

dx
= 0

Thus
dp

dx
= 0 (3)

and x + dψ

dp
= 0 (4)

Integrating (3), we get p = constant = c. Substituting

p = c in (2), the complete integral of the Clairaut’s

equation (1) is given by

y = x · c + ψ(c) (5)

which is a one parameter family of straight lines;

with c as the parameter. Thus the complete solution

of Clairaut’s equation is obtained simply by replac-

ing
dy

dx
(i.e., p) by constant c. Besides the complete

integral (5), one may obtain a “singular solution”

* Alexis Claude Clairaut (1713-1765), French mathematician.



8.30 HIGHER ENGINEERING MATHEMATICS—III

of Clairaut’s equation which satisfies the Clairaut’s

equation (1) but not obtained from the complete in-

tegral (5) for any value of c.

Now solving (4), we get p as a function of x. Thus

(2) becomes

y = x · p(x)+ ψ(p(x)) (6)

Differentiating (6) w.r.t. x, we get

dy

dx
= p + x

dp

dx
+ dψ

dp
· dp
dx

= p +
�
x + dψ

dp

�
dp

dx
.

Using (4),
dy

dx
= p + 0 · dp

dx
= p

Substituting (6), Clairaut’s DE (1), is satis-

fied, i.e., x · p + ψ(p) = y = x · dy

dx
+ ψ

�
dy

dx

�
=

x · p + ψ(p) since
dy

dx
= p.

Thus the singular solution (6) known as p-

discriminant equation is readily obtained by elim-

inating the parameter p from the two equations (2)

and (4):

y = xp + ψ(p)

x + dψ

dp
= 0

Note 1: Singular solution (6) is the envelope of the

family of straight lines represented by the complete

integral (5).

Note 2: Singular solution can also be obtained by

eliminating the constant c form the two equations (5)

and (4):

y = xc + ψ(c)

x + dψ(c)

dc
= 0

Note 3: Equations which are not in the Clairaut’s

form can be reduced to Clairaut’s form by suitable

substitutions (transformations) (see W.E. 3, 4, 5, 6).

WORKED OUT EXAMPLES

Example 1: Solve y = xy  − (y  )2

Solution: Clairaut’s equation is y = xp − p2. Its

general solution is obtained by replacing p by a con-

stant c. Thus y = xc − c2 is the required complete

integral.

To obtain the singular solution, differentiate the gen-

eral solution w.r.t. ‘c’. Then

0 = x − 2c ... c = x

2

Eliminating c from the G, S, we get

y = cx − c2 = x

2
· x − x2

4
= x2

4

or x2 = 4y

O

y

x

Parabola
(Singular
solution)

Family of
straight lines
(General
solution)

Fig. 8.3

Thus the singular solution x2 = 4y (which is a

parabola) is the envelope of the one parameter family

of straight lines y = cx − c2 (representing the gen-

eral solution).

Example 2: Solve p = ln(px − y).

Solution: Rewriting ep = px − y or y = xp − ep

which is Clairaut’s equation. The complete solution

is obtained by replacing p by c. Thus y = cx − ec is

the complete integral or c = ln (cx − y).

To obtain the singular solution, differentiate

c = ln (cx − y)

w.r.t. c then 1 = x
cx−y

. Solving c = x+y

x
. Eliminating

c from the complete integeral.

y = x + y

x
· x − e

x+y
x or ln x = x + y

x
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The singular solution is y = x (ln x − 1) (which can-

not be obtained from the complete solution for any

value of c).

Example 3: Find the primitive y = 4xp − 16y3p2

Solution: This equation is not in the Clairaut’s

form. Multiplying the given equation by y3, we have

y4 = 4xy3p − 16y6p2

put y4 = v so 4y3 dy

dx
= dv

dx
. Then

v = x
dv

dx
−
�
dv

dx

�2

which is a Clairaut’s equation in v. Its general solu-

tion is obtained by replacing dv
dx

by a constant c. Thus

the general solution is

v = xc − c2

or y4 = cx − c2

Example 4: Solve sin y cos2 x = cos2 yp2 +
sin x · cos x cos yp.

Solution: To reduce to Clairaut’s form, put sin y =
u and sin x = v. Then

cos y

cos x
· dy

dx
= du

dv
. Dividing the

given equation throughtout by cos2 x, we get

sin y = cos2 y

cos2 x
· p2 + sin x · cos y

cos x
· p

Substituting forp ≡ dy

dx
= cos x

cos y
du
dv

the DE transforms

to

u =
�
du

dv

�2

+ v

�
du

dv

�
which is in the Clairaut’s form. The general solution

is

u = cv + c2

or sin y = c · sin x + c2

Example 5: Solve (p − 1)e3x + p3e2y = 0.

Solution: To reduce to Clairaut’s form, put ex =
X, ey = Y ; then P = dY

dX
= ey

ex
dy

dx
= Y

X
p.

Substituting for p = X
Y

dY
dX
= X

Y
P the given equation

reduces to�
X

Y
P − 1

�
X3 + X3

Y 3
P 3Y 2 = 0

or Y = YP + P 3

which is Clairaut’s DE. Its general solution is

Y = Xc + c3

or ey = cex + c3

Example 6: Solve (x2 + y2)(1+ p)2 =

2(x + y) (1+ p)(x + yp)− (x + yp)2

Solution: Rewriting x2 + y2 = 2(x+y)(x+yp)

(1+p)
−

−
�

x+yp

1+p

�2

. Put x2 + y2 = v so 2x + 2yp = dv
dx

and put x + y = u so 1+ p = du
dx

. Then

dv

du
= 2(x + yp)

(1+ p)

Substituting the given equation reduces to

i.e., v = udv
du
− 1

4

�
dv
du

�2
which is a Clairaut’s DE. Its general solution is v =
uc − 1

4
c2 or x2 + y2 = c(x + y)− 1

4
c2

EXERCISE

Clairaut’s Equations (CE)

1. Find the general solution (GS) and singular

solution (SS) the Clairaut’s equationy = xp +
ap√
1+p2

.

Ans. GS: y = cx + ac√
1+c2

; SS: x2/3 + y2/3 = a2/3

Hint: Parametric form of SS: x = −a/(1+
c2)3/2, y = ac3/(1+ c2)3/2

2. Determine GS and SS of p = sin (y − xp).

Ans. GS: y = cx + sin−1 c, SS: y = (x2 − 1)+
sin−1

�
x2−1
x

�
Hint: y = px + sin−1 p is CE.

3. Find GS and SS of y = px + p3

Ans. GS: y = cx + c3, SS: 27y2 = −4x3

4. Solve (x2 − 1)p2 − 2xyp + y2 − 1 = 0

Ans. GS: (x2 − 1)c2 − 2xyc + y2 − 1 = 0, SS:

x2 + y2 = 1.
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Hint: (y − xp)2 − 1− p2 = 0, y =
xp ±

�
1− p2, two DE’s each of Clairaut’s

form.

5. Solve y = px + logp

Ans. GS: y = cx + log c

6. Solve p2y + px3 − x2y = 0

Ans. y2 = cx2 + c2

Hint: use u = x2, v = y2

7. Solve y = xy  + a
2y 

Ans. GS: y = cx + a
2c

, one parameter family of

straight lines. SS: y2 = 2ax parabola, which

is the envelope of the family of straight lines.

8. Solve y = px + 2p2

Ans. GS: y = cx + c2, SS: x2 = −8y (parabola)

9. Solve y = 3px + 6p2y2

Ans. GS: y3 = cx + 2
3
c2, SS: 8y3 + 3x2 = 0

(semicubical parabola)

10. Solve a2p = (py + x)(px − y)

Ans. y2 = cx2 − a2c/(c + 1)

Hint: Use u = x2, v = y2, v =
uP − a2P/(P + 1)

11. y + y2 + p(2y − 2xy − x + 2)+ xp2(x −
2) = 0

Ans. GS: (y − cx + 2c)(y − cx + 1) = 0

Hint: (y − px + 2p)(y − px + 1) = 0, each

of Clairaut’s form

12. (px2 + y2)(px + y) = (p + 1)2

Ans. c2(x + y)− cxy − 1 = 0

Hint: Use x + y = u, xy = v, P = dv
du

, v =
Pu− 1

P
.

8.13 LAGRANGE’S EQUATION

Lagrange’s equation is a first order and higher degree

DE of the form

y = xφ

�
dy

dx

�
+ ψ

�
dy

dx

�
(1)

Here φ and ψ are known functions of
dy

dx
. Equation

(1) is linear in x and y. Note that Clairaut’s equa-

tion is a particular case of Lagrange’s equation when

φ
�

dy

dx

�
≡ dy

dx
.

Putting y  ≡ dy

dx
= p, equation (1) takes the form

y = xφ(p)+ ψ(p) (2)

Differentiating both sides of (2) w.r.t. x, we get

dy

dx
= φ(p)+ x · dφ

dp
· dp
dx
+ dψ

dp
· dp
dx

or p − φ(p) = [xφ (p)+ ψ  (p)]
dp

dx
(3)

Rewriting (3) with x as a function of p, we get

dx

dp
− x · φ (p)

p − φ(p)
= ψ  (p)

p − φ(p)
(4)

which is a linear DE in x. Integrating (4), we obtain

x = χ (p, c) (5)

Now the p-discriminant equation obtained by elim-

inating the parameter p from the two equations (2)

and (5) is of the form ,(x, y, c) = 0 which is the re-

quired complete integral of the Lagrange’s equation.

The general solution of (1) is also written in the

parametric form

x = χ (p, c)

and y = χ (p, c) · φ(p)+ ψ(p)

Here p is the parameter.

When p = constant = c, equation (3) is satisfied pro-

vided LHS of (3) is zero i.e., c is the root of the

equation c − φ(c) = 0. Thus the singular solution of

(1) is

y = xφ(c)+ ψ(c)

where c satisfies the condition φ(c) = c.

Lagranges’ Equation

WORKED OUT EXAMPLES

Example 1: Solve y = xy  2 − 1

y  
.
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Solution: This is a Lagrange’s equation. Put y  = p

then y = xp2 − 1
p

. Differentiating

dy = pdx = x · 2p · dp + p2dx + 1

p2
dp

since
dy

dx
= p i.e., dy = p dx. Rewriting

(p − p2)
dx

dp
+ x(−2p) = 1

p2

or dx
dp
+ x 2

(p−1)
= −1

p3(p−1)

This is a linear DE in x with I.F.
�
e

�
2 dp

p−1

�
= (p−1)2.

Integrating

x · (p − 1)2 =
� −1

p3(p − 1)
· (p − 1)2 · dp

=
�

1− p

p3
dp = − 1

2p2
+ 1

p
+ c∗

... x = cp2 + 2p − 1

2p2(p − 1)2
(1)

Substituting x in the expression for y, we get

y = xp2 − 1

p
= cp2 + 2p − 1

2p2(p − 1)2
· p2 − 1

p

i.e., y = cp2 + 2p − 1

2(p − 1)2
− 1

p
(2)

The general solution in the parametric form is given

by (1) and (2) with parameter p.

EXERCISE

Integrate the following equations

1. y = 2xy  + ln y  

Ans. x = c

p2 − 1
p

, y = ln p + 2c
p
− 2

Hint: dx
dp
+ 2

p
x = − 1

p2

2. y = 2xy  + sin y  

Ans. x = c

p2 − cosp

p2 − sin p

p
, y = 2c

p
− 2 cosp

p

− sin p

Note: y = 0 is SS satisfying DE.

Hint: dx
dp
+ 2

p
x = − cosp

p

3. y = xy  2 + y  2

Ans. GS: y = (c +√x + 1)2

Hint: dx
dp
+ x 2

p−1
= 2

1−p

Note: y = 0 is SS

4. y = x(1+ y  )+ y  2

Ans. x = ce−p − 2p + 2,

y = c(p + 1)e−p− p2 + 2

5. y = y
�

dy

dx

�2

+ 2xy  

Ans. 4cx = 4c2 − y2

8.14 FORMATION OF ORDINARY

DIFFERENTIAL EQUATIONS BY

ELIMINATION OF ARBITRARY

CONSTANTS

Consider the equation

y = x2 + c (1)

where c is an “arbitrary constant”.

For each particular value of c, equation (1) rep-

resents a different parabola. Since c can vary, c is

often called a “parameter” to distinguish it from the

main variables x and y. Thus equation (1) represents

a “one-parameter family of curves” in the xy-plane,

namely a family of parabolas.
Thus the general equation

f (x, y, c) = 0 (2)

represents a one-parameter family of curves with c

as the parameter.
Now differentiating (1) w.r.t. x, we get

dy

dx
= 2x (3)

Thus, each member of the one-parameter family

of parabolas (1) has the “property” that the slope at

any point is 2x.

Hence differential Equation (3), satisfied by all

members of the family (1), is often called the “dif-

ferential equation of the family”.
Now differentiating (2) w.r.t. x and eliminating the

arbitrary constant c we obtain a D.E.

F (x, y, y ) = 0 (4)

Thus (4) is the “differential equation” of the

“one-parameter family of curves (2)”, expressing the
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“property” common to all the curves of the family

(2).

Similarly all circles of unit radius represented by

(x − c1)2 + (y − c2)2 = 1

with c1 and c2 as arbitrary constants forms a “two-

parameter family” of curves (in this case circles).

Method of forming D.E. by elimination of arbitrary

constants.

Step I. Differentiate (2) w.r.t. x.

Step II. Eliminate the arbitrary constant c between

(2) and equation obtained in Step I.

Note 1: If there are n arbitrary constants present

in the equation of an “n-parameter family of curves”

then in step I, differentiate successively n times and

eliminate the n constants from the n+ 1 equations.

Note 2: Sometimes, during differentiation itself,

the arbitrary constants may get eliminated.

WORKED OUT EXAMPLES

Example 1: Obtain (form) the differential equation

from each of the following functions by the elimina-

tion of arbitrary constants:

a. y = c1e
x + c2e

−2x (1)

Solution: Differentiating w.r.t. x

y = c1e
x − 2c2e

−2x (2)

Since elimination of c1 and c2 is not possible at
this stage, (see note 1) differentiate once more
w.r.t. x

y  = c1e
x + 4c2e

−2x (3)

From (1) c1e
x = y − c2e

−2x (4)

Eliminate c1 by substituting (4) in (2) and (3)

y = (y − c2e
−2x )− 2c2e

−2x = y − 3c2e
−2x (5)

y  = (y − c2e
−2x )+ 4c2e

−2x = y + 3c2e
−2x (6)

Eliminate c2 by adding (5) and (6)

y + y  = 2y

Thus the D.E. is y   + y  − 2y = 0.

b. y = ax2 + bx + c

Solution: Differentiating w.r.t. x

y = 2ax + b

Differentiating again

y  = 2a

Differentiating once more, we get the required
D.E.

y   = 0

which is free of the given 3 arbitrary constants.

c. y = a cos (ln x)+ b sin (ln x)

Solution: Differentiating w.r.t. x

y = −a

x
sin (ln x)+ b

x
· cos (ln x)

xy = −a sin (ln x)+ b cos (ln x)

Differentiating once again w.r.t. x

y + xy  = −a

x
· cos (ln x)− b

x
sin (ln x)

xy + x2y  = −[a cos (ln x)+ b sin (ln x)]

=−y

Thus the required D.E. is

x2y  + xy + y = 0.

Example 2: Obtain the differential equation of the

family of plane curves which are:

a. all circles of unit radius:

Solution: The general evaluation of all circles

with unit radius and centre at any point (a, b) is

(x − a2)+ (y − b)2 = 12 (1)

Here a and b are arbitrary constants. Differenti-

ating (1) w.r.t. x, we get

2(x − a)+ 2(y − b)y = 0 (2)

Differentiating this once more w.r.t. x

1+ (y − b)y  + y 2 = 0 (3)

Solving (3),

(y − b) = −(1+ y 2)

y  
(4)
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Substituting (4) in (2), we get

x − a = −(y − b)y = (1+ y 2)

y  
y (5)

Substituting (4) and (5) in (1), we have

(x − a)2 + (y − b)2 =
�

1+ y 2

y  
· y 
�2

+
�

1+ y 2

y  

�
= 1

(1+ y 2)2[y2 + 1]= y  2

Thus the required D.E. is

(1+ y 2)3 = y  2

b. family of parabolas with foci at the origin and

axes along the x-axis:

Solution: The equation is

y2 = 4ax + 4a2 (1)

Differentiating (1) w.r.t. x

2yy = 4a (2)

Substituting ‘a’ from (2) in (1), we get

y2 =
�

2yy x + 4 ·
�
yy 

2

��2

So the required D.E. is

2xy + y(y )2 − y = 0

c. family of confocal central conics:

x2

a2 + c
+ y2

b2 + c
= 1 (1)

with a, b fixed, c arbitrary constant.

Solution: Differentiating (1) w.r.t. x

2x

a2 + c
+ 2yy 

b2 + c
= 0 (2)

Solving yy  (a2 + c) = −x(b2 + c)

c = −(xb2 + yy a2)

yy + x
(3)

Substituting c from (3) in (1)

x2�
x(a2−b2)
yy +x

� + y2�
yy (b2−a2)

yy +x

� = 1

Simplifying, we get

(yy + x)(xy − y) = (a2 − b2)y 

EXERCISE

1. Form (obtain) the differential equation by elim-

inating the arbitrary constants from each of the

following equations:

a. x3 − 3x2y = c

Ans. xy  + 2y − x = 0

b. y sin x − xy2 = c

Ans. y  = y(y−cos x)

(sin x−2xy)

c. y = c(1− e−
x
c )

Ans. y ln y  + x(1− y  ) = 0

d. y = A sin (Bx + c)

whereB is a parameter,not to be eliminated.

Ans. y   + B2y = 0

e. y = a e3x + be−x

Ans. y   + 2y  − 3y = 0

f. y = c1 e
ax · cos bx + c2 e

ax sin bx

Here a, b are parameters not to be elimi-

nated.

Ans. y   − 2a y  + (a2 + b2)y = 0

g. y = cx + b
c
, parameter ‘b’ not to be elimi-

nated.

Ans. x(y  )2 − yy  + b = 0

h. y = c1 e
x + c2e

2x + c3 e
3x

Ans. y    − 3y   + 11y  − 6y = 0

i. y = c1 e
x + c e−x + c3 cos x + c4 sin x

Ans. y  2 − y = 0

2. Obtain (form) the differential equation of family

of plane curves which are:

a. family of circles having their centres on the

y-axis
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Hint: x2 + (y − b)2 = r2

Ans. xy   − (y  )3 − y  = 0

b. parabolas having their vertices at the origin

and their foci on the y-axis

Hint: x2 = 4ay

Ans. y  = 2y

x

c. all tangents to the parabola y2 = 2x

Hint: cy = x + c2

2

Ans. 2x(y  )2 − 2yy  + 1 = 0

d. all straight lines at a unit distance from the

origin

Ans. (xy  − y)2 = 1+ (y  )2

e. all circles r = 2a (sin θ − cos θ )

Ans. (cos θ − sin θ )dr+r(cos θ+ sin θ )dθ = 0

f. all cissoids r = a sin θ tan θ

Ans. sin θ · cos θ dr − r(1+ cos2 θ )dθ = 0

g. all strophoids r = a (sec θ + tan θ )

Ans. dr − r sec θ dθ = 0.

8.15 GEOMETRICAL APPLICATIONS

Tangent, Normal, Subtangent and

Subnormal

If the analytical representation of a “property” of a

curve involves the derivative, then the solution of

the resulting differential equation represents a one-

parameter family of curves, such that each member

of the family having this “property”.

The following “properties” of curves involving

derivatives are listed below:

Rectangular coordinates Let P (x, y) be any

(general) point of a curve QPR given by f (x, y) = 0

(Fig. 8.4).

Let (X, Y ) be any (general) point on the tangent

AP (refer Fig. 8.5). Then the equation of the tangent

AP at the point P (x, y) is

a. Y − y = dy

dx
(X − x) (1)

Similarly if (X, Y ) is any point on the normal PB

S
lo
p
e

Slope

S
lo
pe

Fig. 8.4

Fig. 8.5

then the equation of the normal linePB atP (x, y) is

b. Y − y = −dx

dy
(X − x) (2)

c. Intercept of tangent line:

on x-axis: x − y

y 
(3)

on y-axis: y − xy (4)

(3) and (4) are obtained from (1) by putting

Y = 0 and X = 0 respectively.

d. Intercept of normal line:

on x-axis: x + yy (5)

on y-axis: y + x

y 
(6)

(5) and (6) obtained from (2) by putting Y = 0

and X = 0 respectively.
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e Length of tangent line from P :

to x-axis:
y
�

1+ y 2

y 
(7)

to y-axis: x

�
1+ y 2 (8)

f. Length of normal line from P:

to x-axis: y

�
1+ y 2 (9)

to y-axis:
x
�

1+ y 2

y 
(10)

g. Length of subtangent AD:
y

y (11)

h. Length of subnormal DB: yy  (12)

WORKED OUT EXAMPLES

Example 1: The slope at any point (x, y) of a curve

is 1+ y/x. If the curve passes through (1, 1) find its

equation.

Solution:

dy

dx
= 1+ y

x

This is a linear equation

dy

dx
− 1

x
y = 1

with I.F. = e
� − dx

x = e− ln x = 1

x

The general solution is

y · 1

x
=
�

1

x
· 1 · d x + c = ln x + c

y = cx + x ln x

Since it passes through (1, 1), we put x = 1, y = 1
then

1 = c · 1+ 1 · 0 ... c = 1

Thus the required equation of the curve is

y = x(1+ ln x)

Example 2: The tangent line to a curve at any point

(x, y) on it has its intercept on the x-axis always

equal to x
2
. Find the equation of the curve if it passes

through (1, 2).

Solution: Let (X, Y ) be any point on the normal
line to the curve at a point (x, y) on the curve. Then
the equation of the tangent line, having slope y  is

Y − y = y (X − x)

The x-intercept: X is obtained by putting Y = 0.

X = x − y

y 

It is given that this x-intercept = x
2

Thus x − y

y 
= x

2

or
y

y 
= x

2

i.e., y = 2y

x

Integrating y = c x2.
Since it passes through (1, 2)

2 = c · 1 ... c = 2

The required curve is

y = 2x2

Example 3: Determine the equation of the tangent,

equation of the normal, lengths of the tangent, nor-

mal, subtangent and subnormal to the curve y = 3x2

at the point P (−1, 3).

Solution:

y = 6x, y |P = −6, y|P = 3

Equation of tangent:

Y − 3 = −6(X + 1) i.e., Y + 6X + 3 = 0

Equation of normal:

Y − 3 = 1

6
(X + 1) i.e., 6Y −X − 4 = 0

Length of tangent:������y
�

1+
�
dx

dy

�2

������ = 3

�
1+ 1

36
=
�

37

4
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Length of normal:������y
�

1+
�
dy

dx

�2

������ = 3
√

1+ 36 = 3
√

37

Length of subtangent:����y dx

dy

���� =
����3 · 1

−6

���� = −1

2

Length of subnormal:����y dy

dx

���� =
��� 3 · (−6)

��� = 18

Example 4: For the curve y = a ln (x2 − a2),

show that the sum of the (lengths of) tangent and

subtangent varies as the product of the coordinates

of the point.

Solution:

y = 2ax

x2 − a2
, 1+ y 2 =

�
x2 + a2

x2 − a2

�2

Length of tangent:

T = y
�

1+ y 2

y 
= a · ln (x2 − a2) · x

2 + a2

x2 − a2
· x

2 − a2

2ax

= (x2 + a2)

2x
ln (x2 − a2)

Length of subtangent:

S.T . = y

y 
= a ln (x2 − a2) · (x2 − a2)

2ax

Thus

T + S.T .= (x2 + a2)

2x
ln (x2− a2)+ x2 − a2

2x
ln (x2 − a2)

= x · ln (x2 − a2) = x · y
a
= xy

a

= product of the coordinates.

Example 5: Determine the curve in which the

length of the subnormal is proportional to the square

of the ordinate.

Solution: Length of subnormal = y
dy

dx
∝ y2

y
dy

dx
= a y2

where a is proportionality constant.

Solving
dy

y
= a dx

ln y = ax + c1

y = c eax

Example 6: Find the equation of the curve in which

the portion of the tangent included between the co-

ordinate axes is divided in the ratio m : n at the point

of contact. Hence or otherwise show that when the

point of contact is the mid point, then the curve is a

rectangular hyperbola (see Fig. 8.6).

Solution: Let V (X, Y ) be any point on the tangent

QPR. Then the equation of the tangent QPR to the

curve SPT at the point of contact P (x, y) is

Y − y = dy

dx
(X − x)

x-intercept of the tangent (obtained by putting Y=0)

is x − y

y 

T

m

S

Q

n

R
X

P( , )x y

V X Y( , )

Y

Fig. 8.6

Similarly y-intercept is y + xy  

Thus Q(0, y + xy  ) and R(x − y

y , 0).

Since P divide QR in the ratio m : n, the abscissa x

of the point of contact P is

x =
m
�
x − y

y 
�
+ n · 0

m+ n

Rewriting y = −my

nx

which is a separable equation.
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Integrating

n
dy

y
= −m

dx

x

we have

xmyn = constant.

Special Case: When p is the midpoint m = n so
that the curve is

xy = c

which is a rectangular hyperbola.

EXERCISE

1. Find the curve passing through (2, 1) and hav-

ing the property that at any point (x, y) of the

curve, the intercept of the tangent on the y-axis

is equal to 2xy2.

Ans. x − x2y + 2y = 0

2. Find the equation of a curve through (2, 1) and

having y intercept of its tangent line at any

point is always equal to the slope at that point.

Ans. 3y = x + 1

3. Find the equation of the tangent, normal and

lengths of tangent, normal, subtangent and

subnormal to the curve y = cos 2x at the point

P (0, 1).

Ans. Equation of tangent: y = 1

Equation of normal: x = 0

Length of tangent:∞
Length of normal: 1

Length of subtangent:∞
Length of subnormal: 0

4. Show that the subnormal at any point of the
curve

y2x2 = a2(x2 − a2)

varies inversely as the cube of its abscissa.

5. Prove that the subtangent at any point of the
curve

xmyn = am+n

varies as the abscissa.

6. For the exponential curve

y = ae
x
b

show that the subtangent at any point is con-

stant b.

7. Find the equation of the curve for which the

subnormal at any point has a constant value b.

Ans. y2 = 2bx + c

8. Find the shape of a reflector such that the light

coming from a fixed source is reflected in par-

allel rays.

Ans. parabolic reflector: y2 = 2cx + c2

9. Determine the curve which passes through

(1, e) and is such that at each point of the curve

the subtangent is proportional to the square of

the abscissa.

Ans. k ln y = − 1
x
+ k + 1

(k is the proportionality constant)

10. Prove that a curve, for which the slope of the

tangent at any point of the curve is proportional

to the abscissa of the point of tangency, is a

parabola.

8.16 ORTHOGONAL∗ TRAJECTORIES∗∗

OF CURVES

In Cartesian and Polar Coordinates

Given one (first) family of curves, if there exists an-

other (second) family of curves such that each curve

of the first family cuts each curve of the second fam-

ily at right angles,∗∗∗ then the first family is said to be

orthogonal trajectories of the second family and vice

versa. In other words each curve in either family is

orthogonal (i.e., perpendicular) to every curve in the

other family. In such a case the two families are said

to be mutually orthogonal and each family is said

to be the orthogonal trajectories of the other family.

∗Greek: orthogonal (right angle, 90◦ or perpendicular).
∗∗Latin: trajectories (cut across).
∗∗∗Two curves cut at right angles if the angle between their cor-

responding tangents at the point of intersection is 90◦.
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Classical examples of orthogonal trajectories are:

i. Meridians and parallels on world globe.

ii. Curves of steepest descent and contour lines on

a map.

iii. Curves of electric force and equipotential lines

(constant voltage).

iv. Stream lines and equipotential lines (of constant

velocity potential).

v. Lines of heat flow and isothermal curves.

Case I: Rectangular coordinates: method of

finding orthogonal trajectories of a family of

curves

F (x, y, c) = 0 (1)

Step I. Obtain the differential equation of the fam-

ily of curves (1) by eliminating the arbitrary

constant c, resulting in

dy

dx
= f (x, y) (2)

Step II. Consider the differential equation

dy

dx
= − 1

f (x, y)
(3)

which will be the differential equation of

the family of orthogonal trajectories (since

the slope curves of first family is f (x, y),

while the slope of curves second family is

− 1
f (x,y)

, so that their product f ·
�
− 1

f

�
=

−1 i.e., the curves of first family are at right

angles to the curves of the second family).

Step III. Solving Equation (3) yields

G(x, y, d) = 0 (4)

The family of curves (4) is the required or-

thogonal trajectories (O.T.) of the family of

curves (1), with d as the parameter.

Case II: Polar coordinates Consider a curve c

whose equation is expressed in polar coordinates

tan ψ = r
dθ

dr
(5)

where ψ is the angle measured positive in counter

clockwise direction from radius vector to the tangent

line at any point P (see Fig. 8.7).

Fig. 8.7

Orthogonality The two curves c1 and c2 are said

to intersect orthogonally at the point P (Fig. 8.8) if

ψ2 = ψ1 +
π

2
(6)

Fig. 8.8
so that

tan ψ2 = tan
�
ψ1 +

π

2

�
= −cot ψ1 = −

1

tan ψ1
(7)

i.e., tanψ2 · tan ψ1 = −1

From (5) we observe that at the point of intersec-

tion P , the value of the product r dθ
dr

for one curve

c1 must be the negative reciprocal (see (7)) of value

of that product for the other curve i.e., if (5) is

the differential equation corresponding to c1 then

the differential equation corresponding to its ortho-

gonal trajectory c2 is given by tan ψ = − 1
r
dr
dθ

.

Method of obtaining orthogonal trajectories in

polar coordinates

Step I. Suppose the first family of curves has dif-

ferential equation

P (r, θ )dr +Q(r, θ )dθ = 0 (8)
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Then

dθ

dr
=−P

Q

r
dθ

dr
=−r

P

Q
(9)

Step II. The differential equation corresponding to
the orthogonal trajectories (by (7)) is

r
dθ

dr
= Q

rP

i.e., Q dr − r2Pdθ = 0 (10)

Step III. Solve (10). The solution of (10) is the re-

quired orthogonal trajectories.

Self-orthogonal A given family of curves is said

to be “self-orthogonal” if its family of orthogonal tra-

jectories is the same as the given family (see Worked

Out Example 6 and Exercise Examples 18, 19, 20).

WORKED OUT EXAMPLES

O.T.: In rectangular coordinates

Find the orthogonal trajectories (O.T.) of each of the

following one-parameter family of curves:

Example 1: xy = c

Solution:

D.E. y + x
dy

dx
= 0

...
dy

dx
= −y

x

D.E. corresponding to O.T. is

dy

dx
= x

y

Solving, y2 − x2 = 2c is the required orthogonal

trajectories.

Example 2: ex + e−y = c.

Solution:

D.E. ex − e−y · y  = 0 or y  = ex+y.

D.E. corresponding to O.T. is

y = −e−(x+y)

Solving

dy

dx
= −e−x

ey

eydy + e−xdx = 0

ey − e−x = k

Example 3: y2 = cx.

Solution:

D.E. 2yy  = c

Eliminating c, we get

2yy = c = y2

x

y = y

2x

D.E. corresponding to O.T. is

y = −2x

y

Solving
y2

2
+ x2 = c.

Example 4: Show that family of curves

x2 + 4y2 = c1 and y = c2x
4 are (mutually) ortho-

gonal (to each other).

Solution: Slope of tangent of any curve of the first
family of curves is obtained by differentiating it
w.r.t. x.

i.e., 2x + 8yy = 0

or y 1 = −2x

8y
= − x

4y
(*)

Similarly for the second family by eliminating c2

dy

dx
= 4x3c2 = 4x3 · y

x4
= 4y

x

i.e., y 2 =
4y

x
(**)

The given two families are orthogonal if the product
of their slopes is −1. From (*) and (**)

y 1 · y 2 =
�−x

4y

��
4y

x

�
= −1

Hence the result.

Example 5: Find particular member of orthogo-

nal trajectories of x2 + cy2 = 1 passing through the

point (2, 1).
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Solution:

D.E. 2x + 2cyy  = 0

Eliminating c

x + yy c = 0, x + yy ·
�

1− x2

y2

�
= 0

i.e., y = xy

x2 − 1

D.E. corresponding to O.T.

y = 1− x2

xy

Solving

y dy = 1− x2

x
dx = dx

x
− x dx

y2

2
+ x2

2
= ln x + c1

x2 = c2e
x2+y2

(*)

(*) is the required O.T.

To find the particular member of this O.T.
Put x = 2 when y = 1 in (*)

4 = c2e
5 ... c2 = 4e−5

Thus the particular curve of O.T. passing through the
point (2, 1) is

x2 = 4e−5ex
2+y2

Example6: Show that the family of parabolasy2 =
4cx + 4c2 is “self-orthogonal”.

Solution:

D.E. 2yy  = 4c + 0

Substituting c = yy 
2

in given equation, we get

y2 = 4x ·
�
yy 

2

�
+ 4

�
yy 

2

�2

y2 = 2xyy + y2y 2 (*)

Put p = y  so that

y2 = 2xyp + y2p2 (**)

This is the D.E. of the given family of parabolas.

In order to get D.E. corresponding to the O.T. replace
y  by − 1

p
in (*). Then

y2 = 2xy

�
− 1

p

�
+ y2

�
− 1

p

�2

p2y2 = 2xy(−p)+ y2

Rewriting

y2 = 2xyp + p2y2

which is same as equation (**). Thus D.E. (*) is D.E.

for the given family and its orthogonal trajectories.

Hence the given family is “self-orthogonal”.

EXERCISE

Rectangular coordinates

Find the orthogonal trajectories (O.T.) of each of the

following family of curves. [Here c, a, b, k are all

constants.]

1. x − 4y = c

Ans. 4x + y = k

2. x2 + y2 = c2

Ans. y = kx

3. x2 − y2 = c

Ans. xy = k

4. y2 = cx3

Ans. (x + 1)2 + y2 = a2

5. y = c (sec x + tan x)

Ans. y2 = 2(k − sin x)

6. x2 − y2 = cx

Ans. y(y2 + 3x2) = k

7. y2 = x3

a−x

Ans. (x2 + y2)2 = b(2x2 + y2)

8. (a + x)y2 = x2(3a − x)

Ans. (x2 + y2)5 = cy3(5x2 + y2)

9. y = cx2

Ans. x2

2
+ y2 = c∗
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10. Circles through origin with centres on the

x-axis.

Ans. Circles through origin with centres on y-axis.

11. Family of parabolas through origin and focii

on y-axis.

Ans. Ellipses with centres at origin and foci on

x-axis.

12. The family of ellipses having centre at the ori-

gin, a focus at the point (c, 0) and semi-major

axis of length 2c.

Ans. y = cx
4
3

13. Given x2 + 3y2 = cy, find that member of the

orthogonal trajectories which passes through

the point (1, 2)

Ans. y2 = x2(3x + 1)

14. Given y = ce−2x + 3x, find that member of

the O.T. which passes through point (0, 3)

Ans. 9x − 3y + 5 = −4e6(3−y)

15. Find constant ‘e’ such that y3 = c1x and

x2 + ey2 = c2 are orthogonal to each other.

Ans. e = 1
3

16. Find the value of constant d such that the

parabolas y = c1x
2 + d are the orthogonal tra-

jectories of the family of ellipses x2 + 2y2 −
y = c2.

Ans. d = 1
4

17. Show that the family of parabolas y2 = 2cx +
c2 is “self-orthogonal”.

18. Show that the family of confocal conics

x2

a
+ y2

a − b
= 1

is “self-orthogonal”. Here a is an arbitrary con-

stant.

19. Find the orthogonal trajectories of a system of

confocal and coaxial parabolas.

Ans. The family of confocal and coaxial parabo-

las by having x-axis as their axis is given by

y2 = 4a(x + a) is “self-orthogonal”.

20. Show that the family of confocal conics

x2

a2 + c
+ y2

b2 + c
= 1

is “self-orthogonal”. Here a and b are given

constants.

21. Find the O.T. of xp + cyp = 1,p = constant.

Ans. y2 = 2x2−p

2−p
− x2 + c, if p  = 2

c1x
2 = ex

2+y2
if p = 2

22. Show that the two families of one parameter

family of curvesu(x, y) = c1 and v(x, y) = c2

are mutually orthogonal provided they satisfy

the (Cauchy-Riemann) equations ux = vy and

uy = −vx .

WORKED OUT EXAMPLES

O.T.: In polar coordinates

Find the orthogonal trajectories (O.T.) of each of the

following family of curves:

Example 1: r = a cos2 θ

Solution:

Differentiating r = a cos2 θ w.r.t. r

dr = 2a cos θ (− sin θ )dθ

Eliminating a = r

cos2 θ
, we get

dr =−2 · r

cos2 θ
· cos θ · sin θ · dθ

r
dθ

dr
=− 1

2 tan θ

D.E. corresponding to O.T. is

r
dθ

dr
= 2 tan θ

Solving

dθ

tan θ
= 2

dr

r

ln sin θ = 2 ln r + c

So the O.T. is given by

r2 = b sin θ.
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Example 2: r2 = a sin 2θ

Solution:

Differentiating w.r.t. r

2r dr = 2a cos 2θ dθ

Eliminating a = r2

sin 2θ
, we get

r dr = r2

sin 2θ
· cos 2θ dθ

r
dθ

dr
= tan 2θ

D.E. of O.T. is

r
dθ

dr
= −cot 2θ

Solving

− sin 2θ

cos 2θ
dθ = dr

r

Integrating ln cos 2θ = 2 ln r + c

O.T. ... r2 = b cos 2θ

EXERCISE

Polar coordinates

Find the orthogonal trajectories (O.T.) of each of the

following family of curves:

1. Cardioids: r = a(1+ cos θ )

Ans. r = b(1− cos θ )

Note: Family of cardioids is self-orthogonal.

2. Confocal and coaxial parabolas (self-
orthogonal)

r = 2a

(1+ cos θ )

Ans. r = 2b
1−cos θ

3.
�
r2 + k2

r

�
cos θ = d

d being a parameter

Ans. (r2 − k2) sin θ = cr

4. r = 2a(sin θ + cos θ )

Ans. r = 2b(sin θ − cos θ )

5. r = 4a sec θ · tan θ

Ans. r2(1+ sin2 θ ) = b2

6. r = a(1+ sin2 θ )

Ans. r2 = b cos θ · cotθ

7. Cissoids r = a sin θ tan θ

Ans. r2 = b(1+ cos2 θ )

8. r = k
1+2 cos θ

Ans. r2 sin3 θ = b(1+ cos θ )

9. Stophoids r = a(sec θ + tan θ )

Ans. r = b e− sin θ

8.17 LAW OF NATURAL GROWTH

Let x(t) be the population at any time t . Assume that
population grows at a rate directly proportional to
the amount of population present at that time. Then
the D.E. governing this phenomena is the first order,
first degree linear equation

dx

dt
= kx

where k is the proportionality constant. Here k > 0
since this is a growth phenomena. The solution of
the D.E. is

x(t) = c ekt

where c is constant of integration. Here, c, k are

determined from the two given (initial) conditions.

WORKED OUT EXAMPLES

Example: A bacterial population B is known to

have a rate of growth ∝ to B itself. If between noon

and 2 PM the population triples, at what time, no con-

trols being exerted, shouldB become 100 times what

it was at noon.

Solution: Equation is

dB

dt
= kB
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whose solution is B(t) = cekt . Let B0 be the initial
population at t = 0, using this condition

B0 = ce0 ... c = B0

Thus B = B0e
kt

Since population triples i.e., becomes 3B0 between
noon and 2 PM i.e., in two hours, we use this condition
to find k

3B0 = B0e
k·2

Thus k = 1

2
ln 3 = 0.54930

Hence the population rule is

B(t) = B0e
0.54930 t

To find the time at which population becomes 100
times the original i.e., 100B0 we put B = 100B0 in
the above equation and solve for t .

100B0 = B0e
0·54930 t

Solving

t = ln 100

0 · 54930
= 8.3837015

i.e., at 8.383 PM population becomes 100 times the

original population.

EXERCISE

1. In a certain culture of bacteria the rate of in-

crease is proportional to the number present.

(a) If it is found that the number doubles in 4

hours, how many may be expected at the end

of 12 hours. (b) If there are 104 at the end of

3 hours and 4 · 104 at the end of 5 hours, how

many were in the beginning.

Ans. a. 8 times the original number

b. 104

8
bacteria at the beginning

2. If the population of a country doubles in 50

years, in how many years will it treble under

the assumption that the rate of increase is pro-

portional to the number of inhabitants.

Ans. 79 years

3. In a certain bacteria culture the rate of increase

in the number of bacteria is ∝ to the number

present. (a) If the number triples in 5 hrs how

many will be present in 10 hrs, (b) when will

the number present be 10 times the number

initially present.

Ans. a. 9 times the original number

b. 10.48 hours

4. The number N of bacteria in a culture grew at

a rate proportional to N . The value of N was

initially 100 and increased to 332 in one hour,

what would be the value of N after 1 1
2

hours.

Ans. 604.9 ≈ 605

5. In a culture of yeast, the active ferment doubles

itself in 3 hours. Assuming that the quantity

increases at a rate proportional to itself, deter-

mine the number of times it multiplies itself in

15 hours.

Ans. It multiplies itself 32 times.

6. Find the time required for a sum of money to

double itself at 5% per annum compounded

continuously.

Ans. 13.9 years.

8.18 LAW OF NATURAL DECAY

The DE

dm

dt
= −k m, k > 0

describes the decay phenomena where it is assumed
that the material m(t) at any time t decays at a rate
which is proportional to the amount present. The so-
lution is

m(t) = c e−kt

If initially at, t = 0, m0 is the amount present then

m(t) = m0e
−kt

WORKED OUT EXAMPLES

Example: Radium decomposes at a rate ∝ the

quantity of radium present. Suppose that it is found
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that in 25 years approximately 1.1% of a certain

quantity of radium has decomposed. Determine ap-

proximately how long will it take for one-half of the

original amount of radium to decompose.

Solution: Let m be the amount of radioactive mate-

rial radium present at time t . Let m0 be initial (orig-

inal) amount of radium at t = 0. By the decay rule

dm

dt
= −km

whose solution is

m(t) = ce−kt (1)

using the initial condition m(0) = m0 in (1), we get

m0 = m(0) = ce0

... c = m0

Thus

m = m0e
−kt

Since 1.1% of original mass of radium decays in 25
years, the amount of mass of radium present when
t = 25 years is

�
1− 1.1

100

�
m0. Using this in (1)�

1− 1.1

100

�
m0 = m(25) = m0e

−k(25)

Thus

k = − 1

25
ln (1− 0.011) = 0.000443

In order to find the time taken for half the radium to
disintegrate (to decay) put m(t = t∗) = 1

2
m0 in (1).

1

2
m0 = m0e

−kt∗

Solving for t = ln 2
k
= 1564.66 ≈ 1565 years.

EXERCISE

1. Radium decomposes at a rate∝ to the amount

present. If a fraction p of the original amount

disappears in 1 year, how much will remain at

the end of 21 years ?

Ans.
�
1− 1

p

�21

times the original amount.

2. Find the half-life of uranium, which disinte-

grates at a rate ∝ to the amount present at any

instant given that m1 and m2 grams of uranium

are present at t1 and t2 respectively.

Ans. T = (t2−t1) log 2

log (m1/m2)

3. If half-life of uranium is 1500 years. (a) Find

percentage of original amount that will remain

after 4500 years, (b) Find in how many years

will only 1
10

of the original amount remain?

Ans. m = m0 e
−0.00046t ; (a) 1

8
th or 12.5% of the orig-

inal amount will remain after 4500 years; (b)

t = 4985 years.

4. Radium disintegrates at a rate ∝ to its mass.

When mass is 10 mgm, the rate of disintegra-

tion is 0.051mgm per day. How long will it take

for the mass to be reduced to 10 to 5 mgm?

Ans. 135.9 days.

8.19 NEWTON’S∗ LAW OF COOLING

Physical experiments show that the time (t) rate

of change dT
dt

of the temperature T of a body is

proportional to the difference betweenT and the tem-

perature TA of the (ambient) surrounding medium.

This is known as Newton’s law of cooling. Tak-

ing the unknown proportionality constant as k, the

equation governing the Newton’s law of cooling is

a first order first degree linear separable differential

equation.

dT

dt
= −k(T − TA)

Here proportionality constant is taken as −k so
that k > 0. Separating the variables

dT

(T − TA)
= −k dt

Integrating

ln (T − TA) = −kt + c0

Solution is

∗Sir Isaac Newton (1642–1727), English physicist and mathe-
matician.
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T − TA = e−kt+c0 = c e−kt

where c = ec0 . Thus the solution to Newton’s law of

cooling is

T (t) = TA + c e−kt (1)

where the arbitrary constant c will be found by using

the initial condition T (t = 0) = T0.

Method of Solving the Problem of Newton’s

Law of Cooling

I. Identify TA, the temperature of the surrounding

medium, so that the general solution is given

by (1).

II. Use two conditions given to determine the con-

stant of integration c and unknown proportion-

ality constant k.

III. Substituting c and k, obtained from step II, in (1)

(a) the value of T for a given time t or (b) the

value of time t for a given temperature T can be

determined from (1).

WORKED OUT EXAMPLES

Example 1: A body of temperature 80◦F is placed

in a room of constant temperature 50◦F at time t = 0.

At the end of 5 minutes the body has cooled to a

temperature of 70◦F. (a) Find the temperature of the

body at the end of 10 minutes. (b) When will the

temperature of the body be 60◦F? (c) After how many

minutes will the temperature of the body be within

1◦F of the constant 50◦F temperature of the room?

Solution: Let T be the temperature of the body.

Then the T (t) = 50+ ce−kt since TA = 50.

Apply the condition T (0) = 80, to find c:

80= 50+ ce0 ... c = 30

Thus T (t)= 50+ 30 e−kt

use the condition T (5) = 70 to determine k:

70 = 50+ 30 e−k5

so that

k = 1

5
ln

�
3

2

�

i.e., k = 0.08109

Thus the required solution which gives the tempera-
ture of the body at any time t is

T (t)= 50+ 30 e−0.08109t

a. T (10) = 50+ 30 e−0.08109(10)  63.33◦F

b. 60 = 50+ 30 e−0.08109t

Solving

t = 5

�
ln 1

3

ln 2
3

�
≈ 13.55 mts

c. 51 = 50+ 30 e−0.08109t

Solving

t = 5

�
ln 1

30

ln 2
3

�
≈ 41.91 mts

Example 2: If a substance cools from 370 k to

330 k in 10 mts, when the temperature of the sur-

rounding air is 290 k, find the temperature of the

substance after 40 mts.

Solution: Here TA = 290 so that the solution is

T (t) = 290+ c e−kt

Use condition T (0) = 370 to find c

370= 290+ c · e0

... c = 80

Thus

T (t) = 290+ 80 e−kt

Use condition T (10) = 330 to find k
Thus

330 = 290+ 80 e−k·10

so that

k = ln 2

10
= 0.069314718

The required solution is

T (t) = 290+ 80 e−0.0693t
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Putting t = 40 mts in the above solution

T (40)= 290+ 80 · e−0.0693[40]

= 295

EXERCISE

1. Water at temperature 100 ◦C cools in 10 min to

80◦C in a room of temperature 25◦C. (a) Find

the temperature of water after 20 min. when is

the temperature (b) 40◦C (c) 26◦C ?

Ans. (a) 65.3◦C; (b) 52 min, (c) 139 min.

2. Water at temperature 10◦C takes 5 min to warm

up to 20◦C in a room at temperature 40◦C. (a)

Find the temperature after 20 min; after 1
2

hr,

(b) When will the temperature be 25◦C ?

Ans. (a) 34.1◦C, 37.4◦C; (b) 8.5 min.

3. A copper ball is heated to a temperature of

100◦C. Then at time t = 0 it is placed in water

which is maintained at a temperature of 30◦C.

At the end of 3 mts the temperature of the ball

is reduced to 70◦C. Find the time at which the

temperature of the ball drops to 31◦C.

Ans. 22.78 ≈ 23 mts.

4. A thermometer reading 18◦F is brought into a

room the temperature of which is 70◦F. One

minute later the thermometer reading is 31◦F.

Find the temperature reading 5 minutes after

the thermometer is first brought into the room.

Ans. 57.80235 ≈ 58◦F.

5. A body is heated to 110◦C and placed in air at

10◦C. After 1 hour its temperature is 60◦. How

much additional time is required for it to cool

to 30◦C ?

Ans.
log 5

log 2
− 1 = 2.3223− 1 = 1.3223 hours.

8.20 VELOCITY OF ESCAPE FROM EARTH

Consider the problem of determining the minimum

velocity with which a body (projectile) be projected

vertically upwards in the radial direction from the

earth so that the body will escape from earth and will

not return to earth. Here it is assumed that retardation

effect due to air resistance and gravitational pull of

other celestial bodies is neglected.

Let m be the mass of the body and M be the mass

of earth. Let r be the distance between the (centre of

the) earth and (the centre of gravity of) the body. Let

R be the radius of earth.

According to Newton’s second law and the uni-

versal law of gravitation and ignoring all forces (fric-

tional, magnetic or other) except for gravity, the ver-

tical motion of the body is described by the second

order differential equation

m
d2r

dt2
= −k

M ·m
r2

(1)

where k is the gravitational constant. The minus sign

indicates that the acceleration is negative.

Expressing the acceleration in terms of velocity

and distance d2r

dt2
= dv

dt
= dv

dr
dr
dt
= v dv

dr
, the equation

(1) can be written as

v
dv

dr
= −kM

r2

Here v is the velocity of the body. Separating the

variables and integrating, we get

v2

2
= kM

r
+ c (2)

Suppose v0 is the launching velocity with which the

body leavies the earth’s surface then the initial con-

ditions are:

for t = 0, r = R, dr
dt
= v0 (3)

Using (3) in (2), we have
v2

0

2
= kM

k
+ c or c = v2

0

2
− kM

R

Substituting c in (2), we get

v2

2
= kM

r
+ v2

0

2
− kM

R

or v2 = 2kM

r
+
�
v2

0 −
2kM

R

�
(4)

As r →∞, kM
r
→ 0, the velocity is always positive

if v2 > 0. Thus for any r and m, v2 > 0 provided

v2
0 −

2kM

R
≥ 0
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or v0 ≥
�

2kM
R

Thus the minimum velocity for the body to escape

from earth is

v0 =
�

2kM

R
.

Since the acceleration due to gravity g is given by

g = kM

R2

We have M = gR2

k
(5)

Hence the velocity of escape v0 is rewritten as

v0 =
�

2k
R
· gR2

k
= √2gR (6)

Note that velocity of escape v0 is independent of m,

the mass of the body. It depends only on M and R.
For radius of earth R = 63.107 cm and g = 981

cm/sec2, the velocity of escape from earth is

v0 =
�

2(981)(63.107) ≈ 11.2.105 cm

= 11.2 km/sec

Using (5) in (4) we get

v2 = 2gR2

r
+ v2

0 − 2gR (7)

Thus the body projected with an initial (launching)

velocity v0 from the earth’s surface in a radial di-

rection will travel with velocity v given by (7). If

v2
0 < 2gR then for some critical value r , the velocity

v given by (7) becomes zero, in which case the body

will stop and return to earth since the velocity will

change from positive to negative.

Cor: If the body is carried by a rocket and is sep-

arated from the rocket at a distance of r∗ miles

from the earth’s surface then the velocity of escape

v0 =
�

2gr2

R+r∗
In this case the differential equation is

v
dv

dr
= − Mg

(R + r∗)2

which on integrating gives

v2 = 2R2g

r
+
�
v2

0 − 2
R2g

R + r∗

�

WORKED OUT EXAMPLES

Example 1: Assuming the radius of moon as R =
1080 miles and acceleration of gravity at the surface

of the moon as 0.165 g where g is the acceleration

of gravity at the surface of the earth, determine the

velocity of escape for the moon.

Solution: Velocity of escape v0 =
√

2g∗R∗. Here

R∗ = 1080 miles, g∗ = .165 g = (.165)(6.09)×
10−3 so v2

0 = 2(.165)(6.09)× 10−3 × 1080 =
2.170476 or v0 = 1.47325 ≈ 1.5 miles/sec.

Example 2: Determine the velocity of escape for

a body which is carried by a rocket and is separated

from it at a distance of 1000 miles from the earth’s

surface.

Solution: The velocity of escape in this case is v0 =�
2gR2

R+r∗ . Here R = radius of earth = 3960 miles, r∗ =
1000 miles, g = 6.1× 10−3 miles/sec2. So

v0 =
�

2(6.1× 10−3)× (3960)2

3960+ 1000

=
�

(1.218)(156816)

4960

v0 =
√

38.5084 = 6.2055173 miles/sec2 (or 9.985

km/sec2) which is smaller than v0 = 6.95 miles/sec

when launched from the surface of earth (r∗ = 0).

EXERCISE

1. Suppose a body is carried by a rocked and is

separated from the rocket at a distance of 200

miles from the earth’s surface, determine the

minimum velocity at this point, sufficient for

escape from the earth.

Ans. v0 = 6.7923 miles/sec (10.913 km/sec)

Hint: v0=
�

2g R2

R+200
=
�

(1.218)(156816)

4160
=
√

45.90

2. Determine the escape velocities from the fol-

lowing bodies in the solar system with g∗ as
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the acceleration of gravity at the surface of the

body and R∗ the radius in miles.

(a) Venus : g∗ = 0.85 g, R∗ = 3800

(b) Mars: g∗ = 0.38 g, R∗ = 2100

(c) Jupiter: g∗ = 2.6 g, R∗ = 43, 000

(d) Sun: g∗ = 28 g, R∗ = 432000

Ans. (a) 6.3 (b) 3.1 (c) 37 (d) 380 miles/sec

Hint: g = 6.1× 10−3 miles/sec

8.21 SIMPLE ELECTRIC CIRCUITS

Electric current is a flow of charges, measured in am-

peres (A). Electric current flows due to a difference in

the electric potential or voltagemeasured in volts (v),

just as heat flows from one point to the other due to

a temperature difference. An electric circuit consists

of a source of electric energy (electromotive force)

and elements such as resistors, inductors or voltage

and capacitors. A mathematical model of an electric

circuit is represented by linear (first or second order)

differential equations. To form such an equation, the

following relationships are needed:

The voltage drop ER across a resistor is propor-

tional to the instantaneous current I (t) through it:

ER = RI (Ohm’s law) (1)

Here t is the time and the constant of proportion-

ality R is known as the resistance of the resistor,

measured in ohms (5). Resistor uses (consumes) en-

ergy. Resistor is represented by . The volt-

age drop EL across an inductor is proportional to the

instantaneous time rate of change of the current:

EL = L
dI

dt
(2)

Here the constant of proportionality L is known as

inductance of the inductor and is measured in henrys

(H). An inductor opposes a change in current and is

represented by . Inductor causes inertia

effect in electricity just as mass in mechanics. The

voltage drop Ec across a capacitor is proportional to

the instantaneous electric charge Q on the capacitor.

Ec =
1

c
Q (3)

Here c is called the capacitance and is measured

in farads (F) and is represented by . A capac-

itor stores energy. The charge Q is measured in

coulombs. Since current is the time rate of change

of charge,

I (t) = dQ

dt
(4)

Equation (3) may be written as

Ec =
1

c

� t

t0

I (u)du (5)

To determine the current I (t) in an electric cir-

cuit, a differential equation is formed using the

Kirchhoff’s∗ voltage law (KVL) which states that

the algebraic sum of all the instantaneous voltage

drops around any closed loop is zero or the voltage

impressed on a closed loop is equal to the sum of the

voltage drops in the rest of the loop. Consider two

simple cases of series or one-loop electric circuits.

I. RL-circuit

By (1), the voltage drop across the resistor is RI.
By (2), the voltage drop across the inductor is LdI

dt
.

Now applying Kirchhoff’s law to the RL-circuit, the
sum of the two voltage drops must be equal to elec-
tromotive force E(t). Thus the current I (t) in the
RL-circuit is determined by the first order linear dif-
ferential equation

LdI
dt
+ RI = E(t) . (6)

Rewriting (6), we have

dI

dt
+ R

L
I = E(t)

L

which has an integrating factor e
�

R
L
dt = e

R
L
t = eαt

where α = R
L

.

∗Gustav Robert Kirchhoff (1824-1887), German physicist.
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E(t)

R

L

RL-circuit

Fig. 8.9

Then the general solution of (6) is

I (t) · eαt =
�

E(t)

L
· eαtdt + c

or I (t) = e−αt
��

E(t)
L
· eαt dt + c

�
(7)

Case (a): Suppose E = E0 = constant. Then (7) sim-
plifies to

I (t) = e−αt

�
E0

L
· e

αt

α
+ c

�
= E0

R
+ ce−αt (8)

As t →∞, I (t) → E0

R
= constant. Here L

R
= 1

α
is

known as inductive time constant.

Case (b): Suppose E = E0 sin ωt . Then (7) reduces

I (t) = e−αt

�
E0

t

�
eαt sin ωtdt + c

�

since
�
eat sin btdt = eat

(a2+b2)
(a sin bt − b cos bt),

I (t) = ce−
R
L
t + E0

L
�

R2

L2 +ω2

��R
L

sin ωt − ω · cosωt

�

or

I (t) = ce−
R
L
t + E0

R2 + ω2L2
(R sin ωt − ωL · cosωt)

Using a cos x + b sin x =
√
a2 + b2 sin (x ± θ ),

where tan θ = sin θ
cos θ

= ± a
b
, the trigonometric terms

can be expressed in “phase-angle” form as

I (t) = ce−
R
L
t + E0√

R2+ω2L2
sin (ωt − θ ) (9)

where θ = tan−1 ωL
R

. The current I in (9) is expressed

as the sum of an exponential and sinusoidal terms.

As t →∞, the first term tends to zero. It is known as

the transient term. The second sinusoidal term cor-

responds to the steady-statewhich is free of e−t . The

period is 2π/ω and phase is θ . The steady-state solu-

tion is permanent, periodic and has the same period

as that of the applied external force.

Case (c): Suppose E = E0 cosωt . Then (7) reduces

to

I (t) = e−αt

�
E0

L

�
eαt cosωtdt + c

�

Since
�
eat cos btdt = eat

(a2+b2)
(a cos bt + b sin bt),

I (t) = ce−
R
L
t + E0

R2 + ω2L2
(R cosωt + ω · L · sin ωt)

Using a cos x + b sin x =
√
a2 + b2 cos (x ± θ )

where

tan θ = sin θ

cos θ
= ∓b

a

we have

I (t) = ce−
R
L
t + E0√

R2+ω2L2
cos (ωt − θ ) (10)

where θ = tan−1 ωL
R

.

II. RC-circuit

Using (1), (5) and Kirchhoff’s law, we get the integro-

differential equation.

RI + 1

c

�
I (t)dt = E(t)

which on differentiation reduces to

R
dI

dt
+ 1

c
I = dE

dt
(11)

or
dI

dt
+ 1

Rc
I = 1

R

dE

dt
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This is a first order linear differential equation with

integrating factor e
�

1
cR

dt = e
t
cR .

E(t)

R

C
RC-circuit

Fig. 8.10

The general solution of (11) is

I (t) · e t
cR =

�
1

R

dE

dt
· e t

cR · dt + c

or I (t) = e−
t
cR

��
1

R

dE

dt
e

t
cR dt + c

�
(12)

Case (a): Suppose E = E0 = constant. Then dE
dt

= 0.
The solution (12) reduces to

I (t) = ce−
t
cR (13)

Here RC is known as capacitive time constant of the

circuit.

Case (b): Suppose E = E0 sin ωt . Then

dE

dt
= ωE0 cosωt

From (12), we have

I (t) = ce−
t
cR + 1

R

�
e

t
cR · ωE0 · cosωt dt

= ce−
t
cR + ωE0

R

e
t
cR�

1
cR

�2 + ω2

�
1

cR
cosωt + ω sin ωt

�

= ce−
t
cR + ωE0c

1+ (ωcR)2
(cosωt + ωRc · sin ωt)

I (t) = ce−
t
cR + ωE0c

1+(ωcR)2
sin(ωt − θ ) (14)

where tan θ = − 1
ωRc

. The first term which is tran-

sient tends to zero as t →∞ while the second sinu-

soidal term corresponds to steady-state.

Case (b) Suppose E = E0 cosωt . Then

dE

dt
= −ωE0 sin ωt

From (12), we have

I (t) = ce−
t
cR − ωE0

R

�
e

t
cR · sin ωt dt

= ce−
t
cR − ωE0

R
· e

t
cR�

1
cR

�2+ ω2

�
1

cR
sin ωt − ω cosωt

�

= ce−
t
cR + ωE0c

1+ (ωRc)2
(ωRc cosωt − sin ωt)

I (t) = ce−
t
cR + ωE0c√

1+(ωRc)2
cos(ωt + θ ) (15)

where tan θ = − 1
ωRc

WORKED OUT EXAMPLES

RL-circuit

Example 1: Find the current at any time t > 0 in a

circuit having in series a constant electromotive force

40 V, a resistor 105, and an inductor 0.2 H given that

initial current is zero. Find the current when E(t) =
150 cos 200 t .

Solution: Equation for RL circuit is

L
dI

dt
+ RI = E(t)

40 V

10 W

0.2 H

Fig. 8.11

(a) L = 0.2, R = 10, E = 40

0.2
dI

dt
+ 10I = 40

dI

dt
+ 50I = 200

Its general solution is

I (t) · e50t =
�

200 · e50t + c = 200 · e
50t

50
+ c
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I (t) = e−50t [4e50t + c]

At t = 0, I = 0, so 0 = [4+ c] or c = −4. The cur-

rent I (t) is given by

I (t) = 4(1− e−50t )

(b) Here E(t) = 150 cos 200 tv. So equation is

dI

dt
+ 50I = 750 cos 200 t

The general solution is

I (t) · e50t = 750

�
e50t · cos 200tdt + c

= c + 750· e50t

(2500+ 40000)
(50 cos 200t

+ 200 sin 200t)

At t = 0, I = 0 so

0 = 3

170
50+ c ... c = −15

17

The current I (t) is given by

I (t) = 3

170
(50 cos 200t + 200 sin 200t)− 15

17
e−50t

RC-circuit

Example 1: A capacitor c = 0.01 F in series with

a resistor R = 20 ohms is charged from a battery

E0 = 10 V. Assuming that initially the capacitor is

completely uncharged, determine the charge Q(t),

voltage v(t) on the capacitor and the current I (t) in

the circuit.

Solution: Equation is

RI + Q

c
= E

20I + Q

0.01
= 10

or
dQ

dt
+ 5Q = 0.5

The general solution is

Q · e5t = 0.5

�
e5t dt = 0.5 · e

5t

5
+ c

Q = 0.1+ ce−5t

R = 20

C = 0.01 F

RC-circuit

E = 10 V

Fig. 8.12

At t = 0, Q = 0, so 0 = 0.1+ c ... c = −0.1

Thus the charge Q(t) = 0.1(1− e−5t )

Voltage v(t) = Q(t)

c
= 0.1(1−e−5t )

0.01
= 10(1− e−5t ).

The current I (t) = dQ

dt
= 0.5e−5t .

EXERCISE

1. A generator having emf 100 volts is connected

in series with a 10 ohm resistor and an inductor

of 2 henries. If the switch is closed at a time

t = 0, determine the current at time t > 0.

Ans. I = 10(1− e−5t )

Hint: I
. + 5I = 50, I (0) = 0.

2. Solve the above example when the generator

is replaced by one having an emf of 20 cos 5t

volts.

Ans. I = cos 5t + sin 5t − e−5t

Hint: I
. + 5I = 10 cos 5t , I (0) = 0, c = −1

3. A decaying emf E = 200e−5t is connected in

series with a 20 ohm resistor and 0.01 farad

capacitor. Find the charge and current at any

time assuming Q = 0 at t = 0. Show that the

charge reaches a maximum, calculate it and

find the time when it is reached.

Ans. Q(t) = 10te−5t , I (t) = 10e−5t − 50 t e−5t .

Maximum of Q = 10 · 1
5
· e−1 = 2

e
∼ 0.74

coulombs when t = 1
5

sec.

Hint: Q
. + 5Q = 10e−5t , to find maximum

dQ

dt
= 0.

4. Find the current I (t) in the RL-circuit with

R = 10 ohms, L = 100 henries, E = 40 volts
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when 0 ≤ t ≤ 100 and E = 0 when t > 100

and I (0) = 4

Ans. I = 4 when 0 ≤ t ≤ 100, I = 4 · e10e−t/10

when t > 100

Hint: I
. + 0.1I = 0.4, 0 ≤ t ≤ 100, I

. +
0.1I = 0 when t > 100, use I = 4 when t =
100.

5. Find I (t) in anRL-circuit withE = 10 V,R =
5 ohms L = (10− t) henry, when 0 ≤ t ≤ 10

sec, and L = 0 when t > 10 sec and I (0) = 0.

Ans. I = 2− 2(1− 0.1t)5 when 0 ≤ t ≤ 10; when

t > 10, I = 2

Hint: (10− t)I
. + 5I = 10 when 0 ≤ t ≤ 10.

6. Solve the (RL-circuit) equation LdI
dt
+ RI =

E(t) when (a)E(t) = E0 and the initial current

is I0.

(b) Solve the problem when L = 3 henries,

R = 15 ohms, emf is the 60 cycle sine wave

of amplitude 110 volts and I (t = 0) = 0.

Ans. (a) I (t) = E0

R
(1− e−Rt/L)+ I0e

−Rt/L

(b) I (t) = 22

3
· sin 120πt−24π cos 120πt+24πe−5t

1+576π2

Hint: 3I
. + 15I = 100 sin 120πt .

7. Solve the (RC-circuit) equation R dQ

dt
+ Q

c
=

E with R = 10 ohms, c = 10−3 farad and

E(t) = 100 sin 120πt assuming Q(t = 0) =
0. Find I (t) given I (t = 0) = 5.

Ans. Q(t) = sin (120πt−φ)

2
√

(25+36π2)
+ 3πe−100t

25+36π2

I (t) = 60π√
25+ 36π2

cos (120πt − φ)

−
�

300π

25+ 36π2
− 5

�
e−100t

Hint: Q
. + 100Q = 10 sin 120πt, sin φ =

12π√
100+144π2

, cosφ 10√
100+144π2

8. Determine the current at time t > 0 in a se-

ries RL-circuit having an emf given by E(t) =
100 sin 40tV , a resistor of 10 5 and an induc-

tor of 0.5 H given that initial current is zero.

Find the period and the phase angle.

Ans. I (t) = 2(sin 40t − 2 cos 40t)+ 4e−20t , period
π
20

, phase angle φ ≈ −1.11

Hint: I
. + 20I = 200 sin 40t ,

I (t) = 4.47 sin (40t − 1.11)+ 4e−20 t .

9. Find the current in RC-circuit with R = 10,

c = 0.1, E(t) = 110 sin 314t , I (0) = 0

Ans. I (t) = 0.035(cos 314t + 314 sin 314t − e−t )

10. Determine the charge and current at time t > 0

in a RC-circuit with R = 10, c = 2× 10−4,

E = 100 V given that Q(t = 0) = 0.

Ans. Q(t) = (1− e−500 t )/50, I (t) = 10e−500 t .



Chapter9

Linear Differential Equations of
Second Order and Higher Order

INTRODUCTION

The simple harmonic motion, oscillations of mass-

spring system, RLC-circuit, oscillations of a sim-

ple pendulum are all described by nonhomogeneous

(or homogeneous) linear second order differential

equations. Higher order differential equations appear

in problems involving deflections of loaded beams

(4th order), mechanical spring systems having sev-

eral springs connected in tandem or series of electri-

cal circuits containing several loops. In this chapter,

we consider methods of obtaining solutions of ho-

mogeneous and nonhomogeneous differential equa-

tions of second and higher order with constant coeffi-

cients. We also consider the Cauchy’s and Legendre

differential equations with variable coefficients. We

present two powerful general methods: method of

variation of parameters and method of undetermined

coefficients. Method of obtaining solution of system

of simultaneous linear differential equations is pre-

sented. Finally we consider four important engineer-

ing applications: the simple harmonic motion, mass-

spring system, RLC-circuit and simple pendulum.

9.1 LINEAR INDEPENDENCE AND

DEPENDENCE

Two functions y1(x) and y2(x) are said to be linearly

independent if

k1y1(x)+ k2y2(x) = 0 (1)

implies k1 and k2 are both zeros i.e., when y1 or y2

can not be expressed as proportional to the other.

Otherwise, y1 and y2 are linearly dependent if (1)

holds for some constants k1 and k2 not both zero.

Criterion for linear dependence or

independence of two functions y1 and y2

Define the Wronski* determinant or Wronskian

w(y1, y2) =
     y1 y2

y 1 y 2

     = y1y
 
2 − y2y

 
1 (2)

Results:

i. y1, y2 are linearly independent if w  = 0

ii. otherwise linearly dependent when w = 0.

WORKED OUT EXAMPLES

Determine whether the following functions y1 and

y2 are linearly dependent or independent:

Example 1: y1 = cos ax, y2 = sin ax with a  = 0.
Solution:

w =
     cos ax sin ax

−a sin ax a cos ax

     = a(cos2 ax + sin2 ax)

= a  = 0

So y1 and y2 are linearly independent.

Example 2: y1 = ln x, y2 = ln xn with n non neg-

ative integer.

Solution:

w =

      
ln x ln xn

1

x

nxn−1

xn

      =
n

x
ln x − 1

x
ln xn = 0

So y1 and y2 are linearly dependent.

* I.M. Hone (1778–1853) Polish mathematician, who changed
his name to Wronski.

9.1
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EXERCISE

Show that the following pair of functions are linearly

independent (with w  = 0):

1. ex, xex 7. x
3
2 , x−

3
2

2. ex, x2 8. x4, x4 ln x

3. 1, x 9. xa cos(2 ln x), xa sin (2 ln x)

4. x2, x2 ln x 10. eax sin bx, eax cos bx

5. x2, x
1
2 11. eax, e−ax

6. cos 2πx, sin 2πx

9.2 LINEAR DIFFERENTIAL EQUATIONS

OF SECOND ORDER WITH VARIABLE

COEFFICIENTS

Standard form of linear D.E. of 2nd order with

variable coefficients is

y  + P (x)y +Q(x)y = F (x) (1)

Here P (x), Q(x) and F (x), are known functions of

x. P and Q are known as coefficients of D.E. (1).

Non-homogeneous

D.E. (1) is said to be non-homogeneous if the R.H.S.

of (1) F (x)  = 0. Otherwise

Homogeneous

when F (x) = 0. Thus

y  + P (x)y +Q(x)y = 0 (2)

is known as the reduced or corresponding or compli-

mentary homogeneous linear Equation of (1).

Superposition or Linearity Principle

or Fundamental Theorem for

Homogeneous D.E.

Theorem: If y1(x) and y2(x) are any two linearly

independent solutions of the homogeneous D.E. (2),

then the general solution of the homogeneous D.E.

(2) is given by

y(x) = c1y1(x)+ c2y2(x) (3)

where c1 and c2 are two arbitrary constants.

Proof: Differentiating (3) w.r.t. x twice, we get

y = c1y
 
1 + c2y

  
2 (4)

y  = c1y
  
1 + c2y

  
2 (5)

Substituting (3), (4), (5) in (2), we have

(c1y
  
1 + c2y

  
2 )+ P (c1y

 
1 + c2y

 
2)+Q(c1y1 + c2y2) = 0

Rewriting

c1(y
  
1 + Py 1 +Qy1)+ c2(y

  
2 + Py 2 +Qy2) = 0 (6)

Since y1 and y2 are solutions of (2) i.e.,

y  1 + P y 1 +Qy1 = 0 and y  2 + P y 2 +Qy2 = 0

Equation (2) is identically satisfied by (3). Thus (3)

is the general solution of (2) (since it contains two

arbitrary constants c1 and c2).

Note: Above superposition principle is not appli-

cable to non-homogeneous or nonlinear equations.

9.3 SECOND ORDER DIFFERENTIAL

EQUATIONS WITH CONSTANT

COEFFICIENTS; HOMOGENEOUS

Standard form

y  + ay + by = 0 (1)

where the coefficientsa andb are constants.Consider

the function

y = emx (2)

then y  = memx, y   = m2emx

Substituting these values of y, y  , y   in (1), we get

(m2 + am+ b)emx = 0

Since emx  = 0, y = emx is a solution of (1) if m

satisfies the quadratic equation

m2 + am+ b = 0 (3)

Equation (3) is known as auxiliary equation (A.E.)

or characteristic equation of (1).

Observation A.E. (3) is obtained from D.E. (1)

by replacing y by 1, y  by m and y   by m2.

The general solution (G.S.) of the homogeneous

D.E. (1) is obtained depending on the nature of the

two roots of the auxiliary Equation (3) as follows:

Case 1: Two distinct real roots

When the two roots m1,m2 of A.E. (3) are real
distinct, then em1x and em2x form a linearly indepen-
dent set of solutions to D.E. (1). By superposition
principle, the general solution of (1) is

y = c1e
m1x + c2e

m2x

where c1 and c2 are any two arbitrary constants.
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Case 2: Real double (repeated) root

In case of repeated double root, em1x and xem1x

are linearly independent so that the general solution
of (1) by linearity principle is

y = c1e
mx + xc2e

mx = (c1 + c2x)emx

Case 3: Complex conjugate roots.

For complex conjugate roots ep+iq and ep−iq are
linearly independent solutions of (1) therefore the
general solution of (1) is

y = c∗1e
(p+iq)x + c∗2e

(p−iq)x

= c∗1e
px (eiqx )+ c∗2e

pxe−iqx

= epx
 
c∗1(cos qx + i sin qx)+ c∗2(cos qx − i sin qx)

 
= epx

 
(c∗1 + c∗2) cos qx + (c∗1 − c∗2)i · sin qx 

y = epx [c1 cos qx + c2 sin qx]

These results are listed in the following table.

The general solution of (1) in these three cases is

obtained as follows:

Set of linearly General

Nature of the two independent solution

Case roots of A.E. (3) solutions of (1) of (1)

1. Distinct real roots em1x, em2x y = c1e
m1x

m1,m2 +c2em2x

2. Real double root emx, xemx y = (c1+
(two equal roots) c2x)emx

(repeated roots)

m = m1 = m2

3. Complex conjugate epx cos qx, y = epx×
m1 = p + iq epx sin qx (c1 cos qx

m2 = p − iq +c2 sin qx)

WORKED OUT EXAMPLES

Distinct real roots: second order

Solve the following:

Example 1: y   − y  − 12y = 0

Solution: Rewriting the givenD.E. in operator form

(D2 −D − 12)y = 0

so that the corresponding auxiliary equation or char-

acteristic equation is obtained by replacing D by m

in the given D.E. as m2 −m− 12 = 0.

m2 −m− 12 = (m+ 3)(m− 4) = 0. Thus there

are two real distinct roots −3, 4.
General solution: y(x) = c1e

−3x + c2e
4x where c1

and c2 are arbitrary constants.

Example 2: y   − 3y  + 2y = 0, y(0) = −1,

y  (0) = 0

Solution:

A.E.: m2 − 3m+ 2 = 0

(m− 2)(m− 1) = 0.

m = 1, 2 are two real distinct roots

G.S.: y = c1e
x + c2e

2x

Particular solution using condition y(0) = −1 in the

G.S., we get

−1 = y(0) = c1 + c2 (1)

using the condition y  (0) = 0 is derivative of G.S.
we have

y = c1e
x + 2c2e

2x

0= y (0) = c1 + 2c2 (2)

Solving (1) and (2), we get

c1 = −2, c2 = 1

Thus the particular solution is

y = −2ex + e2x

EXERCISE

Solve the following:

1. y   − 3y  + 2y = 0

Ans. y = c1e
x + c2e

2x

2. y   − 5y  + 6y = 0

Ans. y = c1e
2x + c2e

3x

3. 4y   − 12y  + 5y = 0

Ans. y = c1e
x
2 + c2e

5x
2

4. 2y   + y  − 6y = 0

Ans. y = c1e
3x
2 + c2e

−2x

5. y   + y  − 2y = 0
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Ans. y = c1e
−2x + c2e

x

6. y   − 6y  + 8y = 0, y(0) = 1, y  (0) = 6

Ans. y = −e2x + 2e4x

7. y   − y  − 12y = 0, y(0) = 3, y  (0) = 5

Ans. y = 2e4x + e−3x

8. y   + y  − 2y = 0, y(0) = 4, y  (0) = −5

Ans. y = ex + 3e−2x

9. y   − 4y  + y = 0

Ans. y = c1e
(2+

√
3)x + c2e

(2−
√

3)x

10. y   + 2y  − 8 = 0

Ans. y = c1e
2x + c2e

−4x .

WORKED OUT EXAMPLES

Equal (or repeatd or double) roots:

second order

Solve the following:

Example 1: y   + 3y  + 2.25y = 0

Solution:

A.E.: m2 + 3m+ 2.25 = 0. 
m+ 3

2

 2 = 0 i.e., m = − 3
2

is a double (repeated)

root.

G.S: (y = c1 + c2x)e−
3x
2 .

Example 2: y   −6y  +9y = 0, y(0) = 2, y  (0)= 8

Solution:

A.E.: m2 − 6m+ 9 = 0

(m− 3)2 = 0 i.e., m = 3 is a double root

G.S: y = (c1 + c2x)e3x

using y(0) = 2 in G.S, we get 2 = y(0) = c1

using y  (0) = 8 in y  = 3e3x(c1 + c2x)+ e3x · c2

we get

8 = 3c1 + c2 ... c2 = 2

Thus the particular solution is y = 2(1+ x)e3x

EXERCISE

Equal (or repeated or double) root: second order

Solve the following:

1. y   + 8y  + 16y = 0

Ans. y = (c1 + c2x)e−4x

2. y   − 6y  + 9y = 0

Ans. y = (c1 + c2x)e3x

3. 4y   − 4y  + y = 0

Ans. y = (c1 + c2x)e
x
2

4. y   − 8y  + 16y = 0

Ans. y = (c1 + c2x)e4x

5. 16y   − 8y  + y = 0

Ans. y = (c1 + c2x)e
x
4

6. y   + 6y  + 9y = 0, y(0) = 2, y  (0) = −3

Ans. y = (3x + 2)e−3x

7. y   − 4y  + 4y = 0, y(0) = 3, y  (0) = 1

Ans. y = (3− 5x)e2x

8. y   + 4y  + 4y = 0, y(0) = 3, y  (0) = 7

Ans. y = (13x + 3)e−2x

9. 9y   − 30y  + 25y = 0

Ans. y = (c1 + c2x)e
5x
3

10. y   + 2ky  + k2y = 0

Ans. y = (c1 + c2x)e−kx

WORKED OUT EXAMPLES

Complex conjugate roots: Second order

Solve the following:

Example 1: y   + 5y  + 12.5y = 0.

Solution:

A.E.: m2 + 5m+ 12.5 = 0.

So m = −5±5i
2

are the complex conjugate roots.

p = − 5
2
, q = 5

2
,
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G.S.: y = e−
5x
2

 
c1 cos 5

2
x + c2 sin 5x

2

 
Example 2: y   −2y  +5y=0, y(0) = −3, y  (0)= 1

Solution:

A.E.: m2 − 2m+ 5 = 0.

So m = 1± 2i are the complex conjugate roots.

p = 1, q = 2,

G.S.: y = ex
 
c1 cos 2x + c2 sin 2x

 
using y(0) = −3 in G.S., we get

−3 = e0[c1 + 0] ... c1 = −3

Differentiating G.S. w.r.t., x

y = ex [c1 cos 2x + c2 sin 2x]

+ex [−2c1 sin 2x + 2c2 cos 2x]

using y  (0) = 1 in the above equation, we have

1= y (0) = e0[c1 · 1+ 0]+ e0[0+ 2c2 · 1]

1= c1 + 2c2. Thus c2 = 2

The required particular solution is

y = ex [−3 cos 2x + 2 sin 2x]

EXERCISE

Complex conjugate roots: second order

Solve the following:

1. y   + 9y = 0

Ans. y = c1 sin 3x + c2 cos 3x

2. y   − 6y  + 25y = 0

Ans. y = e3x(c1 cos 4x + c2 sin 4x)

3. y   + 6y  + 11y = 0

Ans. y = e−3x(c1 sin
√

2x + c2 cos
√

2x)

4. y   − 4y  + 13y = 0

Ans. y = e2x(c1 sin 3x + c2 cos 3x)

5. y   − 4y  + 29y = 0, y(0) = 0, y  (0) = 5

Ans. y = e2x sin 5x

6. y   + 0.2y  + 4.01y = 0, y(0) = 0, y  (0) = 2

Ans. y = e−0.1x sin 2x

7. y   + 6y  + 13y = 0, y(0) = 3, y  (0) = −1

Ans. y = e−3x(4 sin 2x + 3 cos 2x)

8. 9y   + 6y  + 5y = 0, y(0) = 6, y  (0) = 0

Ans. y = 3e−
x
3

 
sin 2x

3
+ 2 cos 2x

3

 
9. y   + 2a cosαy  + a2y = 0

Ans. y = e−ax cosα[c1 cos (ax sin α)+
c2 sin (ax sin α)]

10. y   + y  + y = 0

Ans. y = e−
x
2

 
c1 cos

√
3

2
x + c2 sin

√
3

2
x
 

9.4 HIGHER ORDER LINEAR

HOMOGENEOUS DIFFERENTIAL

EQUATIONS

Analysis considered in 9.3 for second order homo-

geneous equations with constant coefficients can be

extended in a similarway to equations of higher order

three or more. Consider the nth order homogeneous

equation

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·

+ an−1
dy

dx
+ any = 0 (1)

Here a0, a1, a2, . . . , an are all constants.
Introducing the notation of differential op-

erator D ≡ d
dx

and higher order operators as

D2 = d2

dx2 , . . . , D
n = dn

dxn
, etc, the given equation

can be rewritten with this notation as

a0D
ny + a1D

n−1y + a2D
n−2y + · · ·

+ an−1Dy + any = 0

or (a0D
n + a1D

n−1 + a2D
n−2 + · · ·

+ an−1D + an)y = 0 (2)

or f (D)y = 0 (3)

where f (D) = a0D
n + a1D

n−1+ · · ·+an−1D + an
is function of D.

Observation

The auxiliary equation of (1) is obtained by replacing

y by 1, y  by m, y   by m2, . . . , y(n) by mn in D.E.
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(1). Thus the A.E.

a0m
n + a1m

n−1 + a2m
n−2 + · · · + an−1m+ an = 0

(4)

is an nth degree polynomial in m i.e.,

f (m) = 0 (5)

The general solution of (1) containing n arbitrary

constants is obtained according as the nature of the

roots of A.E. (4), as follows:

Nature of the Linearly independent

Case n roots of A.E. (4) solution of (1) General solution of (1)

I. n distinct and real roots em1x, em2x, em3x · · · y = c1e
m1x + c2e

m2x

m1,m2,m3 · · · +c3em3x + · · ·
II. Two equal and real roots, em1x, xem1x, em3x, em4x y = (c1 + c2x)em1x

n− 2 distinct roots +c3em3x + c4e
m4x + · · ·

m1,m1,m3,m4 · · ·
III. Three equal real roots, em1x, xem1x, x2em1x, y = (c1 + c2x + c3x

2)em1x

n− 3 distinct roots em4x, . . . +c4em4x + c5e
m5x + · · ·

m1,m1,m1,m4,m5, . . .

IV. Two complex conjugate epx cos qx, epx sin qx, y = epx (c1 cos qx + c2 sin qx)

roots, n− 2 distinct real roots em3x, em4x, . . . +c3em3x + c4e
m4x + · · ·

m1 = p + iq

m2 = p − iq

m3,m4, . . .

V. Two equal complex conjugate epx cos qx, xepx cos qx, y = epx [(c1 + c2x) cos qx

roots, n− 4 distinct real roots epx sin qx, xepx sin qx, +(c3 + c4x) sin qx]

m1 = m2 = p + iq, em5x, em6x, . . . +c5em5x + · · ·
m3 = m4 = p − iq,

m5,m6, . . .

WORKED OUT EXAMPLES

Distinct real roots: higher order

Solve the following:

Example 1: y    − 4y   + y  + 6y = 0

Solution:

A.E.: m3 − 4m2 +m+ 6 = 0.

Observe that m = −1 is a root of this equation.

By synthetic division

−1 1 −4 1 6
−1 5 −6

1 −5 6 0

We obtain the factorization as

(m− (−1))(m2 − 5m+ 6)= 0

or (m+ 1)(m− 2)(m− 3)= 0

Thus there 3 real distinct roots −1, 2, 3.

G.S.: y = c1e
−x + c2e

2x + c3e
3x .

Example 2: y    − 3y   − y  + 3y = 0.

Solution:

A.E.: m3 − 3m2 −m+ 3 = 0.

Observe that m= 1 is a root (1− 3− 1+ 3= 0).

By synthetic division

1 1 −3 −1 3

1 −2 −3

1 −2 −3 0
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We obtain the factorization as

(m− 1)(m2 − 2m− 3)

= (m− 1)(m+ 1)(m− 3) = 0

3 real distinct roots −1, 1, 3

G.S.: y = c1e
−x + c2e

x + c3e
3x .

Example 3: 4y(4) − 8y    − 7y   + 11y  + 6y = 0

Solution:

A.E: 4m4 − 8m3 − 7m2 + 11m+ 6 = 0.

Observe that −1 is a root

(4+ 8− 7− 11+ 6 = 0)

Note also that 2 is a root

(64− 64− 28+ 22+ 6 = 0)

By synthetic division

−1 4 −8 −7 11 6

−4 12 −5 −6

2 4 −12 5 6 0

8 −8 −6

4 − 4 −3 0

We obtain the factorization as

(m+ 1)(m− 2)(4m2 − 4m− 3)= 0

(m+ 1)(m− 2)

 
m+ 1

2

  
m− 3

2

 
= 0

4 distinct real roots, − 1
2
,−1, 3

2
, 2

G.S.: y = c1e
− x

2 + c2e
−x + c3e

3x
2 + c4e

2x .

EXERCISE

Higher order: Homogeneous: Distinct roots

Solve the following:

1. y    − 4y   + y  + 6y = 0

Ans. y = c1e
−x + c2e

2x + c3e
3x

2. y    − 6y   + 11y  − 6y = 0

Ans. y = c1e
x + c2e

2x + c3e
3x

3. y    − 3y   − y  + 3y = 0

Ans. y = c1e
x + c2e

−x + c3e
3x

4. y    − 6y   + 11y  − 6y=0, y(0)=0, y  (0) =0,

y   (0) = 2

Ans. y = ex − 2e2x + e3x

5. y    − 9y   + 23y  − 15y = 0

Ans. y = c1e
x + c2e

3x + c3e
5x

6. y    − 2y   − 3y  = 0

Ans. y = c1 + c2e
3x + c3e

−x

WORKED OUT EXAMPLES

Double (repeated) root: higher order

Solve the following:

Example 1: 4y    + 4y   + y  = 0.

Solution:

A.E.: 4m3 + 4m2 +m = 0.

m(4m2 + 4m+ 1) = m
 
m+ 1

2

 2 = 0

so m = 0,− 1
2
,− 1

2
are the roots of which

m = − 1
2

is a repeated (double) root.

G.S.: y = c1 · eo·x + (c2 + xc3)e
− x

2

Example 2: y     + 6y    + 9y   = 0

Solution:

A.E.: m4 + 6m3 + 9m2 = 0

m2(m2 + 6m+ 9) = m2(m+ 3)2 = 0

so m = 0, 0,−3,−3 are the roots

i.e., m = 0 and m = −3 each is a double root.

G.S.: y = (c1 + c2x)eo·x + (c3 + c4x)e−3x .

Example 3: y      − y    = 0

Solution:

A.E.: m5 −m3 = 0

m3(m2 − 1) = 0

so m = 0 is a triple (repeated 3 times) root and m =
−1, 1 are distinct real roots.

G.S. : y = c1e
−x + c2e

x + (c3 + xc4 + x2c5)e
o·x

y = c1e
−x + c2e

x + (c3 + xc4 + x2c5)
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EXERCISE

Higher order: Homogeneous: repeated roots

1. y    − 4y   − 3y  + 18y = 0

Ans. y = (c1 + c2x)e3x + c3e
−2x

2. y    − 5y   + 7y  − 3y = 0

Ans. y = (c1 + c2x)ex + c3e
3x

3. y     − 5y    + 6y   + 4y  − 8y = 0

Ans. y = (c1 + c2x + c3x
2)e2x + c4e

−x

4. y    − 3y   + 4y = 0, y(0) = 1, y  (0) = −8,

y   (0) = −4

Ans. y = 32
9
e−x − 23

9
e2x + 2

3
xe2x

5. y    − 6y   + 12y  − 8y = 0

Ans. y = (c1 + c2x + c3x
2)e2x

6. y     = 0

Ans. y = c1 + c2x + c3x
2 + c4x

3

7. y      − 2y     + y    = 0

Ans. y = c1 + c2x + c3x
2 + (c4 + c5x)ex

8. y     − 3y    + 2y   = 0, y(0) = 2, y  (0) = 0,

y   (0) = 2, y    (0) = 2

Ans. y = 2(ex − x).

WORKED OUT EXAMPLES

Complex (conjugate) roots: higher order

Solve the following:

Example: y(4) + 18y   + 81y = 0.

Solution:

A.E.: m4 + 18m2 + 81 = 0.

(m2 + 9)2 = 0 so m2 = −9 is a repeated root

m = ±3i is repeated (double) root

i.e., m = +3i,+3i,−3i,−3i are the 4 roots.

Solutions are y1 = e3ix , y2 = xe3ix and y3 = e−3ix

and y4 = xe−3ix .

Thus the G.S. is

y = (c1 + c2x)e3ix + (c3 + c4x)e−3ix

= (c1 + c2x)(cos 3x + i sin 3x)

+(c3 + c4 · x)(cos 3x − i sin 3x)

EXERCISE

Higher order: Homogeneous: complex roots

1. y    + y   + 4y   + 4 = 0

Ans. y = c1e
−x + c2 cos 2x + c3 sin 2x

2. y    − y   + y  − y = 0

Ans. y = c1e
x + c2 sin x + c3 cos x

3. y     − 3y    − 2y   + 2y  + 12y = 0

Ans. y = c1e
2x + c2e

3x + e−x(c3 sin x + c4 cos x)

4. y     − 4y    + 14y   − 20y  + 25y = 0

Ans. roots are 1+ 2i, 1− 2i, 1+ 2i, 1− 2i (each

pair of conjugate complex roots is double)

y = ex [(c1 + c2x) sin 2x + (c3 + c4x) cos 2x]

or y = c1e
x sin 2x + c2xe

x sin 2x + c3e
x cos 2x

+c4xex cos 2x

5. y     + 4y = 0

Ans. roots are −1± i and 1± i

y = e−x (c1 cos x + c2 sin x)

+ex (c3 cos x + c4 sin x)

6. y     + 8y   + 16y = 0

Ans. y = (c1 + c2x) sin 2x + (c3 + c4x) cos 2x

7. y       + 3y     + 3y   + y = 0

Ans. y = (c1 + c2x + c3x
2) sin x+

(c4 + c5x + c6x
2) cos x

8. y       − 2y    + y = 0

Ans. y = (c1 + c2x)ex + e−
x
2

 
(c3 + c4x) cos

√
3

2
x

+ (c5 + c6x) sin
√

3
2
x
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9.5 NON-HOMOGENEOUS EQUATIONS

Consider the non-homogeneous linear differential

equation of nth order with constant coefficients

(a0D
n + a1D

n−1 + · · · + an−1D + an)y = F (x) (1)

Then

(a0D
n + a1D

n−1 + · · · + an−1D + an)y = 0 (2)

is the corresponding (or complementary or reduced)

homogeneous equation of (1) (obtained by putting

the R.H.S. F (x) = 0 in D.E. (1)).

A general solution

Ageneral solution of the non-homogeneous equation
(1) is a solution of the form

y(x)= yc(x)+ yp(x) (3)

where yc(x)= c1y1(x)+ c2y2(x)+ · · · + cnyn(x) (4)

is the general solution of the corresponding homoge-

neous Equation (2), containing n arbitrary constants

and yp(x) is any (particular) solution of the non-

homogeneous Equation (1) containing no arbitrary

constants.

Complementary Function (C.F.): yc(x)

yc(x) which is the general solution of the reduced

homogeneous Equation (2) is more often known as

complementary function (C.F.) although it is also

called complementary solutionor complementary in-

tegral.

Particular Integral (P.I.): yp(x)

yp(x) is more often called as particular integral (also

particular solution of the non-homogeneous Equa-

tion (1)).
Thus the

General solution= complimentary function

+ particular integral

generally abbreviated as

G.S. = C.F.+ P.I. (5)

Method of Obtaining Particular Integral (P.I.):

Inverse operator: D−1F (x) = 1
D
F (x) =  

F (x)dx.

If Du(x) = v(x) then u(x) = D−1v(x). Here D−1 is
known as inverse operator of D such that

DD−1(F (x)) = F (x) i.e., DD−1 = 1

when D is differential operator then D−1 also de-

noted by 1
D

represents integral operator
 
. Thus in

a similar way 1

D2 ,
1

D3 , . . . etc. denotes integration

twice, thrice etc. w.r.t., x.
Equation (1) can now be rewritten as

f (D)y = F (x) (6)

where

f (D) = a0D
n + a1D

n−1 + · · · + an−1D + an (7)

is a function of the differential operator D. Then the
particular integral (P.I.) of

f (D)y = F (x) (6)

is yp =
1

f (D)
F (x) (8)

where 1
f (D)

is the inverse operator of f (D), such that

f (D)

 
1

f (D)
F (x)

 
= F (x) = 1

f (D)
{f (D)F (x)} .

Book Work: Prove that if

(D − a)y = F (x) (9)

Then y = 1

(D − a)
F (x) = eax

 
F (x)e−axdx (10)

Proof: The D.E. (D − a)y = F (x) is a first or-

der linear equation
dy

dx
− ay = F (x) with I.F. as

e
 −adx = e−ax . Then the solution of (9) is

ye−ax =
 

e−ax · F (x)dx + c

Thus a particular solution of (9) (with C = 0) is

y = eax
 

F (x)e−axdx (10)

Special Case i.When F (x) = b = constant, then

(D − a)y = b
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Integrating ye−ax =  
be−axdx = be−ax

−a , a  = 0

y = 1

D − a
b = b

−a with a  = 0 (11)

Special Case ii. If R.H.S. of (8) is F (x) = eax ,
then (10) reduces to

y = eax
 

F (x)e−axdx = eax
 

eaxe−axdx

y = xeax

Thus

yp =
 

1

D − a

 
eax = xeax (12)

Special Case iii. (D − a)ry = F (x) = eax then

repeated application of result (ii) above by integrat-

ing r times successively, we get

yp =
1

(D − a)r
eax = xr

r!
eax (13)

Using the inverse operator (short-cut)methods, a par-
ticular integral yp of the non-homogeneous D.E.

f (D)y = F (x)

can be obtained when F (x), the R.H.S. function has

the following forms:

a. F (x) = eax+b

b. F (x) = sin(ax + b) or cos(ax + b)

c. F (x) = xm or polynomial in x

d. F (x) = eaxv(x), exponential shift

e. F (x) = xv(x)

These and several other useful results of obtaining

particular integral are presented in a tabular form at

the end of Section 9.5.

Method of Obtaining General Solution of a

Non-homogeneous Differential Equations

Step I. Obtain C.F. which is the general solution of

the corresponding homogeneous equation.

Step II. P.I. is obtained depending on the nature of

the R.H.S. functionF (x) using appropriate

results listed in the table.

Step III. The G.S.: y = C.F.+ P.I..

[If initial conditions are specified, the con-

stants in C.F. are evaluated using IC’s].

P.I. when F(x) = eax+b

Consider the nth order linear non-homogeneousD.E.
with constant coefficients and with R.H.S. function
F (x) = eax+b given by

(a0D
n + a1D

n−1 + · · · + an−1D + an)y

= F (x) = eax+b (1)

or f (D)y = eax+b (2)

where

f (D) = a0D
n + a1D

n−1 + · · · + an−1D + an (3)

We know that d
dx
eax+b =Deax+b = aeax+b,D2eax+b

= a2eax+b, D3eax+b = a3eax+b . . ., Dneax+b =
aneax+b.
Substituting these values in (3)

f (D)eax+b = (a0D
n + a1D

n−1 + · · ·
+an−1D + an)e

ax+b

= (a0a
n + a1a

n−1 + · · ·
+an−1a + an)e

ax+b

f (D)eax+b = f (a)eax+b = eax+bf (a) (4)

where f (a), a constant is obtained, from f (D) by

replacing D by ‘a’.
Operating on both sides of (4) by 1

f (D)
, we get

1

f (D)
f (D)eax+b = 1

f (D)
f (a)eax+b

= f (a)
1

f (D)
eax+b

eax+b = f (a)
1

f (D)
eax+b

Therefore
1

f (D)
eax+b = 1

f (a)
eax+b

provided f (a)  = 0.

Result 1: When f (a)  = 0, then the

P.I. = yp =
1

f (D)
eax+b = 1

f (a)
· eax+b.

Result 2: Suppose f (a) = 0
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If f (a) = 0 then (m− a) is a factor of f (m) so
that (D − a) is a factor of f (D) i.e.,

f (D) = (D − a)φ(D)

such that φ(a)  = 0. Then

1

f (D)
eax+b = 1

(D − a)φ(D)
eax+b

= 1

φ(a)

1

D − a
eax (from Result I)

= 1

φ(a)
· xeax+b

Result 3: Suppose f (D) = (D − a)rψ(D) with

ψ(a)  = 0
Then

1

f (D)
eax+b = 1

(D − a)rψ(D)
eax+b

= 1

ψ(a)

1

(D − a)r
eax+b

= 1

ψ(a)
· x

r

r!
eax+b

WORKED OUT EXAMPLES

P.I. when F (x) = eax+b

Cases: Ia, Ib, Ic, Id and IIa, IIb, IIc

Solve the following:

Example 1: (D2 + 2D + 1)y = 2e3x

Solution:

C.F.:HereA.E.m2 + 2m+ 1 = 0 i.e., (m+ 1)2 = 0
so m = −1 is a double root. Thus the C.F. is

yc = (c1 + c2x)e−x

P.I. : yp =
1

D2 + 2D + 1
2e3x

= 2 · 1

32 + 2 · 3+ 1
e3x = e3x

8

Hence

G.S.: y = yc + yp = (c1 + c2x)e−x + e3x

8
.

Example 2: (D3 − 2D2 − 5D + 6)y = 2ex+
4e3x + 7e−2x + 8e2x + 15.

Solution:

C.F.: Here A.E. is m3 − 2m2 − 5m+ 6 = 0 having
roots m = 1, 3,−2. Thus the C.F. is

yc = c1e
x + c2e

3x + c3e
−2x

P.I. : yp =
1

D3 − 2D2 − 5D + 6
×

×[(2ex + 4e3x + 7e−2x + 8e2x + 15)]

= 2

(D + 2)(D − 3)(D − 1)
ex

+ 4

(D − 1)(D + 2)(D − 3)
e3x

+ 7

(D − 1)(D − 3)(D + 2)
e−2x

+ 8

D3 − 2D2 − 5D + 6
e2x

+ 15

D3 − 2D2 − 5D + 6
· 1

Sincem = 1, 3,−2 are roots ofA.E., the 1st, 2nd and

3rd terms in the R.H.S. are evaluated using result Ic
whereas the 4th and 5th terms by applying result IIa
because m = 2 and m = 0 are not roots of A.E.

Thus

yp =
2

−6

1

D − 1
ex + 4

10

1

D − 3
e3x

+ 7

15

1

D + 2
e−2x

+ 8

23 − 2 · 22 − 5 · 2+ 6
· e2x

+ 15

0− 0− 0+ 6

... yp =−
1

3
xex + 2

5
xe3x + 7

15
xe−2x − 2e2x + 15

6

Hence G.S.: y = yc + yp i.e.,

y = c1e
x + c2e

3x + c3e
−2x − 1

3
xex

+2

5
xe3x + 7

15
xe−2x − 2e2x + 15

6
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Example 3: (D2 − p2)y = sinhpx

Solution:

C.F.: Here A.E. is m2 − p2 = 0 having m = ±p as
the roots. Thus the C.F. is

yc = c1e
px + c2e

−px

P.I.: Since p and −p are roots of m2 − p2 = 0.

Rewriting

yp =
1

(D2 − p2)
sinhpx

= 1

(D + p)(D − p)
· sinhpx

= 1

(D + p)(D − p)

 
epx − e−px

2

 

= 1

2

1

(D + p)(D − p)
epx

−1

2

1

(D − p)(D + p)
e−px

= 1

2

1

p + p
· 1

D − p
epx − 1

2

1

−p − p

1

D + p
e−px

Applying result Ic

= 1

2

1

2p
x · epx + 1

2

1

2p
x · e−px

= x

2p

 
1

2
(epx + e−px )

 
= x

2p
coshpx

Hence G.S.: y

y = yc + yp = c1e
px + c2e

−px + x

2p
coshpx.

Example 4: (D − 2)3y = e2x

Solution:

C.F.: A.E. is (m− 2)3 = 0. Som = 2 is root of order
3 i.e., repeated three times. Thus C.F. is

yc = (c1 + c2x + c3x
2)e2x

P.I.: yp = 1

(D−2)3
e2x

Case IIa cannot be applied since f (2) = (D − 2)3

at D = 2 is zero. Using result Id with n = 3

yp =
1

(D − 2)3
e2x = x3

3!
e2x

Hence G.S.:

y = yc + yp = (c1 + c2x + c3x
2) e2x + x3

6
e2x .

EXERCISE

Solve the following:

1. (D2 − 5D + 6)y = e4x

Ans. y = c1e
2x + c2e

3x + 1
2
e4x

2. (D2 − a2)y = e2x

Ans. y = c1e
ax + c2e

−ax + e2x

3
for a  = 2

y = c1e
2x + c2e

−2x + 1
4
xe2x for a = 2

3. (D2 + 4)y = e3x

Ans. y = (c1e
2ix + c2e

−2ix)+ 1
13
e3x

4. (D2 + 2D − 8)y = e−3x + e−4x

Ans. y = c1e
2x + c2e

−4x − e−3x

5
− xe−4x

6

5. (D2 −D + 1)y = sinh x

Ans. y = e
x
2

 
c1 cos

√
3x
2
+ c2 sin

√
3x
2

 
+ 1

6
(3ex − e−x)

6. (D2 + 4D + 5)y = −2 cosh x, with

y(0) = 0, y  (0) = 1

Ans. y = 3
5
e−2x(cos x + 3 sin x)− ex

10
− e−x

2

7. (D2 − 2aD + a2)y = eax

Ans. y = (c1 + c2x)eax + x2

2
eax

8. (D3 + 6D2 + 9D)y = e−3x

Ans. y = c1 + (c2 + xc3)e
−3x − x2e−3x

6

9. (D3 − 5D2 + 8D − 4)y = e2x + 2ex + 3e−x

Ans. y = c1e
x + c2e

2x + c3xe
2x + 1

2
x2e2x

+ 2xex − e−x
6

10. (D + 2)(D − 1)2y = e−2x + 2 sinh x

Ans. y = c1e
−2x + (c2 + c3x)ex + xe−2x + x2ex

6

+ e−x
4

11. (D3 − 12D + 16)y = (ex + e−2x)2

Ans. y = (c1 + c2x)e2x + c3e
−4x + x2e2x

12
+ 2e−x

27

+ xe−4x

36

12. D(D + 1)2y = 12e−x
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Ans. y = c1 + (c2 + xc3)e
−x − 6x2e−x

13. D2(D − 1)3(D + 1)y = ex

Ans. y = (c1 + c2x)+ (c3 + c4x + c5x
2)ex +

c6e
−x + x3ex

12

14. y   + 4y i. + 13y = 18e−2x , y(0) = 0,

y  (0) = 4

Ans. y = e−2x
 

4
3
sin 3x − 2 cos 3x

 + 2e−2x

P.I. When F(x)= sin(ax+b) or cos (ax+b)

(Case: IIIa , IIIb, IIIc, IIId , IIIe, IIIf )

Let φ(D2) be a rational function of D2. Since

D sin (ax + b)= a cos (ax + b)

D2 sin (ax + b)=−a2 sin (ax + b)

D3 sin (ax + b)=−a3 cos (ax + b)

D4 sin (ax + b)= a4 sin (ax + b) = (−a2)2 sin (ax + b)

It follows that

φ(D2) sin(ax + b) = φ(−a2) sin (ax + b) where

φ(−a2) is obtained by replacing D2 in φ(D2) by

“−a2”. Operating with 1

φ(D2)
on both sides

1

φ(D2)
· φ(D2) sin (ax + b)= 1

φ(D2)
φ(−a2) sin(ax + b)

sin (ax+ b)= φ(−a2)· 1

φ(D2)
sin(ax+ b)

since φ(−a2) is a constant. Thus

1

φ(D2)
sin (ax + b) = 1

φ(−a2)
sin (ax + b)

provided φ(−a2)  = 0. A similar result follows

1

φ(D2)
cos (ax + b) = 1

φ(−a2)
cos (ax + b)

Note: When f (D) contains terms of odd powers

D,D3, . . . etc. even after application of the above

result, multiply by D so as to get even powers of

D2,D4, . . . etc. interpretingD as differentiation and
1
D

as integration.

Corollary: If φ(−a2) = 0 then

φ(D2) = (D2 + a2)ψ(D2)

with ψ(−a2)  = 0. Thus

1

φ(D2)
sin (ax + b)= 1

(D2 + a2)ψ(D2)
sin (ax + b)

= 1

ψ(−a2)
· 1

D2 + a2
sin (ax + b)

= 1

ψ(−a2)
·
 −x cos (ax + b)

2a

 
Similarly,

1

φ(D2)
cos (ax + b)= 1

(D2 + a2)ψ(D2)
cos (ax + b)

= 1

ψ(−a2)

1

D2 + a2
cos(ax + b)

= 1

ψ(−a2)

 
x sin (ax + b)

2a

 

WORKED OUT EXAMPLES

Example 1: (D2− 4D− 5)y = e2x+3 cos(4x+3)

Solution: C.F.: The A.E. is m2 − 4m− 5 = 0. The
roots are m = −1, 5 so that the C.F. is

yc = c1e
−x + c2e

5x .

P.I. yp =
1

D2 − 4D − 5
[e2x + 3 cos (4x + 3)]

= I1 + I2

I1 =
1

22 − 4 · 2− 5
e2x = −1

9
e2x

I2 =
3

−42 − 4D − 5
cos (4x + 3)

=− 3

4D + 21
cos (4x + 3)

Since D2 terms are not present, we rewrite

I2 =−
3(4D − 21)

(4D + 21)(4D − 21)
· cos (4x + 3)

I2 =
−12D + 63

16D2 − 212
cos (4x + 3)

Replace D2 by −42. Then

I2 =
−12D + 63

16(−42)− 212
· cos (4x + 3)

= 1

697
[−12D(cos(4x + 3))+ 63 cos (4x + 3)]

= −1

697
[48 sin (4x + 3)+ 63 cos (4x + 3)].
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Example 2: (D2 + 4)y = sin 3x + cos 2x.

Solution:

C.F.: Here A.E. ism2 + 4 = 0 having complex roots
m = ±2i. Thus C.F. is

yc = c1 cos 2x + c2 sin 2x

P.I. yp =
1

D2 + 4
(sin 3x + cos 2x)

= 1

D2 + 4
sin 3x + 1

D2 + 4
cos 2x

= I1 + I2

consider I1 =
1

D2 + 4
sin 3x

Replace D2 by −32 since f (−a2)=f (−32)  =0

I1 =
1

−32 + 4
sin 3x = −1

5
sin 3x

consider

I2 =
1

D2 + 4
· cos 2x

Since f (−a2) = f (−22) = 0 we apply result IIIe

I2 =
x sin 2x

4

yp = I1 + I2 = −
1

5
sin 3x + x

4
sin 2x

G.S. : y = yc + yp = c1 cos 2x + c2 sin 2x

−1

5
sin 3x + x

4
sin 2x

Example 3: (D2 + 5D − 6)y = sin 4x · sin x.

Solution:

C.F.: Here A.F. is m2 + 5m− 6 = 0. It has roots
m1 = 1,−6. So C.F. is

yc = c1e
x + c2e

−6x

P · I. : yp =
1

D2 + 5D − 6
sin 4x · sin x

= 1

D2 + 5D − 6
· 1

2
[cos 3x − cos 5x]

= 1

2
[I1 − I2]

Consider

I1 =
1

D2 + 5D − 6
· cos 3x

Replacing D2 by −32, we get

I1 =
1

−32 + 5D − 6
cos 3x = 1

5(D − 3)
cos 3x

To get D2 terms in denominar, rewrite as

I1=
1

5

(D + 3)

(D − 3)(D + 3)
· cos 3x= 1

5

(D + 3)

D2 − 32
cos 3x

Replacing D2 = −32, we get

I1 =
1

5

(D + 3)

−32 − 32
cos 3x = − 1

90
(D + 3)(cos 3x)

=− 1

90
[−3 sin 3x+3 cos 3x]= 1

30
[sin 3x− cos 3x]

consider

I2 =
1

D2 + 5D − 6
· cos 5x

Replacing D2 by −52, we get

I2 =
1

−52 + 5D − 6
cos 5x = 1

5D − 31
cos 5x

In order to get D2 terms, we rewrite

I2 =
5D + 31

(5D − 31)(5D + 31)
· cos 5x

= (5D + 31)

25D2 − 312
cos 5x

Replacing D2 by −52, we get

= (5D + 31)

25(−5)2 − 312
cos 5x

=− 1

1586
(5D + 31)(cos 5x)

=− 1

1586
[−25 sin 5x + 31 cos 5x]

Thus

yp =
1

2
[I1 − I2] =

1

2

 
sin 3x − cos 3x

30

+31 cos 5x − 25 sin 5x

1586

 

Hence G.S.: y = yc + yp

Example 4:

(D2 − 4D + 1)y = cos x · cos 2x + sin2 x
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Solution:

C.F.: Here A.E. is m2 − 4m+ 1 = 0 with real dis-
tinct roots m1 = 2+

√
3 and m2 = 2−

√
3 so that

the C.F. is

yc = c1e
(2+

√
3)x + c2e

(2−
√

3)x

P.I.: Note that

cos x · cos 2x = 1

2
(cos 3x + cos x)

and sin2 x = 1

2
[1− cos 2x]

so that cos x · cos 4x + sin2 x = 1
2
[cos 3x +

cos x + 1− cos 2x]

yp =
1

D2 − 4D + 1
[cos x · cos 4x + sin2 x]

= 1

2

1

D2 − 4D + 1
[cos 3x + cos x + 1− cos 2x]

= 1

2
[I1 + I2 + I3 − I4]

Here

I1 =
1

D2 − 4D + 1
cos 3x

Replacing D2 by −32

I1 =
1

−32 − 4D + 1
cos 3x = −1

4

1

D + 2
cos 3x

To introduce D2 terms we rewrite the above as

I1 =−
1

4

D − 2

(D + 2)(D − 2)
· cos 3x

=−1

4

(D − 2)

(D2 − 22)
cos 3x

Replacing D2 by −32, we get

I1 =−
1

4

(D − 2)

−32 − 22
cos 3x = 1

52
(D − 2) cos 3x

= 1

52
[−3 sin 3x − 2 cos 3x]

Similarly,

I2 =
1

D2 − 4D + 1
· cos x

= 1

−12 − 4D + 1
cos x, ... D2 = −12

=−1

4

1

D
cos x = −1

4

 
cos xdx = −1

4
sin x

Also

I3 =
1

D2 − 4D + 1
· 1 = 1

D2 − 4D + 1
eo·x

= 1

0− 4 · 0+ 1
= 1

1
= 1

where D is replaced by a = 0

Finally

I4 =
1

D2 − 4D + 1
· cos 2x = 1

−22 − 4D + 1
cos 2x

where D2 is replaced by −22

I4 = −
1

(4D + 3)
cos 2x

Rewriting this to get D2 terms we have

I4 =−
(4D − 3)

(4D + 3)(4D − 3)
· cos 2x

=− (4D − 3)

16D2 − 32
cos 2x

Now replacing D2 by −22, we get

I4 =−
(4D − 3)

16(−22)− 32
cos 2x

= (4D − 3)

73
cos 2x

= 1

73
(4(−2) sin 2x − 3 cos 2x)

I4 =−
1

73
(8 sin 2x + 3 cos 2x)

Thus the P.I.

yp =
1

2
[I1 + I2 + I3 − I4]

yp =
1

2

 
− 1

52
(3 sin 3x + 2 cos 3x)− 1

4
sin x

+1− 1

73
(8 sin 2x + 3 cos 2x)

 

G.S.: y = yc + yp

y = c1e
(2+

√
3)x + c2e

(2−
√

3)x + 1− 1

4
sin x

− 1

73
(3 cos 2x + 8 sin 2x)

− 1

52
(3 sin 3x + 2 cos 3x)
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EXERCISE

Solve the following:

1. (D4 + 10D2 + 9)y = cos (2x + 3)

Ans. y = c1 cos x + c2 sin x + c3 cos 3x

+ c4 · sin 3x − 1
15

cos (2x + 3)

2. (D2 + 2D + 5)y = 6 sin 2x + 7 cos 2x

Ans. y = e−x(c1 sin 2x + c2 cos 2x)+ 2 sin 2x

− cos 2x

3. (D3 +D2 +D + 1)y = sin 2x + cos 3x

Ans. y = c1e
−x + c2 cos x + c3 sin x +

1
15

(2 cos 2x − sin 2x)− 1
80

(3 sin 3x + cos 3x)

4. (D2 + 4)y = sin x + sin 2x

Ans. y = c1 sin 2x + c2 cos 2x + sin x
3
− x cos 2x

4

5. (D2 − 8D + 9)y = 8 sin 5x

Ans. y = c1e
(4+

√
7)x + c2e

(4−
√

7)x + 1
29

(5 cos 5x

− 2 sin 5x)

6. (D2 + 16)y = e−3x + cos 4x

Ans. y = c1 cos 4x + c2 sin 4x + 1
25
e−3x

+ x
8
sin 4x

7. (D2 − 2D + 2)y = ex + cos x

Ans. y = ex(c1 cos x + c2 sin x)+  
cos x−2 sin x

5

 
.

8. (D2 + 9)y = cos2 x

Ans. y = c1 cos 3x + c2 sin 3x + 1
18
+ 1

10
cos 2x

9. (D2 + 2D + 1)y = e2x − cos2 x

Ans. y= (c1+ c2x)e−x + 1
2
+ 1

5
(2 sin 2x + cos 2x)

10. (D2 + 1)y = cos x

Ans. y = c1 cos x + c2 sin x + sin x ln sin x

− x cos x

11. (D2 − 4D + 13)y = 8 sin 3x,

y(0) = 1, y  (0) = 2

Ans. y = 1
5

 
e2x(sin 3x + 2 cos 3x)+ sin 3x

+ 3 cos 3x
 

12. (D4 + 2D2n2 + n4)y = cosmx

Ans. y = (c1 cos ηx + c2 sin ηx)(c3 + c4x)+
1

η2−m2 cosmx, with m  = η

13. (D2 + 4)y = cos x cos 3x

Ans. y = (c1 cos 2x + c2 sin 2x)− 1
24

cos 4x

+ x
8
sin 2x

14. (2D2 − 2D + 1)y = sin 3x · cos 2x

Ans. y= e
x
2

 
c1 cos x

2
+ c2 sin x

2

 + 10 cos 5x− 49 sin 5x
5002

+ 2 cos x−sin x
10

15. (D3 + 4D)y = sin 2x

Ans. y = c1 + c2 cos 2x + c3 sin 2x − x
8
sin 2x.

P.I. When F (x)= xm, m being a

Positive Integer

Case IV: Consider f (D)y = xm so that

P.I. = yp =
1

f (D)
xm

Expanding 1
f (D)

in ascending power of D, we get

yp = [a0 + a1D + a2D
2 + · · · + amD

m]xm

since all the terms beyond Dm are omitted as

Dnxm = 0 when n > m.
This result can be extended when F (x) = Pm(x)

a polynomial in x of degree m so that

yp = [a0 + a1D + a2D
2 + · · · + amD

m][Pm(x)]

In particular for

(D + a)y = Pm(x)

we get

P.I.= yp =
1

D + a
[Pm(x)] = 1

a
 
1+ D

a

 Pm(x)

= 1

a

 
1+ D

a

 −1

Pm(x)

= 1

a

 
1− D

a
+ D2

a2
+ · · · + (−1)m

Dm

am

 
Pm(x)

wherein terms of order higher than m are omitted.
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WORKED OUT EXAMPLES

Solve the following:

Example 1: (D6 −D4)y = x2.

Solution:

C.F.: Here A.E. is m6 −m4 = m4(m2 − 1) = 0.
Thus m = 0 is root repeated 4 times and m± 1 are
the other roots. So the C.F. is

yc = (c1 + c2x + c3x
2 + c4x

3)+ c5e
x + c6e

−x

P.I.: Rewriting (D6 −D4)y = D4(D2 − 1)y = x2

so that

yp =
1

D4(D2 − 1)
x2 = 1

D4

 
1

(D2 − 1)
x2

 

Consider yp = 1

(D2−1)
x2 = − 1

(1−D2)
x2

Expanding in Binomial series

=−(1−D2)−1x2

=−[1+D2 +D4 +D6 + · · ·]x2

=−x2 −D2x2 + 0+ 0 · · · = −x2 − 2

Thus

yp =
1

D4

 
1

(D2 − 1)
x2

 
= −1

D4
[x2 + 2]

Here 1

D4 means successive integration 4 times

(i.e., integrate w.r.t. x sequentially one after

another 4 times).
So

1

D4
x2 = 1

D3

 
x2dx = 1

D3

x3

3
= 1

D2

1

D

x3

3

= 1

D2

 
x3

3
dx

= 1

D2

x4

12
= 1

D

1

D

x4

12
= 1

D

 
x4

12
dx= 1

D

x5

60

=
 

x5

60
dx = x6

360

Similarly,

1

D4
[2] = 1

D3
2x = 1

D2
x2 = 1

D

x3

3
= x4

12

Thus

yp = −
 
x6

360
+ x4

12

 
·

Hence the G.S. y = ye + yp

y= (c1+ c2x+ c3x
2+ c4x

3+ c5e
x+ c6e

−x )−
 
x6

360
+x4

12

 

Example 2: (D2 − 1)y = 2x4 − 3x + 1.

Solution:

C.F.: Here A.E. is m2 − 1 = 0 so that m = ±1 are
the two roots. Thus the C.F. is

yc = c1e
x + c2e

−x

P.I.: yp =
1

(D2 − 1)
(2x4 − 3x + 1)

=− 1

1−D2
(2x4 − 3x + 1)

=−[1+D2 +D4 +D6 + · · ·][2x4 − 3x + 1]

=−[1+D2 +D4][2x4 − 3x + 1]

=−
 
(2x4 − 3x + 1)+ (24x2)+ 48

 
G.S.:

y=yc + yp=c1e
x+e2e

−x− [2x4+24x2−3x+49]

Example 3: (D3 − 1)y = x5 + 3x4 − 2x3

Solution:

C.F.: Here A.E. is m3 − 1 = 0 having 3 roots m =
1, −1±

√
3i

2
. Thus C.F. yc is

yc = c1e
x + e−

x
2

 
c2 cos

√
3

2
x + c3 sin

√
3

2
x

 

P.I.: yp =
1

(D3 − 1)
(x5 + 3x4 − 2x3)

= −1

(1−D3)
[x5 + 3x4 − 2x3]

=−[1+D3 +D6 +D9 + · · ·][x5 + 3x4 − 2x3]

=−
 
(x5 + 3x4 − 2x3)+

D3 (x5 + 3x4 − 2x3)+ 0+ 0+ · · ·
 

=−
 
(x5 + 3x4 − 2x3)+ (60x2 + 72x− + 12)
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Hence G.S.:

y = yc + yp

y = c1e
x + e−

x
2

 
c2 cos

√
3

2
x + c3 sin

√
3

2
x

 

−[x5 + 3x4 − 2x3 + 60x2 + 72x + 12]

Example 4: (D2+2)y = x3+x2+e−2x+ cos 3x.

Solution:

C.F.: Here A.E. is m2 + 2 = 0 with complex roots

m = ±
√

2i so that the C.F. is

yc = (c1 cos
√

2x + c2 sin
√

2x)

P.I.:

yp =
1

(D2 + 2)
(x3 + x2 + e−2x + cos 3x)

= 1

(D2 + 2)
(x3 + x2)+ 1

D2 + 2
e−2x

+ 1

D2 + 2
cos 3x

= I1 + I2 + I3

Consider

I1 =
1

D2 + 2
(x3 + x2) = 1

2
 
1+ D2

2

 (x3 + x2)

= 1

2

 
1− D2

2
+ D4

4
+ · · ·

 
[x3 + x2]

Since x3 is the higher degree, omit terms containing

D4 and higher orders. Thus

I1 =
1

2

 
1− D2

2

 
[x3 + x2]

= 1

2

 
x3 + x2 − 1

2
(6x + 2)

 

I1 =
1

2
[x3 + x2 − 3x − 1]

Consider I2 = 1

D2+2
e−2x .

Replacing D by − 2, we get

I2 =
1

(−2)2 + 2
e−2x = 1

6
e−2x

Consider

I3 =
1

D2 + 2
cos 3x

Replacing D2 by − 32, we get

I3 =
1

−32 + 2
cos 3x = −1

7
cos 3x

Thus

yp =
1

2
[x3 + x2 − 3x − 1]+ 1

6
e−2x − 1

7
cos 3x

G.S.:

y = yc + yp

y =
 
c1 cos

√
2x + c2 sin

√
2x

 

+1

2
(x3 + x2 − 3x − 1)+ 1

6
e−2x − 1

7
cos 3x

EXERCISE

Solve the following:

1. (D2 + 3D + 2)y = x3 + x2

Ans. y = c1e
−x + c2e

−2x + x3

2
− 7x2

4
+ 15x

4
− 31

8

2. (D3 −D)y = 1+ x5

Ans. y = c1 + c2e
x + c3e

−x

−
 
x + 60x2 + 5x4 + x6

6

 
3. (D4 +D3 +D2)y = 5x2

Ans. y = (c1 + c2x)

+e−x2
 
c3 cos

√
3

2
x + c4 sin

√
3

2
x
 

+ 5
12
x4 − 5

3
x3 + 10x − 10

4. (2D2 + 2D + 3)y = x2 + 2x − 1

Ans. y = e−
x
2

 
c1 cos

√
5

2
x + c2 sin

√
5

2
x
 
+ x2

3

+ 2x
9
− 25

27

5. (D2 +D + 1)y = x3.

Ans. y = e
−x
2

 
c1 cos

√
3

2
x + c2 sin

√
3

2
x
 
+ x3

−3x2 + 6.

6. (D2 + 4D + 4)y = x2 + 2x with y(0) = 0,

y  (0) = 0.
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Ans. y = − 3
8
(1+ 2x)e−2x + 1

8
(2x2 + 3)

7. (D3 − 2D + 4)y = x4 + 3x2 − 5x + 2

Ans. y = c1e
−2x + ex(c2 cos x + c3 sin x)+ x4

4
+

x3

2
+ 3x2

2
− 5x

4
− 7

8

8. (D4 + 2D3 − 3D2)y = x2 + 3e2x + 4 sin x

Ans. y = c1 + c2x + c3e
x + c4e

−3x − x2

108
(3x2 +

8x + 28)+ 3
20
e2x + 2

5
(cos x + 2 sin x)

9. (D2 + 3D + 2)y = e−x + x2 + cos x

Ans. y = c1e
−x + c2e

−2x − e−x + 2x2−6x+7
4

+ 1
10

(cos x + 3 sin x)

10. (D + 1)2y = e−x + x2

Ans. y = (c1 + c2x)e−x + 1
2
x2

2
e−x + x2 − 4x + 6

11. (D3 −D2 − 6D)y = 1+ x2

Ans. y = c1 + c2e
−2x + c3e

3x

− 1
6

 
23x
18
− x2

6
+ x3

3

 
12. (D3 −D)y = 2x + 1+ 4 cos x + 2ex

Ans. y = c1 + c2e
x + c3e

−x + x ex − (x2 + x)−
2 sin x.

Exponential Shift

(Case: V)
Book Work: Prove that

1

f (D)
eaxV (x) = eax

1

f (D + a)
V (x)

where V (x) is any function of x and f (D + a) is

obtained by replacing D by D + a in f (D).

Proof: Let u be a function of x, then

d

dx

 
eaxu(x)

 =D
 
eaxu(x)

 = aeaxu+ eaxDu

D(eaxu)= eax (au+Du) = eax (D + a)u

Differentiating once more w.r.t. x

D2(eaxu)=D
 
eax (D + a)u

 
= aeax (D + a)u+ eax [D2 + aD]u

D2(eaxu)= eax [D2u+ 2aDu+ a2u] = eax [D + a]2u

By mathematical induction

Dr (eaxu) = eax (D + a)ru

Thus substituting these values

f (D)(eaxu) = eaxf (D + a)(u) (1)

Put

f (D + a) (u(x)) = V (x) (2)

Then

u(x) = 1

f (D + a)
V (x) (3)

Substituting (3) in (1)

f (D)

 
eax

1

f (D + a)
V (x)

 
= eaxV (x) (4)

operating with 1
f (D)

on both sides of (4), we have

1

f (D)
· f (D) ·

 
eax

1

f (D + a)
V (x)

 
= 1

f (D)
{eaxV (x)}

(5)

Thus

1

f (D)
{eaxV (x)} = eax

1

f (D + a)
V (x)

WORKED OUT EXAMPLES

Solve the following:

Example 1: (D2−4D+3)y=ex cos 2x+ cos 3x.

Solution:

C.F. Here A.E. is m2 − 4m+ 3 = 0 with roots m =
1, 3 so that the C.F. is yc = c1e

x + c2e
3x

P.I.:

yp =
1

D2 − 4D + 3
(ex cos 2x + cos 3x)

= 1

D2 − 4D + 3
(ex cos 2x)

+ 1

D2 − 4D + 3
(cos 3x) = I1 + I2

Applying shift result to I1 replace D by

D + a = D + 1, we get

I1 =
1

D2 − 4D + 3
(ex cos 2x)

= ex

(D + 1)2 − 4(D + 1)+ 3
· cos 2x

I1 =
ex

D2 − 2D
cos 2x
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Replacing D2 by −22 we have

I1 =
ex

−22 − 2D
cos 2x = −ex

2

1

D + 2
cos 2x

In order to get D2 terms we rewrite the above as

= − ex

2
· D − 2

(D + 2)(D − 2)
cos 2x

= − ex

2

D − 2

D2 − 22
· cos 2x

Replace D2 by −22 then

I1 =−
ex

2

(D − 2)

−22 − 22
cos 2x = ex

16
(D − 2)(cos 2x)

= ex

16
[−2 sin 2x − 2 cos 2x]

=−ex

8
[sin 2x + cos 2x]

Consider

I2 =
1

D2 − 4D + 3
· cos 3x

Replacing D2 by −32, we get

I2 =
1

−32 − 4D + 3
cos 3x = − 1

2(2D + 3)
cos 3x

Rewrite this to get D2 terms as

I2 =−
1

2

2D − 3

(2D + 3)(2D − 3)
· cos 3x

=−1

2

(2D − 3)

(4D2 − 32)
cos 3x

Replace D2 by −32 then

I2 =−
1

2

2D − 3

4(−32)− 32
cos 3x = 1

90
(2D − 3)(cos 3x)

I2 =
1

90
[−6 sin 3x − 3 cos 3x]

=− 1

30
[2 sin 3x + cos 3x]

Thus

yp = I1 + I2

=−ex

8
[sin 2x + cos 2x]− 1

30
[2 sin 3x + cos 3x]

Hence G.S.:

y = yc + yp u

i.e.,

y = c1e
x + c2e

3x − ex

8
[sin 2x + cos 2x]

− 1

30
[2 sin 3x + cos 3x].

Example 2: (D2 + 2)y = x2e3x + ex cos 2x

Solution:

C.F.: Here the A.E. is m2 + 2 = 0 with roots m =
±
√

2i so that the C.F. is

yc = (c1 cos
√

2x + c2 sin
√

2x)

P.I.: yp =
1

D2 + 2
[x2e3x + ex · cos 2x]

= 1

D2 + 2
[e3x · x2]+ 1

D2 + 2
[ex · cos 2x]

= I1 + I2

Applying shift result with a = 3 replaceD byD + 3

in I1.
Then

I1 =
1

D2 + 2
[e3x · x2] = e3x

(D + 3)2 + 2
[x2]

= e3x

D2 + 6D + 11
x2

= e3x

11
 
1+ D2+6D

11

 · x2

Expanding in powers of D2+6D
11

, we get

I1 =
e3x

11


1−

 
D2 + 6D

11

 
+

 
D2 + 6D

11

 2

−
 
D2 + 6D

11

 3

+ · · ·

 x2

Since x2 is the highest power, discord terms of D3

and higher orders. Then

I1 =
e3x

11

 
1+

 
−D2

11
− 6D

11

 
+

 
36

112
D2

  
x2

= e3x

11

 
x2 − 12x

11
+ 50

121
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Consider

I2 =
1

D2 + 2
ex cos 2x

Applying shift result, replace D by D + 1 in the
above then

I2 =
ex

(D + 1)2 + 2
· cos 2x = ex

D2 + 2D + 3
cos 2x

Replace D2 by −22, we get

I2 =
ex

−22 + 2D + 3
cos 2x = ex

2

1

2D − 1
cos 2x

To have D2 terms, rewrite the above as

I2 = ex · 2D + 1

(2D − 1)(2D + 1)
cos x

= ex (2D + 1)

4D2 − 12
cos 2x

Replace D2 by −22, we get

I2 =
ex (2D + 1)

4 · (−22)− 12
cos 2x = ex (2D + 1)

−17
cos 2x

I2 =−
ex

17
[−4 sin 2x + cos 2x]

Thus yp = I1 + I2 = e3x

11

 
x2 − 12x

11
+ 50

121

 + ex

17

[4 sin 2x − cos 2x]
Hence G.S.: y = yc + yp

y = [c1 cos
√

2x + c2 sin
√

2x]+ e3x

11

×
 
x2 − 12x

11
+ 50

121

 
+ ex

17
[4 sin 2x − cos 2x]

EXERCISE

Solve the following:

1. (D2 − 4D + 3)y = 2xe3x + 3ex cos 2x

Ans. y = c1e
x + c2e

3x + e3x

2
(x2 − x)

− 3ex

8
(cos 2x + sin 2x)

2. (D2 + 5D + 6)y = e−2x(sec2 x)(1+ 2 tan x)

Ans. y = c1e
−2x + c2e

−3x + e−2x tan x

3. (D2 + 4)y = ex sin2 x

Ans. y = c1 cos 2x + c2 sin 2x +
ex

2

 
1
5
− 1

17
(4 sin 2x + cos 2x)

 

4. (D2 + 4D + 3)y = e−x sin x + x

Ans. y = c1e
x + c2e

−3x + 1
16
ex(2x2 − x)−

1
27

(9x3 + 18x2 + 42x + 40)

5. (D4 − 1)y = cos x · cosh x

Ans. y = c1e
x + c2e

−x + c3 cos x + c4 cos x

− 1
5
cos x · cosh x

6. (D2 − 4D + 4)y = e2x cos2 x,

Ans. y = (c1 + c2x)e2x + e2x
 
x2

4
− 1

8
cos 2x

 
7. (D2 + 4D + 5)y = e−2x(1+ cos x)

Ans. y = e−2x
 
c1 cos x + c2 sin x + 1+ x

2
sin x

 
8. (D2 − 6D + 13)y = 8e3x sin 2x

Ans. y = e3x(c1 cos 2x + c2 sin 2x − 2x cos 2x)

9. (D2 − 4)y = x sinh x

Ans. y = c1e
2x + c2e

−2x − x
2
sinh x − 2

9
cosh x

10. (D3 − 2D + 4)y = ex sin x

Ans. y = c1e
−2x + (c2 cos x + c3 sin x)ex +

(3 sin x + cos x) xe
x

20

11. (D2 − 2D + 1)y = x2e3x

Ans. y = (c1 + c2x)ex + (2x2 − 4x + 3) e
3x

8

P.I. When F(x)= xV(x)

(Case: VI)
Book Work: Prove that

1

f (D)
{xV (x)} = x

1

f (D)
V (x)− f  (D)

{f (D)}2 V (x)

where V (x) is any function of x and f  (D) is the

derivative of f (D) w.r.t. D.

Proof: Let z=xU (x) whereU is any function of x.

Then Dz = xDU + U

D2z = D(xDU + U ) = xD2U +DU +DU

D2z = xD2U + 2DU

D3z = D(xD2U + 2DU ) = xD3U + 3DU
By mathematical induction

Drz = xDrU + rDr−1U = xDrU +
 

d

dD
Dr

 
U
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Substituting these values in f (D), we get

f (D)(xU )= xf (D)U +
 

d

dD
f (D)

 
U (1)

Put f (D)U = V (x) (2)

Then U = 1

f (D)
V (3)

Substituting U from (3) in (1)

f (D)

 
x · 1

f (D)
V

 
= xf (D) · 1

f (D)
V

+
 

d

dD
f (D)

  
1

f (D)
V

 

Rearranging the terms

xV = f (D)

 
x

1

f (D)
V

 
− f  (D) · 1

f (D)
V (4)

Operating with 1
f (D)

on both sides of (4), we get

1

f (D)
{xV } = 1

f (D)
f (D)

 
x

1

f (D)
V

 

− 1

f (D)
f  (D)

1

f (D)
V

Rewriting

1

f (D)
{xV } = x

1

f (D)
V − f  (D)

{f (D)}2 V

1

f (D)
{xV } =

 
x

1

f (D)
− f  (D)

{f (D)}2
 
V

WORKED OUT EXAMPLES

Solve the following:

Example 1: (D2 − 2D + 1)y = xex sin x

Solution:

C.F.: Herem2 − 2m+ 1 = 0 is the A.E. withm = 1
as a double root so that the C.F. yc is

yc = (c1 + c2x)ex

P.I.: yp =
1

(D2 − 2D + 1)
x(ex sin x)

= 1

(D − 1)2
ex (x sin x)

using shift result with a = 1 so thatD is replaced by
D + 1, we get

yp =
ex

[(D + 1)− 1]2
(x sin x) = ex

D2
x sin x

Applying result VI

1

D2
x(sin x)= x · 1

D2
sin x − 2D

D4
sin x (5)

= x(− sin x)− 2 cos x (6)

Thus yp = ex [−x sin x − 2 cos x] (7)

Hence G.S.: y = yc + yp

y = (c1 + c2x)ex − ex (x sin x + 2 cos x)

Example 2: (D2 − 1)y = x2 cos x

Solution:

C.F.: Here A.E. is m2 − 1 = 0 with m = ±1 as the
roots so that the C.F. is

yc = c1e
x + c2e

−x

P.I.:

yp =
1

(D2 − 1)
· x2 cos x = 1

D2 − 1
x · (x cos x)

Apply result VI

yp=
x

D2−1
(x cos x)− 2D

(D2−1)2
· x cos x=I1−2I2

Consider

I1 =
x

D2 − 1
(x cos x)

Applying result VI once again

I1 = x ·
 
x · 1

D2 − 1
cos x − 2D

(D2 − 1)2
cos x

 

Replacing D2 by −12 in the denominator

I1 = x2 · 1

−12 − 1
cos x − x2D

(−12 − 1)2
cos x

=−−x
2 cos x

2
+ x sin x

2

Consider

I2 =
D

(D2 − 1)2
x cos x, applying VI
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=D

 
x

(D2 − 1)2
· cos x − 2(D2 − 1) · 2D

(D2 − 1)4
cos x

 

Replacing D2 by −12 in the denominator

I2 =D

 
x

(−12 − 1)2
cos x − 4D

(−12 − 1)3
cos x

 

= 1

4
D[x cos x]+ 1

2
D2(cos x)

= 1

4
[cos x − x sin x]− 1

2
cos x

Thus

yp = I1 − 2I2 =
1

2
[−x2 cos x + x sin x]

−1

2
[cos x − x sin x]+ cos x

=
 

1− x2

2

 
cos x + x sin x

Ans. y = c1e
x + c2e

−x + x sin x + (1−x2) cos x

2

Example 3: (D2 − 1)y = x sin x + x2ex

Solution:

C.F.: Here A.E. ism2 − 1 = 0 withm = ±1 as roots

so that the C.F. yc = c1e
x + c2e

−x.

P.I.: yp =
1

D2 − 1
x sin x + 1

D2 − 1
x2ex = I1 + I2

Applying result VI for I1, we get

I1 =
1

D2 − 1
x sin x

= x

D2 − 1
sin x − 2D

(D2 − 1)2
sin x

Replacing D2 by −12 in the denominator

I1 =
x

−12 − 1
sin x − 2

(−12 − 1)2
·D sin x

=−x sin x

2
− cos x

2

I1 =−
1

2
(x sin x + cos x)

Applying result VI to I2, we have

I2 =
1

D2 − 1
x2ex

= x · 1

D2 − 1
(xex )− 2D

(D2 − 1)2
(xex )

Applying result VI once again to each of the two

terms in the R.H.S., we get

I2 = x

 
x

1

D2 − 1
ex − 2D

(D2 − 1)
ex

 

−2D

 
x

1

(D2 − 1)2
ex − 2(D2 − 1)2D

(D2 − 1)4
ex

 

=
 
x2 1

(D + 1)(D − 1)
ex − 2xD

(D + 1)2(D − 1)2
ex

 

−2D

 
x

1

(D + 1)2(D − 1)2
ex

− 4D

(D + 1)3(D − 1)3
ex

 

Replacing D by 1, we get

=
 
x2 1

2(D − 1)
ex − 2xD

4(D − 1)2
ex

 

−2D

 
x

4

1

(D − 1)2
ex − 4

8

D

(D − 1)3
ex

 
.

Applying result Ic, Id

I2 =
x2

2
xex − x

e
D ·

 
x2ex

2!

 

−2D

 
x

4
· x

2ex

2!
− 1

2
D
x3ex

3!

 

= x3ex

2
− x

4
[x2ex + 2xex ]− 1

4
[x3ex + 3x2ex ]

+1

6
[x3ex + 6x2ex + 6xex ]

= xex

 
x2

2
− x2

4
− x

2
− x2

4
− 3

4
x+ 1

6
x2+x+1

 

I2 = xex

 
x2

6
− x

4
+ 1

 
= xex

12
[2x2 − 3x + 12]

yp = I1 + I2 = −
1

2
(x sin x + cos x)

+xex

12
(2x2 − 3x + 12)

Thus G.S.: y = yc + yp

y = c1e
x + c2e

−x − 1

2
(x sin x + cos x)

+xex

12
(2x2 − 3x + 12)
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EXERCISE

Solve the following:

1. (D2 + 3D + 2)y = x sin 2x

Ans. y = c1e
−x + c2e

−2x − (30x−7)

200
cos 2x

−  
5x−12

100

 
sin 2x

2. (D2 + 2D + 1)y = x cos x

Ans. y = (c1 + c2x)e−x + x
2
sin x

+ 1
2
(cos x − sin x)

3. (D2 − 1)y = x2 sin 3x

Ans. y = c1e
x + c2e

−x −x2

10
· sin 3x − 3x

25
cos 3x

+ 13
250

sin 3x

4. (D3 − 3D2 − 6D + 8)y = xe−3x

Ans. y = c1e
x + c2e

4x + c3e
−2x − e−3x

784
(28x + 39)

5. (D2 − 1)y = x sin x + ex(1+ x2)

Table of Particular Integrals

Inverse operator (short) methods to find particular integral of (6) when R.H.S. F (x) is of the form

Subject to the Remarks/

Case Form of F (x) Particular Integral (P.I.): yp condition that observation

Ia Any function of x yp = 1
D−a F (x) = eax

 
F (x)e−axdx c = 0 Substitute F(x) and

integrate w.r.t., x

Ib F (x) = b = constant yp = 1
D−a b = − b

a
a  = 0

Ic F (x) = eax yp = 1
D−a e

ax = xeax

Id F (x) = eax yp = 1
(D−a)n e

ax = xn

n!
eax Repeated factor n times

Ie Any function of x If f (D) = (D − a1)(D − a2) · · · (D − an)

Resolving into partial fractions Most general case

yp = 1
f (D)

F (x) =
 

A1
D−a1

+ A2
D−a2

+ · · · Resolve F (D) into factors

+ An
D−an

 
F (x)

Applying result Ia Resolve 1
f (D)

into partial fractions

yp = A1e
a1x

 
F (x)e−a1xdx + · · · Apply result Ia to each term

+Ane
anx

 
F (x)e−anxdx

IIa eax+b yp = 1
f (D)

eax+b = 1
f (a)

eax+b f (a)  = 0 Replace D by ‘a’ in f (D)

IIb Constant = b = be0x yp = 1
f (D)

b = b
f (0)

f (0)  = 0 Replace D by zero in f (D)

with a = 0

IIc eax+b yp = 1
f (D)

eax+b = 1
(D−a)ng(D)

eax+b g(a)  = 0 Replace D by ‘a’ in g(D)

= 1
g(a)

1
(D−a)n e

ax+b and apply result of Id

yp = 1
g(a)

xn

n!
eax+b

(Contd.)

Ans. y1 = c1e
x + c2e

−x − 1
2
(x sin x + cos x)

+ ex

2

 
x3

3
− x2

2
+ 3x

2
− 3

4

 
6. (D2 + 4)y = x sin2 x

Ans. y= c1 cos 2x+ c2 sin 2x+ x
8
− x cos 2x+2x2 sin 2x

32

7. (D2 + 1)y = x2e2x + x cos x

Ans. y = (c1 cos x + c2 sin x)+ e2x

5

 
x2 − 8

5
x

+ 22
25

 +  
x2

4
− 1

8

 
sin x + x

4
cos x

8. (D4 − 2D3 − 3D2 + 4D + 4)y = x2ex

Ans. y1 = (c1 + c2x)e−x + (c3 + c4x)e2x

+ ex

4

 
x2 − 2x − 3

2

 
9. (D2 − 5D + 6)y = xe4x

Ans. y = c1e
2x + c2e

3x + e4x (2x−3)

4

10. (D2 + a2)y = sec ax

Ans. y = c1 cos ax + c2 sin ax + x
a

sin ax

+ 1

a2 cos ax · log(cos ax)
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(Continued)

Subject to the Remarks/

Case Form of F (x) Particular Integral (P.I.): yp condition that observation

IIIa sin (ax + b) yp = 1

f (D2)
sin (ax + b) f (−a2)  = 0 Replace D2 by −a2 in f (D)

= 1

f (−a2)
sin (ax + b) when terms of D,D3, . . . are present,

IIIb cos (ax + b) yp = 1

f (D2)
cos (ax + b) f (−a2)  = 0 Multiply by D in order to get

= 1

f (−a2)
cos (ax + b) D2,D4, . . ., etc. terms. Then replace

D2 by −a2, etc.

IIIc sin (ax + b) yp = 1

D2+a2 sin (ax + b) a  = 0 sin is replaced by cos and

= − x·cos (ax+b)
(2a)

multiplied by − x
2a

IIId sin (ax + b) yp = 1

(D2+a2)n
sin (ax + b) a  = 0

= xn

(2a)nn!
sin (ax − n π

2
)

IIIe cos (ax + b) yp = 1

D2+a2 cos (ax + b) a  = 0 cos is replaced by sin and

= x·sin(ax+b)
2a

multiplied by x
2a

IIIf cos (ax + b) yp = 1

(D2+a2)n
cos (ax + b) a  = 0

= xn

(2a)n
1
n!

cos (ax − nπ
2

)

IV xm yp = 1
f (D)

xm = [f (D)]−1xm Expand [f (D)]−1 is ascending powers

yp = [a0 + a1D + a2D
2 + · · · a0  = 0 of D and delete all terms beyond Dm

+amDm]xm (since Dnxm = 0 when n > m)

V eaxV (x) yp = 1
f (D)

eaxV (x) = eax 1
f (D+a)V (x) f (D + a)  = 0 Replace D by D + a in f (D). Then

(Exponential shift) evaluate 1
f (D+a)V (x) by the above

methods

VI xV (x) yp = 1
f (D)

xV (x)

= x 1
f (D)

V (x)− f 1(D)

{f (D)}2 V (x)

9.6 DIFFERENTIAL EQUATIONS WITH

VARIABLE COEFFICIENTS:

REDUCIBLE TO EQUATIONS WITH

CONSTANT COEFFICIENTS

Special Case A: Euler or Cauchy or

Euler-Cauchy or Cauchy-Euler Differential

Equation or Equi-dimensional equation

The equation of nth order is of the form

(a0x
nDn + a1x

n−1Dn−1 + · · ·
+an−1xD + an)y = F (x) (1)

where a0, a1, a2, . . . , an are all constants

and F (x) is a function of x

By the substitution

x = et (2)

the Euler Equation (1) can be transformed into a

linear D.E. with constant coefficients with t as the

independent variable, which can be solved by the

methods described in the earlier Sections 9.4 and 9.5.
From (2), t = ln x and dx

dt
= et so that

dy

dx
= dy

dt

dt

dx
= e−t

dy

dt
= 1

x

dy

dt
(3)

Introducing D ≡ d
dt

, we have

dy

dx
=Dy = 1

x

dy

dt
= 1

x
Dy (4)

or xDy =Dy
Similarly, differentiating (3) once more w.r.t. x, we
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get

d2y

dx2
= d

dx

 
e−t

dy

dt

 
= d

dt

 
e−t

dy

dt

 
dt

dx

= e−t
 
e−t

d2y

dt2
− e−t

dy

dt

 
= e−2t

 
d2y

dt2
− dy

dt

 

Thus

d2y

dx2
= D2y = e−2t

 
D

2y −Dy
 
= 1

x2
[D2y −Dy]

Thus

x2D2y = (D2 −D)y = D(D − 1)y (5)

Similarly, differentiating again, we get

x3D3 =D3 − 3D2 + 2D = D(D − 1)(D − 2) (6)

x4D4 =D4 − 6D3 + 11D2 − 6D

=D(D − 1)(D − 2)(D − 3) (7)

and by mathematical induction

xrDr = D(D − 1)(D − 2) . . . (D − (r − 1)) (8)

Method of solving Cauchy-Euler equation

I. Put x = et and use (4), (5), (6), etc. to trans-

form Euler equation to D.E. with constant coef-

ficients.

II. Solve thisD.E.with t as the independent variable

by methods described in Sections 9.3 to 9.5.

III. Replace t by ln x in the solution obtained in

step II.

The second order equation

ax2y  + bxy + cy = Q(x)

reduces to

a

 
d2y

dt2
− dy

dt

 
+ b

 
dy

dt

 
+ cy = Q∗(t)

aD2y + (b − a)Dy + cy = Q∗(t)

where Q∗(t) is Q(x) with x replaced by et .

WORKED OUT EXAMPLES

Solve the following:

Example 1: x2y   − 3xy  + 3y = 0 with

y(1) = 0, y  (1) = −2

Solution: Substituting (2), (3), (4), (5) in the given
D.E., we get 

d2y

dt2
− dy

dt

 
− 3

dy

dt
+ 3y = 0

or
d2y

dt2
− 4

dy

dt
+ 3y = 0

This is 2nd order D.E. whose A.E. is

m2 − 4m+ 3 = 0

The roots are m = 1, 3

G.S. y(t) = c1e
t + c2e

3t

y(x) = c1x + c2x
3

Since 0 = y(1) = c1 + c2

−2 = y1(1) = c1 + 3c2

c1 = −c2 so that c2 = −1 thus c1 = 1
Hence the particular solution

y = x − x3

Example2: x3 d3y

dx3 + 3x2 d2y

dx2 + x
dy

dx
+ y= x+ ln x

Solution: Substituting (2), (4), (5), (6) in the given
D.E., we get

D(D − 1)(D − 2)y + 3D(D − 1)y +Dy + y = et + t

or D
3y + y = et + t

C.F.: The A.E. is m3 + 1 = 0 having roots

m = −1, 1±
√

3i
2

so that the C.F. yc is

yc = c1e
−t + e

t
2

 
c2 cos

√
3

2
t + c3 sin

√
3

2
t

 

P.I. : yp =
1

D3 + 1
{et + t} = 1

D3 + 1
et + 1

D3 + 1
t

= 1

13 + 1
et + {1−D3 +D6 + . . .}t

= et

2
+ t − 0+ 0+ . . .
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G.S: y = yc + yp

y = c1e
−t + e

t
2

 
c2 cos

√
3

2
t + c3 sin

√
3

2
t

 
+ et

2
+ t

Replacing t by ln x

y(x)= c1

x
+√x

 
c2 cos

√
3

2
ln x + c3 sin

√
3

2
ln x

 

+x

2
+ ln x.

Example 3: x2 d2y

dx2 − 3x
dy

dx
+ 5y = x2 sin (log x)

Solution: Using (2), (3), (4), (5) the D.E. reduces
to  

d2y

dt2
− dy

dt

 
− 3

 
dy

dt

 
+ 5y + e2t sin t

d2y

dt2
− 4

dy

dt
+ 5y = e2t sin t

C.F.: Here A.E. is m2 − 4m+ 5 = 0 having roots
m = 2± i so that the C.F. yc is

yc = e2t (c1 cos t + c2 sin t)

P.I. yp =
1

D2 − 4D + 5
e2t sin t

Using shift result replace D by D + 2

yp =
e2t

(D + 2)2 − 4(D + 2)+ 5
sin t

yp =
e2t

D2 + 1
sin t

Using result IIIc

= e2t

 −t · cos t

2

 

G.S.: y = yc + yp

y(t) = e2t (c1 cos t + c2 sin t)
−te2t

2
cos t

Replacing t by ln x

y(x)= x2(c1 cos (log x)+ c2 sin (log x)

− log x · x
2

2
· cos (log x)

EXERCISE

Solve the following:

1. x2y   + 3 · 5xy  + y = 0

Ans. y = c1x
− 1

2 + c2x
−2

2. x2y   − 3xy  + 3y = 0

Ans. c1x
3 + c2x

2

3. 4x2y   − 4xy  + 3y = 0

Ans. y = c1x
1
2 + c2x

3
2

4. 9x2y   + 3xy  + y = 0

Ans. y = (c1 + c2 ln x)x
1
3

5. x3y    − 3x2y   + 6xy  − 6y = 0

Ans. y = c1x + c2x
2 + c3x

3

6. x3y    − x2y   − 6xy  + 18y = 0

Ans. y = (c1 + c2 ln x)x3 + c3x
−2

7. x2y   − 2xy  + 2y = 4x3

Ans. y = c1x
2 + c2x + 2x3

8. x2y   − xy  + 4y = cos ln x + x sin ln x

Ans. y = c1 · x · cos (
√

3 ln x) + c2x sin (
√

3 ln x)

+ 1
13

(3 cos ln x − 2 sin ln x) + 1
2
x · sin ln x

9. x2y   + 4xy  + 2y = ex

Ans. y = c1x
−1 + c2x

−2 + x−2ex

10. x2y   − 4xy  + 6y = 4x − 6

Ans. y = c1x
2 + c2x

3 + 2x − 1

11. x2y   − 2xy  − 10y = 0 with y(1) = 5,

y  (1) = 4

Ans. y = 3

x2 + 2x5

12. x2y   − 4xy  + 4y = 4x2 − 6x3, y(2) = 4,

y  (2) = −1

Ans. y = 5x
3
− 2x2 + 3x3 − 23x4

24

13. x2y   − 2xy  + 2y = ln2 x − ln x2

Ans. y = c1x + c2x
2 + 1

2
(ln2 x + ln x)+ 1

4
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14. x3y    − 8x2y   + 28xy  − 40y = − 9
x

Ans. y = c1x
2 + c2x

4 + c3x
5 + x−1

10

15. x3y    + 2x2y   = x + sin (ln x)

Ans. y = c1 + c2x + c3 ln x + x ln x

+ 1
2
(cos ln x + sin ln x)

16. x2y   + 5xy  + 4y = x2 + 16 (ln x)2

Ans. y = c1x
−2 + c2x

−2 ln x + x2

16

+ 4 (ln x)2 − 8 ln x + 6

17. x2y   + 3xy  + y = 1

(1−x)2

Ans. y =  
1
x

 
(c1 + c2 ln x)+ 1

x
ln x

1−x .

Special Case B:

Legendre Linear Equation

The Equation of nth order is of the form

[a0(ax + b)nDn + a1(ax + b)n−1Dn−1 + · · ·
+an−1(ax + b)D + an]y = F (x) (1)

where a, b, a0, a1, a2, . . . , an−1, an are all constants.

This Equation (1) can be reduced to (Cauchy-Euler

equation) and then to a linear differential equation

with constant coefficients by the transformation

ax + b = et (2)

Solving for x = et − b

a
(3)

Differentiating (2) w.r.t. ‘t’, we have

a
dx

dt
= et (4)

Now

dy

dx
= dy

dt
· dt
dx
= ae−t

dy

dt
= a

et

dy

dt

(ax + b)Dy = aDy (5)

Differentiating again w.r.t., x

d2y

dx2
= d

dx

 
dy

dx

 
= d

dt

 
dy

dx

 
dt

dx

= ae−t · d
dt

 
ae−t

dy

dt

 

d2y

dx2
= a2e−2t

 
d2y

dt2
− dy

dt

 

(ax + b)2D2y = a2[D2 −D]y (6)

Similarly (ax + b)3D3y = a3[D3 − 3D2 + 2D]y (7)

Method of Solving Legendre Equation

I. Identify a and b. Using the substitution

ax + b = et , and (3), (4), (5), (6), (7), etc., the

given Legendre equation reduces to D.E. with

constant coefficients.

II. Solve D.E. obtained in I with t as independent

variable, by standard methods described in

Section. 9.3 to 9.5

III. Replace t by ln(ax + b) in the solution obtained

in II.

Note: The second order equation

a0 (ax + b)2y   + b0 (ax + b)y  + c0 y = Q(x)

reduces to

a0 a
2(D2 −D)y + b0 aDy + C0 y = Q∗(t)

or

a0 a
2
D

2y + (b0 a − a0 a
2)Dy + C0 y = Q∗(t)

WORKED OUT EXAMPLES

Solve the following:

Example: (2x+ 5)2y   − 6(2x+ 5)y  + 8y= 6x

Solution:

Here a0= 1, b0= − 6, c0 = 8,Q(x) = 6x, a = 2,
b = 5. Replace 2x + 5 = et and use (3), (4), (5) (6)
in the given Legendre D.E. which then reduces to a
linear equation

4

 
d2y

dt2
− dy

dt

 
− 12

dy

dt
+ 8y = 3(et − 5)

d2y

dt2
− 4

dy

dt
+ 2y = 1

4
(3et − 15)

C.F.: The A.E. is m2 − 4m+ 2 = 0 with roots m =
2±

√
2 so that the C.F. yc is

yc = c1e
(2+

√
2)t + c2e

(2−
√

2)t
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P.I.: yp =
1

D2 − 4D + 2
· 1

4
(3et − 15)

= 3

4

1

D2 − 4D + 2
et − 15

4

1

D2 − 4D + 2
· 1

= 3

4

1

1− 4+ 2
et − 15

4

1

0− 0+ 2

=−3

4
et − 15

8

Then G.S.: y = yc + yp

y = c1e
(2+

√
2)t + c2e

(2−
√

2)t − 3

4
et − 15

8
.

Replacing t by ln (2x + 5), we get

y(x)= c1(2x + 5)2+
√

2 + c2(2x + 5)2−
√

2

−3

4
(2x + 5)− 15

8
.

EXERCISE

Solve the following:

1. (x + 2)2y   + 3(x + 2)y  − 3y = 0

Ans. y = c1(x + 2)+ c2(x + 2)−3

2. (2x + 1)2y   − 2(2x + 1)y  + 4y = 0

Ans. y = c1(2x + 1)+ c2(2x + 1)+ ln (2x + 1)

3. (x + 1)2y   − 3(x + 1)y  + 4y = x2 + x + 1

Ans. y = (c1 + c2 ln x)x2 + (ln x)2

2
x2 − x + 1

4

4. (3x + 2)2y   + 3(3x + 2)y  − 36y = 3x2 +
4x + 1

Ans. y = c1(3x + 2)2 + c2(3x + 2)−2 +
1

108
[(3x + 2)2 ln (3x + 2)+ 1]

5. (x + 1)2y   + (x + 1)y  − y = ln (x + 1)2 +
x − 1

Ans. y = c1(x + 1)+ c2(x + 1)−1 − ln (x +
1)2 + 1

2
(x + 1) ln (x + 1)+ 2

6. (1+ x)2y   + (1+ x)y  + y = 2 sin[log(1+
x)]

Ans. y = c1 cos[log(1+ x)]+ c2 sin[log(1+ x)]−
log(1+ x) · cos x

7. (1+ 4x)2y   + (1+ 4x)y  + 4y =
8(1+ 4x)2

Ans. y = c1(1+ 4x)a + c2(1+ 4x)b + 8
41

(1+
4x)2 with a = 6+ 2

√
5, b = 6− 2

√
5

8. (2x + 3)2y   + (2x + 3)y  − 2y = 24x2

Ans. y = c1u
− 1

2 + c2u+ 3
5
u2 − 6u ln (u)− 27

with u = 2x + 3

9. (x + 1)3y   + 3(x + 1)2y  + (x + 1)y =
6 ln (x + 1)

Ans. y(x + 1) = c1 + c2 ln(x + 1)+ ln 3(x + 1)

10. (x − 2)2y   − 3(x − 2)y  + 4y = x

Ans. y = (x − 2)2 · [c1 + c2 ln (x − 2)]+ x − 3
2
.

9.7 METHOD OF VARIATION

OF PARAMETERS

Method of variation of parameters enables to find

the general solution of any linear non-homogeneous

D.E. of second order even (with variable coeffi-

cients also) provided its complimentary function is

given (known). The particular integral of the non-

homogeneous equation is obtained by varying the

parameters i.e., by replacing the arbitrary constants

in the C.F. by variable functions.
Consider a linear non-homogeneous second order

D.E. with variable coefficients

y  + P (x)y +Q(x)y = R(x) (1)

Suppose the complimentary functions yc of (1) is
given as

yc = c1y1(x)+ c2y2(x) (2)

In method of variation of parameters the arbitrary

constants c1 and c2 in (2) are replaced by two un-

known functions u1(x) and u2(x)
Thus the particular integral yp of (1) is

yp = u1(x)y1(x)+ u2(x)y2(x) (3)
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where

u1(x)= −
 

R(x)y2(x)

W
dx (4)

u2(x)=
 

R(x)y1(x)

W
dx (5)

Here W = Wronskian ofy1, y2 =
    y1 y2

y 1 y 2

    
= y1y

 
2 − y 1y2  = 0 (6)

Hence the required general solution of (1) is

y = yc + yp

where yc and yp are given by (2) and (3).

Method of Obtaining a Particular Integral of

(1) by Variation of Parameters

I. Obtain the complimentary function yc of (1) as

yc = c1y1(x)+ c2y2(x)

II. Calculate Wronskian w by (6)

Identify R(x), y1(x), y2(x)

Determine u1(x) and u2(x) by (4) and (5).

Particular integral

yp = u1(x)y1(x)+ u2(x)y2(x).

Note: There is another powerful “method of unde-

termined coefficients” which is not discussed here.

WORKED OUT EXAMPLES

Solve the following D.E. by variation of parameters

method:

Example 1: (D2 − 1)y = 2(1− e−2x)−
1
2

Solution: C.F.: Here A.E. is m2 − 1 = 0 with, m =
±1 as the roots so that the C.F. yc is

yc = c1e
x + c2e

−x

So y1 = cx and y2 = e−x form two independent so-

lutions to the corresponding homogeneous equation.

Wronskian w = y1y
 
2 − y2y

 
1 =

ex(−e−x)− e−xex = −2

Assume the particular solution yp as

yp = u1(x)y1(x)+ u2(x)y2(x)

where

u1(x) = −
 

fy2

w
dx = −

 
2

(1− e−2x )
1
2

· e
−x

−2
dx

Here f (x) = R.H.S. of the given equation=
2

(1−e−2x )
1
2

So u1 =
 

e−xdx

(1− e−2x )
1
2

Put e−x = t,−e−xdx = dt

Thus u1 =
 

dt 
1− t2

= − sin−1(t) = − sin−1(e−x )

Similarly

u2 =
 

fy1dx

w
=

 
2 

1− e−2x
· e

x

−2
dx

=−
 

exdx 
1− e−2x

= −
 

e2xdx 
e2x − 1

Put e2x = t, 2e2xdx = dt

So u2 = −1

2

 
dt√
t − 1

= −1

2

(t − 1)
1
2

1
2

= −(t − 1)
1
2 = −(e2x − 1)2

yp = − sin−1(e−x )ex − (e2x − 1)
1
2 · ex

Hence G.S.: y = yc + yp so that

y= c1e
x + c2e

−x − ex · sin−1(e−x )− (e2x − 1)
1
2 e−x

Example 2: (D2 + 1)y = cosec x · cot x.

Solution:

C.F.: Here A.E. is m2 + 1 = 0 with complex roots
m = ±i so that the C.F. yc is

yc = c1 cos x + c2 sin x

Take y1 = cos x and y2 = sin x. They form the
system of independent solutions. The Wronskian

w= y1y
 
2− y2y

 
1= cos x · cos x− sin x · (− sin x)= 1
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Assume that the particular integral yp of the form

yp = u1(x)y1(x)+ u2(x)y2(x)

where u1 = −
 

fy2
w
dx.

Here f = cosecx · cot x

Thus u1 = −
 

cosec · cot x · sin x
1

dx = − ln | sin x|

Similarly,

u2 =
 

fy1

w
dx =

 
cosecx · cot x · cos x

1
dx

=
 

cot2 xdx = − cot x − x

Hence

yp = − ln | sin x| · cos x − (x + cot x) sin x

Thus G.S.: y = yc + yp is

y = c1 cos x + c2 sin x − cos x · ln | sin x|
−x sin x − sin x · cot x

Example 3: (D2 + 2D + 1)y = e−x ln x

Solution:

C.F.: Here A.E. is m2 + 2m+ 1 = 0 with
m = −1 as the double root so that the C.F. yc is

yc = (c1 + c2x)e−x .

Take y1 = e−x and y2 = xe−x as the fundamental
system. Now the Wronskian w is

w = y1y
i
2 − y2y

 
1 = e−x (e−x − xe−x )

−(xe−x )(−e−x ) = e−2x

Assume the P.I. yp as

yp = u1(x)y1(x)+ u2(x)y2(x)

where u1 = −
 

fy2
w
dx with f = e−x · ln x

u1 =−
 

e−x · ln x · xe−x
e−2x

dx

=−
 

x · ln x · dx

u1 =
x2

2

 
1

2
− ln x

 

Also

u2 =
 

fy2

w
dx =

 
e−x ln x · e−x

e−2x
dx

=
 

ln xdx = x ln x − x

Thus yp = x2

2

 
1
2
− ln x

 
e−x + e−2x[x ln x − x].

Hence G.S: y = yc + yp

y = c1e
−x + c2xe

−x + x2

2

 
1

2
− ln x

 
e−x

+e−2x (x · ln x − x)

EXERCISE

Solve the following D.E. by the method of variation

of parameters:

1. (D2 + 1)y = cscx

Ans. y = c1 cos x + c2 sin x − x cos x +
sin x ln (sin x)

2. (D2 − 2D + 1)y = x
3
2 ex

Ans. y = [c1 + c2x + 4
35
x

7
2 ]ex

3. (D2 − 1)y = e−2x · sin(e−x)

Ans. y = c1e
x + c2e

−x − ex cos(e−x)− sin (e−x)

4. (D2 − 3D + 2)y = 1
1+e−x

Ans. y = c1e
x + c2e

2x + ex · ln (1+ e−x)+
e2x[ln (1+ e−x)− e−x]

5. (D2 − 6D + 9)y = e3x

x2

Ans. y = c1e
3x + c2xe

3x − e3x ln x

6. (D2 − 2D)y = ex sin x

Ans. y = c1 + c2e
2x − ex

2
sin x

7. (D3 +D)y = cscx

Ans. y = c1 + c2 cos x + c3 sin x − ln (cscx +
cot x)− cos x ln sin x − x sin x

8. (D2 − 2D + 2)y = ex tan x

Ans. y = ex(c1 cos x + c2 sin x)

− ex · cos x log (sec x + tan x)

9. (D2 + 3D + 2)y = ex + x2
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Ans. y = c1e
−x + c2e

−2x + ex

6
+

 
x2

2
− 3x

2
+ 7

4

 
10. (D2 + a2)y = x cos ax

Ans. c1 cos ax + c2 sin ax + cos ax

2a

×
 

sin 2ax

4a2
− x cos 2ax

2a

 
+ sin ax

2a

×
 
x2

2
+ x sin 2ax

2a
− cos 2ax

4a2

 

11. (D2 + 1)y = log cos x

Ans. y = c1 cos x + c2 sin x + (log cos x − 1)+
sin x · log (sec x + tan x)

12. (D2 + 4)y = 4 sec2 2x

Ans. y = c1 cos 2x + c2 sin 2x − 1+
sin 2x · ln (sec 2x + tan 2x)

13. (D2 + 3D + 2)y = 1
1+ex

Ans. y = c1e
−x + c2e

−2x

+ (e−x + e−2x) log(1+ ex)

14. (D2 − 1)y = e−x sin e−x + cos e−x

Ans. y = c1e
x + c2e

−x − ex sin e−x

15. (D2 + 1)y = x cos 2x

Ans. y = c1 cos x + c2 sin x − x
2
cos 2x + 4

9
sin 2x

16. (D2 − 3D + 2)y = xex + 2x

Ans. c1e
x + c2e

2x − x2

2
ex − xe−x + x + 3

2
.

9.8 THE METHOD OF UNDETERMINED

COEFFICIENTS

The particular integral of an nth order linear non-

homogeneous D.E. with constant coefficients

(a0D
n + a1D

n−1 + · · · + an−1D + an)y = F (x) (1)

can be determined by the method of undetermined

coefficients, provided the R.H.S. function F (x) in

(1) is an exponential function, polynomial in x, co-

sine, sine or sums or products of such functions. The

derivatives of such functions F (x) have a form sim-

ilar to F (x) itself and are finite in number. Although

the class of such functions F (x) is quite restricted,

they include functions of frequent occurrence.

This method is relatively simple. The particular

integral yp of (1) is assumed in a form similar to the

R.H.S. function F (x) and involving undetermined

(unknown) coefficients which are then determined

by substitution of yp in D.E. (1). The advantage of

this method is that for a wrong choice of yp, or with

few terms leads to contradiction, while choice of

too many terms makes superfluous coefficients zero.

Thus this method is self correcting. However, this

method fails when F (x) = secx, tan x etc. since the

number of new terms obtained by differentiation is

infinite. Table 9.4 gives the form (choice) of P.I. yp
for a specific F (x).

Procedure:

Let m1,m2, . . . , mn be the roots of auxiliary equa-

tion f (m) = 0 where f (D)y = F (x) is the given

D.E. Here f (D) = a0D
n + a1D

n−1 + a2D
n−2

+ . . . + an−1D + an. Let S = {y1(x), y2(x), . . .,

yn(x)} be the set of n linearly independent solu-

tions of the homogeneous equation f (D)y = 0 cor-

responding to the n roots m1, m2, . . ., mn. Then the

complementary function yc is given by yc = c1y1 +
c2y2 + . . . + cnyn.

To find the particular integral by the method of

undetermined coefficients

I. Straight case

If the R.H.S. function F (x) is not a member of the

solution set, then choose P.I. yp from the above table

depending on the nature of F (x).

Example: (D2 − 3D + 2)y = 4e3x has A.E.:

m2 − 3m+ 2 = 0 with roots m1 = 1,m2 = 2 and

set of L.I. solutions, S = {ex, e2x}. C.F. is yc =
c1e

x + c2e
2x .

Since the R.H.S. e3x is not a member of

the solution set, choose P.I. yp as ce3x. Substi-

tuting yp in the given D.E., we determine the

unknown coefficient c as: 9ce3x − 3 · 3ce3x +
2ce3x = 4e3x ...2c = 4 or c = 2, So yp = 2e3x. 
Check :yp= 4

D2−3D+2
e3x= 4

9−3·3+2
e3x = 2e3x

 
.
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Table 9.4

II. Sum case

When the R.H.S. F (x) is a combination (sum) of the

functions in column 1 of the table, then P.I. is chosen

as a combination of the corresponding functions in

second column and proced as in straight case I.

Note: Here also as in case I, the terms of R.H.S.

F (x) are not members of the solution set S.

Example: (D3−2D2+D−2)y=5 cos 2x−6x2

A.E.: m3−2m2+m−2=0, (m−2)(m2+1)=0
i.e., m = 2,±i, S = {e2x, cos x, sin x};
C.F.: yc = c1e

2x + c2 cos x + c3 sin x.
Choose yp=A cos 2x + B sin 2x + cx2 +Dx + E.
Substitute yp in D.E. and solve for A,B,C,D,E.

(8A sin 2x−8B cos 2x)−2(−4A cos 2x−4B sin 2x+2C)+
+(−2A sin 2x + 2B cos 2x + 2Cx +D)−
−2(A cos 2x+B sin 2x+Cx2+Dx+E)=5 cos 2x−6x2.

Equating coefficients of:

x2: − 2C = −6 ...C = 3

x : 2C − 2D = 0 ...D = C = 3

const:−4C +D − 2E = 0 ...E = − 3C
2
= − 9

2

cos 2x: 6A− 6B = 5

sin 2x : A+ B = 0

 
A = −B = 5

12

Required P.I. yp is

yp = 5
12

cos 2x − 5
12

sin 2x + 3x2 + 3x − 9
2
.

III. Modified case

When any term of F (x) is a member of the solution

set S, then the method fails if we choose yp from the

table. In such cases, the choice from the table should

be modified as follows:

A. If a term u of F (x) is also a term of the com-

plementary function (i.e., u.S = solution set)
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then the choice from the table corresponding to

u should be multiplied by

a. x if u corresponds to a simple root of C.F.

b. x2 if u corresponds to a double root C.F.

c. xs if u corresponds to a s-fold root of C.F.

Example: (D − 2)3y = 6e2x ; A.E.: m = 2, 2, 2,

S = {e2x, xe2x, x2e2x} C.F.:yc = c1e
2x + c2xe

2x +
c3x

2e2x. But e2x on R.H.S. .S i.e., e2x is a term of

the C.F. So the choice of Ae2x should be multiplied

by x3. Thus the modified choice of P.I. is x3Ae2x.

B. Suppose xru is a term of F (x) and u is a term

of C.F. corresponding to an s-fold root then

the choice from the table corresponding to xru

should be multiplied by xs.

Example: (D − 3)4(D + 4)y = x3e3x + 6x2

Normal choice from the table would have been

y∗p = (Ax3e3x + Bx2e3x + Cxe3x +De3x )+
+(Ex2 + Fx +G).

But e3x is a term of the C.F. and m = 3 is 4th order
root. Here

yc = c1e
3x + c2xe

3x + c3x
2e3x + c4x

3e3x .

So the modified (corrected) choice of P.I. in this case
is

yp = x4(Ax3e3x + Bx2e3x + Cxe3x +De3x )+
+(Ex2 + Fx +G).

WORKED OUT EXAMPLES

Straight case

Solve the following examples by the method of un-

determined coefficients.

Example 1: y   − 3y  + 2y = 4x2.

Solution: A.E.: m2 − 3m+ 2 = 0, m = 1, 2.

C.F.: yc = c1e
x + c2e

2x.

P.I.: R.H.S. F (x) = kxn(n = 2) so choose from the

table P.I. as yp = Ax2 + Bx + C

Differentiating y  p = 2Ax + B, y   p = 2A.

Substituting in the given D.E.

2A− 3(2Ax + B)+ 2(Ax2 + Bx + C) = 4x2

Equating the coefficients of like powers of x:

x2 : 2A = 4 ... A = 2

x : −6A+ 2B = 0 ... B = 6

x0 : 2A− 3B + 2C = 0 ... C = 7

Required P.I. by the method of undetermined coeffi-
cients is

yp = 2x2 + 6x + 7

G.S.: y = yc + yp = c1e
x + c2e

2x + 2x2 + 6x + 7.

Example 2: y   + 6y  + 5y = 2ex + 10e5x.

Solution: A.E.: m2 + 6m+ 5 = 0,m = −1,−5

C.F.:yc = c1e
−x + c2e

−5x

P.I.: Choose yp = Aex + Be5x

y  p = Aex + 5Be5x, y   = Aex + 25Be5x

(Aex + 25Be5x )+ 6(Aex + 5Be5x )++5(Aex + Be5x )

= 2ex + 10e5x .

Equating the coefficients of ex and e5x :

ex : A+ 6A+ 5A = 2 ...A = 1
6

e5x: 25B + 30B + 5B = 10, B = 1
6

yp = 1
6
ex + 1

6
e5x

y = yc + yp = c1 e
−x + c2 e

−5x + 1
6
(ex + e5x).

Example 3: y   + 2y  + 4y = 13 cos(4x − 2).

Solution: A.E.: m2 + 2m+ 4=0, m=− 1±
√

3i

yc = e−x[c1 cos
√

3x + c2 sin
√

3x]
P.I.: Choose yp = A cos(4x − 2)+ B sin(4x − 2)

y p =−4A sin(4x − 2)+ 4B cos(4x − 2)

y  p =−16A cos(4x − 2)− 16B sin(4x − 2)

[−16A cos(4x − 2)− 16B sin(4x − 2)]+
+2[−4A sin(4x − 2)+ 4B cos(4x − 2)]+
+4[A cos(4x − 2)+ B sin(4x − 2)] = 13 cos(4x − 2)

Equating coefficients of cos(4x−2) and sin(4x−2),

−16A + 8B + 4A = 13,−16B − 8A + 4B = 0.
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Solving A = − 3
4
, B = 1

2
, so

yp =−
3

4
cos(4x − 2)+ 1

2
sin(4x − 2)

y = yc + yp = e−x [c1 cos
√

3x + c2 sin
√

3x]−

−3

4
cos(4x − 2)+ 1

2
sin(4x − 2).

Example 4: y   − y = ex sin 2x.

Solution: A.E.: m2 − 1 = 0,m = ±1

C.F.: yc = c1e
x + c2e

−x

P.I.: Choose yp = Aex sin 2x + Bex cos 2x

y p = 2Aex cos 2x+Aex sin 2x+Bex cos 2x−2Bex sin 2x

y  = (A− 2B)(ex sin 2x + 2ex cos 2x)+
+(2A+ B)(ex cos 2x − 2ex sin 2x)

Substituting in D.E.

[2(A− 2B)+ (2A+ B)]ex cos 2x +
+[A− 2B − 2(2A+ B)]ex sin 2x −
−[Aex sin 2x + Bex cos 2x] = ex sin 2x.

Equating the coefficients of

ex sin 2x : A−2B−4A−2B−A=1 or A+B=− 1

4
ex cos 2x : 2A−4B+2A+B−B=0 or A−B=0

Solving A = B = − 1
8

yp =−
1

8
(ex )(sin 2x + cos 2x).

y = yc + yp = c1e
x + c2e

−x − 1

8
ex (sin 2x + cos 2x).

Sum case

Example 5: y   − 9y = x3 + e2x − sin 3x.

Solution: m2 − 9 = 0,m = ±3,

C.F.: yc = c1e
−3x + c2e

3x

P.I.: Choose yp = Ax3 + Bx2 + Cx +D + Ee2x +
F sin 3x +G cos 3x

y p = 3Ax2 + 2Bx + C + 2Ee2x + 3F cos 3x − 3G sin 3x

y  p = 6Ax + 2B + 4Ee2x − 9F sin 3x − 9G cos 3x.

Substituting

(6Ax + 2B + 4Ee2x − 9F sin 3x − 9G cos 3x)−
−9(Ax3+Bx2+Cx+D+Ee2x+F sin 3x+G cos 3x)

= x3 + e2x − sin 3x.

Equating the coefficients of:

x3 :−9A = 1, A = −1

9

x2 :−9B = 0 ... B = 0

x : 6A− 9C = 0 ... C = − 2

27
x0 : 2B − 9D = 0 ... D = 0

e2x : 4E − 9E = 1 ... E = −1

5

sin 3x :−9F − 9F = −1 ... F = 1

18
cos 3x :−9G− 9G = 0 ... G = 0

yp = −
1

9
x3 − 2

27
x − 1

5
e2x + 1

18
sin 3x.

y = yc + yp = c1e
−3x+c2e3x−1

9
x3− 2

27
x−1

5
e2x+

+ 1

18
sin 3x.

Modified case

Example 6: y    + y  = 2x2 + e2x + 4 sin x.

Solution: A.E. is m3 +m = 0 or m = 0,±i
C.F.: yc = c1 + c2 sin x + c3 cos x.
Normally as per the table one would have assumed
the P.I. as,

yp = Ax2 + Bx + C +De2x + E sin x + F cos x.

But note that sin x, a term in R.H.S. function, is a
term in the C.F. i.e., member of solution set S =
{1, sin x, cos x}. Therefore the corresponding terms
in yp should be multiplied by x. Also note that the

term x2 in R.H.S. also corresponds to a term in C.F.
Thus the modified (correct) choice of P.I. yp is

yp = x(Ax2 + Bx + C)+De2x + x(E sin x + F cos x)

yp = (Ax3 + Bx2 + Cx)+De2x + Ex sin x + Fx cos x

y p = 3Ax2 + 2Bx + C + 2De2x + E sin x +
+Ex cos x + F cos x − Fx sin x

y  p = 6Ax + 2B + 4De2x + 2E cos x − Ex sin x −
−2F sin x − Fx cos x

y   p = 6A+ 8De2x − 3E sin x − Ex cos x − 3F cos x +
+Fx sin x.
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Substituting in D.E.

(6A+8De2x−3E sin x−Ex cos x−3F cos x+Fx sin x)+
+(3Ax2 + 2Bx + C + 2De2x + E sin x + Ex cos x

+F cos x − Fx sin x) = 2x2 + e2x + 4 sin x.

Equating the coefficients of

x2 : 3A = 2 ...A = 2

3
x : 2B = 0 ...B = 0

x0 : 6A+ C = 0 ...C = −6A = −6 · 2

3
= −4

e2x : 8D + 2D = 1 ...D = 1

10
sin x :−3E + E = 4 ...E = −2

cos x :−3F + F = 0 ...F = 0

x cos x :−E + E = 0 ...E = 0

x sin x : F + F = 0 ...F = 0

yp =
2

3
x3 − 4x + 1

10
e2x − 2x sin x.

Example 7: (D2 + 9)y = x2 cos 3x.

Solution: A.E.: m2 + 9 = 0,m = ±3i

C.F.: yc = c1 cos 3x + c2 sin 3x.
In the normal case, the choice of P.I. from table is

yp = Ax2 cos 3x + Bx2 sin 3x + Cx cos 3x +
+Dx sin 3x + E cos 3x + F sin 3x.

But in the R.H.S. expression F (x) = x2 cos 3x, the
term cos 3x is also a term (part) of the C.F. corre-
sponding to a root of multiplicity one i.e., cos 3x is
a member of the solution set. So the modified (cor-
rected) choice of P.I. is

yp = x
 
Ax2 cos 3x + Bx2 sin 3x + Cx cos 3x +

+Dx sin 3x + E cos 3x + F sin 3x
 
.

Note that H cos 3x +K sin 3x is not included in the
P.I. yp, because these terms are already present in
the C.F. (and therefore are superfluous i.e., even if
we take these two terms in yp, finally coefficients H
and K will become zero). So

yp = Ax3 cos 3x + Bx3 sin 3x + Cx2 cos 3x +
+Dx2 sin 3x + Ex cos 3x + Fx sin 3x.

Differentiating twice

y p = 3Ax2 cos 3x − 3Ax3 sin 3x + 3Bx2 sin 3x −

−3Bx3 cos 3x + 2Cx cos 3x − 3Cx2 sin 3x +
+2Dx sin 3x − 3Dx2 cos 3x ++E cos 3x −
−3Ex sin 3x + F sin 3x − 3Fx cos 3x. or

y p = (3Ax2−3Bx3+2Cx−3Dx2+E−3Fx) cos 3x +

+(−3Ax3+3Bx2−3Cx2+2Dx−3Ex+F ) sin 3x

y  p = (6Ax − 9Bx2 + 2C − 6Dx + 0− 3F ) cos 3x −

−3(3Ax2−3Bx3+2Cx−3Dx2+E−3Fx) sin 3x +
+3(−3Ax3+3Bx2−3Cx2+2Dx−3Ex+F ) cos 3x +
+(−9Ax2 + 6Bx − 6Cx + 2D − 3E) sin 3x.

Substituting in D.E. and equating the coefficients on
both sides of

x2 cos 3x : 9B + 9B − 9C + 9C = 1 ... B = 1

18

x2 sin 3x : −9A− 9A− 9D + 9D = 0 ... A = 0

x3 cos 3x : −9A+ 9A = 0

x3 sin 3x : −9B + 9B = 0

x cos 3x : 6A+ 6D + 6D − 9E + 9E = 0 ... D = 0

x sin 3x : 6B − 6C − 6C − 9F + 9F = 0,

B − 2C = 0, C = 1

36

cos 3x : 2C + 3F + 3F = 0, F = 1

3
C = 1

108

sin 3x : 2D − 3E − 3E = 0 ... E = 0

yp =
1

18
x3 sin 3x + 1

36
x2 cos 3x + 1

108
x sin 3x.

Example 8: (D − 2)3y = 17e2x .

Solution: C.F.: A.E. is m− 2 = 0,m = 2, 2, 2. So

yc = (c1 + c2x + c3x
2)e2x .

The choice of P.I. yp as Ae2x is not sufficient, since

the term e2x in the R.H.S. of D.E. is a term of the
C.F. corresponding to a root of multiplicity m = 3.
So the modified choice of P.I. yp is

yp = x3(Ae2x ) = Ax3e2x
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Differentiating,

y p = (3x2 + 2x3)Ae2x

y  p = (x + 2x2 + 4

6
x3)6Ae2x

y   p = (1+ 6x + 6x2 + 8

6
x3)6Ae2x .

Substituting in (D3 − 6D2 + 12D − 8)y = 17e2x

we get

6Ae2x (1+6x+6x2+ 8

6
x3)−36(x+2x2+ 4

6
x3)Ae2x +

+12Ae2x (3x2 + 2x3)− 8Ae2x (x3) = 17e2x .

Equating the coefficients on both sides of

e2x : 6A = 17, so A = 17

6
;

x : 36A− 36A = 0, x2 : 36A− 72A+ 36A = 0,

x3 : 8A− 24A+ 24A− 8A = 0. Thus

yp =
17

6
x3e2x

Thus

y = yc + yp = (c1 + c2x + c3x
2)e2x + 17

6
x3e2x .

 
Note that the P.I. can be obtained in a simpler way

by operator method, where

yp = 1

(D−2)3
(17e2x) = 17 · x3

3!
e2x = 17

6
x3e2x

 
.

EXERCISE

Method of undetermined coefficients

Solve the following D.E. by the method of undeter-

mined coefficients. (HereG.S.= y = yc + yp,where

yc is the complementary function and yp is the par-

ticular integral.)

Straight and sum cases:

1. y   − 2y  − 3y = 2e4x

Ans. yc = c1e
3x + c2e

−x, yp = 2
5
e4x

2. y   + 2y  + 5y = 6 sin 2x + 7 cos 2x

Ans. yc = e−x[c1 cos 2x + c2 sin 2x],

yp = 2 sin 2x − cos 2x

3. y   − 2y  = ex sin x

Ans. yc = c1 + c2e
2x, yp = − 1

2
ex sin x

4. y   + y  − 2y = 2x − 40 cos 2x

Ans. yc = c1e
x + c2e

−2x, yp = − 1
2
− x+

+6 cos 2x − 2 sin 2x

5. y   − 2y  + 3y = x3 + sin x

Ans. yc = ex (c1 cos
√

2x + c2 sin
√

2x)

yp =
1

3
x3 + 2

3
x2 + 2

9
x − 8

29
+ 1

4
(sin x + cos x)

6. y   + 4y = 8x2

Ans. yc = c1 cos 2x + c2 sin 2x, yp = 2x2 − 1

7. y   + 2y  + 5y = 1.25e0.5x + 40 cos 4x−
−55 sin 4x, with y(0) = 0.2 and y  (0) = 60.1

Ans. yc = e−x (c1 cos 2x + c2 sin 2x)

yp = 0.2e0.5x + 5 sin 4x

particular solution satisfying initial conditions

y = 20e−x sin 2x + 0.2e0.5x + 5 sin 4x.

8. y   + 2y  + 4y = 2x2 + 3e−x

Ans. yc = e−x(c1 cos
√

3x + c2 sin
√

3x)

yp = x2

2
− x

2
+ e−x

9. y   − y = e3x cos 2x − e2x sin 3x

Ans. yc = c1e
x + c2e

−x

yp =
1

30
e2x (2 cos 3x + sin 3x)+

+ 1

40
e3x (cos 2x + 3 sin 2x)

10. y   − 9y = x + e2x − sin 2x

Ans. yc = c1e
3x + c2e

−3x

yp = −x

9
− e2x

5
+ 1

13
sin 2x

Modified case

11. y   + y  − 6y = 10e2x − 18e3x − 6x − 11

Ans. yc = c1e
−3x + c2e

2x

yp = 2xe2x − 3e3x + x + 2

Hint: Choose yp = x(Ae2x)+ Be3x + Cx +D.
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12. y    + 2y   − y  − 2y = ex + x2

Ans. yc = c1e
x + c2e

−x + c3e
−2x

yp = −x2

2
+ x

2
− 5

4
+ 1

6
xex

Hint: Choose yp = x(Aex)+ Bx2 + Cx +
D.

13. y   − 3y  + 2y = ex

Ans. yc = c1e
x + c2e

2x

yp = −xex

Hint: Choose yp = x(Aex).

14. y   + y = sin x

Ans. yc = c1 cos x + c2 sin x

yp = −1

2
x sin x

Hint: Choose yp = x(A cos x + B sin x).

15. y   − 4y  + 4y = x3e2x + xe2x

Ans. yc = c1e
2x + c2xe

2x

yp =
1

20
x5e2x + 1

6
x3e2x

Hint: Choose yp = x2(Ax3e2x + Bx2e2x +
Cxe2x +De2x).

16. y   − 3y  + 2y = 2x2 + ex + 2xex + 4e3x

Ans. yc = c1e
x + c2e

2x

yp = x2 + 3x + 7

2
+ 2e3x − x2ex − 3xex

Hint: Choose yp = (Ax2 + Bx + C)+
+x(Dxex + Eex)+ Fe3x .

17. y
    + y   = 3x2 + 4 sin x − 2 cos x

Ans. yc = c1 + c2x + c3 sin x + c4 cos x

yp =
x4

4
− 3x2 + x sin x + 2x cos x

Hint: Choose yp = x2(Ax2 + Bx + C)+
x(D sin x + E cos x).

18. y   + 2y = x2 sin 2x

Ans. yc = c1 cos 2x + c2 sin 2x

yp = − 1

12
x3 cos 2x + 1

16
x2 sin 2x + 1

32
x cos 2x

Hint: Choose yp=x(Ax2 cos 2x+Bx2 sin 2x

+ Cx cos 2x + Dx sin 2x + E cos 2x +
F sin 2x).

19. y    − y  = 4e−x + 3e2x with initial conditions

y(0) = 0, y  (0) = −1, y   (0) = 2

Ans. yc = c1 + c2e
x + c3e

−x

yp = 2xe−x + 1

2
e2x

particular solution obtained by using initial

conditions y = − 9
2
+ 4e−x + 2xe−x + 1

2
e2x

Hint: Choose yp = x(Ae−x)+ Be2x .

20. y    − y   − 4y  + 4y = 2x2 − 4x − 1+
+2x2e2x + 5xe2x + e2x

Ans. yc = c1e
x + c2e

2x + c3e
−2x

yp =
x2

2
+ 1

6
x3e2x

Hint: Choose yp = (Ax2 + Bx + C)+
+x(Dx2e2x + Exe2x + Fe2x).

9.9 SYSTEM OF SIMULTANEOUS LINEAR

D.E. WITH CONSTANT COEFFICIENTS

In several applied mathematics problems, there are

more than one dependent variables, each of which is

a function of one independent variable, usually say

time t. The formulation of such problems leads to

a system (or a family) of simultaneous linear D.E.

with constant coefficients. Such a system can be

solved by the method of elimination, Laplace trans-

form method, method using matrices and short-cut

operator methods. Here only the method of elimina-

tion is considered.

Note: The number of simultaneous equations in the

system = number of dependent variables.

Method of Elimination

Consider a system of 2 O.D.E. in 2 dependent
variables x and y and one independent variable tgiven
by

f1(D)x + g1(D)y = h1(t) (1)

f2(D)x + g2(D)y = h2(t)
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where f1, f2, g1, g2, are all functions of the differ-

ential operator D = d
dt

.

I. Eliminate y from the given system, resulting in

a D.E. exclusively in x alone.

II. Solve this D.E. for x.

III. Substituting x (obtained in step II) in a similar

manner obtain a D.E. only in y.

IV. Solve the D.E. obtained in III for y.

Note 1: When the system consists of n O.D.E. in n

dependent variables, repeat the above procedure for

each of the n dependent variables.

Note 2: In the elimination process in step I, D may

be treated as if it is a (ordinary) variable.

Note 3: The number of independent arbitrary con-
stants appearing in the general solution of the system
of D.E. (1) is equal to the degree of D in the coeffi-
cient determinant

3 =
     f1(D) g1(D)

f2(D) g2(D)

     
provided 3  = 0.

Note 4: If 3 = 0, the system (1) is dependent.

WORKED OUT EXAMPLES

Solve the following:

Example 1: Solve

dx

dt
= 3x + 8y (1)

dy

dt
=−x − 3y (2)

with x(0)= 6, y(0) = −2 (3)

Solution: Solving (2) for x, we get

x = −3y − dy

dt
(4)

Differentiating (4) w.r.t. ‘t’, we have

dx

dt
= −3

dy

dt
− d2y

dt2
(5)

Substituting (4) and (5) in (1), we obtain

d2y

dt2
− y = 0

whose general solution is

y(t) = c1e
t − c2e

−t (6)

Substituting (6) in (4) we get

x(t) = −4c1e
t − 2c2e

−t (7)

Thus the general solution of the given system of

Equations (1) and (2) is given by (6) and (7).
We use the initial conditions (3) to determine c1

and c2

6=−4c1 − 2c2

−2= c1 + c2

solving we find c1 = −1, c2 = −1.
Substituting these values in (6) and (7), we get the

particular solution

x = 4et + 2e−t , y = −et − e−t

Example 2:

(D2 +D + 1)x + (D2 + 1)y = et (1)

(D2 +D)x +D2y = e−t (2)

Solution: To find x, eliminate y from (1) and (2),

by multiplying (1) by D2 and (2) by (D2 + 1) and

subtracting

(D2 +D + 1)D2x − (D2 +D)(D2 + 1)x

= D2(et )− (D2 + 1)e−t 
D4 +D3 +D2 − (D4 +D3 +D2 +D)

 
x

= et − e−t − e−t −Dx = et − 2e−t

Integrating w.r.t. ‘t’, we get

x(t) = −et − 2e−t + c1 (3)

To find y, substitute (3) in (2)

(D2 +D)(−et − 2e−t + c1)+D2y = e−t

−e+t − 2e−t + 0− et + 2e−t + 0+D2y = e−t

D2y = 2et + et



9.40 HIGHER ENGINEERING MATHEMATICS—III

Integrating w.r.t. ‘t’, we get

Dy = 2et − e−t + c2

Integrating once more w.r.t. ‘t’, we get

y(t) = 2et + et + c2t + c3. (4)

Since

    D2+D+1 D2+1

D2+D D2

    = −D of degree 1 inD, there

should be only one arbitrary constant.
Substituting (3) and (4) in (2), we get

(D2 +D)(−et − 2e−t + c1)

+D2(2et + e−t + c2t + c3) = e−t

(−et − 2e−t − et + 2e−t )

+(2et + e−t + 0+ 0) = −e−t

Equation (2) satisfied.
So substitute x and y from (3) and (4) in (1)

(D2 +D + 1)(−et − 2e−t + c1)

+(D2 + 1)(2et + e−t + c2t + c3) = et −et − 2e−t − et + 2e−t + (−et − 2e−t + c1)
 

+[2et + e−t + 0+ 0+ (2et + e−t + c2t + c3)] = et

i.e., c1 + c2t + c3 = 0 ... c2t + c3 = −c1. Thus
the G.S. of the system with one arbitrary
constant c1

x(t)=−et − 2e−t + c1

y(t)= 2et + e−t − c1

EXERCISE

Solve the following:

1. dx
dt
= y + 1,

dy

dt
= x + 1

Ans. x = c1e
t + c2e

−t − 1

y = c1e
t − c2e

−t − 1

2. dx
dt
= 2y − 1,

dy

dt
= 1+ 2x

Ans. x(t) = c1e
2t + c2e

−2t − 1
2

y(t) = c1e
2t − c2e

−2t + 1
2

3.
dx

dt
− 3x − 6y = t2,

dy

dt
+ dx

dt
− 3y = et

Ans. x(t) = c3 cos 3t + c4 sin 3t + 3

5
et

− t2

3
+ 2t

9
+ 2

27

y(t) =
 

1

2
c4 −

1

2
c3

 
cos 3t

+
 −c3

2
− c4

2

 
sin 3t − et

5
− 2t

9

4. (D + 6)y −Dx = 0

(3−D)x − 2Dy = 0

with x = 2, y = 3 at t = 0

Ans. x = 4e2t − 2e−3t

y = e2t + 2e−3t

5. (D + 5)x + (D + 3)y = e−t

(2D + 1)x + (D + 1)y = 3

Ans. x(t) = −2

3
c1e

t − c2

3
e−2t − 9

y(t) = c1e
t + c2e

−2t + 15

2
+ e−t

2

6. (D + 1)x + 2y = 1

2x + (D − 2)y = t

Ans. x = c1e
3t + 2c2e

−2t + t

3
+ 4

9

y = −2c1e
3t + c2e

−2t − 2t

3
+ 1

9

7. (D − 3)x + 2(D + 2)y = 2 sin t

2(D + 1)x + (D − 1)y = cos t

Ans. x = c1e
−5t + c2e

− t
3 + 8 sin t + cos t

65

y = −4

3
c1e

−5t + c2e
− t

3 + 61 sin t − 33 cos t

130

8. (D + 2)x + (D − 1)y = − sin t

(D − 3)x + (D + 2)y = 4 cos t
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Ans. x = 3

5
c1e

−t
8 + 2

5
sin t − 1

5
cos t

y = c1e
− t

8 + sin t + cos t

9. Dx − (D + 1)y = −et

x + (D − 1)y = e2t

Ans. x = (c1 − c2) cos t + (c1 + c2) sin t + 3e2t

5

y = c1 cos t + c2 sin t + 2
e2t

5
+ et

2

10. (D2 + 4)x − 3Dy = 0

3Dx + (D2 + 4)y = 0

Ans. x = c1 cos 4t + c2 sin 4t + c3 cos t + c4 sin t

y = c2 cos 4t − c1 sin 4t − c4 cos t + c3 sin t

11. D2y = x − 2

D2x = y + 2

Ans. x = c1 sin t + c2 cos t + c3e
t + c4e

−t + 2

y = −c1 sin t − c2 cos t + c3e
t + c4e

−t − 2

12. (D + 1)x + (D − 1)y = et

(D2 +D + 1)x + (D2 −D + 1)y = t2

Ans. x = t2

2
− t + et

2

y = t2

2
+ t − 3

2
et

13. D2x + 2Dy + 8x = 32t

D2y + 3Dx − 2y = 60e−t

with x(0) = 6, x1(0) = 8,

y(0) = −24, y1(0) = 0

Ans. x = 12 cos 2t + 2e−2t − 8e−t + 4t

y = −12 sin 2t + 6e−2t − 36e−t + 6

14. 2D2x + 3Dy − 4 = 0

2D2y − 3Dx = 0

with x = y = Dx = Dy = 0 at t = 0

Ans. x = 8
9
(1− cos 3

2
t)

y = 4
3
t − 8

9
sin 3

2
t

9.10 METHODOFREDUCTIONOFORDER∗

Suppose y1(x) is known non-trivial solution of the

second order homogeneous linear equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (1)

Then the second linearly independent non-trivial so-

lution y2(x) of (1) can be obtained by the method

of reduction of order. This method makes use of a

transformation of the form

y2(x) = y1(x)v(x) (2)

which reduces the second order equation (1) to a first

order differential equation which is then integrate for

the unknown function v(x).

Rewrite (1) in the standard form

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = 0 (3)

where P (x) = a1(x)

a0(x)
, Q(x) = a2(x)

a0(x)
with a0(x)  = 0.

Differentiating (2) w.r.t. x, we get

dy2

dx
= dy1

dx
· v(x)+ y1(x)

dv

dx
(4)

d2y2

dx2
= d2y1

dx2
v(x)+ 2

dy1

dx
· dv
dx
+ y1

d2v

dx2
(5)

Substituting (2), (4), (5) in (3), we obtain 
y1

d2v

dx2
+ 2

dy1

dx
· dv
dx
+ v

d2y1

dx2

 
+ P (x)

 
y1

dv

dx

+dy1

dx
v

 
+Q(x)y1(x)v(x) = 0

Rewriting

y1

d2v

dx2
+

 
P (x)y1 + 2

dy1

dx

 
dv

dx
+ v(x)

 
d2y1

dx2

+P (x)
dy1

dx
+Q(x)y1

 
= 0

* Credited to Joseph Louis Lagrange (1736-1813).
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Since y1(x) is a (known) solution of (1), the last term

in the above equation becomes zero. Now introduc-

ing ω = dv
dx

, the above equation reduces to a first or-

der linear differential equation in the new dependent

variable ω, given by

dω

dx
+

 
P (x)+ 2

y  1
y1

 
ω = 0 (6)

Separating the variables and integrating, we get

dω

ω
+ 2

dy1

y1

+ P (x)dx = 0

or

ln |ω| + ln y2
1 = −

 
P (x)dx + ln |c|

Then

ω(x) = c

y2
1

e−
 
P (x)dx (7)

Choosing, c = 1

ω(x) = dv

dx
= 1

y2
1

e−
 
P dx

On integration

v(x) =
 

1

y2
1

e−
 
P dxdx

Thus we obtain the required second solution y2(x)
as

y2(x) = y1(x)v(x) = y1(x)
 

1

y2
1

e−
 
P (x) dx · dx (8)

It can easily be verified that y1(x) and y2(x) are lin-

early independent since

ω(y1, y2) =
     y1 y2

y  1 y
 
2

     =
   y1 y1v

y  1 y
 
1v + y1v

 

   = y2
1v
 

= e
 −P dx  = 0

Hence y1, y2 form the basis for D.E. (1) and the

general solution of (1) is given by

y(x) = c1y1(x)+ c2y2(x)

Note: This method of reduction of order is useful

only when one solution is known.

WORKED OUT EXAMPLES

Example 1: Verify that y = e2x is a solution of

(2x + 1)y   − 4(x + 1)y  + 4y = 0. Hence find the

general solution.

Solution: Differentiating y  = 2e2x , y   = 4e2x.

Substituting y, y  , y   in the given D.E., we get

(2x + 1)4e2x − 4(x + 1)2e2x + 4e2x = 0

or [8x + 4− 8x − 8+ 4]e2x = 0 or 0 = 0

Thus y1 = e2x is a solution. To obtain a second lin-

early independent solution, by the method of reduc-

tion of order, assume

y2(x) = y1(x)v(x)

The given D.E. in the standard form is

y   − 4(x + 1)

(2x + 1)
y  + 4

(2x + 1)
y = 0

So P (x) = − 4(x+1)

(2x+1)
. Then

ω(x) = 1

y2
1

e−
 
P dx

Now 
−P dx = −

 
−4(x + 1)

(2x + 1)
dx

=
  

4x + 2

2x + 1
+ 2

2x + 1

 
dx

= 2x + ln (2x + 1)

Then

ω = 1

(e2x )2
e2x+ln (2x+1) = e2x

(e2x )2
· (2x + 1)

ω(x)= 2x + 1

e2x

Now v(x) =  
ω(x)dx =  

2x+1

e2x
dx

Integrating by parts

v(x) = (2x + 1)
e−2x

−2
− 2 · e

−2x

4
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The required second solution

y2(x)= y1(x)v(x) = e2x

 
−2x + 1

2
· 1

e2x
− 1

2

1

e2x

 
=−x − 1 = −(x + 1)

Then the general solution is

y(x) = c1y1(x)+ c2y2(x) = c1e
2x + c2(x + 1)

Example 2: Obtain the basis for the equation

sin2 x · d2y

dx2 − 2y = 0 if y1(x) = cot x is a solution.

Also write the general solution.

Solution: In the standard form the equation is

d2y

dx2
− 2 (cosec2x)y = 0

So P (x) = 0. The e−
 
P dx = e0 = 1.

Now ω(x) = 1

y2
1

e−
 
P dx = 1

cot2 x
· 1 = tan2 x

So v(x) =  
ω(x)dx =  

tan2 x dx

=
 

(sec2 x − 1)dx = [tan x − x]

Then y2(x) = y1(x)v(x) = cot x[tan x − x]

= 1− x cot x.

The basis consisting of the two linearly independent

solutions is {y1, y2} = {cot x, 1− x cot x}. The gen-

eral solution is

y(x)=c1y1(x)+c2y2(x)=c1 cot x+c2[1−x cot x]

EXERCISE

Determine a linearly independent solution by reduc-

tion of order given y1 as a solution, for the following

differential equations.

1. (x2 + 1)y   − 2xy  + 2y = 0, y1(x) = x

Ans. y2(x) = x2 − 1

Hint: ω(x) =
 
x2+1

x2

 
, v(x) = x − 1

x

2. x2y   − 4xy  + 4y = 0, y1 = x

Ans. y2 = x4

Hint: P (x) = −4
x

, ω(x) = 1

x2 · x4 = x2,

v(x) = x3

3

3. x2y   − xy + y = 0, y1 = x

Ans. y2 = x · ln x
Hint: P (x) = − 1

x
, ω(x) = 1

x2 · x,

v(x) = x
 

dx
x

4. y   − y  = 0, y1 = c

Ans. y2 = ex

5. x2y   − 5xy  + 9y = 0, y1 = x3

Ans. y2 = x3 ln x

Hint: ω(x) = 1

x6 · e
 

5dx
x = x5

x6 = 1
x
, v(x) = 

dx
x
= ln x.

6. x2y   + xy  +  
x2 − 1

4

 
y = 0, y1 = cos x√

x

Ans. y2(x) = sin x√
x

Hint: ω(x) = sec2 x, v(x) =  
sec2 x · dx =

tan x

7. xy   − (2x − 1)y  + (x − 1)y = 0, y1 = ex

Ans. y2 = ex ln x

8. y   − 4xy  + (4x2 − 2)y = 0, y1 = ex
2

Ans. y2 = xex
2

9.11 HIGHER ORDER LINEAR EQUATIONS

WITH VARIABLE COEFFICIENTS

No general procedure exists for solving second and

higher order linear equations with variable coeffi-

cients. However by transformations, some types of

second - (or higher) - order differentia equations can

be reduced to first (or lower) - order equations which

can be solved by earlier methods. We consider the

following types.

I. Equation of the Form dny

dxn
= f (x)

Integrating this exact equation directly, we get an

equation of lower (n− 1) degree as

dn−1

dxn
=

 
f (x)dx + c1 = g(x)+ c1

which is also exact.
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By integrating directly again we have

dn−2y

dxn−2
=

 
(g(x)+ c1)dx + c2

=
 

g(x)dx + c1(x)+ c2

The solution is obtained by repeated direct integra-

tion.

II. Equation of the form d2y

dx2 = f (y)

This equation becomes exact by multiplying both the

sides with 2
dy

dx
. Then

2
dy

dx
· d

2y

dx2
= f (y)

dy

dx

or

d

dx

 
dy

dx

 2

= 2f (y)
dy

dx

Integrating w.r.t. x, we get 
dy

dx

 2

= 2

 
f (y)dy + c1 = g(y)+ c1

Since the variables are separable

dy√
g(y)+ c1

= dx

which on integration yields the required solution as 
dy√

g(y)+ c1

= x + c2

III. Equation not Explicitly Containing the

Unknown Dependent Variable y

When the dependent variable y is absent, the equa-

tion takes the form

F

 
dny

dxn
,
dn−1y

dxn−1
, · · · , dy

dx
, x

 
= 0

The order of this equation can be reduced by onewith

the subsitution
dy

dx
= p,

d2y

dx2 = dp

dx
. . .

dny

dxn
= dn−1p

dxn−1 .

Then the reduced equation with p as the dependent

variable is solved. In general a substitution of the

form
dmy

dxm
= q will reduce the order of the equation

by m. Thus the substitution
dy

dx
= p reduces a sec-

ond order equation to a first order equation in p as a

function of x. The equation

d2y

dx2
= f

 
x,

dy

dx

 

reduces to a first order equation

dp

dx
= f (x, p)

which on integration gives

p = p(x, c1)

Since
dy

dx
= p = p(x, c1), the general solution is ob-

tained as

y =
 

p(x, c1)dx + c2

IV. Equation not Explicitly Containing the

Independent Variable x

In the equation of the form

F

 
dny

dxn
,

dn−1

dxn−1
, · · · , dy

dx
, y

 
= 0

The substitution
dy

dx
= p reduces it by order one.

Considering p as a function of y (and not of x as

before), we have

d2y

dx2
= dp

dx
= dp

dy

dy

dx
= p

dp

dy

Similarly

d3y

dx3
= d

dy

 
d2y

dx2

 
dy

dx
= d

dy

 
p
dp

dy

 
p

= p2 d
2p

dy2
+ p

 
dp

dy

 2

The equation

d2y

dx2
= f

 
y,

dy

dx

 

takes the form

p
dp

dy
= f (y, p)
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which on integration w.r.t. y yields

p = p(y, c1)

or
dy

dx
= p(y, c1)

Separating the variables

dy

p(y, c1)
= dx

which on integration gives the general solution

φ(x, y, c1, c2) = 0

V. Solution by Change of Independent Vari-

able

Assume a relation z = z(x) then
dy

dx
= dy

dz
· dz
dx

. Now

d2y

dx2
= d

dx

 
dy

dz

dz

dx

 
= d

dx

 
dy

dz

 
dz

dx
+ dy

dz
· d

2z

dx2

= d

dz

 
dy

dz

 
dz

dx
· dz
dx
+ dy

dz
· d

2z

dx2

d2y

dx2
= d2y

dz2

 
dz

dx

 2

+ dy

dz
· d

2z

dx2

with the above relation the D.E.

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = R(x)

gets transformed to a D.E. in the independent vari-

able z as 
d2y

dz2
·
 
dz

dx

 2

+ dy

dz
· d

2z

dx2

 
+ P (x) · dy

dz
· dz
dx

+Q(x)y = R(x)

or
d2y

dz2
+ P1(x)

dy

dz
+Q1(x)y = R1(x)

whereP1(x) =
d2z

dx2
+p dz

dx

S∗ andQ1(x) = Q(x)

S∗ ,R1(x) =
R(x)

S∗ , S∗ =  
dz
dx

 2
Here P1, Q1, R1 will be converted to functions of

z by eliminating x using the relation z = z(x). Now

choose  
dz

dx

 2

= Q(x)

To get real functions, the sign before Q(x) is chosen

as positive always. Integrating

z =
 

Q(x)dx = z(x)

omitting the constant of integration. Now calculate

P1,Q1, R1 with this z = z(x). When P,Q,R turns

out to be constants (or zero), the new equation in z

can be solved for y(z). By replacing z in terms of x,

the required solution y(x) is obtained.

WORKED OUT EXAMPLES

I.
dny

dxn
= f (x)

Example 1: Solve
d3y

dx3
= log x

Solution: Integrating w.r.t. x, we get

d2y

dx2
=

 
log xdx + c1 = x ln x − x + c1

Integrating again wrt x, we have

dy

dx
=

 
x ln x dx − x2

2
+ c1x + c2

= x2

2
ln x − x2

4
− x2

2
+ c1x + c2

Integrating again,

y(x)= 1

2

 
x2 ln xdx − 3

4

x3

3
+ c1

x2

2
+ c2x + c3

y = 1

2

 
x3

3
ln x − x3

9

 
− 1

4
x3 + c1

2
x2 + c2x + c3

36y = 6x3 ln x − 11x3 + c∗1x
2 + c∗2x + c∗3

II.
dny

dxn
= f (y)

Example 2: Solve y3y   = a with y = 1, y  = 0 at

x = 0

Solution: Multiplying both sides by 2y  , we have

2y y  = 2y · a · y−3
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d

dx
(y )2 = 2ay−3 dy

dx

Integrating w.r.t. x

(y  )2 = 2a
y−2

−2
+ c1

At x = 0, y = 1, y  = 0 so 0 = −a + c1 .
.. c1 = a

Then

(y  )2 =
 
a − a

y2

 
or y  =

 
a(y2 − 1)

y2

Separating the variables

y dy
√
a
 
y2 − 1

= dx

Integrating

1

2
√
a

 
(y2 − 1)

1
2

= x + c2

when x = 0, y = 1 so 0 = 0+ c2 .
.. c2 = 0

Thus (y2 − 1) = ax2

III. Equation not explicitly containing y

Example 3: Solve x2 d3y

dx3 − 4x
d2y

dx2 + 6
dy

dx
= 4

Solution: Put
dy

dx
= p, then

d2y

dx2 =
dp

dx
,

d3y

dx3 =
d2p

dx2 .

With these substitution, the given D.E. reduces to a

second order D.E. in the dependent variable p with

variable coefficients given by

x2 d
2p

dx2
− 4x

dp

dx
+ 6p = 4

This is Euler-Cauchy equation. So put x = et then

D(D − 1)p − 4Dp + 6p = 4 where D = d
dt

.

or
d2p

dt2
− 5

dp

dt
+ 6p = 4

The auxilary equation ism2 − 5m+ 6 = 0 with real

distinct rootsm = 2, 3. So the complementary func-

tion is

pc(t) = c1e
2t + c2e

3t

particular integral

pp(t) =
1

D2 − 5D + 6
4 = 4

6
= 2

3

The general solution is

p(t) = c1e
2t + c2e

3t + 2

3

or
dy

dx
= c1x

2 + c2x
3 + 2

3
Integrating w.r.t. x

y(x) = c1
x3

3
+ c2

x4

4
+ 2

3
x + c3

IV. Equations not explicitly containing x

Example 4: Solve. y(1− ln y)
d2y

dx2 +
+ (1 + ln y)

 
dy

dx

 2

= 0

Solution: Put
dy

dx
= p. Then

d2y

dx2 = d
dx

(p) = dp

dy
· dy
dx

ie,
d2y

dx2 = p
dp

dy
. Here we consider p as a function of y

with these substitutions, the given equation reduces

to

y(1− ln y)p
dp

dy
+ (1+ ln y)p2 = 0

Separating the variables

dp

p
+ (1+ ln y)

y(1− ln y)
dy = 0

Introducing t = ln y, we have dt = dy

y
, so

dp

p
+ (1+ t)

(1− t)
· dt = 0

or
dp

p
−  

1+ 2
t−1

 
dt = 0

Integrating lnp − t − 2 ln (t − 1) = c1

or p = c2(t − 1)2et

i.e.,
dy

dx
= c2(ln y − 1)2eln y

Separating the variables

dy

y(ln y − 1)2
= c2 dx

or c2dx = dt

(t−1)2
where t = ln y

Integrating

c2x + c3 = −
1

t − 1
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The general solution is

(1− ln y)(c2x + c3) = 1

V. Change of independent variable

Example 5: Solve
d2y

dx2 + tan x
dy

dx
+ y cos2 x = 0

Solution: P (x) = tan x,Q(x) = cos2 x. The trans-

formation z = f (x) is so chosen that P1 = d2z

dx2 +
P dz

dx
= 0 or with u = dz

dx
,

du

dx
+ u · tan x = 0

Integrating ln u = ln cos x + c1 or u = c2 cos x.

Since u = dz
dx
= c2 cos x we have z(x) = c2 sin x

Now Q1 = Q

u2 = cos2 x

(c2 cos x)2
= 1

c2
2

Then the transformed equation with z as the new

independent variable is

d2y

dz2
+ P1

dy

dz
+Q1y = 0

or
d2y

dz2
+ 0+ 1

c2
2

y = 0

Integrating y(z) = A cos
 

z
c2

 
+ B sin

 
z
c2

 
or y(x) = A cos (sin x)+ B sin (sin x)

Example 6: Solve y   − y  cot x − y sin2 x =
cos x − cos3 x

Solution: The equation in the standard form has

P (x) = − cot x, Q(x) = − sin2 x, R(x) = cos x −
cos3 x. Choose the new independent variable z such

that

S∗ =  
dz
dx

 2 = sin2 x or dz
dx
= sin x. On integration,

z(x) = − cos x. With this z, the given equation re-

duces to
d2y

dz2
+ p1

dy

dz
+Q1y = R1 where

P1 =
d2z

dx2 + P dz
dx

S∗
= cos x − cot x · sin x

sin2 x
= 0

Q1 =
Q

S∗
= − sin2 x

sin2 x
= −1

and

R1 =
R

S∗
= cos x − cos3 x

sin2 x
= cos x(1− cos2 x)

sin2 x= cos x

Thus the D.E. with z as the independent variable is

d2y

dz2
+ 0− 1 · y = cos x = −z

The complementary function is y = c1e
z + c2e

−z

and particular integral y = 1

D2−1
(−z) = + 1

(1−D2)
z

= +[1+D2 −D4 + · · ·]z = +z. Thus the general

solution is
y(z) = c1e

z + c2e
−z + z or

y(x) = c1e
− cos x + c2e

cos x − cos x

EXERCISE

I.
dny

dxn
= f (x)

Solve

1. y    = xex

Ans. y = xex − 3ex + 1
2
c1x

2 + c2x + c3

2. y   = x2 sin2 x

Ans. y = −x2 sin x − 4x cos x + 6 sin x + c1x +
c2

3. y    = x + ln x

Ans. y = x4

24
+ x3

6
ln x − 11

35
x3 + c1x

2 + c2x + c3

4. y    = sin2 x

Ans. y = x3

12
+ sin 2x

16
+ c1x

2

2
+ c2x + c3

5. y(n) = xm

Ans. y = m!
(m+n)!x

m+n + c1x
n−1 + c2x

n−2 + · · · +
cn

6. x2y   = ln x

Ans. y = − 1
2
(ln x)2 + ln x − c1x + c2

II.
d2y

dx2
= f (y)

Solve

7. y   = sec2 y · tan y with y = 0 and y  = 1

when x = 0
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Ans. x + c2 = 1√
c1−1

sin−1

 
sin y

  
c1−1

c1

  
,

c1 = 1, c2 = 0, so y = sin−1 x.

8. y   = 2(y3 + y) with y = 0, y  = 1 when x =
0

Ans. y = tan x

9. y   = e−2y

Ans. c1e
y = cosh (c1x + c2)

10. sin3 y · y   = cos y

Ans.
√

1+ c1 · sin (x + c2)+
 

1+c1
c1

cos y = 0

11. y   = 3
√
y with y = 1, y  = 2 when x = 0

Ans. x = 2(y
1
4 − 1)

12. y   + a2y−2 = 0

Ans.
 
c1y2 + y −

√
2ac1x + c2 =

1√
c1

ln
 √

(c1y + 1)+√c1y
 

III. d2y

dx2 = f
 
x,

dy

dx

 
Solve

13. Catenary: ay   =
 

1+ (y  )2 with y = a and

y  = 0 at x = 0

Ans. y = a cosh
 
x
a

 
,

Hint: a
dp

dx
=

 
1+ p2, p = sinh

 
x
a
+ c1

 
,

c1 = c2 = 0

14. (1− x2)y   − xy  − 2 = 0

Ans. y = (sin−1 x)2 + c1 sin−1 x + c2

15. y   + y  + (y  )3 = 0

Ans. y = − sin−1(c1e
−x)+ c2

16. xy   −
 

1+ (y  )2 = 0

Ans. 2y = c1
x2

2
− 1

c1
ln x + c2

17. y     · y    = 1

Ans. y = 8
√

2
105

(x + c1)
7/2 + 1

2
c2x

2 + c3x + c4

18. y     − cot x · y    = 0

Ans. y = c1 cos x + c2x
2 + c3x + c4

IV. d2y

dx2 = f
 
y,

dy

dx

 
19. 3y   = y−5/3

Ans. x + c2 = ± 1

c2
1

 
c1y2/3 − 1(c1y

2/3 + 2)

20. yy   − (y  )2 = y2 ln y

Ans. ln y = √c1 · sinh (x + c2)

21. yy   + y  (y  − 2y) = 0

Ans. y2 + c1 = c2e
2x

22. 2yy   − (y  )2 − 1 = 0

Ans. a2(x + b)2 = 4(ay − 1)

23. yy   − 2(y  )2 − y2 = 0

Ans.
√
c1 · y · cos (x + c2) = 1

V. Change of Independent Variable

24. (1+ x2)y   + 2x(1+ x2)y  + 4y = 0

Ans. y(1+ x2) = c1(1− x2)+ 2c2x

25. sin2 xy   + sin x · cos xy  + 4y = 0

Ans. y = c1 cos (2 log tan x
2
)+

c2 sin (2 log tan x
2
)

26. cos xy   + y  sin x − 2y cos3 x = 2 cos5 x

Ans. y = c1e
z + c2e

−z where z =
√

2 sin x

27. xy   − y  + 4x3y = x5

Ans. y = c1 cos x2 + c2 sin x2 + x2

4

28. xy   − y  − 4x3y = 8x3 sin x2

Ans. y = c1x
2 + c2e

−x2 − sin x2

29. xy   + (4x2 − 1)y  + 4x3y = 2x3

Ans. y = e−x
2
(c1 cos x2 + c2 sin x2)+ 1

2

30. y   + (3 sin x − cot x)y  + 2y sin2 x =
sin2 x · e− cos x

Ans. y = c1e
cos x + c2e

2 cos x + 1
6
e− cos x

9.12 SIMPLE HARMONIC MOTION

A particle is said to be in simple harmonic motion if

the acceleration of the particle is proportional to its

displacement i.e.,

d2x

dt2
= −ω2x

or ẍ + ω2x = 0 (1)
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where x(t) is the displacement of the particle at any

time t , from a fixed reference point O. The gen-

eral solution of the second order linear homogeneous

D.E. (1), known as harmonic D.E., is

x(t) = c1 cosωt + c2 sinωt (2)

Introducing c1 = A sin φ0, c2 = A cosφ0, so that

A =
 
c2
1 + c2

2 and tan φ0 = c1
c2

, (2) can be written

as x(t) = A sin (ωt + φ0). (3)

O

PQ R

x

b

Fig. 9.1

Suppose the particle starts from rest from the point

R which is at a distance ‘b’ from 0, then the initial

conditions are x = b, x
. = 0 at t = 0.

From (2)

b = x(0) = c1 · 1+ c2 · 0 ... c1 = b

Differentiating (2), the velocity of the particle is

v = dx

dt
= ω(−b sinωt + c2 cosωt)

Using the second initial condition

0 = x
.
(0) = ω(−b · 0+ c2 · 1) ... c2 = 0

Thus the displacement x and velocity v are given
respectively by

x(t) = b cosωt (4)

and

v = dx

dt
= −bω sinωt = −ω

 
b2 − x2 (5)

Thus the particle oscillates between the two extremi-

tiesR andQwhere the velocity is zero. The velocity

of the particle attains maximum at origin O. The

oscillations (motion) are called harmonic. The inte-

gral curves are sine curves. Amplitude of the simple

harmonic motion is the constantA, which is themax-

imum displacement of particle from origin (equilib-

rium position).

Periodic time or period of oscillation is the time

for a complete oscillation and is given by 2π
ω

. Note

that x and x
.

given by (4) and (5), involving cos

and sin, are periodic functions of period 2π
ω

i.e.,

x
 
t + 2π

ω

 = x(t). The part of the curve between P

and Q represents one period of the motion.

A Amplitude

t

T

O

P

x t( )

QPeriod

Fig. 9.2

Frequency is the number of oscillations per second

during the time 2π and is given by 1
periodic time

= ω
2π

.

Here φ0 is the initial phase.

The power of modeling is seen by the equation (1)

which also represents the motion of a particle with

constant angular velocity along a circle, also the free

undamped vertical motion of a mass-spring system

and also the motion of the bob of a simple pendulum

in a vertical plane.

WORKED OUT EXAMPLES

Example 1: Compute the time required for a par-

ticle, in simple harmonic motion with amplitude 20

cm and periodic time 4 seconds, in passing between

two points which are at distances 15 cm and 5 cm

from the origin O.

Solution: Here b = 20, 4 = 2π
ω

or ω = 2π

ω
= π

2
Then x(t) = b cosωt = 20 cos πt

2

When t = t1, given x = x1 = 5

When t = t2, given x = x2 = 15

O
5

15

x1 x2

Fig. 9.3

Thus 5 = x1 = 20 cos
πt1
2

and 15 = x2 =
20 cos πt2

2
.

Then
πt2
2
− πt1

2
= cos−1 15

20
− cos−1 5

20
or the time
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taken by particle in passing between x1, and x1 is

given by

t2 − t1 = 2
π

 
cos−1 3

4
− cos−1 1

4

 
Example 2: A particle of mass m moves in a

straight line under the action of force mn2x which

is always directed towards a fixed point O on the

line. Determine the displacement x(t) if the resis-

tance to the motion is 2λmnv given that initially

x = 0, x
. = x0. Here 0 < λ < 1.

Solution: The D.E. describing this simple harmonic

motion is

mẍ = −2λmnx
. −mn2x

or
d2x

dt2
+ 2λn

dx

dt
+ n2x = 0

The auxiliary equation is

r2 + 2λnr + n2 = 0

with roots r = −2λn±
√

4λ2n2 − 4n2

2

r = −λn± n
 

1− λ2i

The general solution is

x(t) = e−λnt [c1 cos nωt + c2 sin nωt]

where ω =
√

1− λ2. Using the initial condition

0 = x(0) = c1 · 1+ c2 · 0 ... c1 = 0

Differentiating x(t) w.r.t. ‘t’

x
. = −λne−λnt [c1 cos nωt + c2 sin nωt]

+e−λnt [−c1nω sin nωt + c2nω cos nωt]

Since at t = 0, x
. = x0, we have

x0 = x
. = −λn[0+ 0]+ [0+ c2nω · 1]

... c2 = x0

nω

Then the displacement x(t) is given by

x(t) = e−λnt · x0

nω
· sin nωt

with ω =
√

1− λ2

EXERCISE

1. Find the timeof a complete oscillation in a sim-

ple harmonic motion if x = x1, x = x2, and

x = x3 when t = 1, t = 2, t = 3 seconds re-

spectively.

Ans. 2π/θ where cos θ = x1+x3

2x2

Hint: x(t) = b cosωt , x1 = b cosω,

x2 = b cos 2ω, x3 = b cos 3ω,
x1+x3

2x2
=

cosω+cos 3ω
2 cos 2ω

= cosω

2. Determine the equation of motion of a particle

of mass m attached to one end of stretched

elastic horizontal string whose other end is

fixed. Find the displacement x of the particle

if x = x0, x
. = 0 when t = 0.

Ans. ẍ + g

e
x = gL

e
where L is the natural length of

the string, e is the elongation due toweightmg.

x(t) = (x0 − L) cosωt + L where ω =
 

g

e
.

Hint: G.S.: x(t) = c1 cosωt + c2 sinωt + L.

3. Find the period of a particle of massm, in sim-

ple harmonic motion, attached to the middle

point of an elastic string (of natural length 2a)

stretched between two points Q and R which

are 4a apart.

Ans. Period 2π/ω where ω2 = 2λ/am where λ is

the modulus.

9.13 MASS-SPRING MECHANICAL

SYSTEM

Airplanes, bridges, ships, machines, cars etc. are vi-

brating mechanical systems. The simplest mechani-

cal system is the mass-spring system which consists

of a coil spring of natural length L, suspended verti-

cally from a fixed point support (such as a ceiling or

beam).A constantmass ‘m’ attached to the lower end

of the spring, stretches the spring to a length (L+ e)

and comes to rest which is known as the static equi-

librium position. Here e > 0 is the static deflection

due to the hanging the mass on the spring. Now the

mass is set in motion either by pushing or pulling



LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER AND HIGHER ORDER 9.51

the mass from equilibrium position and/or by im-

parting a non-zero velocity (downward or upward)

to the mass (in the equilibrium position). Since the

motion takes place in the vertical direction, we con-

sider the downward direction as positive. In order to

determine the displacement x(t) of the mass from the

static equilibrium position, we use Newton’s second

law and Hooke’s law. The massm is subjected to the

following forces:

(a) a gravitational force mg acting downwards.

(b) a spring restoring force −k(x(t)+ e) due to dis-

placement of the spring from rest (equilibrium)

position.

(c) a frictional (or damping or resistance) force of the

medium, opposing the motion and of magnitude-

−cx. (t).
(d) an external force F (t).

The differential equation (D.E.) describing the mo-

tion of the mass is obtained by Newton’s second law

as

mẍ(t) = mg − k(x(t)+ e)− cx
.
(t)+ F (t)

Here k > 0 is known spring constant or stiffness of

the spring, c ≥ 0 is known as damping constant, g

is gravitational constant. Since the force on the mass

exerted by the spring must be equal and opposite to

L

m

m

e

L

x

L + e

O

(a)
Natural
length L

(b)
Mass in

equilibrium
position

(c)
Mass in

position
displaced

Fig. 9.4 Forced damped mass-spring system

the gravitational force on the mass, we have ke =
mg. Thus the D.E. modeling the motion of mass is

mẍ(t)+ cx
.
(t)+ kx(t) = F (t)

which is a second order linear non-homogenous

equation with constant coefficients. The displace-

ment (or motion) of the mass at any time t is x(t)

which is the solution of D.E. (1). Let us consider

three important cases of D.E. (1) referred to as free

motion, damped motion and forced motion.

Free, Undamped Oscillations of a Spring

In the absence of external force (F (t) = 0) and ne-

glecting the damping force (c = 0), D.E. (1) reduce

to

mẍ + kx = 0 (2)

which is the harmonic oscillator equation. Putting

ω2 = k
m

, the equation (2) takes the form

ẍ + ω2x = 0

whose general solution is sinusoidal given by

x(t) = c1 cosωt + c2 sinωt (3)

Introducing c1 = A cosφ, c2 = −A sin φ, equation
(3) can be rewritten as

x = A cosφ cosωt − A sin φ sinωt = A cos (ωt + φ)

i.e. x(t) = A cos(ωt + φ) (4)

where A =
 
c2
1 + c2

2, tan φ = − c2
c1

. The constant A

is called the amplitude of the motion and gives the

maximum (positive) displacement of the mass from

its equilibrium position. Thus the free, undamped

motion of the mass is a simple harmonic motion,

which is periodic. The period of motion is the time

interval between two successivemaxima and is given

by

T = 2π

ω
= 2π

 
m

k

The natural frequency (or simply frequency) of the

motion (or harmonic oscillator) is the reciprocal
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of the period, which gives the number of oscilla-

tions/second. Thus the natural frequency is the un-

demped frequency (i.e. frequency of the system with

out damping)

Free, Damped Motion of a Mass

Every system has some damping, otherwise the sys-

tem continues to move forever. Damping force op-

poses oscillations. Damping not only decreases the

amplitude but also alters the natural frequency of the

system. With external force absent (F (t) = 0) and

damping present (c  = 0), the D.E. (1) takes the form

mẍ + cx
. + kx = 0 (5)

whose auxiliary equation is

r2 + 2br + ω2 = 0 (6)

Here 2b = c
m

and ω2 = k
m

. The roots of (6) are

r = −2b ±
√

4b2 − 4ω2

2
= −b ±

 
b2 − ω2 (7)

The motion of mass depends on the damping through

the nature of the discriminant b2 − ω2.

Case (i) b2 − ω2 > 0 i.e., c2 > 4 mk

Since b > ω, the roots r1 = −b +
√
b2 − ω2 and

r2 = −b −
√
b2 − ω2 are distinct, real negative

numbers. The general solution is

x(t) = c1e
r1t + c2e

r2t (8)

which tends to zero as t →∞. Thus the damping is

so great that no oscillations can occur. The motion

(or system) is said to be over critically damped (or

simply overdamped).

Case (ii) b2 − ω2 = 0 or b = ω. Here both the roots

are equal, real negative number −b. The general so-

lution is

x(t) = (c1 + c2t)e
−bt (9)

which tends to zero as t →∞. Thus the damping is

just enough to prevent oscillations so that the motion

is no longer oscillatory. In this case the motion is said

to be critically damped.

In both cases (i) and (ii) the displacement x(t)

is asymptotic and approaches zero (the equilibrium

position) as t →∞.

Case (iii)when b < ω then b2 − ω2 < 0 so the roots

of the auxiliary equation (7) are complex conjugate

given by −b ±
√
ω2 − b2 i. The general solution is

x(t) = e−bt [c1 cos
 
ω2 − b2 t + c2 sin

 
ω2 − b2 t

(10)

which can be written in the alternative form

x(t) = Ae−bt [cos
   

ω2 − b2

 
· t + φ

 
] (11)

Here A =
 
c2
1 + c2

2 and φ = tan−1
 
− c1

c2

 
.

Since A > 0 and b > 0 the first factor is in (11).

The time-varying amplitude or the damping factor

Ae−bt → 0 monotonically as t →∞. The other fac-

tor cos
  √

ω2 − b2

 
· t + φ

 
in (11) is periodic, os-

cillatory representing simple harmonic motion.

Ae–bt

–Ae–bt

x

t

Fig. 9.5

The solution (11) which is the product of these

two factors is a damped oscillatory motion in which

the oscillations die (damped) out. Resonance never

occurs in this case since the frequency of the free

damped system

√
ω2−b2

2π
= 1

2π

 
k
m
− c2

4m2 is less than

the natural frequency 1
2π

 
k
m

of the corresponding

undamped system. In this case the motion is said to

be underdamped. The free underdamped solutions

given by (10) or (11) are also known as damped har-

monic motion.

Forced Oscillations

In the presence of an external force F (t), also known

as input or driving force, the solutions of D.E. (1)

are known as output or response of the system to

the external force. In this case, the oscillations are

said to be forced oscillations, which are of two types

damped forced oscillations and undamped forced os-

cillations.
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Case (i): Damped forced oscillations

The D.E. in this case is

mẍ + cx
. + kx = F (t) (1)

Suppose the external impressed forces F (t) is a peri-

odic sinusoidal force with amplitude F1 and circular

frequency β of the form

F (t) = F1 cosβt, (F1 > 0;β > 0)

Then D.E. (1) takes the form

mẍ + cx
. + kx = F1 cosβt

or ẍ + 2bx
. + ω2x = E1 cosβt (12)

where 2b = c
m

, ω2 = k
m

, E1 = F1
m

. Assume that b <

ω. Then the complementary function of (12) is

xc = Ae−bt cos
   

ω2 − b2

 
· t + φ

 
(13)

which approaches zero as t →∞. The particular in-
tegral of (12) is

xp =
1

D2 + 2bD + ω2
E1 cosβt

= E1

ω2 − β2 + 2bD
cosβt

= E1[ω
2 − β2 − 2bD]

(ω2 − β2)2 − 4b2D2
cosβt

= E1[ω
2 − β2 − 2bD] cosβt

(ω2 − β2)2 + 4b2β2

xp =
E1

(ω2 − β2)+ 4b2β2
[(ω2 − β2)2 cosβt+

+ 2bβ sin βt]

Put cos θ = ω2−β2

(ω2−β2)+4b2β2 , sin θ = 2bβ

(ω2−β2)+4b2β2

Then xp can be written in the phase angle form as

xp = E1 · cos (βt − θ ) (14)

The general solution is

x(t) = xc + xp (15)

where xc and xp are respectively given by (13)

and (14). The first terms xc in (15) given by

Ae−bt cos
  √

ω2 − b2

 
t + φ

 
known as transient

term, tends to zero as t →∞ and represents the

damped oscillations that would be the entire motion

of the corresponding free motion (i.e. when external

force F1 cosωt was absent). The second term xp in

(15) given by (14), known as steady-state term repre-

sents a simple harmonic motions of period, 2π
β

which

results from the presence of the external force F (t)

whose period is also 2π
β

. Hence after a sufficiently

long time, the output corresponding to a purely si-

nusoidal input will be practically a harmonic oscil-

lation whose frequency is that of the input.

Case (ii): Undamped forced oscillations:

Resonance

In the undamped case c = 0 and D.E. (1) takes the

form

mẍ + kx = F (t) = F1 cosβt

or ẍ + ω2x = E1 cosβt (16)

where ω2 = k
m

, E1 = F1
m

and ω, E1, β are positive

constants. The complementary function of (16) is

xc = c1 cosωt + c2 sinωt (17)

Thus every free solution (17) of D.E. (16) is periodic

with frequencyω. The frequency of the driving force

in (16) is of frequency β. Now we study the nature

of solution of D.E. (16).

When ω = β: In this case the particular integral

of D.E. (16), which is the forced solution, is

xp =
1

D2 + ω2
E1 cosβt = E1

2ω
t · sin βt (18)

Thus when ω = β, the general solution of D.E.

(16) is x = xc + xp or

x = c1 cosωt + c2 sinωt + E1

2ω
· t · sin βt (19)

The forced solution (the particular integral (18))

grows with time and becomes larger and larger (be-

cause of the presence of ‘t’). Thus in an undamped

system if ω = β i.e., the frequency β of external

force matches (equals) with the natural frequency
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ω. The phenomenon of unbounded oscillations oc-

curs, which is known as resonance. In resonance,

for a bounded input the system responds with an un-

bounded output. Thus resonance, the phenomenon of

excitation of large oscillation, is undesirable because

the system may get destroyed due to these unwanted

large vibrations.

xp

t

Forced solution (18) in the
case of resonance

xp

Fig. 9.6

WORKED OUT EXAMPLES

Free, undamped oscillations:

Example 1: An 8 lb weight is placed at one end of

a spring suspended from the ceiling. The weight is

raised to 5 inches above the equilibrium position and

left free. Assuming the spring constant 12 lb/ft, find

the equation of motion, displacement function x(t),

amplitude, period, frequency andmaximumvelocity.

Solution: ω
g
ẍ = −kx. Here ω = 8, g = 32, k =

12. The equation of motion is 8
32
ẍ + 12x = 0 or

d2x

dt2
+ 48x = 0

The auxiliary equation r2 + 48 = 0 has two complex

conjugate roots given by r = ±4
√

3i. The displace-
ment function x(t) is

x(t) = C1 cosωt + C2 sinωt

whereω = 4
√

3. The given initial conditions are x =
−5 inches = −5

12
ft and x

. = 0 at t = 0. Using x = −5
12

at t = 0, we get −5
12
= x(0) = c1 · 1+ c2 · 0 ...

c1 = −5
12

.

Differentiating x(t) w.r.t. ‘t’ we get

x
. = −c1ω sinωt + c2ω cosωt

Using x
. = 0 at t = 0, we get

0 = x
. = −c1ω · 0+ c2ω · 1 ... c2 = 0

x(t) = − 5

12
cos 4

√
3t = 5

12
sin

 
4
√

3t − π

2

 
Amplitude is 5

12
feet

Period T = 2π
ω
= 2π

4
√

3
= π

√
3

6
sec

Frequency : f = 6

π
√

3
cycles/sec

Maximum velocity: ω · (Amplitude) = (4
√

3)
 

5
12

 
= 5√

3
ft/sec2.

Free, Damped Oscillation

Example 2: A 2 lb weight suspended from one

end of a spring stretches it to 6 inches. A velocity

of 5 ft/sec2 upwards is imparted to the weight at its

equilibrium position. Suppose a damping force βv

acts on the weight. Here 0 < β < 1 and v = x
. =

velocity. (a) Determine the position and velocity of

the weight at any time (b) Express the displacement

function x(t) in the amplitude-phase form. (c) Find

the amplitude, period, frequency, maximum velocity

(d) Determine the values of β for which the system

is critically damped, over damped or oscillatory. (e)

Discuss the case for β = 0.6.

Solution: Since a 2 lb weight stretches to 1
2

feet,

from Hookes law, we get

2 = k · 1
2

or k = 4 is spring constant. Then the D.E.

of motion is

ω

g
ẍ + βx

. + kx = 0

or
2

32
ẍ + βx

. + 4x = 0

d2x

dt2
+ 16β

dx

dt
+ 64x = 0

The auxiliary equation is

r2 + 16β + 64 = 0

with roots r = −16β ±
 

256β2 − 256

2
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= 8(−β ±
 

(β2 − 1))

r = 8(−β ±
 

1− β2i) = 8(−β ± αi) where α = 
1− β2

The general solution is

x(t) = e−8βt [c1 cos 8αt + c2 sin 8αt]

Using the initial condition x = 0 at t = 0,

0 = 1 · [c1 · 1 · + c2 · 0] ... c1 = 0

Differentiating x(t) w.r.t. ‘t’, we get

x
. = −8βe−8βt [c1 cos 8αt + c2 sin 8αt]

+ e−8βt [−c18α sin 8αt + c28α · cos 8αt]

Initially x
. = −5 so at t = 0,

−5 = x
. = −8β · 1[c1 · 1+ c2 · 0]+ 1 · [−c1 · 8α · 0+
+ c2 · 8α · 1]

... c2 =
−5

8α

(a) Thus the displacement function is

x(t) = e−8βt

 −5

8α

 
sin 8αt

and velocity downward positive is

v = x
. = −5

8α
e−8βt [−8β sin 8αt + 8α cos 8αt]

x
. = 5

α
e−βt [−α cos 8αt + 8β sin 8αt]

(b) Rewriting x(t) as

x(t) = 5

8α
e−8βt sin (8αt + π )

which is in the amplitude-phase form

(c) Amplitude: A(t) = 5
8α
e−8βt

Period: T = 2π
ω
= 2π

8α
= π

4α

Frequency: f = 1
T
= 4α

π

Maximum velocity: ω · A = 8α
 

5
8α
e−8βt

 
= 5e−8βt

(d) If the discrimenent of the auxiliary equations

β2 >
< 0

accordingly the system is said to be over or crit-

ically or under damped. Thus the given (mass-

spring) system is

(i) over damped if β2 > 1

(ii) critically damped if β2 = 1

(iii) under damped if β2 < 1 (i.e., oscillatory)

(e) If β = 0.6 then

x(t) = −5

6.4
e−4.8t sin 6.4t

v(t) = e−4.8t [3.75 sin 6.4t − 5 cos 6.4t]

Amplitude: 5
6.4
e−4.8t

Period: π
3.2

Frequency: 3.2
π

Since β2 = 0.36 < 1, the system is damped i.e.,

it is oscillatory

Forced Damped Oscillations

Example 3: A 16 lb weight is suspended from a

spring having a constant 5 lb/ft. Assume that an ex-

ternal force given by 24 sin 10t and a damping force

4v are acting on the spring. Initially the weight is at

rest at its equilibrium position.

(a) Find the position of the weight at any time.

(b) Indicate the transient and steady-state solutions

(c) Find the amplitude, period and frequency of the

steady-state solution

(d) Determine the velocity of the weight at any time.

Solution: The D.E. is

ω

g
ẍ = −cx. − kx + F (t)

or 16
32
ẍ + 4x

. + 5x = 24 sin 10t

or d2x

dt2
+ 8 dx

dt
+ 10x = 48 sin 10t

which is a second order linear non-homogeneous

D.E. with constant coefficients. Its auxiliary equa-

tion is

r2 + 8r + 10 = 0 or r = −8±√64−40
2

so two real distinct roots r1 = −4−
√

6, r2 = −4+√
6. Then the complementary function is

xc(t) = c1e
r1t + c2e

r2t



9.56 HIGHER ENGINEERING MATHEMATICS—III

Now the particular integral is

xp =
1

D2 + 8D + 10
48 sin 10t = 48

−100+ 8D + 10
sin 10t

= 48(8D + 90)

(8D + 90)(8D − 90)
sin 10t = 48(8D + 90)

64D2 − 8100
sin 10t

= 48[80 cos 10t + 90 sin 10t]

64(−100)− 8100

xp =
−48

1450
(8 cos 10t + 9 sin 10t)

The position of weight at any time is

x(t) = c1e
r1t + c2e

r2t − 48

1450
(8 cos 10t + 9 sin 10t).

Use the initial condition: x = 0 at t = 0

0 = x(0) = c1 + c2 −
48

1450
(8) ... c1 + c2 =

384

1450

Differentiating x(t) w.r.t. ‘t’, we get

x
.
(t) = r1c1e

r1t+r2c2er2t−
48

1450
[−80 sin 10t+90 cos 10t]

Use the initial condition: x
. = 0 at t = 0.

0 = x
.
(0) = r1c1 + r2c2 −

48× 9

145

(−4−
√

6)c1 + (−4+
√

6)c2 =
−432

145

Solving for c1 and c2, we get the required solution as

(a) x(t) = 0.96e−1.56t − 0.695e−6.45t

− 0.298 sin 10t − 0.265 cos 10t

(b) Transient solution is

0.960 e−1.56t − 0.695 e−6.45t

Steady-state solution is

−0.298 sin 10t − 0.265 cos 10t

= 0.397 sin(10t + 3.87)

(c) Steady-state part:

Amplitude = 0.397 feet

Period = 2π
ω
= 2π

10
= π

5
sec

Frequency = 5
π

cycles/sec.

(d) The velocity of the weight at any time is

x
.
(t) = −1.5e−1.56t + 4.483 e−6.45t − 2.98 cos 10t+

+ 2.65 sin 10t

Resonance : Forces Undamped Oscillations

Example 4: A 32 lb weight is suspended from a

spring having constant 4 lb/ft. Prove that the motion

is one of resonance if a force 16 sin 2t is applied and

damping force is negligible. Assume that initially the

weight is at rest in the equilibrium position.

Solution: The D.E. describing this phenomena is

32

32
ẍ + 4x = 16 sin 2t

The roots of the auxiliary equation r2 + 4 = 0 are
complex conjugate ±2i. The complementary func-
tion is

xc(t) = c1 cos 2t + c2 sin 2t

The particular integral is

xp =
1

D2 + 4
16 sin 2t = −16 · t · cos 2t

2 · 2 = −4t cos 2t

. Then the general solution is

x(t) = c1 cos 2t + c2 sin 2t − 4t cos 2t

Using x = 0 at t = 0

0 = x(0) = c1 · 1+ c2 · 0− 0 ... c1 = 0

Differentiating x(t) w.r.t. ‘t’, we get

x
. = 2c2 cos 2t − 4 cos 2t + 8t sin 2t

Using x
. = 0 at t = 0

0 = x
.
(0) = 2c2 · 1− 4.1+ 0 ... c2 = 2

The position of weight at any time is

x(t) = 2 sin 2t − 4t cos 2t =
 

22 + 4t2 sin(2t − φ)

and its velocity is

x
. = 4 cos 2t − 4 cos 2t + 8t sin 2t = 8t sin 2t

Frequency of the external force is 2
2π

= 1
π

cy-

cles/sec. Natural frequency (of the free undamped)
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system is 2
2π
= 1

π
cycles/sec. Therefore resonance

occurs in the system because the frequency of the

external force equals to the natural frequency of the

system.

EXERCISE

Free Undamped Oscillations

1. An 8 lb weight is placed at the lower end of

a coil spring suspended from the ceiling. The

weight comes to rest in its equilibrium posi-

tion, thereby stretching the spring 6 inches.

The weight is then pulled down 3 inches be-

low its equilibrium position and released at

t = 0 with an initial velocity of 1 ft/sec di-

rected downward. Neglecting air resistance of

the medium and assuming that no external

forces are present, determine the amplitude,

period and frequency of the resulting motion.

Ans. Amplitude
√

5
8
≈ 0.280ft, period = 2π

8
=

π
4

sec.

Frequency: 4
π

oscillations/sec.

Hint: 8
32
ẍ + 16x = 0, x(0) = 1

4
, x

. = 1

roots ±8i, x(t) = c1 cos 8t + c2 sin 8t ,

c1 = 1
8
, c2 = 1

4
, x =

√
5

8
cos (8t + φ)

2. Determine the displacement of a body of

weight 10 kg attached to a spring given that

20 kg weight will stretch the spring to 10 cm.

Find the maximum velocity and period of os-

cillations

Ans. x(t) = 0.2 cos 14t , Max. velocity = 14(0.2) =

2.8 m/sec.

period: 2π
14
= 0.45 sec

Hint Spring constant k = 200 kg/m; Ten-

sion = k(0.05+ x), ω
g
ẍ = ω − T , 10

9.8
ẍ =

10− (10+ 200x) or ẍ + 142x = 0.

3. A spring is such that it would be stretched to 6

inches by 12 lb weight. If the weight is pulled

down 4 inches below the equilibrium point and

given an upward velocity of 2 feet/sec, deter-

mine the motion of the weight assuming no

damping. Find also the amplitude and period .

Ans: x(t) = 1
3
cos 8t − 1

4
sin 8t

Hint: k = 24 lb/ft, 12
32
ẍ + 24x = 0, amplitude

= 5
12

, Period: π
4

4. A 6 lb weight stretches a spring 6 inches. If the

weight is pulled 4 inches below the equilib-

rium position, find the motion of weight. Find

the amplitude, period, frequency and position,

velocity and acceleration of the weight 1
2

sec

after it has been released.

Ans: x = 1
3
cos 8t , Amplitude 1

3
ft, period:

2π
8
= π

4
sec, frequency: 8

2π
= 4

π
cycles/sec;At

t = 1
2
sec, x = −0.219, x

. = 2.01, ẍ = 14.0

Hint: k = 12, ẍ + 64x = 0

5. An 8 lbweight is placed on a springwith spring

constant k = 12 lb/ft. Find the motion am-

plitude, period and frequency if the weight is

raised 5 inches and then thrust upward with

velocity 5 ft/sec.

Ans: x(t) = 5
12

cos 4
√

3t + 5
√

3
12

sin 4
√

3t ,

Amplitude: 5/6, Period π/2
√

3, Frequency

= 2
√

3/π

Hint: ẍ + 48x = 0, x(0) = − 5
12
, x
.
(0) = −5.

Free Damped Oscillations

6. A 32 lb weight is suspended from a coil spring

stretches the spring to 2 ft. The weight is then

pulled down 6 inches from the equilibrium po-

sition and released at t = 0. Find the motion of

the weight and determine the nature of motion

if the resistance of the medium is

(a) 4x
.
, (b) 8x

.
, (c) 10x

.
.

Ans: x(t) = e−2t (c1 sin 2
√

3t

+ c2 cos 2
√

3t), c1 =
√

3/6, c2 = 1
2
,

x =
√

3
3
e−2t · cos

 
2
√

3t − π
6

 
. Mo-

tion is damped oscillatory with period

2π/
 
2
√

3
 
; with damping factor e−2t /

√
3.

Hint: x
. + 4x

. + 16x = 0, x(0) = 1
2
,

x
.
(0) = 0, roots −2± 2

√
3

(b) x(t) = (c1 + c2t)e
−4t , c1 = 1

2
, c2 = 2, Mo-

tion is critically damped, and x → 0 as

t →∞
Hint: ẍ + 8x

. + 16x = 0, roots: −4, −4
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(c) x(t) = 2
3
e−2t − 1

6
e−8t , overdamped case

Hint: ẍ + 10x
. + 16x = 0, roots: −2, −8

7. A 3 lb weight on a spring stretches it to 6

inches. Suppose a damping force βv is present

(β > 0). Show that the motion is (a) critically

damped if β = 1.5 (b) overdamped if β > 1.5

(c) oscillatory if β < 1.5

Hint: ẍ + 32
3
βx

. + 64x = 0

8. A weight of 980 gm is attached to a spring with

spring constant k = 20 gm/cm . The resistance

is 1
4
v. Find the motion of weight if it pulled

down 1
4

cm below its equilibrium position and

then released. Also find the time it takes the

damping factor to drop to 1
10

of its initial value.

Ans: x(t) = e−0.05t [0.25 cos(4.5)t+
0.003 sin(4.5)t], time t = 46 sec.

Hint: 10ẍ + x
. + 200x = 0, roots−0.05±4.5i

x(0) = 1
4
cm, x

.
(0) = 0, damping factor =

re−0.05t . Here r is constant of proportional-

ity. At time t , damping factor = 1
10
r or 1

10
r =

re−0.05t or et/20 = 10.

9. A 2 lb weight is pulled 6 inches below its equi-

librium position and then released. Assuming

a spring constant k = 16, damping force 2x
.
.

Determine whether the motion is overdamped

or critically damped.

Ans: Critically damped

Hint: ẍ + 32x
. + 256x = 0, roots: −16, −16.

x(t) = e−16t (c1 + c 2t), x = 6 inches and x
. =

0 at t = 0, c1 = 1
2
, c2 = 8.

Forced Oscillations

10. If weight ω = 16 lb, spring constant k =
10 lb/ft, damping force 2x

.
, external force

F (t) is 5 cos 2t , find the motion of the weight

given x(0) = x
.
(0) = 0. Write the transient and

steady-state solutions. Describe the nature of

these solutions.

Ans: x(t) = e−2t
 − 3

8
sin 4t − 1

2
cos 4t

 +
+ 1

2
cos 2t + 1

4
sin 2t .

Transient solution: 5e−2t

8
cos(4t − 0.64),

representing a damped oscillatory motion,

steady-state solution:
√

5
4

cos(2t − 0.46), rep-

resenting a simple harmonic motion with am-

plitude
√

5
4

and period π .

Hint: ẍ + 4x
. + 20x = 10 cos 2t , x(0) = x

.
(0)

= 0. x(t) = 5e−2t

8
cos(4t − φ) +

√
5

4
cos(2t −

θ ) with tan θ = 1
2
, tan φ = 3

4
.

11. Determine the transient and steady-state solu-

tions of mechanical system with weight w =
6 lb, stiffness constant k = 12, damping force

1.5x
.
, external force 24 cos 8t and initial con-

ditions x = 1
3

ft, x
. = 0.

Ans: Transient: e−4t

9
(3 cos 4

√
3t

− 11
√

3 sin 4
√

3t). Steady-state 2 sin 8t .

Hint: ẍ + 8x
. + 64x = 128 cos 8t , root:−4±

4
√

3 i.

Find the steady-state and transient oscilla-

tions of the mechanical system corresponding

to the following D.E.

12. ẍ + 3x
. + 2x = 10 sin t

Ans: sin t − 3 cos t, c1e
−2t + c2e

−t

13. ẍ + 2x
. + 2x = sin 2t − 2 cos 2t, x(0) =

x
.
(0) = 0

Ans: −0.5 sin 2t ; e−t sin t

Resonance: Forced Undamped Oscilla-

tions

14. If a weight 6 lbs hangs from a spring with con-

stant k = 12 and no damping force exists, find

the motion of weight when an external force

3 cos 8t acts. Initially x = 0 and x
. = 0. De-

termine whether resonance occurs.

Ans: x(t) = t sin 8t , resonance occurs.

Hint: ẍ + 64x = 16 cos 8t , solution is x(t) =
c1 cos 8t + c2 sin 8t + t sin 8t , use I.C., c1 =
c2 = 0.

15. A 64 lb weight is attached to the lower end of a

coil springwith spring constant 18 lb/ft. An ex-

ternal force 3 cosωt is applied to the system. If

the weight is pulled down to 6 inches below its
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equilibrium position and released from rest at

t = 0, (a) Assuming a damping force 4x
.
deter-

mine the resonance frequency of the resulting

motion (b) If there is no damping, determine

the value of ω that gives rise to undamped res-

onance

Ans: (a) resonance frequency

1
2π

 
18
2
− 1

2

 
16
4

 ≈ 0.42 cycles/sec. Thus

resonance occurs when ω =
√

7 ≈ 2.65. (b)

C = damping constant = 0, thus undamped

resonance occurs when ω = 3.

Hint: (a) 2ẍ + 4x
. + 18x = 3 cosωt

(b) ẍ + 9x = 3
2
cosωt , C.F. : xc =

c1 sin 3t + c2 cos 3t with natural frequency
3

2π
. Initial conditions x(0) = 1

2
, x
.
(0) = 0,

then x(t) = 1
2
cos 3t + 1

4
t sin 3t .

16. Determine forced solutions if resonance oc-

curs in a mechanical system consisting of a

weight ω attached to a spring with stiffness

constant k = 24 lb/ft and an applied external

force 2 cos 2t . What should be the value of the

weight w in this case?

Ans: Forced solution: 1
12
t sin 2t ; weight w =

6 g.

Hint: ωẍ + 24gx = 2g cos 2t, since reso-

nance occurs, period of free oscillations
2π  
24g
ω

 = period of forced oscillations π so

w = 6 g.

17. Determine whether resonance occurs in a sys-

tem consisting of a weight 32 lb attached to a

spring with constant k = 4 lb/ft and external

force 16 sin 2t and no damping force present.

Initially x = 1
2

and x
. = −4.

Ans: Resonance occurs

Hint: ẍ + 4x = 16 sin 2t, x(t) = 1
2
cos 2t −

4t cos 2t . Natural frequency of system = 2
2π

and frequency of the forcing function = 2
2π
.

9.14 RLC-CIRCUIT

An RLC-series circuit consists of a resistor, a con-

ductor, a capacitor and an emf as shown in the figure.

E
Impressed
voltage

C

Capacitance

L

R

Inductance

RLC-circuit

Fig. 9.7

Using the Kirchhoff’s law, the sum of the voltage
drops across the three elements inductor, resistor and
capacitance equal to the external source E. Thus the
RLC-circuit is modeled by

LdI
dt
+ RI + 1

C
Q = E(t) (1)

which contains two dependent variable Q and I .

Since I = dQ

dt
, the above equation can be written as

L
d2Q

dt2
+ R

dQ
dt
+ 1

C
Q = E(t) (2)

which contains only one dependent variable Q. Dif-
ferentiating (1) w.r.t. ‘t’, we obtain

Ld2I

dt2
+ R dI

dt
+ 1

C
I = dE

dt
(3)

which contains only one dependent variable I . Thus

the chargeQ and current I at any time in theRLC cir-

cuit are obtained as solutions of (2) and (3) which are

both linear 2nd order non homogeneous ordinary dif-

ferential equations. The equation (3) is used more of-

ten, since current I (t) is more important than charge

Q(t), in most of the practical problems. The RLC-

circuit reduces to an RL-circuit in absence of capac-

itor and to RC-circuit when no inductor is present.

Example 1: Determine the current I (t) in an RLC-

circuit with (a) emfE(t) = E0 cosωt (b) emfE(t) =
E0 sinωt .

Solution: Thedifferential equation representing the

RLC-circuit with I as the dependent variable is given
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by

L
d2I

dt2
+ R

dI

dt
+ 1

C
I = dE

dt
(3)

Since eiθ = cos θ + i sin θ , consider E(t) =
E0e

iωt = E0 (cosωt + i sinωt)

so that both the problems (a) and (b) can be solved

simultaneously by using the complex form for emf

E(t). Thus

L
d2I

dt2
+ R

dI

dt
+ 1

c
I = E0 · ωieiωt (4)

The general solution of (4) = Complimentary func-

tion (C.F.) + particular integral (P.I.). Complemen-

tary Function : IC
The auxiliary equation is

Lm2 + Rm+ 1

C
= 0

m2 + R

L
m+ 1

LC
= 0

With two distinct roots

m1,2 =
−R

L
±

  
R
L

 2
− 4 · 1

CL

2

m1,2 = −
R

2L
± 1

2L

 
R2 − 4L

c
(5)

m1 = −a + b

andm2 = −a − b where b = 1
2L

 
R2 − 4L

C
, a = R

2L

The complimentary function IC is given by

IC = c1e
m1t + c2e

m2t (6)

Particular Integral: Ip

Assume the particular solution of (3) as

Ip = Aeiωt (7)

where A is an undetermined constant obtained by
substituting (7) in (3). Then

L(iω)2Aeiωt + RiωAeiωt + 1

C
Aeiωt = iE0ωe

iωt

or
 −ω2L+ iωR + 1

C

 
Aeiωt = E0ωie

iωt . Then

A = E0 ω i 
−ω2L+ 1

C

 
+ i ωR

= E0 i

−  
ωL− 1

ωC

 + iR

The particular solution i.e., Re(Ip). Thus when

E = E0 cosωt , the steady-state solution is

Ip =
E0√

R2 + S2
· cos (ωt − δ) (10)

Similarly when E = E0 sinωt , the steady-state so-

lution is the imaginary part of Ip, namely,

Ip =
E0√

R2 + S2
sin(ωt − δ) (11)

Complex number z = R + is is known as the com-

plex impedance. Its magnitude
√
R2 + S2 is known

as simply impedance R. The real part of z is resis-

tance while S, the imaginary part of z is called the

reactance and 1
z

is called the admittance.

Put S = ωL− 1
ωc

Then

A = E0 i

−S + iR
= E0

R + iS

Then Ip = Aeiωt = E0

R+iS e
iωt (8)

Here S is known as reactance of the circuit. When

S = 0, the amplitude of I is greatest and the circuit

is in resonance.
Using the polar form of a complex number

a + ib = reiθ =
 
a2 + b2eiθ

where r =
√
a2 + b2 and θ = tan−1 b

a
, we can write

Ip as

Ip =
E0 

R2 + S2 · eiδ
eiωt = E0 

R2 + S2
ei (ωt − δ)

Ip = E0·[cos(ωt−δ)+i sin(ωt−δ)]√
R2+S2

(9)

where tan δ = S
R
. The quantity

√
R2 + S2 is known

as impedance of the circuit.
For an impressed voltage E(t) = E0 cosωt = Real
part of (E0 e

iωt ) = Re (E0e
iωt ), the steady-state cur-

rent in the RLC-circuit is given by the real part. Since
R > 0, the transient solution
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IC = c1e
m1t + c2e

m2t → 0

as t →∞. Thus after long time, the out put will be

a harmonic oscillation given by either (10) or (11) as

the case may be.

RLC-circuit

WORKED OUT EXAMPLES

Example 1: A circuit consists of an inductance of

0.05 henrys, a resistance of 5 ohms and a condensor

of capacitance 4× 10−4 farad. If Q = I = 0 when

t = 0, find Q(t) and I (t) when (a) there is a con-

stant emf of 110 volts (b) there is an alternating emf

200 cos 100t . (c) Find the steady-state solution in

(b).

Solution:

(a) Here L = 0.05,

R = 5, C = 4× 10−4, E = 110

The differential equation of the RLC-circuit

L
d2Q

dt2
+ R

dQ

dt
+ Q

C
= E(t)

now takes the form

0.05
d2Q

dt2
+ 5

dQ

dt
+ Q

4× 10−4
= 110

or d2Q

dt2
+ 100 dQ

dt
+ 50000Q = 2200

R = 5 W

4 10 F´ –4C

L
0.05 H

E(t)

Fig. 9.8

C.F.: A.E.: m2 + 100m+ 50,000 = 0 with
roots

m = −50± 50
√

19 i

Complementary function

QF = e−50t (A cos 50
√

19t + B sin 50
√

19t)

Particular integral:

Qp =
1

D2 + 100D + 50,000
2200 = 2200

50,000
= 11

250

The general solution is Q = QC +QF ,

Q = e−50t (A cosωt + B sinωt)+ 11

250

where ω = 50
√

19. Since Q = 0 at t = 0, we
have

0 = A+ 11

250
or A = − 11

250

Now differentiating Q w.r.t. ‘t’, get

I (t) = dQ

dt
= e−50t [−ωA sinωt + Bω cosωt]

− 50 e−50t (A cosωt + B sinωt)
Since I = 0 at t = 0, we have

0 = Bω − 50 A or B = 50A

ω

i.e., B = 50

50
√

19
·  − 11

250

 
= − 11

√
19

4750
. Thus

Q(t) = e−50t

 
− 11

250
cos 50

√
19t−

−11
√

19

4750
sin 50

√
19t

 
+ 11

250

and

I (t) = e−50t [(Bω − 50A) cosωt + (−ωA− 50B) sinωt]

I (t) = 44√
19

e−50t sin 50
√

19t

(b) When E(t) = 200 cos 100t ; the equation is

d2Q

dt2
+ 100

dQ

dt
+ 50,000Q = 40,000 cos 100t

for which the complementary is same as in the

above case (a).
The particular integral Qp is

Qp =
1

D2 + 100D + 50,000
40,000 cos 100t
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= 40,000

−10,000+ 100D + 50,000
· cos 100t

= 40(D + 400)

(D − 400)(D + 400)
cos 100t

= 40(D + 400)

−10,000− 1,60,000
cos 100t

= −4

17000
[−100 sin 100t − 400 cos 100t]

Qp =
4 sin 100t + 16 cos 100t

170

Thus

Q(t) = e−50t

 
− 16

170
cosωt − 12

√
19

1615
sinωt

 

+ 4
170

(4 cos 100t + sin 100t)
Differentiating Q w.r.t. ‘t’, we get

I (t) = e−50t

 
−40

17
cosωt + 1640

323

√
19 · sinωt

 

+40

17
(cos 100t − 4 sin 100t)

where ω = 50
√

19

(c) The steady-state solutions are obtained in the lim-
iting case as t →∞. Taking t →∞, we get the
steady-state solutions as

Q(t) = 4

170
(4 cos 100t + sin 100t)

and

I (t) = 40

17
(cos 100t − 4 sin 100t)

RLC-circuits

EXERCISE

1. Determine the charge on the capacitor at any

time t > 0 in a circuit in series having an emf

given by E(t) = 100 sin 60t V, a resistor of

2 >, an inductor of 0.1 H and a capacitor of

1
260

farads if the initial current and initial charge

on the capacitor are both zero. Find the steady-

state solution.

Ans. Q(t) = 6 e−10t

61
(6 sin 50t + 5 cos 50t)

− 5√
61

(5 sin 60t + 6 cos 60t)

or Q(t) = 6
√

61
61

e−10t cos(50t − φ)
−5
√

61
61

cos(60t − θ ) where cosφ=5/
√

61,

sin φ = 6/
√

61,cos θ=6/
√

61,sin θ=5/
√

61.

Steady-state solution: Q(t) = − 5
61

(5 sin 60t

+ 6 cos 60t)

Hint: d2Q

dt2
+ 20 dQ

dt
+ 2600Q = 1000 sin 60t ,

roots of A.E.: r2 + 20r + 2600 are −10±
50i; use Q(0) = I (0) = 0

2. Assuming Q = I = 0 at t = 0, in an RLC-

circuit having a source of voltage E(t) =
155 sin 377t ,R = 100>,L = 0.1 henry,C =
10−3 farad, determine the current at any instant

of time.

Ans. I (t) = −0.042 e−10t + 0.526 e−990t

− 0.484 cos 377t + 1.380 sin 377t .

Hint: 0.1 d2I

dt2
+ 100 dI

dt
+ 1000I =

(155) (377 cos 377t) A.E.: 0.1r2

+ 100r + 1000 = 0 has roots r1 = −10, r2
= −990

3. An electric circuit consists of an inductance of

0.1 henery, a resistance of 20 ohms and a con-

denser of capacitance 25 micro farads (one mi-

cro = 10−6 ). Find the chargeQ and the current

I at any time t , with the following initial con-

ditions (a) Q = 0.05 coulomb, I = dQ

dI
= 0

when t = 0 (b) Q = 0.05, I = −0.2 ampere

when t = 0 (c) what will be Q and I after a

long time?

Ans. (a) Q(t) = e−100t (0.05 cos 624.5t+
+ 0.008 sin 624.5t)

I (t) = −0.32 e−100t sin 624.5t

(b) Q = e−100t (0.05 cos 624.5t +
+ 0.0077 sin 624.5t)

I=e−100t (−0.2 cos 624.5t−32.0 sin 624.5t)

(c)Q and I → 0 as t →∞ since both solution

are transient containing e−t .

Hint: Q̈+ 200Q
. + 400,000Q = 0.
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4. DetermineQ and I in anRLC-circuitwithL =
0.05 H,R = 20>,C = 100 microF , emfE =
100 V. With Q = 0, I = 0 at t = 0.

Ans. Q = e−200t (−0.01 cos 400t − 0.005 sin 400t)

+ 0.01, I = 5e−200t sin 400t

Hint: Q̈+ 400Q
. + 200,000Q = 2000

5. (a) Solve the above problem 4 when emf

E(t) = 100 cos 200t (b) Find the steady-state

solutions.

Ans. Q = e−200t [−0.01 cos 400t−
0.0075 sin 400t] + 0.01 cos 200t

+ 0.005 sin 200t

I = e−200t [− cos 400t + 5.5 sin 400t]

− 2 sin 200t + cos 200t

(b) Steady-state solutions are obtained by tak-
ing limit as t →∞. They are

Q = 0.01 cos 200t + 0.005 sin 200t

I = cos 200t − 2 sin 200t

Hint: Q̈+ 400Q
. + 200,000Q

= 2000 cos 200t

6. (a) Determine Q and I in the RLC-circuit

withL = 0.5 H,R = 6>,C = 0.02 F,E(t) =
24 sin 10t and initial conditions Q = I = 0 at

t = 0 (b) state the steady-state and transient

solutions.

Ans. (a)Q = e−6t

10
[4 cos 8t + 3 sin 8t]− 2

5
· cos 10t

I = e−6t

10
[−32 sin 8t + 24 cos 8t]−

6
10
e−6t [4 cos 8t + 3 sin 8t] +4 sin 10t

(b) Transient solutions of Q and I are

Qtr =
e−6t

10
[4 cos 8t + 3 sin 8t]

Itr =
e−6t

10
[−50 sin 8t]

Steady-state solutions of Qs and Is are Qs =
− 2

5
cos 10t , Is = 4 sin 10t

7. (a) Find Q and I in the RLC-circuit with L =
2, R = 4, C = 0.05, E = 100 and Q(0) =
Q
.
(0) = 0. (b) Find the steady-state solutions.

Ans. (a) Q(t) = 5− 5
3
e−t (3 cos 3t + sin 3t)

I (t) = 5

3
e−t (3 cos 3t + sin 3t)

−5

3
e−t (3 cos 3t − 9 sin 3t)

(b) Steady-state solutions: as t →∞,Q =
5, I = 0.

8. Find I (t) in the RLC-circuit with E(t) =
100 sin 200t V, R = 40 >, L = 0.25 H, C =
4× 10−4 F and I (0) = 0 and Q(0) = 0.01.

Ans. I (t) = e−80t (−4.588 sin 60t + 1.247 cos 60t)

−1.247 cos 200t + 1.331 sin 200t

9.15 SIMPLE PENDULUM

A simple pendulum consists of a mass m (the bob)

at the end of a straight wire of variable length L(t)

where t is the time. It is assumed that the mass of the

wire is negligible compared to the mass of the bob.

mg
sin

q

T
q

f

( )t

mg

q

q

P

q

r

Y

X

m
g
cos

q

^

^

O

Fig. 9.9

The pendulum is suspended from a fixed point of

supportO. The bob is free to move in a vertical plane

due to force of gravity and given external force F (t).

Let θ be the angle which the wire OP makes with

the vertical OX at time t , positive when measured
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counterclockwise. The equation of angular motion

θ (t) will be obtained by modeling using Newton’s

second law.
Assume that the moving pendulum experiences a

viscous damping force f proportional to its linear
velocity and opposing the motion. The other forces
actingon the bob are the tensionof thewireT , gravity
and a given external force F (t). The tangential and
normal components of the force of gravity mg are

−mg sin θ and mg cos θ . Let r̂ and θ̂ be unit vectors,
where θ̂ points in the direction of increasing θ . Then

v = d

dt
(Lr̂) = Lθ

.
θ̂ + dL

dt
r̂

a = d

dt

 
Lθ

.
θ̂ + dL

dt
r̂

 

a = Lθ̈ θ̂ + dL

dt
θ
.
θ̂ + d2L

dt2
r̂ + dL

dt

dr̂

dt
− Lθ

. 2
r̂

Using Newton’s second law we get two equations

(along r and along θ̂ )

−mLθ
. 2 + d2L

dt2
= −T +mg cos θ

mLθ̈ = −2dL

dt
θ
. − cLθ

. −mg sin θ + F (t)

Here c is the damping constant.

Thus the equation of the angular motion θ (t) of the

forced damped simple pendulum with driving force

F (t) and of variable length L(t) is given by

mLθ̈ + (2mL
. + cL)θ

. +mg sin θ = F (t) (1)

Assumptions:

1. When the length of the pendulum is not variable
but fixed, then equation (1) reduces to

mLθ̈ + cLθ
. +mg sin θ = F (t) (2)

2. Free undamped nonlinear equation of pendulum

(with c = 0, F (t) = 0) is

mLθ̈ = −mg sin θ

L
d2θ

dt2
= −g sin θ

Multiplying both sides by 2 dθ
dt

on both sides

2
dθ

dt
· L · d

2θ

dt2
= −2g · sin θ dθ

dt

L
d

dt

 
dθ

dt

 2

= 2g
d

dt
(cos θ )

Integrating

L

 
dθ

dt

 2

= 2g cos θ + c1 (3)

dθ√
2g cos θ + c1

= ± dt√
L

(4)

This integral (4) cannot be expressed in terms of

elementary functions.

When the maximum displacement is α, then

the angular velocity θ
. = 0. Put θ = α and θ

. = 0

in (3).

Then LO = 2g cosα + c1 .
.. c1 = −2g cosα

Substituting c1 in (3), we get

Lθ
. 2 = 2g cos θ − 2g cosα

or θ
. 2 = 2g

L
(cos θ − cosα)

Since cosA = 1− 2 sin2 A
2
, we can rewrite

θ
. 2 = 4g

L

 
sin2 α

2
− sin2 θ

2

 

Change the variable of integration from θ to φ by

the substitution

sin
θ

2
= sin

α

2
· sin φ (6)

and integrating w.r.t. ‘t’, we get

t =
 

L
g

 φ

0

dφ√
1−k2 sin2 φ

. where k2 = sin2 α
2
.

This integral (6) is known as an elliptic integral

of the first kind.

3. Equation (2) is non-linear second order non-

homogeneous differential equation (with con-

stant coefficients) with non-linearity arising

through the term ‘sin θ ’. Since

sin θ = θ − θ3

3!
+ θ5

5!
· · ·
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for sufficiently small θ , the term sin θ can be re-
placed by θ . Thus we get an approximate lin-
earized pendulum equation with damping as

mLθ̈ + cLθ
. +mgθ = F (t) (7)

4. Free damped motion of the pendulum is obtained

from (7) with F (t) = 0 as

mLθ̈ + cLθ
. +mgθ = 0 (8)

or
d2θ

dt2
+ c

m

dθ

dt
+ g

L
θ = 0

This is second order linear homogeneous equa-

tion with auxiliary equation

λ2 + c

m
λ+ g

L
= 0

Its roots are λ = − c
m
±

 
c2

m2 − 4g2

L2

Case (i) When c
m
>

2g

L
then the roots λ1 and λ2

are real and district. In this case the general solu-

tion is

θ (t) = c1e
λ1t + c2e

λ2t

Case (ii) when c
m
= 2g

L
, the roots are real and

equal then the solution is

θ (t) = (c1 + tc2) · eλt

Case (iii) When c
m
<

2g

L
the roots are complex

conjugate then the complete solution is

θ (t) = e−kt ·
 
c1 cos

 
ω2 − k2 t

+ c2 sin
 
ω2 − k2t

 
(9)

Here k = c
m

, ω = 2g

L
. Thus the pendulum motion

is oscillatory with period 2π√
ω2−k2

when k < ω

5. Free undamped linear equation is obtained from

(7) with F (t) = 0 and c = 0

mLθ̈ +mgθ = 0

or
d2θ

dt2
+ g

L
θ = 0 (10)

The roots of the auxiliary equation are

λ2 + g

L
= 0 or λ = ±

 
g

L
i

The general solution of (10) is

θ (t) = c1 cos

 
g

L
t + c2 sin

 
g

L
t (11)

Thus the motion of the bob is simple harmonic

and the time of an oscillation is 2π
 

L
g
. Observe

that the period 2π
 

L
g

is independent of the initial

displacement. A beat or a swing of a pendulum is

themovement of the bob fromone end to the other

constituting half an oscillation. Thus the time for

one beat is π
 

L
g
. Suppose a pendulum of length

L makes n beats in time T , then

T = time of n beats = n· time for one beat

T = n · π
 
L

g

or

n = T

π

 
g

L

Now taking log and differentiating both sides

dn
n
= 1

2

 
dg
g
− dL

L

 
(12)

Thus the gain or loss of oscillations of a pendulum

due to change in g orL can be determined from (12).

Case (i) If L = constant and g is a variable, then

dn

n
= 1

2

dg

g

Case (ii) : If g = constant and L is a variable, then

dn

n
= −dL

2L

WORKED OUT EXAMPLES

Example 1: If a clock, loses 5 seconds/day, de-

termine the alteration required in the length of the

pendulum in order that the clock keeps correct time.

Solution: Since 24 hours = 24× 60× 60 =
86400 seconds, a seconds pendulum beats 86400
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times a day. As the clock loses 5 seconds/day

n+ dn

n
= 86400− 5

86400

or dn
n
= 86395

86400
− 1

Assuming g as constant we have

86395

86400
− 1 = dn

n
= −dL

2L

or dL
L
= +2

 
1− 86395

86400

 = 10
86400

= 1
8640

i.e., dL = 1
8640

L. So the length of the pendulum be

shortened by 1
8640

of its original length.

Example 2: Find the angular motion θ (t) of a

forced undamped pendulum whose equation is given

by θ̈ + ω2
0t = F0 sin kt where ω0 and F0 are con-

stants; if x = x
. = 0 at t = 0.

Solution: The roots of the auxiliary equation

are λ2 + ω2
0 = 0 or λ = ±ω0i. The complementary

function θc(t) = c1 cosω0t + c2 sinω0t . The partic-

ular integral

θp = F0

D2+ω2
0

sin kt = F0 ·
 
−t
2ω0

 
· cosω0t when k =

ω0.

Then the general solution is

θ (t) = θc(t)+ θp(t)

θ (t) = c1 cosω0t + c2 sinω0t −
F0t

2ω0

cosω0t

At t = 0, 0 = θ (0) = c1 + 0− 0 ... c1 = 0

Differentiating θ w.r.t. t

θ
. = −ω0c1 sinω0t + c2ω0 cosω0t −

F0

2ω0

cosω0t

+F0t

2
sinω0t

At t = 0, 0 = θ
.
(0) = 0+ c2ω0 − F0

2ω0
+ 0

... c2 = F0

2ω02

The required solution is θ (t) = F0

2ω2
0

sinω0t −
F0t

2ω0
cosω0t .

θ (t) = F0

2ω2
0

(sinω0t − tω0 · cosω0t)

EXERCISE

1. Determine the change in gravity g in order to

correct a clockwith a seconds pendulumwhich

is losing 10 seconds/day at a place where g =
32 ft/sec2.

Ans. g must be increased by 0.0074 ft/sec2

Hint: dn
n
=  

86400−10
86400

 = dg

2g
or dg

=  
1− 1

4320

 
32 = 31.9925

2. Compare the acceleration due to gravity at

two places if a seconds pendulum gains 10

seconds/day at one place and looses 10 sec-

onds/day at another place.

Ans. 4321/4319

3. If the length of a pendulum is increased in the

ratio 900:901, determine how many seconds a

clock would lose/day.

Ans. Clock loses 48 seconds/day

Hint: L+dL
dL

= 901
900

, dn
n
= −dl

2l
= −1

1800
, dn =

−86400
1800

= −48

4. If a simple undamped linearized undriven pen-

dulum is 8 feet long and swings with an ampli-

tude of 1 rad, compute (a) The angular velocity

of the pendulum at its lowest point (b) its ac-

celeration at the ends of its paths.

Ans. ± 2 rad/sec (b) ± 4 rad sec2



Chapter10

Series Solutions

INTRODUCTION

In the earlier Chapter 9, methods of obtaining so-

lutions to second and higher order linear non-

homogeneous differential equations with constant

coefficients were studied.

Euler-Cauchy and Legendre equations, two spe-

cial cases of differential equations with variable co-

efficients were also considered earlier, in 9.5.

In general, the solutions to differential equations

with variable coefficients such as Bessel’s equation,

Legendre’s equation and hypergeometric equation

can not be expressed as finite linear combination

of known elementary functions. However in such

cases solutions can be obtained in the form of infi-

nite power series. In this chapter, twomethods power

series method and an extension of the power series

method the Frobenius∗ method (generalized power

seriesmethod) are considered for solving differential

equations with variable coefficients.

We consider the important concept of orthoganal-

ity and the process of Gram-Schmidt orthogonaliza-

tion. Finally we also study the Sturm-Liouville prob-

lems.

10.1 CLASSIFICATION OF SINGULARITIES

Consider a homogeneous linear second order differ-

ential equation with variable coefficients:

∗Ferdinand Georgy Frobenius (1849-1917) German mathemati-
cian.

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (1)

Assuminga0(x)  = 0, the above equation iswritten

in the standard (normalized) form as

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = 0 (2)

where P (x) = a1(x)

a0(x)
andQ(x) = a2(x)

a0(x)

Analytic

A function f (x) is said to be analytic at x0 if f (x)

has Taylor’s series expansion about x0 given by
∞ 
n=0

f (n)(x0)

n!
(x − x0)

n

exists and converges to f (x) for all x in some open

interval including x0.

If a function f (x) is not analytic at x0 then it is

said to be singular at x0.

Regular or Ordinary Point (O.P.)

A point x0 is said to be a regular or ordinary point of

the differential equation (2), equivalently (1), if both

P (x) andQ(x) are analytic at x0.

Singular Point

A point x0 is said to be a singular point of (2) if either

of P (x) orQ(x) or both are not analytic at x0.

Singular points are classified as regular singular

point and irregular point as follows:

10.1
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Regular Singular Point (RSP)

A singular point x0 of differential equation (2) is

called a regular singular point if both (x − x0)P (x)

and (x − x0)
2 Q(x) are analytic at x0. On the other

hand, if either (x − x0)P (x) or (x − x0)
2Q(x) or

both are not analytic at x0, then x0 is called an ir-

regular singular point (ISP).

WORKED OUT EXAMPLES

Example 1: y   + (x2 + 1)y  + (x3 + 2x2 + 3x)y

= 0. Since P (x) = x2 + 1 andQ(x) = x3 + 2x2 +
3x are polynomials, are both analytic everywhere,

any point x is an ordinary or regular point of the

given differential equation.

Example 2: (1− x2)y   + 2y  − 3y = 0. Standard

form: y   + 2

1−x2 y
 − 3

1−x2 y = 0. Since both P (x) =
2

1−x2 . andQ = − 3

1−x2 are not analytic at x = ±1, the

given DE has two singular points at x = +1 and x =
−1. Further since (x − 1)P (x) = (x − 1) · 2

(1−x2) =
2

1+x is analytic at x = 1 and (x − 1)2Q(x) = (x −
1)2 · (−3)

(1−x2) = + 3(x−1)

(x+1)
is analytic at x = 1.

Therefore x = 1 is a regular singular point. Sim-

ilarly since both (x + 1)P (x) and (x + 1)2Q(x) are

analytic at x = −1, the point x = −1 is also a regular

singular point

Example 3: x3(x − 1)y   + 2(x − 1)y  + 5xy =
0 Here P (x) = 2(x−1)

x3(x−1)
= 2

x3
and Q(x) = 5

x2(x−1)
.

x = 0 and x = 1 are singular points. Further x = 0 is

an irregular singular point since x · P (x) = 2·(x−1)

x2(x−1)

is not analytic (although x2Q(x) = 5
x−1

is analytic at

x = 0). (Notebothmust be analytic).Howeverx = 1

is a regular singular point since both (x − 1)P (x) =
2(x−1)

x3
and (x − 1)2Q(x) = 5(x−1)

x2
are analytic at

x = 1.

EXERCISE

Locate and classify the ordinary points (OP), regu-

lar singular point (RSP) and irregular singular point

(ISP) of the following differential equations

1. x2(x2 − 4)y   + 2x3y  + 3y = 0

Ans. x = 0, ±2 are regular singular points (R.S.P.)

No I.S.P. All points, except x = 0,±2 are

O.P.’s.

2. (x2 + 1)(x − 4)3y   + (x − 4)2y  + y  = 0

Ans. x = ± i are RSP, x = 4 is ISP. All other points

are O.P.’s

3. exy   + 2y  − xy = 0

Ans. No singular points. Any point is a OP

4. x2y   + y  + y = 0

Ans. x = 0 is I.S.P.

5. x(x − 1)3y   + 2(x − 1)3 + 3y = 0

Ans. Except x = 0, x = 1, all other points are OP

x = 0 is RSP, x = 1 is ISP

6. y  + (x3 + x2 + 1)y  − 3(x2 − 4x − 2)y =
0

Ans. No singular points. Any point is OP

7. (x − 1)xy   + x2y  + y = 0

Ans. x = 0, 1 are S.P. all other points are O.P.s

x = 0 is RSP, x = 1 is also RSP.

8. x2(x − 2)y   + 2(x − 2)y  + (x + 1)y = 0

Ans. x = 0, 2 are S.P., x = 0 is ISP, x = 2 is RSP,

all other points O.P.

9. x(x − 1)2(x + 2)y   + x2y  − (x3 + 2x − 1)y

= 0

Ans. x = 0, RSP, x = 1 is ISP, x = −2 is RSP. All

other points O.P.

10. x4(x2 + 1)(x − 1)2y   + 4x3(x − 1)y  + (x +
1)y = 0

Ans. x = ±i, 1 are RSP; x = 0 is ISP.

11. (x4 − 2x3 + x2)y   + 2(x − 1)y  + x2y = 0

Ans. x = 1 is RSP, x = 0 is ISP

10.2 POWER SERIES SOLUTION

An expression of the form c0 + c1(x − x0)+ c2(x −
x0)

2 + · · · + cn(x − x0)
n + · · ·

or in the summation form

∞ 
n=0

cn(x − x0)
n (3)
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is known as a power series of the variable x in powers

of (x − x0) (or about the point x0). The constants c0,

c1, c2, · · · cn · · · are known as the coefficients and x0
is known as the centre (of expansion) of the power

series (1). Since n takes only positive integral val-

ues, the power series (1) does not contain negative or

fractional powers. So power series (1) contains only

positive powers.

Theorem: If x0 is a regular (or ordinary) point

of differential equation (2), then a general solution

of (2) is obtained as a linear combination of two

linearly independent power series solutions of the

form
∞ 
n=0

cn(x − x0)
n (3)

and these power series both converge in some inter-

val |x − x0 | < R (with R > 0).

Power Series Method:

Step I: Assume that y =
∞ 
n=0

cn(x − x0)
n (4)

be the solution (2).

Step II: Substitute, y, y  , y   obtained by differenti-

ating (4) termwise, in (2). Collect the coefficients of

like powers of (x − x0). This converts the differential

equation (2) into the form

k0 + k1(x − x0)+ k2(x − x0)
2 + · · · = 0 (5)

Here ki(i = 0, 1, 2, 3, . . .) are functions of certain

coefficients cn.

Step III: If (4) is solution of (2), all k i s must be zero.

Solve k0 = 0, k1 = 0, k2 = 0 . . . for the unknown

coefficients c ns.
Generally this leads to a recurrence relation be-

tween c ns, which helps to determine unknown coef-

ficients in terms of the other known coefficients.

Thus c ns are determined by equating to zero each

power of (x − x0) in (5).

Step IV: Substitution of these c ns in (4) gives the

required power series solution of (2).

WORKED OUT EXAMPLES

Example 1: Find a power series solution in powers

of x of the differential equation

x(x + 1)y  − (2x + 1)y = 0

Solution: Assume that y =
∞ 
n=0

cnx
n is a power se-

ries solution in power of x (i.e., about x0 = 0). Dif-

ferentiating y w.r.t. x we get.

y  =
∞ 
n=0

ncnx
n−1

Substituting y and y  in the given equation, we get

x(x + 1)

∞ 
n=0

ncnx
n−1 − (2x + 1)

∞ 
n=0

cnx
n = 0.

∞ 
n=0

ncnx
n+1 +

∞ 
n=0

ncnx
n − 2 ·

∞ 
n=0

cnx
n+1−

−
∞ 
n=0

cnx
n = 0.

or

∞ 
n=0

(n− 2)cnx
n+1 +

∞ 
n=0

(n− 1)cnx
n = 0

Rewrite the first summation in the LHS so that

x in each of the summations in LHS will have

the common exponent n. Put n+ 1 = m, then
∞ 
m=1

(m− 3)cm−1x
m, since n = m− 1. But m is a

dummyvariable. So the first summationmay bewrit-

ten as
∞ 
n=1

(n− 3)cn−1x
n. Thus the given D.E. takes

the form

∞ 
n=1

(n− 3)cn−1x
n +

∞ 
n=0

(n− 1)cnx
n = 0

Although x has the same exponent in the two sum-

mations, the range of the summations are different.

The common range is from 1 to ∞. Expanding the

second summation for n = 0 (that do not belong to

the common range 1 to∞) we can rewrite the above

equation as

∞ 
n=1

 
(n− 3)cn−1 + (n− 1)cn

 
xn − c0 · x0 = 0

Equating to zero, the coefficients of xn: n = 0 : x0:

coefficient of x0 is c0 equated to zero. Thus c0 = 0.

n ≥ 1 : xn : (n− 3)cn−1 + (n− 1)cn = 0
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or (n− 1)cn = −(n− 3)cn−1 for n ≥ 1

For n = 1, 0 · c1 = 2c0 = 2 · 0 = 0.

Thus c1 is arbitrary (can take any value).

For n = 2, c2 = c1
For n = 3, 2c3 = 0 ... c3 = 0

For n > 3, cn = 0 because of the presence of the

factor (n− 3).

For example n = 4, 3c4 = −4c3 = 0 since c3 = 0.

For n = 5, 4c5 = −2c4 = 0 since c4 = 0 and so on.

Thus c0 = 0, c1 = c2 and cn = 0 for n ≥ 3. Then

the power series solution reduces to the form y =
c1x + c2x

2 = c1(x + x2)

since c1 = c2.

Example 2: Using power series method solve

(1− x2)y   − 2xy  + 2y = 0 (which is a particular

case of Legendre’s equation with n = 1).

Solution: Assume y =
∞ 
n=0

cnx
n. Differentiating,

y  =
∞ 
n=0

ncnx
n−1, y   =

∞ 
n=0

n(n− 1)cnx
n−2. Substi-

tuting in the given equation

(1− x2)

∞ 
n=0

n(n− 1)cnx
n−2 − 2x

∞ 
n=0

ncnx
n−1+

+ 2
 

cnx
n = 0

or
∞ 
n=2

n(n− 1)cnx
n−2 −

∞ 
n=0

[n(n− 1)

+ 2n− 2]cnx
n = 0

since for n = 0 and n = 1 the first two terms in the

first summation vanish.

Put m = n− 2 so that the first summation can be

written as

∞ 
n=0

(n+ 2)(n+ 1)cn+2x
n −

∞ 
n=0

(n2 + n− 2)cnx
n

= 0

Equating to zero the coefficient of xn,

(n+ 2)(n+ 1)cn+2 = (n+ 2)(n− 1)cn

or (n+ 1)cn+2 = (n− 1)cn.

For n = 0, c2 = −c0

For n = 1, 2c3 = 0 · c1 (because of the presence of
the factor (n− 1). So c1 is arbitrary and all the co-

efficients with odd suffix will be zero i.e. c3 = c5 =
c7 = c9 = · · · = 0 (because 4c5 = 2c3 = 0 etc.).

For even suffix coefficients

c2m+2 =
(2m− 1)

(2m+ 1)
c2m for m = 0, 1, 2, . . .

Form = 0, c2 = −c0, form = 1, c4 = 1
3
c2 = − 1

3
c0,

for m = 2, c6 = 3
5
c4 = 3

5
·  − 1

3

 
c0 = − 1

5
c0 etc.

Thus the required power series solution involving

two arbitrary constants is

y = c0 + c1x + c2x
2 + 0+ c4x

4 + 0+ c6x
6 + 0

+ c8x
8 + · · ·

y = c1x + c0

 
1− x2 − 1

3
x4 − 1

5
x6 − 1

7
x8 · · ·

 

Note: Except x ± 1, all other points are regular

points of the given DE.

Example 3: Solve the initial value problem xy   +
y  + 2y = 0 with y(1) = 2, y  (1) = 4.

Solution: Since the initial conditions are prescribed

at x = 1, we obtain a power series solution in powers

of (x − 1) of the form

y =
∞ 
n=0

cn(x − 1)n

The procedure is simplified by introducing t=x−1.

In this case the initial value problem transforms to

solution of the differential equation

(t + 1)
d2y

dt2
+ dy

dt
+ 2y = 0 (1)

with y(t = 0) = 2 and y  (t = 0) = 4. So assume the

power series solution of the form

y(t) =
∞ 
n=0

cnt
n (2)

Substituting (2) in (1), we get

(t + 1)

∞ 
n=2

n(n− 1)cnt
n−2 +

∞ 
n=1

ncnt
n−1
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+ 2 ·
∞ 
n=0

cnt
n = 0.

∞ 
n=2

n(n− 1)cnt
n−1 +

∞ 
2

n(n− 1)cnt
n−2

+
∞ 
1

ncnt
n−1 + 2

∞ 
0

cnt
n = 0

To have a common exponent n for t put n− 1 =
m in first summation, put n− 2 = m in second and

put n− 1 = m in third summation. Then the above

equation takes the form

∞ 
n=1

(n+ 1)ncn+1t
n +

∞ 
n=0

(n+ 2)(n+ 1)cn+2t
n

+
∞ 
n=0

(n+ 1)cn+1t
n + 2

∞ 
n=0

cnt
n = 0

Thus the recurrence relation is obtained by equating

to zero the coefficient of tn as

(n+ 1)2cn+1 + (n+ 1)(n+ 2)cn+2 + 2cn = 0

For n ≥ 0. Solving

cn+2 =
−[2cn + (n+ 1)2cn+1]

(n+ 1)(n+ 2)
, for n ≥ 0

For n = 0, c2 =
−[2c0 + c1]

2

For n = 1, c3 =
−[2c1 + 4c2]

6
= 2

3
c0

For n = 2, c4 =
−[2c2 + 9c3]

12

For n = 3, c5 =
−[2c3 + 16c4]

20
etc.

Substituting these coefficients c ns in (2), we get

y(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5 + · · ·
(3)

Using the initial condition y(t = 0) = 2, we have

2 = y(0) = c0. ... c0 = 2.

Differentiating (3) w.r.t. ‘t’, we get

y  (t) = c1 + 2c2t + 3c3t
2 + · · ·

Using the second initial condition y  (t = 0) = 4, we

get

4 = y  (0) = c1 ... c1 = 4

with c0 = 2, c1 = 4, we get c2 = −4, c3 = 4
3
, c4 =

− 1
3
, c5 = −2

15
etc. Substituting these values

y(t) = 2+ 4t − 4t2 + 4

3
t3 − 1

3
t4 + 2

15
t5 + · · ·

Replacing t by x − 1, we get the required power se-

ries solution in powers of (x − 1) as

y(x) = 2+ 4(x − 1)− 4(x − 1)2 + 4

3
(x − 1)3−

−1

3
(x − 1)4 + 2

15
(x − 1)5 + · · ·

EXERCISE

Obtain power series solution in powers of x for the

following differential equations (1 to 9)

1. y  = ky

Ans. y = c0e
kx

Hint: Recurrence relation (RR): cn = kn

n!
c0

2. (1− x2)y  − y = 0

Ans. y = c0

 
1+ x + x2

2
+ x3

2
+ 3

8
x4

+ 11
40
x5 + · · · 

Hint: RR: cn+1 =
(n− 1)cn−1 + cn

n+ 1
for n ≥

1, c1 = c0

3. xy  − (x + 2)y − 2x2 − 2x = 0

Ans. y = 2x + c2x
2ex

Hint:RR: cn =
cn−1

n− 2
for n > 2, c0 = 0, c1 =

2, c2 arbitrary constant.

4. y  − 2xy = 0

Ans. y = c0e
x2

Hint: c1 = c3 = c5 = · · · = 0, c2 = c0, c4 =
c2

2
, c6 =

c0

3!
etc.
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5. y   − 3y  + 2y = 0

Ans. y = c0 + c1x +  
3
2
c1 − c0

 
x2 + 

7
6
c1 − c0

 
x3 + · · ·

put c0 = A+ B, c1 = A+ 2B, then y =
Aex + Be2x

Hint: RR: cm+2 = 3(m+1)cm+1−2cm
(m+1)(m+2)

, m ≥ 0

6. y   − xy  + y = 0

Ans. y = c1x + c0

 
1− 1

2!
x2 − 1

4!
x4 − 3

6!
x6

−3 · 5
8!

x8 + · · ·
 

Hint: c1 arbitrary, c3 = c5 = c7 = · · · = 0.

RR: c2m+2 =
(2m− 1)

2(m+ 1)(2m+ 1)
c2m, for m =

0, 1, 2, · · ·
7. y   + y = 0

Ans. y = c0 cos x + c1 sin x

8. y   + xy  + (x2 + 2)y = 0

Ans. y = c0

 
1− x2 + 1

4
x4 + · · ·

 
+

c1

 
x − 1

2
x3 + 3

40
x5 + · · ·

 

Hint:RR: cn+2 = − (n+2)cn+cn−2

(n+1)(n+2)
for n≥2,

c2 = −c0, c3 = −1

2
c1, c0c1 arbitrary

9. (x2 − 1)y   + 3xy  + xy = 0, y(0) = 4,

y  (0) = 6

Ans. y = 4+ 6x + 11
3
x3 + 1

2
x4 + 11

4
x5 + · · ·

Hint: y = c0
 
1+ 1

6
x3 + 1

8
x5 + · · · +

+ c1
 
x + 1

2
x3 + 1

12
x4 + 3

8
x5 + · · · 

RR: cn+2 =
n(n+ 2)cn + cn−1

(n+ 1)(n+ 2)
for n ≥ 2,

c2 = 0, c1, c0 arbitrary.

10. Solve y   = y in power series in power of (x −
1).

Ans. y = c0 cosh(x − 1)+ c1 sinh(x − 1).

Hint: cn+2 =
cn

(n+ 1)(n+ 2)
, c0c1 arbitrary.

Putx − 1 = t ,y = c0
 
1+ 1

2!
t2 + 1

4!
t4 + · · · 

+ c1

 
t + t3

3!
+ t5

5!
+ · · ·

 

11. Obtain power series solution about x = 1 for

equation y   + (x − 1)2y  − 4(x − 1)y = 0.

Ans. y = c0
∞ 
n=0

4(−1)n(x−1)3n

3n(3n−1)(3n−4)n!
+ c1(x − 1)

+ 1
4
(x − 1)4c1.

Hint: c0, c1 arbitrary,

c3k = (−1)k [(−4)(−1)(2)···(3k−1)

(3·6·9···3k)(2·5·8···(3k−1))
c0

12. Determine power series solution with centre at

x = −3 for y   − 2(x + 3)y  − 3y = 0

Ans. y = c0

 
1+

∞ 
n=1

3·7·11···(4n−1)

(2n)!
(x + 3)2n

 

+c1
 
(x + 3)+

∞ 
1

5·9·13···(4n+1)

(2n+1)!
(x + 3)2n+1

 
13. Solve y   +xy=0 in power series about x = 0.

Ans. y = c0

 
1− x3

3!
+ 4x6

6!
− 2·8

7!
x9 · · ·

 
+ c1

 
x − 2x4

4!
+ 10x7

7!
+ · · ·

 
Hint: RR: cn+2 = −cn−1

(n+2)(n+1)
, c2 = 0

14. Solve the initial value problem (x − 1)y   +
xy  + y = 0, y(0) = 2, y  (0) = −1

Ans. y = 2− x + x2 + x4

4
+ 3x5

20

Hint:y = c0

 
1+ x2

2
+ x3

6
+ 5x4

24
+ 19x5

120
+ · · ·

 
+ c1

 
x + x3

3
+ x4

6
+ x5

6
+ · · ·

 
c2 = c0

2
, RR: cn = (n−2)cn−1+cn−2

n
for n ≥ 3, c0

arbitrary.

15. Solve the initial value problem (x − 1)y   +
y  + 2(x − 1)y = 0, y(4) = 5, y  (4) = 0.

Ans. y(x) = 5
 
1− (x − 4)2 + 1

9
(x − 4)3

+ 5
36
(x − 4)4 + · · · 

Hint: y(x) = c0
 
1− (x − 4)2 + 1

9
(x − 4)3

+ 5
36
(x − 4)3 + · · · + c1 [(x − 4)

− 1

6
(x − 4)2 − 8

27
(x − 4)3 + 5

108
(x − 4)4 + · · ·

 

RR: cn+2 = − n+1
3(n+2)

cn+1 − 2
(n+1)(n+2)

cn

− 2cn−1

3(n+2)(n+1)
for n = 0, 1, 2 . . .. Here c0, c1

are arbitrary.
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10.3 FROBENIUS METHOD

In 10.2 a power series solution
∞ 
n=0

cn(x − x0)
n was

obtained for differential equation only when x0 is

an ordinary (or regular) point. Solution near regular

singular point x0 can be obtained by an extension of

the power series method known asFrobenius method

(or generalized power series method). In this method

we consider a series of the form

|x − x0|r
∞ 
n=0

cn(x − x0)
n (1)

known as Frobenius series. Here r is an unknown

(real or complex) constant to be determined.

Theorem: Let x0 be a regular singular point of

the differential equation

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = 0 (2)

Then (2) has at least one nontrivial solution of the

form

y = |x − x0|r
∞ 
n=0

cn(x − x0)
n (3)

which is convergent (valid) in some deleted interval

about x0, 0 < |x − x0| < R (with R > 0).

Note: In the following analysis, for simplicity, we

consider the interval as 0 < (x − x0) < R. Solutions

valid in the interval −R < (x − x0) < 0, can be ob-

tained simply by replacing (x − x0) by −(x − x0).

Frobenius Method

Step I. Assume a solution of the form

y = (x x0)
r

∞ 
n=0

cn(x − x0)
n (4)

for the differential equation (2) with x0 as a regular

singular point. The series (4) is valid in 0 < x − x0 <

R. Here the exponent r is chosen so that c0  = O,

which simply means that the highest possible power

of x is factored out.

Step II. Differentiate (4) obtaining

dy

dx
=

∞ 
n=0

(n+ r)cn(x − x0)
n+r−1 (5)

and

d2y

dx2
=

∞ 
n=0

(n+ r)(n+ r − 1)cn(x − x0)
n+r−2

(6)

Substitute (4), (5), (6) is the differential equation (2).

Collecting the coefficients of like powers of (x − x0),

equation (2) takes the form

K0(x − x0)
r+k +K1(x − x0)

r+k+1

+ K2(x − x0)
r+k+2 + · · · = 0

Here the coefficients Ki , for i = 0, 1, 2, . . ., are

functions of the exponent r and the constant coeffi-

cients cn. Also k is an integer.

Step III. Since (4) is assumed to be the solution of

(2), we must have

K0 = K1 = K2 = · · · = 0

Here K0 is the coefficient of the lowest power r +
k of (x − x0). The equation K0 = 0 is a quadratic

equation in r , known as the indicial equation of the

differential equation (2). The roots r1 and r2 of the

indicial equation are known as the exponents of (2)

and are the only possible values for the constant r

in the assumed solution (4). Generally r1 is taken as

the larger root so that r1 > r2 (or Re(r1) > Re(R2)

in the case of complex conjugate roots).

Step IV. Now that r is known, solving the equations

K1 = 0, K2 = 0, K3 = 0 . . ., we determine com-

pletely the unknown constant coefficients cn’s.

Step V. Let y1(x) and y2(x) be the two nontriv-

ial linearly independent solutions of the differen-

tial equation (2). Then the general solution of (2)

is y(x) = Ay1(x)+ By2(x), where A and B are ar-

bitrary constants. Then with the known exponent r

and the known coefficients cn’s, y1(x), one of the

two solution of (2) is of the form (4). The form of the

second (other) solution y2(x) may be similar to (4)

(with different r and different coefficients) or may

contain a logarithmic term. The form of y2(x) will
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be indicated by the indicial equation. There are three

cases:

Case 1. Distinct roots not differing by an

integer 1, 2, 3, . . .

Suppose r1 − r2  = N , whereN is a non-negative in-

teger (i.e. r1 − r2  = 0, 1, 2, 3, . . .). Then

y1(x) = |x − x0|r1
∞ 
n=0

cn(x − x0)
n (7)

and y2(x) = |x − x0|r2
∞ 
n=0

bn(x − x0)
n (8)

Here c0  = 0, b0  = 0.

Case 2. Roots differing by an

integer 1, 2, 3, . . .

Suppose r1 − r2 = N where N is a positive integer.

Then

y1(x) = |x − x0|r1
∞ 
n=0

cn(x − x0)
n (7)

and

y2(x) = |x − x0|r2
∞ 
n=0

bn(x − x0)
n+

+ A∗y1(x)ln |x − x0| (9)

Here c0  = 0, b0  = 0 and the constantA∗ may or may

not be zero.

Case 3. Double root: r1 = r2

Suppose r1 − r2 = 0. Then

y1(x) = |x − x0|r1
∞ 
n=0

cn(x − x0)
n (7)

with c0  = 0 and

y2(x) = |x − x0|r1+1

∞ 
n=0

bn(x − x0)
n+

+ y1(x) ln |x − x0| (10)

Note 1: Series solutions in (7), (8), (9), (10) are con-

vergent in some deleted interval 0 < |x − x0| < R.

Note 2: If r1 − r2 = N , where N = 1, 2, 3, · · ·
sometimes it is possible to obtain the general solu-

tion using the smaller root alone, without bothering

to find explicitly the solution corresponding to the

larger root.

Note 3: In case 2, r1 − r2 = N where N =
1, 2, 3, . . ., the second solution y2(x) may ormay not

contain the logarithmic term A∗y1(x) ln |x − x0|. In
some cases A∗ is zero, so y2 is same as (8).

Note 4: In case 3, r1 − r2 = 0 (double root), y2(x)

always contain the logarithmic term y1(x) ln |x − x0|
and is never of the simple form (8).

Note 5: In case 2: roots differing by an integer in

the logarithmic case, take the first solution y1(x, r),

then the second solution is
∂y1(x,r)

∂r
i.e., derivative of

y1(x, r) partially w.r.t. the exponent r . Then taking r

as the smaller root r2, we get the two linearly inde-

pendent solutions y1(x, r2) and
∂y1
∂r
(x, r2). Here the

second solution y2 contains the logarithmic term.

Note 6: In both cases 2 and 3, the second solu-

tion containing logarithmic term can be obtained by

reduction of order.

WORKED OUT EXAMPLES

Case 1. Roots not differening by an integer

Example 1: Find the general solution of

8x2y   + 10xy  − (1+ x)y = 0

Solution: The given equation in the standard form

y   + 10

8x
y  − (1+ x)

8x2
y = 0

So x = 0 is a regular singular point since xP (x) =
x 10
8x

= 10
8

and x2Q(x) = x2
(1+x)
8x2

= (1+x)
8

are both

analytic at the point x = 0. To obtain the solutions

about a regular singular point x0 = 0 we use the

Frobenius method. Assume the solution of the given

DE as

y = (x − 0)r
∞ 
n=0

cnx
n =

∞ 
n=0

cnx
n+r
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Differentiating y w.r.t. x twice, we get

y  =
∞ 
n=0

(n+ r)cnx
n+r−1

and

y   =
∞ 
n=0

(n+ r)(n+ r − 1)cnx
n+r−2

Substituting y, y  , y   in the given DE:

8x2
∞ 
0

(n+ r)(n+ r − 1)cnx
n+r−2

+ 10x

∞ 
0

(n+ r)cnx
n+r−1

− (1+ x)

∞ 
0

cnx
n+r = 0

or∞ 
n=0

[8(n+ r)(n+ r − 1)+ 10(n+ r)− 1]cnx
n+r

−
∞ 
n=0

cnx
n+r+1 = 0

Equating to zero the coefficient of lowest power

n+ r of x i.e. 0+ r of x or xr , we get

[8(0+ r)(0+ r − 1)+ 10(0+ r)− 1]c0 = 0

Since it is assumed that c0  = 0

8r2 + 2r − 1 = 0

which is the required indicial equation with roots

r12 = −2±6
16

or r1 = 1
4
and r2 = − 1

2
. Here r1, r2

are real, distinct and r1 − r2 = 1
4
−  − 1

2

 = 3
4
 = N

where N is an integer 0, 1, 2, 3, . . .. The present

problem is case 1. To obtain the recurrence relation

the last summation in above equation is rewritten.

Then 
{8(n+ r)(n+ r − 1)+ 10(n+ r)− 1]cn

−cn−1}xn+r = 0

Thus the recurrence relation is

[8(n+ r)2 + 2(n+ r)− 1]cn = cn−1

To obtain y1(x), put r = 1
4
. Then the recurrence re-

lation reduces to 
8

 
n+ 1

4

 2

+ 2

 
n+ 1

4

 
− 1

 
cn = cn−1

or cn =
1

2n(4n+ 3)
cn−1

For n = 1, c1 = 1
2·1·(7) · c0

n = 2, c2 = 1
2·2·(11)c1

n = 3, c3 = 1
2·3·(15)c2

n = n− 1, cn−1 = 1
2(n−1)(4n−1)

cn−2

n = n, cn = 1
2n(4n+3)

cn−1

Then multiplying these, we can express cn in terms

of c0:

c1 · c2 · c2 . . . cn−1 · cn = c0
2·1·7 ·

c1
2·2·11 ·

c2
2·3·15 . . .×

× . . .
cn−2

2(n−1)(4n−1)
· cn−1

2n(4n+3)

Thus cn = c0
2n·n!7·11·15...(4n−1)(4n+3)

Hence the first solution

y1(x) =
∞ 
n=0

cnx
n+ 1

4 = c0x
1
4 +

∞ 
n=1

cnx
n+ 1

4

y1(x)=c0x1/4+c0
∞ 
n=1

xn+
1
4

2n ·n!7·11 . . . (4n−1)(4n+3)

Generally, c0 is assumed to be equal to 1. In a similar

way, to obtain the second solution y2(x), put r = − 1
2

in the recurrence relation which then reduces to

cn =
cn−1

2n(4n− 3)

Then c1 · c2 · c3 . . . cn−1 · cn = c0
2·1 ·

c1
4·5×

× · c2
6·9 . . .

cn−2

(2n−2)(4n−7)
· cn−1

2n(4n−3)

cn =
 
1
2
· 1
4
· 1
6
. . . 1

2(n−1)
· 1
2n

  
1
1
1
5
1
9
. . . 1

4n−7
1

4n−3

 
c0

cn =
1

2n · n!
c0

1 · 5 · 9 . . . (4n− 3)

Choose c0 = 1. Then

y2(x) =
∞ 
n=0

cnx
n− 1

2 = c0x
− 1

2+
∞ 
n=1

cnx
n− 1

2

y2(x) = x−
1
2 +

∞ 
n=1

xn−
1
2

2n · n!1 · 5 · 9 . . . (4n− 3)
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The required general solution is

y(x) = Ay1(x)+ By2(x)

Case 2: Roots differing by an integer: Non-

logarithmic case

Example 2: Using method of Frobenius, obtain

series solution in power of x for x(1+ x)y   + (x +
5)y  − 4y = 0

Solution: Here x = 0 is a regular singular point

of the given differential equation (DE). Assume the

solution in the form

y =
∞ 
r=0

cnx
n+r

Substituting y, y  and y   in DE, we get

x(1+ x)
∞ 
0

(n+ r)(n+ r − 1)cnx
n+r−2

+ (x + 5)
∞ 
0

(n+ r)cnx
n+r−1 − 4

 
cnx

n+r = 0

or
∞ 
0

(n+ r)(n+ r − 1)cnx
n+r−1+

+
∞ 
0

(n+ r)(n+ r − 1)cnx
n+r +

∞ 
0

(n+ r)cnx
n+r+

+ 5
 

(n+ r)cnx
n+r−1 − 4

∞ 
0

cnx
n+r = 0

The indicial equation is obtained by equating to zero

the coefficient of lowest power r − 1 of x namely

(from first and fourth summations.

r(r − 1)+ 5r = 0 or r(r + 4) = 0 i.e., r = 0,−4

The roots r1 = 0 and r2 = −4 are real, distinct and

differ by an integer ie, r1 − r2 = 0− (−4) = 4. To

obtain the recurrence relation, the indices in the sec-

ond, third and fifth summations are shifted to n− 1

so we get

∞ 
0

[(n+ r)(n+ r − 1)+ 5(n+ r)]cnx
n+r−1+

+
∞ 
n=1

[(n− 1+ r)(n+ r − 2)+

(n+ r − 1)− 4]cn−1 · xn+r−1 = 0

The required recurrence relation is [(n+ r)(n+ r −
1)+ 5(n+ r)]cn +[(n+ r − 1)(n+ r − 2)+ (n+
r − 1)− 4]cn−1 = 0 valid for n ≥ 1.

Start with the smaller root r2 = −4 (with a hope

that (!) both the two linearly independent solutions

y1(x) and y2(x) are obtained in this case itself).

With r = −4, the recurrence relation reduces to

[(n− 4)(n− 5)+ 5(n− 4)]cn +[(n− 5)(n− 6)+
(n− 5)− 4]cn−1 = 0

or n(n− 4)cn = −(n− 7)(n− 3)cn−1 for n ≥ 1.

Now, for n = 1, c1 = − (−6)(−2)

1·(−3)
c0 = 4c0

For n = 2, c2 = − (−5)(−1)

2(−2)
c1 = 5

4
c1 = 5c0

For n = 3, c3 = 0 because of the presence of (n− 3)

factor in the recurrence relation.

For n = 4,

4 · 0 · c4 = −(−3)(4− 3)c3 = 0

Therefore c4 is arbitrary since for any c4 the above

equation is satisfied.

For n = 5, c5 = 4
5
c4

For n = 6, c6 = 1
5
c4

For n = 7, c7 = 0 · c6 = 0 (because of (n− 7))

Therefore cn = 0 for n ≥ 7 (since c7 = 0) i.e.,

c8, c9, c10, c11 . . . are all zero.

Thus we had two arbitrary constant’s c0 and c4. The

solution is

y2(x) =
∞ 
n=0

c0x
n+r =

∞ 
n=0

c0x
n−4

Substituting the coefficients c1 = 4c0, c2 = 5c0,

c3 = 0, c5 = 4
5
c4, c6 = 1

5
c4, c7 = c8 = c9 = . . . = 0

we get

y2(x)= c0x
−4 + c1x

−3 + c2x
−2 + c3x

−1 + c4 +
c5x + c6x

2 + c7x
3 + c8x

4 + c9x
5 + . . .

y2(x)= c0(x
−4 + 4x−3 + 5x−2)

+ c4

 
1+ 4

5
x + 1

5
x2
 

or y2(x) = c0x
−4(1+ 4x + 5x2)+

c4x
0
 
1+ 4

5
x + 1

5
x2
 

Indeed y2(x) itself is the required general solution

containing two arbitrary constants c0 and c4.

Verification:Supposewe investigate the solution for

the larger root r1 = 0. Then the recurrence relation

becomes

cn =
−(n− 3)(n+ 1)

n(n+ 4)
cn−1 for n ≥ 1
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Now for n = 1, c1 = 4
5
c0

for n = 2, c2 = 1
4
c1 = 1

5
c0

for n = 3, c3 = 0

for n > 3, cn = 0 i.e., c4 = c5 = c6 = . . . = 0

Then the solution corresponding to the larger indicial

root r1 = 0 is

y1(x) =
∞ 
n=0

cnx
n+r =

∞ 
n=0

cnx
n

= c0 + c1x + c2x
2 + c3x

3 + c4x
4 + . . .

= c0 +
4

5
c0x + 1

5
c0x

2 + 0+ 0+ 0+ . . .

y1(x) = c0

 
1+ 4

5
x + 1

5
x2
 

This solution y1(x) is already contained in (a part of)

the solution y2(x) (see note 2 on page 10.8).

Case 3: Roots differing by an integer: Logarith-

mic case

Example 3: Determine two linearly independent

solutions about x = 0 for

4x2y   + 2x(2− x)y  − (1+ 3x)y = 0

Solution: x = 0 is a regular singular point. Assume

y =
∞ 
n=0

cnx
n+r to be the series solution. Substituting

y, y  , y   the equation becomes

4

∞ 
0

(n+ r)(n+ r − 1)cnx
n+r+4

∞ 
0

(n+ r)cnx
n+r

− 2

∞ 
0

(n+ r)cnx
n+r+1 −

∞ 
0

cnx
n+r−

− 3

∞ 
0

cnx
n+r+1 = 0

Equating to zero the coefficient of the lowest power

xr (from 1st, 2nd, 4th summations), we get

4(r)(r − 1)+ 4(r)− 1 = 0

4r2 − 1
2
= 0 or r = + 1

2
, − 1

2

Here r1 = 1
2
, r2 = − 1

2
so r1 − r2 = 1

2
−  − 1

2

 = 1.

Thus the difference is a non-zero positive integer.

From the larger root r1 = 1
2
, only one solution can

be obtained. From the smaller root, r2 = − 1
2
, two

solutions can be obtained. Rewriting

∞ 
0

[4(n+ r)(n+ r − 1)+ 4(n+ r)− 1]cnx
n+r−

−
∞ 
1

[2(n+ r − 1)+ 3]cn−1x
n+r = 0

The indicial equation is

[4(n+ r)2 − 1]cn = [2(n+ r)+ 1]cn−1

or cn =
cn−1

2r + 2n− 1
for n ≥ 1

Now for n = 1, c1 = c0
2r+1

n = 2, c2 = c1
2r+3

n = 3, c3 = c2
2r+5

−−−−−−−−−−−−−−−−−−−−
n = n− 1, cn−1 = cn−2

2r+2n−3

n = n, cn = cn−1

2r+2n−1

c1 · c2 · c3 . . . cn−1 · cn = c0
2r+1

· c1
2r+3

×
× · c2

2r+5
. . .

cn−2

2r+2n−3
· cn−1

2r+2n−1

... cn = c0
(2r+1)(2r+3)(2r+5)...(2r+2n−3)(2r+2n−1)

for n ≥ 1. With this cn, the solution takes the form

y =
∞ 
n=0

cnx
n+r

y(x, r) = c0
∞ 
n=0

xn+r
(2r+1)(2r+3)(2r+5)...(2r+2n−3)(2r+2n−1)

.

Since the factor (2r + 1) in the denominator vanishes

for the value of the smaller root r2 = − 1
2
, expand

the series for n = 0, 1 and choose c0 = (2r + 1) so

that c1 = 1.

y(x, r) = (2r + 1)xr + 1 · xr+1 +

+
∞ 
n=2

xn+r

(2r + 3)(2r + 5) · · · (2r + 2n− 1)

Here cn = c1
(2r+3)(2r+5)···(2r+2n−1)

for n ≥ 2

The two linearly independent solutions are given by

y(x, r) at r2 = − 1
2
and

∂y(x,r)

∂r
at r2 = − 1

2
. Differen-
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tiating y partially w.r.t. r we get

∂y(x, r)

∂r
= 2xr + (2r + 1)xr ln x + xr+1 ln x+

+
∞ 
n=2

xn+r · ln x
(2r + 3)(2r + 5) · · · (2r + 2n− 1)

+

+
∞ 
n=2

xn+r
∂

∂r

 
1

(2r + 3)(2r + 5) · · · (2r + 2n− 1)

 

For u(x) = u1(x)u2(x) . . . un(x), then

du

dx
= u(x)

 
du1
dx

u1
+

du2
dx

u2
+ · · · +

dun
dx

un

 

Using this result
d

dr
[(2r + 3)−1(2r + 5)−1 · · · (2r + 2n− 1)−1]

= 1
(2r+3)(2r+5)...(2r+2n−1)

 
−(2r+3)−2·2
(2r+3)−1 − (2r+5)−2·2

(2r+5)−1

. . .− (2r+2n−1)−2·2
(2r+2n−1)−1

 

= −2

(2r + 3)(2r + 5) . . . (2r + 2n− 1)
×

×
 

1

2r + 3
+ 1

2r + 5
+ . . .+ 1

2r + 2n− 1

 

Substituting this value

∂y(x, r)

∂r
= y(x, r) · ln x + 2xr−

−
∞ 
n=2

2·xn+r
(2r+3)...(2r+2n−1)

 
1

2r+3
+ · · · + 1

2r+2n−1

 
Now the required two linearly independent solutions

are given by y1(x) = y(x, r) at r = − 1
2

= y

 
x, r = −1

2

 

= 0 · x− 1
2 + x−

1
2
+1 +

∞ 
n=2

xn−
1
2

2 · 4 · 6 . . . 2(n− 1)

= x
1
2 +

∞ 
n=2

xn−
1
2

2n−1(n− 1)!

y1(x) =
∞ 
n=1

xn−
1
2

2n−1(n− 1)!

The second solution y2(x) is given by y2(x) = ∂y(x,r)

∂r

at r = − 1
2

= y1(x) · ln x + 2x−
1
2 −

−
∞ 
n=2

2 · xn− 1
2

2 · 4 · 6 . . . 2(n− 1)

 
1

2
+ 1

4
+. . .+ 1

2(n− 1)

 

= y1(x) ln x + 2x−
1
2 −

∞ 
n=2

2·xn−
1
2

2n−1·(n−1)!

1
2
Hn−1

where Hn−1 = 1+ 1
2
+ 1

3
+ . . .+ 1

n−1
is the partial

sum of the harmonic series. Hence the second solu-

tion is

y2(x) = y1(x) ln x + 2x−
1
2−

∞ 
n=2

Hn−1

2n−1
x
n− 1

2

(n−1)!

Case 4. Double root:

Example 4: Using method of Frobenius obtain

two linearly independent solutions about x = 0 for

x2y   + x(x − 1)y  + (1− x)y = 0

Solution: Here x0 = 0 is a regular singular point of

the given DE. Assume the solution in the form

y =
∞ 
n=0

cnx
n+r

Substituting y, y  , y   in DE, we get

∞ 
0

(n+r)(n+r−1)cnx
n+r+

 
(n+r)cnxn+r+1−

−
 

(n+r)cnxn+r+
 

cnx
n+r−

 
cnx

n+r+1=0

The indicial equation is (with n = 0 from 1st, 3rd

and 4th summations)

r(r − 1)− r + 1 = 0 or (r − 1)2 = 0

Thus the indicial roots are equal r1 = r2 = 1.

The recurrence relation for n ≥ 1 is [(n+ r)(n+
r − 1)− (n+ r)+ 1]cn +[(n+ r − 1)− 1]cn−1 =
0. Put r = 1. Then the recurrence relation takes the

form

cn = − (n− 1)

n2
cn−1 for n ≥ 1

Now cn = 0 for n ≥ 1 because of the factor (n−
1). Thus c1 = c2 = c3 = c4 = · · · = 0. So the first

solution is

y1(x) =
∞ 
n=0

cnx
n+1 = c0x
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Choosing c0 = 1, y1(x) = x.

The second solution y2(x) is obtained by reduction

of order. The standard form of the given DE is

y   + x(x − 1)

x2
y  + (1− x)

x2
y = 0

So p(x) = x−1
x
. Assume the linearly indepen-

dent solution y2 = uy1 where u =  
1

y2
1

e−
 
p dxdx.

Here e−
 
p dx = e

−   
1− 1

x

 
dx = eln x−x = xe−x =

x
ex
. Then

u =
 

1

x2
· x
ex
dx =

 
dx

xex

=
 

1

x
e−xdx =

 
1

x
·

∞ 
n=0

(−x)n
n!

dx

=
∞ 
n=0

(−1)n

n!

 
xn−1dx

u =
 

dx

x
+

∞ 
n=1

(−1)n

n!

 
xn−1dx

u = ln x +
∞ 
n=1

(−1)n

n!
· x

n

n

Now the second solution is

y2 = uy1 = ux =
 
ln x +

 (−1)n

n!

xn

n

 
x

y2 = x ln x +
∞ 
n=1

(−1)n · xn+1

n! · n

Case 5: Double root: solution in powers of

(x − x0)

Example 5: Using Frobeniusmethod, obtain series

solution about x = 2 for x(x − 2)y   + 2(x − 1)y  −
2y = 0.

Solution: x = 2 is a regular singular point of the

given DE. Put x − 2 = t . Then x = t + 2, dx = dt .

So the given DE in t takes the form

(t + 2)t
d2y

dt2
+ 2(t + 1)

dy

dt
− 2y = 0 (1)

Now assume a solution of the form

y(t) =
∞ 
n=0

cnt
n+r (2)

Substituting y,
dy

dt
,
d2y

dt2
in (1), we get

(t + 2)t
 

(n+ r)(n+ r − 1)cnt
n+r−2+

+2(t + 1)
 

(n+ r)cnt
n+r−1 − 2

 
cnt

n+r = 0

or
∞ 
0

(n+ r)(n+ r − 1)cnt
n+r+

+ 2

∞ 
0

(n+ r)(n+ r − 1)cnt
n+r−1+

+ 2

∞ 
0

(n+ r)cnt
n+r + 2

∞ 
0

(n+ r)cnt
n+r−1−

− 2

∞ 
0

cnt
n+r = 0

Indicial equation is obtained by equating to zero

the coefficient of lowest power of t namely t r−1 at

(n = 0)

i.e., 2r(r − 1)+ 2r = 0 or r2 = 0 or r = 0, 0

roots are equal. To obtain the recurrence relation

shift the index of first, third and fourth summations.

Then

[(n+ r − 1)(n+ r − 2)+ 2(n+ r − 1)− 2] cn−1

+ 2 [(n+ r)(n+ r − 1)+ 2(n+ r)] cn = 0

or

cn = − [(n+ r)2 − (n+ r)− 2]

2(n+ r)2
cn−1, for n ≥ 1

Take r = 0. Then

cn = − (n2 − n− 2)

2n2
cn−1

cn = − (n− 2)(n+ 1)

2n2
cn−1 for n ≥ 1

For n = 1, c1 = c0,

For n = 2, c2 = 0 so c3 = c4 = c5 = c6 · · · = 0.

Thus the first solution is

y1(t) =
∞ 
n=0

cnt
n+0 = c0 + c1t = c0 + c0t
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or y1(x) = c0(1+ (x − 2))

The second solution y2 is obtained by reduction of

order. Rewriting the given DE in standard form

d2y

dt2
+ 2(t + 1)

t(t + 2)

dy

dt
− 2

t(t + 2)
y = 0

Here P (t) = 2(t+1)

t(t+2)
. So

e−
 
P (t)dt = e−

 
dt
d
+ dt
t+2

= e− ln(t)(t+2) = 1

t(t + 2)

since 2(t+1)

t(t+2)
= A

t
+ B

t+2
= 1

t
+ 1

t+2
.

The second solution is

y2(t) = y1U

where U =  
1

y2
1

e−
 
P (t) dtdt .

Now

U =
 

1

(1+ t)2
· 1

t(t + 2)
dt

By partial fractions

1

t(t + 2)(t + 1)2
= A

t
+ B

t + 2
+ C

t + 1
+ D

(t + 1)2

= 1

2
t − 1

2

1

t + 2
+ 0− 1

(t + 1)2

So

U =
 

1

2

dt

t
− 1

2

 
dt

t + 2
−
 

dt

(t + 1)2

= 1

2
ln

 
t

t + 2

 
+ 1

(t + 1)

Then

y2 = y1U = (1+ t)

 
1

2
ln

 
t

t + 2

 
+ 1

t + 1

 

y2(t) = 1+ 1

2
(t + 1) · ln

 
t

t + 2

 
or

y2(x) = 1+ 1

2
(x − 1) ln

 
x − 2

x

 
.

EXERCISE

Using Frobenius method, obtain two linearly inde-

pendent solutions about x0 = 0, for the following

differential equations.

Distinct roots not differing by an integer

1. 2x2y   − xy  + (x − 5)y = 0

Ans. y = c1x
5/2

 
1− 1

9
x + 1

198
x2 − 1

7722
x3 + · · · 

+ c2x
−1

 
1+ 1

5
x + 1

30
x2 + 1

90
x3 + · · · 

= c1y1 + c2y2

Hint: Indicial equation: 2r2 − 3r − 5 = 0,

r1 = 5
2
, r2 = −1

RR: [2(n+ r)(n+ r − 1)− (n+ r)− 5]cn
+ cn−1 = 0 for n ≥ 1.

For r1 = 5
2
, cn = cn−1

n(2n+7)
, for r = −1, cn =

cn−1

n(2n−7)
.

2. 2xy   + (1+ x)y  − 2y = 0

Ans. y1 = x
1
2 +

∞ 
n=1

(−1)n3x
n+ 1

2

2nn!(2n−3)(2n−1)(2n+1)
and

y2 = 1+ 2x + 1

3
x2

Hint: Indicial equation: r(2r − 1) = 0, r1 =
1
2
, r2 = 0

RR: (n+ r)(2n+ 2r − 1)cn + (n+ r −
3)cn−1 = 0

For r1 = 1
2
, cn = (−1)n3c0

2nn!(2n−3)(2n−1)(2n+1)

For r1 = 0, bn = −(n−3)bn−1

n(2n−1)

3. 2x2y   + xy  + (x2 − 3)y = 0

Ans. y1 = c0x
3/2

 
1− 1

18
x2 + 1

936
x4 · · · , y2(x) =

c0x
−1

 
1+ 1

2
x2 − 1

24
x4 + · · · 

Hint: Indicial equation: 2r2 − r − 3 = 0,

r1 = 3
2
, r2 = −1

RR: [2(n+ r)(n+ r − 1)+ (n+ r)−
3]cn +cn−2 = 0.

For r1 = 3
2
, cn = cn−2

n(2n+5)
,

For r = −1, cn = cn−2

n(2n−5)

4. 2x(x − 1)y   + 3(x − 1)y  − y = 0

Ans. y1 = c0 − c0
∞ 
n=1

1

4n2−1
xn, y2 = c0(1− x)x−

1
2
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Hint: r1 = 0, r2 = − 1
2
, RR: (2n+ 2r +

1)cn = (2n+ 2r − 3)cn−1 for r1 = 0, cn =
2n−3
2n+1

cn−1, for r2 = 0, cn = (n−2)

n
cn−1, and cn =

0 for n ≥ 2.

5. 2xy   + 5(1+ 2x)y  + 5y = 0

Ans. y1 = 1+
∞ 
1

3(−5)nxn

n!(2n+1)(2n+3)
,

y2 = x−3/2 − 10x−1/2

Hint: r1 = 0, r2 = − 3
2
, RR: (n+ r)(2(n+

r)+ 3)cn = −5(2(n+ r)− 1)cn−1, for r1 =
0, cn = −5(2n−1)

n(2n+3)
cn−1

For r = − 3
2
, cn = −10(n−2)

2n
 
n− 3

2

 cn−1, cn = 0, for

n ≥ 2

6. 4xy   + 2y  + y = 0

Ans. y1 = c0

 
− x

2!
+ x2

4!
− x3

6!
+ · · ·

 
= c0 cos

√
x

y2 = c0(x
1/2) ·

 
1− x

3!
+ x2

5!
+ · · ·

 
=

c0 · sin
√
x

Hint: r1 = 1
2
, r2 = 0

RR: 2(r + n)(2r + 2n− 1)cn + cn−1 =
0 for n > 1.

For r2 = 0, cn = −1
2n(2n−1)

· cn−1

For r1 = 1
2
, cn = − 1

2n(2n+1)
cn−1

Difference of roots a positive integer: Non-

Logarithmic Case

7. x2y   − xy  −  
x2 + 5

4

 
y = 0

Ans. y1 = x5/2
 
1+

∞ 
n=1

x2n

[2·4·6···2n][5·7·9···(2n+3)]

 
y2 = x−1/2

 
1− x2

2
− x4

2·4

−
∞ 
n=3

x2n

[2·4·6···2n][3·5·7···(2n−3)]

 

Hint: r1 = 5
2
, r2 = − 1

2
,

RR:
 
(n+ r)(n+ r − 1)− (n+ r)− 5

4

 
cn −

cn−2 = 0, for n ≥ 2

For r1 = 5
2
, cn = cn−2

n(n+3)
, for r2 = − 1

2
, cn =

cn−2

n(n−3)

8. xy   − (4+ x)y  + 2y = 0

Ans. y1 = c0
 
1+ 1

2
x + 1

12
x2
 

y2 = c5

 
x5 +

∞ 
n=6

60xn

(n−5)!n(n−1)(n−2)

 

Hint: r1 = 5, r2 = 0

RR: (n+ r)(n+ r − 5)cn − (n+ r −
3)cn−1 = 0

For r2 = 0, n(n− 5)cn − (n− 3)cn−1 = 0, c0

and c5 are arbitrary, for n > 5, cn = (n−3)(cn−1)

n(n−5)
.

9. x2y   + 2x(x − 2)y  + 2(2− 3x)y = 0

Ans. y1 = c0(x − 2x2 + 2x3)

y2 = c3

 
x4 +

∞ 
n=4

(−2)n−3

n!
6 · xn+1

 
Hint: r1 = 4, r2 = 1. For r2 = 1, cn =
−2
n
cn−1. For r1 = 4, cn = −2

n+3
cn−1.

10. x(1+ x)y   + (x + 5)y  − 4y = 0 about x =
−1

Ans. y = c0[1+ (x + 1)+ 1
2
(x + 1)2]

+ c5
12

 ∞ 
n=5

(n− 4)(n− 3)(n+ 1)(x + 1)n
 

11. (1− x2)y   + 2xy  + y = 0

Ans. y1 = c0

 
1− x2

2
+ x4

8
+ · · ·

 
y2 = c1

 
x − x3

5
+ x5

40
· · ·

 
Hint: r1 = 1, r2 = 0

RR: (r + n+ 1)(r + n)cn+1 = [(r + n)2−
−5(r + n)+ 3]cn−1

For r2 = 0, cn+1 = n2−5n+3
n(n+1)

cn−1, c0 and c1 are

arbitrary.

Difference of roots a positive integer: Logarith-

mic case

12. x2y   + (x2 − 3x)y  + 3y = 0

Ans. y1 = c2x
3e−x

y2 =
 
− x

2
− x2

2
+ 3

4
x3 − 1

4
x4 + . . .

 
+ 1

2
x3e−x ln x

Hint: r1 = 3, r2 = 1

RR: [(n+ r)(n+ r − 1)− 3(n+ r)]cn +
(n+ r − 1)cn−1 = 0, n ≥ 1

For r1 = 3, cn = cn−1

n
, n ≥ 1. For r1 = 1,

solution involves logarithm, obtained by re-

duction of order.

13. x2y   + x(1− x)y  − (1+ 3x)y = 0

Ans. y1 = −3x −
∞ 
n=3

(n+1)xn−1

(n−2)!
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y2 = y1 ln x + x−1 − 2−
∞ 
n=0

 
1−(n+3)Hn

n!

 
xn+1

Here Hn = partial sum of Harmonic series

Hn =
 
1+ 1

2
+ 1

3
+ 1

4
+ · · · + 1

n

 
Hint: r1 = 1, r2 = −1,

RR: (n+ r + 1)(n+ r − 1)cn =
(n+ r + 2)cn−1

For n ≥ 1, cn = (n+r+2)c0
(r+2)[r(r+1)···(r+n−1)]

First solution

y1 = y(x, r) = (r + 1)xr + (r+1)(r+3)x1+r
r(r+2)

+ (r+4)x2+r
r(r+2)

+
∞ 
n=3

(n+r+2)xn+r
(r+2)r[(r+2)(r+3)···(r+n−1)]

Second solution y2 = ∂y(x,r)

∂r

   at r = −1.

14. (x2 − x)y   − xy  + y = 0

Ans. y1 = x, y2 = x ln x + 1

Hint: r1 = 1, r2 = 0,

RR: (n+ r − 1)cn − (n+ r + 1)(n+
r)cn+1 = 0

For r1 = 1, cn+1 = n2

(n+2)(n+1)
cn

Second solution by reduction of order.

15. xy   − 3y  + xy = 0

Ans. y1 = − 1

22·4x
4 + x6

2·22·4·6 −
x8

2·22·42·6·8 + · · ·
y2 = y1 ln x + 1+ 1

22
x2 + 1

252!
x4 −

1

263!1!

 
1+ 1

2
+ 1

3

 
x6 + · · ·

Hint: r1 = 4, r2 = 0

RR: (n+ r)(n+ r − 4)cn = −cn−2, for n ≥ 2

Second solution by
∂y

dr
with r = 0 where

y(x, r) = xr
 
r − rx2

(2+r)(r−2)
+ x4

(r−2)(r+2)(r+4)

− x6

(r−2)(r+2)2(r+4)(r+6)
+ · · ·

 
16. (x − x2)y   − (1+ 3x)y  − y = 0

Ans. y1 = c0[−2x2 − 6x3 + · · ·]
y2 = y1 log x + c0[1− x − 5x2 − 11x3 +
· · ·]
Hint: r1 = 2, r2 = 0, First solution y(x, r) at

r = 0

y(x, r) = c0x
r
 
r + r(r+1)

r−1
x + (r+1)(r+2)

r−1
x2

+ (r+1)(r+2)(r+3)

(r−1)(r+1)
x3 + · · ·

 

Second solution is
∂y(x,r)

∂r
at r = 0.

Equal roots (double root)

17. x(x − 1)y   + (3x − 1)y  + y = 0

(special case of Hypegeometric equation)

Ans. y1 = 1
1−x , y2 = ln x

1−x
Hint: r1 = r2 = 0, RR: cn+1 = cn. So c0 =
c1 = c2 = · · · = 1, second solution by reduc-

tion of order

18. x2y   + 3xy  + (1− 2x)y = 0

Ans. y1 = x−1 +
∞ 
n=1

2nxn−1

(n!)2

y2 = y1 · ln x −
∞ 
n=1

2n+1·Hn·xn−1

(n!)2

Hint: r1 = r2 = −1

RR: (n+ r + 1)2cn − 2cn−1 = 0 for n ≥
1. Also for n ≥ 1, cn = 2nc0

[(r+2)(r+3)···(r+n+1)]2
=

cn(r)

First solution y(x, r) = xr +
∞ 
n=1

cn(r) · xn+r

at r = −1

Second solution
∂y(x,r)

∂r
at r = −1

19. x2y   − x(1+ x)y  + y = 0

Ans. y1 = c0xe
x , y2 = c0xe

x ln x

−c0x
 
x − 3

4
x2 + 11

62
x3 + · · ·

 
Hint: r1 = r2 = 1

RR: cn = cn−1

(n+r−1)
for n ≥ 1. Also cn =

c0
r(r+1)(r+2)···(r+n−1)

= cn(r)

First solution

y1 = c0x
r
 
1+ x

r
+ x2

r(r+1)

+ x3

r(r+1)(r+2)
+ · · ·

 
at r = 1.

Second solution is y2(x) = ∂y1(x,r)

∂r
at r = 1 or

second solution by reduction of order.

20. (x − x2)y   + (1− x)y  − y = 0

Ans. y1 = c0
 
1+ x + 1

2
x2 + 1

2
5
9
x3 + · · · 

y2 = c0 log x ·  1+ x + 1
2
x2+

+ 1
2

5
9
x3 + · · · +c0  −2x − x2 − 14

27
x3 · · · 

Hint: r1 = r2 = 0

RR: (r + n)2cn = [(r + n− 1)2 + 1]cn−1

First solution y(x, r) at r = 0
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y1 = c0x
r
 
1+ (r2+1)

(r+1)2
x

+ [(r+1)2+1][r2+1]

(r+2)2(r+1)2
x2 + · · ·

 
Second solution

∂y(x,r)

∂r
at r = 0

21. xy   + y  + xy = 0

Ans. y1 = c0

 
1− 1

2
x2 + 1

2242
x4− 1

224262
x6 + · · ·

 
= J0(x) =Bessel’s function of first kind

y2 = y1 ln x + c0

 
1

22
x2 − 1

2242

 
1+ 1

2

 
x4 +

1

224262

 
1+ 1

2
+ 1

3

 
x6 + . . .

 
= y0(x)

= Bessel’s function of second kind

Hint: r1 = r2 = 0, a1 = a3 = a5 = a7 =
· · · = 0

First solution y(x, r) at r = 0

y(x, r) = c0x
r
 
1− x2

(r+2)2
+ x4

(r+2)2(r+4)2

− x6

(r+2)2(r+4)2(r+6)2
+ · · ·

 
Second solution is

∂y(x,r)

∂r
at r = 0.

10.4 ORTHOGONALITY OF FUNCTIONS

Orthogonality is one of the most useful concept ever

introduced in applied mathematics. Let f (x) and

g(x) be any two functions which are piecewise con-

tinuous on the interval a < x < b. The inner product

off andg, denoted by  f, g is defined as the number

 f, g =
 b

a

f (x)g(x)dx

The interval a < x < b is known as the fundamen-

tal interval. The norm of f (x), denoted by ||f ||, is
defined by the non-negative number

||f || =
  b

a
[f (x)]2dx =  f, f  12

Orthogonal: Two functions f and g are said to be

orthogonal on the interval a < x < b if their inner

product is zero i.e., b
a
f (x)g(x)dx = 0 .

An infinite sequence (system or set) of functions

φ1(x), φ2(x), . . ., φn(x), . . . is said to be orthogonal

on the interval [a, b] if these functions are mutually

Orthogonal i.e., b
a
φm(x)φn(x)dx = 0 for m  = n

Any function f (x), with non-zero norm, is said to

be normalized by dividing it by its norm i.e.,
f (x)

||f (x)||
Suppose the norm of any of these functions is not

zero, then the new sequence of functions

φ1(x)

||φ1(x)||
,
φ2(x)

||φ2(x)||
, · · · , φn(x)

||φn(x)||
, . . .

are said to be orthonormal because they are orthogo-

nal and each have norm unity. Thus new set of func-

tions

ψn(x) =
φn(x)

||φn(x)||
for n = 1, 2, 3, . . .

are orthonormal if

 ψ m , ψn =
 b
a
ψm(x)ψn(x)dx

δmn =
 
0 form  = n

1 form = n

Here δmm is the Kronecker∗ delta.
More generally these definitions are modified

w.r.t. a weight function P (x) as follows:

Inner product of f and g w.r.t. the weight function

P (x) > 0 is

 f, g =
 b

a

P (x)f (x)g(x)dx

Two functions f and g are said to be orthogonal w.r.t.

the weight function P (x) on the interval a < x < b

if  b

a

P (x)f (x)g(x)dx = 0

Finally a set of functions φn(x) on (a, b) are said to

be orthogonal w.r.t. the weight function P (x) > 0 if

all pairs of distinct functions in the set are orthogonal

i.e.,  b

a

P (x)φm(x)φn(x)dx = 0 for m  = n

Norm is similarly defined as

∗Leopold Kronecker (1823-1891), German mathematician.
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||f || =  f, f  1
2 =

 b

a

P (x)[f (x)]2dx ≥ 0

Note 1: Orthogonality w.r.t. P (x) = 1 is simply

referred to as “orthogonal”.

Note 2: Weight functions other than unity will

occur in Bessel functions, Harmite polynomials,

Lagurre polynomials and several Sturm-Liouville

problems.

Example 1: Hermite polynomials Hn(x) are or-

thogonal w.r.t. the weight function e−x
2
on the inter-

nal −∞ < x <∞. i.e., ∞

−∞
e−x

2
Hm(x)Hn(x)dx =

 
0 if m  = n

2nn!
√
π if m = n

Generalized Fourier Series

A vector in three-dimensional space, in analytic ge-

ometry is represented in terms of an orthonormal set

of vectors i, j , k as

A = A1i + A2j + A3k

Extending this concept, a vector in an n-dimensional

Euclidean space En can be represented as

A = A1e1 + A2e2 + . . .+ Anen =
n 
i=1

Aiei

where the system of vectors {e1, e2, . . . , en} form
an orthonormal set in En. In a similar way any

given function f (x) belonging to cp(a1b), the space

of piecewise continuous functions on the interval

a < x < b, can be represented in terms of an or-

thonormal set of functions φn(x), (n = 1, 2, 3, . . .)

in the space cp(a1b) w.r.t. a weight function P (x), as

an infinite series of the form

f (x) = a0φ0(x)+ a1φ1(x)+ a2φ2(x)

+ · · · + anφn(x)+ · · · (1)

The infinite series (1) is known as the general-

ized Fourier series of f (x) w.r.t. the orthonormal

set {φn(x)} on the interval a < x < b with weight

function P (x). Series (1) is also known as orthog-

onal expansion or eigenfunction expansion (in case

φ(x) are eigenfuntions of a Sturm-Liouville prob-

lem). The coefficients c ns are known as Fourier con-

stants, which can be determined using the orthogo-

nality properties as follows. Multiplying (1) on both

sides by P (x)φn(x) and integrating w.r.t. x from a to

b, we get b

a

P (x)f (x)φn(x)dx =
 b

a

P (x)φn(x)

∞ 
i=0

aiφi(x)dx

=
 b

a

P (x)

∞ 
i=0

aiφn(x)φi(x)dx

=
∞ 
i=0

ai

 b

a

P (x)φn(x)φi(x)dx

= an

since
 b
a
P (x)φn(x)φm(x)dx = 0 for m  = n.

Thus an =
 b
a
P (x)f (x)φn(x)dx (2)

for n = 0, 1, 2, 3, . . ..

Completeness

Given a set of orthonormal functions {φn(x)}, in gen-
eral, no nontrivial function f (x) exists which is or-

thogonal to all φn(x). Thus an orthonormal set of

functions {φn(x)} is said to be complete if any func-

tion f (x) which is orthogonal to all φn(x) is a null

function (which is identically zero with zero norm).

In other words, the orthogonal set {φn(x)} is com-

plete, if each function f can have formal represen-

tation (1).

Convergence

If the orthonormal set {φn(x)} is complete, then the

formal representative of any function f (x) by the

infinite series (1) is valid and converges to f (x) at

all points of continuity and converges to the mean

value 1
2
[f (x+)+ f (x−)] at points of discontinuity.

The classical example of orthogonal expansion (1)

is the Fourier series, which is the daily bread of the

physicist and engineer. Fourier series is discussed in

detail in Chapter 17.
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WORKED OUT EXAMPLES

Example 1: Show that 1, cos 4nx, sin 4nx, n =
1, 2, 3 . . .on0 ≤ x ≤ π

2
are orthogonal. Find the cor-

responding orthonormal set of functions.

Solution: Consider for any n = 1, 2, 3 · · · π
2

0 1 · cos 4nx = 1
4

 2π

0
cos nt dt where 4x = t

= 1

4
· sin nt−n

    
2π

0

= 0

So, the functions 1 and cos 4nx for n = 1, 2,

3 . . . are orthogonal. Similarly
 π

2
0 1 · sin 4nxdx

= 1
4

 2π

0
sin ntdt = 1

4
· cos nt

n

  2π
0

= 0

Also π
2

0 cos 4mx · sin 4n x dx
= 1

4

 2π

0
cosmt ·sin nt dt = 0

Thus the set of functions 1, cos 4nx, sin 4nx for n =
1, 2, 3 · · · are mutually orthogonal. Now since

 π
2

0

·1 · 1 · dx = x

     
π
2

0

= π

2
,

therefore norm of the function 1 is
 

π
2
. Similarly

since
 π

2
0 cos 4nx · cos 4nx dx = 1

4

 2π

0
cos2 nt dt

= 1
4
· π

So the norm of the function cos 4nx is
 

π
4
.

Finally norm of sin 4nx is
 

π
4
. Then the orthonor-

mal set of functions are obtained by dividing the

functions by their norms. Thus the corresponding

orthonormal set of functions are

 
2
π
; 2√

π
· cos 4nx;

2√
π
sin 4nx for n = 1, 2, . . .

Example 2: Prove that the functions f1(x) =
b, and f2(x) = x3 are orthogonal on the interval

(−a, a) where a and b are real constants. Determine

constants A and B such that the function f3(x) =
1+ Ax + Bx2 is orthogonal to both f1(x) and f2(x)

on (−a, a).

Solution: f1, f2 are orthogonal if a
−a f1(x) f2(x) dx = 0. So consider

 a
−a b · x3dx

= b
 a
−a x

3dx = b · 0 = 0. Thus f1 and f2 are or-

thogonal. Since f3 is orthogonal to f , we have a

−a
(1+ Ax + Bx2) · 1 dx = 0

or

 a

−a
dx + A

 a

−a
xdx + B

 a

−a
x2dx = 0

2a + A · 0+ B
3
2a3 = 0 ... B = −3

a2

Also since f3 is orthogonal to f2, we have a

−a
(1+ Ax + Bx2)x3dx = 0

or
 a
−a x

3dx + A
 a
−a x

4dx + B
 a
−a x

5dx = 0

0+ A · 2a
5

5
+ B · 0 = 0 ... A = 0

Example 3: Prove that the Laguerre∗ polynomi-

als f1(x) = 1− x, f2(x) = 1− 2x + 1
2
x2, f3(x) =

1− 3x + 3
2
x2 − 1

6
x3 are orthogonal w.r.t. the weight

function e−x on 0 ≤ x ≤ ∞. Determine the corre-

sponding orthonormal functions.

Solution: Consider ∞
0
P (x)f1(x)f2(x)dx = ∞

0
e−x(1− x)

 
1− 2x + x2

2

 
dx

=  ∞
0
e−x

 
1− 3x + 5

2
x2 − 1

2
x3
 
dx

We know that
 ∞
0
xne−xdx = n! for n positive inte-

ger. So ∞

0

e−xf1 · f2dx = 1 · 1− 3 · 1+ 5

2
· 2!− 1

2
3!

= 1− 3+ 5− 3 = 0

Thus f1 and f2 are orthogonal w.r.t. e−x on the in-

terval (0,∞).

Now consider  ∞

0

e−xf1(x)f3(x)dx

=  ∞
0
e−x(1− x)

 
1− 3x + 3

2
x2 − 1

6
x3
 
dx

=
 ∞

0

e−x
 
1− 4x + 9

2
x2 − 5

3
x3 + 1

6
x4
 
dx

∗Edmond Laguerre (1834-1886), French mathematician.
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= 1 · 1− 4 · 1+ 9

2
· 2!− 5

3
· 3!+ 1

6
· 4!

= 1− 4+ 9− 10+ 4 = 0

So f1 and f3 are orthogonal.

Finally consider ∞
0
e−xf2(x)f3(x)dx

=  ∞
0
e−x

 
1− 2x + x2

2

  
1− 3x + 3

2
x2 − 1

6
x3
 
dx

=  ∞
0
e−x

 
1− 5x + 8x2 − 28

6
x3 + 13

12
x4 − 1

12
x5
 
dx

= 1 · 1− 5 · 1+ 8 · 2!− 28
6
· 3!+ 13

12
· 4!− 1

12
· 6!

= 1− 5+ 16− 28+ 26− 10 = 43− 43 = 0

Thus the functions f1, f2, f3 are orthogonal w.r.t.

e−x on (0,∞).

Norm of the function f1(x) w.r.t. e
−x on (0,∞) is  ∞

0
e−x · f1(x) f1(x) dx.

Since
 ∞
0
e−x(1− x)2dx

=  ∞
0
e−x(1+ x2 − 2x)dx

= 1 · 1+ 1 · 2− 2 · 1 = 1

So the norm of f1 is ||f1|| = 1.

Similarly consider ∞
0
e−x

 
1− 2x + x2

2

 2
dx

=  ∞
0
e−x

 
1+ 4x2 + x4

4
− 4x − 2x3 + x2

 
dx

= 1 · 1− 4 · 1+ 5 · 2!− 2 · 3!+ 1
4
· 4! = 1

Then norm of f2 is 1.

Also  ∞

0

e−x
 
1− 3x + 3

2
x2 − 1

6
x3
 2

dx

=
 ∞

0

e−x
 
1+ 9x2 + 9

4
x4 + 1

36
x6 − 6x + 3x2

−1

3
x3 − 9x3 + x4 − 1

2
x5
 
dx

=
 ∞

0

e−x
 
1− 6x + 12x2 − 28

3
x3 + 13

4
x4

−1

2
x5 + 1

36
x6
 
dx

= 1− 6 · 1+ 12 · 2!− 28
3
· 3!+ 13

4
· 4!− 1

2
· 5! +

+ 1
36

· 6! = 1

So norm of f3 is one. Thus the orthonormal set is

itself i.e., f1 = (1− x), f2 =
 
1− 2x + x2

2

 
and f3(x) = 1− 3x + 3

2
x2 − 1

6
x3

Orthogonality of Laguerre polynomials

Example 4: Prove that the Laguerre polynomials

Ln(x) are orthonormal w.r.t. the weight function e−x

on the interval 0 < x <∞.

Solution: The Laguerre polynomial Lm(x) is de-

fined by the generating function

∞ 
m=0

smLm(x) =
1

(1− s)
e
−
 
xs
1−s

 
(1)

Also

∞ 
n=0

tnLn(x) =
1

(1− t)
e
−
 
xt
1−t

 
(2)

Multiplying (1) and (2), we get ∞ 
m=0

sm · Lm(x)
  ∞ 

n=0

tn · Ln(x)
 

= 1
(1−s) · 1

(1−t) · e
−
 
xs
1−s+ xt

1−t
 

∞ 
m,n=0

sm · tn · Lm(x) · Ln(x) = 1
(1−s)(1−t)e

−
 
xs
1−s+ xt

1−t
 

Multiplying both sides by the weight function P (x)

= e−x and integrating w.r.t. x from 0 to ∞, we have

∞ 
m,n=0

  ∞

0

e−xLm(x) · Ln(x) dx
 
sm · tn

= 1

(1−s)(1−t)

 ∞

0

exp

 
−x

 
1+ s

1−s +
t

1−t

  
dx

Integrating the RHS we get

= 1

(1− s)(1− t)
·
 
1+ s

1− s
+ t

1− t

 −1

= 1
(1−s)(1−t)

(1−s)(1−t)
(1−s)(1−t)+s(1−t)+t(1−s) = 1

1−st

=
∞ 
n=0

(st)n

Now compare the coefficients of like power of (st)

on both sides. For m  = n, the coefficients of terms

containing smtn in the LHS should be zero (because

no such terms exists in the RHS). Thus ∞

0

e−xLm(x)Ln(x)dx = 0 for m  = n
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Form = n, the coefficient of (st)n in the LHS is one.

So  ∞

0

e−xL2
n(x)dx = 1 for m = n

Thus the Laguerre polynomials Ln(x) are orthonor-

mal w.r.t. the weight function e−x on the interval

(0,∞).

EXERCISE

Orthogonality

Show that the set of functions {φn(x)} are orthogonal
on the interval a < x < b. Normalize and obtain the

orthonormal set {ψn(x)}, where

1. φn(x) = sin nπx
c

in 0 < x < c; n = 1, 2, 3, · · ·

Ans. ψn(x) =
 

2
c
sin

 
nπx
c

 
, n = 1, 2, 3, · · ·

Hint:
 c
0
sin nπx

c
· sin mπx

c
dx =

 
0 form  = n
c
2

for m = n

2. φn(x) = cos nπx
c

in 0 < x < c, n = 0, 1, 2, 3,

· · ·
Ans. ψ0(x) = 1√

c
,ψn(x) =

 
2
c
cos nπx

c
, n = 0, 1, 2,

3, · · ·

Hint:
 c
0
cos nπx

c
, cos mπx

c
dx=

 
0 form  = n
c
2
form = n

3. 1, cos nx, sin nx, n = 1, 2, 3, · · · , [−π, π]
Ans. 1√

2π
, 1√

π
cos nπ , 1√

π
sin nx

4. 1, cos nπx
L
, sin nπx

L
, n = 1, 2, 3, · · · , [−L,L]

Ans. 1√
2L
, 1√

L
cos

 
nπx
L

 
, 1√

L
sin nπx

L

5. 1, cos nx, n = 1, 2, 3, · · · , [0, π]
Ans. 1√

π
,
√
2/π cos nx

6. sin nx, n = 1, 2, 3, · · · [0, π].
Ans.

 
2
π
sin nx

7. sin nπx, n = 1, 2, 3, · · ·  −π
ω
≤ x ≤ π

ω

 
Ans.

 
ω
π
· sin nπx

8. 1, cos 2nx, n = 1, 2, 3, · · · , 0 ≤ x ≤ π

Ans. 1√
π
,

 
2
π
cos 2nx

9. 1, cos
 
2nπx
L

 
, sin

 
2nπx
L

 
, n = 1, 2, 3, · · ·,

−L
2
≤ x ≤ L

2

Ans. 1√
L
,

 
2
L
cos

 
2nπx
L

 
,

 
2
L
sin

 
2nπx
L

 
10. Find the functionf3(x) = 1+ Ax + Bx2 such

that f1 = 1, f2(x) = x, f3(x) and are orthog-

onal to each other on (−1, 1).

Ans. A = 0, B = 3

10.5 STURM∗- LIOUVILLE∗∗ PROBLEMS

ASturm-Liouville problem is a boundary value prob-

lem consisting of a linear homogeneous second order

ordinary differential equation, together with a pair of

homogeneous boundary conditions.

Consider any equation of the form

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ [a2(x)+ λa3(x)]y = 0

defined on a finite interval a < x < b. This can

be written, assuming a0(x)  = 0,
d2y

dx2
+ a1(x)

a0(x)

dy

dx
+ 

a2(x)

a0(x)
+ λ

a3(x)

a0(x)

 
y = 0. Multiply the above equation

throughout by r(x) = e

 a1(x)

a0(x)
dx
. Then the equation

takes the form

r(x)
d2y

dx2
+ r(x)

a1(x)

a0(x)

dy

dx
+ [q(x)+ λP (x)] y = 0

where q(x) = a2(x)

a0(x)
r(x), P (x) = a3(x)

a0(x)
r(x).

Combining the first two terms, this equation can

be rewritten as

d

dx

 
r(x)

dy

dx

 
+ [q(x)+ λP (x)]y = 0 (1)

Here the functions P (x), q(x), r(x), r  (x) are con-

tinuous real valued functions on a ≤ x ≤ b and are

free of the parameter λ. Also P (x) > 0 and r(x) >

0 when a ≤ x ≤ b, while q(x) is non-positive.

Equation (1) is known as Sturm-Liouville equation.

Suppose y(x) is required to satisfy the homogeneous

separated boundary conditions

k1y(a)+ k2y
 (a) = 0 (2)

∗J.C.F. Sturm (1803-1855), Swiss mathematician.
∗∗ J. Liouville (1809-1882), French mathematician.
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and

l1y(b)+ l2y
 (b) = 0 (3)

where k1, k2, l1, l2 are real constants independent ofλ.

The conditions (2), (3) are called separated because

(2) is satisfied at x = a and (3) is satisfied at x = b.

Further assume that both k1 and k2 are not zero in (2)

and also both l1 and l2 are not zero in (3).

A regular Sturm-Liouville problem consists of the

Sturm-Liouville equation (1) and the homogeneous

boundary conditions (2) and (3).

The obvious solution y(x) = 0 is known as a triv-

ial solution and is of no interest. Only non-trivial

solutions y  = 0 are of practical use. Although p(x),

q(x), r(x), a, b, k1, k2, m1, m2 are all specified, λ

is a free parameter. The value of λ for which a non-

trivial solution y(x) exists is known as eigen value

or characteristic value or eignwerte of the Sturm-

Liouville problem and y(x) is known as the eigen

function or characteristic function. Thus the Sturm-

Liouville problem in an eignvalue problem. For any

c  = 0, cy(x), is also an eigen function of the problem

since equation (1) and the boundary conditions are

linear. Spectrum of the problem is the set of eigen-

values.

In singular Sturm-Liouville problem, at least one

of the regularity conditions is violated as follows:

(a) r(a) = 0 and r(b)  = 0 (4)

Then the first boundary condition (2) at ‘a’ is

dropped while (3) still holds, and y is bounded at

‘a’. Omitting of (2) amounts to k1 = k2 = 0.

(b) r(b) = 0 and r(a)  = 0. (5)

Then the second boundary condition (3) at ‘b’ is

dropped while (2) still holds and y is bounded at

b. Omitting of (3) amounts to l1 = l2 = 0.

(c) r(a) = r(b) = 0 (6)

Then both the boundary conditions (2) and (3) are

dropped and y is bounded at a and b.

In periodic Sturm-Liouville problem r(a) =
r(b)  = 0 and the boundary conditions (2) and (3) are

replaced by non-separated periodic boundary con-

ditions given by

y(a) = y(b) (7)

y (a) = y  (b) (8)

Orthogonality of Eigen Functions

Sturm-Liouville Theorem

The eigen functions ym(x) and yn(x) corresponding

to distinct eigenvalues λm and λn of a regular (or

singular or periodic) Sturm-Liouville problem are

orthogonal on [a, b] with respect to the weight func-

tion P (x) i.e., b
a
P (x)ym(x)yn(x)dx = 0 when m  = n (9)

Proof: I consider a regular Sturm-Liouville problem

defined by (1), (2), (3). Since ym(x) and yn(x) are

solutions of (1), we have

(r y  n)
 + (q + λnp)yn = 0 (10)

and

(r y  m)
 + (q + λmp)ym = 0 (11)

Multiplying (10) by ym and (11) by yn and subtract-

ing, we get

(λm − λn)pymyn = ym(r y
 
n)

 − yn(ry
 
m)

 

=  
ymry

 
n − ynry

 
m

  
= [r(ymy

 
n − yny

 
m)]

 

Integrating both sides w.r.t. x on [a, b],

(λm − λn)

 b

a

Pymyndx

=
 b

a

d

dx
[r(ymy

 
n − yny

 
m]dx

= (r)[ymy
 
n − yny

 
m]
  b
x=a

= r(b)[ym(b)y
 
n(b)− yn(b)y

 
m(b)]

− r(a)[ym(a) y
 
n(a) − yn(a)y

 
m(a)]

Introducing the Wronskian of yn, ym we have

1(x) =
    yn(x) y  n(x)
ym(x) y  m(x)

    
Thus

(λm − λn)
 b
a
P (x)ym(x)yn(x)dx

= r(b)1(b)− r(a)1(a) (12)

Since yn(x) and ym(x) satisfy the boundary con-

dition (2) we get

k1yn(a)+ k2y
 
n(a) = 0
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k1ym(a)+ k2y
 
m(a) = 0

For a regular problem, both k1 and k2 are not zero. So

necessary condition for the existance of a non-trivial

solution (where both k1 and k2 are not zero) for the

above homogeneous equations in k1, k2 is that the

coefficient determinant should be zero i.e.    yn(a) y  n(a)
ym(a) y  m(a)

    = 1(a) = 0 (13)

Similarly from the regular boundary condition (3)

for which both l1 and l2 are not zero, we get    yn(b) y  n(b)
ym(b) y  m(b)

    = 1(b) = 0 (14)

Note that (λn − λm)  = 0 since λm, λn are distinct.

Nowusing (13) and (14),1(a) = 1(b) = 0, theRHS

of (12) is zero, so we have b

a

P (x)ym(x)yn(x)dx = 0 (9)

which is the condition for orthogonality of ym and yn
w.r.t. P (x) over [a, b].

II. Consider the three cases in the singular prob-

lem

(a) r(a) = 0. Since (3) is valid we have 1(b) = 0

from (14). So RHS of (12) is zero and hence we

get (9).

(b) r(b) = 0. Since (2) is valid, from (13) we have

1(a) = 0. Again RHS of (12) is zero, hence we

get (9).

(c) When r(a) = r(b) = 0 from (12), condition (9)

follows.

III Periodic Problem: Since r(a) = r(b), the RHS

of (12) reduces to r(b)[1(b)−1(a)]. Now

1(b)−1(a) = [ym(b) · y  n(b)− yn(b)y
 
m(b)]

− [ym(a)y
 
n(a)− yn(a) · y  m(a)]

= [ym(b)y
 
n(b)− ym(a) · y  n(a)] + [yn(a)y

 
m(a)

− yn (b)y
 
m(b)]

Since y(a) = y(b) and y  (a) = y  (b) we have

1(b)−1(a) = 0. Thus RHS of (12) is zero and

hence the result.

Corollary: Eigenvalues and eigen functions of the

Sturm-Liouville Theorem are real.

Proof: Suppose the eigenvalue λ = α + iβ is com-

plex; with y as the corresponding eigen function.

Then λ is the eigen value with y as the correspond-

ing eigen function. Taking conjugate of (1), (2), (3),

we get

d

dx

 
r(x)

dy

dx

 
+ [q(x)+ λP (x)]y = 0

d

dx

 
r(x)

d y

dx

 
+ [q(x)+ λP (x)]y = 0

since r(x), q(x), P (x) are all real and

k1y(a)+ k2y
 (a) = 0

l1y(b)+ l2y
 (b) = 0

Thus the nontrivial solution y is the eigen function

corresponding to the eigenvalue λ. If β  = 0 then λ

and λ are distinct. So by the Sturm-Liouville theo-

rem, y and y should be orthogonal on [a, b] w.r.t. the

weight function P (x). Thus b

a

P (x)y(x)y(x)dx = 0

or

 b

a

P (x)(u2 + v2)dx = 0

But since P (x) > 0 and yy = u2 + v2 > 0 so the

above integral should have positive value. This con-

tradiction is due to the wrong assumption that β  = 0.

So β = 0 or λ is real. Thus the eigen function y(x) is

also real except for the possible imaginary constant

multiplicative factor.

WORKED OUT EXAMPLES

Laguerre Equation

Example 1: Express the Laguerre differential

equation xy   + (1− x)y  + ny = 0, x  = 0 in the

form of a Sturm-Liouville equation.

Solution: Here a0(x) = x, a1(x) = 1− x, a2(x) =
0, a3(x) = n. Dividing by x the given equation takes

the form

y   +
 
1− x

x

 
y  + ny

x
= 0
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Then

r(x) = e
 

1−x
x dx = eln x−x = xe−x

Multiplying throughout by the integrating factor

r(x) = xe−x , we have

xe−xy   + (1− x)

x
· xe−x · y  + ny

x
· xe−x = 0

d

dx
[xe−xy  ]+ (ne−x)y = 0

which is the Sturm-Liouville equation with r(x) =
xe−x , q(x) = 0, P (x) = e−x , λ = n.

Self-Adjoint

Example 2: Express the Sturm-Liouville equa-

tion using the linear differential operator L defined

by L = d
dx

 
r(x) d

dx

 + q(x). Show that L is a self-

adjoint operator.

Solution: The Sturm-Liouville equation

d

dx

 
r(x)

dy

dx

 
+ [q(x)+ λP (x)]y = 0

in terms of the operator L is

L[y(x)]+ λP (x)y(x) = 0

For a general second-order linear differential opera-

tor L defined by

L[y(x)] = A(x)y  + B(x)y  + C(x)y

its adjoint operator L∗ is defined as

L∗[y(x)] = (Ay)  − (By) + Cy

= (A y + Ay  ) − B  y − By  + Cy

= A  y + 2A y  + Ay   − B  y − By  + Cy

= Ay   + (2A − B)y  + [A  − B  + C]y

Now L is said to be self-adjoint operator if L = L∗.
So the conditions for self-adjoint operator is B =
2A − B andC = A  − B  + C orA = B. Now for

the given operator L, we have

L(y) = d

dx

 
r(x)

dy

dx

 
+ q(x)

= r(x)y   + r  (x)y  + q(x)

We have A(x) = r(x), B(x) = r  (x), C = q(x).

Since A (x) = r  (x) = B(x), the operator L is a self

adjoint operator.

Regular

Example 3: (a) Find the characteristic values and

normalized characteristic functions of the Sturm-

Liouville problem (xy  ) + λ
x
y = 0, with boundary

y(1) = 0, y(b) = 0 on the interval 1 < x < b (b) Ex-

pand a piecewise differentable function f (x) defined

in the interval 1 < x < b in terms of the characteris-

tic functions obtained in (a). Determine the general-

ized Fourier series when (c) f (x) = 1 (d) f (x) = x.

Solution: The given equation x2y   + xy  + λy =
0 is an Euler-Cauchy equation which can be con-

verted to DE with constant coefficients by the sub-

stitution x = et . The xDy = Dy, x2D2y = D(D −
1)y where D = d

dx
and D = d

dt
. Then the trans-

formed equation with t as the independent variable

is

D(D − 1)y +Dy + λy = 0 or D2y + λy = 0 i.e.,
d2y

dt2
+ λy = 0 in the interval ln 1 < ln x < ln b,

0 < t < ln b with the boundary conditions y(t =
0) = 0, y(t = ln b) = 0. The general solution of DE

is

y(t) = c1 cos
√
λt + c2 sin

√
λt

Since 0 = y(t = 0) = c1 · 1+ c2 · 0, we get c1 = 0.

Since

0 = y(t = ln b) = c2 · sin
√
λ ln b,

We get

sin
√
λ ln b = 0

because c2  = 0 (otherwise we get c1 = 0, c2 = 0,

leading to trivial solution).

...
√
λ ln b = πn

Thus the characteristic values are given by

λn =
 πn
ln b

 2
for n = 1, 2, 3, . . .

The corresponding characteristic functions are

yn(t) = c2 sin
√
λt = sin

 πn
ln b

 
t
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or

yn(x) = sin

 
πn ln x

ln b

 

where c2 is taken as 1 for convenience. Here the

weight function is P (x) = 1
x
.

The square of norm of yn(x) is

||yn(x)||2 =
 b

1

1

x
· sin2

 
πn ln x

ln b

 
dx

=
 ln b

0

sin2
 
πnt

ln b

 
dt

= ln b

 1

0

sin2(πny)dy = ln b

2

Recall that c

0

sin
mπx

c
· sin nπx

c
dx =

 
0 form  = n
c
2
form = n

Here t = ln x, y = t
ln b

. Thus norm is

 
ln b
2
. So the

normalized characteristic functions are

φn(x) =
yn(x)

||yn(x)||
=
 

2

ln b
sin

 
πn ln x

ln b

 

for n = 1, 2, 3, . . .. Now the generalized Fourier se-

ries expansion of f (x) in terms of the normalized

characteristic functions φn(x) of the given Sturm-

Liouville problem is

f (x) =
∞ 
n=1

Anφn(x) =
∞ 
n=1

An

 
2

ln b
· sin

 
πn ln x

ln b

 

valid in the interval 1 < x < b. To determine the un-

known Fourier constantsAn’s multiple both sides by
1
x
sin

 
πm ln x
ln b

 
and integrate from w.r.t. x from 1 to b.

Then  b

1

1

x
f1(x) · sin

 
πm ln x

ln b

 
dx

=
∞ 
n=1

An

 
2
ln b

 b
1

1
x
· sin  πn ln x

ln b

 · sin (πm ln x)

ln b
dx

where we have assumed termwise integration. Note

that φn(x) are orthogonal functions in the interval

1 < x < b w.r.t. the weight function 1
x
i.e., b

1

1

x
φn(x)φm(x)dx

=
 b

1

1

x
· sin

 
πn ln x

ln b

 
sin

 
πm ln x

ln b

 
dx

=
 
0 for m  = n
ln b
2

for m = n

Thus for m = n, in the RHS all the coefficients of

An’s will vanish except whenm = n. So the Fourier

coefficients are 
2

ln b

 
ln b

2

 
An =

 b

1

1

x
· f (x) · sin

 
πn ln x

ln b

 
dx

or An =
 

2

ln b

 b

0

1

x
f (x) · sin

 
πn ln x

ln b

 
dx

for m = 1, 2, 3, . . .

(c) Expansion when f (x) = 1. In this case

An =
 

2

ln b
×
 b

0

1

x
· 1sin

 
nπ ln x

ln b

 
dx

An =
 

2

ln b
×
 ln b

0

sin

 
nπt

ln b

 
dt

where t = ln x.

An =
 

2

ln b
×

 
−
 
ln b

nπ

 
cos

 
nπt

ln b

      
ln b

t=0

An =
 

2

ln b

 
ln b

nπ

 
(1− cos nπ )

=
√
2 ln b

nπ
(1− cos nπ )

f (x)=1=
√
2 ln b ·

∞ 
n=1

1
nπ
(1− cos nπ ) sin

 
πn ln x
ln b

 
(d) When f (x) = x. In this case

An =
 

2

ln b

 b

1

1

x
· x · sin

 
nπ ln x

ln b

 
dx

=
 

2

ln b
·
 ln b

0

et · sin
 
πnt

ln b

 
dt where t = ln x

=
 

2

ln b
· b ln b

 1

0

ey · sin(πny)dywherey = t

ln b
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= b
√
2 ln b

 
ey

1+ π2n2
(1 · sin πny − πn cosπny)

     
1

y=0

= b
√
2 ln b

1+ π2n2
[e(−πn(−1)n − πn(−1)]

An =
bπn

√
2 ln b

1+ π2n2
[e(−1)n + 1]

... f (x)=x =
∞ 
n=1

2b

1+ π2n2
[1+ e(−1)n] sin

 
πn ln x

ln b

 

Singular

Example 4: Expand f (x) = 1− x on 0<x<1 in

terms of the eigen functions of the Sturm-Liouville

problem (1− x2)y   − 2xy  + λy = 0 with y  (0) =
0 and y(1) is bounded. Write the first three terms of

the expansion.

Solution: The given DE is Legendre’s equation on

0 < x < 1 which is singular at the end point x =
1. By the substitution y(x) =

∞ 
k=0

akx
k , we get the

general solution as

y(x) = a0

 
1− λ

2
x2 − (6− λ)λ

24
x4

− (20− λ)(6− λ)

720
λx6 . . .

 
+

+ a1

 
x + (2− λ)

6
x3 + (12− λ)(2− λ)

120
x5 + . . .

 
y(x) = a0y1(x)+ a1y2(x)

Differentiating w.r.t. x, we have

y  (x) = a0y
 
1(x)+ a1y

 
2(x)

Now

y  1(x) = 0− λx − λ(6−λ)
6

x3 − λ(20−λ)(6−λ)
120

x5 + · · ·
So y  1(0) = 0

Also y  2(x) = 1+ 2−λ
2
x2 + (12−λ)(2−λ)

24
x4 + · · ·

So y  2(0) = 1

From the boundary condition

0 = y  (0) = a0y
 
1(0)+ a1y

 
2(0) = a0 · 0+ a1 · 1

... a1 = 0

Thus

y(x) = a0y1(x) = P2n(x) for n = 0, 1, 2, . . .

where P2n(x) is Legendre polynomial with even

powers. So the eigen functions of the Sturm-

Liouville problem are P2n(x) for n = 0, 1, 2, . . .

which are orthogonal w.r.t. the weight func-

tion 1. Norm of P2n(x) is

  1

0
P2n(x)P2n(x)dx = 

1
2(2n)+1

 
1

4n+1
. Normalized eigen functions are

√
4n+ 1P2n(x). The eigen-function expansionof the

given function f (x) = 1− x on 0 < x < 1 is given

by

f (x) = 1− x =
∞ 
n=0

anP2n(x)

where an = (4n+ 1)
 1

0
(1− x)P2n(x)dx

Now for n = 0, P0(x) = 1, so

a0 = 1 ·
 1

0

(1− x) · 1 · dx =
 
x − x2

2

     
1

x=0

= 1

2

For n = 1, P2(x) = 1
2
(3x2 − 1), so

a1 = 5

 1

0

(1− x)
1

2
(3x2 − 1)dx

= 5

2

 
3x3

3
− x − 3x4

4
+ x2

2

     
1

x=0

= −5

8

For n = 2, P4(x) = 1
8
(35x4 − 30x2 + 3) so

a2 = 9

 1

0

(1− x) · 1
8
(35x4 − 30x2 + 3)dx

= 9

8

 
35
x5

5
− 30

x3

3
+ 3x − 35

x6

6
+

+ 30
x4

4
− 3x2

2

     
1

x=0

= 9

48
.

Thus the expansion of f (x) = 1− x in terms of the

eigen functions is

f (x) = 1− x = 1

2
P0(x)−

5

8
P2(x)+

9

48
P4(x) . . . ,
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Periodic

Example 5: Find the eigenvalues and eigen func-

tions of the periodic Sturm-Liouville problem y   +
λ2y = 0, y(0) = y(2L) and y  (0) = y  (2L). Verify
orthogonality by direct calculations.

Solution: The general solution of y   + λ2y = 0

is y(x) = c1 cos λx + c2 sin λx. Using the periodic

boundary condition y(0) = y(2L)we get c1 · 1+ c2 ·
0 = y(0) = y(2L) = c1 cos 2Lλ + c2 sin 2Lλ.

This is valid if Lλ = πn so λ = πn
L
. Now y  (x) =

−c1λ sin λx + c2λ cos λx. Using the second condi-

tion y  (0) = y  (2L), we have
−c1λ · 0+ c2λ · 1 = y  (0)
= y  (2L) = −c1λ sin 2Lλ+ c2λ cos 2Lλ which is

valid for Lλ = πn or λ = πn
L
. Thus the eigenval-

ues are λ = πn
L

for n = 0, 1, 2, . . . and the corre-

sponding eigen functions are cos πnx
L

and sin πnx
L

for

n = 0, 1, 2, . . .. These eigen functions are orthogo-

nal w.r.t. the weight function P (x) = 1 since it is

known 2π

0

cos
nπx

L
· cos mπx

L
dx = 0 form  = n

and 2π

0

sin
nπx

L
· sin mπx

L
dx = 0 when m  = n

Example 6: Determine the eigen values and

normalized eigen functions of the regular Sturm-

Liouville problem

(x2y  ) + λy = 0, y(1) = 0, y(b) = 0, 1 < x < b

Solution: The given equation is

x2y   + 2xy  + λy = 0

Put y = Y/
√
x then y  = 1√

x
Y  − 1

2x3/2
Y

and y   = 1√
x
y   − 1

2x3/2
Y  − 1

2x3/2
Y  

− 1
2

 − 3
2

 
1

x5/2
Y . Then the given equation

transforms to x2
 

1√
x
Y   − 1

x3/2
Y  + 3

4
1

x5/2
Y
 

+2x
 

1√
x
Y  − 1

2x3/2
y
 
+ λ · Y√

x
= 0

or x3/2Y   + x1/2Y  +  
λ− 1

4

 
Y√
x
= 0

or [xY  ] + µY
x
= 0 where µ = λ− 1

4
.

From Example 3 above, the eigen values and nor-

malized eigen functions of the present problem are

λn = µn +
1

4
= 1

4
+
 
nπ

log b

 2

and

φn(x) =
 

2

x log b
sin

 
nπ log x

log b

 

for n = 1, 2, 3

EXERCISE

Reduce each of the following differential equations

(1 to 6) to the Sturm-Liouville equation form indi-

cating the weight function P (x).

1. (1− x2)y   − xy  + n2y = 0 (Chebyshev

equation)

Ans. [(1− x2)1/2y  ] +
 

n2

(1−x2)1/2
 
y = 0, P (x) =

(1− x2)−1/2

Hint: r(x) = (1− x2)1/2, q(x) = 0, P (x) =
(1− x2)−1/2, λ = n2

2. y   − 2xy  + 2ny = 0 (Hermite equation)

Ans. [e−x
2
y  ] + [2ne−x

2
]y = 0, P (x) = e−x

2

Hint: r(x) = e−x
2
, q(x) = 0, P (x) = e−x

2
,

λ = 2n

3. xy   + 2y  + (x + λ)y = 0

Ans. (x2y  ) + (x2 + λx)y = 0, P (x) = x

4. y   + y  cot x + λy = 0

Ans. (y  sin x) + λy sin x = 0, P (x) = sin x

5. y   + ay  + (b + λ)y = 0

Ans. (eaxy  ) + eax(b + λ)y = 0, P (x) = eax

6. xy   + (c − x)y  − ay + λy = 0

Ans. (xce−xy  ) + xc−1e−x(−a + λ)y = 0, P (x) =
xc−1e−x

Obtain the eigen values λn and eigen func-

tions yn(x) of the given Sturm-Liouville prob-

lem. Find the norm and determine φn(x), nor-

malized eigen functions. Verify that the eigen

functions are orthogonal w.r.t. the weight



10.28 HIGHER ENGINEERING MATHEMATICS—III

function P (x). Finally expand f (x) in gener-

alized Fourier series in terms of these eigen

functions in the interval a < x < b.

7. y   + λy = 0, y(0) = y(L) = 0, f (x) = x,

0 < x < L

Ans. λn = n2π2

L2 , yn(x) = sin
 
nπx
L

 
, P (x) = 1

norm =

 
L
2
, φn(x) =

 
2
L
sin nπx

L
, n =

1, 2, 3 . . ., f (x) = x = 2L
π

∞ 
n=1

(−1)n+1

n
sin nπx

L

8. y   + λy = 0, 0 < x < L, y  (0) = 0, hy(L)+
y  (L) = 0, h > 0

Ans. λn = α2
n when tan αnL = h

αn
, αn > 0, yn(x) =

cosαnx, n = 1, 2, 3, . . ., norm =
 

2h

hL+sin2 αnL
,

φn(x) =
 

2h

hL+sin2 α2n
cosαnx

9. (xy  ) + λ
x
y = 0, y  (1) = 0, hy(b)+ y  (b) =

0, 1 < x < b; b > 0

Ans. λn = α2
n, tan(αn log(b) = hb

αn
, αn > 0,

yn(x) = cos(αn log x), n = 1, 2, . . ., norm

=
 

2hb

hb log b+sin2(αn log b)

10. y   + λy = 0, y  (0) = 0, y(L) = 0

Ans. λn = α2
n, φn(x) =

 
2
c
, cosαnx, n = 1, 2, . . .,

αn = (2n−1)π

2L

11. y   + λy = 0, y(0) = 0, y  (L) = 0

Ans. λn =
 
(2n+ 1) π

2L

 2
, n = 0, 1, 2, . . ., yn(x) =

sin(2n+ 1)πx
2L

12. (xy  ) + λ
x
y = 0, y(1) = 0, y  (e) = 0

Ans. λn =
 
(2n+ 1)π

2

 2
, n = 0, 1, 2, . . ., yn(x) =

sin
 
n+ 1

2

 
π ln |x|

13. y   + λy = 0, y(1) = 0, y(0)− 2y  (0) = 0,

0 < x < 1 (mixed boundary conditions).

Ans. λn are solutions of tan
√
λ = −2

√
λ,

√
λn ∼

(2n− 1)π
2
, λ1 = 3.3731, λ2 = 23.19, λ3 =

62.67, φn(x) = 2
√
λn cos

√
λnx + sin

√
λnx

14. y   − 2y  + λy = 0, y(0) = 0, y(π ) = 0,

0 < x < π

Ans. λn = 1+ n2, for n = 1, 2, 3, . . ., yn(x) =
ex sin nx

15. Periodic: y   + λy = 0, y(−L) = y(L),

y  (−L) = y  (L),−L < x < L

Ans. λ0 = 0, y0(x) = 1, λn =
 
nπ
L

 2
, yn(x) =

cos nπx
L

and sin nπx
L
, n = 1, 2, 3, . . .

16. y   + λ2y = 0, y(0) = 0, hy(L)+ y  (L) = 0

Ans. λn = zn
L
where sin zn = −αzn cos zn, α = 1

Lh
,

yn(x) = sin λnx.

10.6 GRAM∗-SCHMIDT∗∗ ORTHOGONAL-

IZATION PROCESS

LetX = [x1, x2, . . . , xn]
T and Y = [y1, y2, . . . , yn]

T

be two vectors of Vn(R), the n-dimensional Eu-

clidean space of all real n-component vectors.

Inner product of the two vectors X and Y denoted

by X · Y , is a scalar defined as

X · Y =
∞ 
i=1

xiyi = x1y1 + x2y2 + . . .+ xnyn

Orthogonal vectors

Two vectors X and Y are said to be orthogonal if

X · Y = 0 i.e., their inner product is zero.

Norm or length

Magnitude of a vectorX, denoted by ||X||, is defined
by a non negative real number

||X|| =
√
X ·X =

    n 
i=1

x2i =
 
x21 + x22 + . . .+ x2n

Normalized Vector

It is a unit vector whose norm or magnitude is unity.

Thus given any non-zero vector X, we can define

Y = X
||X| which is a normalized vector with norm 1.

∗ Jorgen P. Gram (1850-1916).
∗∗ Erhardt Schmidt (1876-1959).
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Orthonormal Set of Vectors

A set of n non-zero vectors X1, X2, X3, . . ., Xn, are

said to be (mutually) orthogonal if XiXj = 0 for

i  = j .

This orthogonal set {Xi,X2, . . . , Xn} can be nor-

malized by dividing these vectors by their cor-

responding norms ||Xi ||. Now the set of vectors 
X1

||X1|| ,
X2

||X2|| , . . . ,
Xn

||Xn||

 
is an orthogonal set of unit

vectors. Introducing Yi = Xi
||Xi || , the set of vectors

{Y1, Y2, . . . , Yn}, is said to be an orthonormal set of

vectors. Thus for an orthonormal set

Yi · Yj = δij =
 
0 for i  = j

1 for i = j

Gram-Schmidt orthogonalization Process

Let X1, X2, . . ., Xn be a given non-orthogonal

basis of Vn(R). Then an orthonormal basis of

vectors
 
zi = Yi

||Yi ||

 
can be constructed using the

Gram-Schmidth orthogonalization process as fol-

lows. Choose Y1 = X1

Put Y2 = X2 + a · Y1
Since Y1 and Y2 are orthonormal, we have

Y1 · Y2 = Y1 · (X2 + ay1) = Y1 ·X2 + ay1 · Y1 =
0. So

a = −Y1 ·X2

Y1 · Y1
Thus Y2 = X2 − Y1·X2

Y1·Y1 Y1.
Now put Y3 = X3 + bY2 + cY1
Since Y1, Y2, Y3 are mutually orthogonal we have

Y1 · Y3 = Y1 · (X3 + by2 +XY1) = 0 and

or Y1 ·X3 + bY1 · Y2 + cY1 · Y1 = 0

or c = −Y1·X3

Y1·Y1
and Y2 · Y3 = Y2 · (X3 + bY2 + cY1) = 0

= Y2 ·X3 + bY2 · Y2 + cY2 · Y1 = 0

or b = −Y2 ·X3

Y2 · Y2
Thus substituting values of b and c, we get

Y3 = X3 −
Y2 ·X3

Y2 · Y2
Y2 −

Y1 ·X3

Y1 · Y1
Y1

In a similar way, the remaining vectors can be ob-

tained Yj = Xj −
j−1 
i=1

(Xj ·Yi )
(Yi ·Yi ) Yi for j = 1, 2, 3, . . . N .

Define zi = Yi
||Yi || then {zi} form an orthonormal ba-

sis.

Expansion in Terms of Orthogonal Basis

Theorem: If {e1, e2, . . . ek} is an orthogonal basis,

then any given vector u can be expanded in terms of

the vectors e1, e2, . . . ek as

u = u · e1
e1 · e1

e1 + . . .+ u · ek
ek · ek

ek =
k 

j=1

(u · ej )
(ej · ej )

ej

Further if {ê1, ê2, . . . , êk} is an orthonormal basis

then

u = (u · ê1)ê1 + . . .+ (u · êk)êk =
k 

j=1

(u · êj )êj

where ê1, ê2 . . . êk are unit vectors.

Proof: Suppose u is expanded in terms of

e1, e2, . . . ek as

u = α1e1 + α2e2 + . . .+ αkek

where α1, α2, . . . , αk are unknown coefficients. Tak-

ing inner product with e1 we get

u · e1 = α1e1 · e1 + α2e2 · e1 + . . .+ αkek · e1
Since {e1, e2, . . . , ek} is an orthogonal set,we have

e2 · e1 = 0, e3 · e1 = 0, . . . , ek · e1 = 0. So

α1 =
u · e1
e1 · e1

Thus taking inner product with ej , we get

αj =
u · ej
ej · ej

Substituting these values we have

u =
k 

j=1

αjuj =
k 

j=1

u · ej
ej · ej

uj

If e j s are unit vectors then ej · ej = 1 and the second

result in terms of unit vectors follows.
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Gram-Schmidt orthogonalization process

for functions

Suppose f1(x), f2(x), . . . , fn(x), . . . be a sequence

of piecewise continuous non-orthogonal functions

defined in the interval a ≤ x ≤ b. Assume that each

of these functions have non-zero norm. Then us-

ing Gram-Schmidt orthogonalization process we

can construct an orthonormal set of functions

{φn(x)}, n = 1, 2, 3, . . .w.r.t. aweight functionP (x)

over (a, b).

I. Choose φ1(x) = f1(x)

||f1(x)|| (1)

where ||f1(x)||2 =
 b
a
P (x)f 2

1 (x) dx

II Take g2(x) = f2(x)+ cφ1(x) (2)

Determine c using orthogonality between g2(x)

and φ1(x). Then b

a

P (x)g2(x)φ1(x)dx = 0

or

 b

a

P (x)[f2 + c1φ1]φ1dx = 0

so c1 = −
 b
a
Pf2φ1dx b
a
Pφ2

1dx
(3)

Substituting c from (3) in (2) we get g2(x) and

therefore

φ2(x) =
g2(x)

||g2(x)||
(4)

and φ1(x) form an orthonormal set of functions.

III. Continuing this process we choose g3(x) =
f3(x)+ c1φ1(x)+ c2φ2(x) (5)

Since φ1 and g3 are orthogonal, we have b

a

Pg3φ1dx =
 b

a

P (f3 + c1φ1 + c2φ2)φ1dx = 0

so c1 = −
 b
a
Pf3φ1dx b
a
Pφ2

1dx
(6)

Sinceφ1, φ2 are orthogonal. Similarly sinceφ2 and

g3 are orthogonal we have b

a

Pg3φ2dx =
 b

a

P (f3 + c1φ1 + c2φ2)φ2dx = 0

so c2 = −
 b
a
pf3φ2dx b

a
pφ2φ2dx

(7)

Substituting (6) and (7) in (5), g3(x) is completely
determined. Then

φ3(x) =
g3(x)

||g3(x)||
and φ1, φ2 form an orthonormal set. Continuing
this process we get an orthonormal set of functions

φ1(x), φ2(x), . . . , φn(x), . . . where φn(x) = gn(x)

||gn(x)||
and

gn(x) = fn(x)− φ(x)

 b

a

P (x)fn(x)φ1(x)dx

−φ2(x)
 b

a

P (x)fn(x)φ2(x)dx − · · ·−

−φn−1(x)

 b

a

P (x)fn(x)φn−1(x)dx

or

gn(x) = fn(x)−
n−1 
i=1

φi(x)
 b
a
P (x) fn(x)φi(x)dx

Here ||gn(x)||2 =
 b
a
P (x)g2n(x)dx

WORKED OUT EXAMPLES

Example 1: If X1 = [1, 2, 1]T , X2 =
[2, 1, 2]T ,X3 = [2, 1,−4]T find (a) the inner

product of each pair (b) the length of each vector (c)

a vector orthogonal to both X1 and X2 (d) a vector

orthogonal to both X1 and X3.

Solution: (a) Inner product of X1X2 is XT
1 X2 =

[1, 2, 1]


2

1

2




= 1 · 2+ 2 · 1+ 1 · 2 = 2+ 2+ 2 = 6

XT
1 X3 = [1 2 1]


 2

1

−4


 = 1 · 2+ 2 · 1+ 1 · (−4) = 0

XT
2 X3 = [2 1 2]


 2

1

−4


 = 2 · 2+ 1 · 1+ 2 · (−4) = −3

(b) Length of the vector X1 =  X1 =
√
X ·X
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X ·X = [1 2 1]


1

2

1


, so  X1 =

√
6

Length of X2 =  X2 = √
X2 ·X2

=

     [2 1 2]


2

1

2


 = √

4+ 1+ 4 =
√
9 = 3

Length of X3 =  X3 = √
X3 ·X3

=

     [2 1 − 4]


 2

1

−4


 = √

4+ 1+ 16 =
√
21

(c) Let z1 be the vector which is orthogonal to both
X1 and X2. Then

[X1 X2 0] =

1 2 0

2 1 0

1 2 0




The cofactors of the elements of the column of zeros

are +
    2 1

1 2

    ,−
    1 2

1 2

    ,+
    1 2

2 1

    
So z1 = [3 0 − 3]T = [1 0 − 1]T

(d) If z2 is the vector which is orthogonal to both

X1 and X3 then the cofactors of the elements of the

column of zeros in

[X1X30] =

1 2 0

2 1 0

1 −4 0


 are

+
    2 1

1 −4

    ,−
    1 2

1 −4

    ,+
    1 2

2 1

    i.e., [−9 6 − 3]

= [3 − 2 1]

Example 2: Using Gram-Schmidt process con-
struct an orthonormal set of basis vectors of V3(R)
for the given vectors X1 = [1,−1, 0]T

X2 = [2,−1,−2]T ,X3 = [1,−1,−2]T

Solution: Choose Y1 = X1 = [1,−1, 0]T . Then

Y2 = X2 −
Y1 ·X2

Y1 · Y1
Y1

Here Y1 · Y2 = X1 ·X2 = [1 − 1 0]


 2

−1

−2




= 2+ 1+ 0 = 3

and Y1 · Y1 = X1 ·X1 = [1 − 1 0]


 1

−1

0


 =

1+ 1+ 0 = 2

so Y2 =




2

−1

−2


− 3

2




1

−1

−0


 =




1
2

1
2

−2




Now Y3 = X3 − Y2·X3

Y2·Y2 Y2 −
Y1·X3

Y1·Y1 Y1

Here Y2 ·X3 =
 
1
2
1
2
− 2

  1

−1

−2


 = 1

2
− 1

2
+ 4 = 4

Y2 · Y2 =
 
1

2

1

2
− 2

  1
2
1
2

−2


 = 1

4
+ 1

4
+ 4 = 9

2

Y1 ·X3 = [1 − 1 0]


 1

−1

−2


 = 1+ 1+ 0 = 2

So Y3 =

 1

−1

−2


− 4 

9
2

 



1
2

1
2

−2


− 2

2


 1

−1

0


 =



− 4

9

− 4
9

− 2
9




Now Y3 · Y3 =
 − 4

9
−4
9

−2
9

 


− 4

9

− 4
9

− 2
9


 = 16

81
+ 16

81
+ 4

81

= 36

81
= 4

9

Normalizing the vectors we get the orthonormal set
of vectors

z1 = Y1

 Y1 
= 1√

2


 1

−1

0


 , z2 = Y2

 Y2 
=

√
2

3


 1

2
1
2

−2




and z3 = Y3

 Y3 
= 3

2



− 4

9

− 4
9

− 2
9


 = −




2
3

46pt] 2
3

1
3


 = −1

3



2

2

1
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Example 3: Given X1 = [1, 1,−1]T and X2 =
[2, 1, 0]T obtain an orthonormal basis of V3(R).

Solution: Take Y1 = X1 = [1, 1,−1]T . Let us con-

struct Y2 by Gram-Schmidt orthogonal process.

So Y2 = X2 − Y1·X2
Y1·Y1 Y1. Here Y1 · Y1 = X1 ·X1 =

[1, 1,−1]


 1

1

−1


 = 1 + 1 + 1 = 3 and Y1 ·X2 =

X1 ·X2 = [1 1 − 1]


2

1

0


 = 2 + 1 + 0 = 3. Thus

Y2 =

2

1

0


− 3

3


 1

1

−1


 =


1

0

1


 , Y2 · Y2 = [1 0 1]


1

0

1




= 2

Normalizing the vectors

z1 = Y1

 Y1 
= 1√

3


 1

1

−1


 , z2 = Y2

 Y2 
= 1√

2


1

0

1




The third orthonormal vector z3 is the vectors of the

cofactors of the column of zeros in the matrix

[z1 z2 0] =




1√
3

1√
2

0

1√
3

0 0

− 1√
3

1√
2

0




i.e.

     
1√
3

0

− 1√
3

1√
2

     ,−
     

1√
3

1√
2

− 1√
3

1√
2

     ,
      

1√
3

1√
2

1√
3

0

      
or z3 =

 
1√
6
, 2√

6
,− 1√

6

 T
Example 4: (a) Expand the vector u = (9,−2, 4)

in terms of the orthogonal basis {e1, e2, e3}
of R3 where e1 = (2, 1, 3), e2 = (1,−2, 0), e3 =
(6, 3,−5) (b) what is the expansion in terms or-

thonormal vectors ê1, ê2, ê3.

Solution: (a) Here u · e1 = (9,−2, 4) · (2, 1, 3) =
18− 2+ 12 = 28,

u · e2 = (9,−2, 4) · (1,−2, 0) = 9+ 4 = 13,
u · e3 = (9,−2, 4) · (6, 3,−5) = 54− 6− 20 =
+ 28. Also e1 · e1 = 4+ 1+ 9 = 14, e2 · e2 =
1+ 4+ 0 = 5, e3 · e3 = 36+ 9+ 25 = 70. Then

(9,−2, 4) = u = u · e1
e1 · e1

e1 +
u · e2
e2 · e2

e2 +
u · e3
e3 · e3

e3

= 28

14
e1 +

13

5
e2 +

28

70
e3

(9,−2, 4) = u = 2e1 +
13

5
e2 +

2

5
e3

(b) Normal of base vectors are  e1 = √
e1 · e1 =√

14,  e2 =
√
5,  e3 =

√
70. Then ê1 = e1

||e1|| =
e1√
14
, ê2 = e2√

5
, ê3 = e3√

70

Then u = (u · ê1)ê1 + (u · ê2)ê2 + (u · ê3)ê3

= 28√
14
ê1 +

13√
5
ê2 +

28√
70
ê3

= 2
√
14 ê1 +

13√
5
ê2 +

2

5

√
70 ê3

Example 5: Using Gram-Schmidt orthogonal-

ization process, construct an orthonormal set for

the given functions f1(x) = 1, f2(x) = x, f3(x) =
x2 w.r.t. the weight function e−x over the interval

0 < x <∞.

Solution: Take φ1(x) = f1(x)

 f1(x) . Here f1(x) = 1

norm of f1(x) w.r.t. e
−x over (0,∞) is  f1(x) = ∞

0
e−x · 1 · dx = e−x

−1

   ∞
0

= 1. Thus

φ1(x) = 1
1
= 1. Now take

g2(x) = f2(x)+ cφ1(x)

and determine c using the fact that g2(x) and φ1(x)
are orthogonal. Then ∞

0

e−x · g2(x) · φ1(x)dx = 0

 ∞

0

e−x (f2(x)+ cφ1(x)φ1(x))dx = 0

So c = −
 ∞
0 e−x ·xdx ∞

0 e−x ·1·1·dx = −  ∞
0
xe−xdx

= −
 
x · e

−x

−1
− 1 · e−x

 ∞
0

= −1

Thus g2(x) = f2(x)+ cφ1(x) = x − 1 · 1 = x − 1.
Norm of g2(x) is  g2(x) where

 g2(x) 2 =
 ∞

0

e−x (x − 1)2dx =
 ∞

0

e−x (x2 + 1− 2x)dx

= 1 · 2!+ 1 · 1+ 2 · 1 = 1
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Then φ2(x) = g2(x)

 g2(x) = x−1
1

= x − 1.

Now take

g3(x) = f3(x)+ c1φ1(x)+ c2φ2(x)

We determine c1 and c2 using orthogonality property
between g3, φ1 and g3, φ2. Then since g3 and φ1 are
orthogonal, we have ∞

0

e−xg3(x)φ1(x)dx = 0

or
 ∞
0
e−x(f3 + c1φ1 + c2φ2)φ1dx = 0

so c1 = −
 ∞
0 e−xf3φ1dx

+  ∞
0 e−xφ1φ1dx

= −  ∞
0
e−xf3φ1dx

c1 = −
 ∞

0

e−xx2 · 1 · dx = −1 · 2! = −2

Also since g3 and φ2 are orthogonal, we have ∞
0
e−xg3(x)φ2(x)dx = 0

or
 ∞
0
e−x(f3 + c1φ1 + c2φ2)φ2dx = 0

c2 = −
 ∞
0 e−xf3φ2dx ∞
0 e−xφ2φ2dx

= −
 ∞

0

e−xf3φ2dx

c2 = −
 ∞

0

e−xx2(x − 1)dx = −[3!− 2!] = −4

Therefore

g3(x) = f3 + c1φ1 + c2φ2

= x2 − 2 · 1− 4(x − 1)

g3(x) = x2 − 4x + 2

Now

 g3(x) 2 =
 ∞

0

e−xg23(x)d

=
 ∞

0

e−x (x2 − 4x + 2)2dx

=
 ∞

0

e−x (x4 − 16x2 + 4− 8x3 − 16x + 4x2)dx

= 4!− 8 · 3!+ 20 · 2!− 16 · 1+ 4 = 4

... φ3(x) =
g3(x)

 g3(x) 
= x2 − 4x + 2

4

Thus the three functions

φ1(x) = 1, φ2(x) = x − 1, φ3(x) =
x2 − 4x + 2

4

which are constructed by Gram-Schmidh or-

thogonalization using the given function f1(x) =

1, f2(x) = x, f3(x) = x2 form an othonormal set of

functions wrt e−x over (0,∞).

EXERCISE

1. If X1 = [1, 2, 3]T and X2 = [2,−3, 4]T find

(a) their inner product (b) length of each

Ans. (a) 8 (b)
√
14,

√
29

2. (a) Prove that X1 =
 
1
3
, −2

3
, −2

3

 T
and X2 = 

2
3
, −1

3
, −2

3

 T
are orthogonal (b) Find a vector

X3 orthogonal to both X and Y .

Ans. (a) X1 ·X2 = 0

(b) X3 =
 −2

3
, −2

3
, 1
3

 T
Hint: Elements of X3 are the cofactors of the
elements of the column of zeros in the matrix


1
3

2
3

0

− 2
3

− 1
3

0

− 2
3

2
3

0




3. Using Gram-Schmidt process, construct an

orthogo-normal basis of V3(R) given a basis

of vectors X1, X2, X3 where

(a) X1 = [1, 1, 1]T ,X2 = [1,−2, 1]T ,X3 =
[1, 2, 3]T

(b) X1 = [2, 1, 3]T ,X2 = [1, 2, 3]T ,X3 =
[1, 1, 1]T

(c) X1 = [1, 0, 1]T ,X2 = [1, 3, 1]T ,X3 =
[3, 2, 1]

(d) X1 = [2,−1, 0], X2 = [4,−1, 0], X3 =
[4, 0,−1]

(e) X1 = [1, 1, 0], X2 = [2,−1, 1], X3 =
[1, 0, 3]

Ans. (a) 1√
3
[1, 1, 1], 1√

6
[1,−2, 1], 1√

2
[−1, 0, 1]

(b) 1√
14
[2, 1, 3], 1√

42
[−4, 5, 1], 1√

3
[1, 1,−1]

(c) 1√
2
[1, 0, 1], [0, 1, 0], 1√

2
[1, 0,−1]

(d) 1√
5
[2,−1, 0], 1√

5
[1, 2, 0], [0, 0,−1]

(e) 1√
2
[1, 1, 0], 1√

22
[3,−3, 2], 1√

11
[−1, 1, 3]

4. Show that X1 = (1, 0, 0, 0), X2 = 
0, 1√

2
, 0, 1√

2

 
, X3 =

 
0, 1√

2
, 0− 1√

2

 
form an orthonormal set.
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5. Find scalars α, β, γ and the vectors u1, u2, u3
such that u1 = u, u2 = u+ αv, u3 =
u+ βv + γw is a non-zero orthogonal
set. Normalize the set, given

u = (1, 3, 0), v = (2, 3, 0), w = (2, 1,−3)

Ans. u1 = u = (1, 3, 0), u2 = u− 10
11
v = − 9

11
, 3
11
, 0
 
,

u3 = u− 5
4
v + 3

4
w =  

0, 0, −9
4

 
, nor-

malized vector

X1 = u1

 u1 
=
 

1√
10
,

3√
10
, 0

 
,

X2 = u2

 u2 
=
 
− 9√

90
,

3√
90
, 0

 

X3 = u3

 u3 
= [0, 0,−1]

6. Find all non-zero vectors (if any) orthogonal

to the following vectors (a) (3, 0, −1) (b) (1,

3, 4, 0) and (2, −1, 0, 5)

Ans. (a) u =  
α
3
, β, α

 
where α, β are arbitrary

(b) u = [−15α − 4β, 5α − 8β, 7β, 7α]

where α, β are arbitrary.

Hint. Assume u = [α, β, γ ] solve for α, β, γ

using orthogonality condition u · u1 = 0 etc.

7. Expand u = (1, 0, 0, 0) in terms of orthog-

onal basis vectors e1= (2, 0,−1,−5), e2=
(2, 0,−1, 1), e3= (0, 1, 0, 0), e4= (1, 0, 2, 0)

Ans. 1
15
e1 + 1

3
· e2 + 0 · e3 + 1

5
e4

8. (a) Expand (4, 3, −3, 6) in terms of or-

thogonal basics vectors e1 = (1, 0, 2, 0), e2 =
(0, 1, 0, 0), e3 = (−2, 0, 1, 5),

e4 = (−2, 0, 1,−1) (b) What is the ex-

pansion in terms of unit vectors

Ans. (a) − 2
5
e1 + 3e2 + 19

30
e3 − 17

6
e4

(b) − 2√
5
ê1 + 3ê2 + 19√

30
ê3 − 17√

6
ê4.

Using Gram-Schmidt orthogonalization pro-

cess construct an orthonormal set of vec-

tors from the given functions f1(x), f2(x) and

f3(x) over the interval (a, b).

9. f1(x) = 1, f2(x) = x, f3(x) = x2, 0 < x <

1.

Ans. φ1(x) = 1√
2
, φ2(x) =

 
3
2
x, φ3(x) =

1
2

 
5
2
(2x2 − 1)

10. f1(x) = 1, f2(x) = x, f3(x) = x2,−1 ≤ x ≤
1

Ans. φ0 = 1√
2
, φ1 = x√

2/3
, φ2 = x2− 2

3√
2/5

.



Chapter11

Special Functions—Gamma, Beta,
Bessel and Legendre

INTRODUCTION

Algebraic function f (x) is obtained by the algebraic

operations of addition, subtraction, multiplication,

division and square rooting of x polynomial and

rational functions are such functions. Transcenden-

tal functions include trigonometric functions (sine,

cosine, tan) exponential, logarithmic and hyperbolic

functions.

Algebraic and transcendental functions together

constitute the elementary functions. Special func-

tions (or higher functions) are functions other than

the elementary functions such as Gamma, Beta

functions (expressed as integrals) Bessel’s functions,

Legendre polynomials (as solutions of ordinary dif-

ferential equations). Special functions also include

Laguerre, Hermite, Chebyshev polynomials, error

function, sine integral, exponential integral, Fresnel

integrals, etc.

Many integrals which can not be expressed in

terms of elementary functions can be evaluated in

terms of beta and gamma functions.

Heat equation, wave equation and Laplace’s

equation with cylindrical symmetry can be solved

in terms of Bessel’s functions, with spherical

symmetry by Legendre polynomials. We consider

Fourier-Legendre series and Fourier-Bessel series.

Chebyshev-polynomials which are useful in approx-

imation theory are also presented.

11.1 GAMMA FUNCTION

Gamma function denoted by  (p) is defined by

the improper integral which is dependent on the

parameter p,

 (p) =
 ∞

0

e−t tp−1 dt, (p > 0) (1)

Gamma function is also known as Euler’s integral of

the second kind.
Integrating by parts

 (p + 1)=
 ∞

0

e−t tp dt

=−e−t tp
   ∞
0
+ p

 ∞

0

e−t tp−1 dt

= 0+ p (p)

Thus  (p + 1)= p (p) (2)

(2) is known as the functional relation or reduction

or recurrence formula for gamma function.

Result:

 (n+ a) = (n+ a − 1)(n+ a − 2)(n+ a − 3) · · ·
a ·  (a), n is integer.

By definition

 (1) =
 ∞

0

e−t dt = e−t

−1

    
∞

0

= 1 (3)

By the reduction formula (2),

 (2)= 1 ·  (1) = 1

and  (3)= 2 ·  (2) = 2 · 1 = 2!

and in general when p is a positive integer n

 (n+ 1)= n (n) = n(n− 1) (n− 1)

= n(n− 1)(n− 2) (n− 2)

= n · (n− 1)(n− 2) · · · 3 · 2 · 1 = n!

11.1
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Thus for p = n, positive integer

 (n+ 1) = n! (4)

For this reason, Gamma function is regarded as the
generalization of the elementary factorial function.
Gamma function for negative values of p i.e.,
p < 0: Rewrite (2) as left-marching recurrence for-
mula,

 (p)=  (p + 1)

p
(5)

As p→ 0,  (0)= lim
p→0

 (1)

p
= lim

p→0

1

p
→∞

Thus  (0) is undefined and it follows from (5) that

 (−1),  (−2),  (−3), etc. are all undefined.
Repeated application of (5) results in

 (p)=  (p + 1)

p
=  (p + 2)

p(p + 1)
= · · ·

=  (p + k + 1)

p(p + 1) · · · (p + k)
(6)

Relation (6) is used to find gamma function forp < 0

(except at p = 0,−1,−2,−3, . . .).

Hence gamma function is continuous for any p > 0

and is discontinuous at p = 0,−1,−2,−3, . . ..

Thus  (p) is defined for all p, except for zero and

negative integers.

Standard Results

1.  
 

1
2

 = √
π

By definition  
 

1
2

 =  ∞
0
t−

1
2 e−t dt , put t = u2

then  
 

1
2

 = 2
 ∞
0
e−u

2
du

 

 
1

2

 
·  
 

1

2

 
=
 
2

 ∞

0

e−u
2
du

  
2

 ∞

0

e−v
2
dv

 

= 4

 ∞

0

 ∞

0

e−(u2+v2)du dv

This double integral in the first quadrant is
evaluated by changing to polar coordinates
u = r cos θ, v = r sin θ, J = r 

 

 
1

2

  2
= 4

 π
2

θ=0

 ∞

r=0

e−r
2
r dr dθ

= 4

 π
2

0

− 1

2
e−r

2

    ∞
r=0

dθ

= 2

 π
2

0

dθ = 2 · θ
   π2
0
= 2 · π

2
= π.

Hence  

 
1

2

 
= √

π

2.  
 
p+1

q

 
= qa(p+1)/q

 ∞
0
xpe−ax

q
dx; p, q, a are

positive constants

Put y = axq then dy = aqxq−1dx ∞

0

xpe−ax
q
dx =

 ∞

0

  y
a

 1
q

 p
e−y · 1

aqxq−1
dy

=
 
qa(p+1)/q

 −1
 ∞

0

y(p+1−q)/qe−ydy

=
 
 
p+1
q

 
qa

(p+1)
q

.

3.  (n+ 1) = (m+ 1)n+1(−1)n
 1

0
xm(ln x)ndx

where n is a positive integer and m > −1.

Put x = e−y then dx = −e−ydy = −x dy 1

0

xm(ln x)ndx =
 ∞

0

e−my · (−y)ne−ydy

= (−1)n
 ∞

0

yn · e−(m+1)ydy,

Put (m+ 1)y = u

= (−1)n
 ∞

0

un

(m+ 1)n
· e−u· du

m+ 1

= (−1)n

(m+1)n+1

 ∞

0

e−u· undu= (−1)n

(m+1)n+1
·  (n+1)

11.2 BETA FUNCTION

Beta function β(p, q) defined by

β(p, q) =
 1

0

xp−1(1− x)q−1dx, (p > 0, q > 0) (1)

is convergent for p > 0, q > 0. This function is also

known as Euler’s integral of the first kind.

Standard Results

1. Symmetry: β(p, q) = β(q, p) (2)

β(p, q) =
 1

0

xp−1(1− x)q−1dx. Put x = 1− y

=
 0

1

(1− y)p−1 · yq−1(−dy)
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=
 0

1

yq−1(1− y)p−1dy = β(q, p).

2. Beta function in terms of trigonometric
functions

β(p, q) = 2

 π
2

0

sin2p−1 x · cos2q−1 x dx (3)

Putting x = sin2 θ, dx = 2 sin θ · cos θ dθ and
1− x = cos2 θ ,

β(p, q)=
 1

0

xp−1(1− x)q−1dx

=
 π

2

0

sin2p−2 θ · cos2q−2 θ · 2

× sin θ · cos θ dθ

β(p, q)= 2

 π
2

0

sin2p−1 θ · cos2q−1 θ dθ

= 2 · I2p−1,2q−1

or Ip, q =
 π

2

0

sinp θ cosq θ dθ

= 1

2
β

 
p + 1

2
,
q + 1

2

 
, p > −1

, q > −1 (4)

3. Beta function expressed as an improper
integral

β(p, q)=
 ∞

0

yp−1

(1+ y)p+q
dy

=
 ∞

0

yq−1dy

(1+ y)p+q
(5)

Putting x = y

1+y or y = x
1−x ,

limits for y are 0 to ∞.

β(p, q)=
 1

0

xp−1(1− x)q−1dx

=
 ∞

0

yp−1

(1+ y)p−1
·
 

1

1+ y

 q−1

· dy

(1+ y)2

=
 ∞

0

yp−1

(1+ y)p+q
dy

=
 ∞

0

yq−1

(1+ y)q+p
dy.

The last integral follows from symmetry.

4. Relation between β and  functions

β(p, q) =  (p) (q)

 (p + q)
(6)

By definition

 (p) =
 ∞

0

xp−1e−x dx,

Put x = t2, dx = 2t dt

 (p)=
 ∞

0

t2p−2 · e−t2 · 2t dt

= 2

 ∞

0

t2p−1 · e−t2 dt

Then  (p)  (q)=
 
2

 ∞

0

x2p−1e−x
2
dx

 

×
 
2

 ∞

0

y2q−1e−y
2
dy

 

Here t, x, y are dummy variables.

= 4

 ∞

0

 ∞

0

x2p−1 · y2q−1 · e−(x2+y2)dxdy.

Introduce polar coordinates

x = r cos θ, y = r sin θ.

As x, y vary in the first quadrant (i.e.,
0 < x <∞, 0 < y <∞), r varies from 0 to∞
and θ from 0 to π

2
. Jacobian: r

 (p)  (q)= 4

 π
2

0

 ∞

0

(r cos θ )2p−1 · (r sin θ )2q−1

× e−r2 · r dr dθ

= 4

  π
2

0

sin2q−1 θ · cos2p−1 θ dθ

 

×
  ∞

0

e−r
2 · r2p+2q−1 · dr

 

Using result 2 above in this page and putting
r2 = t

 (p)  (q)= 4 ·
 

1

2
β(p, q)

  
1

2

 ∞

0

e−t · tp+q−1dt

 
 (p)  (q)= β(p, q) ·  (p + q), hence the result.

5.  (p)  (1− p) = π
sinpπ

, 0 < p < 1

Put q = 1− p in (6) and use (5)

 (p) (1− p)

 (p + 1− p)
= β(p, 1− p)
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=
 ∞

0

xp−1

1+ x
dx = π

sinpπ

(which follows from residue theorem) and since

 (1) = 1

6.  
 

1
2

 = √
π

Put p = q = 1
2

in (6) and use (3)

 
 

1
2

 
 
 

1
2

 
 
 

1
2
+ 1

2

 = β

 
1

2
,
1

2

 
= 2

 π
2

0

sin◦ θ cos◦ θ dθ

= 2 · π
2
= π

Since  (1) = 1,  
 

1
2

 ·   1
2

 = π

7.
 π

2
0 sinn x dx = 1

2
β
 
n+1
2
, 1

2

 =  
 
n+1
2

 
 
 
n+2
2

 √π
2

which follows from (4) with p = n and q = 0

Similarly with p = 0, q = n from (4), we get

8.
 π

2
0 cosn x dx = 1

2
β
 

1
2
, n+1

2

 =  
 
n+1
2

 
 
 
n+2
2

 √π
2

9. Legendre’s duplication formula for  function:

√
π (2p) = 22p−1 ·  (p) 

 
p + 1

2

 
Putting p = q in (3), we get

β(p, p)= 2

 π
2

0

sin2p−1 θ · cos2p−1 θ dθ

= 2

 π
2

0

(sin θ · cos θ )2p−1dθ

= 2

 π
2

0

 
sin 2θ

2

 2p−1

dθ

= 2

22p−1

 π
2

0

(sin 2θ )2p−1dθ

Put 2θ = t ,

β(p, p)= 1

22p−1
·
 π

0

sin2p−1 t dt

= 1

22p−1

 
2

 π
2

0

sin2p−1 t dt

 

β(p, p)= 1

22p−1
· β
 
p,

1

2

 

since from (3) with q = 1
2
,

β(p,
1

2
) = 2

 π
2

0

sin2p−1 x dx.

Using (6), express β in terms of  functions

22p−1 ·  (p) (p)

 (p + p)
=
 (p) 

 
1
2

 
 
 
p + 1

2

 

or 22p−1 ·  (p) 

 
p + 1

2

 
=  

 
1

2

 
 (2p)

=√
π (2p)

10. I =  π
2

0 sinp θ dθ =  π
2

0 cosp θ dθ =
a.

1·3·5···(p−1)

2·4·6···p · π
2

if p is an even positive integer

and

b. I
2·4·6···(p−1)

1·3·5···p if p is an odd positive integer.

a.
 π

2
0 sinp θ dθ =  

 
1
2
(p+1)

 
 
 

1
2

 
2 
 

1
2
(p+2)

 from result 7.

If p = 2r ,

I =
 
 
r + 1

2

 √
π

2 (r + 1)

=

 
r − 1

2

  
r − 3

2

 
· · · 3

2
· 1

2
·  
 

1
2

 √
π

2 · r!

I = (2r − 1)(2r − 3) · · · 3 · 1
2r · (2r − 2) · (2r − 4) · · · 2 ·

π

2

b. If p = 2r + 1,

I =
 (r + 1)  

 
1
2

 
2 
 
r + 3

2

 

= r!
√
π

2
 
r + 1

2

  
r − 1

2

  
r − 3

2

 
· · · 3

2
· 1

2
 
 

1
2

 

= 2r · r!
(2r + 1)(2r − 1) · · · 5 · 3 · 1

= 2 · 4 · 6 · · · (2r − 2) · 2r
1 · 3 · 5 · · · (2r − 1)(2r + 1)
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11. β(p, q) = β(p + 1, q)+ β(p, q + 1)

By definition

β(p + 1, q)+ β(p, q + 1)

=
 1

0

xp(1− x)q−1dx +
 1

0

xp−1(1− x)q dx

=
 1

0

xp−1(1− x)q−1
 
x + (1− x)

 
dx

=
 1

0

xp−1(1− x)q−1dx = β(p, q).

12. β(m, n) = (m−1)! (n−1)!

(m+n−1)!
form, n positive integers

From the above result 11

β(m, n) = β(m+ 1, n)+ β(m, n+ 1)

Expressing in  functions using (6)

β(m, n) =  (m+ 1) (n)

 (m+ n+ 1)
+  (m) (n+ 1)

 (m+ n+ 1)

Since m and n are positive integers

= m!(n− 1)!+ (m− 1)!n!

(m+ n)!

= (m− 1)!(n− 1)![m+ n]

(m+ n)!
= (m− 1)!(n− 1)!

(m+ n− 1)!

13.
 1

0
xp(1− xq)rdx = 1

q
β
 
p+1

q
, r + 1

 
Put xq = y, qxq−1dx= dy or qy

 
q−1
q

 
dx = dy

 1

0

xp(1− xq )rdx =
 1

0

y

 
p
q

 
(1−y)r 1

qy(q−1)/q
· dy

= 1

q

 1

0

y(p−q+1)/q (1− y)rdy

= 1

q
β

 
p − q + 1

q
+ 1, r + 1

 

= 1

q
β

 
p + 1

q
, r + 1

 

Note: When q = 1,
 1

0
xp(1 − x)r dx =

β (p + 1, r + 1).

14.
 1

0
xm−1(1−x)n−1

(b+cx)m+n dx = 1
bn(b+c)m · β(m, n)

Put y = x(1+a)
b+cx then x = yb

1+a−cy ,

1−x = (1+a)−y(c+b)
(1+a−cy) , b+cx= b(1+a)

(1+a−cy)

and dx = (b + cx)dy

(1+ a − cy)
= b(1+ a)dy

(1+ a − cy)2
.

Now y varies from 0 to 1+a
b+c = e say

 1

0

xm−1(1− x)n−1

(b + cx)m+n
dx

=
 e

0

 
yb

1+ a − cy

 m−1  (1+ a)− y(c + b)

1+ a − cy

 n−1

× (1+ a − cy)m+n 
b(1+ a)

 m+n b(1+ a) dy

(1+ a − cy)2

=
 e

0

1

bn(1+ a)m+n−1
ym−1

×
 
(1+ a)− y(c + b)

 n−1
dy

= 1

bn

1

(1+ a)m

 e

0

ym−1

 
1− 1

e
y

 n−1

dy

Put
1

e
y = t

= 1

bn

1

(1+ a)m

 1

0

(et)m−1(1− t)n−1 · e dt

= 1

bn

1

(1+ a)m
·
 

1+ a

b + c

 m
·
 1

0

tm−1(1− t)n−1 dt

= 1

bn

1

(b + c)m
· β(m, n).

15. When c = 1, b = a, from above result 14, 1

0

xm−1(1− x)n−1

(a + x)m+n
dx = 1

an(1+ a)m
β(m, n).

WORKED OUT EXAMPLES

Gamma and Beta functions

Example 1: Compute (a)  (4.5) (b)  (−3.5)

(c)  
 

1
4

 
 
 

3
4

 
(d) β

 
5
2
, 3

2

 
(e)

 
 
n+ 1

2

 
 (n+1)

.
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Solution:

a. Using  (p + 1) = p (p)

 (4.5)=  (3.5+ 1) = 3.5 (3.5) = (3.5)(2.5) (2.5)

= (3.5)(2.5)(1.5)(.5) (.5)

= 6.5625
√
π = 11.62875

b. Using  (p) =  (p+1)

p

 (−3.5)=  (−3.5+ 1)

−3.5
=  (−2.5)

−3.5
=  (−2.5+ 1)

(−3.5)(−2.5)

=  (−1.5)

(3.5)(2.5)
=  (−1.5+ 1)

−(3.5)(2.5)(1.5)

=  (.5)

(3.5)(2.5)(1.5)(.5)
=

√
π

(3.5)(2.5)(1.5)(.5)

= .270019

c. Using  (n) (1− n) = π
sin nπ

 

 
1

4

 
 

 
1− 1

4

 
=  

 
1

4

 
 

 
3

4

 

= π

sin π
4

=
√

2π = 4.444

d. β

 
5

2
,
3

2

 
=
 
 

5
2

 
 
 

3
2

 
 
 

5
2
+ 3

2

 =
3
2
 
 

3
2

 
·  
 

3
2

 
3!

= 1

4

 
1

2
 

 
1

2

  2
= 1

4
· 1

4
· π = ·1964

e.  

 
n+ 1

2

 
=
 
n+ 1

2
− 1

  
n+ 1

2
− 2

 

×
 
n+ 1

2
− 3

 
· · · 1

2
 

 
1

2

 

= (2n− 1)

2

 
2n− 3

2

  
2n− 5

2

 

× · · · 3

2
· 1

2
· √π

=
 
(2n− 1)(2n− 3)(2n− 5) · · · 1 · √π  

2n

Since  (n+ 1) = n! thus

 
 
n+ 1

2

 
 (n+ 1)

= 1 · 3 · 5 · · · (2n− 3)(2n− 1)

2n · n!
√
π.

Example 2: Evaluate I =  ∞
0
x4e−x

4
dx.

Solution: Put x4 = t, 4x3dx = dt, dx = 1
4
t−

3
4 dt

I =
 ∞

0

t · e−t · t
− 3

4

4
· dt = 1

4

 ∞

0

e−t · t 1
4 dt

= 1

4
 

 
1+ 1

4

 
= 1

4
 

 
5

4

 
.

Example 3: Evaluate I =  1

0
3

 
x ln
 

1
x

 
dx.

Solution: Put ln
 

1
x

 = t, x = e−t , dx = −e−t dt

I =
 0

∞
(e−t · t) 1

3 (−e−t )dt

=
 ∞

0

t
1
3 e−

4t
3 dt, Put

4t

3
= y

=
 ∞

0

 
3

4

 4
3

e−yy
1
3 dy =

 
3

4

 4
3

 

 
1

3
+ 1

 

=
 

3

4

 4
3

 

 
4

3

 
.

Example 4: Evaluate

a.
 π

2
0 sin10 θ dθ

b.
 π

2
0 cos9 θ dθ

c.
 π

2
0 sin6 θ · cos7 θ dθ

d.
 π

2
0

 
3√

sin 8x√
cos x

 
dx

Solution:

a.
 π

2
0 sin10 θ dθ = 1·3·5·7·9

2·4·6·8·10
π
2
= 63

256
π , since p = 8

is even

b.
 π

2
0 cos9 θ dθ = 2·4·6·8

1·3·5·7·9 , p = 9 is odd

c.

 π
2

0

sin6 θ · cos7 θ dθ

= 1

2
β

 
6+ 1

2
,
7+ 1

2

 
= 1

2

 
 

7
2

 
 (4)

 
 

15
2

 

= 1

2

 
7
2
−1
  

7
2
−2
  

7
2
−3
 
·3! 

15
2
−1
  

15
2
−2
  

15
2
−3
  

15
2
−4
  

15
2
−5
  

15
2
−6
  

15
2
−7
 

= 24

3 · 7 · 11 · 13
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d.

 π
2

0

3
√

sin 8x√
cos x

dx

=
 π

2

0

sin
8
3 x · cos−

1
2 x dx = 1

2
β

 
8
3
+1

2
,
− 1

2
+1

2

 

= 1

2
β

 
11

6
,
1

4

 
= 1

2

 
 

11
6

 
 
 

1
4

 
 
 

11
6
+ 1

4

 

= 1

2
·

 
5
6

 
 
 

5
6

 
 
 

1
4

 
13
12
· 1

12
 
 

1
12

 = 60

13

 
 

5
6

 
 
 

1
4

 
 
 

1
12

 .

Example 5: Evaluate I =  1

0

 
x

1−x3

 1
2
dx.

Solution: I =  1

0
x

3
2 (1− x3)−

1
2 dx. put x3 = t

I =
 1

0

t
1
2 · (1− t)−

1
2 · 1

3
t−

2
3 dt

= 1

3

 1

0

t−
1
6 · (1− t)−

1
2 dt = 1

2
β

 
1−1

6
, 1−1

2

 

= 1

3
β

 
5

6
,
1

2

 
= 1

3

 
 

5
6

 
·  
 

1
2

 
 
 

5
6
+ 1

2

 

= 1

3

 
 

5
6

 √
π

1
3
 
 

1
3

 =
√
π

 
 

1
3

 ·   1

3
+ 1

2

 
.

using duplication form  
 

1
3
+ 1

2

 
 
 

1
3

 = √
π 
 

2
3

 
2

2
3 −1

Also  

 
1

3

 
 

 
1− 1

3

 
=  

 
1

3

 
 

 
2

3

 
= π

sin π
3

.

Substituting

=
√
π

 
 

1
3

 
√
π ·  

 
2
3

 
 
 

1
3

 
· 2 1

3

= π 
 
 

1
3

  2
· 2 1

3

· π

 
 

1
3

 
· sin  π

3

 

I = π22−
1
3 

 
 

1
3

  3
· sin π

3

.

Example 6: Evaluate I =  ∞
0
a−bx

2
dx.

Solution: Put a−bx
2 = e−t , −bx2 ln a = −t

2bx ln a dx = dt , also x =  t
b ln a

 1
2

So dx = t−
1
2 dt

(2b ln a)
1
2

I =
 ∞

0

e−t · t− 1
2 dt

(2b ln a)
1
2

= 1

(2b ln a)
1
2

·  
 

1− 1

2

 

=
√
π

(2b ln a)
1
2

.

Example 7: Evaluate

I =
  ∞

0

x e−x
8
dx

 
×
  ∞

0

x2 e−x
4
dx

 
.

Solution: I = I1 × I2.

Put x8 = t in I1, x = t
1
8 , dx = 1

8
t−

7
8 dt

I1 =
 ∞

0

x e−x
8
dx =

 ∞

0

t
1
8 · e−t · 1

8
t−

7
8 dt

I1 =
1

8

 ∞

0

t−
3
4 e−t dt = 1

8
 

 
1− 3

4

 
= 1

8
 

 
1

4

 

Put x4 = t in I2, so x = t
1
4 , dx = 1

4
t−

3
4 dt

I2 =
 ∞

0

x2e−x
4
dx =

 ∞

0

t
1
2 · e−t · 1

4
t−

3
4 dt

= 1

4

 ∞

0

t−
1
4 e−t dt = 1

4
 (1− 1

4
) = 1

4
 

 
3

4

 

Thus

I = I1 · I2 =
1

8
 

 
1

4

 
· 1

4
 

 
3

4

 

= 1

32
 

 
1

4

 
 

 
1− 1

4

 
= 1

32
· π

sin π
4

=
√

2π

32

Since  (n)  (1− n) = π
sin nπ

.

Example 8: Show that ∞

0

cos (bz
1
n ) dz =  (n+ 1) · cos nπ

2

bn
.

Solution: Put z = xn, x = z
1
n , dz = nxn−1dx ∞

0

cos (bz
1
n )dz=

 ∞

0

nxn−1 · cos (bx)dx

= Real part of

  ∞

0

n xn−1 · e−ibxdx
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But

 ∞

0

xn−1e−ibxdx

=
 ∞

0

 
t

ib

 n−1

· e−t · dt
ib

= 1

(ib)n
 (n)

where t = ibx. ∞

0

cos(bz
1
n )dz= Re

 
n ·  (n)

bn
(i)−n

 

= Re

 
 (n+ 1)

bn

 
cos

π

2
+ i sin

π

2

 −n 

= Re

 
 (n+ 1)

bn

 
cos

nπ

2
− i sin

nπ

2

  

=  (n+ 1)

bn
· cos

nπ

2
.

Example 9: Prove that
 1

−1
(1−t2)ndt= 2n+1·n!

1·3·5···(2n+1)

for n = 0, 1, 2, . . .

Solution: Put t = sin θ, 1− t2 = 1− sin2 θ =
cos2 θ, dt = cos θdθ

Limits for θ are −π
2

to π
2
. Thus 1

−1

(1− t2)ndt

=
 π

2

− π
2

cos2n θ · cos θ dθ = 2

 π
2

0

cos2n+1 θ dθ

= 2 · 2 · 4 · 6 · 8 · · · (2n)
1 · 3 · 5 · · · (2n+ 1)

= 2 · 2n · 1 · 2 · 3 · · · n
1 · 3 · 5 · · · (2n+ 1)

= 2n+1 · n!
1 · 3 · 5 · · · (2n+1)

Example 10: Show that
 ∞
0

x2dx

(1+x4)3
= 5π

√
2

128
.

Solution: Put x =
√

tan θ , dx = 1
2

1√
tan θ

· sec2 θ dθ

 ∞

0

x2dx

(1+ x4)3

=
 π

2

0

tan θ · 1
2
(tan θ )−

1
2 · sec2 θ dθ

(1+ tan2 θ )3

= 1

2

 π
2

0

(tan θ )
1
2 · sec−4 θ dθ

= 1

2

 π
2

0

sin
1
2 θ · cos

7
2 θ dθ

= 1

2
· 1

2
· β
 

1+ 1
2

2
,
1+ 7

2

2

 
= 1

4
β

 
3

4
,
9

4

 

= 1

4
·
 
 

3
4

 
 
 

9
4

 
 
 

3
4
+ 9

4

 = 1

4

 
 

3
4

 
· 5

4
· 1

4
 
 

1
4

 
 (3)

= 1

4
· 5

16
· 1

2!
 

 
1

4

 
 

 
3

4

 
= 5

128
· π
√

2

since  
 

1
4

 
 
 

3
4

 = √
2π .

Example 11: Prove that π
2

0

cos2m−1 θ · sin2n−1 θ · dθ
(a cos2 θ + b sin2 θ )m+n

= β(m, n)

2ambn

Solution: Put tan θ = t, dθ = cos2 θ dt,
sin θ = t cos θ ∞

0

cos2m−1 θ · sin2n−1 θ dθ

(a cos2 θ + b sin2 θ )m+n

=
 ∞

0

cos2m−1 θ · t2n−1 · cos2n−1 θ · cos2 θ dt

(a cos2 θ + bt2 cos2 θ )m+n

=
 ∞

0

cos2m+2n θ · t2n−1dt

cos2m+2n θ (a + bt2)m+n
, Put

√
bt = √

ay

=
 ∞

0

 ay
b

  2n−1
2

 
· a
b

1
2
√
y
dy

(a + ay)m+n

= an

2bnam+n

 ∞

0

yn−1dy

(1+ y)m+n
= 1

2ambn
· β(m, n).

Example 12: Evaluate

I =
 1

0

x
3
2 (1− x2)

5
2 dx.

Solution: From result 13 Page 5 with p= 3
2
, q = 2,

r = 5
2

I = 1

q
β

 
p + 1

q
, r + 1

 
= 1

2
β

 
3
2
+ 1

2
,
5

2
+ 1

 

= 1

2
β

 
5

4
,
7

2

 
= 1

2

 
 

5
4

 
 
 

7
2

 
 
 

5
4
+ 7

2

 

= 1

2

1

4
 

 
1

4

 
· 5

2
· 3

2
· 1

2
 

 
1

2

 
1

 
 

19
4

 

Since  

 
19

4

 
= 15

4
· 11

4
· 7

4
· 3

4
·  
 

3

4

 
.

I =
4 
 

1
4

 √
π 

121 
 

3
4

  .
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EXERCISE

Gamma and Beta functions

1. Compute (a)  (6)

2 (3)
(b)

 
 

5
2

 
 
 

1
2

 (c)  (3) (2.5)

 (5.5)

(d)  
 − 5

2

 
.

Ans. (a) 30 (b) 3
4

(c) 16
315

(d) − 8
√
π

15

2. Evaluate (a)
 ∞
0

√
ye−y

2
dy (b)

 ∞
0

3−4z2dz

(c)
 1

0
dx√− ln x

.

Ans. (a)
√
π

3
(b)

√
π

(4
√

ln 3)
(c)

√
π

3. Evaluate (a)
 1

0
x4(1− x)3dx (b)

 2

0
x2dx√
2−x

(c)
 a
0
y4
 
a2 − y2 dy.

Ans. (a) 1
280

(b) 64
√

2
15

(c) πa6

32
.

4. Evaluate (a)
 2π

0
sin8 θ dθ (b)

 π
2

0 cos6 θ dθ

(c)
 π

2
0 sin4 θ · cos5 θ dθ .

Ans. (a) I = 4
 π

2
0 sin8 θdθ = 4·1·3·5·7

(2·4·6·8)
π
2
= 35π

64

(b) 5π
32

(c) 8
315

5. Show that
 2

0
x

3
√

8− x3dx = 16π

(9
√

3)

6. Find
 π

2
0

√
cot θ dθ .

Ans. 1
2
 
 

1
4

 
 
 

3
4

 = 1
2
π
√

2

7. Show that
 π

2
0 (
√

tan θ +√
sec θ ) dθ =

1
2
 
 

1
4

  
 
 

3
4

 + √
(π )

 
 

3
4

 
 
.

8. Prove that
 1

0
x4
 
ln
 

1
x

  3
dx = 6

625
.

9. Show that
  1

0
x2(1− x4)−

1
2 dx
 
×  1

0
(1+ x4)−

1
2 dx
 
= π

4
√

2
.

10. Prove that
  π

2
0

√
sin θdθ

   π
2

0 (sin θ )−
1
2 dθ
 

= π .

11. Show that
 π

2
0 sin7 θ · cos7 θ dθ = 1

280
.

12. Evaluate
 a
0
x3(a3 − x3)5dx.

Ans. a19·35

19·16·13·7 .

13. Prove that
 1

0
xm(ln x)ndx = (−1)nn!

(m+1)n+1 where n

is a positive integer and m > −1.

14. Prove that
 ∞
0

t2dt

1+t4 =
π√
2
.

Hint: Put t =
√

tan θ .

15. Show that the area under the normal curve

y = 1

σ
√

2π
· e−

x2

2σ2 and x- axis is unity.

16. Show that
β(p, q)

p+q = β(p, q+1)

q
= β(p+1, q)

p
.

17. Prove that β(m, n) = 1
2

 ∞
0

xm−1+xn−1

(1+x)m+n .

Hint: Use symmetry property of β function.

18.
 ∞
0
x−

3
2 (1− e−x)dx.

Ans. 2
√
π .

19. Show that
 a
b
(x − b)m−1(a − x)n−1dx =

(a − b)m+n−1 · β(m, n)

Hint: Put x = (t−b)
(a−b) .

20. Prove that
 ∞
0
e−x

4
dx = 1

4
 
 

1
4

 
.

21. Evaluate
 ∞
0

xa

ax
dx.

Ans.
 (a+1)

(ln a)a+1

22. Show that
 1

0
xp−1+xq−1

(1+x)p+q dx = β(p, q)

Hint: From (5) β(p, q) =  ∞
0

yq−1

(1+y)p+q dx = 1

0
+  ∞

0
. Put y = 1

z
in 2nd integral.

23. Show that
 1

−1

 
1+t
1−t dt = π .

24. Evaluate
 ∞
0

x8(1−x6)

(1+x)24 dx.

Ans. 0

25. Prove that
 ∞
0
e−ax · xn−1dx =  (n)

an
where a

and n are positive.

11.3 BESSEL’S FUNCTIONS

The boundary value problems (such as the one-
dimensional heat equation) with cylindrical sym-
metry (independent of θ ) reduces to two ordinary
differential equations by the separation of variables
technique. One of them is the most important dif-
ferential equation known as Bessel’s∗ differential
equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0

x2y  + xy + (x2 − p2)y = 0 (1)

Here p, which is a given constant (not necessarily

an integer) is known as the order of the Bessel’s

equation.

∗ Friedrich Wilhelm Bessel (1784–1846) German mathemati-
cian.
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Bessel’s Functions (Cylindrical functions)

Bessel’s functions (Cylindrical functions) are series

solution of the Bessel’s differential Equation (1) ob-

tained by Frobenius method.

Assume that p is real and non-negative. Assume

the series solution of (1) as

y(x) =
∞ 
m=0

amx
m+r (a0  = 0) (2)

To determine the unknown coefficients am and power

(exponent) r , substitute (2) in (1), we get
∞ 
m=0

(m+ r)(m+ r − 1)amx
m+r +

∞ 
m=0

(m+ r)amx
m+r

+
∞ 
m=0

amx
m+r+2 − p2

∞ 
m=0

amx
m+r = 0

Now equate the sum of the coefficients of xs+r to

zero. For s = 0 and s = 1, the contribution comes

from first, second and fourth series (not from third

series because it starts with xr+2). For s ≥ 2, all

the four terms contribute. Thus sum of the coeffi-

cients of powers of r, r + 1 and s + r are respectively

given by

r(r − 1)a0 + ra0 − p2a0 = 0 (s = 0) (4)

(r + 1)ra1 + (r + 1)a1 − p2a1 = 0 (s = 1) (5)

(s + r)(s + r − 1)as + (s + r)as + as−2

−p2as = 0 (s = 2, 3 · · ·) (6)

Solving (4), we get the indicial equation

(r + p)(r − p) = 0 (7)

Solutions of (7) are r1 = p(≥ 0) and r2 = −p.

Case 1: r1 = p

With r1 = p, Equation (5) becomes (2p + 1)a1 = 0

so a1 = 0

Rewrite (6) as

(s + r + p)(s + r − p)as + as−2 = 0

Substituting r = p, this becomes

s(s + 2p)as + as−2 = 0 (8)

or as =− as−2

s(s + 2p)

For s = 3, a3 =− a1

3(3+ 2p)

Since a1 = 0 and p ≥ 0, then a3 = 0. Thus from (8)
it follows that

a3 = 0, a5 = 0, a7 = 0 etc.

i.e., all coefficients with odd subscripts are zero.

Rewriting (8) with s = 2m, we have

2m(2m+ 2p)a2m + a2n−2 = 0

Solving

a2m =− 1

22m(m+ p)
· a2m−2, m = 1, 2, . . .

Thus a2 =− a0

22(1+ p)

a4 =− a2

22 · 2(2+ p)
= a0

242!(p + 1)(p + 2)

In general

a2m =
(−1)ma0

22m ·m!(p + 1)(p + 2) · · · (p +m)
,

m= 1, 2, . . . (9)

a0 which is arbitrary may be taken as

a0 =
1

2p (p + 1)

Then a2 = − a0

22(p + 1)
= − 1

22 · 2p(p + 1) (p + 1)

= −1

22+p (p + 2)

since  (α + 1) = α (α).
Similarly,

a4 =
−a2

22 · 2 · (p + 2)
= 1

22 · 2 · 22+p · (p + 2) (p + 2)

= 1

24+p · 2! (p + 3)

In general

a2m = (−1)m

22m+p ·m! (p +m+ 1)
for m = 1, 2, . . .

(10)

By substituting these coefficients from (10) in (2) and

observing that a1 = a3 = a5 = · · · = 0, a particular

solution of the Bessel’s Equation (1) is obtained as

Jp(x) = xp
∞ 
m=0

(−1)mx2m

22m+p ·m! (p +m+ 1)
(11)
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(11) is known as the Bessel’s function of the first

kind of order p, which converges for all x (by ratio

test).

Case 2: For r2 = −p
By replacing p by −p in (11), we get a second

linearly independent solution of (1) as

J−p(x) = x−p
∞ 
m=0

(−1)mx2m

22m−pm! (m− p + 1)
(12)

Hence the general solution of Bessel’s Equation (1)

for all x  = 0 is

y(x) = c1Jp(x)+ c2J−p(x) (13)

provided p is not an integer.

Linear Dependence of Bessel’s Functions:

Jn and J−n

Assume that p = n where n is an integer.

Then from (11), we get

Jn(x) = xn
∞ 
m=0

(−1)mx2m

22m+n ·m! (n+m+ 1)

Since  (n+ 1) = n!, we have  (n+m+ 1) =
(n+m)!

Jn(x) = xn
∞ 
m=0

(−1)mx2m

22m+n ·m!(m+ n)!
(14)

Book Work: Prove that Jn(x) and J−n(x) are lin-
early dependent because

J−n(x) = (−1)nJn(x) for n = 1, 2, 3, . . .

Proof: Replacing p by −n in (11), we get

J−n(x) =
∞ 
m=0

(−1)mx2m−n

22m−n ·m! (m− n+ 1)
(15)

When m− n+ 1 ≤ 0 or m ≤ (n− 1), the gamma

function of zero or negative integers is infinite.

Therefore form = 0 to n− 1, the coefficients in (15)

become zero. So m starts at n. Thus

J−n(x) =
∞ 
m=n

(−1)mx2m−n

22m−n ·m!(m− n)!

since  (m− n+ 1) = (m− n)!

Put m− n = s then s varies from 0 to ∞.

J−n(x)=
∞ 
s=0

(−1)s+nx2(s+n)−n

22(s+n)−n(s + n)!s!

= (−1)n
∞ 
s=0

(−1)sx2s+n

22s+n · s!(s + n)!

J−n(x)= (−1)nJn(x). (16)

Generating Function

Generating function of a sequence of functions
fn(x) is

G(u, x) =
∞ 

n=−∞
fn(x) · un

which generates fn(x) i.e., fn(x) appear as coeffi-

cients of powers of u.

Theorem: Prove that the generating function for

Bessel’s functions of integral order is

e
1
2
x
 
t− 1

t

 
(17)

Proof: If e
1
2
x
 
t− 1

t

 
is the generating function of

Bessel function then the coefficients of different

powers of t in the expansion of (17) are the Bessel’s

functions of different integral orders.
Consider

e
1
2
x
 
t− 1

t

 
= e

xt
2 · e− xt

2

Expanding in series, we get

=
 
1+ xt

2
+ 1

2!

 
xt

2

 2

+ 1

3!

 
xt

2

 3

+ · · ·
 
×

×
 
1− xt

2
+ 1

2!

 
xt

2

 2

− 1

3!

 
xt

2

 3

· · ·
 

(18)

Case 1: n = 0.
The coefficient of t0 = 1 in the expansion (18) is

1−
 x

2

 2
+
 

1

2!

 2  x
2

 4

−
 

1

3!

 2  x
2

 6
+
 

1

4!

 2  x
2

 8
− · · ·

=
∞ 
m=0

(−1)m

(m!)2

 x
2

 2m
= J0(x). (19)
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Case 2: Positive powers of t : tn

The coefficient of tn in the above expansion (18) is

1

n!

 x
2

 n
− 1

(n+ 1)!

 x
2

 n+2

+ 1

2!

1

(n+ 2)!

 x
2

 n+4
+ · · ·

=
∞ 
m=0

(−1)m

m!(n+m)!

 x
2

 n+2m

= Jn(x). (20)

Case 3: Negative powers of t : t−n

The coefficient of t−n in the expansion (18) is

(−1)n

n!

 x
2

 n
+
 x

2

 (−1)n+1

(n+ 1)!

 x
2

 n+1

+ 1

2!

 x
2

 2 (−1)n+2

(n+ 2)!

 x
2

 n+2
+ · · ·

= (−1)n
∞ 
m=0

(−1)m

m!(n+m)!

 x
2

 n+2m

= (−1)nJn(x) = J−n(x) (21)

Thus from (19), (20) and (21), we have

e
x
2

 
t− 1

t

 
=

∞ 
n=−∞

Jn(x)t
n.

Equation Reducible to Bessel’s Equation

The differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (λ2x2 − p2)y = 0 (22)

where λ is a parameter, can be reduced Bessel’s

differential equation of order p in t ,

t2
d2y

dt2
+ t

dy

dt
+ (t2 − p2)y = 0 (23)

where t = λx
 
so

dy

dx
= λ

dy

dt
,
d2y

dx2 = λ2 d
2y

dt2

 
.

For p non-integral, the general solution of Equa-
tion (23) is

y = c1Jn(t)+ c2J−n(t).

Thus the general solution of Equation (22) is

y(x) = c1Jn(λx)+ c2J−n(λx)

when p is non-integral.

Orthogonality of Bessel’s Functions

Prove that a

0

xJn(αx)Jn(βx)dx =
 

0, if α  = β

a2

2
J 2
n+1(aα), if α = β

where α and β are roots of Jn(ax) = 0.

Proof: Let u = Jn(αx) and v = Jn(βx) respec-
tively be the solutions of the equations

x2u  + xu + (α2x2 − n2)u= 0 (1)

and x2v  + xv + (β2x2 − n2)v = 0 (2)

Multiplying (1) by v
x

and (2) by u
x

and subtracting

x(u  v − uv  )+ (u v − uv )+ (α2 − β2)xuv = 0

or
d

dx

 
x(u v − uv )

 
= (β2 − α2)xuv (3)

Integrating both sides of (3) from x = 0 to a

(β2 − α2)

 a

0

xuv dx =
 
x(u v − uv )

     a
0

= a

 
u (a)v(a)− u(a)v (a)

 
(4)

where  denotes differentiation w.r.t., x.

Now u = d

dx
u = d

dx
Jn(αx) = αJ  n(αx) (5)

Similarly, v = dv

dx
= d

dx
Jn(βx) = βJ  n(βx) (6)

Substituting u and v from (5) and (6) in (4), we get a

0

x Jn(αx)Jn(βx)dx

= a

β2 − α2

 
α J  n(αa)Jn(βa)− β Jn(αa)J

 
n(βa)

 
(7)

Case 1: Suppose α and β are two distinct roots of

Jn(ax) = 0 then Jn(aα) = Jn(aβ) = 0.

Thus for α  = β a

0

x Jn(αx)Jn(βx)dx = 0 (8)

(8) is known as the orthogonality relation forBessel’s

functions.

Case 2: Suppose β = α; then R.H.S. of (4) is 0
0

form. Assuming α as a root of Jn(ax) = 0, evaluate
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R.H.S. of (4) as β → α

lim
β→α

 a

0

x Jn(αx)Jn(βx)dx

= lim
β→α

 
a

β2 − α2

  
αJ  n(aα)Jn(aβ)− 0

 

Since Jn(aα) = 0.
Now applying L’Hospital’s rule (differentiating

w.r.t., β), we get

= lim
β→α

a

2β

 
α J  n(aα) · a J  n(aβ)

 

= a2

2

 
J  n(aα)

 2

In the recurrence relation IV on Page 11.14

Jn+1(x) =
n

x
Jn(x)− J  n(x)

Put x = aα, then Jn+1(aα) = n
aα
Jn(aα)− J  n(aα).

Since α is a root, Jn(aα) = 0. Then

J  n(aα) = −Jn+1(aα)

Thus for α  = β, a

0

x Jn(αx)Jn(βx)dx =
a2

2

 
J  n(aα)

 2

= a2

2

 
Jn+1(aα)

 2

Note: Put x = aα in the recurrence relation VI on
Page 11.14

Jn−1(aα)+ Jn+1(aα) = 2n

aα
Jn(aα).

Since Jn(aα) = 0, Jn−1(aα) = −Jn+1(aα).
Thus a

0

x Jn(αx)Jn(βx)dx =
a2

2

 
Jn−1(aα)

 2

Recurrence Relations (or identities) for

Bessel’s Functions

Valid for any p.

Prove that

I. d
dx

 
xpJp(x)

 
= xpJp−1(x)

Proof: From (11)

Jp(x) =
∞ 
m=0

(−1)mx2m+p

22m+p ·m! (m+ p + 1)

So

d

dx

 
xpJp(x)

 
= d

dx

 ∞ 
m=0

(−1)mx2m+2p

22m+p ·m! (m+ p + 1)

 

=
∞ 
m=0

(−1)m · (2m+ 2p)x2m+2p−1

22m+p ·m!(m+ p) (m+ p)

= xp
∞ 
m=0

(−1)mx2m+(p−1)

22m+(p−1)·m! (m+(p−1)+1)

= xpJp−1(x)

II. d
dx

 
x−pJp(x)

 
= −x−pJp+1(x).

Proof: Multiplying (11) by x−p and differentiating

d

dx

 
x−pJp(x)

 
= d

dx

 ∞ 
m=0

(−1)m · x2m

22m+p ·m! (m+ p + 1)

 

=
∞ 
m=1

(−1)m · 2m · x2m−1

22m+p ·m! (m+ p + 1)

since for m = 0, the first term in R.H.S. is zero.

=
∞ 
m=1

(−1)m · x2m−1

22m+p−1 · (m− 1)! (m+ p + 1)

Put s = m− 1 or m = s + 1 then

=
∞ 
s=0

(−1)s+1 · x2(s+1)−1

22(s+1)+p−1 · s! (s + 1+ p + 1)

=−x−p
∞ 
s=0

(−1)sx2s+(p+1)

22s+(p+1)s! ((s + 1)+ p + 1)

=−x−p · Jp+1(x).

III.
d

dx

 
Jp(x)

 
= Jp−1(x)−

p

x
Jp(x)

or xJ  p(x)= xJp−1(x)− pJp(x)

Proof: From recurrence relation (I)

d

dx

 
xpJp(x)

 
= xpJp−1(x)
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Performing the differentiation in the L.H.S.,

xp · d
dx

 
Jp(x)

 
+ pxp−1 · Jp(x) = xpJp−1(x)

or J  p(x)+ p

x
Jp(x) = Jp−1(x)

or J  p(x) = Jp−1(x)−
p

x
Jp(x)

IV. J  p(x) = p

x
Jp(x)− Jp+1(x)

Proof: From recurrence relation (II)

d

dx

 
x−pJp(x)

 
= −x−pJp+1(x)

Performing the differentiation in the L.H.S.,

x−p · d
dx
Jp(x)− px−p−1Jp(x) = −x−pJp+1(x)

or J  p(x)− p

x
Jp(x) = −Jp+1(x)

or J  p(x) = p

x
Jp(x)− Jp+1(x)

V. J  p(x) = 1
2

 
Jp−1(x)− Jp+1(x)

 
is obtained by

adding recurrence relations (III) and (IV)

VI. Jp−1(x)+ Jp+1(x) = 2p

x
Jp(x) is obtained by

subtracting (IV) from (III).

Elementary Bessel’s Functions

Bessel’s functionsJp of ordersp=± 1
2
,± 3

2
,± 5

2
, . . .

are elementary and can be expressed in terms of sine

and cosines and powers of x.

Result 1: J 1
2
(x) =

 
2
πx
· sin x.

Proof: With p = 1
2
, (11) reduces to

J 1
2
(x)=√

x

∞ 
m=0

(−1)mx2m

22m+ 1
2 ·m! 

 
m+ 3

2

 
Now

 

 
m+ 3

2

 
=
 
m+ 1

2

  
m− 1

2

  
m− 3

2

 
· · ·

×3

2
· 1

2
 

 
1

2

 

= (2m+ 1)(2m− 1)(2m− 3) · · · 3 · 1 · √π
2m+1

Also

22m+1 ·m!= 2m+1 · 2m ·m!

= 2m+1 · 2m(m)(m− 1) · · · 2 · 1
= 2m+1 · (2m)(2m− 2) · · · 4 · 2.

Thus

22m+1 ·m! ·  
 
m+ 3

2

 

=
 
2m+1 · 2m · (2m− 2) · · · 4 · 2

 

×
 
(2m+ 1)(2m− 1) · · · 3 · 1

 
· 2−(m+1) · √π

= (2m+ 1)!
√
π

Then

J 1
2
(x)=

 
2

x

∞ 
m=0

(−1)mx2m−1

22m+1 ·m! 
 
m+ 3

2

 

=
 

2

x

∞ 
m=0

(−1)mx2m−1

(2m+ 1)!
√
π

=
 

2

πx
·
∞ 
m=0

(−1)mx2m−1

(2m+ 1)!

=
 

2

πx
· sin x.

Result 2: In the recurrence relation I, put p = 1
2

then

d

dx

 √
xJ 1

2
(x)

 
=√

xJ− 1
2
(x)

d

dx

 √
x

 
2

πx
· sin x

 
=√

xJ− 1
2
(x)

 
2

π
cos x =√

xJ− 1
2
(x)

or J− 1
2
(x)=

 
2

πx
cos x·

Similarly with p = 1
2
, we get from recurrence

relation VI.

Result 3:

J− 1
2
(x)+ J 3

2
(x)= 1

x
J 1

2
(x)

or J 3
2
(x)= 1

x
J 1

2
(x)− J− 1

2
(x)
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Using result (1) and (2) for J 1
2

and J− 1
2
, we get

J 3
2
(x) =

 
2

πx

 
sin x

x
− cos x

 
.

Similarly with p = − 1
2

in recurrence relation VI

Result 4: J− 3
2
(x)=− 1

x
J− 1

2
(x)− J 1

2
(x)

=−
 

2

πx

 cos x

x
+ sin x

 
.

Integrals of Bessel’s Functions

Integrating the recurrence relation

d

dx

 
xpJp(x)

 
= xpJp−1(x), we get 

xpJp−1(x)dx = xpJp(x)+ c (1)

For p = 1,

 
xJ0(x) dx = xJ1(x)+ c (2)

Integrating the recurrence relation

d

dx

 
x−pJp(x)

 
= −x−pJp+1(x), we get

 
x−pJp+1(x)dx = −x−pJp(x)+ c (3)

For p = 0,

 
J1(x) dx = −J0(x)+ c (4)

In general
 
xmJn(x)dx for m and n integers with

m+ n ≥ 0 can be integrated by parts completely if

m+ n is odd. But when m+ n is even, the integral

depends on the residual integral
 
J0(x)dx which has

been tabulated.

Integrating J  p(x)= 1

2

 
Jp−1(x)− Jp+1(x)

 

2Jp(x)=
 
Jp−1(x) dx −

 
Jp+1(x)dx

or

 
Jp+1(x)dx =

 
Jp−1(x)dx − 2Jp(x).

Bessel’s Function of Second Kind of Order

n or Neumann Function

When n is integral, Jn(x) and J−n(x) are lin-
early dependent and do not constitute the solution.

Let y = u(x) Jn(x) be a solution of (1). Substituting
in (1),

x2(u  Jn + 2u J  n + uJ   n )+ x(u Jn + uJ  n)

+(x2 − n2) uJn = 0

or u

 
x2J   n + xJ  n + (x2 − n2)Jn

 
+ x2u  Jn

+2x2u J  n + xu Jn = 0

Since Jn is a solution of (1), the first term is zero.
Dividing throughout by x2u Jn, we get

u  

u
+ 2

J  n
Jn

+ 1

x
= 0

Integrating ln(u J 2
n · x) = lnB or xu J 2

n = B.
Thus

u = B

xJ 2
n

Integrating

u= B

 
dx

xJ 2
n

+ c

Hence y = AJn(x)+ BYn(x) is the complete solu-
tion of (1) where

Yn(x) = Jn(x) ·
 

dx

x[Jn(x)]2

Yn(x) is known asBessel’s function of second kind

of order n or Neumann function.

WORKED OUT EXAMPLES

Example 1: Find J0(x) and J1(x).

Solution: Put n = 0 in

Jn(x)=
∞ 
m=0

(−1)mx2m+n

22m+n ·m!(m+ n)!

Then J0(x)=
∞ 
m=0

(−1)mx2m

22m(m!)2
= 1− 1

1!

 x
2

 2

+ 1

(2!)2

 x
2

 4
−
 

1

3!

 2  x
2

 6
+ · · ·
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For n = 1,

J1(x)=
∞ 
m=0

(−1)mx2m+1

22m+1m!(m+ n)!

or J1(x)=
x

2

 
1− 1

1!2!

 x
2

 2
+ 1

2!3!

 x
2

 4

− 1

3!4!

 x
2

 6
+ · · ·

 
.

Example 2: Show that Jn(x) is an even function

when n is even and odd function when n is odd.

Solution: Suppose n is even.

Jn(−x) = (−x)n
∞ 
m=0

(−1)m(−x)2m
22m+n ·m!(m+ n)!

For n even (−1)n = 1 and (−1)2m = 1

Jn(−x) = xn
∞ 
m=0

(−1)mx2m

22m+n ·m!(m+ n)!
= Jn(x)

Thus Jn(x) is an even function.

Suppose n is odd. Then (−1)n = −1, so

Jn(−x) = −xn
∞ 
m=0

(−1)mx2m

22m+nm!(m+ n)!
= −Jn(x).

Thus Jn(x) is an odd function.

Example 3: Express J6(x) in terms of J0(x) and

J1(x).

Solution: Rewriting the recurrence relation (VI)

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x) (1)

Put n = 1, 2, 3, 4, 5 in (1), we get (suppressing the
argument x)

J2 =
2

x
J1 − J0 (2)

J3 =
4

x
J2 − J1 (3)

J4 =
6

x
J3 − J2 (4)

J5 =
8

x
J4 − J3 (5)

J6 =
10

x
J5 − J4 (6)

Substituting (3) in (2),

J3 =
 

8

x2
− 1

 
J1 −

4

x
J0 (7)

Substituting (7) and (2) in (4),

J4 =
 

48

x3
− 8

x

 
J1 +

 
1− 24

x2

 
J0 (8)

Substituting (8), and (3) in (5)

J5 =
 

384

x4
− 72

x2
− 1

 
J1 +

 
12

x
− 192

x3

 
J0 (9)

Substituting (9) and (8) in (6), we get

J6 =
10

x

  
384

x4
− 72

x2
− 1

 
J1 +

 
12

x
− 192

x3

 
J0

 

−
 

48

x3
− 8

x

 
J1 −

 
1− 24

x2

 
J0

J6(x)=
 

3840

x4
− 768

x3
− 2

x

 
J1(x)

+
 

144

x2
− 1− 1920

x4

 
J0(x).

Example 4: Express J 7
2
(x) in terms of sine and

cosine functions.

Solution: Put n = 5
2

in the recurrence relation

Jn+1(x)=
2n

x
Jn(x)− Jn−1(x) (1)

so J 7
2
(x)= 5

x
J 5

2
(x)− J 3

2
(x) (2)

Put n = 3
2

in (1) then

J 5
2
(x) = 3

x
J 3

2
(x)− J 1

2
(x) (3)

Put n = 1
2

in (1) then

J 3
2
(x)= 1

x
J 1

2
(x)− J− 1

2
(x)

Since J 1
2
(x)=

 
2

πx
sin x, J− 1

2
(x) =

 
2

πx
cos x

J 3
2
(x)=

 
2

πx

 
sin x

x
− cos x

 
(4)

Substituting (4) and J 1
2
(x) in (3)

J 5
2
(x)= 3

x

  
2

πx

 
sin x

x
− cos x

  
−
 

2

πx
sin x

J 5
2
(x)=

 
2

πx

  
3− x2

x2

 
sin x − 3

x
cos x

 
(5)
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Substituting (5) and (4) in (2), we get

J 7
2
(x)= 5

x
·
 

2

πx

  
3− x2

x2

 
sin x − 3

x
cos x

 

−
 

2

πx

 
sin x

x
− cos x

 

=
 

2

πx

  
15− 6x2

x3

 
sin x +

 
15

x2
− 1

 
cos x

 
.

Example 5: Show that J   1 (x) = −J1(x)+ 1
x
J2(x).

Solution: Put n = 1 in the recurrence relation III

J  n(x)= Jn−1(x)−
n

x
Jn(x) (1)

Then J  1(x)= J0(x)−
J1(x)

x
(2)

Differentiating (2) w.r.t., ‘x’

J   1 (x)= J  0(x)+
1

x2
J1(x)−

1

x
J  1(x) (3)

Put n = 0, in (1) then

J  0(x)= J−1(x)− 0 (4)

But J−n(x)= (−1)nJn(x)

So with n = +1, J−1(x)=−J1(x) (5)

Substituting (5) in (4),

J  0(x) = J−1(x) = −J1(x) (6)

Put (6) and (2) in (3), we get

J   1 = −J1(x)+
1

x2
J1(x)−

1

x

 
J0(x)−

J1(x)

x

 
(7)

Put n = 1 in recurrence relation (VI)

Jn+1(x)=
2n

x
Jn(x)− Jn−1(x)

Then J2(x)=
2

x
J1(x)− J0(x) (8)

or J0(x)=
2

x
J1(x)− J2(x) (9)

Using (9) eliminate J0 from (7) then

J   1 =−J1(x)+
1

x2
J1(x)−

1

x

 
2

x
J1(x)−J2(x)

 
+J1(x)

x2

J   1 (x)=−J1(x)+
1

x
J2(x).

Example 6: Prove that

d

dx

 
J 2
n (x)

 
= x

2n

 
J 2
n−1(x)− J 2

n+1(x)

 

Solution: d
dx

 
J 2
n (x)
 
= 2 · Jn(x)J  n(x).

Using recurrence relation (V)

J  n(x)=
1

2

 
Jn−1 − Jn+1

 

d

dx
{J 2
n } = 2 · Jn(x) ·

 
1

2

 
Jn−1 − Jn+1

  

From recurrence relation VI

Jn(x)=
x

2n

 
Jn−1(x)+ Jn+1(x)

 

d

dx

 
J 2
n (x)

 
= x

2n

 
Jn−1(x)+ Jn+1(x)

 

×
 
Jn−1(x)− Jn+1(x)

 

= x

2n

 
J 2
n−1(x)− J 2

n+1(x)

 
.

Example 7: Show that

J  2(x) =
 

1− 4

x2

 
J1(x)+

2

x
J0(x).

Solution: In recurrence relation

J  n(x) = Jn−1(x)−
n

x
Jn(x)

Put n = 2, J  2(x) = J1(x)−
2

x
J2(x) (1)

Since Jn+1(x)+ Jn−1(x) =
2n

x
Jn(x)

for n = 1, J2(x)+ J0(x) =
2

x
J1(x) (2)

Substituting J2 from (2) in (1)

J  2(x)= J1(x)−
2

x

 
2

x
J1(x)− J0(x)

 

J  2(x)=
 

1− 4

x2

 
J1(x)+

2

x
J0(x).

Example 8: Evaluate
 
J5(x)dx.

Solution: Putting n = 4 in 
Jp+1(x)dx =

 
Jp−1(x)dx − 2Jp(x),
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we get  
J5(x)dx =

 
J3(x)dx − 2J4(x) (1)

Again with p = 2 
J3(x)dx =

 
J1(x)dx − 2J2(x) (2)

Also we know that 
J1(x)dx = −J0(x)+ c (3)

Substituting (2) and (3) in (1) 
J5(x)dx =

 
− J0(x)+ c

 
− 2J2(x)− 2J4(x)

Example 9: Evaluate
 
x2J1(x)dx.

Solution: Put p = 2 in 
xpJp−1(x)dx = xpJp(x)+ c

Then

 
x2J1(x)dx = x2J2(x)+ c

But J2(x)=
 

2

x
J1(x)− J0(x)

 
 
x2J1(x)dx = x2

 
2

x
J1(x)− J0(x)

 
+ c

= 2xJ1(x)− x2J0(x)+ c.

Example 10: Evaluate
 
x3J3(x)dx.

Solution: Integrating by parts (suppressing argu-
ment x)  

x3J3dx =
 
x5[x−2J3]dx = x5[x−2J2]

−
 
−x−2J2 · 5x4dx

=−x3J2 + 5

 
x2J2dx

Now

 
x2J2dx =

 
x3[x−1J2]dx = x3[−x−1J1]

−
 
−x−1J13x

2dx

=−x2J1 + 3

 
xJ1 dx

But

 
xJ1(x)dx =−

 
xJ  0(x)dx

=−
 
xJ0 −

 
J0(x)dx

 

Substituting 
x3J3(x)dx =−x3J2(x)+ 5

 
− x2J1(x)

+3

 
−xJ0(x)+

 
J0dx

  

=−x3J2(x)− 5x2J1(x)− 15xJ0(x)

+15

 
J0(x)dx.

Note:
 
J0(x)dx can not be integrated but its values

are tabulated.

EXERCISE

1. Show that a. J  0(x) = −J1(x)

b. d
dx

(xJ1) = xJ0.

2. Express J 3
2
, J− 3

2
in terms of sin and cos.

Ans. J 3
2
=
 

2
πx

 
sin x
x
− cos x

 
;

J− 3
2
= −
 

2
πx

 
sin x + cos x

x

 
3. Express J 5

2
, J− 5

2
in terms of sin and cos.

Ans. J 5
2
=
 

2
πx

 
3−x2

x2 sin x − 3
x

cos x
 

J− 5
2
=
 

2
πx

 
3
x

sin x +
 

3

x2 − 1
 

cos x
 

4. Express J4(x) in terms of J0 and J1.

Ans. J4 =
 

48

x3 − 8
x

 
J1(x)−

 
24

x2 − 1
 
J0(x)

5. Express J5(x) in terms of J0 and J1.

Ans. J5 =
 

384

x4 − 72

x2 − 1
 
J1(x)+ 

12
x
− 192

x3

 
J0(x)

6. Prove that J   n = 1
4
[Jn−2 − 2Jn + Jn+2].

7. Show that d
dx
{xJn · Jn+1} = x[J 2

n − J 2
n+1].
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8. Prove that J   0 = 1
2
[J2 − J0].

9. Show that d
dx

 
J 2
n+J 2

n+1

 =2
 
n
x
J 2
n− n+1

x
J 2
n+1

 
.

10. Prove thatJn
   = 1

8
[Jn−3−3Jn−1+3Jn+1−Jn+3].

11. Show that 2J   0 (x) = J2(x)− J0(x).

12. Evaluate
 
J3(x)dx.

Ans. −2J1 − 2J2 + c +  J0(x)dx.

13. Evaluate:
 
x3J0(x)dx

Ans. x3J1(x)− 2x2J2(x)+ c

14. Evaluate:
 
x4J1(x)dx

Ans. (8x2 − x4)J0(x)+ (4x3 − 16x)J1(x)

15. Establish the Jacobi series:

a. cos(x cos θ ) = J0 − 2J2 cos 2θ +
2J4 cos 4θ − · · ·

b. sin(x cos θ ) = 2[J1 cos θ − J3 cos 3θ +
J3 cos 5θ − · · ·].

Hint: e
x
2

 
t− 1

t

 
= J0 +

 
t − 1

t

 
J1 +

 
t2 − 1

t2

 
J2 +

 
t3 − 1

t3

 
J3 + · · · obtained from gener-

ating function usingJ−n(x) = (−1)nJn(x). Put

t = cos θ + i sin θ, 1
t
= cos θ − i sin θ , then

tp + 1
tp
= 2 cospθ , tp − 1

tp
= 2i sinpθ, t −

1
t
= 2i sin θ . Equate real and imaginary parts.

Replace θ by π
2
− θ .

11.4 DIFFERENTIAL EQUATIONS

REDUCIBLE TO BESSEL’S EQUATION

Various differential equations which are not Bessel’s

equations can be reduced to Bessel’s equation by

changing the dependent or and independent variable.

The differential equation

x2y   +x(a+2bxp)y  +[c+dx2q+b(a+p−1)xp

+ b2x2p]y = 0 (1)

can be transformed to Bessel’s equation in the new

variables X and Y where

y = x(1−a)/2e−(b/p)xpY and x =
 
qX√|d|

 1/q

.

Then the general solution of (1) is given by

y(x) = xαe−βx
p
[c1Jv(λx

q )+ c2Yv(λx
q )] (2)

Here α= 1−a
2

, β= b
p
, λ=

√|d|
q

, v =
√

(1−a)2−4c

2q
(3)

We assume that d  = 0, p  = 0, q  = 0 and

(1− a2) ≥ 4c. Also if d < 0, replace Jv and Yν by Iν
and kν respectively. When v is not an integer, replace

Yν and kv by J−v and I−v respectively.

Corollary: The general solution of

xry   + rxr−1y  + (axs + bxr−2)y = 0 (4)

is y = xα[c1Jv(λx
γ )+ c2Yv(λx

γ )] (5)

where α = 1−r
2

, γ = 2−r+s
2

, λ = 2
√|a|

2−r+s ,

v =
 

(1− r)2 − 4b

2− r + s
(6)

we assume that 2− r + s  = 0 and (1− r)2 ≥ 4b. If

a < 0, replace Jv and yv by Iv and kv respectively.

WORKED OUT EXAMPLES

Reduce the given differential equation to theBessel’s

equation and solve.

Example 1: y   +
 
ε2 − 4n2 − 1

4x2

 
y = 0

Solution: Rewriting the given D.E.

x2y   +
 
ε2x2 − 4n2 − 1

4

 
y = 0.

Comparing this with D.E. (1), we have

a = 0, b = 0, c = − (4n2−1)

4
, d = ε2, q = 1. So

from relations (3), α = 1−0
2
= 1

2
, β = 0, λ = ε

1
,

v =
√

1+4n2−1

1
= 2n.

Then the general solution of the given D.E. is

y(x) = x1/2[c1J2n(εx)+ c2Y2n(εx)]

Example 2: y   + 2y  +
 
x2 + 1− 2

x2

 
y = 0.
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Solution: Rewriting

x2y   + 2x2y  + (x4 + x2 − 2)y = 0

Comparing with D.E. (1), we have a = 0, b = 1,

p = 1, c = −2, d = 1, q = 2. Then from (3) α = 1
2
,

β = 1
1
= 1, λ = 1

2
, v =

√
(1−0)2−4(−2)

4
= 3

4
. Thus the

general solution of given D.E. is

y = x1/2e−x
 
c1J3/4

 
1

2
x2

 
+ c2Y 3

4

 
1

2
x2

  

since v = 3
4

is not an integer, we can replace Y 3
4

by

J−3/4, thus the general solution takes the form

y = √
xe−x

 
c1J3/4

 
x2

2

 
+ c2J−3/4

 
x2

2

  

Example 3: (x5y  ) = y

Solution: Rewriting x5y   + 5x4y  − y = 0. Com-

paring this equation with (4), we have r = 5, a =
−1, s = 0, b = 0 then from relations (5), α = 1−5

2
=

−2, γ = 2−5+0
2

= − 3
2
, λ = 2

2−5+0
= −2

3
and ν =√

(1−5)2−0

2−5+0
= 4

−3
. Thus the general solution from (6)

is y = x−2
 
c1I4/3

 − 2
3
x−3/2

 +c2I−4/3

 − 2
3
x−3/2

  
since a = −1 < 0

Example 4: Show that the general solution of

y   + 1
x
y  +
 
1− 1

4x2

 
y = 0 is

√
x · y = c1 sin x +

c2 cos x.

Solution: ComparingwithD.E. (1), we have a = 1,

b = 0, c = − 1
4
, d = 1, q = 1. So from (3) α = 0,

β = 0, λ = 1, v = 1
2
. Thus the general solution is

y(x) = c1 J 1
2
(x)+ c2Y 1

2
(x). Since v = 1

2
is not an

integer,

y(x) = c1J1/2(x)+ c2J−1/2(x)

= c1

 
2
πx

sin x + c2

√
2

πx
cos x

or
√
x y(x) = c∗1 sin x + c∗2 cos x

EXERCISE

Reduce the given differential equations to the

Bessel’s equation and solve.

1. y   + 1
2x
y  + 1

16

 
x−3/2 + 15

16
x−2
 
y = 0

Ans. y = x1/4(c1J1/4(x
1/4)+ c2J−1/4(x

1/4)]

Hint: a = 1
2
, b = 0, c = 15

256
, d = 1

16
, q = 1

4
,

α = 1
4
, β = 0, λ = 1, v = 1

4

2. 81x2y   + 27xy  + (9x2/3 + 8)y = 0

Ans. y(x) = x1/3[c1J1/3(x
1/3)+ c2J−1/3(x

1/3)]

Hint: a = 1
3
, b = 0, c = 8

81
, d = 1

9
, q = 1

3
,

α = 1
3
, β = 0, λ = 1, v = 1

3

3. y   + 3
√
xy = 0

Ans. y(x) = √
x
 
c1J2/5

 
4
5

√
3x5/4

 
+c2Y2/5

 
4
5

√
3x5/4

  
Hint: a = 0, b = 0, c = 0, d = 3, q = 5

4
, α =

1
2
, β = 0, λ =

√
3

(5/4)
, v = 2

5
.

4. xy   + 3y  + y = 0

Ans. y(x) = x−1
 
c1J2(2

√
x)+ c2Y2

 
2
√
x
  

Hint: a = 3, b = 0, c = 0, d = 1, q = 1
2
, α =

−1, β = 0, λ = 2, v = 2

5. (xy ) − 5x3y = 0

Ans. y(x) = c1 I0

 √
5

2
x2
 
+ c2k0

 √
5

2
x2
 

Hint: a = 1, b = 0, c = 0, d = −5, q = 2,

α = 0, β = 0, λ =
√

5
2

, v = 0

6. y   + y 
x
+
 
1− 1

9x2

 
y = 0

Ans. y(x) = c1J1/3(x)+ c2J−1/3(x)

Hint: a = 1, b = 0, c = − 1
9
, d = 1, q = 1,

α = 0, β = 0, λ = 1, v = 1
3

7. x2y   + xy  +  x2 − 1
6.25

 
y = 0

Ans. y(x) = c1J2/5(x)+ c2J−2/5(x)

Hint: a = 1, b = 0, c = − 1
6.25

, d = 1, q = 1,

α = 0, β = 0, v = 2
5

8. x2y   + x(4x4 − 3)y  + (4x8 − 5x2 + 3)y =
0
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Ans. y(x) = x2e−x
4/2

[c1I1(
√

5x)+ c2k1

√
5x)]

Hint: a = −3, b = 2, p = 4, c = 3, d = −5,

q = 1, α = 2, β = 1
2
, λ =

√
5, v = 1

9.
 

1
x
y  
  +  1

x2 + 1

x3

 
y = 0

Ans. y = x[c1J0(2
√
x)+ c2Y0(2

√
x)]

Hint: r = −1, s = −2, a = b = 1, α = 1,

v = 1
2
, λ = 2, v = 0

10. x2y   − 2xy  + (2− x3)y = 0

Ans. y = x3/2
 
c1I1/3

 
2
3
x3/2
 + c2I−1/3

 
2
3
x3/2
  

Hint: a = −2, b = 0, c = 2, d = −1, q = 3
2
,

α = 3
2
, β = 0, λ = 2/3, v = 1/3

11. x2y   + xy  + 8x2 = y

Ans. y = c1J1(2
√

2x)+ c2Y1(2
√

2x)

Hint: a = 1, b = 0, c = −1, d = 8, q = 1,

α = 0, β = 0, λ = 2
√

2, v = 1

12. 4y   + 9xy = 0

Ans. y = √
x
 
c1J1/3(x

3/2)+ c2J−1/3(x
3/2)
 

Hint: a = 0, b = 0, c = 0, d = 9
4
, q = 3

2
, α =

1
2
, β = 0, λ = 1, v = 1

3

13. 9x2y   + 9xy  + (36x4 − 16)y = 0

Ans. y(x) = c1J2/3(x
2)+ c2J−2/3(x

2)

Hint: a = 1, b = 0, c = − 16
9
, d = 4, q = 2,

α = 0, β = 0, λ = 1, v = 2
3

14. y   + k2x4y = 0

Ans. y = √
x
 
c1J1/4

 
1
2
kx2
 + c2Y1/4

 
1
2
kx2
  

Hint: a = 0, b = 0, c = 0, d = k2, q = 2,

α = 1
2
, β = 0, λ = k

2
, v = 1

4

15. 2xy   + 4y  + xy = 0

Ans. y = [c1J1/2(x/
√

2)+ c2J−1/2(x/
√

2)]x−1/2

Hint: a = 2, b = 0, c = 0, d = 1
2
, q = +1,

α = − 1
2
β = 0, λ = 1√

2
, v = 1

2
.

11.5 LEGENDRE∗ FUNCTIONS

The boundary value problems with spherical sym-

metry (independent of θ ) by the application of sep-

aration of variables reduces two ordinary differen-

tial equations. One of them is the very important

∗ Adrien Marie Legendre (1752–1833), French mathematician.

differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ n(n+ 1)y = 0 (1)

known as the Legendre’s differential equation.

The parametern is given integer, (although it could

be a real number).

The solution of Legendre’s Equation (1) is known

as Legendre’s function of order n.

Assume a power series solution of (1) as

y(x) =
∞ 
m=0

amx
m (2)

Substitute (2) and its derivatives in (1), then

(1− x2)

∞ 
m=2

m(m− 1)amx
m−2 − 2x

∞ 
m=1

mamx
m−1

+ k

∞ 
m=0

amx
m = 0

where k = n(n+ 1). Rewriting
∞ 
m=2

m(m− 1)amx
m−2 −

∞ 
m=2

m(m− 1)amx
m

−2

∞ 
m=1

mamx
m + k

∞ 
m=0

amx
m = 0 (3)

(3) is an identity since (2) is a solution of (1). So

equate the sum of the coefficients of each power of

x to zero.

Coefficient of x0 arise from 1st and fourth series

in (3). Thus

2a2 + n(n+ 1)a0 = 0 (4)

coefficient of x1 arise from 1st, 3rd and 4th series in

(3). So

6a3 + [−2+ n(n+ 1)]a1 = 0 (5)

All the four series in (3) contribute coefficients of xs

for s ≥ 2. Thus

(s + 2)(s + 1)as+2 + [−s(s − 1)− 2s

+ n(n+ 1)]as = 0 (6)

Solving (6)

as+2 =− (n− s)(n+ s + 1)

(s + 2)(s + 1)
as

for s = 0, 1, 2, . . . (7)
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since −s(s − 1)− 2s + n(n+ 1)

=−s2 + s − 2s + n2 + n

= (n2 − s2 + n− s)

= (n− s)(n+ s + 1).

(7) is known as a recurrence relation or recursion
formula, which determines all coefficients in terms
of a1 or a0. Here a0 and a1 are arbitrary constants, to
be chosen appropriately. Thus

a2 =
−(n)(n+ 1)

2!
a0, a3 =

−(n− 1)(n+ 2)

3!
a1

a4 =
−(n− 2)(n+ 3)

4 · 3 a2, a5 =
−(n− 3)(n+ 4)

5 · 4 a3

a4 =
(n− 2)n(n+ 1)(n+ 3)

4!
a0,

a5 =
−(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
a1

In general, the coefficients with even subscripts
are

a2m = −(n− 2m+ 2)(n+ 2m− 1)

(2m)(2m− 1)
a2m−2

and the coefficients with odd subscripts are

a2m+1 =
−(n− 2m+ 1)(n+ 2m)

(2m)(2m+ 1)
a2m−1

Substituting these coefficients in (2), we get

y(x)= a0y1(x)+ a1y2(x) (8)

where y1(x)= 1− n(n+ 1)

2!
x2

+ (n− 2)n(n+ 1)(n+ 3)

4!
x4 − · · · (9)

and y2(x)= x − (n− 1)(n+ 2)

3!
x3

+ (n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5 − · · ·

(10)

Both the series (9) and (10) converge for |x| < 1.

y1 and y2 are linearly independent (i.e., y1/y2 is not

a constant) because y1 contains only even powers of

x while y2 contains only odd powers of x. Thus y(x)

given by (8) is the general solution of Legendre’s

Equation (1) and is valid for −1 < x < 1.

Legendre Polynomials

Assume that the parameter n is non-negative integer

i.e., n ≥ 0, n integer. Since (n− s) appears in the

recurrence relation (7), with s = n, the coefficients

an+2, an+4, an+6, etc., are all zero i.e., am+2 = 0

when m ≥ n. If n is even, then y1(x) reduces to

a polynomial of degree n (while y2(x) remains an

infinite series).

Similarly if n is odd, then y2(x) becomes a poly-

nomial of degree n (while y1(x) remains an infinite

series).

In either of these cases, the series which reduces

to a finite sum (a polynomial), multiplied by some

constant, is known as the Legendre polynomial

or zonal harmonic of order n denoted by Pn(x).

The series which remain infinite is known as the

Legendre’s function of the second kind denoted by

Qn(x). Thus for a non-negative integer n, the general

solution (2) of Legendre’s Equation (1) is the sum a

polynomial solution and an infinite series solution

i.e.,

y(x) = APn(x)+ BQn(x) (11)

Note: Qn(x) is unbounded at x = ±1.

Derivation of Legendre Polynomial Pn (x)

Rewriting (7),

am = −(m+ 2)(m+ 1)

(n−m)(n+m+ 1)
am+2 for m ≤ n− 2 (12)

(12) expresses all non-vanishing coefficients in terms
of an, which is coefficient of the highest power of x
i.e., xn in the polynomial. The arbitrary coefficient
an may be chosen as

an = 1 for n = 0

and an =
(2n)!

2n(n!)2
for n = 1, 2, . . . (13)

For this choice of an, Pn(x = 1) = 1.
The non-vanishing coefficients are obtained from

(12) and (13)

an−2 =
−n(n− 1)

2(2n− 1)
an (for m = n− 2)

= −n(n− 1)

2(2n− 1)
· (2n)!

2n(n!)2
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= −n(n− 1) · 2n(2n− 1)(2n− 2)!

2(2n− 1)2n · n(n− 1)!n(n− 1)(n− 2)!

an−2 =
−(2n− 2)!

2n(n− 1)!(n− 2)!

Similarly, for m = n− 4, we get

an−4 =
−(n− 2)(n− 3)

4(2n− 3)
an−2 =

(2n− 4)!

2n2!(n− 2)!(n− 4)!

In general for n− 2m ≥ 0

an−2m = (−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
(14)

By inserting these coefficients (14) in (9) or (10),

we get a polynomial Pn(x) known as the Legendre’s

polynomial of degree n and is given by (Fig. 11.1)

Pn(x) =
M 
m=0

(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
· xn−2m (15)

where M = n
2

or n−1
2

according as n is even or n is

odd (whichever is an integer).

Fig. 11.1

In particular,

P0(x)= 1 (for n = 0,M = 0)

P1(x)= x (for n = 1,M = 0)

P2(x)=
1

2
(3x2 − 1) (for n = 2,M = 1,m = 0 to 1)

P3(x)=
1

2
(5x3 − 3x) (for n = 3,M = 1,m = 0 to 1)

P4(x)=
1

8
(35x4 − 30x2 + 3)

(for n = 4,M = 2,m = 0 to 2)

P5(x)=
1

8
(63x5 − 70x3 + 15x)

(for n = 5,M = 2,m = 0 to 2)

P6(x)=
1

16
(231x6 − 315x4 + 105x2 − 5)

(for n = 6,M = 3,m = 0 to 3).

Note 1: At x = 1, Pn(x = 1) = Pn(1) = 1.

Note 2: Any polynomial f (x) of degree n can be
expressed in terms of Pn(x) as

f (x) =
n 

m=0

cmPm(x).

Rodrigue’s∗ Formula

Show that

Pn(x) =
1

n!2n
dn

dxn
(x2 − 1)n (16)

Proof: Let

v = (x2 − 1)n

Then
dv

dx
= n(x2 − 1)n−1 · 2x

or −(1− x2)
dv

dx
= 2nx · (x2 − 1)n = 2nxv

i.e., (1− x2)
dv

dx
+ 2nxv = 0 (17)

Differentiating (17), (n+ 1) times by Leibnitz’s rule 
(1−x2)

dn+2v

dxn+2
+ (n+1)(−2x)

dn+1v

dxn+1
− (n+1)n

dnv

dxn

 

+2n

 
x
dn+1v

dxn+1
+ (n+ 1) · 1 · d

nv

dxn

 
= 0

or (1− x2)
dn+2v

dxn+2
− 2x

dn+1v

dxn+1
+ n(n+ 1)

dnv

dxn
= 0

Put U = dnv
dxn

then

(1− x2)
d2U

dx2
− 2x

dU

dx
+ n(n+ 1)U = 0

which is a Legendre’s equation of order n and has a
finite series solution Pn(x). Thus

U = C Pn(x) (18)

∗ Olinde Rodrigues (1794–1851), French mathematician.
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Here C is an arbitrary constant which is deter-
mined by equating the coefficient of xn on both sides
of (18) i.e.,

dn

dxn
(x2 − 1)n = dn

dxn
v = U = C · Pn(x) (18)

The coefficient of xn in Pn(x) is (2n)!

2n(n!)2
(obtained by

putting m = 0 in (15)).

The coefficient of xn in L.H.S. of (18) arises

solely from the n-fold differentiation of the term of

highest degree i.e., x2n

2n(2n− 1)(2n− 2) · · · (2n− (n− 1)).

= (2n)(2n− 1)(2n− 2) · · · (n+ 1) · n!
n!

= (2n)!

n!

Thus
(2n)!

n!
= C · (2n)!

2n(n!)2

or C = 2n · n! (19)

Putting C from (19) in (18), we get the Rodrigue’s
formula

Pn(x) =
1

C
U = 1

2nn!
· d

n

dxn

 
(x2 − 1)n

 

Generating Function for

Legendre Polynomials

Prove that

(1− 2xt + t2)−
1
2 =

∞ 
n=0

tn · Pn(x) (20)

Proof:

(1− y)−n = 1+ ny + n(n+ 1)

1 · 2 y2

+n(n+ 1)(n+ 2)

1 · 2 · 3 y3 + · · ·

(1− y)−
1
2 = 1+ 1

2
y +

1
2
· 3

2

2!
y2

+
1
2
· 3

2
· 5

2

3!
y3 + · · ·

(1− y)−
1
2 = 1+ 1

2
y + 1 · 3

2 · 4y
2 + 1 · 3 · 5

2 · 4 · 6y
3 + · · ·

+1 · 3 · · · (2n− 1)

2 · 4 · · · 2n · yn + · · ·

Rewriting

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n

= 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n · 2 · 4 · · · 2n
2 · 4 · · · 2n

= 1 · 2 · 3 · 4 · 5 · · · (2n− 1) · 2n
2n · n! 2n · n! = (2n)!

22n(n!)2

Now using this result, expand

(1− 2xt + t2)−
1
2

=
 
1− (2xt − t2)

 − 1
2

=
 
1−
 
t(2x − t)

  − 1
2

= 1+ 2!

22(1!)2
t · (2x − t)+ 4!

24(2!)2
t2(2x − t)2 + · · ·

+ (2(n− k))!

22(n−k)
 
(n− k)!

 2
tn−k(2x − t)n−k + · · ·

+ (2n)!

22n · (n!)2 t
n(2x − t)n + · · · (21)

Coefficients of tn appear only in the first (n+ 1)

terms. Consider the (n− k)th term: tn arises as pro-

duct of tn−k and tk arising out of (2x − t)n−k . Thus

the coefficient of tn in tn−k · (2x − t)n−k is the coef-

ficient of tk in (2x − t)n−k

i.e., (n− k)Ck (2x)
(n−k)−k · (−1)k

= (n− k)!(−1)k

k!(n− 2k)!
· (2x)n−2k (22)

Therefore the coefficient of tn is (see 21) 
(2n− 2k)!

22n−2k{(n− k)!}2
 
·
 

(n− k)!

k!(n− 2k)!
(−1)k(2x)n−2k

 

= (−1)k(2n− 2k)!

2nk!(n− k)!(n− 2k)!
· xn−2k

collecting and summing up for k all the coefficients

of tn from the first (n+ 1) terms, we get

M 
k=0

(−1)k(2n− 2k)!

2n(n− k)!k!(n− 2k)!
· xn−2k = Pn(x)

where M = n
2

or n−1
2

according as n is even or odd.
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Thus the Legendre polynomials P0(x), P1(x),

P2(x) · · ·Pn(x) · · · appear as coefficients of t0, t1,

t2, . . . tn . . . etc. in the expansion of (1− 2xt +
t2)−

1
2 . Hence (1− 2xt + t2)−

1
2 is the generating

function of the Legendre polynomials i.e.,

(1− 2xt + t2)−
1
2 =

∞ 
n=0

Pn(x) · tn (20)

Result 1: Pn(1) = 1 for any n.
Put x = 1 in (20). Then

∞ 
n=0

Pn(1)tn = (1− 2t + t2)−
1
2

=
 

(1− t)2
 − 1

2

= (1− t)−1

= 1+ t + t2 + · · · + tn + · · ·
Equating the coefficients of tn on both sides

Pn(1) = 1 for any n.

Result 2: Pn(−1) = (−1)n for any n.
Put x = −1 in (20). Then
∞ 
n=0

Pn(−1)tn = (1+ 2t + t2)−
1
2

=
 
(1+ t)2

 − 1
2

= (1+ t)−1

= 1− t + t2 − · · · + (−1)ntn + · · ·

Equating the coefficients of tn, Pn(−1) = (−1)n.

Result 3:

Pn(0) =
 

0, when n is odd

(−1)
n
2 · 1·3·5···(n−1)

2·4·6···n , if n is even

Put x = 0 in (20). Then

∞ 
n=0

Pn(0)tn = (1+ t2)−
1
2

= 1− 1

2
t2 +

 
− 1

2

  
− 1

2
+ 1
 

1 · 2 t4 + · · ·

+

 
− 1

2

  
− 1

2
+ 1
 
· · ·
 
− 1

2
− (n− 1)

 
1 · 2 · 3 · · · n t2n + · · ·

= 1− 1

2
t2 + 1 · 3

2 · 4 t
4 + · · ·

+ (−1)n1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n · t2n + · · ·

Equating the coefficients of t2m

P2m(0) = (−1)m
1 · 3 · 5 · · · (2m− 1)

2 · 4 · 6 · · · 2m
Since the R.H.S. contains only even powers of

t , coefficients of odd powers of t are all zero i.e.,

P2m+1(0) = 0.

Recurrence Relations for Pn (x )

I. P  
n(x) = x P  

n−1(x)+ nPn−1(x)

Proof: From Rodrigue’s formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

Differentiating w.r.t., x

d

dx
{Pn(x)} = P  

n(x)=
1

2n · n! ·
dn

dxn

 
n(x2 − 1)n−1 · 2x

 

P  
n(x)=

1

2n−1· (n−1)!

dn

dxn

 
x(x2−1)n−1

 

Differentiating by Leibnitz’s rule

= 1

2n−1(n− 1)!

 
x · d

n

dxn
(x2 − 1)n−1 +

+ n · 1 · d
n−1(x2 − 1)n−1

dxn−1

 

= x · d
dx

 
1

2n−1(n− 1)!

dn−1

dxn−1
(x2 − 1)n−1

 

+ n
1

2n−1(n− 1)!

dn−1

dxn−1
(x2 − 1)n−1

P  
mx = x · d

dx
Pn−1 + nPn−1 = xP  

n−1(x)+ nPn−1(x).

II. P  
n+1(x)− P  

n−1(x) = (2n+ 1)Pn(x).

Proof:

P  
n+1(x)=

d

dx
Pn+1(x)

= d

dx

 
1

2n+1(n+ 1)!

dn+1

dxn+1
(x2 − 1)n+1

 

= 1

2n+1(n+1)!
· d

n+1

dxn+1

 
(n+1)x(x2−1)n · 2x
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= 1

2n
1

n!

dn+1

dxn+1

 
x(x2 − 1)n

 

= 1

2n
· 1

n!

dn

dxn

 
x · n(x2−1)n−1 · 2x+(x2−1)n

 

= 1

2n−1 · (n− 1)!

dn

dxn

 
x2(x2 − 1)n−1

 
+ Pn(x)

= 1

2n−1 · (n− 1)!
· d

n

dxn

 
(x2 − 1+ 1)

×(x2 − 1)n−1

 
+ Pn(x)

= 1

2n−1(n− 1)!
· d

n

dxn
· (x2 − 1)n

+ 1

2n−1(n− 1)!

dn

dxn
(x2 − 1)n−1 + Pn

= 2n · Pn(x)+
d

dx
Pn−1(x)+ Pn(x)

P  
n(x)− P  

n−1(x) = (2n+ 1)Pn(x).

III. x P  
n(x) = nPn(x)+ P  

n−1(x).

Proof: In the recurrence relation I

P  
n = x P  

n−1 + nPn−1

replace n by n+ 1 and rewrite

x P  
n = P  

n+1 − (n+ 1)Pn

From recurrence relation II,

P  
n+1 = P  

n−1 + (2n+ 1)Pn

Substituting P  
n+1, we get

xP  
n = P  

n−1 + (2n+ 1)Pn − (n+ 1)Pn

xP  
n = P  

n−1 + nPn

IV. (1− x2)P  
n−1 = n(x Pn−1 − Pn)

From R.R. I : P  
n = x P  

n−1 + nPn−1 (1)

From R.R. III : x P  
n = P  

n−1 + nPn (2)

Multiply (1) by x and subtract (2) from (1)

0= x[x P  
n−1 + nPn−1]− [P  

n−1 + nPn]

0= (x2 − 1)(P  
n−1)+ n(x Pn−1 − Pn)

or (1− x2)P  
n−1 = n(x Pn−1 − Pn).

V. (x2 − 1)P  
n = n(x Pn − Pn−1)

From R.R. I : P  
n = x P  

n−1 + nPn−1 (1)

From R.R. III : x P  
n = P  

n−1 + nPn (2)

Multiply (2) by x and subtract (1) from (2)

(x2 − 1)P  
n = n xPn − nPn−1 = n(x Pn − Pn−1).

VI. (n+ 1)Pn+1 = (2n+ 1)x Pn − nPn−1

From R.R. IV : (1− x2)P  
n−1 = n[x Pn−1 − Pn]

Replace n by n+ 1 and rewrite

(n+ 1)Pn+1 = (n+ 1)x Pn − (1− x2)P  
n

From R.R. V : (x2 − 1)P  
n = n(x Pn − Pn−1)

Eliminating P  
n using R.R. V.

(n+ 1)Pn+1 = (n+ 1)x Pn + n(x Pn − Pn−1)

(n+ 1)Pn+1 = (2n+ 1)x Pn − nPn−1.

Orthogonality of Legendre Polynomials

Prove that

a.
 1

−1
Pm(x)Pn(x)dx = 0 if m  = n

This is known as the orthogonality property of

Legendre polynomial

b.
 1

−1
P 2
n (x)dx = 2

2n+1
for n = 0, 1, 2, . . ..

Proof: (a) Let Pm(x) and Pn(x) be Legendre poly-
nomials of order m and n satisfying respectively the
Legendre equations

(1− x2)P   
m − 2xP  

m +m(m+ 1)Pm = 0

or rewritten as 
(1− x2)P  

m

  
= −m(m+ 1)Pm (1)

and

 
(1− x2)P  

n

  
= −n(n+ 1)Pn (2)

Multiply (1) by Pn and (2) by Pm and add
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n(n+ 1)−m(m+ 1)

 
Pn(x) · Pm(x)

=
 
(1− x2)P  

m

  
Pn −

 
(1− x2)P  

n

  
Pm (3)

Put c = n(n+ 1)−m(m+ 1) = n2 −m2 + (n−
m) = (n−m)(n−m+ 1)  = 0 when m  = n.

Integrate both sides of (3) w.r.t., x from −1 to 1

I = c

 1

−1

Pn(x)Pm(x)dx

=
 1

−1

 
(1−x2)P  

m

  
Pn dx−

 1

−1

 
(1−x2)P  

n

  
Pm dx

= I1 − I2

Consider

I1 =
 1

−1

 
(1− x2)P  

m

  
Pn dx

=
 1

−1

d

dx

 
(1− x2)

dPm

dx

 
Pn dx. Integrating by parts

= Pn · (1− x2)
dPm

dx

    1
−1

−
 1

−1

(1− x2)P  
mP

 
n dx

= 0−
 1

−1

(1− x2)P  
mP

 
n dx

Similarly,

I2 =
 1

−1

 
(1− x2)P  

n

  
Pmdx

=−
 1

−1

(1− x2)P  
nP

 
m dx

Thus

c

 1

−1

Pn(x)Pm(x)dx = 0 since I1 = I2

For m  = n, c  = 0, therefore
 1

−1
PnPm dx = 0

(b) From Rodrigue’s formula

2n · n!Pn(x) =
dn

dxn
(x2 − 1)n (1)

Multiplying (1) with itself and integrating w.r.t., x
from −1 to 1, and denoting d

dx
by D, we have

(2n · n!)2
 1

−1

P 2
n (x)dx

=
 1

−1

Dn(x2 − 1)n
 
Dn(x2 − 1)

 
dx

Integrating by parts

=Dn(x2 − 1)n ·Dn−1(x2 − 1)n
    1
−1

−
 1

−1

 
Dn+1(x2 − 1)n

  
Dn−1(x2 − 1)n

 
dx

The first term on the R.H.S. becomes zero at x = ±1

because after (n− 1) differentiations of (x2 − 1)n,

the factor (x2 − 1) will still be present.
So

(2nn!)2
 1

−1

P 2
n dx =−

 1

−1

 
Dn+1(x2 − 1)n

 

×
 
Dn−1(x2 − 1)n

 
dx

Integrating by parts (n− 1) times, we get

(2nn!)2
 1

−1

P 2
n dx = (−1)n

 1

−1

(x2 − 1)n

×Dn+1+n−1(x2 − 1)n dx

But D2n(x2 − 1)n = (2n)!

= (−1)n
 1

−1

(x2 − 1)n · (2n)! dx

= 2(−1)n(2n)!

 1

0

(x2 − 1)n dx

= 2(2n)!

 1

0

(1− x2)n dx

Put x = sin θ , limits for θ are 0 to π
2

= 2(2n)!

 π
2

0

cos2n θ cos θ dθ

= 2(2n)!

 π
2

0

cos2n+1 θ dθ

= 2(2n)!

 
2n · (2n− 2) · · · 4 · 2

(2n+ 1)(2n− 1) · · · 2 · 1

 

(2nn!)2
 1

−1

P 2
n dx = 2(2n)! ·

 
22n(n!)2

(2n+ 1)!

 

...

 1

−1

P 2
n (x)dx = 2(2n)!

(2n+ 1)
= 2

(2n+ 1)
.
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WORKED OUT EXAMPLES

Example 1: Find P6(x).

Solution:

Pn(x) =
M 
m=0

(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
xn−2m

Here n = 6 = even, M = n
2
= 6

2
= 3,

m: varies from 0 to 3

P6(x)=
3 

m=0

(−1)m(12− 2m)!

26m!(6−m)!(6− 2m)!
x6−2m

= 12!x6

26 · 6!6!
− 10!x4

26 · 1!5!4!
+ 8!x2

262!4!2!
− 6!x0

263!3!

P6(x)=
1

16
[231x6 − 315x4 + 105x2 − 5].

Example 2: Express x5 in terms of Legendre poly-

nomials.

Solution: Weknow thatP5(x) = 1
8
(63x5 − 70x3 +

15x)

Solving x5 = 8
63
P5 + 70

63
x3 − 15

63
x

Since P3 = (5x3−3x)

2
, we have

x3 = 2

5
P3 +

3

5
x = 2

5
P3 +

3

5
P1

Substituting x3

x5 = 8

63
P5 +

70

63

 
2

5
P3 +

3

5
P1

 
− 15

63
P1 since P1 = x

x5 = 8

63
P5 +

28

63
P3 +

27

63
P1.

Example3: Express the polynomialf (x) = 4x3 −
2x2 − 3x + 8 in terms of Legendre polynomials.

Solution: Since the polynomial f (x) is of degree
3, write

f (x) = C0P0 + C1P1 + C2P2 + C3P3

4x3 − 2x2 − 3x + 8 = C0 · 1+ C1x

+C2

 
3x2 − 1

2

 
+ C3

 
5x3 − 3x

2

 

Equating the coefficients of like powers of x on both
sides, we get

x3 : 4 = 5

2
C3 ... C3 =

8

5

x2 : −2 = 3

2
C2 ... C2 =

−4

3

x : −3 = C1 −
3C3

2
... C1 =

−3

5

x0 : 8 = C0 −
C2

2
... C0 =

22

3

Thus

4x3 − 2x2 − 3x + 8 = 22

3
P0 −

3

5
P1 −

4

3
P2 +

8

5
P3.

Example 4: Show that (a) Pn(−x) = (−1)nPn(x)

and (b) P  
n(−x) = (−1)n+1P  

n(x).

Solution:

Pn(x)=
M 
m=0

(−1)m(2n− 2m)!

2n ·m!(n−m)!(n− 2m)!
xn−2m

Pn(−x)=
M 
m=0

(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
(−x)n−2m

Pn(−x)= (−1)n(−1)−2m · Pn(x) = (−1)nPn(x)

Differentiating w.r.t., x

(−1)Pn(−x)= (−1)n · P  
n(x)

... P  
n(−x)= (−1)n+1P  

n(x).

Example 5: Prove that

(2n+ 1)(1− x2)P  
n(x) = n(n+ 1)

 
Pn−1(x)− Pn+1(x)

 

Solution: Consider R.R. V

(x2 − 1)P  
n = n(x Pn − Pn−1) (1)

Multiplying (1) by −(2n+ 1), we get

(2n+ 1)(1− x2)P  
n = n(2n+ 1)(Pn−1 − xPn) (2)

Solving R.R. 6 for Pn

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1,

We get

(2n+ 1)x Pn = (n+ 1)Pn+1 + nPn−1 (3)
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Using (3) eliminate Pn from (2) then

(2n+ 1)(1− x2)P  
n = n(2n+ 1)Pn−1 −

−n
 
(n+ 1)Pn+1 + nPn−1

 

= (2n2 + n− n2)Pn−1

−n(n+ 1)Pn+1

(2n+ 1)(1− x2)P  
n = n(n+ 1)[Pn−1 − Pn+1].

Example 6: Show that

a.
 1

−1
f (x)Pn(x)dx = (−1)n

2nn!

 1

−1
f (n)(x)×

(x2 − 1)ndx

Hence deduce that

b.
 1

−1
xmPn(x)dx

 
0, if m < n
2n+1·(n!)2
(2n+1)!

, if m = n

Solution: Using Rodrigue’s formula

 1

−1

f (x)Pn(x)dx =
 1

−1

f (x) · 1

2n · n!
dn

dxn
(x2 − 1)ndx

Integrating by parts

= 1

2n · n!

  
f (x) · d

n−1

dxn−1
(x2 − 1)n

      
1

−1

−
 1

−1

f  (x) · d
n−1

dxn−1
(x2 − 1)ndx

 

The first term in the R.H.S. becomes zero at both the

limits x = ±1 because dn−1

dxn−1 (x2 − 1)n contains

a. Factor of x2 − 1. Integrating by parts (n− 1)
times

= 1

2n · n! (−1)n
 1

−1

(x2 − 1)n · d
nf (x)

dxn
dx.

b. Take f (x) = xm, then

dnf

dxn
= dnxm

dxn
= 0

whenever m < n. Thus 1

−1

xmPn(x)dx = 0

c. Take f (x) = xn. Then

dnf

dxn
= dnxn

dxn
= n!

Thus 1

−1

xnPn(x)dx =
1

2n · n! (−1)n
 1

−1

(x2 − 1)n · n!dx

= 2

2n

 1

0

(1− x2)ndx. put x = sin θ

= 2

2n

 π
2

0

cos2n θ dθ

= 2

2n

 
2n · (2n− 2) · · · 4 · 2

(2n+ 1)(2n− 1) · · · 2 · 1

 
,

using result 10 on page 11.4

= 2

2n

 
22n · (n!)2
(2n+ 1)!

 
= 2n+1 · (n!)2

(2n+ 1)!
.

EXERCISE

1. Find P5(x)

Ans. P5(x) = 1
8
(63x5 − 70x3 + 15x)

2. Express x0, x, x2, x3 and x4 in terms of

Legendre polynomials

Ans. 1 = P0(x), x = P1(x), x
2 = 2

3
P2(x)+

1
3
P0(x), x

3 = 2
5
P3(x)+ 3

5
P1(x),

x4 = 8
35
P4(x)+ 4

7
P2(x)+ 7

35
P0(x)

Express the polynomial f (x) in terms of Legendre

polynomials where

3. f (x) = x4 + 3x3 − x2 + 5x − 2

Ans. f (x) = 8
35
P4 + 6

5
P3 − 2

21
P2 + 34

5
P1 − 224

105
P0

4. f (x) = 1− 3x + 3x2

Ans. 2P0 − 3P1 + 2P2

5. f (x) = 2x + 10x3

Ans. 8P1 + 4P3

6. f (x) = x3 + 2x2 − x − 3

Ans. 2
5
P3 + 4

3
P2 − 2

5
P1 − 7

3
P0
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7. Show that 1

−1
x2Pn−1 · Pn+1dx = 2n(n+1)

(2n−1)(2n+1)(2n+3)

Hint: Use R.R. VI, xPn−1 = (nPn+(n−1)Pn−2)

(2n−1)

Replace n by n+ 2,

xPn+1 =

 
(n+2)Pn+2+(n+1)Pn

 
(2n+3)

Multiply, integrate −1 to 1, use orthogonality.

8. Prove that

a. P2n+1(0) = 0,

b. P2n(0) = (−1)n(2n)!

22n·(n!)2

Hint: Use generating function
 
Pn(x)t

n =
(1− 2xt + t2)−

1
2 . Put x = 0, equate coeffi-

cients of even powers and odd powers on t

on both sides.

9. Show that

a. P  
n(1) = n(n+1)

2

b. P  
n(−1) = (−1)n n(n+1)

2
.

10. Prove that

 1

−1

(1− x2)P  
mP

 
ndx =

 
0, if m  = n

2n(n+1)
2n+1

, if m = n

Hint:Multiply Legendre’s equation for Pm by

Pn, integrate −1 to 1, use orthogonality.

11. Show that
 1

−1
Pn(x)dx = 0, for n  = 0

Hint: Use Rodrigue’s formula, differentiate

(n− 1) times.

12. Prove that

 1

−1

Pn(x) · (1− 2xt + t2)−
1
2 dx = 2tn

2n+ 1

when n is a positive integer.

Hint: Express (1− 2xt + t2)−
1
2 as 

tnPn(x)dx, use orthogonality.

11.6 FOURIER-LEGENDREAND FOURIER-

BESSEL SERIES

Another two important generalized Fourier series are

Fouries-Legendre series and Fouries-Bessel series.

Fourier-Legendre Series

The Fourier-Legendre series is an eigen function
expansion of a given function f (x) on the interval
−1 ≤ x ≤ 1 w.r.t. the weight function P (x) = 1 and
is given by

f (x) =
∞ 
n=0

anPn(x)

where Pn(x) are Legendre polynomials. Here

an =

1 
−1

f (x)Pn(x)dx

1 
−1

P 2
n (x)dx

= (2n+ 1)

2

1 
−1

f (x)Pn(x)dx

since

1 
−1

P 2
n (x)dx = 2

2n+ 1

Fourier-Bessel Series

The Fourier-Bessel series is an orthogonal expan-
sion of a given function f (x) defined on the interval
0 ≤ x ≤ R w.r.t. the weight function P (x) = x and
in terms of orthogonal Bessel functions Jn(K1nx),
Jn(K2nx), . . . , where n is fixed and R ·Kmn are the
zeros of the Bessel functions. (i.e., Jn(RKmn) = 0).
It is given by

f (x) =
∞ 
m=1

amJn(Kmnx)

or

f (x) = a1Jn(K1nx)+ a2Jn(K2nx)+ a3Jn(K3nx)+ · · ·

Here

am = 2

R2J 2
n+1(KmnR)

R 
0

x · f (x) · Jn(Kmnx)dx

for m = 1, 2, 3, . . .
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WORKED OUT EXAMPLES

Example 1: Compute the first three non-vanishing
terms in the Fourier-Legendre series over the interval
(−1, 1) of the function

f (x) =




1

2 ∈ , |x| <∈
0, ∈< |x| < 1

Solution: Let the Fourier-Legendrge series be

f (x) =
∞ 
n=0

anPn(x)

where an =
2n+ 1

2

 1

−1

f (x)Pn(x)dx

For n = 0

a0 =
1

2

1 
−1

f (x)P0(x)dx =
1

2

1 
−1

f (x) · 1 · dx

a0 =
1

2

∈ 
−∈

1

2 ∈dx =
1

4 ∈ x|∈−∈ =
2 ∈
4 ∈ = 1

2

For n = 1,

a1 =
3

2

1 
−1

f (x)P1(x)dx =
3

2

∈ 
−∈

1

2 ∈x dx = 0

When n is odd, Pn(x) is an odd (polynomial) func-

tion. So f (x)Pn(x) is odd since f (x) is constant.

Therefore an = 0 for all n odd.

Now for n = 2,

a2 =
5

2

∈ 
−∈

1

2 ∈P2(x)dx

a2 =
5

4 ∈

∈ 
−∈

1

2
(3x2 − 1)dx = 5

8 ∈

 
x3 − x2

2

 ∈
−∈

= 5

4
(∈2 −1)

Now

a4 =
9

2

∈ 
−∈

1

2 ∈P4(x)dx

= 9

4 ∈

∈ 
−∈

1

8
(35x4 − 30x2 + 3)dx

= 9

32 ∈ [7x5 − 10x3 + 3x]

    
∈

−∈

a4 =
9

16
[7 ∈4 −10 ∈2 +3]

Thus the Fourier-Legendre series

f (x) = 1

2
P0(x)− 0+ 5

4
(∈2 −1)P2(x)+ 0

+ 9

16
[7 ∈4 −10 ∈2 +3]P4(x)+ 0 . . .

Example 2: Expand f (x) = cos π
2
x in Fourier-

Legendare series.

Solution: Here an = 2n+1
2

1 
−1

f (x)Pn(x)dx

or an =
2n+ 1

2

1 
−1

cos
π

2
x · Pn(x)dx.

For n = 0,

a0 =
1

2

1 
−1

cos
π

2
x · 1dx = 1

2
· 2

π
· sin π

2
x

    
1

−1

a0 =
2

π
= 0.6366.

When n is odd, Pn(x) is odd. So the product cos π
2
x ·

Pn(x) is odd and therefore an = 0 for n odd. Thus,

for n = 1,

a1 =
3

2

1 
−1

 
cos

π

2
x
 
P1(x)dx =

= 3

2

1 
−1

x · cos
π

2
xdx
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a1 =
3

2

 
x · 2

π
sin

π

2
x + 1 · 4

π2
cos

π

2
x

 1
−1

= 0

For n = 2, a2 =
5

2

 1

−1

cos
π

2
x·P2(x)dx

a2 =
5

2

 1

−1

cos
π

2
x·
 

1

2
(3x2 − 1)

 
dx =

= 15

4

1 
−1

x2 cos
π

2
x − 5

4

1 
−1

cos
π

2
xdx

a2 =
15

4

 
x2 2

π
· sin π

2
x + 2x · 4

π2
cos

π

2
x

+ 2 · 8

π3
sin

π

2
x

 1
−1

−

−5

4

 
2

π
· sin π

2
x

 1
−1

a2 =
15

4

 
4

π
+ 0+ 32

π3

 
− 5

4

 
4

π

 

Now

a4 =
9

2

1 
−1

1

8
(35x4 − 30x2 + 3) cos

π

2
xdx

Recall that

1 
−1

xn cos
π

2
xdx =

π
2 

− π
2

 
2

π

 n+1

· tn cos t dt

where π
2
x = t . For n odd, this integral is zero since

the integrand is odd.
For n even,

In =
1 

−1

xn cos
π

2
xdx = 2

 
2

π

 n+1

π
2 

0

tn cos t dt

Now by reduction formula

In = 2

 
2

π

 n+1  
n ·
 π

2

 n−1
− n(n− 1)In−2

 

for n > 1.
So

I2 = 2

 
2

π

 3  
2 ·
 π

2

 
− 2I0

 
;

Here

I0 =
4

π

then,

I2 = 4

 
2

π

 3  
π

2
− 4

π

 
,

I4 = 2

 
2

π

 5  
4
 π

2

 3
− 12I2

 
=

= 8

 
2

π

 5
  π

2

 3
− 3 · 4

 
2

π

 3  
π

2
− 4

π

  

a4 =
9

16

1 
−1

(35x4 − 30x2 + 3) cos
π

2
x dx

a4 =
9

16
[35I4 − 30I2 + 3I0]

Similarly for n = 6,

a6 =
13

2

1 
−1

P6(x) cos
π

2
x dx

a6=
13

2

1 
−1

1

16
(231x6−315x4+105x2−5) cos

π

2
x dx

a6 =
13

32
[231I6 − 315I4 + 105I2 − I0]

Here

I6 = 2

 
2

π

 7  
6
 π

2

 5
− 30I4

 

Thus, the Legendre series is

cos
π

2
x = 0.6366P0 − 0.6871P2 + 0.0518P4

−0.0013P6 + · · ·

Fourier-Bessel Series

Example 1: Expand f (x) = x4, in Fourier-Bessel

series in terms of Bessel functions of order zero (n =
0) and w.r.t. the weight function P (x) = x over the

interval 0 < x < R.
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Solution: With n = 0, weight function x and inter-
val 0 < x < R, the required Fourier Bessel series is
given by

f (x) = a1J0(K10x)+ a2J0(K20x)+ a3J0(K30x)+ · · ·

where

am = 2

R2J 2
1 (Km1R)

R 
0

x · f (x)J0(Km0x)dx

Here f (x) = x4, so

am = 2

R2J 2
1 (Km1R)

R 
0

x5J0(Km0x)dx

Put Kmox = t then Kmodx = dt , then

R 
0

x5J0(Kmox)dx =
RKmo 
0

1

K5
mo

t5 · J0(t)
dt

Kmo

= 1

(Kmo)6

RKmo 
0

t5J0(t)dt

we know that 
xnJn−1(x)dx = xnJn(x)+ c

Integrating by parts

RKm0 
0

t5J0(t)dt =
RKm0 
0

t4(tJ0)dt

= t4(tJ1)
  RKm0

0
−

RKm0 
0

(tJ1)4t
3dt

Similarly

RKm0 
0

t4J1dt =
RKm0 
0

t2(t2J1)dt =

(t2J2)t
2
  RKm0

0
−
 

(t2J2)2t dt

Finally

RKm0 
0

t3J2dt = t3J3

      
RKm0

0

Thus substituting these values, we get

RKm0 
0

t5J0dt = t5J1 − 4[t4J2 − 2t3J3]

      
RKm0

t=0

= (RKmo)
5J1 − 4(RKmo)

4J2 + 8(RKmo)
3J3

Then the Fourier coefficients

am =
1

(Km0)6
2

R2J 2
1 (RKm1)

[(RKm0)]
3×

×[(RKm0)
2J1 − 4RKm0J2 + 8J3]

or

am = 2R[R2K2
m0J1(Km0R)− 4RKm0J2(Km0R)+

8J3(Km0R)]/[K3
m0J

2
1 (KmoR)]

Example 2: Find Fourier-Bessel series of f (x) =
x − x3 in terms of Bessel functions of order one (n =
1) over the interval 0 < x < 1.

Solution: The required Fourier-Bessel series with
n = 1 over the interval 0 < x < 1 is f (x) =
a1J1(K11x)+ a2Jl(K21x) +a3J1(K31x)+ · · ·
where

am = 2

J 2
2 (Km1R)

1 
0

x · f (x)J1(Km1x)dx

Here f (x) = x − x3 so

1 
0

xf (x)J1(Km1x)dx =
1 

0

x(x − x3)J1(Km1x)dx

=
1 

0

x2J1(Km1x)dx −
1 

0

x4J1(Km1x)dx = I1 − I2

Put Km1x = t then
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I1 =
1 

0

x2J1(Km1x)dx =
Km1 
0

 
t

Km1

 2

J1(t) ·
dt

Km1

= 1

(Km1)3

Km1 
0

t2J1(t)dt =
1

(Km1)3
· t2J2(t)

       
Km1

t=0

I1 =
1

K3
m1

·K2
m1J2(Km1) =

J2(Km1)

Km1

Now

I2 =
1 

0

x4J1(Km1x)dx =
Km1 
0

 
t

Km1

 4

J1(t) ·
dt

Km1

= 1

K5
m1

Km1 
0

t2(t2J1)dt =
1

K5
m1

[(t2J2)t
2 −
 

(t2J2)2t dt

But
 
t3J2dt = t3J3. Thus

I2 =
1

K5
m1

[K4
m1J2(Km1)− 2K3

m1J3(Km1)].

I2 =
1

K2
m1

[Km1J2(Km1)− 2J3(Km1)]

Therefore

am =
2

J 2
2 (Km1R)

 
J2(Km1

)

Km1

−

− 1

K2
m1

(Km1J2(Km1)− 2J3(Km1
))

 

or

am = 4J3(Km1)

K2
m1J

2
2 (Km1R)

EXERCISE

Generalited Fourier Series

Legende Series

1. Expandf (x) in Fourier-Legendre serieswhere

f (x) =
 

0,−1 < x < 0

x, 0 < x < 1

Ans. f (x) = 1
4
P0(x)+ 1

2
P1(x)+ 5

16
P2(x)

− 3

32
P4(x)+

13

256
P6(x)+ . . .

2. Develop the Legendre series for f (x) =
sin πx

Ans. f (x) = 0.95493P1(x)− 1.15824P3(x)+
0.21429P5(x)− −0.01664P7(x)

+ 0.00069P9(x) − 0.00002P11(x) + · · ·
3. Find theFourier-Legendre series expansion for

f (x) = x3 + x on −1 ≤ x ≤ 1.

Ans. [8P1(x)+ 2P3(x)]/5

4. Obtain Legendre series for f (x) = 1,

0 < x < 1.

Ans. 1 =
∞ 
n=0

(−1)n
 

4n+ 3

2n+ 2

 
(2n)!

(22n/n!)2
P2n+1(x).

5. Expandf (x) =
 

0,−1 < x < 0

1, 0 < x < 1
is a series of

Legendre polynomials.

Ans. f (x) = 1

2
P0(x)+

∞ 
n=1

1

2
{Pn−1(0)−

Pn+1(0)}Pn(x)

Hint: A0 =
1

2
, A1 =

3

4
, A2 = 0, A3 =

− 7

16
, A4 = 0, A5 =

11

32
.

Bessel Series

6. Find the Fourier-Bessel series expansion of

f (x) = 4x − x3 in terms of Bessel functions
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of order one (n = 1) in the interval [0, 2] sat-

isfying the boundary condition y(2) = 0 and

bounded at the origin

Ans. 4x − x3 = −16

∞ 
n=1

J1(Kn1x)

K3
n1J0(2Kn1)

Hint: Km1 are zeros of J1(2K) = 0 and

an =
2 

0

x(4x − x3)J1(Kn1x)dx/(2J
2
2 (2Kn1)),

2 
0

x4J1(Kn1x)dx =
 −16

Kn1

+ 32

K3
n1

 
J0(2Kn1).

7. Show that
x

2
=

∞ 
J=1

J1(Kj1x)

Kj1J2(Kj1)
= 0 < x < 1

Hint: Expand x
2

in Bessel functions of order

one in 0 < x < 1.

8. Obtain the Fourier-Bessel series expansion

of f (x) = R2 − x2, 0 < x < R in terms of

J0(Kn0x).

Ans.

∞ 
j=1

aJ J0(Kj0x);aj =
4J2(Kj0R)

K2
j0J

2
1 (Kj0R)

9. Prove that
c

2
=

∞ 
j=1

J0(Kj0x)

Kj0J1(Kj0c)
, 0 < x < c

10. Develop f (x) = x2 in terms of Bessel func-

tions of order 2(n = 2) in the interval 0 < x <

2.

Ans. x2 = 4

∞ 
n=1

J2(Kn2x)

Kn2J3(2Kn2)

11. Show that x3 =
∞ 
n=1

6J1(Kn1x)

K2
n1J

2
2 (3Km1)

×

×[3Kn1J2(3Kn1)− 2J3(3Kn1)]

Hint: Expand x3 in 0 < x < 3 in J1’s. Also

3 
0

x4J1(Kn1x)dx =
81Kn1J2(3Kn1)− 54J3(3Kn1)

K2
n1

11.7 CHEBYSHEV∗ POLYNOMIAL

*Chebyshev polynomials (of the first kind) are very

useful in approximation work.

The second order homogeneous differential equa-

tion with variable coefficients

(1− x2)
d2y

dx2
− x

dy

dx
+ λy = 0 (1)

is known as Chebyshev equation. Here,−1 < x < 1

and y(−1), y1(−1), y(1) and y1(1) are to be bounded.

Changing the variable by

x = cos θ (2)

The Chebyshev D.E. (1) reduces to

d2Y

dθ
+ λY = 0, 0 < θ < π (3)

where Y (θ ) = y(x(θ )) = y(cos θ ) since 1− x2 =
sin2 θ ,

dy

dx
= dy

dθ
dθ
dx
= − 1

sin θ

dy

dθ
and

d2y

dx2
= d

dθ

 
− 1

sin θ

dy

dθ

 
dθ

dx
= 1

sin2 θ

d2y

dθ2
− cos θ

sin3 θ

dy

dθ

The general solution of (3) in terms of θ is

Y (θ ) = A cos
√
λθ + Bsin

√
λθ when λ  = 0

Y (θ ) = C +Dθ when λ = 0

 
(4)

At θ = 0(x = 1) and θ = π (x = −1), the solutions

cos
√
λθ , sin

√
λθ , 1 and θ are bounded.

However

y (x) = −A sin(
√
λ cos−1 x)

√
λ

 
−1 
1− x2

 
+

+B cos
 √

λ cos−1 x
 √

λ

 
− 1√

1− x2

 
for λ  = 0

and

y (x) = 0+D

 
−1 
1− x2

 
for λ = 0

and bounded at x = ±1 only if B = D = 0 and√
λ = n = 1, 2, 3, . . .. Thus the eigen functions of

(1) in terms of θ are. cos nθ, n = 1, 2, . . . and 1 or

* Pafnuti Chebyshev (1821–1894), Russian mathematician, often
transliterated as Tchebichef or Tschebysheff.
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equivalently, cos nθ , for n = 0, 1, 2, . . .. Thus the

eigenvalues are

λn = n2 (5)

and eigen functions of Chebyshev D.E. (1), are

Tn(x) = cos
√
λθ = cos nθ (6)

Tn(x) = cos(n cos−1 x) , n = 0, 1, 2, . . .

Here T is used in honour of Chebyshev.

Note: Since Tn(1) = 1 and Tn(−1) = (−1)n (See

W.E.: 6) so for −1 ≤ x ≤ 1, |Tn(x)| ≤ 1.

Chebyshev Polynomial

Consider

Tn(x) = cos(nθ )

= 1

2
[einθ + e−inθ ]

= 1

2
[(cos θ + i sin θ )n + (cos θ − i sin θ )n]

= 1

2
[x + i

 
1− x2]n + 1

2
[x − i

 
1− x2]n

Expanding by binomial series

Tn(x) =
1

2

n 
m=0

ncmx
n−m(i

 
1− x2)m+

+1

2

n 
m=0

ncmx
n−m(−i

 
1− x2)m

= 1

2

n 
m=0

ncmx
n−m{1n + (−1)m}im(1− x2)m/2

whenm is odd, 1m + (−1)m = 0. Whenm is even,

1m + (−1)m = 2.
Takem = 2r andm ≤ n i.e., r ≤ n

2
. PutN =  n

2

 
,

Tn(x) =
N 
r=0

nc2rx
n−2r i2r (1− x2)r

=
N 
r=0

nc2r (−1)r (1− x2)rxn−2r

since i2r = (i2)r = (−1)r . Thus

Tn(x) =
N 
m=0

(−1)m
n! (1− x2)m

(2m)!(n− 2m)!
xn−2m (7)

where N =  n
2

 
is n

2
when n is even and N = n+1

2

when n is odd.

Tn(x) given by (7) is an nth degree polynomial in

x.

Tn(x) which is a solution of D.E. (1) is known as

Chebyshev polynomial (of the first kind).
In the expanded form, the Chebyshev polynomial

is given by

Tn(x) = 2n−1

 
xn − n

1!22
xn−2 + n(n− 3)

2!24
xn−4

−n(n− 4)(n− 5)

3!26
xn−6 + · · ·

 

Derivation of Chebyshev Polynomials

Since Tn(x) = cos nθ , for n = 0

T0(x) = cos 0 = 1

For n = 1, T1(x) = cos θ = x

For n = 2, T2(x) = cos 2θ = 2 cos2 θ − 1 =
2x2 − 1

For n = 3, T3(x) = cos 3θ = 4 cos3 θ − 3 cos θ

= 4x3 − 3x

For n = 4, T4(x) = cos 4θ =
8 cos4 θ − 8 cos2 θ + 1 = 8x4 − 8x2 + 1

For n = 5, T5(x) = cos 5θ = 16 cos5 θ −
20 cos3 θ + 5 cos θ

= 16x5 − 20x3 + 5x

y
T
x

x

=

(
) =

1

1

1

y

x
–1

y T x= ( )4

y T x= ( )2

y T x= ( )3

Fig. 11.2

y = T x =0( ) 1

Graphs of T0(x), T1(x), T2(x), T3(x), T4(x),
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T6(x) = 32x6 − 48x4 + 18x2 − 1.

Thus Tn(x) is even polynomial when n is even and

odd polynomial when n is odd.

Powers of x in terms of Tn(x)

We can express xn in terms of the Chybyshev poly-

nomials Tn(x) by solving the above results. Thus

1 = T0

x = T1

x2 = 1

2
(T2 + 1) = 1

2
(T0 + T2)

x3 = 1

4
(T3 + 3x) = 1

4
(3T1 + T3)

x4(T4 + 8x2 − 1)/8

or

x4 = 1

8

 
T4 + 8

 
1

2
(T0 + T2)

 
− T0

 

= 1

8
[3T0 + 4T2 + T4]

x5 = (T5 + 20x3 − 5x)/16

x5 = 1

16

 
T5 + 20

 
1

4
(3T1 + T3)

 
− 5T1

 

= 1

16
[10T1 + 5T3 + T5]

Now

x6 = (T6 + 48x4 − 18x2 + 1)/32

or

x6=
 
T6+

48

8
(3T0+4T2+T4)−

18

2
(T0+T2)+T0

 "
32

Thus

x6 = 1

32
[10T0 + 15T2 + 6T4 + T6]

Note that the coefficient of xn in Tn(x) is always 2n−1

(see exercise example 7 on page 11.44).

Zeros of Tn(x)

Equating to zero, we get

Tn(x) = cos(n cos−1 x) = 0

Then

n cos−1 x = (2k + 1)
π

2
for k = 0, 1, 2, · · · (n− 1)

or x = cos (2k+1)π

2n
are the n simple zeros of Tn(x).

Extrema of Tn(x)

The stationary points of Tn(x) are given by

T  n(x) =
n · sin(n cos−1 x) 

1− x2
= 0.

or n cos−1 x = Kπ . Thus xk = cos
 
Kπ
n

 
for K =

1, 2, . . . , n− 1 are the (n− 1) stationary points. The
extrema at these (n− 1) points are

Tn(xk) = cos(n cos−1 xk) = cos(Kπ ) = (−1)k

Also we know that (worked example 6) at the
end points of the interval (−1, 1), Tn(−1) = (−1)n

and Tn(1) = 1. Thus Tn(x) attains extrema at (n+ 1)
points given by

xK = cos

 
Kπ

n

 

where K = 0, 1, 2, . . . , n.

Integrals of Tn(x)

With x = cos θ , dx = − sin θdθ , 
Tn(x)dx =

 
cos(nθ ) · (− sin θ )dθ

= 1

2

 
(sin(n− 1)θ − sin(n+ 1)θ )dθ

= 1

2

 
cos(n+ 1)θ

n+ 1
− cos(n− 1)θ

n− 1

 

= 1

2

 
1

n+ 1
Tn+1(x)−

1

n− 1
· Tn−1(x)

 
for n ≥ 2

For n = 0,
 
T0(x)dx = x = T1 and for n = 1, 

T1(x)dx = x2

2
= 1

4
[T0 + T2].

Generating Function

Prove that

1− xt

1− 2xt + t2
=

∞ 
n=0

Tn(x) · tn,−1 < t < 1 (8)
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Note:LHS of (8) is known as the generating function

of the Chebyshev polynomials.
Proof: Put x = cos θ then

L.H.S. = 1− xt

1− 2xt + t2
= 1− t · cos θ

1− 2t cos θ + t2

Replacing cos θ by (eiθ + e−iθ )/2, we have

L.H.S. = 1

2

 
2− t(eiθ + e−iθ )

1− t(eiθ + e−iθ )+ t2

 

= 1

2

 
2− t(eiθ + e−iθ )

(1− teiθ )(1− te−iθ )

 

= 1

2

 
1

1− teiθ
+ 1

1− te−iθ

 

Expanding by binonial series

= 1

2

 ∞ 
n=0

(teiθ )n +
∞ 
n=0

(te−iθ )n
 

= 1

2

∞ 
n=0

tn(einθ + e−inθ ).

Thus

1− xt

1− 2xt + t2
=

∞ 
n=0

tn · cos nθ =
∞ 
n=0

Tn(x)t
n

Orthogonality

Prove that

1 
−1

1√
1− x2

· Tm(x) · Tn(x)dx =




0 if m  = n
π
2

if m = n  = 0

π if m = n = 0

(9)

ie, the Chebyshev polynomials are orthogonal on
(−1, 1).w.r.t. the weight function

1 
1− x2

Proof: We know that x = cos θ , dx = − sin θdθ ,√
1− x2 = sin θ , Tm(x) = cosmθ , Tn(x) = cos nθ ,

and limits: θ = 0 when x = 1 and θ = π when

x = −1.

Now

I =
1 

−1

1√
1− x2

· Tm(x)Tn(x)dx

=
0 

π

1

sin θ
· cosmθ · cos nθ · (− sin θ )dθ

=
π 

0

cosmθ · cos nθ dθ

Case (i) when m  = n

I = 1

2

π 
0

[cos(m+ n)θ + cos(m− n)θ ]dθ

= 1

2

 
sin(m+ n)θ

m+ n
+ sin(m− n)θ

m− n

     
π

0

= 0

Case (ii) when m = n  = 0

I =
π 

0

cos2 nθ dθ = 1

2

π 
0

(1+ cos 2nθ )dθ

= 1

2

 
θ + sin 2nθ

2n

     
π

0

= π

2

Case (iii) when m = n = 0

I =
π 

0

1 · 1 · dθ = π

Recall that

π 
0

cosmθ · cos nθ · dθ =




0, m  = n
π
2
, m = n  = 0

π, m = n = 0

Recurrence Relations

I. Prove that Tn+1(x)+ Tn−1(x) = 2xTn(x).

Proof:

Tn+1(x)+ Tn−1(x) = cos(n+ 1)θ + cos(n− 1)θ

= 2 cos nθ · cos θ = 2Tn(x) · x = 2xTn(x)

II. Prove that

(1− x2)T  n(x) = n{Tn−1(x)− xTn(x)}
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Proof: Differentiating w.r.t. x

d

dx
Tn(x) =

d

dx
{cos(nθ )} = d

dx
{cos(n cos−1 x)}

= − sin(n cos−1 x) · n ·
 
− 1√

1− x2

 
 

1− x2T  
n(x) = n · sin(nθ )

Multiplying by  
1− x2 = sin θ

we get

(1− x2)T  
n(x) = n · sin θ · sin(nθ )

= 1

2
n · [cos(n− 1)θ − cos(n+ 1)θ ]

= n

2
[Tn−1(x)− Tn+1(x)]

Eliminate Tn+1(x) using RRI i.e., Tn+1(x) =
2xTn(x)− Tn−1(x) then

(1− x2)T  
n(x) =

n

2
[Tn−1(x)− 2xTn(x)+ Tn−1(x)]

= n[Tn−1(x)− xTn(x)]

Chebyshev Series

The Chebyshev D.E. (1) can be written as

y   − x

(1− x2)
y  + λ

(1− x2)
y = 0

with an integrating factor e
+  −x

(1−x2)
dx =

e+
1
2

ln(1−x2) =
√

1− x2. Multiplying through-
out by this integrating factor, the D.E. takes the
form  

1− x2y  − x 
1− x2

y + λ 
1− x2

y = 0

or in the Sturm-Liouville equation form  
1− x2y 

  
+ 1 

1− x2
λy = 0 (10)

with the weight function P (x) = 1√
1−x2

. The eigen-

values of (10) are

λn = n2, n = 0, 1, 2, . . . (5)

and eigen functions are

Tn(x) = cos(n cos−1 x) (6)

Any given piecewise continuous function f (x) on
−1 < x < 1, can be expanded in terms of the eigen
functions (6) as

f (x) = a0T0(x)+ a1T1(x)+ a2T2(x)+ · · ·
or

f (x) =
∞ 
n=0

anTn(x) (11)

The infinite series (11) is known as Chebyshev

series which expresses f (x) in terms of Chebyshev

polynomials Tn(x). The unknown coefficients an’s

are determined using the orthogonality property (9).

Multiplying (11) on both sides Tn(x) · 1√
1−x2

and

integrating w.r.t. x from −1 to 1, we get
1 

−1

1√
1−x2

f (x)Tn(x)dx =
1 

−1

1√
1−x2

Tn

 ∞ 
m=0

aiTm(x)

 
dx

=
∞ 
m=0

ai

1 
−1

1√
1− x2

Tn(x) · Tm(x)dx

From (9) for m = n = 0, the RHS reduces to a0π

while all other coefficients are zero (because of or-

thogonality). Thus

a0 = 1
π

1 
−1

1√
1−x2

f (x)dx (12)

since T0(x) = 1.

From (9) form = n  = 0, the RHS reduces to πan
2

.

Thus

an = 2
π

1 
−1

1√
1−x2

f (x)Tn(x)dx (13)

for n = 1, 2, 3, . . .

WORKED OUT EXAMPLES

Example 1: Prove that Tn(x)− 2xTn−1(x)+
Tn−2(x) = 0
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Solution: Consider Tn(x)+ Tn−2(x)

= cos nθ + cos(n− 2)θ

= cos nθ + cos nθ · cos 2θ + sin nθ · sin 2θ

= cos nθ (1+ cos 2θ )+ sin nθ · 2 sin θ. cos θ

= cos nθ · 2 · cos2 θ + 2 sin θ − cos θ · sin nθ
= 2 cos θ [cos nθ · cos θ + sin θ · sin nθ ]

= 2 cos θ [cos(n− 1)θ ]

= 2x · Tn−1(x)
Example 2: Prove that

Tm+n(x)+ Tm−n(x) = 2Tm(x) · Tn(x)

Solution:

Tm+n(x)+ Tm−n(x)

= cos(m+ n)θ + cos(m− n)θ

= [cosmθ · cos nθ − sinmθ · sin nθ ]+
[cosmθ · cos nθ + sinmθ · sin nθ ]
= 2 cosmθ · cos nθ = 2Tm(x)Tn(x).

Example 3: Show that

2[Tn(x)]
2 = 1+ T2n(x)

Solution: Consider

2[Tn(x)]
2 − T2n(x) =

=2 cos2nθ−cos 2nθ=2 cos2nθ−(cos2nθ−sin2nθ )

= cos2 nθ + sin2 nθ = 1

Example 4: Prove that

1 
−1

x6(1− x2)−
1
2 T8(x)dx = 0

Solution: Put x = cos θ , 1− x2 = sin2 θ , when

x = 1, θ = 0 and x = −1, θ = π . Substituting in

the integral

I =
1 

−1

x6(1− x2)−
1
2 T8(x)dx

=
0 

π

cos6 θ · 1

sin θ
· T8(cos θ ) · (−) sin θdθ

=
π 

0

cos6 θ · cos 8θdθ

Now cos6 θ = cos3 θ · cos3 θ

= 1

4
[cos 3θ + 3 cos θ ]

1

4
[cos 3θ + 3 cos θ ]

= 1

16
[cos2 3θ + 9 cos2 θ + 6 cos θ cos 3θ ]

= 1

16

  
1+ cos 6θ

2

 
+ 9

 
1+ cos 2θ

2

 

+ 3(cos 4θ + cos 2θ )

 

I=
π 

0

1

32
[cos 6θ + 6 cos 4θ + 15 cos 2θ + 10]

cos 8θdθ = 0

since
π 

0

cosmθ · cos nθdθ = 0

for m  = n

Example 5: Derive T6(x) and T7(x).

Solution: Put n = 5 in the recurrence relation
Tn+1(x) = 2xTn(x)− Tn−1(x), then

T6(x) = 2xT5(x)− T4(x)

Substituting T4(x) = 8x4 − 8x2 + 1 and

T5(x) = 16x5 − 20x3 + 5x

We have

T6(x)=2x[16x5−20x3+5x]−[8x4−8x2+1]

T6(x) = 32x6 − 48x4 + 18x2 − 1

Put n = 6 in the recurrence relation. Then

T7(x) = 2xT6(x)− T5(x)

=2x[32x6−48x4+18x2−1]−[16x5−20x3+5x]

T7(x) = 64x7 − 112x5 + 56x3 − 7x.

Example 6: Prove that

(a) Tn(1) = 1
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(b) Tn(−1) = (−1)n

(c) T2n(0) = (−1)n

(d) T2n+1(0) = 0

Solution: By definition

Tn(x) = cos(n cos−1 x) (1)

(a) Put x = 1 in (1). Then

Tn(1) = cos(n cos−1 1) = cos(n · 0) = 1

(b) Put x = −1 in (1). Then

Tn(−1)=cos(n cos−1(−1))=cos(nπ )= (−1)n

[(c, d)] Put x = 0 in (1). Then

Tn(0) = cos(n · cos−1 0) = cos
 nπ

2

 
For n = 2m = even,

Tn(0) = T2m(0) = cos

 
2mπ

2

 
= (−1)m

For n = 2m+ 1 = odd

Tn(0) = T2m+1(0) = cos
 
(2m+ 1)

π

2

 
= cos

 
mπ + π

2

 
= (−1)m · cos

π

2
= 0

Example 7: Express the polynomial 16x4 +
12x3 + 6x2 + 4x − 1 in terms of Tn(x).

Solution: Substitute the values of x4, x3, x2, x in

the given polynomial; then

16x4 + 12x3 + 6x2 + 4x − 1

= 16
1

8
[3T0 + 4T2 + T4]+

+12 · 1

4
[3T1 + T3]+ 6 · 1

2
(T0 + T2)− T0

= 2T4 + 3T3 + 11T2 + 9T1 + 8T0

Example 8: Expand f (x) = x4 + 3x3 + 2x2 +
5x + 1 as a Chebyshev series in terms of Tn(x). Ver-

ify the result by direct substitution of xn in f (x).

Solution: The Chebyshev series in terms of Cheby-
shev polynomials is

f (x) = a0T0(x)+ a1T1(x)+ a2T2(x)+ · · ·

Here

a0=
1

π

1 
−1

f (x) 
1−x2

dx= 1

π

1 
−1

x4+3x3+2x2+5x+1 
1−x2

dx

Note that
√

1− x2 is an even function and
a 

−a
f (x)dx = 0 when f (x) is an odd function.

Thus a0 = 2
π

1 
0

x4+2x2+1√
1−x2

dx. Put x = cos θ , so dx =

− sin θdθ ,
√

1− x2 =
√

1− cos2 θ = sin θ , limits
for θ : x = 0, θ = π

2
and x = 1, θ = 0. Then

a0 =
2

π

0 
+ π

2

cos4 θ + 2 cos2 θ + 1

sin θ
(− sin θ )dθ

a0 =
2

π

π
2 

0

(cos4 θ + 2 cos2 θ + 1)dθ

Recall that

π
2 
0

cosn θdθ = (n−1)(n−3)(n−5)···
n(n−2)(n−4)··· ×  π

2
only

when n is even).

a0 =
2

π

 
3 · 1
4 · 2 ·

π

2
+ 2 · 1

2
· π

2
+ π

2

 

= 3

8
+ 1+ 1 = 19

8

Now

an =
2

π

1 
−1

f (x)Tn(x) 
1− x2

dx for n = 1, 2, 3, . . .

So

a1 =
2

π

1 
−1

(x4 + 3x3 + 2x2 + 5x + 1)x 
1− x2

dx

a1 =
4

π

1 
0

3x4 + 5x2 
1− x2

dx

= 4

π

π
2 

0

(3 cos4 θ + 5 cos2 θ )dθ
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a1 =
4

π

 
3 · 3 · 1

4 · 2 + 5 · 1

2

 
π

2
= 29

4

Now

a2 =
2

π

1 
−1

(x4 + 3x3 + 2x2 + 5x + 1)(2x2 − 1) 
1− x2

dx

= 4

π

1 
0

(2x6 + 3x4 − 1) 
1− x2

dx

= 4

π

π/2 
0

(2 cos6 θ + 3 cos4 θ − 1)dθ

a2 =
4

π

 
2 · 5 · 3 · 1

6 · 4 · 2 + 3 · 3 · 1
4 · 2 − 1

 
π

2
= 3

2

Now

a3 =
2

π

1 
−1

(x4 + 3x3 + 2x2 + 5x + 1) 
1− x2

(4x3 − 3x)dx

= 4

π

1 
0

(12x6 + 11x4 − 15x2) 
1− x2

dx

= 4

π



π/2 
0

(12 cos6 θ + 11 cos4 θ − 15 · cos2 θ )dθ




= 4

π

 
12 · 5 · 3 · 1

6 · 4 · 2 + 11 · 3 · 1
4 · 2 − 15 · 1

2

 
π

2
= 3

4

Finally

a4 =
2

π

1 
−1

(x4 + 3x3 + 2x2 + 5x + 1) 
1− x2

(8x4 − 8x2 + 1)dx

a4 =
4

π

1 
0

8x8 + 8x6 − 7x4 − 6x2 + 1) 
1− x2

dx

= 4

π

π
2 

0

(8 cos8 θ + 8 cos6 θ − 7 cos4 θ − 6 cos2 θ + 1)dθ

= 4

π

 
8· 7·5·3·1

8·6·4·2+8· 5·3·1
6·4·2−7· 3·1

4·2 − 6· 1
2
+ 1

 
π

2

a4 =
1

8

All the remaining coefficients are zero i.e., an = 0
for n ≥ 5 because of the result

1 
−1

xmTn(x) 
1− x2

dx = 0 when m < n

(see W.E. 9 on page 11.43).

Here the given function f (x) = x4 + 3x2 +
2x2 + 5x + 1 is a polynomial of degree m = 4 and

n ≥ 5.
Thus the required Chebyshev series is

f (x) = x4 + 3x3 + 2x2 + 5x + 1

= 19

8
T0 +

29

8
T1 +

3

2
T2 +

3

4
T3 +

1

8
T4

Direct Verification

Substitution x4, x3, x2, x, 1 in terms of Tn(x), we

have

x4 + 3x3 + 2x2 + 5x + 1 = 1

8
[3T0 + 4T2 + T4]

+3 · 1

4
[3T1 + T3]+ 2 · 1

2
(T0 + T2)+ 5 · T1 + T0

= 19

8
T0 +

29

4
T1 +

3

2
T2 +

3

4
T3 +

1

8
T4

Example 9: Show that
1 

−1

xmTn(x)√
1−x2

dx = 0 when

m < n.

Solution: By Chebyshev series

xm =
m 
i=0

aiTi (x)

Form even, all the odd coefficients a1, a3, . . . will be

zero, while for m odd, the even coefficients a0, a2,

a4 . . . will be zero.

Now

1 
−1

xmTn(x)√
1−x2

dx=
1 

1

 
m 
i=0

aiTi(x)

 
Tn(x)

√
1−x2

dx
 

1−x2dx

=
m 
i=0

ai

1 
−1

Ti(x) · Tn(x)√
1− x2

dx



SPECIAL FUNCTIONS—GAMMA, BETA, BESSEL AND LEGENDRE 11.43

For m < n since the index i takes the values

0, 1, 2, 3, . . . , m, all, these indices are less than n

and therefore not equal to n. Using orthogonality

of Chebyshev polynomials the integral on the RHS

vanishes for i = 0, 1, 2, . . . , m each of which is not

equal to n.

EXERCISE

1. Prove that [Tn(x)]
2 − Tn+1(x) · Tn−1(x) = 1−

x2

Hint: LHS = cos2 nθ − cos(n+ 1)θ · cos(n−
1)θ = cos2 θ − (cos2 nθ − sin2 θ ) = sin2 θ =
1− x2

2. Prove that

1− t2

1− 2tx + t2
= T0(x)+ 2

∞ 
n=1

Tn(x) · tn

Hint: Put x = cos θ = 1
2
(eiθ + e−iθ ) in LHS

∞ 
r,s=0

t r+sei(r−s)θ −
∞ 

r,s=0

t r+s+2 · ei(r−s)θ

coefficient of t0, (r = 0, s = 0) : T0(x).

coefficient of t  : (r = 0, s = 1) : 2x = 2T1(x)

coefficient of tn : (s = n− r) : 2 cos nθ =
2Tn(x).

3. Prove that Tn(x) is a polynomial of nth degree in

x.

4. Express the following polynomials in Tn(x)

(a) x3 + 3x2 − 5x + 2

(b) 5x4 − x3 + 3

(c) 12x3 + 6x2 + 4x + 1

(d) 16x4 + 4x3 + 2x2 + 4x + 5

Ans. (a) 1
4
T3 + 3

2
T2 − 17

4
T1 + 7

2
T0

(b) 5
8
T4 − 1

4
T3 + 5

2
T2 + 9

4
T1 + 15

8
T0

(c) 3T3 + 3T2 + 13T1 + 4T0

(d) 2T4 + T3 + 9T2 + 7T1 + 12T0

5. Express x7 in terms of Tn(x)

Ans. x7 = (T7 + 7T5 + 21T3 + 35T1)/64

Hint: x7 = (T7 + 112x5 − 56x3 + 7x)/64

6. Obtain the Chebyshev series of f (x) = x3 + x.

Ans. f (x) = x3 + x = 1
4
(T3 + 71).

Hint: a0 = 0, a1 = 7
4
, a2 = 0, a3 = 1

4
, an = 0 for

n ≥ 4.

Note that f (x) = x3 + x is an odd function.

7. Show that the leading coefficient of xn in Tn(x)

is 2n−1.

Hint: Tn(x) = cos nθ = Re(einθ ) = Re(cos θ )n

= Re[cosn θ − nc2 cosn−1 θ · sin2 θ +
nn4

cosn−4 θ · sin4 θ + · · ·] = xn

−nc2xn−2 · (1− x2)+ nc4x
n−4(1− x2)+ · · ·],

coefficient of xn is 1+ nc2 + nc4 + · · · = 2n−1.

8. Show that Chebyshev polynomials are solutions

of Chebyshev differential equation.

Hint: y = Tn(x) = cos(n cos−1 x),

y  = n sin√
1−x2

(n cos−1 x), y   = nx

(1−x2)3/2
×

· sin(n cos−1 x) or (1− x2)y   = xy  − n2y

9. Determine T7(x)T8(x), T9(x), T10(x) in powers of

x

Ans. T7(x) = 64x7 − 112x5 + 56x3 − 7x

T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

T10(x) = 512x10 − 1280x8 + 1120x6−
− 400x4 + 50x2 − 1
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12

Laplace Transform

INTRODUCTION

Laplace transform is useful since (i) particular solu-

tion is obtained without first determining the general

solution, (ii) non homogeneous equations are solved

without obtaining the complementary integral (iii)

solutions of mechanical or electrical problems in-

volving discontinuous force function (RHS function

F (x)) or periodic functions other than cos and sine

are obtained easily (iv) system of DE, PDE and in-

tegral equations.

Before the advent of calculators and computers,

logarithms were extensively used to replace multi-

plication (or division) of two large numbers by ad-

dition (or subtraction) of two numbers. The crucial

ideawhichmade theLaplace* transform (L.T.) a very

powerful technique is that it replaces operations of

calculus by operations of algebra. For example, with

the application of Laplace transform to an initial

value problem, consisting of an ordinary (or partial)

differential equation (O.D.E.) together with initial

conditions (I.C.) is reduced to a problem of solving

an algebraic equation (with any given initial condi-

tions automatically taken care) as shown in Fig. 12.1.

12.1 LAPLACE TRANSFORM

Definition: Let f (t) be a given function defined

for all t ≥ 0. Laplace transform of f (t) denoted by

* Pierre Simon Marquis De Laplace (1749–1827), French math-
ematician, known as the Newton of France and teacher to
Napoleon Bonaparte.

Fig. 12.1

L{f (t)} or simply L{f } is defined as

L{f (t)} =
 ∞

0

e−st f (t)dt = F (s) (1)

L is known as Laplace transform operator. The

original given function f (t) known as determining

function depends on t , while the new function to

be determined F (s), called as generating function,

depends only on s (because the improper integral on

the R.H.S. of (1) is integrated with respect to t).

F (s) in (1) is known as the Laplace transform of

f (t).

Equation (1) is known as direct transform or

simply transform, in which f (t) is given and F (s)

is to be determined.

Thus Laplace transform transforms one class of

complicated functions f (t) to produce another class

of simpler functions F (s).

Notation: Original given functions are denoted by

lower case letters say f (t) and their Laplace trans-

forms by the same letters in capitals sayF (s). (Some-

times Laplace transform of f (t) is denoted by f (s).

12.1
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Laplace Transform of Some

Elementary Functions

Example: Find Laplace transform of

f (t) = k

where k is a constant and t ≥ 0.

Solution:

L{f (t)} = L{k} =
 ∞

0

e−st k dt = −k
s
e−st

    ∞
0

L{k} = k

s
when s > 0

Note: L.T. does not exist for s ≤ 0
It follows for k = 0

L{0} = 0

for k = 1

L{1} = 1

s

Example:

L{eat } =
 ∞

0

e−st · eat dt =
 ∞

0

e−(s−a)t dt

= e−(s−a)t

−(s − a)

     
∞

t=0

= 1

s − a

Thus L{eat } = 1
s−a when s > a

Note: L.T. does not exist when s ≤ a.

Example: Let f (t) = tb, where b is non-negative
real number i.e., b > 0, then

L{tb} =
 ∞

0

e−st tbdt, put st = x

=
 ∞

0

e−x
 x
s

 b dx
s

= 1

sb+1

 ∞

0

e−xxbdx.

L{tb} = 1

sb+1 (b + 1) when s > 0 and b + 1 > 0

Here the Gamma function is defined as

 (α) =
 ∞

0

e−t tα−1dt,with α > 0.

Example: When b = n = non-negative integer,
then

L{tn} = 1

sn+1
 (n+ 1) = n!

sn+1

Since  (n+ 1) = n!

Thus

L{tn} = n!

sn+1
for n = 0, 1, 2, 3, . . . .

Example: When b = 1
2

L{t 1
2 } =

 
 

1
2
+ 1

 
s

1
2
+1

=
1
2
 
 

1
2

 
s

3
2

=
√
π

2s
3
2

since  (α + 1) = α (α) and  
 

1
2

 = √
π .

Example: When b = − 1
2

L{t −1
2 } =

 
 
− 1

2
+ 1

 
s−

1
2
+1

=
 
 

1
2

 
s

1
2

=
 
π

s
.

WORKED OUT EXAMPLES

Laplace transform of piecewise

continuous functions

Example 1: (refer Fig. 12.2)

f (t) = 0, 0 < t < 1

= t, 1 < t < 4

= 0, t > 4

Fig. 12.2

Solution:

L{f } =
 ∞

0

e−st f (t)dt

=
 1

0

0 · e−st dt +
 4

1

t · e−st dt +
 ∞

4

0 · e−st dt

Integrating by parts

=− t

s
e−st − e−st

s2

 4

1

= e−s
 

1

s
+ 1

s2

 
− e−4s

 
4

s
− 1

s2

 
.
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EXERCISE

Piecewise continuous functions

Find the Laplace Transform (L.T.) of the following

piecewise continuous functions:

1. f (t) =
 

4, 0<t<1

3, t>1

Ans. 1
s
(4 − e−s)

2. f (t) =
 

sin 2t, 0<t≤π
0, t>π

Ans.
2(1−e−πs )
s2+4

3. f (t) =
 
et , 0<t<1

0, t>1

Ans. e1−s−1
1−s

4. f (t) =




t, 0≤t<1

2−t, 1≤t<2

0, t≥2

Ans. 1

s2

 
1 − 2e−s + e−2s

 
.

12.2 APPLICATIONS, ADVANTAGES

AND SUFFICIENT CONDITIONS

FOR EXISTENCE OF LAPLACE

TRANSFORM

Applications

Laplace transform is very useful in obtaining solu-

tion of linear differential equations, both ordinary

and partial, solution of system of simultaneous

differential equations, solution of integral equations,

solution of linear difference equations and in the

evaluation of definite integrals.

Advantages

1. With the application of Laplace transform,

particular solution of differential equation (D.E.)

is obtained directly without the necessity of first

determining general solution and then obtaining

the particular solution (by substitution of initial

conditions).

2. L.T. solves non-homogeneous D.E. without

the necessity of first solving the corresponding

homogeneous D.E.

3. L.T. is applicable not only to continuous func-

tions but also to piecewise continuous functions,

complicated periodic functions, step functions

and impulse functions.

4. Laplace transforms of various functions are

readily available (in tabulated form). In Section

12.12 Laplace transforms of some most often

used functions are tabulated.

Sufficient Conditions for the Existence of

Laplace Transform of f (t)

The L.T. of f (t) exists i.e., the improper integral in

the R.H.S. of (1) converges (has a finite value) when

the following sufficient conditions are satisfied:

a. f (t) is piecewise (or sectionally) continuous i.e.,

f (t) is continuous in every subinterval and has

finite limits at end points of each of these sub-

intervals and

b. f (t) is of exponential order of γ i.e., there ex-

istsM,γ such that |f (t)| < Meγ t . In otherwords

functions of exponential order do not grow faster

than eγ t .

Example: Since lim
t→∞

t2

e3t
= finite, f (t) = t2 is of

exponential order say 3.

Example: Since lim
t→∞

et
2

eγ t
= not finite, f (t) = et

2

is not of exponential order.

Note: Above conditions (a) and (b) are not neces-

sary conditions.

12.3 GENERAL PROPERTIES OF

LAPLACE TRANSFORM

Although theoretically F (s), the Laplace transform

of f (t) is obtained from the definition (1) (in

Section 12.2), in practice most of the time Laplace

transforms are obtained by the judicial application

of some of the following important properties. In a

nutshell, they are:

1. Linearity property states that L.T. of a linear com-

bination (sum) is the linear combination (sum) of

Laplace transforms.

2. In change of scale, where the argument t of f is

multiplied by a constant a, s is replaced by s
a

in

F (s) and then multiplied by 1
a
.
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3. First shift theorem proves that multiplication of

f (t) by eat amounts to replacement of s by s − a

in F (s).

4. L.T. of a derivative f  amounts to multiplication

of F (s) by s (approximately but for the constant

−f (0)).

5. L.T. of an integral of f amounts to division of

F (s) by s.

6. Multiplication of f (t) by tn amounts to differ-

entiation of F (s) n times w.r.t. s (with (−1)n as

sign).

7. Division of f (t) by t amounts to integration of

F (s) between the limits s to ∞.

8. Second shift theorem proves that the L.T. of

shifted function f (t − a)u(t − a) is obtained by

multiplying F (s) by e−at . The above important

properties are tabulated in Section 12.12.

Linearity Property (Principle)

Book Work: If L{f (t)}=F (s) and L{g(t)}=G(s)

Then L{c1f (t) + c2g(t)} = c1L{f (t)} + c2L{g(t)}
= c1F (s) + c2G(s)

where c1 and c2 are any two constants.

Proof:

L{c1f (t) + c2g(t)}

=
 ∞

0

e−st {c1f (t) + c2g(t)}dt

= c1

 ∞

0

e−st f (t)dt + c2

 ∞

0

e−st g(t)dt

= c1L{f (t)} + c2L{g(t)}
= c1F (s) + c2G(s).

Thus Laplace transform is a linear operator, addi-

tive and homogeneous (like the differential operator

D = d
dx

).

This result can easily be generalized to more than

two functions.

Example: Find L{cosh at}

Solution: L{cosh at} = L
 
eat+e−at

2

 

By Linearity property

L{cosh at} = 1

2
L{eat } + 1

2
L{e−at }

L{cosh at} = 1

2

1

s − a
+ 1

2

1

s + a
= s

s2 − a2
, s > a ≥ 0.

Similarly,

Example: L{sinh at} = a

s2−a2

Example:

L{eiwt } = 1

s − iw
= s + iw

(s − iw)(s + iw)
= s + iw

s2 + w2

since eiθ = cos θ + i sin θ , by linearity property

L{eiwt } = L{coswt + i sinwt}
= L{coswt} + iL{sinwt}

= s + iw

s2 + w2

Comparing the real and imaginary parts on both
sides, we have

L{coswt} = s

s2 + w2

and

L{sinwt} = w

s2 + w2
.

WORKED OUT EXAMPLES

Linearity property

Find the Laplace transform of the following:

Example 1: eat − ebt

Solution:

L{eat − ebt } = L{eat } − L{ebt }

= 1

s − a
− 1

s − b
= a − b

(s − a)(s − b)

Example 2: cos2 kt

Solution:

L{cos2 kt} = L

 
1 + cos 2kt

2

 

= 1

2
L{1} + 1

2
L{cos 2kt} = 1

2

1

s
+ 1

2

s

s2 + 4k2
.
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Example 3: (5e2t − 3)2

Solution:

L{(5e2t − 3)2} = L{25e4t − 30e2t + 9}
= 25L{e4t } − 30L{e2t } + 9L{1}

= 25 · 1

s − 4
− 30

1

s − 2
+ 9 · 1

s
.

Example 4: 3t4−2t3+4e−3t−2 sin 5t+3 cos 2t

Solution:

L{3t4 − 2t3 + 4e−3t − 2 sin 5t + 3 cos 2t}
= 3L{t4} − 2L{t3} + 4L{e−3t } − 2L{sin 5t}

+3L{cos 2t}

= 3
4!

t5
− 2

3!

t4
+ 4

1

s + 3
− 2 · 5

s2 + 52
+ 3 · s

s2 + 22
.

Example 5: cos
√
t

Solution: Expanding in series

cos
√
t =

∞ 
n=0

(−1)n(t
1
2 )2n

(2n)!
=
 (−1)n

(2n)!
tn

L{cos
√
t} = L

  (−1)n

(2n)!
tn
 

By linearity principle

=
 

L

 
(−1)n

(2n)!
tn
 

=
∞ 
n=0

(−1)n

(2n)!
L{tn}

=
∞ 
n=0

(−1)n

(2n)!

n!

sn+1
.

EXERCISE

Linearity property

Find the Laplace transform of the following:

1.
 √

t ± 1√
t

 3

Ans.
√
π

4

 
3

s
5
2

± 6

s
3
2

+ 12

s
1
2

± 8

s
− 1

2

 

2. sin2 kt

Ans. 2k2

s(s2+4k2)

3. 4e5t + 6t3 − 3 sin 4t + 2 cos 2t

Ans. 4
s−5

+ 36

s4
− 12

s2+16
+ 2s

s2+4

4. cos3 at

Ans.
s(s2+7a2)

(s2+a2)(s2+9a2)

5. cos 3t · cos 2t cos t

Ans. 1
4

 
s

s2+36
+ s

s2+16
+ s

s2+4
+ 1

s

 
6. sin

√
t

Hint: Use  
 
n+ 1

2

 = 1·3·5···(2n−1)

2n

√
π for n

positive integer.

Ans.
√
π

2s
√
s

∞ 
n=1

1
(n−1)!

 − 1
4s

 n−1 =
√
π

2s
√
s
e
−
 

1
4s

 
.

Change of Scale Property

Book Work: If L{f (t)} = F (s) then

L{f (at)} = 1

a
F
 s
a

 
.

Proof:

L{f (at)} =
 ∞

0

e−st f (at)dt

Put at = u, a dt = du

L{f (at)} =
 ∞

0

e−s
 
u
a

 
f (u)

du

a

= 1

a

 ∞

0

e−
s
a uf (u)du

L{f (at)} = 1

a
F
 s
a

 
Thuswhen the argument t off ismultiplied bya then

s is replaced by s
a

in transformF (s) and is multiplied

by 1
a
.

WORKED OUT EXAMPLES

Change of scale

Example 1: If L{f (t)} = e−
1
s

s
find L{e−t f (3t)}.
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Solution: From change of scale property with a =
3, replace s by s

3

L{f (3t)} = 1

3

e−
3
s

s
3

= e−
3
s

s

Applying first shift theorem

L{e−t f (3t)} = e
− 3

(s+1)

s + 1

Obtainedby replacing s by s− a= s− (−1)= s+ 1.

EXERCISE

Change of scale

1. If L
 

sin t
t

 = tan−1
 

1
s

 
find L

 
sin at
t

 
Ans. tan−1(a/s)

2. If L{f (t)} = 20−4s

s2−4s+20
find L{f (3t)}

Ans. 4(15 − s)/(s2 − 12s + 180)

3. If L{sin t} = 1

s2+1
, find L{sin 3t}

Ans. 3

s2+9
.

First Shifting or First Translation or

s-Shift Theorem: Replacement of s

by s−a in transform

Book Work: If L{f (t)} = F (s) then

L{eatf (t)} = F (s − a)

Proof: Consider F (s − a) =  ∞
0
e−(s−a)t f (t)dt

F (s − a) =
 ∞

0

e−sa ·  eatf (t)
 
dt

= L{eatf (t)}

Thus the Laplace transform of f (t) multi-

plied by eat is obtained by replacing s by s− a

in F (s) which is the Laplace transform of

f (t).

Example: Find L{eat sin at}

Solution: We know that L{sin at} = a

s2+a2 .

By first shifting theorem, replace s by s − a in F (s),
the Laplace transform of sin at i.e.,

L{eat sin at} = a

s2 + a2

    
s=s−a

= a

(s − a)2 + a2

Similarly,

Example: L{eat cos at}= s

s2+a2

   
s=s−a

= s−a
(s−a)2+a2

Example: L{eat sinwt} = w

(s−a)2+w2

Example: L{eat coswt} = s−a
(s−a)2+w2

Example: L{eat · tn} = n!

sn+1

   
s=s−a

= n!

(s−a)n+1 .

WORKED OUT EXAMPLES

Find the Laplace transform of f (t):

Example 1: f (t) = t
7
2 e3t

Solution:

L{t 7
2 } =

 
 

7
2
+ 1

 
s

7
2
+1

=
7
2
· 5

2
· 3

2
· 1

2
 
 

1
2

 
s

9
2

= 105
√
π

16s
9
2

By first shift theorem,

L{e3t · t 7
2 } = 105

√
π

16s
9
2

     
at s=s−3

= 105
√
π

16(s − 3)
9
2

Example 2: {3t5 − 2t4 + 4e−5t − 3 sin 6t

+4 cos 4t}e2t

Solution:

L{3t5 − 2t4 + 4e−5t − 3 sin 6t + 4 cos 4t}
= 3L{t5} − 2L{t4} + 4L{e−5t }

−3L{sin 6t} + 4L{cos 4t}

= 3
5!

s6
− 2

4!

s5
+ 4

1

s + 5
− 3

6

s2 + 36
+ 4

s

s2 + 16

Applying first shift theorem,

L{(3t5 − 2t4 + 4e−5t − 3 sin 6t + 4 cos 4t)e2t }

= 360

s6
− 48

s5
+ 4

s + 5
− 18

s2 + 36
+ 4s

s2 + 16
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with s replaced by s − 2

= 360

(s − 2)6
− 48

(s − 2)5
+ 4

s + 3

− 18

(s − 2)2 + 36
+ 4(s − 2)

(s − 2)2 + 16
.

Example 3: f (t) = cosh at · cos bt

Solution:

L{cosh at · cos bt} = L

 
1

2
(eat + e−at ) · cos bt

 

= 1

2
L{eat cos bt} + 1

2
L{e−at cos bt}

By first shift theorem,

= 1

2

s

s2 + b2

    
s=s−a

+ 1

2

s

s2 + b2

    
s=s+a

= 1

2

s − a

(s − a)2 + b2
+ 1

2

s + a

(s + a)2 + b2
.

EXERCISE

Find the Laplace transform of f (t) given by:

1. (t + 2)2et

Ans. (4s2 − 4s + 2)/(s − 1)3

2. e−4t cosh 2t

Ans. (s + 4)/(s2 + 8s + 12)

3. sinh at sin at

Ans. 2a2s/(s4 + 4a4)

4. e2t (3 sin 4t − 4 cos 4t)

Ans. (20 − 4s)/(s2 − 4s + 20)

5. e−t sin2 t

Ans. 2/
 
(s + 1)(s2 + 2s + 5)

 
6. t sin at

Ans. 2as/(s2 + a2)2

7. t cos at

Hint: For problems 6 and 7

L{t ei at } = 1

s2

    
s=s−ia

= 1

(s − ia)2

(s + ia)2

(s + ia)2

= s2 − a2 + 2ias

(s2 + a2)2

Comparing the real and imaginary parts on

both sides, the results 6, 7 are obtained.

Ans. (s2 − a2)/(s2 + a2)2

8. tn−1

1−e−t
Hint:

tn−1

1 − e−t
= tn−1(1 − e−t )−1

= tn−1(1 + e−t + e−2t + e−3t + · · ·)

=
∞ 
m=0

tn−1e−mt .

Ans.
∞ 
m=0

 (n)

(s+m)n

9. If L{f (t)} = F (s) then prove that

a. L{cosh at · f (t)} = 1
2

[F (s − a) + F (s + a)]

b. L{sinh at · f (t)} = 1
2

[F (s − a) − F (s + a)]

Hint: Express cosh, sinh in eat and use first

shifting theorem.

10. e−2t sin3 t

Ans. 3
4

1

s2+4s+5
− 3

4
1

s2+4s+13

11. sin4 t · e2t

Ans. 1
8

 
3
s−2

− 4(s−2)

(s−2)2+4
+ s−2

(s−2)2+16

 
12. e4t sin 2t · cos t

Ans. 1
2

 
3

(s−4)2+9
+ 1

(s−4)2+1

 
.

Laplace Transform of Derivatives

(Multiplication by s)

Differentiation of f (t) is replaced by multiplication

of the transform F (s) = L(f ) by s, roughly.

Theorem: Laplace transform of the derivative of
f (t) (Multiplication by s)

L{f  } = s L{f } − f (0) (s > 0)

Proof:

L{f  } =
 ∞

0

e−st f  dt : Integrating by parts

= e−st · f
    ∞
0

+ s

 ∞

0

e−st f dt
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since f is of exponential order the first term is R.H.S.
becomes zero at the upper limit ∞. Thus

L{f  } = −f (0) + sL{f }.

Result 1: By applying the above theorem to f   ,
we have

L{f   } = s L{f  } − f  (0)

= s {s L{f } − f (0)} − f  (0)

... L{f   } = s2L{f } − s f (0) − f  (0)

Result 2: Similarly, for L.T. of derivatives of order
n:

L{f (n)} = snL{f }− sn−1f (0)− sn−2f  (0) · · · − f (n−1)(0).

Note: L.T. of functions (listed in the L.T. table) can

also be (re)derived by the application of transform of

derivative theorem.

WORKED OUT EXAMPLES

Find Laplace transform of the following functions

using the theorem of transform of derivative:

Example 1: f (t) = t2

Solution: f (0) = 0, f  (0) = 0, f   (t) = 2
By theorem

L{f   } = s2L{f } − sf (0) − f  (0)

L{2} = s2L{t2} − s · 0 − 0

... L{t2} = 1

s2
L{2} = 2

s2
L{1} = 2

s2

1

s
= 2

s3
.

Example 2: f (t) = t · cos at

Solution:

f  = −at · sin at + cos at

f   = −a(at cos at + sin at) − a sin at

f   = −a2t cos at − 2a sin at

f (0) = 0, f  (0) = 1

Using theorem for 2nd derivative

L{−a2t cos at − 2a sin at} = s2L{t cos at} − s · 0 − 1.

Rearranging

(s2 + a2)L{t cos at} = 1 − 2a L{sin at}
= 1 − 2a · a

s2 + a2

= s2 − a2

s2 + a2

... L{t cos at} = s2 − a2

(s2 + a2)2
.

Example 3: Given L{sin√t} =
√
π

2s
3
2

e−
1
4s . Prove

that L
 

cos
√
t√

t

 
=  

π
s

 1
2 e−

1
4s .

Solution: Take f (t) = cos
√
t√

t

Since cos
√
t

2
√
t

is the derivative of sin
√
t , choose

g(t) = sin
√
t, then g (t) = cos

√
t

2
√
t

g(0) = 0

Using theorem L{g } = s L{g} − g(0) we have

L

 
cos

√
t

2
√
t

 
= s · L{sin

√
t} − 0

1

2
L

 
cos

√
t√

t

 
= s · √π · e

− 1
4s

2s
3
2

L =
 

cos
√
t√

t

 
=
 
π

s
· e− 1

4s .

EXERCISE

Find the Laplace transform of the following func-

tions using the theorem on transform of derivatives:

1. tn Ans. n!

sn+1

2. sin2 t Ans. 2

s(s2+4)

3. cos at Ans. s

s2+a2

4. t2 sin at Ans. 2a

(s2+a2)2
+ 4a(s2−a2)

(s2+a2)3

5. t cosh at Ans. s2+a2

(s2−a2)2
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Laplace Transform of the Integral

of a Function

Just as division is the inverse operation of multi-

plication, differentiation and integration are inverse

operations. Thus, while differentiation of a function

corresponds to multiplication of the transform by s,

integration of a function corresponds to division of

the transform by s.

Theorem: Integration of f (t) (Division by s).
If L{f (t)} = F (s), then

L

  t

0

f (u)du

 
= F (s)

s
, s > 0

Proof: Let g(t) =  t
0
f (u)du. Then g (t) = f (t)

and g(0) = 0
By derivative theorem

F (s) = L{f (t)} = L{g (t)} = s L{g(t)} − g(0)

= s · L{g(t)}

... L{g(t)} = F (s)

s

or L

  t

0

f (u)du

 
= F (s)

s
.

Result: Similarly if L{f (t)} = F (s), then

L

  t

0

dt1

 t1

0

f (u)du

 
= F (s)

s2

The double integral can also be written briefly as t

0

 t

0

f (t)dt2

Generalization for nth integral

L

  t

0

 t

0

· · ·
n times

 t

0

f (t)dt

 
= F (s)

sn
.

WORKED OUT EXAMPLES

Example 1: L
  t

0
1−e−u
u

du
 
.

Solution: Here the integrand is f (t) = (1 − e−t )/t ,
we know that

L {f (t)} = L

 
1 − e−t

t

 
= F (s) = ln

 
1 + 1

s

 

Using the theorem of L.T. of integrals

L

  t

0

1 − e−u

u
du

 
= 1

s
· ln

 
1 + 1

s

 
.

Example 2: L
  t

0

 t
0

 t
0

cos au du du du
 

Solution: Here integrand is f (t) = cos at

L{f (t)} = L{cos at} = s

s2 + a2

Using the theorem on L.T. of integrals

L

  t

0

cos au du

 
= 1

s
· s

s2 + a2
= 1

s2 + a2

Applying repeatedly.

L

  t

0

 t

0

cos au du du

 
= 1

s
· 1

s2 + a2

... L

  t

0

 t

0

 t

0

cos au du du du

 
= 1

s2

1

s2 + a2
.

Example 3: L
  t

0
sin u
u
du
 
.

Solution: The integrand is f (t) = sin t
t

, we know
that

L{sin t} = 1

s2 + 1

Using division by t

L

 
sin t

t

 
=
 ∞

s

du

u2 + 1
= tan−1 1

u

    ∞
s

= tan−1 1

s

... Using theorem on L.T. of integral

L

  t

0

sin u

u
du

 
= 1

s
tan−1 1

s
.

Example 4: Show that
 ∞
t=0

 t
u=0

e−t sin u
u

du dt = π
4

Solution: The given double integral on the L.H.S.

is the Laplace transform of
 t
0

sin u
u
du with s = 1.

We know that

L

  t

0

sin u

u
du

 
=
 ∞

t=0

 t

u=0

e−st sin u
u

du dt

= 1

s
tan−1 1

s

    
s=1

= tan−1 1 = π

4
.
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Example 5: L
  t

0
ue−u · sin 4u du

 
Solution:

L{sin 4t} = 4

s2 + 42
= 4

s2 + 16

L{e−t sin 4t} = 4

(s + 1)2 + 16
= 4

s2 + 2s + 17

L{t e−t sin 4t} = − d

ds

 
4

s2 + 2s + 17

 

= 4(2s + 2)

(s2 + 2s + 17)2

... L

  t

0

u e−u sin 4u du

 
= 8

s

(s + 1)

(s2 + 2s + 17)2
.

Example 6: L
 
sinh ct

 t
0
eau sinh bu du

 
Solution:

L {sinh bt} = b

s2 − b2

L{eat sinh bt} = b

(s − a)2 − b2

L

  t

0

eau sinh bu du

 
= 1

s
· b

(s − a)2 − b2
(*)

Now consider

L {sinh ct

 t

0

eau sinh bu du}

= L

  
ect − e−ct

2

  t

0

eau sinh bu du

 

= 1

2
L

 
ect
 t

0

eau sinh bu du

 

+1

2
L

 
e−ct

 t

0

eau sinh bu du

 

Using (*)

= 1

2

b

s
 
(s−a)2−b2

 
     
s=s−c

+ 1

2

b

s
 
(s−a)2−b2

 
     
s=s+c

= 1

2

b

(s − c)
 
(s − c − a)2 − b2

 
+1

2

b

(s + c)
 
(s + c +−a2) − b2

 .

EXERCISE

Find the Laplace Transform of:

1.
 t
0
e−u cos u du Ans. 1

s

(s+1)

(s2+2s+2)

2.
 t
0
eu · sin u

u
du Ans. 1

s
cot−1(s − 1)

3.
 t
0
e−4u sin 3u

u
du Ans. 1

s
cot−1

 
s+4
3

 
4. cosh t

 t
0
eu cosh u du

Ans. 1
2

 
s−2

(s−1)2(s−3)
+ s

(s+1)2(s−1)

 
5. e−4t

 t
0

sin 3u
u
du Ans. 1

s+4
cot−1

 
s+4
3

 
Differentiation of Transforms:

Multiplication by t

Differentiation of the transform of a function corre-

sponds to the multiplication of the function by −t .

Theorem: If L{f (t)} = F (s) then

L{−t f (t)} = d

ds
F (s)

or L{t · f (t)} = − d

ds
F (s)

In general,

L{tnf (t)} = (−1)n
dn

dsn
F (s), for n = 1, 2, 3, . . .

Proof: We know that F (s) =  ∞
0
e−stf (t)dt.

By Leibnitz’s rule for differentiating under the

integral sign

dF (s)

ds
= d

ds

 ∞

0

e−st f (t)dt =
 ∞

0

f (t)

 
∂

∂s
e−st

 
dt

=
 ∞

0

f (t) · (−t e−st )dt

= −
 ∞

0

e−st {t f (t)} dt = −L {t f (t)}

... L {t f (t)} = −dF (s)

ds

By mathematical induction the result for nth

derivative follows.
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WORKED OUT EXAMPLES

Example 1: Show that L{t sin at} = 1

(s−a)2 .

Solution:

L{sin at} = a

s2 + a2

... L{t · sin at} = − d

ds

 
a

s2 + a2

 
= 2as

(s2 + a2)2
.

Example 2: L{t · e−2t sin t}.
Solution:

L{sin} = 1

s2 + 1

L{e−2t · sin t} = 1

(s + 2)2 + 1
= 1

s2 + 4s + 5

by first shift theorem.
Using theorem on multiplication by t

L
 
t · (e−2t · sin t)

 
=− d

ds

 
1

s2 + 4s + 5

 

= 2s + 4

(s2 + 4s + 5)2
.

Example 3: L
 
(t2 − 3t + 2) sin 3t

 
.

Solution:

L{sin 3t} = 3

s2 + 32
= 3

s2 + 9

L
 
(t2 − 3t + 2) sin 3t

 
= L{t2 · sin 3t} − 3L{t · sin 3t}

+2L{sin 3t}.
Using multiplication by t

= (−1)2
d2

ds2

 
3

s2 + 9

 
− 3 · (−1)

d

ds

 
3

s2 + 9

 

+2 · 3

s2 + 9

= (−6 + 24s2)

(s2 + 9)3
+ 3 · (−6s)

(s2 + 9)2
+ 6

s2 + 9

= 6s4 − 18s3 + 126s2 − 162s + 432

(s2 + 9)3

Example 4: Show that
 ∞
0
t2e−4t · sin 2t dt = 11

500
.

Solution: L.H.S. is rewritten as ∞
0
e−4t · (t2 sin 2t)dt

i.e., it is L.T. of t2 sin 2t with s = 4. We know that

L{sin 2t} = 2

s2+22 = 2

s2+4
.

Using multiplication by t

L{t2 sin 2t} = (−1)2
d2

ds2

 
2

s2 + 4

 
= d

ds

 −4s

(s2 + 4)2

 

= −4 · (4 − 3s2)

(s2 + 4)3

     
s=4

= 11

500
.

EXERCISE

Find Laplace theorem using the theorem of differen-

tiation of L.T.:

1. t cos at Ans. s2−a2

(s2+a2)2

2. t2 sin t Ans. 6s2−2

(s2+1)3

3. t · sinh 2t Ans. 4s

(s2−4)2

4. t(3 sin 2t − 2 cos 2t) Ans. 8+12s−2s2

(s2+4)2

5. t3 · cos t Ans. 6s4−36s2+6

(s2+1)4

6. t · eat · sin at Ans. 2a

(s−a)(s2−2as2+2a2)2

Prove the following:

7.
 ∞
0
t · e−3t · sin t dt = 3

50

Hint: L.T. of t sin t with s = 3

8.
 ∞
0
t3e−t · sin t dt = 0

Hint: L.T. of t3 sin t with t = 1

9.
 ∞
0
e−3t t cos t dt = 2

25

Hint: L.T. of t cos t with s = 3

10.
 ∞
0
e−2t sin3 t dt = 6

65

Ans. L.T. of sin3 t with s = 2.

Integration of Transform: Division by t

Integration of the transform of a function f (t)

corresponds to the division of f (t) by t .

Theorem: If L {f (t)} = F (s) then

L

 
f (t)

t

 
=
 ∞

s

F (u)du
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Proof: F (s) = L {f (t)} =  ∞
0
e−stf (t)dt

Integrating on both sides w.r.t. s from s to ∞, we
have  ∞

s

F (u)du =
 ∞

s

 ∞

0

e−st f (t)dt.

Since s and t are independent variables, interchang-

ing the order of integration, we get ∞

s

F (u)du=
 ∞

0

f (t)

  ∞

s

e−st ds
 
dt

=
 ∞

0

f (t)

 
e−st

−t

     
∞

s=s
dt

=
 ∞

0

f (t) ·
 −e−st

−t

 
dt

=
 ∞

0

e−st
 
f (t)

t

 
dt = L

 
f (t)

t

 
.

WORKED OUT EXAMPLES

Find Laplace theorem of the following functions

f (t):

Example 1: e−at−e−bt
t

Solution:

L{e−at − e−bt } = L{e−at } − L{e−bt }

= 1

s + a
− 1

s + b
.

Division by t amounts to integration

L

 
1

t
(e−at − e−bt )

 

=
 ∞

s

 
1

u+ a
− 1

u+ b

 
du = ln

 
u+ a

u+ b

     ∞
s

= 0 − ln

 
s + a

s + b

 
= ln

 
s + b

s + a

 
.

Example 2: sin2 t
t

.

Solution:

L(sin2 t) = L

 
1 − cos 2t

2

 
= L

 
1

2

 
− 1

2
L(cos 2t)

= 1

2

1

s
− 1

2

s

s2 + 22
.

Using division by t

L

 
1

t
· sin2 t

 
= 1

2

 ∞

s

 
du

u
− u du

u2 + 4

 

= 1

2
ln s − 1

4
ln(s2 + 4)

    ∞
s

= ln

 √
s

(s2 + 4)
1
4

      
∞

s

= 1

4
ln

 
s2 + 4

s2

 
.

Example 3: cos at−cos bt
t

.

Solution:

L(cos at − cos bt) = L(cos at) − L(cos bt)

= s

s2 + a2
− s

s2 + b2

Using theorem on integration

L

 
1

t
(cos at − cos bt)

 

=
 ∞

s

 
s

s2 + a2
− s

s2 + b2

 
ds

= 1

2
ln

 
s2 + a2

s2 + b2

      
∞

s

= 1

2

 
0 − ln

 
s2 + a2

s2 + b2

  

= 1

2
ln

 
s2 + b2

s2 + a2

 
.

Example 4:
 ∞
0

cos 6t−cos 4t
t

dt .

Solution: This integral can be looked upon as ∞

0

e−0·t ·
 

cos 6t − cos 4t

t

 
dt

so that the given integral is L.T. of cos 6t−cos 4t
t

with
s = 0. From above Worked Out Example 3.

L

 
cos 6t − cos 4t

t

 
with s=0

= 1

2
ln

 
s2 + b2

s2 + a2

      
s=0
a=6
b=4

= ln
2

3
.

Example 5: Evaluate
 ∞
0
e−t sin2 t

t
dt .
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Solution: The given integral is the Laplace

transform of sin2 t
t

with s = 1, i.e.,

L

 
sin2 t

t

!     
s=1

=
 ∞

0

e−st · sin2 t

t
dt

     
s=1

=
 ∞

0

e−t
sin2 t

t
dt.

From Example 2 above, we know that

L

 
sin2 t

t

!
= 1

4
ln

 
s2 + 4

s2

 

Thus

 ∞

0

e−t
sin2 t

t
dt = L

 
sin2 t

t

!
at s=1

= 1

4
ln

 
s2 + 4

s2

      
s=1

= 1

4
ln 5.

EXERCISE

1. 1−e2t
t

Ans. ln s−2
s

2. sinh t
t

Ans. 1
2
ln
 
s+1
s−1

 
3. 1−cos at

t
Ans. 1

2
ln s2+a2

s

4. sin 3t ·cos t
t

Ans. 1
2

 
π − tan−1

 
s
4

 − tan−1
 
s
2

  
5. Show that

 ∞
0

e−3t−e−6t

t
dt = ln 2

Hint: Use Example 1 with a = 3, b = 6 and

s = 0

6. Show that
 ∞
0

sin2 t

t2
dt = π

2

7. Find the L.T. of
  t

0
et · sin t

t
dt
 

Ans. 1
s
cot−1(s − 1)

8. Show that
 ∞
0

·e−t · sin2 t
t
dt = 1

2
ln 5

9.
 ∞
0
e−2t (2 sin t−3 sinh t)

t
dt = 2 cot−1 2 +

3
2
log

 
1
3

 
Hint: L.T. of 2 sin t−3 sinh t

t
with s = 2.

Unit step function

(“Heavisides” ∗ unit function)

It is defined as (Fig. 12.3)

u(t − a) = 0 if t < a

= 1 if t > a

1

Fig. 12.3

Note: u(t − a) is also denoted as ua(t). In particu-
lar when a = 0,

u(t) = 0 if t < 0

= 1 if t > 0

Multiplying a given function f (t) with the

“engineering function” the unit step function

u(t − a), several effects can be produced as shown

in Fig. 12.4.

Fig. 12.4

* Oliver Heaviside (1850–1925), English electrical engineer.
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Second Translation (Or Second Shifting

Theorem)

t-Shifting (replacing t by (t−a) in f (t))

Theorem: If L {f (t)} = F (s) and the shifted
function

g(t) = f (t − a)u(t − a) =
 0 if t<a

f (t−a) if t>a

Then

L {g(t)} = L {f (t − a)u(t − a)} = e−asF (s).

Proof:

L {g(t)} =
 ∞

0

e−st g(t)dt

=
 a

0

e−st g(t)dt +
 ∞

a

e−st g(t)dt

= 0 +
 ∞

a

e−st f (t − a)dt

Put t − a = u, dt = du then

L {g(t)} =
 ∞

0

e−s(u+a)f (u)du

= e−sa
 ∞

0

e−suf (u)du

L {g(t)} = e−saL {f (t)} = e−saF (s)

Corollary: L.T. of unit step function (put f (t) = 1)

L {u(t − a)} = e−as

s

Various discontinuous functions can often be ex-

pressed in terms of Heaviside unit step functions as

follows:

Book Work: Show that

f (t) = f1(t), 0 < t < a

= f2(t), t > a

can be written as

f (t) = f1(t) + {f2(t) − f1(t)} u(t − a)

Proof: When t < a, u(t − a) = 0 so that

f (t) = f1(t) for t < a

when t > a, u(t − a) = 1 so that

f (t) = f1(t) + {f2(t) − f1(t)}
= f2(t) for t > a.

In general,
if

f (t) = f1(t) for 0 < t < a1

= f2(t) for a1 < t < a2

==
= fn−1(t) for an−2 < t < an−1

= fn(t) for t > an−1

then

f (t) = f1(t) + {f2(t) − f1(t)} u(t − a1) + · · ·
+ {fn(t) − fn−1(t)} u(t − an−1).

WORKED OUT EXAMPLES

Find the Laplace transform of the following func-

tions using second translation theorem:

Example 1: Express in terms of Heaviside’s unit
step function

f (t) = sin t, 0 < t < π

= sin 2t, π < t < 2π

= sin 3t, t > 2π.

Solution: Let

f1(t) = sin t, f2(t) = sin 2t, f3(t) = sin 3t

so that

f (t) = f1(t) + (f2 − f1)u(t − π ) + (f3 − f2)u(t − 2π )

= sin t + (sin 2t − sin t)u(t − π )

+(sin 3t − sin 2t)u(t − 2π ).

Example 2: Given

f (t) = e−t , 0 < t < 3

= 0, t > 3

write f (t) in terms of Heaviside’s unit step function

and hence find the Laplace transform of f (t).
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Solution: Let f1(t) = e−t and f2(t) = 0 then f (t)
can be written as

f (t) = f1(t) + {f2(t) − f1(t)} u(t − 3)

= e−t + (0 − e−t )u(t − 3)

= e−t (1 − u(t − 3))

L {f (t)} = L
 
e−t − e−t u(t − 3)

 
= L{e−t } − L

 
e−t u(t − 3)

 
= 1

s + 1
− e−3(s+1)

s + 1

Since L {u(t − 3)} = e−3s/s and

L
 
e−t · u(t − 3)

 = e−3(s+1)/(s + 1).

Example 3: g(t) = 0, 0 < t < 5

= t − 3, t > 5

Solution: To apply the t-shift theorem, express the

functional values t − 3 for t > 5 in terms of t − 5

i.e., express t − 3 as (t − 5) + 2 and rewrite

g(t) = 0, 0 < t < 5

= (t − 5) + 2, t > 5

Thus g(t) = u(t − 5)f (t − 5) where f (t) = t + 2,
t > 0.
Applying t-shift theorem

L {u(t − 5)f (t − 5)} = e−5sF (s)

where

F (s) = L {f (t)} = L{t + 2} = L{t} + L{2}

= 1

s2
+ 2

s

... L {g(t)} = L {u(t − 5)f (t − 5)} = e−5s · F (s)

= e−5s

 
1

s2
+ 2

s

 
.

Example 4: g(t) = 0, 0 < t <
π

2

= sin t, t >
π

2

Solution: Express sin t in terms of t − π
2

by
observing that sin t = cos(t − π

2
) hence

g(t) = u
 
t − π

2

 
· f
 
t − π

2

 
=
 0, 0<t<π

2

cos
 
t− π

2

 
, t> π

2

where f (t) = cos t, t > 0

L {g(t)} = L
 
u
 
t − π

2

 
· f
 
t − π

2

  
= e−

π
2
s · F (s)

where F (s) = L {f (t)} = L{cos t} = s

s2+1

... L {g(t)} = se−
π
2
s

s2 + 1
.

Example 5: 4 sin(t − 3)u(t − 3)

Solution: We know that

L{4 sin t} = F (s) = 4

s2 + 1

Applying t-shift

L {4 sin(t − 3)u(t − 3)} = e−3sF (s) = e−3s 4

(s2 + 1)
.

EXERCISE

Find the Laplace transform of the following:

1. f (t) =




1, 0<t<2

2, 2<t<4

3, 4<t<6

0, t>6

Ans. 1+e−2s+e−4s−3e−6s

s

2. f (t) =
 
t, 0<t<3

3, t>3

Ans. 1

s2
(1 − e−3s)

3. Express f (t) in terms of heavisides unit step
function

f (t) =
 
t2, 0<t<2

4t, t>2

Ans. t2 + (4t − t2)u(t − 2)

4. f (t) =
 

sin t, t>π

cos t, t<π

Ans. cos t + (sin t − cos t)u(t − π ).
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Find L.T. by expressing f (t) in unit step functions:

5. f (t) =
 
t2, 0<t≤2

0, t>2.

Ans. t2 [u(t) − u(t − 2)] 2(1−e−2s )

s3
− 4e−2s (1+s)

s2
.

6. f (t) =




2, 0<t<π

0, π<t<2π

sin t, t>2π

Ans. f (t) = 2 − 2u(t − π ) + u(t − 2π ) sin t.

F (s) = 2
s
− 2e−πs

s
+ e−2πs

s2+1

7. 4u(t − π ) cos t

Ans. −4e−πs · s/(s2 + 1)

8. f (t)= t − 1, 1 < t < 2

= 3 − t, 2 < t < 3

Ans. (e−s − 2e−2s + e−3s)/s2

9. Staircase function

f (t) = 1, 0< t < 1

= 2, 1< t < 2

= 3, 2< t < 3

... ...

... ...

Ans. 1
s(1−e−s )

10. Saw tooth function (Fig. 12.5)

Fig. 12.5

Ans. k

as2
− ke−as

s

 
1

1−e−as
 
.

Dirac’s∗ Delta Function

(or Unit Impulse Function)

Forces (like earthquake) that produce large effects on

a system when applied for a very short time interval

* Paul Dirac (1902–1984), English physicist, Nobel prize winner.

can be represented by an impulse function which is a

discontinuous function and is highly irregular from

the mathematical point of view.
Impulse of a forces f (t) in the interval (a, a + #)

=
 a+#

a

f (t) dt

Now define the function

f#(t − a) =




0 for t < a

1
#

for a ≤ t ≤ a + #

0 for t > a

Fig. 12.6

This can also be represented in terms of two unit
step functions as follows

f#(t − a) = 1

#
[u(t − a) − u(t − (a + #))]

Note that ∞

0

f#(t − a) dt =
 a

0

0 +
 a+#

a

1

#
dt +

 ∞

a+#
0 = 1

Thus the impulse I# is 1.
Taking Laplace transform

L {f#(t − a)} = 1

#
L{u(t − a) − u(t − (a + #))}

= 1

#s
[e−as − e−(a+#)s ]

= e−as · (1 − e−#s )
#s

Dirac delta function (or unit impulse function) de-
noted by δ(t − a) is defined as the limit of f#(t − a)
as # → 0 i.e.,

δ(t − a) = lim
#→0

f#(t − a).
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Then the Laplace transform of Dirac delta function
is obtained as

L{δ(t − a)} = lim
#→0

L{f#(t − a)}

= lim
#→0

e−as · (1 − e−#s )
#s

L{δ(t − a)} = e−as .

Thus the Dirac delta function is a “generalized func-
tion” defined as

δ(t − a) =
 ∞ when t = a

0 otherwise

subject to
 ∞
0
δ(t − a) dt = 1.

WORKED OUT EXAMPLES

Example: A beam has its ends clamped at x = 0

and x = L. A concentrated load W acts vertically

downwards at the point x = L
3
. Find the resulting

deflection.

Solution: The differential equation for deflection is

d4y

dx4
= W

EI
δ

 
x − L

3

 
(1)

Taking the Laplace transform on both sides of (1)

s4Y − s3y(0) − s2y (0) − sy  (0) − y   (0) = W

EI
e−

Ls
3

(2)

where Y = L{y(x)}.
Since the end x = 0 is clamped, we have

y(0) = 0, y  (0) = 0. Put y   (0) = c1 and y    (0) = c2
where c1 and c2 are constants. Then (2) reduces to

s4Y − sc1 − c2 = W

EI
e−

Ls
3

Solving,

Y = c1

s3
+ c2

s4
+ W

EI

e−
Ls
3

s4
(3)

Taking the inverse Laplace transform of (3),

y(x) = c1
x2

2!
+ c2

x3

3!
+ W

EI

 
x − L

3

 3

3!

 
u

 
x − L

3

  
(4)

or

y(x) = c1
x2

2
+ c2

x3

6
when 0 < x <

L

3
(5)

y(x) = c1
x2

2
+ c2

x3

6
+ W

6EI

 
x − L

3

 3

when
L

3
< x < L (6)

To determine c1 and c2 use the condition that the

other end x = L is clamped i.e., y(L) = y  (L) = 0.

From (6)

0 = y(L) = c1
L2

2
+ c2

L3

6
+ W

EI

4

81
L3 (7)

Differentiating (6) and putting x = L,

0 = y (L) = c1L+ c2
L2

2
+ W

EI

2

9
L2 (8)

Solving (7) and (8), we get

c1 = 12

81
L
W

EI
(9)

and

c2 = −60

81

W

EI
(10)

Thus the deflection of the beam is given by (5) and

(6) where c1 and c2 are given by (9) and (10).

EXERCISE

1. An impulsive voltage Eδ(t) is applied to a cir-

cuit consisting of L, R, C in series with zero

initial conditions. Find the limit of I as t → 0

where I is the current at any subsequent time t .

Hint: Equation of circuit is

L
dI

dt
+ RI + 1

c

 t

0

I dt = E · δ(t)

where I (0) = 0.

Ans. I = E/L

2. A beam is simply supported at its end x = 0

and is clamped at the other end x = L. It

carries a load W at x = L
4
. Find the resulting

deflection at any point.
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Hint:D.E. for deflection is
d4y

dx4 = W
EI
δ
 
x− L

4

 
with boundary conditions y(0)=y   (0) = 0

and

y(L) = y  (L) = 0.

Ans. y = c1x + 1
6
c2x

3, 0 < x < L
4

y = c1x+ 1
6
c2x

3 + W
6EI

 
x−L

4

 3
, L

4
<x<L

where c1 = 9WL2

256EI
, c2 = − 81W

128EI

3. Obtain the deflection of a weighless beam of

length L and freely supported at ends, when

a concentrated load W acts at x = a.

Ans. y(x) = W
6EI

 
ab(L+b)

L
x − b

L
x3
 
, 0 < x < a

y(x) = W
6EI

 
ab(L+b)

L
x − b

L
x3 + (x − a)3

 
,

a < x < L

4. Determine the response of the damped mass–

spring system governed by y   +3y  +2y= r(t),

y(0) = 0, y  (0) = 0 where r(t) is (a) square

wave

r(t) = u(t − 1) − u(t − 2)

and (b) the unit impulse at time t = 1

r(t) = δ(t − 1)

Hint: Subsidiary equation is

s2Y + 3sY + 2Y = e−s

Ans. a.

y(t)=




0, 0 < t < 1

1
2
− e−(t−1) + 1

2
e−2(t−1), 1 < t < 2

−e−(t−1) + e−(t−2)+ 1
2
e−2(t−1)− 1

2
e−2(t−2),

for t < 2

b. y(t) =
 

0, 0 ≤ t < 1

e−(t−1) − e−2(t−1), t > 1

12.4 LAPLACE TRANSFORM OF

PERIODIC FUNCTION

A function f (t) is said to be a periodic function of
period T > 0 if

f (t) = f (T + t) = f (2T + t) = · · · = f (nT + t).

Example: sin t, cos t are periodic functions of

period 2π .

Theorem: The Laplace transform of a piecewise
periodic function f (t) with period p is

L {f (t)} = 1

1 − e−ps

 p

0

e−st · f (t)dt ; s > 0

Proof:

L {f (t)} =
 ∞

0

e−st f (t)dt by definition

=
 p

0

e−st f (t)dt +
 2p

p

e−st f (t)dt

+
 3p

2p

e−st f (t)dt + · · ·

Put t = u+ p in the 2nd integral,

t = u+ 2p in the 3rd integral

...

t = u+ (n− 1)p in the nth integral

Then the new limits for each integral are 0 to p and
by periodicity

f (t + p) = f (t), f (t + 2p) = f (t)

and so on.
Therefore

L {f (t)} =
 p

0

e−suf (u)du+
 p

0

e−s(u+p)f (u)du

+
 p

0

e−s(u+2p) · f (u)du+ · · ·

= [1 + e−sp + e−2sp + · · ·]
 p

0

e−suf (u)du

L{f } = 1

1 − e−ps

 p

0

e−st f (t)dt, s > 0

since the bracketed quantity in R.H.S. is geometric
series

i.e.,
1

1 − r
= 1+ r+ r2+ r3+ · · · , |r|<1 with r = e−ps

Result: Thus the Laplace transform of a periodic

function f (t) of period p is obtained by integrating

e−stf (t) in the interval (0, p) with respect to t and

multiplying the resultant by the factor (1 − e−ps)−1.
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WORKED OUT EXAMPLES

Find the Laplace transform of the following periodic

functions:

Example 1: Half wave rectifier (Fig. 12.7)

Fig. 12.7

f (t) = sinwt, 0 < t < π
w

= 0, π
w
< t < 2π

w

and periodic of period 2π
w

.

Solution:

L (f (t)) = 1

1 − e−ps

 p

0

e−st f (t)dt

= 1

1 − e−2πs/w

 2π
w

0

e−st · f (t)dt

= 1

1 − e−2πs/w

  π
w

0

e−st · sinwt dt +
 2π

w

π
w

0

 

Consider
 π

w
0 e−st · sinwt dt

= Im. p. of

  π
w

0

e(−s+iw)t dt

!

= Im. p. of

 
1

−s + iw

 
e(−s+iw)t

    
π
w

0

= Im. p. of

 
(s + iw)

(s2 + w2)

 
1 + e−sπ/w

  

= w

s2 + w2

 
e−sπ/w + 1

 

... L {f (t)}= 1

1 − e−2πs/w
· w

s2 + w2

 
1 + e−sπ/w

 

= w

(s2 + w2)
· 1

(1 − e−πs/w)
.

Example 2: Saw-tooth wave (Fig. 12.8)

Fig. 12.8

f (t) = k

p
t, 0 < t < p

and f (t + p) = f (t)

Solution:

L (f (t)) = 1

1 − e−sp

 p

0

e−st ·
 
k

p
t

 
dt,

Integrating by parts

 p

0

t · e−st dt = − t

s
e−st

    p
0

+ 1

s

 p

0

e−st dt

= − t

s
e−st

    p
0

− 1

s2
e−st

    p
0

= −p
s
e−sp − 1

s2
(e−sp − 1)

... L (f (t)) = 1

(1 − e−sp)

k

p

×
 
−p
s
e−sp − 1

s2
(e−sp − 1)

 

= k

ps2
− ke−sp

s(1 − e−ps )
, s > 0

Example 3: (refer Fig. 12.9)

f (t) = 1, 0 ≤ t < 2

= −1, 2 ≤ t < 4

f (t + 4) = f (t)

Fig. 12.9
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Solution: Here p = 4. Applying theorem

L {f (t)} =
 4
0 e

−st f (t)dt

1 − e−4s

= 1

1 − e−4s

  2

0

e−st · 1 dt +
 4

2

e−st (−1)dt

 

= 1

1 − e−4s
·
 
e−st

s

    
2

0

+ e−st

s

    
4

2

 

= 1

1 − e−4s

 
1

s

  
−e−2s + 1 + e−4s − e−2s

 

= 1 − e−2s

s(1 + e−2s )
.

EXERCISE

Find the Laplace transform of the following periodic

functions:

1. f (t) = t, 0 < t < a

=−t + 2a, a < t < 2a

Ans. 1

s2
tanh as

2

2. f (t) = t2, 0 < t < α and f (t + α) = f (t)

Ans. 1

(1−e−αs )s3
 
2 − e−αs(α2s2 + 2αs + 2)

 
3. f (t) = 1, 0 < t < 1

= 0, 1 < t < 2

=−1, 2 < t < 3

Period 3

Ans. 1
s

 
3

(1−e−3s )
− 1

(1−e−s ) − 1
 

4. f (t) = t, 0 < t < π

= 0, π < t < 2π
Period 2π

Ans. 1

s2

 
(1 − e−πs) − π

s
e−πs

 #
(1 − e−2πs)

5. f (t) =
 

a, for 0≤t≤a
−a, for a<t≤2a

Ans. a
s
tanh

 
as
2

 
6. f (t) =

 
cos t, 0<t≤π
−1, π≤t<2π

Ans. s

(1+s2)(1−e−πs ) −
e−sπ

s(1+e−πs )

7. f (t) = sin t, 0 ≤ t ≤ π

Ans.
coth(πs/3)

1+s2

8. f (t) =
 

1+t, 0≤t<1

3−t, 1≤t<2, f (t+2)=f (t)

Ans. 1
s
+ 1−e−s

1+e−s
1

s2
.

12.5 INVERSE LAPLACE TRANSFORM

If L {f (t)} = F (s) then f (t) is known as the inverse

Laplace transform (I.L.T.) or inverse transform or

simply inverse of F (s) and is denoted byL−1{F (s)}.
Thus

f (t) = L−1 {F (s)} (1)

L−1 is known as the inverse Laplace transform
operator and is such that

LL−1 = L−1L = 1

In the inverse problem (1), F (s) is given (known)

and f (t) is to be determined.

Note: I.L.T. of F (s) need not exist for all F (s).

Inverse Laplace Transform of Some Elemen-

tary Functions

Example: Find f (t) the inverse Laplace transform

of F (s) = k
s

where k is a constant.

Solution: We know that L{k} = k
s
. Taking inverse

Laplace transform on both sides, we have

k = L−1

 
k

s

 

That f (t) = k = L−1

 
k

s

 
= L−1{F (s)}

Similarly, since L{eat } = 1
s−a it follows that

L−1

 
1

s − a

 
= eat
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In a similar way, since L{cos at} = s

s2+a2 , we

readily get

L−1

 
s

s2 + a2

 
= cos at

and so on. Thus for each direct Laplace transform

result (listed in table of L.T. in Section 12.12) a cor-

responding inverse Laplace transform result can be

read accordingly.

The proficiency in solving O.D.E./P.D.E. using

L.T. is practically synonymous with the proficiency

in determining inverse Laplace transform (I.L.T.).

Evaluation of I.L.T,L−1{F (s)} essentially reduces

to expressingF (s) as some combination of functions,

each of whose I.L.T. can be read from the L.T.

tables or otherwise. Some methods for finding I.L.T.

are:

a. Use of L.T. tables(12.12 on page 12.41)

b. Use of some important properties of I.L.T.(12.11

on page 12.41)

c. Convolution(12.8 on page 12.33)

d. Use of partial fractions.(12.7 on page 12.30)

12.6 GENERAL PROPERTIES OF INVERSE

LAPLACE TRANSFORM

For each property (Theorem) on Laplace transform,

there is a corresponding property (Theorem) on in-

verse Laplace transform which readily follow from

the definitions.

Linearity Property

Book Work: Let L{f (t)} = F (s) and L {g(t)} =
G(s) then

L−1 {c1F (s) + c2G(s)} = c1L
−1 {F (s)} + c2L

−1 {G(s)}

= c1f (t) + c2g(t)

where c1 and c2 are any two constants.

Proof: From the Linearity property for L.T., we
know that

L {c1f (t) + c2g(t)} = c1L {f (t)} + c2L {g(t)}

= c1F (s) + c2G(s).

Taking inverse L.T. on either side, we get

c1f (t) + c2g(t) = L−1 {c1F (s) + c2G(s)}
Since f (t) = L−1 {F (s)} and g(t) = L−1 {G(s)}, we
have

c1L
−1 {F (s)} + c2L

−1 {G(s)} = L−1 {c1F (s) + c2G(s)} .
Result: Thus L−1 the Inverse Laplace Transform

operator is a linear operator.

Note: This result can readily be extended to more

than two functions.

First Shift or Translation Theorem

Book Work: If L−1 {F (s)} = f (t) then

L−1 {F (s − a)} = eatf (t) = eatL−1 {F (s)}

Proof: From the first translation property on L.T.,
we have

L
 
eatf (t)

 = F (s − a)

then eatf (t) = L−1 {F (s − a)} .

Result: Thus if s is replaced by s − a in F (s) then

f (t) is multiplied by eat .

Change of Scale Property

Book Work: L−1 {F (ks)} = 1
k
f
 
t
k

 
Proof: From change of scale property for L.T.

L {f (at)} = 1

a
F
 s
a

 
Take a = 1

k
then

L

 
f

 
t

k

  
= k F (ks)

or f

 
t

k

 
= L−1 {kF (ks)}

Thus L−1 {F (ks)} = 1

k
f

 
t

k

 
.

WORKED OUT EXAMPLES

Linearity property

Find the inverse Laplace transform of the following:

Example 1: 2s+1

s2−4
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Solution:

L−1

 
2s + 1

s2 − 4

 
= L−1

 
2s

s2 − 4

 
+ L−1

 
1

s2 − 4

 

= 2 · cosh 2t + 1

2
sinh 2t.

Example 2: 3(s2−2)2

2s5

Solution:

L−1

 
3(s4 − 4s2 + 4)

2s5

!

= L−1

 
3

2

1

s
− 6

1

s3
+ 6

1

s5

 

= 3

2
L−1

 
1

s

 
− 6L−1

 
1

s3

 
+ 6L−1

 
1

s5

 

= 3

2
− 6 · t

2

2!
+ 6 · t

4

4!
= 3

2
− 3t2 + 1

4
t4.

Example 3: 1
s
e
− 1√

s

Solution: We know that

e
− 1√

s =
∞ 
n=0

 
− 1√

s

 n 1

n!
=

∞ 
n=0

(−1)n

n!

1

s
n
2

1

s
e
− 1√

s =
∞ 
n=0

(−1)n

n!

1

s
n
2
+1

L−1

 
1

s
e
− 1√

s

 
= L−1

 ∞ 
n=0

(−1)n

n!

1

s
n
2
+1

!

=
∞ 
n=0

(−1)n

n!
L−1

 
1

s
n
2
+1

 

=
∞ 
n=0

(−1)n

n!

t
n
2

 
 
n
2
+ 1

 .

EXERCISE

Find the inverse Laplace transform f (t) of each of

the following functions F (s):

1. 3
s+4

Ans. 3e−4t

2. 8s

s2+16
Ans. 8 · cos 4t

3. 1
2s−5

Ans. 1
2
e

5t
2

4. 6

s2+4
Ans. 3 sin 2t

5. 3s−12

s2+8

Ans. 3 cos 2
√

2t − 3
√

2 sin 2
√

2t

6. (2s− 5)/(s2 − 9) Ans. 2 cosh 3t − 5
3
sinh 3t

7. s−
7
2 Ans. 8t

5
2 /(15

√
π )

8. s+1

s
4
3

Ans. (t−
2
3 + 3t

1
3 )
#
 
 

1
3

 
9.
 √

s−1

s

 2

Ans. 1 + t − 4t
1
2√
π

10. 3s−8

4s2+25
Ans. 3

4
cos 5t

2
− 4

5
sin 5t

2

11. 5s+10

9s2−16
Ans. 5

9
cosh 4t

3
+ 5

6
sinh 4t

3

12. 3(s2−1)2

2s5
+ 4s−18

9−s2 + (s+1)(2−s
1
2 )

s
5
2

Ans. 1
2
− t − 3

2
t2 + 1

16
t4 + 4 t

1
2√
π
+ 8t

3
2

3
√
π

−4 cosh 3t + 6 sinh 3t

13. 1
s
sin
 

1
s

 
Ans.

∞ 
n=0

(−1)n−1

[(2n−1)!]2
t2n−1

14. 1
s
e−

1
s Ans.

∞ 
n=0

(−1)ntn

(n!)2

Hint: For Examples 13, 14, expand sin and

exponential in series of s.

WORKED OUT EXAMPLES

Change of scale property

Example: Find

L−1

 
64

81s4 − 256

 

Solution: We know that

L−1

 
a3

s4 − a4

!
= 1

2
L−1

 
a

s2 − a2
− a

s2 + a2

 

= 1

2
(sinh at − sin at)
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Rewriting

L−1

 
64

81s4 − 256

 
= L−1

 
43

(3s)4 − 44

!

= L−1 {F (3s)} with a = 4

where F (s) = a3

s4−a4 and

f (t) = 1
2
(sinh at − sin at).

Thus applying change of scale property (with a = 3)

L−1 {F (3s)} = 1

3
f

 
t

3

 
= 1

3

 
1

2
sinh 4

t

3
− sin

4t

3

 
.

EXERCISE

Change of scale property

1. If L−1
 
e−

1
s

#√
s
 
= cos 2

√
t√

πt
show that

L−1

 
e−

a
s

√
s

!
= cos 2

√
at√

πt
, when a > 0.

2. If L−1 {F (s)} = f (t) prove that

L−1 {F (as + b)} = 1

a
e−(b/a)t f

 
t

a

 
where a > 0.

Hint: Take s as as + b in the definition of L.T.

3. If L−1
 

s

(s2+1)2

 
= t sin t

2
show that

L−1

 
8s

(4s2 + 1)2

 
= t

2
sin

t

2
.

4. If L−1
 

s2−1

(s2+1)2

 
= t cos t show that

L−1

 
9s2 − 1

(9s2 + 1)2

!
= t

9
cos

t

3
.

WORKED OUT EXAMPLES

First shift theorem

Find the inverse transform:

Example 1: 1

(s+a)n+1 , n: non-negative integer

Solution:

L−1

 
1

(s + a)n+1

 
= e−atL−1

 
1

sn+1

 

by shift theorem.

= e−at
tn

n!
.

Example 2: s

(s+a)2+b2 .

Solution:

L−1

 
s

(s + a)2 + b2

 
= e−atL−1

 
s − a

s2 + b2

 

by shift theorem

= e−at
 
L−1

 
s

s2 + b2

 −a
b
L−1

 
b

s2 + b2

  

= e−at
 
cos bt − a

b
· sin bt

 
.

Example 3: 3s

s2−25
.

Solution: L−1
 

3s

s2−25

 
= 3L−1

 
s

s2−52

 
= 3 cosh 5t .

Example 4: 1

s
3
2

.

Solution:

L−1

 
1

s
3
2

!
= t

1
2

 
 

3
2

 = t
1
2

1
2
 
 

1
2

 = 2

 
t

π

Example 5: 3s+1

(s+1)4
.

Solution:

L−1

 
3s + 1

(s + 1)4

 
= e−tL−1

 
3(s − 1) + 1

s4

 

= e−t
 
3L−1

 
1

s3

 
− 2L−1

 
1

s4

  

= e−t
 

3 · t
2

2!
· −2 · t

3

3!

!

= e−t
 

3

2
t2 − 1

3
t3
 
.

Example 6: s+1

s2−6s+25
.
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Solution: L−1
 

s+1

s2+6s+25

 
= L−1

 
s+1

(s+3)2+16

 
.

Applying shift theorem.

= e−3tL−1

 
(s − 3) + 1

s2 + 16

 
= e−3t

 
L−1

 
s − 2

s2 + 16

  

= e−3t ·
 
cos 4t − 1

2
sin 4t

 
.

Example 7: F (as + b).

Solution: F (as + b) =
 ∞

0

e−(as+b)t f (t)dt

=
 ∞

0

e−ast · e−bt · f (t)dt

Put at = u, dt = du
a

F (as + b) =
 ∞

0

e−su · e− b
a u · f

 u
a

 
· 1

a
· du

= 1

a

 ∞

0

e−su
 
e−

b
a u · f

 u
a

  
du

= 1

a
L
 
e−

bu
a · f

 u
a

  
.

Result: L−1 {F (as + b)} = 1
a
e−

bt
a · f  t

a

 
.

Example 8: 1√
2s+3

Solution:

L−1

 
1√

2s + 3

 
= 1√

2
L−1




1 
s + 3

2

 1
2


 .

By shift theorem

= 1√
2
e
−3t
2 · L−1

 
1

s
1
2

!

= 1√
2
e
−3t
2 · t

−1
2

 
 

1
2

 = 1√
2π

t−1/2 · e−3t
2 .

EXERCISE

First shift theorem

Find the inverse Laplace transform of the following:

1. 5

(s+2)5
Ans. 5

24
t4e−2t

2. 4s+12

s2+8s+16
Ans. 4e−4t (1 − t)

3. s

(s+1)5
Ans. e−t

24
(4t3 − t4)

4. s

(s+1)
5
2

Ans.
2t

1
2 (3−2t)

3
√
π

5. 1
3√8s−27

Ans. t
−2
3 e

27t
8

2 
 

1
3

 

6. 3s−14

s2−4s+8
Ans. e2t (3 cos 2t − 4 sin 2t)

7. 5s−2

s2+4s+8

Ans. e
−2t
3

15
{25 cos 2

√
5t/3 − 24

√
5 sin 2

√
5 t/3}

8. 3s+2

4s2+12s+9
Ans. 3

4
e
−3t
2 − 5

8
te

−3t
2

9. 8s+20

s2−12s+32

Ans. 2e6t (4 cosh 2t + 17 sinh 2t)

10. 1

(s2+2s+5)2
Ans. e−t

16
(sin 2t − 2t cos 2t)

Inverse L.T. of Derivatives

L−1{F (n)(s)} = (−1)n · tnf (t), n = 1, 2, 3, . . ..

WORKED OUT EXAMPLES

Example 1: s+1

(s2+2s+2)2
.

Solution:

L−1

 
s + 1

(s2 + 2s + 2)2

 
= L−1

 
s + 1

((s + 1)2 + 1)2

 

= e−t · L−1

 
s

(s2 + 1)2

 

We know that
d

ds

 
1

s2 + 1

 
= −2s

(s2 + 1)2

so that
s

(s2 + 1)2
= −1

2

d

ds

 
1

s2 + 1

 

But L−1

 
1

s2 + 1

 
= sin t
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Using I.L.T. of derivatives [(with n = 1 (one differ-
entiation)]

L−1

 
s + 1

(s2 + 2s + 2)2

 
= e−tL−1

 
s

(s2 + 1)2

 

= e−t · −1

2
L−1

 
d

ds

 
1

(s2 + 1)

  

= −1

2
e−t · (−1)1 · t1 · L−1

 
1

s2 + 1

 

= 1

2
e−t · t · sin t.

Example 2: 1

(s−a)3 .

Solution: We know that L−1
 

1
s−a
 = eat

Let F (s) = 1
(s−a) so that

f (t) = L−1{F (s)} = eat

Then

F  (s) = −1

(s − a)2
, F   (s) = (−1)(−2)

(s − a)3
= 2

(s − a)3

By I.L.T. of derivatives with n = 2

L−1

 
1

(s − a)3

 
= 1

2
L−1{F   (s)} = (−1)2

2
t2f (t)

= 1.
t2 · eat

2
= t2eat

2
.

Example 3: 1
2
ln s2+b2

s2+a2 .

Solution: Here F (s) = 1
2

ln(s2+b2)

(s2+a2)

F (s) = 1

2

 
ln(s2 + b2) − ln(s2 + a2)

 

F  (s) = 1

2

2s

s2 + b2
− 1

2

2s

s2 + a2

= s

s2 + b2
− s

s2 + a2

L−1{F  (s)} = L−1

 
s

s2 + b2
− s

s2 + a2

 

= L−1

 
s

s2 + b2

 
− L−1

 
s

s2 + a2

 
= cos bt − cos at

Using I.L.T. of derivatives

−tf (t) = L−1{F  (s)} = cos bt − cos at

Thus

f (t) = − (cos bt − cos at)

t
.

Example 4: cot−1
 
s+a
b

 
.

Solution: F (s)=cot−1
 
s+a
b

 
, F  (s)=− 1

1+( s+ a
b )

2 · 1
b

F  (s) = 1
b

−b2

(s+a)2+b2 , so

L−1{F  (s)} = −L−1

 
b

(s + a2) + b2

 
= −e−at · sin bt

Since − tf (t) = L−1{F  (s)} = −e−at sin bt

Thus f (t) = e−at

t
sin bt.

EXERCISE

Find the inverse Laplace transform of the following:

1. 1
(s−a)n , n = 1, 2, 3 Ans. tn−1· eat

(n−1)!

2. s

(s2+a2)2
Ans. t sin at

2a

3. 1

s2+4s+5
Ans. te−2t sin t

2

4. log
 
s+a
s+b
 

Ans. e−at−e−bt
−t

5. tan−1 2

s2
Ans. 2

t
· sinh t · sin t

6. log s(s+1)

(s2+4)
Ans. 2 cos 2t−e−t−1

t

7. log
 
1 − a2

s2

 
Ans. 2

t
(1 − cosh at)

8. log s+1
s−1

Ans. 2 sinh t
t

9. cot−1
 
s+3
2

 
Ans. 2

t
e−3t sin 2t .

Inverse Laplace Transform of Integrals

If L−1{F (s)} = f (t) then L−1{ ∞
s
F (u)du} = f (t)

t

WORKED OUT EXAMPLES

Evaluate the following:

Example 1: L−1
 

1
2
ln
 
s+1
s−1
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Solution:

1

2
ln

 
s + 1

s − 1

 
= 1

2
[ln(s + 1) − ln(s − 1)]

= 1

2

 ∞

s

 −du
u+ 1

+ du

u− 1

 

But we know that

1

2
L−1

 
1

s − 1
− 1

s + 1

 
= et − e−t

2
= sinh t

Thus applying I.L.T. of integrals

L−1

 
1

2
ln

 
s + 1

s − 1

  

= L−1

  ∞

s

1

2

 
du

u− 1
− du

u+ 1

  

= f (t)

t
= sinh t

t

Example 2: Evaluate

L−1

  ∞

s

 
u

u2 + a2
− u

u2 + b2

 
du

 

Solution: Consider F (s) = s

s2+a2 − s

s2+b2

f (t) = L−1{F (s)} = L−1

 
s

s2 + a2
− s

s2 + b2

 
= cos at − cos bt

By I.L.T. of Integral

L−1{
 ∞

s

F (u)du}

= L−1

  ∞

s

 
u

u2 + a2
− u

u2 + b2

 
du

 
= f (t)

t

= cos at − cos bt

t
.

EXERCISE

Evaluate the following:

1. L−1
  ∞

s

 
1
u
− 1

u+1

 
du
 

Hint: L−1
 

1
s
− 1

s+1

 = 1 − e−t .

Ans. 1−e−t
t

2. L−1
  ∞

s
ln
 
u+2
u+1

 
du
 

Hint: L−1
 
ln
 
s+2
s+1

  = e−t−e−2t

t
.

Ans. e−t−e−2t

t2

3. L−1
  ∞

s
tan−1

 
2

u2

 
du
 

Hint: L−1
 
tan−1 2

s2

 
= 2 sin t sinh t

t2
.

Ans. 2 sin t sinh t

t3

Multiplication by s

Book Work: If L−1{F (s)} = f (t) and f (0) = 0
then

L−1{sF (s)} = df

dt
.

Proof: We know that

L
 
df

dt

 
= sF (s) − f (0) = sF (s)

Then
df

dt
= L−1{sF (s)}.

Thus Multiplication by s amounts to differentiating

f (t) w.r.t. t.

WORKED OUT EXAMPLES

Example: L−1
 

s

s2−a2

 
.

Solution: We know that

1

a
L−1

 
a

s2 − a2

 
= sinh at

a
, and sinh 0 = 0

L−1

 
s · 1

s2 − a2

 
= d

dt

sinh at

a
= a cosh at

a

L−1

 
s

s2 − a2

 
= cosh at.

EXERCISE

Find the inverse Laplace transform:

1. s2

s2+1
Ans. cos t

2. s

(s2+1)2
Hint: L−1

 
1

(s2+1)2

 
= sin t−t cos t

2
.

Ans. 1
2
t sin t
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Division by Powers of s

Integration of a function f (t) amounts to division of

transform F (s) by s

Theorem: L−1
 
F (s)

s

 
=  t

0
f (u)du.

Proof: Let g(t) =  t
0
f (u)du. Then g (t) = f (t),

g(0) = 0

Thus L{g (t)} = sL{g(t)} − g(0) = sL{g(t)}
But since g (t) = f (t)

F (s) = L{f (t)}=L{g (t)}= sL{g(t)}

... L{g(t)} = F (s)

s

... L−1

 
F (s)

s

 
= g(t) =

 t

0

f (u)du

Similarly, L−1

 
F (s)

s2

 
=
 t

0

 v

0

f (u)du dv.

In general,

L−1

 
F (s)

sn

 
=
 t

0

 t

0

. . .

 t

0

f (t)dtn.

WORKED OUT EXAMPLES

Find the inverse Laplace transform f (t) of each of

the following functions F (s):

Example 1: s+2

s2(s+3)

Solution:

L−1

 
s + 2

s2(s + 3)

 
= L−1

 
1

s(s + 3)

 

+L−1

 
2

s2(s + 3)

 
= R1 + R2

We know that L−1
 

1
s+3

 = e−3t · L−1
 

1
s

 = e−3t

R1 = L−1

 
1

s
· 1

s + 3

 

=
 t

0

e−3udu by ILT of Integral

= e−3u

−3

   t
0
= 1

3

 
1 − e−3t

 

R2 = 2L−1

 
1

s2

1

s + 3

 
= 2L−1

 
1

s
· 1

s(s + 3)

 

= 2

 t

0

1

3
(1 − e−3u)du = 2

3

 
u− e−3u

−3

 t
0

= 2

3

 
t + e−3t

3
− 1

3

 

... L−1

 
s + 2

s2(s + 3)

 
= 1

3
− 1

3
e−3t + 2

3
t + 2

9
e−3t − 2

9

= 1

9
+ 2

3
t − 1

9
e−3t .

Example 2: 1

s3(s+1)

Solution: We know that

L−1

 
1

s + 1

 
= e−tL

 
1

s

 
= e−t

Applying I.L.T. of integrals

L−1

 
1

s

1

s + 1

 
=
 t

0

e−udu = e−u

−1

    
t

0

= 1 − e−t

Now consider

L−1

 
1

s
· 1

s(s + 1)

 
=
 t

0

(1 − e−u)du = u− e−u

−1

 t
0

= t + e−t − 1

Finally L−1
 

1
s
· 1

s2(s+1)

 
=  t

0
(u+ e−u − 1)du

= −u+ u2

2
+ e−u

−1

 t
0

= −t + t2

2
− e−t + 1

= 1 − t + 1

2
t2 − e−t

Example 3: 1

(s2+a2)2

Solution: Rewrite

1

(s2 + a2)2
= 1

s
· s

(s2 + a2)2

We know that

L−1

 
s

(s2 + a2)2

 
= +t sin at

2a

(Using I.L.T. for derivatives).
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Now

L−1

 
1

(s2 + a2)2

 
= L−1

 
1

s
· s

(s2 + a2)2

 

Using I.L.T. for integral =
 t

0

−u · sin au

2a
du.

Integrating by parts

= − 1

2a2
t · cos at

    t
0

+ 1

2a2
· sin at

a

    t
0

= 1

2a3
{sin at − at · cos at}.

Example 4: s2

(s2+a2)2

Solution: Rewriting

s2

(s2 + a2)2
= s2 + a2 − a2

(s2 + a2)2
= 1

(s2 + a2)
− a2

(s2 + a2)2

L−1

 
s2

(s2 + a2)2

!

= L−1

 
1

s2 + a2

 
− a2L−1

 
1

(s2 + a2)2

 

(use the result in Example 3 for second term in
R.H.S.)

= sin at

a
− a2 · 1

2a3
{sin at − at cos at}

= 1

2a
{sin at + at cos at}.

EXERCISE

Given F (s) find the inverse Laplace transform f (t):

1. 1

s3(s2+1)
Ans. t2

2
+ cos t − 1

2. s

(s−2)5(s+1)

Ans. e2t
 
t4

36
+ t3

54
− t2

54
+ t

81
− 1

243

 
+ e−t

243

3. s2

(s2−4s+5)2
Ans. te2t (cos t − sin t)

4. 1
s

 
s−a
s+a
 

Ans. 2e−at − 1

5. 1

s2

 
s+1

s2+1

 
Ans. 1 + t − cos t − sin t

6. 1

s4−2s3
Ans. (e26 − 1 − 2t − 2t2)/8

7. 1

s(s2+a2)
Ans. (1 − cos at)/a2

8. 1

s(s+a)3

Ans. − t2e−at
2a

− te−at
a2 − 1

a3 (e−at − 1)

9. 1

s2(s2+a2)
Ans. 1

a2

 
t − sin at

a

 
.

Second Shifting Theorem

IfL{f (t)} = F (s) then fromsecond shifting theorem
for L.T., we have

L{f (t − a)u(t − a)} = e−asF (s).

Therefore

f (t − a)u(t − a) = L−1{e−asF (s)}.

WORKED OUT EXAMPLES

Find the inverse Laplace transform of the following:

Example 1: e−s√
s+1

Solution: Let F (s) = 1√
s+1

so that

f (t) = L−1{F (s)} = L−1

 
1

(s + 1)
1
2

!

= e−tL−1

 
1

s
1
2

!
= e−t · t

−1
2

√
π

Using t-shift

L−1

 
e−s√
s + 1

 
= L−1{e−s · F (s)} = f (t − 1) · u(t − 1)

=
 
e−(t−1) · (t − 1)

−1
2

√
π

!
u(t − 1)

=


e−(t−1) · (t−1)

−1
2√

π
, t > 1

0, 0 < t < 1

Example 2: (5 − 3e−3s − 2e−7s)/s

Solution:

L−1

 
5 − 3e−3s − 2e−7s

s

!

= 5L−1

 
1

s

 
− 3L−1

 
e−3s 1

s

 
− 2L−1

 
e−7s · 1

s
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Applying the second shifting theorem

= 5.1 − 3 · u(t − 3) − 2u(t − 7)

Since L−1

 
1

s

 
= 1

Also u(t − 3) = 0, 0 < t < 3

= 1, t > 3

and u(t − 7) = 0, 0 < t < 7

= 1, t > 7

Therefore

L−1

 
5 − 3e−3s − 2e−7s

s

!

=




5 − 3 · 0 − 2 · 0, 0 < t < 3

5 − 3 · 1 − 2 · 0, 3 < t < 7

5 − 3 · 1 − 2 · 1, t > 7

=




5, 0 < t < 3

2, 3 < t < 7

0, t > 7.

Example 3: (2 + 5s)/(s2e4s).

Solution: Take F (s) = 2+5s

s2
= 2

s2
+ 5

s
. Then

f (t) = L−1{F (s)} = L−1

 
2

s2
+ 5

s

 

= 2L−1

 
1

s2

 
+ 5L−1

 
1

s

 
= 2t + 5

Using result

L−1{e−asF (s)} = f (t − a)u(t − a)

We get (with a = 4)

L−1

 
e−4s

 
2

s2
+ 5

s

  
= f (t − 4) · u(t − 4)

=
 

0, 0 < t < 4

f (t − 4), t > 4

Since f (t) = 2t + 5,

so f (t − 4) = 2(t − 4) + 5 = 2t − 3

... L−1

 
e−4s

 
2

s2
+ 5

s

  
=
 

0, 0 < t < 4

2t − 3, t > 4

Example 4: 1

s2−e−as

Solution:

1

s2 − e−as
= 1

s2

 
1 − e−as

s2

 −1

= 1

s2

∞ 
n=0

 
e−as

s2

 n

=
∞ 
n=0

e−ans

s2n+2
=

∞ 
n=0

e−ans

s(2n+1)+1

Since L−1
 

1

s(2n+1)+1

 
= t2n+1

(2n+1)!
.

Therefore

1

s2 − e−as
= L−1

 ∞ 
n=0

e−ans

s2n+2

!
=

∞ 
n=0

L−1

 
e−ans

s2n+2

 

=
∞ 
n=0

(t − an)2n+1

(2n+ 1)!
u(t − an).

EXERCISE

Using t-shift find the inverse Laplace transform f (t)

for each of the following functions F (s):

1. (s+1)e−πs
s2+s+1

Ans. e
− 1

2
(t−π )

√
3

 √
3 cos

√
3

2
(t −π )+ sin

√
3

2
(t −π )

 
×

×u(t − π )

2. (e−4s − e−7s)/s2

Ans.




0 , 0< t < 4

t−4 , 4< t < 7

3 , t > 7

3. e4−3s

(s+4)
5
2

Ans.
4(t−3)

3
2 e−4(t−4)

3
√
π

u(t − 3)

4. e−3s

s2−2s+5

Ans. 1
2
e(t−3) sin 2(t − 3) · u(t − 3)

5. e−s
(s+1)3

Ans. 1
2
· e−(t−1) · (t − 1)2 · u(t − 1)

6. se
−s
2 +πe−s
s2+π2

Ans. sin πt
 
u
 
t − 1

2

 − u(t − 1)
 

7. s

s2−5s+6
e−2s
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Ans.
 −2e2(t−2) + 3e3(t−2)

 
u(t − 2)

8. 3
s
− 4e−s

s2
+ 4e−3s

s2

Ans. 3 − 4(t − 1)u(t − 1) + 4(t − 3)u(t − 3)

9. e−3s

(s+1)3

Evaluate f (2), f (5), f (7)

Ans. f (2) = 0, f (5) = 2e−2, f (7) = 8e−4

10. e−3s

(s−4)2

Ans. (t − 3)e4(t−3)u(t − 3)

11. se−πs
s2+9

Ans. − cos 3t · u(t − π )

12. 1
s+e−s

Ans.

∞ 
n=0

(−1)n

n!
(t − n)nu(t − n).

12.7 USE OF PARTIAL FRACTIONS TO

FIND INVERSE L.T.

Application of L.T. to a D.E. results in a subsidiary

(algebraic) equation which usually comes out as a

rational function Y (s) = P (s)

Q(s)
where P (s) and Q(s)

are polynomials in s. When the degree of P (s) ≤
degree of Q(s), then the rational function P (s)

Q(s)
can

be written as the sum of simpler rational functions,

called partial fractions, depending on the nature of

factors of the denominator Q(s) as follows:

Factor in denominator Corresponding partial fraction

a. Non-repeated

linear factor
A

ax+b with A  = 0

ax + b

(occurring once)

b. Repeated linear factor
A1
ax+b + A2

(ax+b)2 + · · · + Ar
(ax+b)r

(ax + b)r with Ar  = 0

(occurring r times)

c. Non-repeated
Ax+B

ax2+bx+c
quadratic factor with at least one of A, B non-zero

ax2 + bx + c

d. Repeated quadratic factor
A1x1+B1

ax2+bx+c + A2x+B2

(ax2+bx+c)2 + · · ·
(ax2 + bx + c)r + Arx+Br

(ax2+bx+c)r
(occurring r times) with at least one of Ar,Br

non-zero.

Here A,B,A1, B1, . . . , Ar, Br are all constants.

By finding the inverse L.T. of each of these

partial fractions, L−1{Y (s)} = L−1
 
P (s)

Q(s)

 
can be

determined.

WORKED OUT EXAMPLES

Find the inverse Laplace transform f (t) of each of

the following functions F (s):

Distinct non-repeated linear factors

Example 1: 3s+7

s2−2s−3

Solution: Using partial fractions, we have

Method 1:

3s + 7

s2 − 2s − 3
= 3s + 7

(s − 3)(s + 1)
= A

s − 3
+ B

s + 1

Multiplying both sides by (s − 3)(s + 1),

3s + 7 = A(s + 1) + B(s − 3) = (A+ B)s + A− 3B

Equating the corresponding coefficients on both
sides

A+ B = 3, A− 3B = 7 Then A = 4, B = −1

Thus 3s+7
(s−3)(s+1)

= 4
s−3

− 1
s+1

L−1

 
3s + 7

(s − 3)(s + 1)

 
= 4L−1

 
1

s − 3

 
− L−1

 
1

s + 1

 

= 4e3t − e−t .

Method 2:

Put s = 3, 16 = 4A ... A = 4,

Put s = −1, 4 = −4B ... B = −1

Method 3: Multiplying by (s − 3) and taking the

limit as s tends to 3

lim
s→3

3s + 7

s + 1
= A+ lim

s→3

B(s − 3)

(s + 1)
, then A = 4.

Similarly,multiplying by (s+ 1) and letting s→−1,

we get

lim
s→−1

3s + 7

s − 3
= lim

s→−1

A(s + 1)

(s − 3)
+ B Then B = −1

Applying inverse transform, we get the above

result.
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Linear repeated factors

Example 2: s3+6s2+14s

(s+2)4

Solution:

s3 + 6s2 + 14s

(s + 2)4

= A

(s + 2)4
+ B

(s + 2)3
+ C

(s + 2)2
+ D

(s + 2)

s3 + 6s2 + 14s

= A+ B(s + 2) + C(s + 2)2 +D(s + 2)3

= Ds3 + (6D + C)s2 + (12D + 4C + B)s

+(8D + 4C + 2B + A)

Equating the coefficients of s
A = −12, B = 2, C = 0,D = 1

L−1

 
s3 + 6s2 + 14s

(s + 2)4

!

= −12L−1

 
1

(s + 2)4

 
+ 2L−1

 
1

(s + 2)3

 

+L−1

 
1

s + 2

 

= −12e2tL−1

 
1

s4

 
+ 2e−2tL−1

 
1

s3

 
+ e−2t

= −2e−2t t3 + e−2t t2 + e−2t

= e−2t {1 + t2 − 2t3}.

Non-repeated Quadratic Factors

Example 3: s2+2s+3

(s2+2s+2)(s2+2s+5)

Solution:

Method 1:

s2 + 2s + 3

(s2 + 2s + 2)(s2 + 2s + 5)

= As + B

s2 + 2s + 2
+ Cs +D

s2 + 2s + 5

s2 + 2s + 3

= (As + B)(s2 + 2s + 5) + (Cs +D)(s2 + 2s + 2)

= (A+ C)s3 + (2A+ B + 2C +D)s2

+(5A+ 2B + 2C + 2D)s + 5B + 2D

Comparing coefficients of s on either side

A+ C = 0, 2A+ B + 2C +D = 1,

5A+ 2B + 2C + 2D = 2,

5B + 2D = 3

By solving these equations, we get

A = 0, B = 1

3
, C = 0,D = 2

3

L−1

 
s2 + 2s + 3

(s2 + 2s + 2)(s2 + 2s + 5)

!

= L−1

 
1
3

s2 + 2s + 2

!
+ L−1

 
2
3

s2 + 2s + 5

!

= 1

3
L−1

 
1

(s + 1)2 + 1

 
+ 2

3
L−1

 
1

(s + 1)2 + 4

 

= 1

3
e−t sin t + 2

3
· 1

2
· e−t · sin 2t

= 1

3
e−t (sin t + sin 2t).

Method 2: Reduction of non-repeated quadratic
factors to non-repeated linear factors using complex
numbers

s2 + 2s + 3

[(s2 + 2s + 2)][s2 + 2s + 5]

= s2 + 2s + 3

[(s + 1 − i)(s + 1 + i)][(s + 1 − 2i)(s + 1 + 2i)]

= A

s + 1 − i
+ B

s + 1 + i
+ C

s + 1 − 2i
+ D

s + 1 + 2i
.

Solving A = 1
6i
, B = − 1

6i
, C = 1

6i
, D = −1

6i

L−1

 
s2 + 2s + 3

(s2 + 2s + 2)(s2 + 2s + 5)

!

= e−(1−i)t

6i
− e−(1+i)t

6i
+ e−(1−2i)t

6i
− e−(1+2i)t

6i

= 1

3
e−t

 
eit − e−it

2i

 
+ 1

3
e−t

 
e2it − e−2it

2i

 

= 1

3
e−t · sin t + 1

3
e−t sin 2t.

Example 4: a(s2−2a2)

s4+4a4
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Solution: Rewriting

s4 + 4a4 = (s2 + 2a2)2 − (2as)2.

= (s2 + 2as + 2a2)(s2 − 2as + 2a2)

a(s2 − 2a2)

s4 + 4a4
= a(s2 − 2a2)

(s2 + 2as + 2a2)(s2 − 2as + 2a2)

= 1

2

−(s + a)

s2 + 2as + 2a2
+ 1

2

s − a

s2 − 2as + 2a2

= 1

2

 −(s + a)

(s + a)2 + a2
+ s − a

(s − a)2 + a2

 

... L−1

 
a(s2 − 2a2)

s4 + 4a4

!

= 1

2
L−1

 −(s + a)

(s + a)2 + a2

 
+ 1

2
L−1

 
s − a

(s − a)2 + a2

 

= −1

2
e−at cos at + 1

2
eat cos at

= cos at

 −1

2
e−at + eat

2

 
= cos at · sinh at.

Repeated quadratic factors

Example 5: s3−3s2+6s−4

(s2−2s+2)2

Solution:

s3 − 3s2 + 6s − 4

(s2 − 2s + 2)2
= As + B

(s2 − 2s + 2)2
+ Cs +D

(s2 − 2s + 2)

s3 − 3s2 + 6s − 4 = As + B + (Cs +D)(s2 − 2s + 2)

= Cs3 + (D − 2c)s2

+(A+ 2c − 2D)s + B + 2D.

Equating and solving A = 2, B = −2, C = 1,

D = −1, and rewriting s2 − 2s + 2 = (s − 1)2 + 1

I.T.= L−1

 
2s − 2

[(s − 1)2 + 1]2

 
+ L−1

 
s − 1

(s − 1)2 + 1

 

= etL−1

 
2s

(s2 + 1)2
+ s

(s2 + 1)

 

= 2e−tL−1

 
s

(s2 + 1)2

 
+ e−t · cos t

= 2et · t
2
· sin t + e−t · cos t = et {t sin t + cos t}.

EXERCISE

Find the inverse Laplace transform f (t) of each of

the following functions F (s):

1. s−2

s2+5s+6
Ans. −4e−2t + 5e−3t

2. 2s2−4
(s+1)(s−2)(s−3)

Ans. −1
6
e−t − 4

3
e2t + 7

2
e3t

3. s2−7s+24

s3−7s2+14s−8
Ans. 6et − 7e2t + 2e4t

4. s+17
(s−1)(s+3)

Ans. 9
2
et − 7

2
e−3t

5. 2s2−6s+5

s3−6s2+11s−6
Ans. 1

2
et − e2t + 5

2
e3t

6. 5s

s2+4s+4
Ans. 5e−2t (1 − 2t)

7. 5

(s−2)4
Ans. 5t2e2t

6

8. 7

(2s+1)3
Ans. 7

16
t2e

−t
2

9. s+2

s2+4s+7
Ans. e−2t · cos

√
3t

10. 2s+12

s2+6s+13

Ans. e−3t (2 cos 2t + 3 sin 2t)

11. s2+9s−9

s3−9s
Ans. 1 + 3 sinh 3t

12. s

(s2−2s+2)(s2+2s+2)
Ans. 1

2
sin t · sinh t

13. 3s3−3s2−40s+36

(s2−4)2
Ans. (5t + 3)e−2t − 2te2t

14. 2s3−s2−1

(s+1)2(s2+1)2

Ans. 1
2
sin t + 1

2
t cos t − te−t

15. 5s2−7s+17

(s−1)(s2+4)

Ans. 3et + 2 cos 2t − 5
2
sin 2t

16. 2s2+15s+7

(s+1)2(s−2)
Ans. (2t − 3)e−t + 5e2t

17. s+1

(s2+1)(s2+4)

Ans. 1
6
(2 cos t − 2 cos 2t + 2 sin t − sin 2t)

18. 10

s(s2−2s+5)

Ans. 2−et (2 cos 2t −sin 2t)

19. 1

s(s+1)2
Ans. 1 − e−t − te−t
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20. s2+8s+27

(s+1)(s2+4s+13)

Ans. 2e−t + e−2t (sin 3t − cos 3t)

21. s

s4+s2+1

Hint: s4 + s2 + 1= (s2 + s+ 1)(s2 − s+ 1)

Ans. 1√
3

 
e
t
2

sin
√

3
2
t − e

−t
2 sin

√
3

2
t
 

22. s

s4+4a4

Hint: s4 + 4a4 = (s2 + 2a2)2 − (2as)2

= (s2 + 2as + 2a2)(s2 − 2as + 2a2).

Ans. 1

2a2 sin at · sinh at

23. 5s+3

(s−1)(s2+2s+5)

Ans. et − e−t
 
cos 2t − 3

2
sin 2t

 
24. s2

s4+4a4

Hint: Use hint of above Example 22.

Ans. 1
2a

[sinh at cos at + cosh at · sin at].

12.8 CONVOLUTION

Convolution is used to find inverse Laplace trans-

forms in solving differential equations and integral

equations.

Suppose two Laplace transforms F (s) and G(s)

are given. Let f (t) and g(t) be their inverse Laplace

transforms respectively i.e., f (t) = L−1{F (s)} and

g(t) = L−1{G(s)}. Then the inverse h(t) of the prod-

uct of transforms H (s) = F (s)G(s) can be calcu-

lated from the known inverse f (t) and g(t).

Convolution

h(t) of f (t) and g(t), denoted by (f ∗ g)(t) is defined
as

h(t) = (f ∗ g)(t) =
 t

0

f (u)g(t − u)du

f ∗ g is called the convolution or faltung∗ of f and

g and can be regarded as a “generalized product” of

these functions.

Result: Thus to find the inverse transform of

product of transforms H (s) = F (s)G(s), calculate

h(t) = f ∗ g which is the convolution of f and g.

Therefore one should tactfully rewrite H (s) as a

product of F (s) and G(s) in such a way that the

* German for folding.

corresponding inverses f (t) and g(t) are readily

known from transform tables or other means.

Convolution Theorem

Prove that

L{h(t)} = L{f ∗ g} = H (s) = F (s) ·G(s)

or L−1{F (s) ·G(s)} = h(t) = f ∗ g.

Proof: From the definition of Laplace transform

L{f ∗ g} =
 ∞

0

e−st (f ∗ g)dt

=
 ∞

0

e−st
  t

0

f (τ )g(t − τ )dτ

 
dt

=
 ∞

0

 t

0

e−st f (τ )g(t − τ )dτ dt,

=
  
R

e−st f (τ )g(t − τ )dτ dt

t

t

t
=
t

R

Fig. 12.10

whereR is the 45◦ wedge bounded by the lines τ = 0
and t=τ (see Fig. 12.10). Change the variables τ, t
to the new variables u, v by the transformation

u= t − τ

v = τ

Fig. 12.11
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The Jacobian J = 1. Thus the double integral over

R transforms to a double integral over D the first

quadrant of the new uv-plane (i.e., u > 0, v > 0)

(refer Fig. 12.11). Thus

L{f ∗ g} =
  
D

e−s(u+v)f (v)g(u)du dv

=
 ∞

0

 ∞

0

e−s(u+v)f (v)g(u)du dv

=
 ∞

0

e−svf (v)dv

 ∞

0

e−sug(u)du

= L{f } · L{g}

Valid Properties

1. f ∗ g = g ∗ f Commutative

2. (f ∗ g) ∗ v = f ∗ (g ∗ v) Associative

3. f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2 Distributive

4. f ∗ 0 = 0 ∗ f = 0.

WORKED OUT EXAMPLES

Use convolution theorem to find the inverse of the

following:

Example 1: 1

s2(s2+1)

Solution: Rewriting

1

s2(s2 + 1)
= 1

s2
· 1

s2 + 1
= F (s) ·G(s)

so that f (t) = L−1(F (s)) = L−1
 

1

s2

 
= t

g(t) = L−1(G(s)) = L−1

 
1

s2 + 1

 
= sin t

... By convolution theorem

L−1

 
1

s2(s2 + 1)

 
= f ∗ g =

 t

0

(t − u) · sin u du

=−t cos t + t + t cos t − sin t

= t − sin t.

Example 2: 1

(s2+a2)2

Solution: Rewriting

1

(s2 + a2)2
=
 

1

s2 + a2

  
1

s2 + a2

 

Here f (t) = L−1
 

1

s2+a2

 
= 1

a
sin at

Similarly, g(t) = 1
a

sin at

... L−1

 
1

(s2 + a2)2

 
= f ∗ g

=
 t

0

sin au

a
· sin a(t − u)

a
du

= 1

2a2

 t

0

[cos a(2u− t) − cos at]du

... sinA · sinB = cos(A− B) − cos(A+ B)

2

= 1

2a2

 
sin a(2u− t)

2a
− cos at · u

 a
u=0

= 1

2a2

 
sin at

2a
− t cos at − sin(−at)

2a

 

= 1

2a3
[sin at − at cos at]

Example 3: 16

(s−2)(s+2)2

Solution: Rewriting 1
(s−2)

· 1

(s+2)2
= F (s) ·G(s)

We know that f (t)=L−1{F (s)}=L−1
 

1
s−2

 = e2t

g(t) = L−1{G(s)} = L−1

 
1

(s + 2)2

 

= e−2tL1

 
1

s2

 
= te−2t

Applying convolution theorem

L−1

 
16

(s − 2)(s + 2)2

 
= 16 · g ∗ s = 16

 t

0

ue−2ue2(t−u)du

= 16e2t
 t

0

ue−4udu

= 16e2t

 
ue−4u

−4
− 1

e−4u

16

 t
u=0

= e2t − e−2t − 4te−2t .

Example 4: 1
s(s+1)(s+2)
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Solution: Rewriting

1

s(s + 1)(s + 2)
= 1

s(s + 1)
· 1

s + 2

Consider

1

s(s + 1)
= 1

s
· 1

s + 1

so that f (t) = 1, g(t) = e−t

L−1

 
1

s

1

s + 1

 
= f ∗ g =

 t

0

1.e−udu

= 1 − e−t = h(t)

Also L−1
 

1
s+2

 = J (t) = e−2t

... L−1

 
1

s(s + 1)
· 1

s + 2

 
= h ∗ J

=
 t

0

e−2(t−u) · (1 − eu) du

= e−2t

 t

0

(e2u − eu) du

= e−2t

 
e2u

2

  t
0 − eu

  t
0

 

= e−2t

 
e2t

2
− 1

2
− (et − 1)

 

= 1

2
+ 1

2
e−2t − e−t .

EXERCISE

Use convolution theorem to find inverse Laplace

transform of the following:

1. 1
(s+a)(s+b) Ans. e−at−e−bt

b−a

2. 1

s(s2+9)
Ans. (1 − cos 3t)/9

3. 1

s2(s+3)
Ans. (−1 + 3t + e−3t )/9

4. s2

(s2+a2)2
Ans. 1

2a
(sin at + at cos at)

5. s

(s2+a2)3
Ans. t

8a3 (sin at − at cos at)

6. s2

(s2+a2)(s2+b2)
Ans. a sin at−b sin bt

a2−b2

7. 1

(s+1)(s2+1)
Ans. 1

2
(sin t − cos t + e−t )

8. 1

(s+1)(s+9)2
Ans. e−t

64
[1 − e−8t (1 + 8t)]

9. 1

s2(s−a) Ans. 1

a2 (eat − at − 1)

10. s

(s2+a2)2
Ans. t sin at

2a

11. a

s2(s2+a2)
Ans. (at − sin at)/a2

12. 1

(s2+4)(s+1)2

Ans. e−t
50

[10e−t − (3 sin 2t + 4 cos 2t)]

13. 1

s3(s2+1)
Ans. t2

2
+ cos t − 1

14. 1

[s2(s2−a2)
Ans. 1

a2

 −t + sinh at
a

 
15. 1

(s+2)2(s−2)
Ans. 1

16
[e2t − (4t + 1)e−2t ].

12.9 APPLICATION OF LAPLACE

TRANSFORM TO DIFFERENTIAL

EQUATIONS WITH CONSTANT

COEFFICIENTS

Laplace transform is especially suitable to obtain the

solution of linear non-homogeneous ordinary dif-

ferential equations with constant coefficients, when

all the boundary conditions are specified for the un-

known function and its derivatives at a single point.
Consider the initial value problem

d2y

dt2
+ a

dy

dt
+ by = r(t) (1)

y(t = 0) = k0, y (t = 0) = k1 (2)

where a, b, k0, k1 are all constants and r(t) is a func-

tion of t.

Method of solution to D.E. by L.T.

Step I. Apply Laplace transform on both sides of
the given differential Equation (1), result-
ing in a subsidiary equation

[s2Y − sy(0) − y (0)]

+a[sY − y(0)] + bY = R(s) (3)

where Y = L{y(t)} and R(s) = L{r(t)}.
Replace y(0), y (0) using given initial

conditions (2).

Step II. Solve (3) algebraically for Y (s), usually to

a sum of partial fractions.
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Step III. Apply inverse Laplace tranform toY (s) ob-
tained in step II. This yields the solution of
O.D.E. (1) satisfying the initial conditions
(2) as

y(t) = L−1{Y (s)}.

WORKED OUT EXAMPLES

Homogeneous

Solve the following using Laplace transform:

Example 1: y   − 2y  − 8y= 0, y(0)= 3, y  (0)= 6

Solution: Applying L.T.

(s2Y − 3s − 6) − 2(sY − 3) − 8Y = 0

Solving,

Y (s) = 3s

s2 − 2s − 8
= 3s

(s − 4)(s + 2)

Using partial fractions

Y (s) = 2

s − 4
+ 1

s + 2

Applying I.L.T.

y(t) = L−1(Y (s)) = 2L−1

 
1

s − 4

 
+ L−1

 
1

s + 2

 

= 2e4t + e−2t .

Non-homogeneous

Example 2: y   + 2y  + 5y = e−t sin t , y(0) = 0,

y  (0) = 1.

Solution: Using L.T.

[s2Y − 0 − 1] + 2[sY − 0] + 5Y = L(e−t sin t)

= 1

(s + 1)2 + 1

Solving Y = s2+2s+3

(s2+2s+5)(s2+2s+2)

By partial fractions,

s2 + 2s + 3

(s2 + 2s + 5)(s2 + 2s + 2)

= As + B

s2 + 2s + 5
+ Cs +D

s2 + 2s + 2

s2 + 2s + 3 = (As + B)(s2 + 2s + 2)

+(Cs +D)(s2 + 2s + 5)

= s3(A+ C) + s2(2A+ 2C + B +D)

+s(2A+ 5C + 2B + 2D) + 2B + 5D.

Equaring coefficients of s on either side

A+ C = 0, 2A+ 2C + B +D = 1,

2A+ 5C + 2B + 2D = 2, 2B + 5D = 3

... A = 0, B = 1
3
, C = 0,D = 2

3

Y (s) = 1

3

1

s2 + 2s + 5
+ 2

3

1

s2 + 2s + 2

Rewriting

Y (s) = 1

3

1

(s + 1)2 + 22
+ 2

3

1

(s + 1)2 + 1
.

Applying I.T.

y(t) = L−1(Y ) = 1

3
L−1

 
1

(s + 1)2 + 22

 

+2

3
L−1

 
1

(s + 1)2 + 12

 

Using first shift theorem

= 1

3
e−tL−1

 
1

s2 + 1

 
+ 2

3
e−tL−1

 
1

s2 + 22

 

y(t) = e−t

3
[sin t + sin 2t].

Example 3: y   + n2y = a sin(nt + 2), y(0) = 0,

y  (0) = 0.

Solution:

y   + n2y = a[sin nt · cos 2 + cos nt · sin 2]
Applying L.T., L(y   ) + n2L(y) =
a · cos 2 · L(sin nt) + a sin 2 · L(cos nt).

[s2Y − sy(0) − y (0)] + n2Y

= n

s2 + n2
· a · cos 2 + s

s2 + n2
· a sin 2
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Solving for Y

Y (s) = n

(s2 + n2)2
· a · cos 2 + s

(s2 + n2)2
· a · sin 2.

Applying I.T.

y(t) = n · a · cos 2 · L−1

 
1

(s2 + n2)2

 

+ a · sin 2 · L−1

 
s

(s2 + n2)2

 
(1)

From I.L.T. tables, we know that (2nd term in
R.H.S.)

L−1

 
s

(s2 + n2)2

 
= t · sin nt

2n
(2)

To find 1st term in R.H.S.

L−1

 
1

(s2 + n2)2

 
= L−1

 
1

s
· s

(s2 + n2)2

 

= 1

2n

 t

0

t · sin nt dt

because

L−1

 
F (s)

s

 
=
 t

0

f (t)dt.

... L−1

 
1

(s2 + n2)2

 
= 1

2n

 t

0

t · sin t nt dt

= 1

2n3
[−nt cos nt + sin nt]

(3)

Thus substituting (2) and (3) in (1), we get

y(t) = an · cos 2 · 1

2n3
[−nt cos nt + sin nt]

+a sin 2
t

2n
sin nt

= a

2n2
[−nt · cos 2 · cos nt + cos 2 · sin nt

+nt · sin 2 · sin nt]
= a

2n2
[sin nt · cos 2 − nt(cos nt · cos 2

− sin nt · sin 2)]

= a

2n2
[sin nt · cos 2 − nt cos(nt + 2)].

Example 4: Solve y    − 3y   + 3y  − y = t2et ,

y(0) = 1, y  (0) = 0, y   (0) = −2.

Solution: Applying L.T. to D.E.

L(y   ) − 3L(y  ) + 3L(y ) − L(y) = L(t2et ) 
s3Y − s2y(0) − sy (0) − y  (0)

 
−3[s2Y − sy(0) − y (0)]

+3[sY − y(0)] − Y = 2

(s − 1)3

Using the initial condition y(0) = 1, y  (0) =
0, y   (0) = −2, and solving for Y

(s3 − 3s2 + 3s − 1)Y − s2 + 3s − 1 = 2

(s − 1)3

Y = s2 − 3s + 1

(s − 1)3
+ 2

(s − 1)6

= s2 − 2s + 1 − s

(s − 1)3
+ 2

(s − 1)6

= (s − 1)2 − (s − 1) − 1

(s − 1)3
+ 2

(s − 1)6

Y = 1

s − 1
− 1

(s − 1)2
− 1

(s − 1)3
+ 2

(s − 1)6
.

Applying I.L.T.

y(t) = L−1(Y ) = L−1

 
1

s − 1

 
− L−1

 
1

(s − 1)2

 

−L−1

 
1

(s − 1)3

 
+ 2L−1

 
1

(s − 1)6

 

y(t) = et − tet − t2et

2
+ t5et

60

where we have used the first shift theorem.

Example 5: Find the general solution of the D.E.

in the above Example 4.

Solution: Since the initial conditions are arbitrary

assume y(0) = a, y  (0) = b, y   (0) = c.
Then

(s2Y − as2 − bs − c) − 3(s2Y − as − b)

+3(sY − a) − Y = 2

(s − 1)3

Y = as2 + (b − 3a)s + (3a − 3b + c)

(s − 1)3
+ 2

(s − 1)6
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By partial fractions

Y = c1

(s − 1)3
+ c2

(s − 1)2
+ c3

(s − 1)1
+ 2

(s − 1)6

where c1, c2, c3 are constants depending on a, b, c.

Applying I.T., and using first shift theorem

y(t) = c1
t2

2
et + c2te

t + c3e
t + t5

60
et .

EXERCISE

Use L.T. to solve each of the following I.V.P. con-

sisting of a D.E. with I.C:

1. y  − y = 0, general solution

Hint: Assume y(0) = A = constant

Ans. y = Aet

2. y  − y = e3t , y(0) = 2

Ans. y = (3et + e3t )/2

3. y   + y  = 0, general solution

Hint: Assume y(0) = A, y  (0) = B

Ans. y = C +De−t , C = A+ B,D = −B
4. y   + y = 2et , y(0) = 0, y  (0) = 2

Ans. y = et + cos t + sin t

5. y   − 6y  + 9y = 0, y(0) = 2, y  (0) = 9

Ans. y = (3t + 2)e3t

6. y   + 4y = 9t, y(0) = 0, y  (0) = 7

Ans. y = 9
4
t + 19

8
sin 2t

7. y   + 7y  + 10y = 4e−3t , y(0) = 0,

y  (0) = −1

Ans. y = e−2t − 2e−3t + e−5t

8. y   − 8y  + 15y = 9te2t , y(0) = 5,

y  (0) = 10

Ans. y = 4e2t + 3te2t + 3e3t − 2e5t

9. y   + y = t cos 2t, y(0) = 0, y  (0) = 0

Ans. y = 4
9
sin 2t − 5

9
sin t − 1

3
t cos 2t

10. y   + n2y = a sin(nt + θ ), y(0) = y  (0) = 0

Ans. y = a

2n2 [sin nt cos θ − nt cos(nt + θ )]

11. y   + y= sin t · sin 2t, y(0)= 1, y  (0)= 0

Ans. y = 15
16

cos t + t
4
sin t + 1

16
cos 3t

12. y   + y = e−2t sin t, y(0) = 0, y  (0) = 0

Ans. y = 1
8
(sin t − cos t) + e−2t

8
(sin t + cos t)

13. y    + 4y   + 5y  + 2y = 10 cos t

y(0) = 0, y  (0) = 0, y   (0) = 3

Ans. y = −e−2t + 2e−t − 2te−t − cos t + 2 sin t

14. y    − y = et

y(0) = y  (0) = y   (0) = 0

Ans. y= t
3
et + e

−1
2t

18

 
9 cos

√
3

2
t + 5

√
3

2
sin

√
3

2
t
 
− et

2

15. yiv − 16y = 30 sin t

y   (0)= 0, y    (0)= − 18,

y   (π )= 0, y    (π )=− 18

Ans. y(t) = − 1
8
e2t + 1

8
e−2t + 7 sin t − 9

2
sin 2t .

12.10 APPLICATION OF LAPLACE

TRANSFORM TO SYSTEM OF

SIMULTANEOUS DIFFERENTIAL

EQUATIONS

Laplace Transform can also be used to solve a sys-

tem (or family) of m simultaneous ordinary differ-

ential equations in m dependent variables which are

functions of the independent variable t. Consider a

family of two simultaneous D.E. in the 2 dependent

variables x and y which are functions of t.

a1
d2x

dt2
+ a2

d2y

dt2
+ a3

dx

dt
+ a4

dy

dt
+ a5x + a6y

= R1(t) (1)

b1
d2x

dt2
+ b2

d2y

dt2
+ b3

dx

dt
+ b4

dy

dt
+ b5x + b6y

= R2(t) (2)

Initial conditions:

x(0) = c1, y(0) = c2, x
 (0) = c3, y

 (0) = c4 (3)

Here a1, a2, . . . a6, b1, b2, . . . b6, c1, c2, c3, c4 are

all constants and R1(t) and R2(t) are functions

of t.
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Method of solution to system of D.E

Step I. Apply Laplace transform on both sides of

each of the two D.E. (1) and (2). This re-

duces (1) and (2) to two algebraic equations

in X(s) and Y (s) where X(s) = L{x(t)}
and Y (s) = L{y(t)}.

a1{s2X − sx(0) − x (0)} + a2{s2Y − sy(0) − y (0)}
+a3{sX − x(0)} + a4{sY − y(0)}
+a5X + a6Y = Q1(s) (4)

b1{s2X − sx(0) − x (0)} + b2{s2Y − sy(0) − y (0)}
+b3{sX − x(0)} + b4{sY − y(0)}
+b5X + b6Y = Q2(s) (5)

Use the initial conditions (3) and substitute

for x(0), x  (0), y(0), y  (0).

Step II. Solve (4) and (5) for X(s) and Y (s).

Step III. The required solution is obtained by taking
the inverse Laplace transform of X(s) and
Y (s) as

x(t) = L−1{X(s)} and

y(t) = L−1{Y (s)}.

WORKED OUT EXAMPLES

Example 1: 2 dx
dt

+ dy

dt
− x − y = e−t

dx

dt
+ dy

dt
+ 2x + y = et , x(0) = 2, y(0) = 1

Solution: Taking L.T. of the given D.E., we get

2[sX(s) − x(0)] + sY (s) − y(0) −X(s) − Y (s) = 1

s + 1

sX(s) − x(0) + sY (s) − y(0) + 2X(s) + Y (s) = 1

s − 1

Using I.C. x(0) = 2, y(0) = 1,

(2s − 1)X(s) + (s − 1)Y (s) = 5s + 6

s + 1

(s + 2)X(s) + (s + 1)Y (s) = 3s − 2

s − 1

Solving

X(s) = 2(s + 4)

s2 + 1

Y (s) = s3 − 12s2 − s + 14

(s2 + 1)(s2 − 12)
= s − 13

s2 + 1
+ 1

s2 − 1

Taking inverse Laplace transform, we have

x(t) = L−1{X(s)} = L−1

 
2s + 8

s2 + 1

 
= 2 cos t + 8 sin t

y(t) = L−1

 
s − 13

s2 + 1
+ 1

s2 − 1

 

= cos t − 13 sin t + sinh t

Example 2:
d2x

dt2
− 3

dx

dt
− dy

dt
+ 2y = 14t + 3

dx

dt
− 3x + dy

dt
= 1

x(0) = 0, x  (0) = 0, y(0) = 6.5

Solution: Taking L.T. of the given D.E., we have

[s2X − sx(0) − x (0)] − 3[sX − x(0)]

−[sY − y(0)] + 2Y = 14
1

s2
+ 3

1

s

[sX − x(0)] − 3X + [sY − y(0)] = 1

s

Use I.C.: x(0) = 0, x  (0) = 0, y(0) = 6.5 = 13
2

s(s − 3)X + (2 − s)Y = 28 + 6s − 13s2

2s2

(s − 3)X + sY = 2 + 13s

2s

Solving

Y (s) = 13s3 + 15s2 − 6s − 28

2s2(s2 + s − 2)

X(s) = 4(7 − 6s)

s(s − 3)(s + 2)(s − 1)
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Taking inverse Laplace transform

y(t) = L−1{Y (s)} = L−1

 
13s3 + 15s2 − 6s − 28

2s2(s2 + s − 2)

!

= L−1

 
A

s2
+ B

s
+ C

s − 1
+ D

s + 2

 

= L−1

 
7

s2
+ 5

s
− 1

s − 1
+ 5

2

1

s + 2

 

y(t) = 7t + 5 − e+t + 5

2
e−2t

Similarly,

x(t) = L−1

 
4(7 − 6s)

s(s − 3)(s + 2)(s − 1)

 

= L−1

 
2

s
− 1

2

1

s − 1
− 1

2

1

s − 3
− 1

s + 2

 

x(t) = 2 − 1

2
et − 1

2
e3t − e−2t

EXERCISE

Solve the following system of equations:

1. dx
dt

= 2x − 3y;
dy

dt
= y − 2x, x(0) = 8,

y(0) = 3

Ans. x(t) = 5e−t + 3e4t ; y(t) = 5e−t − 2e4t

2. dx
dt

+ y sin t ;
dy

dt
+ x = cos t, x(0) = 2,

y(0) = 0

Ans. x(t) = et + e−t = 2 cosh t,

y(t) = sin t −2 sinh t

3. dx
dt

− 6x + 3y = 8et ;
dy

dt
− 2x − y = 4et ,

x(0) = −1, y(0) = 0

Ans. x(t) = −2et + e4t ; y(t) = − 2
3
et + 2

3
e4t

4. 2dx
dt

+ 4dy

dt
+ x − y = 3et ;

dx
dt

+ dy

dt
+ 2x + 2y = et , x(0) = 1, y(0) = 0

Ans. x(t) = e−2t − tet ; y(t) = et

3
− e−2t

3
+ tet

5. dx
dt

− dy

dt
− 2x + 2y = 1 − 2t

d2x

dt2
+ 2x

. + x = 2, x(0) = y(0) = x  (0) = 0

Ans. x = 2 − 2e−t (1 + t);

y(t) = 2 − t − 2(1 + t)e−t

6. dx
dt

+ 2
d2y

dt2
= e−t

dx
dt

+ 2x − y = 1

x(0) = y(0) = y  (0) = 0

Ans. x(t) = 1 + e−t − e−at − e−bt

y(t) = 1 + e−t − be−at − ae−bt

where a = 1
2
(2 −

√
2), b = 1

2
(2 +

√
2).

7. 3dx
dt

+ dy

dt
+ 2x = 1; dx

dt
+ 4

dy

dt
+ 3y = 0

x(0) = 3, y(0) = 0

Ans. x = (5 − 2e−t − 3e
−6t
11 )/10;

y(t) = (e−t − e
−6t
11 )/5

8. dx
dt

= y + et ;
dy

dt
= sin t − x,

x(0) = 1, y(0) = 0

Ans. x(t) = (et + cos t + 2 sin t − t cos t)/2

y(t) = (t sin t − et + cos t − sin t)/2

9. d2x

dt2
= 2x + 3y + e2t ;

d2y

dt2
= −x − 2y

x(0) = y(0) = 1, x  (0) = y  (0) = 0

Ans. x(t) = 1
4
(3et + 7e−t ) − 1

10
(19 cos t −

2 sin t) + 2
5
e2t

y(t) = −1
12

(3et + 7e−t ) + 1
10

(19 cos t −
2 sin t) − 1

15
e2t

10. d2x

dt2
+ dy

dt
+ 3x = 15e−t

d2y

dt2
− 4dx

dt
+ 3y = 15 sin 2t

x(0) = 35, x  (0) = −48, y(0) = 27,

y  (0) = −55

Ans. x(t) = 30 cos t − 15 sin 3t + 3e−t + 2 cos 2t

y(t) = 30 cos 3t − 60 sin t − 3e−t + sin 2t.
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12.11 TABLE OF GENERAL PROPERTIES OF LAPLACE TRANSFORM

F (s) =
 ∞

0

e−st f (t)dt

S.No. Name Laplace transform Inverse Laplace transform

1. Definition L{f (t)} = F (s) L−1{F (s)} = f (t)

2. Linearity af1(t) + bf2(t) aF1(S) + bF2(s)

3. Change of Scale f (at) 1
a
F
 
s
a

 
4. First Shifting (s-shift) eatf (t) F (s − a)

theorem

5. Second Shifting u(t − a) =
 
f (t−a), t>a
0, t<a

e−asF (s)

(t-shift) Theorem

6. Derivative f  (t) sF (s) − f (0)

(Multiplication by s)

7. Second Derivative f   (t) s2F (s) − sf (0) − f  (0)

(Multiplication by s2)

8. nth Derivative f (n)(t) snF (s) − s(n−1)f (0) − s(n−2)f  (0)

(Multiplication by sn) . . .− f n−1(0)

9. Integral: Division by s
 t
0 f (u)du

F (s)
s

10. Multiple Integral:
 t
0 . . .

 t
0 f (u)dun

F (s)
sn

Division by sn =  t
0

(t−u)n−1
(n−1)!

f (u)du

11. Multiplication by t −tf (t) F  (s)
12. Multiplication by t2 t2f (t) F   (s)
13. Multiplication by tn (−1)ntnf (t) F (n)(s)

14. Division by t
f (t)
t

 ∞
s F (u)du

15. Convolution

f (t) ∗ g(t) =  t
0 f (u)g(t − u)du

=  t
0 f (t − u)g(u)du

= L−1{F (s)G(s)}
F (s)G(s) = L(f ∗ g)

16. f-periodic with f (t) = f (t + p) 1
1−e−sp ·  p0 e−suf (u)du

Period p

12.12 TABLE OF SOME LAPLACE

TRANSFORMS

Inverse Laplace

S.No. Laplace transform transform

1. L{f (t)} = F (s) L−1{F (s)} = f (t)

2. 1 1
s

3. t 1

s2

4. t2 2!

s3

( )Contd.

Inverse Laplace

S.No. Laplace transform transform

5. tn, n = 0, 1, 2, . . . . . . n!

sn+1

6. ta, (a positive)
 (a+1)

sa+1

7. eat 1
s−a

8. tn−1eat

(n−1)!
1

(s−a)
n
,

n = 1, 2, 3 . . . . . . ,
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Inverse Laplace

S.No. Laplace transform transform

9. tk−1eat

 (k)
1

(s−a)k , k > 0

10. sin at a

s2+a2

11. cos at s

s2+a2

12. ebt sin at a

(s−b)2+a2

13. ebt cos at s−b
(s−b)2+a2

14. sinh at a

s2−a2

15. cosh at s

s2−a2

16. ebt sinh at a

(s−b)2−a2

17. ebt cosh at s−b
(s−b)2−a2

18. u(t − a) e−as
s

19. f (t − a) · u(t − a) e−asF (s)

20. ebt−eat
b−a

1
(s−a)(s−b) , a  = b

21. bebt−aeat
b−a

s
(s−a)(s−b) , a  = b

22. sin at−at cos at

2a3
1 

(s2+a2)
 2

23. t sin at
2a

s 
(s2+a2)

 2
24. sin at+at cos at

2a
s2 

(s2+a2)
 2

25. cos at − 1
2
at sin at s3 

(s2+a2)
 2

Inverse Laplace

S.No. Laplace transform transform

26. t cos at s2−a2 
(s2+a2)

 2
27. at cosh at−sinh at

2a3
1 

(s2−a2)
 2

28. t sinh at
2a

s 
(s2−a2)

 2
29. (sinh at + at cosh at)/2a s2 

(s2−a2)
 2

30. cosh at + 1
2
at sinh at s3 

(s2−a2)
 2

31. t cosh at s2+a2 
(s2−a2)

 2
32. t2 sin at

2a
3s2−a2

(s2+a2)3

33. 1
2
t2 cos at s3−3a2s

(s2+a2)3

34. 1
6
t3 cos at s4−6a2s2+a4

(s2+a2)4

35. t3 sin at
24a

s3−a2s

(s2+a2)4

36. ebt−eat
t

log

   s−as−b
   

37. sin t
t

tan−1 1
s

38.  1(1) − log t
log s
s
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Chapter13

Matrices

INTRODUCTION

The term matrix was apparently coined by Sylvester

about 1850, but was introduced first by Cayley in

1860. By a ‘matrix’ we mean an “arrangement” or

“rectangular array” of numbers. The elegant “short-

hand” representation of an array of many numbers as

a single object and perform calculations makes ma-

trices very useful.Matrices (plural ofmatrix) find ap-

plications in solution of system of linear equations,

probability, mathematical economics, quantum me-

chanics, electrical networks, curvefitting, transporta-

tion problems, frameworks in mechanics. Matrices

are easily amenable for computers.

A brief revision of matrices, types, properties is pre-

sented.

A matrix is a rectangular array of m · n num-

bers (or functions) arranged in m rows (horizontal

lines) and n columns l (vertical lines). These num-

bers known as elements or entries are enclosed in

brackets [ ] or ( ) or || ||.

The order of such matrix is m× n and is said to

be a rectangular matrix.

Notation

Elements of a matrix are located by the double sub-

script ij where i denotes the row and j the column.

Null or Zero matrix is a matrix with all elements

zero.

Equality

Two matrices A and B are equal if they are of the

same order and aij = bij , for every i, j .

Sum (difference)

C=A±B where cij = aij ± bij (and A and B are

conformable i.e., of the same order). Scalar multipli-

cation: C= kA where cij = kaij i.e., every element

of A is multiplied by constant k.
Matrix multiplication:

Cm×n = Am×pBp×n where cij =
 p

k=1 aik bkj

Transpose of a matrix Am×n is denoted by ATn×m
obtained by interchanging rows and columns.

Result: (AB)T = BTAT .

Square matrix

A : m = n, when the number of rows equals to the

number of columns, known as n-square matrix.

The elements aii are known as diagonal elements

Trace:

n 
i=1

aii = sum of the diagonal elements.

Singular matrix: if |A| = 0

Non-singular matrix: if |A|  = 0

Upper triangular matrix A: aij = 0 for i > j

Lower triangular matrix A: aij = 0 for i < j

Diagonal matrix A: aij = 0 when i  = j

Scalar matrix A: a diagonal matrix with aii = k for

every i and k is a constant.

Identity matrix: is a scalar matrix with k = 1

i.e., I3 =


1 0 0

0 1 0

0 0 1




Note: All the above definitions are only for square

matrices.

13.1
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Row matrix (vector) is a matrix having only one

row.

Column matrix (vector) is a matrix having only

one column.
Matrix addition and multiplication is associative

but not (necessarily) commutative.

i.e., A+ (B + C) = (A+ B)+ C and A(BC) = (AB)C.

Distributive: A(B + C) = AB = AC.

Power of a matrix: An is a matrix obtained by

multiplying A by itself n times.

13.1 INVERSE OF A MATRIX

Consider only square matrices.
Inverse of a n-square matrix A is denoted by A−1

and is defined such that

AA−1 = A−1A = I

where I is n× n unit matrix.

Result 1: Inverse of A exists only if |A|  = 0 i.e.,

is A is non-singular.

Result 2: Inverse of a matrix is unique.

IfB,C are two inverses ofA then (CA)B = C(AB),

IB = CI i.e., B = C, so inverse is unique.

Result 3: Inverse of a product is the product of

inverses in the reverse order

i.e., (AB)−1 = B−1A−1

since (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1

= AA−1 = I.

Result 4: For a diagonal matrix D with dii as

diagonal elements, D−1 is a diagonal matrix with

reciprocals 1/dii as the diagonal elements.

Result 5: Transposition and inverse are commuta-

tive i.e.,

(A−1)T = (AT )−1.

Taking transpose of AA−1 = A−1A = In
(A−1)T AT = AT (A−1)T = I T = I i.e.,

(A−1)T is the inverse of AT or (A−1)T = (AT )−1.

Result 6: (A−1)−1 = A.

Taking inverse of (AA−1) = I ,

(AA−1)−1 = (A−1)−1A−1 = I−1 = I = A A−1.

Thus A = (A−1)−1.

Inverse by Adjoint Matrix

MinorMij of an element aij of a n× n square matrix
A is the determinant of the (n− 1) square matrix of

A obtained by deleting the ith row and j th column
from A.
Cofactor Aij of aij of A is a signed minor

i.e., Aij = (−1)i+jMij

Adjoint of a Matrix A

Adjoint of a matrix is denoted by adj A is the trans-
pose of a n- square matrix [Aij ] where the elements
Aij are the cofactors of aij of A.

i.e., adj A=



A11 A12 A13 · · ·A1n

A21 A22 A23 · · ·A2n

· · · · · · · · · · · · · · · · · · · · · · · ·

An1 An2 An3 · · ·Ann



T

=

adj A=



A11 A21 A31 · · ·An1
A12 A22 A32 · · ·An2
· · · · · · · · · · · · · · · · · · · · · · · ·

A1n A2n A3n · · ·Ann




Result: adj (AB) = (adj A)(adj B)

Inverse of a matrix can be calculated by several

methods.
Inverse from the adjoint:

A−1 =
adj A

|A|
.

WORKED OUT EXAMPLES

Inverse of a matrix

Example: Find the adjoint and inverse of

A =


2 3 4

4 3 1

1 2 4


 .

Solution:

Adjoint of A =


A11 A12 A13

A21 A22 A23

A31 A32 A33



T

where Aij are the cofactors of the element aij . Thus
minors of aij are

M11 =

    3 1

2 4

    = 10, M12 =

    4 1

1 4

    = 15

Similarly,

M13 =

    4 3

1 2

    = 5, M21 =

    3 4

2 4

    = 4,
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M22 =

    2 4
1 4

    = 4, M23 =

    2 3
1 2

    = 1,

M31 =

    3 4
3 1

    = −9, M32 =

    2 4
4 1

    = 14

M33 =

    2 3
4 3

    = −6.

Cofactors Aij = (−1)i+jMij

Adjoint of A=


 10 −15 5
−4 4 −1
−9 +14 −6



T

=


 10 −4 −9
−15 4 +14

5 −1 −6




|A| = 2(12− 2)− 3(16− 1)+ 4(8− 3)

= 20− 45+ 20 = 40− 45 = −5

A−1 =
1

|A|
adj A =

1

−5


 10 −4 −9
−15 4 14

5 −1 −6




or

A−1 =
1

5


−10 4 9

15 −4 −14
−5 1 6


 .

EXERCISE

Inverse of a matrix

Find the inverse of the matrix A, by adjoint matrix:

1.


 1 1 3

1 3 −3
−2 −4 −4




Ans. |A| = −8

adj A=


−24 −8 −12

10 2 6
2 2 2




A−1 =
1

4


 12 4 6
−5 −1 −3
−1 −1 −1




2.


1 2 3
1 3 4
1 4 3




Ans. |A| = −2

adj A=


−7 6 −1

1 0 −1
1 −2 1




A−1 =
1

2


 7 −6 1
−1 0 1
−1 2 −1




3.


−1 1 2

3 −1 1
−1 3 4




Ans. |A| = 10

adj A =


 −7 2 3
−13 −2 7

8 2 −2


 , A−1 =

1

|A|
adj A

A−1 =


−0.7 0.2 0.3
−1.3 −0.2 0.7
0.8 0.2 −0.2




4.


 7 6 2
−1 2 4
3 3 8




Ans. |A| = 130,

adj A=

 
4 −42 20

20 50 −30
−9 −3 20

 

13.2 RANK OF A MATRIX

Let A be a rectangular matrix of order m× n.

Submatrix

Submatrix of a matrixA is any matrix obtained from

A by omitting some rows and columns in A.

A is a submatrix of itself (obtained by deleting

zero rows and columns).

Rank

Rank of a matrix A is the positive integer r such

that there exists at least one r-rowed square matrix

withnon-vanishingdeterminantwhile every (r+1)or

more rowed matrices have vanishing determinants.

Thus rank of a matrix is the largest order of a

non-zero minor of matrix.

Rank of A is denoted by r(A).

Result: Rank of A and AT is same.

Note 1: Rank of a null matrix is zero.

Note 2: For a rectangular matrixA of orderm× n,

rank of A ≤ min (m, n) i.e., rank can not exceed the

smaller of m and n.

Note 3: For a n-square matrix, if rank = n then

|A|  = 0 i.e., A is non-singular.
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Note 4: For any square matrix, if rank < n, then

|A| = 0 i.e., A is singular.

Elementary Row Transformations

(Operation) on a Matrix

1. Rij : Interchange of the ith and j th rows.

2. Ri(k): Multiplication of every element of ith row

by a non-zero scalar k.

3. Rij (k): Addition to the elements of ith row, of k

times the corresponding elements of the j th row.

In a similar way, elementary column transformations

(operations) are denoted by Cij , Ci(k), Cij (k) where

the row in the above definitions is replaced by

column.

WORKED OUT EXAMPLES

Inverse by Gauss-Jordan

Example: Find the inverse of A by Gauss-Jordan
method where

A =


1 2 3
2 4 5
3 5 6


 .

Solution: Consider A|I and apply elementary row

operations on both A and I until A gets transformed

to I .

1 2 3

... 1 0 0

2 4 5
... 0 1 0

3 5 6
... 0 0 1




∼
R21(−2)
R31(−3)



1 2 3

... 1 0 0

0 0 −1
... −2 1 0

0 −1 −3
... −3 0 1




R23
R2(−1) ∼
R3(−1)



1 2 3

... 1 0 0

0 1 3
... 3 0 −1

0 0 1
... 2 −1 0




R23(−3)
R13(−3) ∼



1 2 0

... −5 3 0

0 1 0
... −3 3 −1

0 0 1
... 2 −1 0




R12(−2) ∼



1 0 0

... 1 −3 2

0 1 0
... −3 3 −1

0 0 1
... 2 −1 0


 = [I |A−1]

Thus A−1 =


 1 −3 2
−3 3 −1
2 −1 0


 .

EXERCISE

By Gauss-Jordan elimination

1.

 
1 3 3
1 4 3
1 3 4

 

Ans. A−1 =

 
7 −3 −3

−1 1 0
−1 0 1

 

2.



2 4 3 2
3 6 5 2
2 5 2 −3
4 5 14 14




Ans. A−1 =



−23 29 −64

5
−18
5

10 −12 26
5

7
5

1 −2 6
5

2
5

2 −2 3
5

1
5




3.

 
0 1 3
1 2 3
3 1 1

 

Ans. A−1 = 1
2

 
1 −1 1

−8 6 −2
5 −3 1

 

4.

 
9 7 3
5 −1 4
3 4 1

 

Ans. A−1 = − 1
35

 
−17 5 31

7 0 −21
23 −15 −44

 

5.



−1 −3 3 −1
1 1 −1 0
2 −5 2 −3

−1 1 0 1




Ans. A−1 =




0 2 1 3

1 1 −1 −2

1 2 0 1

−1 1 2 6
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6.


 1 2 −1

−1 1 2

2 −1 1




Ans. A−1 = 1
14


 3 −1 5

5 3 −1

−1 5 3




7.


4 −1 1

2 0 −1

1 −1 3




Ans. A−1 =


−1 2 1

−7 11 6

−2 3 2




Equivalent matrices

Two matrices A and B are said to be equivalent, de-

noted byA ∼ B, if one matrix sayA can be obtained

fromB by a sequence of elementary transformations.

Row-equivalence

Two matrices A and B are said to be row-equivalent

ifA can be reduced toB by a sequence of elementary

row transformations or vice versa.

Determination of Rank of a Matrix A

Let A be a rectangular matrix of order m× n.

I. Enumeration:Evaluate all the minors such that

a minor of r is non-zero and every minor of

(r + 1) or more is zero:

Note: This is impracticable for matrices of

higher order.

II. Apply only elementary row operations on A.

Then the number of non-zero rows is the rank

of A.

III. Normal form N of a matrix A of rank r is one

of the froms

N = Ir ,

 
Ir 0

0 0

 
, [Ir 0],

 
Ir
0

 

where Ir is an identity matrix of order r . By the

application of both elementary row and column

operations, a matrix of rank r can be reduced to

normal form. Then the rank of A is r .

IV. Echelon Form.* Row Reduced Echelon form:

The number of non-zero rows in an Echelon

form is the rank.

Result: Equivalent matrices have the same order

and same rank because elementary transformations

do not alter (effect) its order and rank.

WORKED OUT EXAMPLES

Rank of a matrix

Determine the rank of the following matrices:

Example 1: A =


 4 2 3

8 4 6

−2 −1 −1.5




Solution: Rank of A ≤ 3 since A is of 3rd order.
|A| = 4(−6 + 6) − 2(−12 + 12) + 3(−8 + 8) = 0

Since |A| = 0, rank of A < 3 i.e., r(A) ≤ 2

Consider the determinants of 2nd order submatrices    4 2

8 4

    = 0,

    2 3

4 6

    = 0,

    4 3

8 6

    = 0,

    4 2

−2 −1

    = 0,

    4 3

−1 −1.5

    = 0,

    4 3

−2 −1.5

    = 0,

Since all 2nd order submatrices have zero determi-

nants i.e., 2nd orderminors are all zero. So r(A) < 2.

Since A is a non-zero matrix r(A) > 0.

Thus the rank of A is one.

Aliter: Apply elementary row operations on A

R21(−2)

R
31( 1

2
)
∼


4 2 3

0 0 0

0 0 0




The number of non-zero rows is one. So the rank

of A is one.

*A matrix A = (aij ) is an echelon matrix or is said to be in
echelon form, if the number of zeros preceding the first non-
zero entry (known as distinguished elements) of a row increases
row by row until only zero rows remain.
In row reduced echelon matrix, the distinguished elements
are unity and are the only non-zero entry in their respective
columns.
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Example 2: A =


1 5 4

0 3 2

2 3 10


 , B =


1 1 1

2 2 2

3 3 3




Find rank of A, rank of B, rank of A+ B, rank of

AB and rank of BA.

Solution: A =


1 5 4

0 3 2

2 13 10


R31(−2) ∼


1 5 4

0 3 2

0 3 2




R32(−1) ∼


1 5 4

0 3 2

0 0 0




Rank of A is 2 since the number of non-zero rows
is 2.

B =


1 1 1

2 2 2

3 3 3


 R21(−1)

R31(−3)
∼


1 1 1

0 0 0

0 0 0


 ,

... r(B)= 1

A+ B =


2 6 5

2 5 4

5 16 13


 R21(−2)

R
31(− 5

2
)
∼


2 6 5

0 −7 −6

0 −1 1
2


 ,

r(A+ B)= 3

AB =


23 23 23

12 12 12

58 58 58


 R1( 1

23
)

R21(−12)

R31(−58)

∼


1 1 1

0 0 0

0 0 0


 ,

r(AB)= 1

BA=


3 21 16

6 42 32

9 63 48


 R21(−2)

R31(−3)
∼


1 1 1

0 0 0

0 0 0


 ,

r(BA)= 1.

Note: Rank of product ≤ rank of either.

Example 3:

A=




1 2 −2 3

2 5 −4 6

−1 −3 2 −2

2 4 −1 6



4×4

R21(−2)

R31(1)

R41(−2)

∼



1 2 −2 3

0 1 0 0

0 −1 0 1

0 0 3 0




R32(1)

R34

R
3( 1

3
)

∼



1 2 −2 3

0 1 0 0

0 0 1 0

0 0 0 1




... r(A)= 4

Example 4:

A=




3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19



5×5

R12(−1)

R1(−1)
∼




1 1 1 1 1

4 5 6 7 8

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19




R21(−4)

R31(−5)

R41(−10)

R51(−15)

∼




1 1 1 1 1

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4



R32(−1)

R42(−1)

R52(−1)

∼



1 1 1 1 1

0 1 2 3 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Rank of A is 2 since the number of non-zero

rows is 2.

Example 5: Determine the values of b such that

the rank of A is 3.

Solution:

A=



1 1 −1 0

4 4 −3 1

b 2 2 2

9 9 b 3




R21(−4)

R31(−2)

R41(−9)

∼




1 1 −1 0

0 0 1 1

b − 2 0 4 2

0 0 b + 9 3




R32(−4)

R42(−3)
∼




1 1 −1 0

0 0 1 1

b − 2 0 0 −2

0 0 b + 6 0




R43 ∼




1 1 −1 0

0 0 1 1

0 0 b + 6 0

b − 2 0 0 −2
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Cases:

i. If b = 2, |A| = 1 · 0 · 8 · (−2) = 0, rank of

A = 3

ii. If b = −6, no. of non-zero rows is 3, rank of

A = 3.

Echelon form

Example 6: Reduce A to Echelon form and then
to its row canonical form (or row reduced Echelon
form) where

A =



1 3 −1 2

0 11 −5 3

2 −5 3 1

4 1 1 5




Hence find the rank of A.

Solution: Applying elementary row operations
on A

R31(−2)

R41(−4)
∼



1 3 −1 2

0 11 −5 3

0 −11 5 −3

0 −11 5 −3




R32(1)

R42(1)

∼



1 3 −1 2

0 11 −5 3

0 0 0 0

0 0 0 0


 This is Echelon form.

R
2( 1

11
)

∼



1 3 −1 2

0 1 − 5
11

3
11

0 0 0 0

0 0 0 0




R12(−3)



1 0 4

11
13
11

0 1 − 5
11

3
11

0 0 0 0

0 0 0 0




This is the row canonical or row reduced Echelon

form.

Rank of A is 2 since there are two non-zero rows.

EXERCISE

Rank of a matrix

Find the rank of the matrix:

1.


1 2 3

2 3 1

3 1 2


 Ans. 3

2.


1 1 −1 1

1 −1 2 −1

3 1 0 1


 Ans. 2

3.



2 3 −1 −1

1 −1 −2 −4

3 1 3 −2

6 3 0 −7


 Ans. 3

4.



3 −2 0 −1 −7

0 2 2 1 −5

1 −2 −3 −2 1

0 1 2 1 −6


 Ans. 4

5.


1 2 3 2

2 3 5 1

1 3 4 5


 Ans. 2

6.



1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8


 Ans. 2

7.



1 2 1 2

1 3 2 2

2 4 3 4

3 7 4 6


 Ans. 3

8.




1 2 −3 4 9

1 0 −1 1 1

3 −1 1 0 −1

−1 1 0 2 9

3 1 0 3 9


 Ans. 4

9.


1 2 3

1 4 2

2 6 5


 Ans. 2

10.



0 1 −3 −1

0 0 1 1

3 1 0 2

1 1 −2 0


 Ans. 2

11.


 3 0 2 2

−6 42 24 54

21 −21 0 −15


 Ans. 2
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12.


 1 2 −1 4

2 4 3 5

−1 −2 6 −7


 Ans. 2

13.



1 2 3 0

2 4 3 2

3 2 1 3

6 8 7 5


 Ans. 3

14.


 1 2 3

2 3 1

−2 −3 −1


 Ans. 2

15.



2 −2 0 6

4 2 0 2

1 −1 0 3

1 −2 1 2


 Ans. 3

16.



2 1 3 4

0 3 4 1

2 3 7 5

2 5 11 6


 Ans. 3

Echelon form

Find theEchelon formand row reduced echelon form

of the matrix and hence find the rank:

17.


1 −2 3 −1

2 −1 2 2

3 1 2 3




Ans.


1 −2 3 −1

0 3 −4 4

0 0 7 −10


 ,



1 0 0 15

7

0 1 0 − 4
7

0 0 1 − 10
7


 , rank = 3

18.


 1 2 −5

−4 1 −6

6 3 −4




Ans.


1 2 −5

0 9 −26

0 0 0


 ,


1 0 7/9

0 1 −26/9

0 0 0




rank = 2

19.



0 1 3 −2

0 4 −1 3

0 0 2 1

0 5 −3 4




Ans.



0 1 3 −2

0 0 −13 11

0 0 0 35

0 0 0 0


 ,



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




rank = 3

20.


2 3 −2 5 1

3 −1 2 0 4

4 −5 6 −5 7




Ans.


2 3 −2 5 1

0 −11 10 −15 5

0 0 0 0 0


 ,



1 0 4

11
5
11

13
11

0 1 − 10
11

15
11

− 5
11

0 0 0 0 0


 , rank = 2

13.3 NORMAL FORM

Procedure to Obtain Normal Form

Consider

Am×n = Im×m Am×n In×n

Apply elementary row operations onA and on the

prefactor Im×m and apply elementary column oper-

ations on A and on the postfactor In×n, such that A

on the L.H.S. reduces to normal form. Then Im×m re-

duces to Pm×m and In×n reduces to Qn×n; resulting

in N = PAQ.

Here P andQ are non-singular matrices.

Thus for any matrix of rank r , there exist non-

singular matrices P andQ such that

PAQ = N =

 
Ir 0

0 0

 
.

WORKED OUT EXAMPLES

Example 1: Find the non-singular matrices P and

Q such that the normal form of A is PAQ where

A =


1 3 6 −1

1 4 5 1

1 5 4 3



3×4

Hence find its rank.
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Solution: Consider A3×4 = I3×3 A3×4 I4×4
1 3 6 −1

1 4 5 1

1 5 4 3


=


1 0 0

0 1 0

0 0 1


AI4

R21(−1)

R31(−1)

pre


1 3 6 −1

0 1 −1 2

0 2 −2 4


=


 1 0 0

−1 1 0

−1 0 1


AI4

R32(−2)

pre


1 3 6 −1

0 1 −1 2

0 0 0 0


=


 1 0 0

−1 1 0

1 −2 1


AI4

C21(−3)

C31(−6)

C41(1)

post


1 0 0 0

0 1 −1 2

0 0 0 0


=


 1 0 0

−1 1 0

1 −2 1


×

× A



1 −3 −6 1

0 1 0 0

0 0 1 0

0 0 0 1




C32(1)

C42(−2)


1 0 0 0

0 1 0 0

0 0 0 0


=


 1 0 0

−1 1 0

1 −2 1


×

× A



1 −3 −9 7

0 1 1 −2

0 0 1 0

0 0 0 1




Thus I2 = PAQ where

P =


 1 0 0

−1 1 0

1 −2 1


 ,Q =



1 −3 −9 7

0 1 1 −2

0 0 1 0

0 0 0 1




Rank of A is 2.

Example 2: Find P and Q such that the normal
form of

A =


1 −1 −1

1 1 1

3 1 1




is PAQ.

Hence find the rank of A.

Solution: Consider

A3×3 = I3×3 A3×3 I3×3


1 −1 −1

1 1 1

3 1 1


=


1 0 0

0 1 0

0 0 1


A


1 0 0

0 1 0

0 0 1




C21(1)

C31(1)

post


1 0 0

1 2 2

3 4 4


=


1 0 0

0 1 0

0 0 1


A


1 1 1

0 1 0

0 0 1




R21(−1)

R31(−3)

pre


1 0 0

0 2 2

0 4 4


=


 1 0 0

−1 1 0

−3 0 1


A


1 1 1

0 1 0

0 0 1




R
2( 1

2
)

R
3( 1

4
)

pre


1 0 0

0 1 1

0 1 1


=




1 0 0

− 1
2

1
2

0

− 3
4

0 1
4


A


1 1 1

0 1 0

0 0 1




R32(−1)

pre


1 0 0

0 1 1

0 0 0


=


 1 0 0

− 1
2

1
2

0

− 1
4

− 1
2

1
4


A


1 1 1

0 1 0

0 0 1




C32(−1)

post


1 0 0

0 1 0

0 0 0


=




1 0 0

− 1
2

1
2

0

− 1
4

− 1
2

1
4


A


1 1 0

0 1 −1

0 0 1




Thus the L.H.S. is in the normal form

 
I2 0

0 0

 
.

Hence

P3×3 =




1 0 0

− 1
2

1
2

0

− 1
4

− 1
2

1
4


 and Q3×3 =


1 1 0

0 1 −1

0 0 1




Rank of A = 2.

EXERCISE

Determine the non-singular matrices P and Q such

that PAQ is in the normal form for A. Hence find

the rank of A.

1. A =


1 1 2

1 2 3

0 −1 −1




Ans. P =


 1 0 0

−1 1 0

−1 1 1


 ,Q =


1 −1 −1

0 1 −1

0 0 1




rank = 2
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2. A =


3 2 −1 5

5 1 4 −2

1 −4 11 −19




Ans. P =



0 0 1

0 1
3

− 5
3

1
2

− 1
3

1
6


 ,

Q =



1 4

17
9
119

9
217

0 1
7

− 1
7

− 1
7

0 0 − 1
17

0

0 0 0 1
31


 , rank = 2

3. A =


1 2 3

2 −1 0

3 1 2




Ans. P =



1 0 0

2
5

− 1
5

0

1 1 −1


 ,Q =



1 −2 − 3

5

0 1 − 6
5

0 0 1




rank = 3

4. A =


1 −1 −1 2

4 2 2 −1

2 2 0 −2




Ans. P =




1 0 0

− 2
3

1
6

0

− 1
3

1
3

− 1
2


 ,

Q =



1 1 0 − 1

2

0 1 −1 − 3
2

0 0 1 0

0 0 0 1


, rank = 3

5. A =


1 2 3 −2

2 −2 1 3

3 0 4 1




Ans. P =


 1 0 0

−2 1 0

−1 −1 1


 ,

Q =



1 1

3
− 4

3
−1
3

0 − 1
6

− 5
6

7
6

0 0 1 0

0 0 0 1


 , rank = 2

6. A =


1 −1 2 −1

4 2 −1 2

2 2 −2 0




Ans. P =




1 0 0

− 2
3

1
6

− 1
2

− 1
3

1
3

− 1
2


 ,

Q =



1 1 0 − 1

2

0 1 −1 3
2

0 0 0 1

0 0 1 0


 , rank = 3.

13.4 SYSTEM OF LINEAR

NON-HOMOGENEOUS EQUATIONS

A system (or family) ofm linear algebraic equations
in n unknowns x1, x2, · · · xn is a set of equations of
the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2 (1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

The numbers aij are known as coefficients and bi are

known as (R.H.S.) constants of the system.
(1) can be represented as

n 
j=1

aij xj = bi ; i = 1 to m

Non-homogeneous system: When all bi are not

zero, i.e., at least one bi is non-zero.

Homogeneous system: If bi = 0, i = 1 to m (all

R.H.S. constants are zero).

Solution of system (1) is a set of numbers

x1, x2, · · · , xn which satisfy (simultaneously) all the

equations of the system (1).

Trivial solution is a solution where all xi are zero

i.e., x1 = x2 = · · · = xn = 0.

Matrix Representation

Let X =



x1
x2
...

xn



n×1

, B =



b1
b2
...

bm



m×1
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be two column vectors.

Let A =



a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

am1 am2 am3 · · · amn



m×n

Here

A = Coefficient matrix of the system (1)

B = (R.H.S.) constant vector

X = Solution (vector)

Then the system (1) can be represented as

Am×n Xn×1 = Bm×1

Augmented matrix [A|B] or Ã of system (1) is

obtained by augmenting A by the column B

i.e., Ã = [A|B] =



a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

am1 am2 · · · amn bm




Consistent: System is said to be consistent if (1)

has at least one solution.

Inconsistent if system has no solution at all.

Solution of System of Linear Equations

We considertwomethodsofobtainingsolutionofsys-

temof n linear equations in n unknowns. They are

i. Cramer’s rule ii. matrix inverse

Cramer’s rule (Solution by determinants)

a. IfA is non-singular i.e.,D = determinant ofA =

|A|  = 0. Then system (1) has a unique solution
given by

xi =
Di

D
for i = 1, 2, · · · n

where Di is the determinant obtained from D by

replacing the ith column inD by constant column

vector B.

b. For homogeneous systemwithD  = 0, only trivial

solution exists.

c. For homogeneous systemwithD = 0, non-trivial

solutions exists.

Note: Cramer’s rule is not suitable for computa-

tions.

Matrix inversion method

Consider the system of n equations in n unknowns
represented by

AX = B

where A is n-square non-singular matrix. Premulti-
plying by A−1 on both sides, we get

A−1AX = A−1B

or X = A−1B

which is the required solution.
Here A−1, the inverse of A is obtained by Gauss-

Jordan method: (see Page 13.4)

Consider A|I

Apply only elementary row operations on bothA and

I such thatA is reduced to an identity matrix I , then

I gets transformed to A−1 i.e.,

A−1 A

   A−1I

I

   A−1

Consistency of System of

Linear Equations

Consider m linear equations in n unknowns so that

Am×n Xn×1 = Bm×1

Fundamental theorem

I. If rank of A and rank of the augmented matrix Ã

are equal, then the system is consistent.

a. If r(A) = r(Ã) = n

then unique solution exists.

b. If r(A) = r(Ã) < n

then infinitely many solutions exist in terms of

(n− r) arbitrary constants.

II. If rank of A is not equal to rank of Ã then the

system is inconsistent and has no solution at all.

Procedure

1. Determine r(A) and r(Ã).

2. If r(A)  = r(Ã), system inconsistent, no solutions.

3. If r(A) = r(Ã) = n
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Then the unique solution may be obtained by

Cramer’s rule or matrix inversion method.

4. If r(A) = r(Ã) < n

Then rewrite x1, · · · xr variables (whose coef-

ficient submatrix has rank r) in terms (n− r)

variables and solve by Gaussian elimination or

Gauss-Jordan elimination method.

WORKED OUT EXAMPLES

Example 1: Solve by Cramer’s rule

x + y + z= 11

2x − 6y − z= 0

3x + 4y + 2z= 0.

Solution:

D =

      
1 1 1

2 −6 −1

3 4 2

      = 11, D1 =

      
11 1 1

0 −6 −1

0 4 2

      = −88,

D2 =

      
1 11 1

2 0 −1

3 0 2

      = −77, D3 =

      
1 1 11

2 −6 0

3 4 0

      = 286

The unique solution x =
D1
D

= −88
11

= −8

y =
D2

D
=

−77

11
= −7, z =

D3

D
=

286

11
= 26

Thus x =−8, y = −7, z = 26.

Example 2: Solve by calculating the inverse by
adjoint method

x1 + x2 + 2x3 = 4

2x1 + 5x2 − 2x3 = 3

x1 + 7x2 − 7x3 = 5.

Solution: The given system is written as AX = B
where

A =


1 1 2

2 5 −2

1 7 −7


 , X =


x1x2
x3


 , B =


4

3

5




Inverse by adjoint

|A| =

      
1 1 2

2 5 −2

1 7 −7

      = 9

A−1 =
1

|A|
adj A =

1

|A|


A11 A12 A13

A21 A22 A23

A31 A32 A33



T

where Aij are cofactor of the element aij

A−1 =
1

9


−21 12 9

21 −9 −6

−12 6 3



T

=
1

3


−7 7 −4

4 −3 2

3 −2 1




The solution to the given system is

X=


x1x2
x3


=A−1B=

1

3


−7 7 −4

4 −3 2

3 −2 1




4

3

5


=

1

3


−27

17

11




i.e., x1 = −27/3, x2 = 17/3, x3 = 11/3.

Example 3: Solve by calculating the inverse by
elementary row operations

x1 + x2 + x3 + x4 = 0

x1 + x2 + x3 − x4 = 4

x1 + x2 − x3 + x4 =−4

x1 − x2 + x3 + x4 = 2

Solution: The system is written as AX = B where

A =



1 1 1 1

1 1 1 −1

1 1 −1 1

1 −1 1 1


 , X =



x1
x2
x3
x4


 , B =




0

4

−4

2




Inverse by elementary row operations

[A|I ]=



1 1 1 1

1 1 1 −1

1 1 −1 1

1 −1 1 1

        
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



R21(−1), R31(−1),

R41(−1) and

R2(−1), R3(−1),

R4(−1)

∼



1 1 1 1

0 0 0 2

0 0 2 0

0 2 0 0

        
1 0 0 0

1 −1 0 0

1 0 −1 0

1 0 0 −1



R24

R
2( 1

2
)

R
3( 1

2
)

R
4( 1

2
)
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∼



1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

        

1 0 0 0

1
2

0 0 − 1
2

1
2

0 − 1
2

0

1
2

− 1
2

0 0



R14(−1)

R13(−1)

R12(−1)

∼



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

        
− 1

2
1
2

1
2

1
2

1
2

0 0− 1
2

1
2

0− 1
2

0
1
2
− 1

2
0 0




Thus A−1 =
1

2



−1 1 1 1

1 0 0 −1

1 0 −1 0

1 −1 0 0




The required solution is

X = A−1B =
1

2



−1 1 1 1

1 0 0 −1

1 0 −1 0

1 −1 0 0






0

4

−4

2


 =




1

−1

2

−2




i.e., x1 = 1, x2 = −1, x3 = 2, x4 = −2.

Example 4: Solve

2x1 − 2x2 + 4x3 + 3x4 = 9

x1 − x2 + 2x3 + 2x4 = 6

2x1 − 2x2 + x3 + 2x4 = 3

x1 − x2 + x4 = 2

Solution: Apply elementary row operation on
[A|B]

[A|B]=



2 −2 4 3

1 −1 2 2

2 −2 1 2

1 −1 0 1

        
9

6

3

2




R12

R21(−2)

R41(−1)

R31(−2)

R2(−1)

R3(−1)

R4(−1)



1 −1 2 2

0 0 0 1

0 0 3 2

0 0 2 1

        
6

3

9

4




R34(−1)

∼



1 −1 2 2

0 0 0 1

0 0 1 1

0 0 2 1

        
6

3

5

4




R32

R43

∼



1 −1 2 2

0 0 1 1

0 0 2 1

0 0 0 1

        
6

5

4

3




R32(−2)

R3(−1)

∼



1 −1 2 2

0 0 1 1

0 0 0 1

0 0 0 1

        
6

5

6

3




R43(−1)

R4(−1)

∼



1 −1 2 2

0 0 1 1

0 0 0 1

0 0 0 0

        
6

5

6

3




rank of (A) = 3  = 4 = rank of [A|B]

So the given system is inconsistent and therefore has

no solution.

Example 5: Solve

3x + 3y + 2z= 1

x + 2y = 4

10y + 3z=−2

2x − 3y − z= 5.

Solution:

[A|B]=



3 3 2 1

1 2 0 4

0 10 3 −2

2 −3 −1 5


R12 ∼



1 2 0 4

3 3 2 1

0 10 3 −2

2 −3 −1 5




R21(−3)

∼

R41(−2)



1 2 0 4

0 −3 2 −11

0 10 3 −2

0 −7 −1 −3




R
2(− 1

3
)

R32(−10)

R42(7)

∼



1 2 0 4

0 1 − 2
3

11
3

0 0 29
3

−116
3

0 0 −17
3

68
3




R
3( 3

29
)

R
43( 17

3
)

∼



1 2 0

0 1 −2
3

0 0 1

0 0 0

        

4
11
3

− 116
29

0




r(A) = 3 = r(A|B) = n = number of variables.
The system is consistent and has unique solution.
Solving

z = −
116

29
= −4

y −
2

3
z =

11

3
or y =

11

3
+

2

3
(−4) = 1

x + 2y + 0 = 4 or x = 4− 2 = 2
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i.e., x = 2, y = 1, z = −4.

Example 6: Solve

x1 + x2 − x3 = 0

2x1 − x2 + x3 = 3

4x1 + 2x2 − 2x3 = 2.

Solution: By applying elementary row operations

[A|B]=


1 1 −1

2 −1 1

4 2 −2

      
0

3

2


 R21(−2)

R31(−4)

∼


1 1 −1 0

0 −3 3 3

0 −2 2 2




R
2(− 1

3
)

∼

R
3(− 1

2
)


1 1 −1

0 1 −1

0 1 −1

      
0

−1

−1




R32(−1)

∼


1 1 −1

0 1 −1

0 0 0

      
0

−1

0




r(A)= 2= r(A|B) < 3 = n = number of variables.

The system is consistent but has infinite number

of solutions in terms of n− r = 3− 2 = 1 variable.

Choose x3 = k = arbitrary constant.
Solving x2 − x3 = −1 or x2 = x3 − 1 = k − 1.

x1+ x2− x3= 0 or x1=− x2+ x3=− k+ 1+ k= 1

Thus the solutions are

x1 = 1, x2 = k − 1, x3 = k, where k is arbitrary.

Example 7: Determine the values of a and b for
which the system

x + 2y + 3z = 6

x + 3y + 5z = 9

2x + 5y + az = b

has (i) no solution (ii) unique solution (iii) infinite

number of solutions. Find the solutions in case (ii)

and (iii).

Solution:

[A|B]=


1 2 3

1 3 5

2 5 a

      
6

9

b


 R21(−1)

R31(−2)


1 2 3

0 1 2

0 1 a− 6

      
6

3

b− 12




R32(−1) ∼


1 2 3

0 1 2

0 0 a − 8

      
6

3

b − 15




Case 1: a = 8, b  = 15, r(A) = 2  = 3 = r(A|B),

inconsistent, no solution.

Case 2: a  = 8, b any value, r(A) = 3 = r(A|B)
= n = number of variables, unique solution,

z = b−15
a−8
,

y = (3a − 2b + 6)/(a − 8), x = z = (b − 15)/(a − 8).

Case 3: a= 8, b= 15, r(A)= 2= r(A|B) < 3 =

n, infinite solutions with n− r = 3− 2= 1 arbitrary

variable. x = k, y = 3− 2k, z = k,with k arbitrary.

EXERCISE

Solve the following:

1. 5x + 3y + 7z = 4,

3x + 26y + 2z = 9,

7x + 2y + 10z = 5.

Ans. x = (7− 16 k)/11, y = (3+ k)/11, z = k,

k arbitrary

2. x1 + x2 − 2x3 + x4 + 3x5 = 1,

2x1 − x2 + 2x3 + 2x4 + 6x5 = 2,

3x1 + 2x2 − 4x3 − 3x4 − 9x5 = 3.

Ans. x1 = 1, x2 = 2a, x3 = a, x4 = −3b, x5 = b

where a and b are arbitrary constants

3. x1 + x2 + 2x3 + x4 = 5,

2x1 + 3x2 − x3 − 2x4 = 2,

4x1 + 5x2 + 3x3 = 7.

Ans. No solution, system inconsistent

4. Using A−1 (inverse of the coefficient matrix)

2x1 + x2 + 5x3 + x4 = 5,

x1 + x2 − 3x3 − 4x4 =−1,

3x1 + 6x2 − 2x3 + x4 = 8,

2x1 + 2x2 + 2x3 − 3x4 = 2.

Ans. x1 = 2, x2 = 1/5, x3 = 0, x4 = 4/5, unique

solution
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Hint.

A−1 =
1

120




120 120 0 −120
−69 −73 17 80
−15 −35 −5 40
24 8 8 −40




5. 2x1 + 3x2 − x3 = 1,

3x1 − 4x2 + 3x3 = −1,

2x1 − x2 + 2x3 = −3,

3x1 + x2 − 2x3 = 4.

Ans. Inconsistent, no solution

6. 3x1 + 2x2 + x3 = 3,

2x1 + x2 + x3 = 0,

6x1 + 2x2 + 4x3 = 6.

Ans. Inconsistent, no solution.

7. −x1 + x2 + 2x3 = 2,

3x1 − x2 + x3 = 6,

−x1 + 3x2 + 4x3 = 4 .

Ans. x1 = 1, x2 = −1, x3 = 2, unique solution

8. 7x + 16y − 7z = 4,

2x + 5y − 3z = −3,

x + y + 2z = 4.

Ans. Inconsistent, no solution

9. x + y + z = 4,

2x + 5y − 2z = 3,

x + 7y − 7z = 5.

Ans. Inconsistent, no solution

10. 2x + y − z = 0,

2x + 5y + 7z = 52,

x + y + z = 9.

Ans. unique solution x = 1, y = 3, z = 5

Find the values of a and b for which the system has

(i) no solution (ii) unique solution (iii) infinitely

many solutions for:

11. 2x + 3y + 5z = 9,

7x + 3y − 2z = 8,

2x + 3y + az = b.

Ans. i. no solution of a = 5, b  = 9;

ii. unique solution a  = 5, b any value;

iii. infinitely many solutions a = 5, b = 9

12. x + y + z = 6,

x + 2y + 3z = 10,

x + 2y + az = b.

Ans. i. a = 3, b  = 10 inconsistent

ii. a  = 3, b any value, unique solution

iii. a = 3, b = 10 infinite solutions

13. Test for consistency

−2x + y + z = a,

x − 2y + z = b,

x + y − 2z = c.

where a, b, c are constants

Ans. i. If a + b + c  = 0, inconsistent

ii. If a + b + c = 0, infinite solutions

14. Solve the system

x + y + z = 6,

2x − 3y + 4z = 8,

x − y + 2z = 5 by

i. Cramer’s rule

ii. Matrix inversion

iii. Gauss-Jordan.

Ans. i. x1 = 1, x2 = 2, x3 = 3,  = −1,

 1 = −1,  2 = −2,  3 = −3

ii. A−1 =

 
2 3 −7

0 −1 2

−1 −2 5

 

iii.

 
1 1 1 6

2 −3 4 8

1 −1 2 5

 
∼

 
1 0 0

0 1 0

0 0 1

     
1

2

3

 
.

13.5 SYSTEM OF HOMOGENEOUS

EQUATIONS

Solution to a System of m Homogeneous

Equations in n Unknowns

Result 1: If r < m, omitm− r equations such that

the coefficient matrix of the remaining equations still

has rank r . Rewrite r unknowns in terms of n− r

arbitrary unknowns and solve.
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Result 2: If m < n, system has non-trivial solu-

tions.

Result 3: If m = n, system has non-trivial solu-

tions if its coefficient determinant is zero.

Note: A homogeneous system always has a trivial

solution since r[A|B] = r[A|O] = r[A] for any A.

WORKED OUT EXAMPLES

Example 1: Determine b such that the system of
homogeneous equations

2x + y + 2z = 0

x + y + 3z = 0

4x + 3y + bz = 0

has (i) Trivial solution (ii) non-trivial solution.

Find the non-trivial solution.

Solution: The coefficient matrix A is

A=


2 1 2

1 1 3

4 3 b


 R12

∼


1 1 3

2 1 2

4 3 b




R21(−2)

∼ R31(−4)


1 1 3

0 −1 −4

0 −1 b − 12




R32(−1) ∼


1 1 3

0 1 4

0 0 b − 8




Case 1: If b  = 8 then r(A) = r(A|B) = 3 = num-

ber of variables. i.e., |A|  = 0. System has only trivial

solution x = 0, y = 0; z = 0.

Case 2: If b = 8 then r(A) = r(A|B) = 2 < 3 =

n. System has non-trivial solutions in terms of n−
r = 3− 2 = 1 arbitrary variable. Solving the system

x + y + 3z= 0

y + 4z= 0

Choose z as arbitrary say z = k = arbitrary con-

stant. Then y = −4z = −4k and x = −y − 3z =

4k − 3k = k.
Thus the infinite number of non-trivial solutions

are obtained for different values of k as

x = k, y = −4k, z = k.

Example 2: Solve

x + y − 2z+ 3w = 0

x − 2y + z− w = 0

4x + y − 5z+ 8w = 0

5x − 7y + 2z− w = 0.

Solution: The coefficient matrix A is

A=



1 1 −2 3

1 −2 1 −1

4 1 −5 8

5 −7 2 −1




R21(−1)

R31(−4)

R41(−5)

∼



1 1 −2 3

0 −3 3 −4

0 −3 3 −4

0 −12 12 −16




R2(−1)

R32(1)

R42(4)

∼



1 1 −2 3

0 3 −3 4

0 0 0 0

0 0 0 0




r(A) = r(A|B) = 2 < 4 = n = number of vari-

ables.

Non-trivial solutions exist in terms of

n− r = 4− 2 = 2 variables.
Choose z = k1, and w = k2. Then solving

x + y − 2z+ 3w = 0

3y − 3z+ 4w = 0

We get

y =
1

3
(3z− 4w) = z−

4

3
w = k1 −

4

3
k2

x = −y + 2z− 3w = −k1 +
4

3
k2 + 2k1 − 3k2

x = k1 −
5

3
k2

where k1 and k2 are arbitrary constants.

EXERCISE

Solve the system of homogeneous equations:

1. x + 2y + 3z = 0,

3x + 4y + 4z = 0,
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7x + 10y + 12z = 0.

Ans. Trivial solution x = y = z = 0 since r(A) =

3 = n

2. 4x + 2y + z+ 3w = 0,

6x + 3y + 4z+ 7w = 0,

2x + y + w = 0.

Ans. y = −2k1 − k2, z = −k2, x = k1, w = k2
where k1 and k2 are arbitrary constants, giving

infinite number of solutions

3. x + y − 3z+ 2w = 0,

2x − y + 2z− 3w = 0,

3x − 2y + z− 4w = 0,

−4x + y − 3z+ w = 0.

Ans. Trivial solution x = y = z = 0,

since r(A) = 4 = n

4. x1 + x2 + x3 + x4 = 0,

x1 + 3x2 + 2x3 + 4x4 = 0,

2x1 + x3 − x4 = 0.

Ans. x1 = − 1
2
k1 +

1
2
k2, x2 = − 1

2
k1

−3
2
k2,

x3 = k1, x4 = k2 where k1 and k2 are arbitrary

constants giving infinite number of solutions:

r(A) = 2, n = 4

5. 3x + 2y + z = 0,

2x + 3z = 0,

y + 5z = 0,

x + 2y + 3z = 0.

Ans. x = 0 = y = z is the only (trivial) solution

since r(A) = 3 = n

6. 2x + 3y − 4z+ w = 0,

x − y + z+ 2w = 0,

5x − z+ 7w = 0,

7x + 8y − 11z+ 5w = 0.

Ans. z = k1, w = k2, x = (k1 − 7k2)/5,

y = (6k1 + 3k2)/5 where k1, k2 are arbitrary

constants

7. x + 3y − 2z = 0,

2x − y + 4z = 0,

x − 11y + 14z = 0.

Ans. z = k, x = −10k/7, y = 8k/7, k arbitrary

8. x1 + 3x2 + 2x3 = 0,

2x1 − x2 + 3x3 = 0,

3x1 − 5x2 + 4x3 = 0,

x1 + 17x2 + 4x3 = 0.

Ans. x1 = 11k, x2 = k, x3 = −7k, k is arbitrary

r(A) = 2, n = 3

9. Determine the values of b for which the sys-
temof equations has non-trivial solutions. Find
them.

(b − 1)x + (4b − 2)y + (b + 3)z= 0,

(b − 1)x + (3b + 1)y + 2bz= 0,

2x + (3b + 1)y + 3(b − 1)z= 0.

Ans. i. b = 0, x = y = z

ii. b = 3, x = −5k1 − 3k2, y = k1, z = k2
where k1 and k2 are arbitrary

10. Find the values of b for which the system has
non-trivial solutions. Find them

2x + 3by + (3b + 4)z = 0,

x + (b + 4)y + (4b + 2)z = 0,

x + 2(b + 1)y + (3b + 4)z = 0.

Ans. i. b  = ± 2, only trivial solution x= y= z= 0

ii. b= 2, x= 0, z= k, y=− 5k/3, k arbitrary

iii. b = −2, x = 4k, y = z = k, k arbitrary.

13.6 GAUSSIAN ELIMINATION METHOD

Gaussian elimination method is an exact method

which solves a given system of equations in n

unknowns by transforming the coefficient matrix,

into an upper triangular matrix and then solve for

the unknowns by back substitution.
Consider a system of n equations in n unknowns

a11x1 + a12x2 + a13x3 + · · · + a1nxn = a1,n+1 (1)

a21x1 + a22x2 + a23x3 + · · · + a2nxn = a2,n+1 (2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

an1x1 + an2x2 + an3x3 + · · · + annxn = an,n+1 (n)
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Eliminate the unknown x1 from the (n− 1) equations

namely (2), (3), . . . (n− 1), (n) by subtracting the

multiple
ai1
a11

of the first equation from the ith equa-

tion, for i = 2, 3, 4, · · · , n. Now eliminate x2 from

the (n− 2) equations of the resultant system. By this

procedure, we arrive at a derived system as follows:

a11x1 + a12x2 + · · · + a1nxn = a1,n+1 (1)

a
(1)
22 + x2 + · · · + a

(1)
2n xn = a

(2)
2,n+1 (2*)

a
(2)
33 x3 + · · · + a

(2)
3n xn = a

(2)
3,n+1 (3*)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

a(n−1)
nn xn = a

(n−1)
n,n+1 (n*)

In the forward elimination process, the coefficients
are given by

a
(k)
ij = a

(k−1)
ij −

a
(k−1)
ik

a
(k−1)
kk

a
(k−1)
kj

where k = 1, 2, . . . , n− 1

j = k + 1, . . . , n+ 1

i = k + 1, . . . , n

and a
(0)
ij = aij

Back substitution

Now the drived system (1), (2∗), (3∗) · · · (n∗) is
solved by back substitution. Solve equation (n∗) for
the unknown xn. Substituting this xn in (n∗ − 1)
equation, solve for xn−1. Continuing this process, x1
is solved from the first equation. Thus

xi =
1

a
(i−1)
ii


a(i−1)
i,n+1 −

n 
j=i+1

a
(i−1)
ij xj




for i = n, n− 1, n− 2, . . . , 3, 2, 1.

Check sum

Initially, for the given system,write row sum, the sum

of the coefficients in each row, in the (n+ 2)nd col-

umn. Perform the same operations on the elements

of this column also. Now in the absence of compu-

tational errors, at any stage, the row sum element in

(n+ 2)nd row, will be equal to the sum of the ele-

ments of the corresponding transformed row.

Gauss-Jordan elimination method

Apply elementary row operations on both A and B

such that A reduces to the normal form Ir . Then the

solution is obtained (without the necessity of back

substitution).

WORKED OUT EXAMPLES

Example 1: Solve by Gaussian elimination
method, the following system of equations:

2x1 + 2x2 + x3 + 2x4 = 7

−x1 + 2x2 + x4 =−2

−3x1 + x2 + 2x3 + x4 =−3

−x1 + 2x4 = 0.

Solution: Arranging in tabular form, we get

Table 13.1

Row x1 x2 x3 x4 b Check Explanation

No. Sum

[1] 2 2 1 2 7 14 Equation 1

[2] −1 2 0 1 −2 0 Equation 2

[3] −3 1 2 1 −3 −2 Equation 3

[4] −1 0 0 2 0 1 Equation 4

[5] 1 1 1
2

1 7
2

7 R1

 
1
2

 
[6] 0 3 1

2
2 3

2
7 R25(1)

[7] 0 4 7
2

4 15
2

19 R35(3)

[8] 0 1 1
2

3 7
2

8 R45(1)

[9] 0 1 1
2

3 7
2

8 R86

[10] 0 3 1
2

2 3
2

7 R78

[11] 0 4 7
2

4 15
2

19

[12] 0 0 −1 −7 −9 −17 R10,9(−3)

[13] 0 0 3
2

−8 −13
2

−13 R11.9(−4)

[14] 0 0 0 −37
2

−20 −77
2

R
13,12

 
3
2

 

Here Rij (k) denotes a row operation in which the kth

multiples of j th row are added to the corresponding

elements of the ith row. Also,Rij : interchange of ith

and j th rows.
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Check sum: The sum of the elements of any row
must be equal to check sum (otherwise errors in op-
erations). The given system of equations has reduced
to an upper triangular matrix. Now using back sub-
stitution, solve [14] (row) equation

x4 =
40

37
= 1.08.

Solve [13] equation

x3 + 7x4 = 9 or x3 = 1.4324

Solve [9]: x2 = −0.4562

Solve [5]: x1 = 2.1600

The solution is (x1 = 2.16, x2 = −0.4562, x3 =

1.4324, x4 = 1.08).

Example 2: Solve the system by (i) Gaussian elim-
ination method (ii) Gauss-Jordan method

2x1 + 5x2 + 2x3 − 3x4 = 3

3x1 + 6x2 + 5x3 + 2x4 = 2

4x1 + 5x2 + 14x3 + 14x4 = 11

5x1 + 10x2 + 8x3 + 4x4 = 4

Solution: Consider the augmented matrix [A|B]

[A|B]=



2 5 2 −3

3 6 5 2

4 5 14 14

5 10 8 4

        
3

2

11

4



R21(−1)

R32(−1)

R43(−1)

∼



2 5 2 −3

1 1 3 5

1 −1 9 12

1 5 −6 −10

        
3

−1

9

−7



R41, R23

R21(−1)

R31(−1)

R41(−2)

∼



1 5 −6 −10

0 −6 15 22

0 −4 9 15

0 −5 14 17

        
−7

16

6

17



R24(−1)

R2(−1),

R3(−1)

R4(−1)

R32(−4)

R42(−5)

∼



1 5 −6 −10

0 1 −1 −5

0 0 −5 5

0 0 9 −8

        
−7

1

−10

22


 R3(− 1

5
)

R43(−9)

[A|B]∼



1 5 −6 −10

0 1 −1 −5

0 0 1 −1

0 0 0 1

        
−7

1

2

4




By back substitution: x4 = 4

x3 − x4 = 2 or x3 = 2+ x4 = 2+ 4 = 6

x2 − x3 − 5x4 = 1 or x2 = 27

x1 + 5x2 − 6x3 − 10x4 = −7 or x1 = −66

Thus x1 = −66, x2 = 27, x3 = 6, x4 = 4.

Gauss-Jordan method:

1 5 −6 −10

0 1 −1 −5

0 0 1 −1

0 0 0 1

        
−7

1

2

4



R34(1)

R24(5)

R14(10)

∼



1 5 −6 0

0 1 −1 0

0 0 1 0

0 0 0 1

        
33

21

6

4




R23(1)

∼

R13(6)



1 5 0 0

0 1 0 0

0 0 1 0

0 0 0 1

        
69

27

6

4


 R12(−5)

∼



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

        
−66

27

6

4




... x1 = −66, x2 = 27, x3 = 6, x4 = 4.

EXERCISE

Solve the following system of equations byGaussian

elimination method.

1. x1 + 2x2 − x3 = 3, 3x1 − x2 + 2x3 = 1,

2x1 − 2x2 + 3x3 = 2, x1 − x2 + x3 = −1

Ans. x1 = 1, x2 = 4, x3 = 4

2. 2x1 + x2 + 3x3 = 1, 4x1 + 4x2 + 7x3 = 1,

2x1 + 5x2 + 9x3 = 3

Ans. x1 = − 1
2
, x2 = −1, x3 = 1

3. 2x1 − 7x2 + 4x3 = 9, x1 + 9x2 − 6x3 = 1,

−3x1 + 8x2 + 5x3 = 6

Ans. x1 = 4, x2 = 1, x3 = 2

4. 2x1 + 2x2 + 4x3 = 18, x1 + 3x2 + 2x3 = 13,

3x1 + x2 + 3x3 = 14

Ans. x1 = 1, x2 = 2, x3 = 3

5. 2x1 + x2 + x3 = 10, 3x1 + 2x2 + 3x3 = 18,

x1 + 4x2 + 9x3 = 16

Ans. x1 = 7, x2 = −9, x3 = 5

6. 2x1 + x2 + 4x3 = 12, 8x1 − 3x2 + 2x3 = 20,

4x1 + 11x2 − x3 = 33

Ans. x1 = 3, x2 = 2, x3 = 1
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7. x1 + 4x2 − x3 =−5, x1 + x2 − 6x3 = −12,

3x1 − x2 − x3 = 4

Ans. x1 =
117
71
, x2 = − 81

71
, x3 =

148
71

8. 10x1 − 7x2 + 3x3 + 5x4 = 6,

−6x1 + 8x2 − x3 − 4x4 = 5,

3x1 + x2 + 4x3 + 11x4 = 2,

5x1 − 9x2 − 2x3 + 4x4 = 7

Ans. x1 = 5, x2 = 4, x3 = −7, x4 = 1.

13.7 LU-DECOMPOSITIONS

The Gaussian elimination with back substitution,

Gauss-Jordan elimination, computing A−1 then x =

A−1B and Cramer’s rule are some of the direct (non-

iterative) methods for solving system of linear equa-

tions. Gauss-Jordan elimination produces both solu-

tion for one or more R.H.S. vector B and also A−1.

Its principal weakness is (i) it requires all RHS B

to be stored and manipulated and (ii) when A−1 is

not required. The usefulness of Gaussian elimina-

tion with back substitution is primarily pedagogi-

cal. It stands between full elimination schemes such

as Gauss-Jordan and triangular decomposition. LU-

decomposition or triangular decomposition (triangu-

lar factorization) is a different approach in which the

coefficient matrix A is factored into the product of

a lower triangular matrix L and an upper triangular

matrix U i.e.,

A = LU.

Since a matrix that is either upper triangular or

lower triangular is called “triangular”, so LU-

decomposition is also referred to as triangular fac-

torization. LU method can be easily adopted to solve

a system with new R.H.S. B with great economy of

effort.

It is popular because storage of space can be econ-

omized and accumulates sums in double precision

(Example: LINPAK (1979) computer programofAr-

gonne National Labs).

Solution of Linear System by

LU-Decomposition

A non singular matrix A is said to have a triangu-

lar factorization or LU-decomposition if A can be

expressed as the product of a lower triangular ma-

trix L with ones on its main diagonal and an upper

triangular matrix U . i.e.,

A = LU

For n = 4, we have A4×4 = L4×4U4×4

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




=




1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44




The condition of non singularity of A implies that

ukk  = 0 for all k. Now consider the system of equa-

tions

AX = B

or LUX = B

Put Y = UX then

LY = B

and UX = Y

Solve first LY = B for Y using forward substitution

and then solve UX = Y for X using backward sub-

stitution. Here X is the required solution vector.

LU-decomposition is also known as Doolittle’s

method. Another variation of LU-decomposition is

crout’s reduction or Cholosky’s reduction in which

the upper triangularmatrixU has ones on itsmain di-

agonal (instead ofL) in the triangular decomposition

A = LU

Note that LU decompostion is not unique. Any

matrix A with all non-zero diagonal elements (i.e.,

aii  = 0 for i = 1 to n) can be factored in infinite

number of ways.
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Example 1:
2 −1 −1

0 −4 2

6 −3 1


 =


2 0 0

0 −4 0

6 0 4





1 − 1

2
− 1

2

0 1 − 1
2

0 0 1


 = LU

or

=


1 0 0

0 1 0

3 0 1




2 −1 −1

0 −4 2

0 0 4


 = LU

or

=


1 0 0

0 2 0

3 0 1




2 −1 −1

0 −2 1

0 0 4


 = LU

and so on.

Example 2:

A = LU =


 l11 0 0

l21 l22 0

l31 l32 l33




1 u12 u13
0 1 u23
0 0 1




The non-zero diagonal entries in L can be shifted
to U .

A=




1 0 0
l21
l11

1 0

l31
l11

l32
l22

1




 l11 0 0

0 l22 0

0 0 l33




1 u12 u13
0 1 u23
0 0 1




=




1 0 0
l21
l11

1 0

l31
l11

l32
l22

1




 l11 l11u12 l11l13

0 l22 l22u23
0 0 l33




which is another LU decomposition of A. However

of the entire set of LU decompositions, choose the

pair in which L has ones on its diagonal.

13.8 LU-DECOMPOSITION FROM GAUS-

SIAN ELIMINATION

Theorem: If A is a square matrix which can be re-

duced to echlon from U without using any row in-

terchanges, thenA has a LU decomposition and can

be factored asA = LU whereL is a lower triangular

matrix with ones on its main diagonal.

Explanation: In solving a systemAX = B of n equa-

tions in n unknowns, use the Gaussian elimination

method to reduce A to an echlon form (upper trian-

gularmatrix)U .We assume that no row interchanges

are necessary in this process. Then the multipliers lij
used in the Gaussian elimination process will form

the subdiagonal enteries in the lower triangular ma-

trix L.

Step I: Use Gaussian elimination to reduce A to

echolon form U , without using any row

interchanges.Keep track of themultipliers

used to introduce zeros below the leading

diagonal elements of A.

Step II: In each position below the main diaginal

(consisting of ones) of L, place the neg-

ative of the multiplier used to introduce

zeros in that position in U .

The LU-decomposition can also be obtained by
solving the equations in lij and uij as follows. Sup-
pose

A =


a11 a12 a13
a21 a22 a23
a31 a32 a33


 = LU =

=


 1 0 0

l21 1 0

l31 l32 1


 ·


u11 u12 u13

0 u22 u23
0 0 u33




From the first row elements.

u11 = a11, u12 = a12, u13 = a13
From 2nd row elements:

l21u11 = a21, l21u12 + u22 = a22,

l21u13 + u23 = a23

From 3rd row elements

l31u11 = a31, l31u12 + l32u22 = a32,

l31u13 = l32u23 + u33 = a33.

Solving we get u11, u12, u13, then l21, u22, u23
followed by l31, l32, u33.

LU-Decomposition by Gaussian

Elimination

WORKED OUT EXAMPLES

Example 1: SolveAX = B by LU-decomposition
using Gaussian elimination where
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A =


2 4 −6

1 5 3

1 3 2




and

(a) BT = (−4, 10, 5), (b) BT = (20, 49, 32)

Solution: Since A has all non-zero diagonal ele-
ments, we can factor A as LU. Use Gaussian elimi-
nation to reduce A to echlon form U , without using
any row interchanges.

A =


2 4 −6

1 5 3

1 3 2




Step I: The multiplier
 
− 1

2

 
is used to reduce the

element a21 = 1 to zero. The operation

is R21

 
− 1

2

 
. So m21 = − 1

2
. Similarly the

multiplier
 
− 1

2

 
is used to reduce the el-

ement a31 = 1 to zero i.e., R31

 
− 1

2

 
. So

m31 = − 1
2
. This results

A ∼


2 4 −6

0 3 6

0 1 5




Use the multiplier
 
− 1

3

 
to reduce the el-

ement a32 = 1 to zero i.e., R32

 
− 1

3

 
. So

the multiplier is m32 = − 1
3
. This yields

the echelon form (or upper triangular ma-

trix) U of A as

A ∼


2 4 −6

0 3 6

0 0 3




Step II: The lower triangular matrix L is ob-

tained by simply placing the negative of

the multipliers used in introducing zeros

in that position in U i.e., l21 = −m21 =

−
 
− 1

2

 
=+ 1

2
, l31 = −m31 =

1
2
and l32 =

−m32 =
1
3

L =


 1 0 0

l21 1 0

l31 l32 0


 =



1 0 0
1
2

1 0

1
2

1
3

0




Thus the LU (factorization) decomposition of A by

Gaussian elimination is

A =


2 4 −6

1 5 3

1 3 2


 = LU =



1 0 0
1
2

1 0

1
2

1
3

0




2 4 −6

0 3 6

0 0 3




Now to solve AX = B, LUX = B put UX = Y so

LY = B. First we solve LY = B for Y by using for-

ward substitution

(a) BT = (−4, 10, 5)

1 0 0
1
2

1 0

1
2

1
3

1




y1y2
y3


 =


−4

10

5




By forward substitution

y1 = −4
1

2
y1 + y2 = 10 so y2 = 10−

1

2
y1 = 12

1
2
y1 +

1
3
y2 + y3 = 5 so y3 = 5− 1

2
y1,−

1
3
y2 = 3.

Thus YT = (−4, 12, 3).

Now solve UX = Y using backward substitution.
2 4 −6

0 3 6

0 0 3




x1x2
x3


 =


−4

12

3




So 3x3 = 3 or x3 = 1

3x2 + 6x3 = 12 so x2 =
12− 6x3

3
= 2

2x1 + 4x2 − 6x3 = −4 so x1 =
−4+ 6x3 − 4x2

2
= −3

Solution: XT = (−3, 2, 1)

(b)BT = (20, 49, 32)

LY = B



1 0 0
1
2

1 0

1
2

1
3

1




y1y2
y3


 =


20

49

32




Solving y1 = 20
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1
2
y1 + y2 = 49 so y2 = 49− 1

2
y1 = 39

1

2
y1 +

1

3
y2 + y3 = 32 so y3 = 32−

1

2
y1 −

1

3
y2

= 9

Thus YT = (20, 39, 9)

Now solve UX = Y
2 4 −6

0 3 6

0 0 3




x1x2
x3


 =


20

39

9




Solving 3x3 = 9 so x3 = 3

3x2 + 6x3 = 39 so x2 =
39− 6x3

3
= 7

2x1 + 4x2 − 6x3 = 20 sox1 =
20+ 6x3 − 4x2

2
= 5

Solution: XT = (5, 7, 3).

Example 2: Solve the system

3x1 − 6x2 − 3x3 = −3

2x1 + 6x3 = −22

−4x1 + 7x2 + 4x3 = 3

Solution: A =


 3 −6 −3

2 0 6

−4 7 4


 , B =


 −3

−22

3




consider

A =


 3 −6 −3

2 0 6

−4 7 4


 = LU =

=


 1 0 0

l21 1 0

l31 l32 1




u11 u12 u130 u22 u23

0 0 u33




From first row: u11 = 3, u12 = −6, u13 = −3

First 2nd row: l21u11 = 2, l21 · 3 = 2, l21 =
2
3

l21u12 + u22 = 0, u22 = −l21u12 = − 2
3
· (−6) = 4

l21u13 + u23 = 6, u23 = 6− l21u13
= 6− 2

3
(−3) = 8

From 3rd row: l31u11 = −4, l31 = − 4
3

l31u12 + l32u22 = 7, l32 =
7−l31u12
u22

=
7−
 
− 4

3

 
(−6)

4

so l32 = − 1
4

l31u13 + l32u23 + u33 = 4

so u33 = 4− l31u13 − l32u23
u33 = 4−

 
− 4

3

 
· (−3)−

 
−1
4

 
· 8 = 0+ 2 = +2

A =




1 0 0
2
3

1 0

−4
3

− 1
4

1




3 −6 3

0 4 8

0 0 +2




LY = B




1 0 0
2
3

1 0

− 4
3

− 1
4

1




y1y2
y3


 =


 −3

−22

3




Solving y1 = −3, 2
3
y1 + y2 = −22

y2 = −22−
2

3
y1 = −20

−
4

3
y1 −

1

4
y2 + y3 = 3So

y3 = 3+
4

3
y1 +

1

4
y2 = 3− 4− 5 = −6

UX = Y
3 −6 −3

0 4 8

0 0 2




x1x2
x3


 =


 −3

−20

−6




solving 2x3 = −6 or x3 = −3

4x2 + 8x3 = −20 or x2 =
−20−8x3

4
= 1

3x1 − 6x2 − 3x3 = −3 or x1 =
−3+6x2+3x3

3
= −2

solution XT = [−2, 1,−3].

EXERCISE

1. Let A =

 
a b

c d

 
. If a  = 0 find LU decompo-

sition.

Ans.

 
1 0
c
a

1

  
a b

0 ad−bc
a

 

2. Let A =

 
0 1

1 0

 
. Show that A has no LU-

decomposition.
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Hint: Since a11 = 0, a21 = 1 can not be made

zero.

Solve the following system of equations by

LU-decomposition.

3. 3x1 − 6x2 = 0,−2x1 + 5x2 = 1

Ans. x1 = 2, x2 = 1

Hint: L =

 
1 0

− 2
3

1

 
, U =

 
3 −6

0 1

 
4. 2x1 + 8x2 = −2,−x1 − x2 = −2

Ans. x1 = 3, x2 = −1

Hint: L =

 
1 0

− 1
2

1

 
, U =

 
2 8

0 3

 
5. −5x1 − 10x2 = −10, 6x1 + 5x2 = 19

Ans. x1 = 4, x2 = −1

Hint: L =

 
1 0

− 6
5

1

 
, U =

 
−5 −10

0 −7

 
6. 2x1 − 2x2 − 2x3 = −4

− 2x2 + 2x3 = −2

−x1 + 5x2 + 2x3 = 6

Ans. x1 = −1, x2 = 1, x3 = 0

Hint: L =


 1 0 0

0 1 0

− 1
2

−2 1


 ,

U =


2 −2 −2

0 −2 2

0 0 5




7.



−1 0 1 0

2 3 −2 6

0 −1 2 0

0 0 1 5





x1
x2
x3
x4


 =




5

−1

3

7




Ans. x1 = −3, x2 = 1, x3 = 2, x4 = 1

Hint: L =




1 0 0 0

−2 1 0 0

0 − 1
3

1 0

0 0 1
2

1


,

U =



−1 0 1 0

0 3 0 6

0 0 2 2

0 0 0 4




8. Solve



4 8 4 0

1 5 4 −3

1 4 7 2

1 3 0 −2





x1
x2
x3
x4


 =



b1
b2
b3
b4




(a) BT = [8,−4, 10,−4]

(b) BT = [28, 13, 23, 4]

Ans. (a) Y T = [8,−6, 12, 2], XT = [3,−1, 1, 2]

(b) YT = [28, 6, 12, 1], XT = [3, 1, 2, 1]

Hint: L =



1 0 0 0
1
4

1 0 0
1
4

2
3

1 0
1
4

1
3

− 1
2

1


,

U =



4 8 4 0

0 3 3 −3

0 0 4 4

0 0 0 1




Find LU decomposition (triangular factoriza-

tion) A = LU

9.


 4 3 −1

−2 −4 5

1 2 6




Ans. L =


 1 0 0

−0.5 1 0

0.25 −0.5 1




U =


4 3 1

0 −2.5 4.5

0 0 8.5




10.


−5 2 −1

1 0 3

3 1 6




Ans. L =


 1 0 0

−0.2 1 0

−0.6 5.5 1




U =


−5 2 −1

0 0.4 2.8

0 0 −10




11.




1 1 0 4

2 −1 5 0

5 2 1 2

−3 0 2 6






MATRICES 13.25

Ans. L =




1 0 0 0

2 1 0 0

5 1 1 0

−3 −1 −1.75 1




U =



1 1 0 4

0 −3 5 −8

0 0 −4 −10

0 0 0 −7.5




13.9 SOLUTION TO TRIDIAGONAL

SYSTEMS

Band matrix is a n× n square matrix A with

the property that aij = 0 whenever i + p ≤ j or

j + q ≤ i for integersp andqwithp > 1 andq < n.

The band width of such matrix is defined to be

w = p + q − 1.

Example:

A =


8 3 0

2 6 −1

0 6 −9




A is band matrix with p = 2, q = 2 and band

width 3.

In band matrices, all the non-zero entries are con-

centrated about the diagonal.

Tridiagonal matrix is a band matrix of width 3

withp = q = 2. Thus tridiagonalmatrices are those

that have non-zero elements only on the diagonal

aii or super diagonal ai,i+1 or subdiagonal ai+1,i . So

aij = −0 if |i − j | > 1.

Example:

B =



−4 2 0 0 0

1 −4 1 0 0

0 1 −4 1 0

0 0 1 −4 1

0 0 0 2 −4




Note: Non-zero elements (entries) occur only on

the diagonal and in the positions adjacent to the di-

agonal.

Most often tridiagonal matrices occur in cubic

spline interpolation and numerical solution (crank-

Nicolson method) of PDE involving heat equation.

13.10 CROUT REDUCTION FOR TRIDIAG-

ONAL LINEAR SYSTEMS

Consider a tridiagonal linear system of n equations
in n unknowns.

a11x1 + a12x2 · · · = b1

a21x1 + a22x2 + a23x3 · · · = b2

· · ·

an−1,n−2xn−2 + an−1,n−1xn−1 + an−1,nx
n = bn−1

an,n−1xn−1 + annxn = bn

with the tridiagonal coefficient matrix

A =




a11 a12 0 · · · 0

a21 a22 a23
. . .

...

0 a32 a33 a34 0

. . .
. . .

. . .

0
. . .

. . .
. . . an−1,n

0 · · · 0 an,n−1 ann




In the case of tridiagonal matrix A having large

number of zeros in regular patterns, the computa-

tional effort is reduced due to the structure of A.

Using Crout or Doolittle factorization algorithm, A

can be factored into L and U where L is lower tri-

angular matrix and U is an upper triangular matrix

with one’s on its main diagonal.
Here

L =




l11 0 · · · · · · 0

l21 l22
. . .

...

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 ln,n−1 lnn



,

U =




1 u12 0 · · · 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . . un−1,n

0 · · · · · · 0 1




Since A has only (3n− 2) non-zero entries, there

are only (3n− 2) conditions to be applied to deter-

mine the entries of L and U . There are (2n− 1) un-
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determined entries in L and (n− 1) undetermined

entries of U , which totals the number of conditions

(3n− 2).
Carrying out the multiplication LU , we get

a11 = l11

ai,i−1 = li,i−1 for i = 2, 3, . . . n (1)

aii = li,i−1ui−1,i + lii for i = 2, 3, . . . n (2)

ai,i+1 = liiui,i+1 for i = 1, 2, . . . n− 1 (3)

From (2), non-zero off-diagonal terms inL are cal-

culated first. Then using (3) and (2) obtain alternately

the remainder of the entries in U and L.

Thus the tridiagonal system can be solved by LU

decomposition followed by forward and backward

substitution. TheLU decomposition can be obtained

using Gaussian elimination as is done in the earlier

section (without tedious calculations of lii and uii
see W.E.2).

If A is a symmetric (aij = aji) and positive def-

inite (i.e., V TAV > 0 for all V  = 0). Then by

Cholesky decomposition we can factorize A as

A = LLT

This factorization is sometimes referred to as tak-

ing the square root of thematrixA. Instead of seeking

arbitrary lower triangular matrix L and upper trian-

gular matrix U , Cholesky decomposition constructs

a lower triangular matrix L whose transpose LT can

itself serves as upper triangular matrix U .

WORKED OUT EXAMPLES

Example 1: Solve the following tridiagonal sys-
tem.

x1 − x2 = 0

−2x1 + 4x2 − 2x3 =−1

−x2 + 2x3 = 1.5

Solution: The tridiagonal matrix is

A =


 1 −1 0

−2 4 −2

0 −1 2




LU -decomposition:
 1 −1 0

−2 4 −2

0 −1 2


=


 l11 0 0

l21 l22 0

l31 l32 l33





1 u12 u13
0 1 u23
0 0 1




From first column: l11 = a11 = 1, l21 = a21 = −2,

l31 = 0

From 2nd column: l11u12 = −1, u12 =
−1

l11
=

−1

1
= −1

l21u12+l22=4, l22=4− l21u12=4− (−2)(−1)=2,

l21u13 +l22u23 = −2,

Also l11u13 = 0 so u13 = 0

0+ 2 · u23 = −2 so u23 = −1

From 3rd row: l31 = 0

l31u12 + l32 =−1 ... l32 = −1

l31u13 + l32u23 + l33 = 2

0− 1 · (−1)+ l33 = 2 ... l33 = 1

Thus
 1 −1 0

−2 4 −2

0 −1 2


 = A = LU =

=


 1 0 0

−2 2 0

0 −1 1




1 −1 0

0 1 −1

0 0 1




Now AX = LUX = B
Put UX = Y so LY = B

 1 0 0

−2 2 0

0 −1 1




y1y2
y3


 = B =


 0

−1
3
2




solving y1 = 0, y2 = −
1

2
, y3 = 1

From UX = Y , we have
1 −1 0

0 1 −1

0 0 1




x1x2
x3


 =




0

− 1
2

1




solving x3 = 1, x2 = x1 =
1

2
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Example 2: Solve

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2






x1
x2
x3
x4
x5


 =



b1
b2
b3
b4
b5




Also solve when b1 = 1, b2 = 0, b3 = 2, b4 = 3,

b5 = −1

Solution: Assume A = LU where

L =




1 0 0 0 0

l21 1 0 0 0

l31 l32 1 0 0

l41 l42 l43 1 0

l51 l52 l53 l54 0


 ,

U =



u11 u12 u13 u14 u15
0 u22 u23 u24 u25
0 0 u33 u34 u35
0 0 0 u44 u45
0 0 0 0 u55




Now we reduce the tridiagonal matrix A to echolon
formusingGaussian eliminationmethodwithout any
row interchanges.


2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2




∼

R21

 
− 1

2

 


2 1 0 0 0

0 3
2

1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2




R32

 
− 2

3

 
∼



2 1 0 0 0

0 3
2

1 0 0

0 0 4
3

1 0

0 0 1 2 1

0 0 0 1 2



R43

 
− 3

4

 
∼



2 1 0 0 0

0 3
2

1 0 0

0 0 4
3

1 0

0 0 0 5
4

1

0 0 0 1 2




∼

R54

 
− 4

5

 
U =



2 1 0 0 0

0 3
2

1 0 0

0 0 4
3

1 0

0 0 0 5
4

1

0 0 0 0 6
5




Then multipliers are − 1
2
, − 2

3
, − 3

4
, − 4

5
so

L =




1 0 0 0 0
1
2

1 0 0 0

0 2
3

1 0 0

0 0 3
4

1 0

0 0 0 4
5

1




Now solve by forward substitution


1 0 0 0 0
1
2

1 0 0 0

0 2
3

1 0 0

0 0 3
4

1 0

0 0 0 4
5

1






y1
y2
y3
y4
y5


 =



b1
b2
b3
b4
b5




Solving y1 = b1, y2 = b2 −
1
2
b1

y3 = b3 −
2

3
b2 +

1

3
b1

y4 = b4 −
3

4
b3 +

1

2
b2 −

1

4
b1

y5 = b5 −
4

5
b4 +

3

5
b3 −

2

5
b2 +

1

5
b1

For b1 = 1, b2 = 0, b3 = 2, b4 = 3, b5 = −1,

y1 = 1, y2 = −
1

2
, y3 =

7

3
, y4 =

21

4
, y5 = 0.

Now solve by backward substitution



2 1 0 0 0

0 3
2

1 0 0

0 0 4
3

1 0

0 0 0 5
4

1

0 0 0 0 6
5






x1
x2
x3
x4
x5


 = B =




1

− 1
2
7
3
21
4

0




solving x5 = 0, x4 =
21

5
, x3 = −

13

10
,

x2 =
8

15
, x1 =

7

30
Thus the solution is

XT =

 
7

30
,
8

15
,−

13

10
,
21

5
, 0

 

Note the amount of simplification in calculation of

L and U .

EXERCISE

Solve the tridiagonal systems.

1. 3x1 + x2 = −1

2x1 + 4x2 + x3 = 7

2x2 + 5x3 = 9

Ans. x1 = −0.999995, x2 = 1.999999, x3 = 1
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2. 2x1 − x2 = 3

−x1 + 2x2 − x3 = −3

−x2 + 2x3 = 1

Ans. x1 = 1, x2 = −1, x3 = 0

3. 0.5x1 + 0.25x2 = 0.35

0.35x1 + 0.8x2 + 0.4x3 = 0.77

0.25x2 + x3 + 0.5x4 = −0.5

x3 − 2x4 = −2.25

Ans. x1 = −0.09357762, x2 = 1.587155

x3 = −1.16743, x4 = 0.5412842

4. 2x1 − x2 = 1

−x1 + 2x2 − x3 = 0

−x2 + 2x3 − x4 = 0

−x3 + 2x4 = 1

Ans. x1 = x2 = x3 = x4 = 1

Hint:

L =




2 0 0 0

−1 3
2

0 0

0 −1 4
3

0

0 0 −1 5
4


 , U =



1 − 1

2
0 0

0 1 − 2
3

0

0 0 1 − 3
4

0 0 0 1




5. 2x1 + x2 = 1

xi−1 + 2xi + xi+1 = 0, 2 ≤ i ≤ n− 1

xn−1 + 2xn = (−1)n+1

for n = 10.

Ans. xi = (−1)i−1 for 1 ≤ i ≤ 10
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Eigen Values and Eigen Vectors

INTRODUCTION

Suppose A is a 2× 2 matrix and X is a non-zero

vector such that AX is a scalar multiple of X say

AX = λX. Then geometrically each vector on the

line through the origin determined byX gets mapped

back onto the same line under multiplication by A.

The algebraic eigen value problem consists of deter-

mination of such vectors X, known as eigen vectors,

such scalars λ, known as eigen values. Thus the find-

ing of non zero vectors that get mapped into scalar

multiples of themselves under a linear operator are

most important in the study of vibrations of beams,

probability (Markov process), Economics (Leontief

model), genetics, quantum mechanics, population

dynamics and geometry. For example in a mechan-

ical system, they represent the normal modes of vi-

bration. EISPACK is a package of programs in FOR-

TRAN for solving eigen value problems [Smith et. al

(1976) in “Matrix Eigen-system routines-EISPACK

guide”, Lecture notes in computer science, vol. 6,

Springer-Verlag, New York].

14.1 LINEAR TRANSFORMATION

Consider a set of n linear equations

y1 = a11x1 + a12x2 + · · · + a1nxn

y2 = a21x1 + a22x2 + · · · + a2nxn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
yn = an1x1 + an2x2 + · · · + annxn




(1)

Lety= [y1, y2, y3, . . ., yn]T ,X= [x1, x2, x3, . . ., xn]T

A =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann




n×n
Then set of n equations (1) can be represented as

Y = AX (2)

which transforms the set of n variables (x1, x2,

. . . , xn) to the set of n variables (y, y2, . . . , yn). Thus

(2) is a transformation which transforms X into Y .

Here A is known as the matrix of the transformation.

Linear transformation

(2) is said to be linear if it is additive and homoge-
neous i.e.,

A(c1X1 + c2X2)= c1AX1 + c2AX2

= c1Y1 + c2Y2

where c1 and c2 are constants. Inverse transformation

of (2) is X = A−1Y .

14.2 EIGEN VALUES AND

EIGEN VECTORS

Only square matrices are considered in this

chapter.
Let A be a n× n matrix. Suppose the linear

transformation Y = AX transforms X into a scalar
multiple of itself i.e.,

AX = Y = λX

i.e., X is an invariant vector.

14.1
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Then the unknown scalar λ is known as an eigen

value of the matrix A and the corresponding non

zero vector X as eigen vector. Thus eigen values or

characteristic values or latent or proper values are

scalars λ which satisfy the equation

AX = λX (3)

for an X  = 0

or AX − λIX = 0

(A− λI )X = 0 (4)

(4) represents a system of n homogeneous equations
in the n variables x1, x2, . . . xn. (4) has non-trivial
solutions if the coefficient matrix (A− λI ) is
singular i.e.,

|A− λI | = 0 (5)

or          

a11 − λ a12 a13 · · · a1n

a21 a22 − λ a23 · · · a2n

...

an1 an2 an3 · · · ann − λ

         
= 0 (6)

Expansion of the determinant gives a nth degree

polynomial Pn(λ) known as the characteristic poly-

nomial of A. (6) is known as the characteristic

equation of A. Thus eigen values of n- square matrix

A are the roots of the characteristic Equation (6).

Hence A can have at least one and at most n eigen

values.

Degree of characteristic polynomial = order of

matrix A.

Spectrum of A is the set of all eigen values of A.

The eigen vector X corresponding to an eigen

value λ is obtained by solving the homogeneous sys-

tem (4) with this known eigen value λ. However

eigen vector X is not unique, since kX is also an

eigen vector where k  = 0 constant (AX = λX, mul-

tiplying by k, kAX = kλX orA(kX) = λ(kX). Thus

kX is an eigen vector of A).

Note 1: If all the n eigen values of A are distinct,

then there correspond n distinct linearly independent

eigen vectors.

Note 2: For an eigen value of A, repeated (twice

or more), there may correspond one or several lin-

early independent eigen vectors. Thus the set of eigen

vectors may or may not form a set of n linearly

independent vectors.

Note 3: Algebraic multiplicity of an eigen value

λ is the order of the eigen value as a root of the

characteristic polynomial (i.e., if λ is a double root

then algebraic multiplicity is 2).

Note 4: Geometric multiplicity of λ is the number

of linearly independent eigen vectors corresponding

to λ.

Procedure to Obtain Eigen Values and Eigen

Vectors

1. Solve the characteristic equation |A− λI | = 0

for eigen valuesλi . IfA is of nth order, the number

of eigen values are n or less than n (with repeated

real roots or complex conjugate pairs).

2. For a specific eigen value λi , solve the homoge-

neous system of equations (A− λiI )X = 0.

Observation: See Note 1 and Note 2 above.

14.3 PROPERTIESOFEIGENVALUESAND

EIGEN VECTORS

1. Real and complex eigen values: If A is real, its

eigen values are real or complex conjugates in

pairs.

Proof: Expanding the characteristic equation

|A− λI | =

         

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...

an1 an2 · · · ann − λ

         
= 0

we get an nth degree polynomial in λ

|A− λI | = (−1)n
 
λn − σ1λ

n−1 + σ2λ
n−2 · · ·

+(−1)n−1σn−1λ+ (−1)nσn

 
= 0

Since A is real, the roots of the characteristic

polynomial will be real or complex conjugate

pairs.

Let λ1, λ2, . . . , λn be the roots of the charac-

teristic equation.

2. Trace: σ1 = sum of the diagonal elements of A

= trace of A = sum of the roots of the polyno-

mial equation = λ1 + λ2 + · · · + λn.

Thus, trace of A = sum of the eigen values

of A.
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3. Determinant of A = σn = |A|
= λ1 · λ2 · λ3 · · · λn.

Thus, the determinant of A = product of

eigen values of A.
4. Transpose: A and AT has same eigen values.

Since the diagonal elements in the determinants

of A and AT are same, the determinant |A− λI |
and |AT − λI | are equal; hence have the same

eigen values.

|A| = |AT |, |A− λI | = |(A− λI )T |
= |AT − (λI )T | = |AT − λI |

5. Non-zero eigen values: If all the eigen values

are non-zero, then |A|  = 0 since |A| = product

of the eigen values. i.e., A is non singular.
6. Singular matrix: |A| = 0. If at least one eigen

value is zero then |A| = product of eigen

values = λ1, λ2, . . . , λn = 0 i.e., A is singular.

7. Inverse: A−1 exists iff 0 is not an eigen value

of A.

Eigen values of A−1 are 1
λ1
, 1
λ2
, . . . 1

λn
,

i.e., the reciprocals of the eigen values of A:

AX = λX, premultiply by A−1,

A−1AX = A−1λX = λA−1X

... X = λA−1X or A−1X = 1

λ
X

8. “Spectral shift”:A∓ kI has eigen values λi ±
k and has the same eigen vectors ofA: character-

istic polynomial of A∓ kI is |A∓ kI − λI | =
|A− (λ∓ k)I |which hasλ∓ k as the eigen val-

ues.

9. Scalarmultiples: kAhas eigen values kλi . Mul-

tiplying (A− λI )X = 0 by k, k(A− λI )X =
0, characteristic equation is |k(A− λI )| =
|kA− kλI | = 0, thus kA has eigen values kλ.

10. Powers: Am has eigen values λm.

By induction : X = A0X= λ0X = X, m = 0

AX= λX, m = 1
true

Suppose AkXj = λk
j Xj is true

premultiplying by A,AAkXj = Aλk
j Xj

Ak+1Xj = λk
jAXj = λk

jλjX = λk+1
j X

true for k + 1, hence by induction Am has λm

as eigen value.

11. Spectral mapping threorem: The poly-

nomial matrix P (A) = kmA
m + km−1A

m−1 +
· · · + k1A+ k0I has the eigen values P (λj ) =
kmλ

m
j + km−1λ

m−1
j + · · · + k1λj + k0

From 9, 10 kAm has eigen value kλm.

To prove additive:

(k2A
2 +k1A+ k0I )X

= k2A
2X + k1AX + k0IX

= k2λ
2X + k1λX + k0IX

= (k0λ
2 + k1λ+ k0)X

Thus k0λ
2 + k1λ+ k0 is the eigen value of

k2A
2 + k1A+ k0I.

12. Characteristic Vector cannot correspond to

two distinct characteristic values:SupposeX1

corresponds to λ1 and λ2 where λ1  = λ2. Then

(A− λ1I )X1 = 0, (A− λ2I )X1 = 0, subtract-

ing (λ1 − λ2)IX1 = 0, which implies X1 = 0

since λ1  = λ2. But X1  = 0 (eigen vectors are

chosen to be non-zero). Hence a contradiction.

13. Eigen values of diagonal, upper triangular
or lower triangular matrices are the principal
diagonal elements since the characteristic
polynomial becomes the product of diagonal
elements namely

|D− λI | = (a11− λ)(a22− λ)(a33− λ) · · · (ann− λ).

Thus characteristic values are the diagonal

elements aii .

14. If λ is an eigen value of an orthogonal matrix A

then 1
λ

is also an eigen value of A. By definition

of orthogonal matrix, AT = A−1. But A and

AT have same eigen values. Also eigen values

of A−1 are reciprocals of eigen values of A.

Thus if λ is an eigen value of A then 1
λ

is eigen

value of A−1 = AT . Since A and AT has same

eigen values, λ and 1
λ

are eigen values of A.

15. Orthogonal: Two vectors X and Y are said to

be orthogonal if XT Y = YTX = 0.
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WORKED OUT EXAMPLES

Find the eigen values and eigen vectors of:

Example 1: A =
 

8 −4

2 2

 
Solution: The eigen values are the roots of the
characteristic equation    8− λ −4

2 2− λ

    = 0

i.e., (8− λ)(2− λ)+ 8= 0

or λ2 − 10λ+ 24= 0,

(λ− 4)(λ− 6)= 0

The two distinct eigen values are λ = 4, 6.
Eigen vector corresponding to eigen value λ = 4:

(A− λI )X = 0 
18− 4 −4

2 2− 4

  
x1

x2

 
=
 

4 −4
2 −2

  
x1

x2

 
= 0

4x1 − 4x2 = 0

2x1 − 2x2 = 0 ... x1 = x2

X1 = C1

 
1
1

 
X2 corresponding to λ = 6 

8− 6 −4
2 2− 6

  
x1

x2

 
=
 

2 −4
2 −4

  
x1

x2

 
= 0

2x1 − 4x2 = 0 ... x1 = 2x2

X2 = C2

 
1
2

 

Example 2: AT =
 

8 2

−4 2

 

Solution: Characteristic equation is

   8−λ 2

−4 2−λ

   = 0

characteristic equation is λ2 − 10λ+ 24 = 0 same

as the ch. equation of A. Thus the eigen values of A

and AT are same. However the eigen vectors are not

the same.

For λ = 4,  
8− 4 2
−4 2− 4

  
x1

x2

 
= 0

4x1 + 2x2 = 0 or x2 = −2x1

X1 = C1

 
−2

1

 

For λ = 6,  
8− 6 2
−4 2− 6

  
x1

x2

 
= 0

2x1 + 2x2 = 0

X2 = C2

 
1
−1

 

Example 3: A−1 = 1
24

 
2 4

−2 8

 
.

Solution: Characteristic equation is |A−1− λI | = 0     
1
12
− λ 1

6

− 1
12

1
3
− λ

     =
 

1

12
− λ

  
1

3
− λ

 
+ 1

12
· 1

6
= 0

24λ2 − 10λ+ 1= 0,

 
λ− 1

4

  
λ− 1

6

 
= 0

The eigen values of A−1 are 1
4
, 1

6
which are the recip-

rocals of the eigen values 4, 6 of A. Also the eigen

vectors of A−1 and A are same.

For λ = 1
4
,  

1
12
− 1

4
1
6

− 1
12

1
3
− 1

4

  
x1

x2

 
= 0

−2x1 + x2 = 0 ... x1 = x2

X1 = C1

 
1

1

 

For λ = 1
6
,  

1
12
− 1

6
1
6

− 1
12

1
3
− 1

6

  
x1

x2

 
= 0

−x1 + 2x2 = 0 ... x1 = 2x2

X2 = C2

 
1

2

 
.

Example 4: B = kA where k = − 1
2

Solution: B = − 1
2
A =

 −4 +2

−1 −1

 
Characteristic equation of B is

|B − λI | =
    −4− λ 2
−1 −1− λ

    = 0

(4+ λ)(1+ λ)+ 2 = 0 or λ2 + 5λ+ 6 = 0

So the eigen values of B are −2,−3 which are − 1
2

times of eigen values 4, 6 ofA. Also the eigen vectors

of B and A are same.



EIGEN VALUES AND EIGEN VECTORS 14.5

For λ = −2, −4+ 2 2

−1 −1+ 2

  
x1

x2

 
= 0 ... x1 = x2

X1 = C1

 
1

1

 

For λ = −3, −4+ 3 2

−1 −1+ 3

  
x1

x2

 
= 0,

−x1 + 2x2 = 0

X2 = C2

 
1

2

 
.

Example 5: A2 =
 

56 −40

20 −4

 
Solution: Characteristic equation of A2 is    56− λ −40

20 −4− λ

    = 0

λ2 − 52λ+ 576 = (λ− 16)(λ− 36)= 0

So eigen values of A2 are 16, 36 which are square of

the eigen values 4, 6 of A. Also the eigen vectors of

A and A2 are same

For λ = 16, 
56− 16 −40

20 −4− 16

  
x1

x2

 
= 0

x1 − x2 = 0 i.e., x1 = x2

X1 = C1

 
1

1

 

For λ = 36, 
56− 36 −40

20 −4− 36

  
x1

x2

 
= 0,

x1 − 2x2 = 0 i.e., x1 = 2x2

X2 = C

 
1

2

 
.

Example 6:

B = A± kI =
 

8 −4

2 2

 
± k

 
1 0

0 1

 

=
 

8± k −4

2 2± k

 

Solution: Characteristic equation of B is

|B − λI | = 0

    8± k − λ −4

2 2± k − λ

    = 0

i.e., (8± k − λ)(2± k − λ)+ 8= 0

λ2 − (10± 2k)λ+ (k2 ± 10k + 24)= 0

roots are 10±2
2
± k i.e., 4± k and 6± k which are 4,

6 of A with ±k.

Eigen vectors of B and A are same
For λ = 4± k, 

8± k− (4± k) −4

2 2± k− (4± k)

  
x1

x2

 
= 0

4x1 − 4x2 = 0 or x1 = x2 etc.

Example 7: D = 2A2 − 1
2
A+ 3I

Solution:

D = 2

 
56 −40

20 −4

 
− 1

2

 
8 −4

2 2

 
+ 3

 
1 0

0 1

 

=
 

111 −78

39 −6

 

ch. eq. of D is

 
111− λ −78

39 −6− λ

 
= 0

or λ2 − 105λ+ 2376 = (λ− 33)(λ− 72) = 0

Thus the eigen values of D are 33 and 72.

Note that 33 = 2 · 16 − 1
2
· 4 + 3 and

72 = 2 · 36− 1
2
· 6+ 3 i.e., eigen value of D

is 2λ2 − 1
2
λ+ 3 where λ is the eigen value of A.

The eigen vectors of D and A are same.

For λ = 33, 
111− 33 −78

39 −6− 33

  
x1

x2

 
= 0

i.e., 78x1 − 78x2 = 0

i.e., x1 = x2 etc.

Example 8: Find the sum and product of eigen

values of A.

Solution: Sum of eigen values of A = 4+ 6 =
10 = trace of A = a11 + a22 = 8+ 2 = 10.

Product of eigen values ofA = 4.6 = 24 = |A| =
16+ 8 = 24.

Example 9: Find the eigen values and eigen vectors
of

A =

3 1 4

0 2 6

0 0 5
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Solution: For upper triangular, lower triangular and

diagonal matrices, the eigen values are given by the

diagonal elements.
The characteristic eq.

|A− λI | =

      
3− λ 1 4

0 2− λ 6

0 0 5− λ


= 0

i.e., (3− λ)(2− λ)(5− λ)= 0

So eigen values ofA are 3, 2, 5 which are the diagonal

elements of A.
Eigen vector X1 for λ = 3

0 1 4

0 −1 6

0 0 2




x1

x2

x3


= 0

i.e., x2 + 4x3 = 0,−x2 + 6x3 = 0, 2x3 = 0

x2 = 0, x3 = 0, x1 = arbitrary,

X1 = C1


1

0

0


 .

Eigen vector X2 for λ = 2,

x1 + x2 + 4x3 = 0, 6x3 = 0, 3x3 = 0

... x3 = 0, x1 = −x2, X2 = C1


 1

−1

0




For λ = 5,

−2x1 + x2 + 4x3 = 0

−3x2 + 6x3 = 0

i.e., x1 = 3x3, x2 = 2x3

X3 = C2


3

2
1


 .

Find the eigen values and eigen vectors of:

Example 10:

A =

1 0 −1

1 2 1

2 2 3




Determine whether the eigen vectors are orthogonal.

Solution:

Characteristic equation is

      
1− λ 0 −1

1 2− λ 1
2 2 3− λ

      

= λ3 − 6λ2 + 11λ− 6= 0

(λ− 1)(λ− 2)(λ− 3)= 0

So λ = 1, 2, 3 are three distinct eigen values of A

For λ = 1,
0 0 −1

1 1 1

2 2 2




x1

x2

x3


 = 0,

x3 = 0

x1 + x2 = 0,

X1 = C1


 1

−1

0




For λ = 2,
−1 0 −1

1 0 1

2 2 1




x1

x2

x3


 = 0,

x1 + x3 = 0

2x1 + 2x2 + x3 = 0

x1 = −x3, x2 =
1

2
x3, X2 = C


 2

−1

−2




For λ = 3,
−2 0 −1

1 −1 1

2 2 0




x1

x2

x3


 = 0,

x1 = −x2

x1 = − 1
2
x3,

X3 = C


 1

1

−2




Thus there are three linearly independent eigen vec-

tors X1, X2, X3 corresponding to the three distinct

eigen values. Since XT
1 X2 = 3  = 0, XT

2 X3 = 5  =
0, XT

3 X1 = 0.

Therefore only X1 and X3 are orthogonal.

Example 11:

A =

 1 2 2

0 2 1

−1 2 2




Determine the algebraic and geometric multiplicity.

Solution:

Characteristic equation is

      
1− λ 2 2

0 2− λ 1

−1 2 2− λ


= 0

λ3 − 5λ2 + 8λ− 4 = (λ− 1)(λ− 2)2 = 0
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So λ = 1, 2, 2 are eigen values with λ = 2 repeated

twice (double root) of multiplicity 2.

The algebraic multiplicity of the eigen valueλ = 2

is 2.

For λ = 1, 
 0 2 2

0 1 1

−1 2 1


 ,

x2 = −x3

x1 = −x3

X1 = C


 1

1

−1




For λ = 2, 
−1 2 2

0 0 1

−1 2 0


 ,

x3 = 0

x1 = 2x2

X2 = C


2

1

0




Thus only one eigen vector X2 corresponds to the

repeated eigen value λ = 2.

The geometric multiplicity of eigen value λ = 2

is one.

Example 12: A =
 

0 1 0

0 0 1

1 −3 3

 

Determine the algebraic and geometric multiplicity.

Solution: Characteristic equation is

λ3 − 3λ2 + 3λ− 1 = (λ− 1)3 = 0

λ = 1, 1, 1 is an eigen value of algebraic multi-

plicity 3.

For λ = 1,

−x1 + x2 = 0 ... x1 = x2

−x2 + x3 = 0 x2 = x3

x1 − 3x2 + 2x3 = 0

X = C


1

1

1




Thus only one eigen value X corresponds to the

thrice repeated eigen value λ = 1, so geometric

multiplicity is one.

Example 13: A =
 

2 1 1

1 2 1

0 0 1

 

Determine the algebraic and geometric multiplicity.

Solution: Characteristic equation is      
2− λ 1 1

1 2− λ 1
0 0 1− λ

      = (1− λ)(λ− 1)(λ− 3) = 0

Thus λ = 1, 1, 3 are the eigen values of A. So the

algebraic multiplicity of eigen value λ = 1 is two.
For λ = 3,

−1 1 1

1 −1 1

0 0 −2


 ∼ x3 = 0

x1 = x2,
X1 = C


1

1

0




For λ = 1,
1 1 1

1 1 1

0 0 0


∼


1 1 1

0 0 0

0 0 0


 ,

n = 3

r = 1

n− r = 3− 1 = 2 arbitrary

x1 + x2 + x3 = 0 or x1 = −x2 − x3

where x2 and x3 are arbitrary
For a choice of x2 = 0, x3 = arbitrary.

X2 = C


 1

0

−1




For a choice of x2  = 0, x3 = 0

X3 = C


 1

−1

0




Thus for the repeated eigen value λ = 1, there

corresponds two linearly independent eigen vectors

X2 and X3. So the geometric multiplicity of eigen

value λ = 1 is 2.

Example 14: Find the eigen values of the orthog-
onal matrix

B = 1

3


1 2 2

2 1 −2

2 −2 1
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Solution: The characteristic equation of

A =

1 2 2

2 1 −2

2 −2 1


 is

      
1− λ 2 2

2 1− λ −2

2 −2 1− λ

      = λ3 − 3λ2 − 9λ+ 27 = 0

or (λ− 3)2(λ+ 3) = 0

The eigen values of A are 3, 3− 3, so the eigen

values of B = 1
3
A are 1, 1,−1.

Note that λ = 1 is an eigen value of B then its

reciprocal 1
λ
= 1

1
= 1 is also an eigen value of B.

Example 15: Find the inverse transformation of

y1 = x1 + 2x2 + 5x3

y2 =−x2 + 2x3

y3 = 2x1 + 4x2 + 11x3

Solution: With Y = [y1 y2 y3]T ,X = [x1 x2 x3]T ,
the coefficient matrix

A=

1 2 5

0 −1 2

2 4 11


 . Its |A| = −1

Adj A=

−19 −2 9

4 1 −2

2 0 −1




Thus the inverse transformation is

X =

x1

x2

x3


 = A−1Y =


 19 2 −9

−4 −1 2

−2 0 1




y1

y2

y3




=

19y1 +2y2 −9y3

−4y1 −y2 +2y3

−2y1 +y3




EXERCISE

Find the eigen values and eigen vectors of:

1.

 −5 2

2 −2

 

Ans. λ2 + 7λ+ 6 = 0, λ = −1,−6,

 
1

2

 
,

 
2

−1

 

2.

 
6 8

8 −6

 

Ans. 10,−10,

 
2

1

 
,

 
1

−2

 

3.

 
1 2

1 0

 

Ans. 2,−1,

 
2

1

 
,

 
1

−1

 

4.

 
1 2

3 2

 

Ans. 4,−1,

 
2

3

 
,

 
1

−1

 

5.


−2 2 −3

2 1 −6

−1 −2 0




Ans. 5,−3,−3,


 1

2

−1


 ,


−2

1

0


 ,


3

0

1




6.


1 1 3

1 5 1

3 1 1




Ans.
λ3 − 7λ2 + 36 = 0,

λ = −2, 3, 6


−1

0

1


 ,


+1

−1

1


 ,


1

2

1




7.


−3 −7 −5

2 4 3

1 2 2




Ans.
(λ− 1)3 = 0

λ = 1, 1, 1
,


−3

1

1




8.


 8 −6 2

−6 7 −4

2 −4 3




Ans.
λ3 − 18λ2 + 45λ = 0

λ = 0, 3, 15


1

2

2


 ,


 2

1

−2


 ,


 2

−2

1




9.


2 2 1

1 3 1

1 2 2
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Ans.
λ3− 7λ2+ 11λ− 5= 0

λ = 5, 1, 1,


1

1

1


 ,


 1

0

−1


 ,


 2

−1

0




10.


 3 10 5

−2 −3 −4

3 5 7




Ans.
λ3− 7λ2+ 16λ− 12= 0

λ = 2, 2, 3
, for λ = 2,


 5

2

−3


 ,

For λ=3,


 1

1

−2




11.


 6 −2 2

−2 3 −1

2 −1 3




Ans.
λ3 − 12λ2 + 36λ− 32 = 0

λ = 2, 2, 8
,


−1

0

2


 ,


1

2

0


,

For λ = 8,


 2

−1

1




12.


2 1 0

0 2 1

0 0 2




Ans.
(λ− 2)3 = 0

λ = 2, 2, 2
,


1

0

0




13.




1 −4 −1 −4

2 0 5 −4

−1 1 −2 3

−1 4 −1 6




Ans.
λ4 − 5λ3 + 9λ2 − 7λ+ 2 = 0

λ = 2, 1, 1, 1,

For λ = 2,




2

3

−2

−3


 , for λ = 1,




3

6

−4

−5




14.


2 −2 2

1 1 1

1 3 −1




Ans.

λ3 − 2λ2 − 4λ+ 8 = 0

λ = 2, 2,−2

For λ = 2, [0 1 1]T

For λ = −2, [−4 − 1 7]T

15.


 3 −2 −5

4 −1 −5

−2 −1 −3




Ans.

(λ+ 5)(λ− 2)2 = 0, λ = 5, 2, 2

For λ = 5, X1 = [3 2 4]T

For λ = 2, X2 = [1 3 − 1]

16. Find the sum and product of the eigen values

of

A =

 2 3 −2

−2 1 1

1 0 2




Ans.
sum = trace = 2+ 1+ 2 = 5

product = |A| = 21.

14.4 CAYLEY-HAMILTON THEOREM

Every square matrix satisfies its own characteristic

equation.

Proof: Let A be an n-square matrix. Let D(λ) be

the characteristic polynomial of A, given by

D(λ)= |λI − A| = λn + Cn−1λ
n−1

+Cn−2λ
n−2 + · · · + C1λ+ C0 (1)

Let B(λ) be the adjoint of (λI − A). The elements

of B(λ) are cofactors of the matrix (λI − A) and

are polynomials in λ of degree not exceeding n− 1.

Thus

B(λ)= Bn−1λ
n−1 + Bn−2λ

n−2 + · · ·
+B1λ+ B0 (2)

where Bi are n-square matrices whose elements are

functions of the elements of A and independent of λ.

We know that

(λI − A) · adj (λI − A) = |λI − A|I
(λI − A) · B(λ) = |λI − A|I

From (1) and (2), we have

(λI − A)
 
Bn−1λ

n−1 + Bn−2λ
n−2 + · · · + B1λ+ B0
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= I (λn + Cn−1λ
n−1 + · · · + C1λ+ C0) (3)

Equating the like powers of λ on both sides of (3),

we get

Bn−1 = I

Bn−2 − ABn−1 = Cn−1I

Bn−3 − ABn−2 = Cn−2I

· · · · · · · · · · · · · · · · · · · · ·
B0 − AB1 = C1I

−AB0 = C0I

Multiplying both sides of the above matrix equations

by An,An−1, An−2, . . . , A, I respectively, we have

AnBn−1 = An

An−1Bn−2 − AnBn−1 = Cn−1A
n−1

An−2Bn−3 − An−1Bn−2 = Cn−2A
n−2

· · · · · · · · · · · · · · · · · · · · ·
AB0 − A2B1 = C1A

−AB0 = C0I

By adding all the above equations, we get

0= An + Cn−1A
n−1 + Cn−2A

n−2 + · · ·
+C1A+ C0I (4)

since all the terms on the L.H.S. cancel each other.
Thus A satisfies its own characteristic equation.

Inverse by Cayley-Hamilton Theorem

Multiplying (4) by A−1

0= An−1 + Cn−1A
n−2 + Cn−2A

n−3 + · · ·
+C1I + C0A

−1

Solving for A−1, we get

A−1 = −1

C0

 
An−1 + Cn−1A

n−2

+Cn−2A
n−3 + · · · + C1I

 
.

Note: A−1 exists only if C0 = determinant of A is

not equals to zero.

WORKED OUT EXAMPLES

Example 1: Verify Cayley-Hamilton theorem for

the matrix A =
 

1 2

2 −1

 
. Find A−1. Determine A8.

Solution: The characteristic equation is

|A− λI | =
    1− λ 2

2 −1− λ

    = 0

or (λ− 1)(1+ λ)− 4= 0

so λ2 − 5 = 0

A2 = A · A =
 
1 2
2 −1

    
 
1 2
2 −1

    =
    5 0
0 5

    = 5I

or A2 − 5I = 0
Thus A satisfies the characteristic equation.

To find A−1, multiply A2 − 5I = 0 by A−1.

A−1 · A2 − 5A−1I = 0

or A− 5A−1 = 0

So A−1 = 1

5
A= 1

5

 
1 2

2 −1

 

To find A8, multiply A2 − 5I = 0 by A6

A6 · A2 − 5I · A6 = 0

A8 = 5A6 = 5 · A2 · A2 · A2 = 5 · (5I )(5I )(5I )

A8 = 625I

Example 2: Verify Cayley-Hamilton theorem for
the matrix

A =




1 2 3

2 4 5

3 5 6




and hence find the inverse of A. Find A4. Express

B = A8 − 11A7 − 4A6 + A5 + A4 − 11A3 − 3A2

+ 2A + I as a quadratic polynomial in A. Find B.

Solution: The characteristic equation of A is

|A− λI | =

       
1− λ 2 3

2 4− λ 5

3 5 6− λ

       
= (1− λ)[(4− λ)(6− λ)− 25]
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−2[2(6− λ)− 15]

+3[10− 3(4− λ)] = 0,

λ3 − 11λ2 − 4λ+ 1 = 0.

Cayley-Hamilton theorem is verified if A satisfies

the above characteristic equation i.e.,

A3 − 11A2 − 4A+ I = 0

A2 = A · A=




1 2 3

2 4 5

3 5 6






1 2 3

2 4 5

3 5 6




=




14 25 31

25 45 56

31 56 70




A3 = A · A2 =




1 2 3

2 4 5

3 5 6






14 25 31

25 45 56

31 56 70




=




157 283 353

283 510 636

353 636 793




verification

A3 − 11A2 − 4A+ I

=

157 283 353

283 510 636

353 636 793


− 11


14 25 31

25 45 56

31 56 70




−4


1 2 3

2 4 5

3 5 6


+


1 0 0

0 1 0

0 0 1


 =


0 0 0

0 0 0

0 0 0




To find A
−1: From characteristic equation A−1 =

−A2 + 11A+ 4I . So

A−1 =−

14 25 31

25 45 56

31 56 70


+ 11


1 2 3

2 4 5

3 5 6


+

+4


1 0 0

0 1 0

0 0 1


 =


 1 −3 2

−3 3 −1

2 −1 0




To find A
4: From Cayley-Hamilton theorem

A3 − 11A2 − 4A+ I = 0

or A3 = 11A2 + 4A− I

Multiplying both sides by A

A4 = A · A3 = A(11A2 + 4A− I ) = 11A3 + 4A2 − A

= 11


157 283 353

283 510 636

353 636 793


+ 4


14 25 31

25 45 56

31 56 70




−

1 2 3

2 4 5

3 5 6




=

1782 3211 4004

3211 5786 7215

4004 7215 8997




To find B: Rewrite

B = A8 − 11A7 − 4A6 + A5 + A4 − 11A3

−3A2 + 2A+ I

= A5(A3 − 11A2 − 4A+ I )

+A(A3 − 11A2 − 4A+ I )+ A2 + A+ I

= A5(0)+ A(0)+ A2 + A+ I

since A satisfies the characteristic equation.
Thus

B = A2 + A+ I =

14 25 31

25 45 56

31 56 70




+

1 2 3

2 4 5

3 5 6


+


1 0 0

0 1 0

0 0 1




B =

16 27 34

27 50 61

34 61 77




Example 3: Determine A−1, A−2, A−3 if

A =

 4 6 6

1 3 2

−1 −4 −3




Solution: The characteristic equation of A is

|A− λI | =

4− λ 6 6

1 3− λ 2

−1 −4 −3− λ




= λ3 − 4λ2 − λ+ 4 = 0

It follows from Cayley-Hamilton theorem that
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A3 − 4A2 − A+ 4I = 0

Multiplying by A−1,

A−1A3 − 4A−1A2 − A−1 · A+ A−14I = 0

Solving A−1 = 1
4
[I + 4A− A2]

A2 = A · A =

 16 18 18

5 7 6

−5 −6 −5




A−1 = 1

4


1 0 0

0 1 0

0 0 1


+ 4


 4 6 6

1 3 2

−1 −4 −3




−1

4


 16 18 18

5 7 6

−5 −6 −5




A−1 = 1

4


 1 6 6

−1 6 2

1 −10 −6




Multiplying A−1 by A−1, we have

A−2 = A−1A−1=A−1 1

4
[I+4A−A2]= 1

4
[A−1+4I−A]

A−2 = 1

4




1
4
− 9

2
− 9

2

− 5
4

5
2
− 3

2

5
4

3
2

11
2




Similarly,

A−3 = A−1A−2 = A−1[A−1 + 4I − A]
1

4

= 1

4
[A−2 + 4A−1 − I ] = 1

64


 1 78 78

−21 90 26

21 −154 −90




EXERCISE

Verify Cayley-Hamilton theorem for the matrix:

1.

 
2 5

1 −3

 
Ans. Characteristic polynomial: λ2 + λ− 11

2.

 
2 −3

7 −4

 
Ans. Characteristic polynomial: λ2 + 2λ+ 13

3.


1 4 −3

0 3 1

0 2 −1




Ans. Characteristic equation: λ3 − 3λ2 − 3λ+ 5 =
0

4. Verify Cayley-Hamilton theorem for

A=
 
1 4

2 3

 
. Find A−1.

Find B = A5−4A4−7A3+11A2−A− 10I

Ans. Characteristic equation: λ2 − 4λ − 5 = 0,

A−1=1

5

 −3 4

2 −1

 
, B = A+ 5I =

 
6 4

2 8

 

5. Use Cayley-Hamilton theorem to find A−1 if

A =

 1 1 3

1 3 −3

−2 −4 −4




Ans. Characteristic equation: λ3 − 20λ+ 8 = 0

A−1 = 1

4


 12 4 6

−5 −1 −3

−1 −1 −1




6. Find A−1 and A4 if

A =

1 0 3

2 1 −1

1 −1 1




Ans. Characteristic equation: λ3− 3λ2− λ+ 9= 0,

A−1= 1
9


0 3 3

3 2 −7

3 −1 −1
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A4 =

 7 −30 42

18 −13 46

−6 −14 17




7. Find A−1 for

A =

 2 −1 1

−1 2 −1

1 −1 2




Ans. Characteristic equation: λ3−6λ2+9λ−4=0,

A−1 = 1

4


 3 1 −1

1 3 1

−1 1 3




8. Compute A−1, A−2, A3 and A4 if

A =

1 1 2

3 1 1

2 3 1




Ans. Characteristic equation: λ3 −3λ2−7λ−11 =
0

A−1 = 1

11


−2 5 −1

−1 −3 5

7 −1 −2


 ,

A−2 = 1

121


 −8 −24 29

40 −1 −24

−27 40 −8




A3 =

42 31 29

45 39 31

53 45 42


 ,

A4 =

193 160 144

224 177 160

272 224 193




9. If A =

2 1 1

0 1 0

1 1 2


 find A−1. Find B =

A8−5A7 + 7A6−3A5−5A3+8A2 − 2A+ I

Ans. Characteristic equation:
λ3− 5λ2+ 7λ− 3= 0

A−1 = 1

3


 2 −1 −1

0 3 0

−1 −1 2


 , B =


8 5 5

0 3 0

5 5 8




10. Verify Cayley-Hamilton theorem and hence
find A−1 for

A =




0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0




Ans. Characteristic equation: λ4 − λ3 − λ+ 1 = 0

A−1 =




0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0




11. Find B = A6 − 4A5 + 8A4 − 12A3 + 14A2

if A =
 

1 2

−1 3

 
Ans. Characteristic equation: λ2 − 4λ + 5 = 0,

B = 5I − 4A =
 +1 −8

4 −7

 

12. Find A−1 if A =

 7 2 −2

−6 −1 2

6 2 −1




Ans. Characteristic equation: λ3 − 5λ2 + 7λ− 3 =
0,

A−1 = 1

3


−3 −2 2

6 5 −2

−6 −2 5


 .

14.5 DIAGONALIZATION

POWERS OF A MATRIX

Consider only square matrices of order n.

Similar matrix

A is said to be similar to B if there exists a non-
singular matrix P such that

B = P−1AP

This transformation of A to B is known as similarity

transformation.

Invariant Eigen Values

1. Similar matrices A and B have same eigen values

2. Further if X is an eigen vector of A then Y =
P−1X is an eigen vector of the matrix B.

Proof:

1. Suppose B is similar to A i.e., B = P−1AP .
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Consider the characteristic polynomial of B

|B − λI | = |P−1AP − λI | = |P−1AP − λP−1IP |
= |P−1(A− λI )P | = |P−1||A− λI ||P |
= |A− λI |

since |P−1||P | = |P−1P | = |I | = 1.

Thus A and B have the same characteristic

polynomial and therefore has the same eigen

values.

2. Let X be an eigen vector of A so that AX = λX.
Consider

B = P−1AP

Post multiplying by P−1

BP−1 = (P−1AP )P−1 = (P−1A)(PP−1) = P−1A

Post multiply by X

B(P−1X)= P−1AX = P−1(AX)

= P−1λX = λ(P−1X)

ThusP−1X is an eigen vector ofB corresponding

to the eigen value λ.

Diagonalization

A n-square matrix A with n linearly independent

eigen vectors is similar to a diagonal matrixD whose

diagonal elements are the eigen values of A.

Proof: Let X1, X2, . . . , Xn be the n linearly inde-
pendent eigen vectors of A corresponding to n eigen
values λ1, λ2, . . . , λn. Construct P , known asmodal
matrix, having X1, X2, . . . , Xn as the n column
vectors i.e.,

Pn×n = [X1X2 · · ·Xn].

Since X1, X2, . . . , Xn are linearly independent, P−1

exists.
Consider

AP = A[X1X2 · · ·Xn] = [AX1 AX2 · · ·AXn]

= [λ1X1 λ2X2 · · · λnXn]

= [X1X2 · · ·Xn]



λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

0 0 · · · λn




AP = PD

where D is the diagonal matrix with eigen val-

ues of A as the principal diagonal elements.

D is known as spectral matrix.
Pre multiplying by P−1 on both sides

B = P−1AP = P−1PD = (P−1P )D = ID = D.

Powers of a Matrix A

Consider D = P−1AP

Then D2 = (P−1AP )(P−1AP )

= P−1A(PP−1)AP

= P−1A · IAP = P−1AAP

= P−1A2P

Similarly, D3 = P−1A3P

Thus Dn = P−1AnP

To obtain An, pre-multiply by P and post-multiply
by P−1,

PDnP−1 = P (P−1AnP )P−1 = (PP−1)An(PP−1)

= IAnI = An

... An = PDnP−1.

WORKED OUT EXAMPLES

Example 1: Find a matrix P which diagonalizes
the matrix

A =
 

4 1

2 3

 
. Verify that P−1AP = D

where D is the diagonal matrix. Hence find A6.

Solution: A is diagonalizable by P whose columns

are the linearly independent eigen vectors of A.
The characteristic equation of A is

|A− λI | =
 

4− λ 1

2 3− λ

 
= 0

(4− λ)(3− λ)− 2 = λ2 − 7λ+ 10

= (λ− 2)(λ− 5) = 0,
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so λ = 2, 5 are two distinct eigen values of A.

For λ= 2, 2x1 + x2 = 0, x2 = −2x1, X1 =
 

1

−2

 

For λ= 5,−x1 + x2 = 0, x2 = x1, X2 = [1, 1]T

Thus the matrix P which diagonalizes A is

P = [X1, X2] =
 

1 1

−2 1

 

Verification:

P−1 = 1

3

 
1 −1

2 1

 

P−1AP = 1

3

 
1 −1

2 1

  
4 1

2 3

  
1 1

−2 1

 

= 1

3

 
2 −2

10 5

  
1 1

−2 1

 

P−1AP = 1

3

 
6 0

0 15

 
=
 
2 0

0 5

 
= D = diagonal matrix

D contains eigen values 2, 5 as diagonal elements.
To find A6:

A6 = PD6P−1 =
 

1 1

−2 1

  
26 0

0 56

 
1

3

 
1 −1

2 1

 

A6 = 1

3

 
64 15625

−128 15625

  
1 −1

2 1

 

= 1

3

 
31314 15561

31122 15753

 

... A6 =
 
10438 5187

10374 5251

 

Example 2: Diagonalize

A =

1 6 1

1 2 0

0 0 3




and hence find A8. Find the modal matrix.

Solution: The non-singular square matrixP contain-
ing eigen vectors of A as columns, diagonalizes A.

The ch. eq. of A is


1− λ 6 1

1 2− λ 0
0 0 3− λ


= 0

i.e., (λ+ 1)(λ− 3)(λ− 4)= 0

so eigen values of A are λ = −1, 3, 4

For λ = −1,

2x1 + 6x2 + x3 = 0
x1 + 3x2 + 0 = 0

4x3 = 0

... x3 = 0
x1 = −3x2

X1 =

−3

1
0




For λ = 3,

−2x1 + 6x2 + x3 = 0
x1 − x2 = 0

... x1 = x2

x3 = −4x2
,

X2 =

 1

1
−4




For λ = 4,

−3x1 + 6x2 + x3 = 0
x1 − 2x2 = 0
−x3 = 0

... x3 = 0
x2 = 2x2

,

X3 =

2

1
0


 .

Thus

P =

−3 1 2

1 1 1
0 −4 0




is the modal matrix.
To find P−1:

−3 1 2

1 1 1

0 −4 0

      
1 0 0

0 1 0

0 0 1




R12

R21(3)
∼

1 1 1

0 4 5

0 −4 0

      
0 1 0

1 3 0

0 0 1




R32(1)

∼


1 1 1

0 4 5

0 0 5

      
0 1 0

1 3 0

1 3 1




R
2
 

1
4

 
R3

 
1
5

 
∼




1 1 1

0 1 5
4

0 0 1

       
0 1 0
1
4

3
4

0

1
5

3
5

1
5




R
23
 
− 5

4

 
R13(−1)

∼




1 1 0

0 1 0

0 0 1

       
− 1

5
2
5
− 1

5

0 0 − 1
4

1
5

3
5

1
5
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∼
R12(−1)




1 0 0

0 1 0

0 0 1

       
− 1

5
2
5

1
20

0 0 − 1
4

1
5

3
5

1
5




Thus

P−1 = 1

20


−4 8 1

0 0 −5

4 12 4




Diagonalization:

D = P−1AP

= 1

20


−4 8 1

0 0 −5
4 12 4




1 6 1

1 2 0
0 0 3




−3 1 2

1 1 1
0 −4 0




= 1

20


 4 −8 −1

0 0 −15
16 48 16




−3 1 2

1 1 1
0 −4 0




= 1

20


−20 0 0

0 60 0
0 0 80


 =


−1 0 0

0 3 0
0 0 4




To find A8:

A8= PD8P−1

=

−3 1 2

1 1 1

0 −4 0




(−1)8 0 0

0 38 0

0 0 48


 1

20


−4 8 1

0 0 −5

4 12 4




=

−3 1 2

1 1 1

0 −4 0




1 0 0

0 6561 0

0 0 65536




−4 8 1

0 0 5

4 12 4


 1

20

= 1

20


−3 6561 131072

1 6561 65536

0 −26244 0




−4 8 1

0 0 5

4 12 4




= 1

20


524300 1572840 491480

262140 786440 229340

0 0 131220




... A8 =

26215 78642 24574

13107 39322 11467

0 0 6561




EXERCISE

Diagonalize the following matrices. Find the modal

matrix P which diagonalizes (transforms) A

1.

 
5 3

3 5

 

Ans. P =
 
1 1

1 −1

 
,D =

 
8 0

0 2

 

2.

 
0 1

0 0

 
Ans. not diagonizable since only one eigen vector 

k

0

 
exists.

3.

 
5 4

1 2

 

Ans. P =
 
4 1

1 −1

 
,D =

 
6 0

0 1

 

4.

 
2 −2

−2 5

 

Ans. P =
 

1 2

−2 1

 
,D =

 
6 0

0 1

 

5.

 
1 2

2 1

 

Ans. P =
 
1 1

1 −1

 
,D =

 
3 0

0 −1

 

6.

 
1 2

5 4

 

Ans. P =
 

1 2

−1 5

 
,D =

 −1 0

0 6

 

7.

 
4 1

3 2

 
hence find A5

Ans. P =
 

1 1

−3 1

 
,D =

 
1 0

0 5

 
,

A5 =
 
2344 781

2343 782

 

8.

 
1 1

−1 1

 
Ans. no real eigen values, λ = 1± i so not diago-

nalizable over real.
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Modal matrix over complex 
1 1

i −i

 
,D =

 
1+ i 0

0 1− i

 
.

9.


 7.3 0.2 −3.7

−11.5 1.0 5.5

17.7 1.8 −9.3




Ans. characteristic equation λ3 + λ2 − 12λ = 0

eigen values 3, −4, 0.

Modal matrix =

−1 1 2

3 −1 1

−1 3 4


 ,

D =

3 0 0

0 −4 0

0 0 0




10.


1 1 3

1 5 1

3 1 1


 hence find A4.

Ans. characteristic equation
(λ+ 2)(λ− 3)(λ− 6) = 0, λ = −2, 3, 6

Modal matrix P =

−1 1 1

0 −1 2

1 1 1


 ,

D =

−2 0 0

0 3 0

0 0 6


 ,

A4 =

251 485 235

485 1051 485

235 485 251


 .

11.


 8 −6 2

−6 7 −4

2 −4 3




Ans. λ3 − 18λ2 + 45λ = 0, λ = 0, 3, 15

P =

1 2 2

2 1 −2

2 −2 1


 , D =


0 0 0

0 3 0

0 0 15




12. Find A8 for A =

 1 1 1

0 2 1

−4 4 3




Ans. (1− λ)(λ− 2)(λ− 3) = 0, λ = 1, 2, 3,

P =

 1 1 1

2 1 1

−2 0 1




A8 =

−12099 12355 6305

−12100 12356 6305

−13120 13120 6561




13. Find A5 for A =

11 −4 −7

7 −2 −5

10 −4 −6




Ans. λ = 0, 1, 2

P =

1 1 −2

1 −1 −1

1 2 −2


 , A5 =


191 −64 −127

97 −32 −65

190 −64 −126




14. Find A4 for A =

 3 −1 1

−1 5 −1

v1 −1 3




Ans. λ = 2, 3, 6,

P =

 1 1 1

0 1 −2

−1 1 1


 , A4=


 251 −405 235

−405 891 −405

235 −405 251




15.


 7 −2 1

−2 10 −2

1 −2 7




Ans. λ3 − 24λ2 + 180λ− 432 = 0, λ = 6, 6, 12

P =




1√
2

1√
3

1√
6

0 1√
3
− 2√

6

− 1√
2

1√
3

1√
6




16.


+1 −3 2

−3 7 −5

2 −5 8




Ans. λ = 1,−2, 18,

P =

1 3 −1

0 1 1

0 0 2
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14.6 REAL MATRICES: SYMMETRIC,

SKEW-SYMMETRIC, ORTHOGONAL.

QUADRATIC FORM

A matrix A = (aij ) is said to be a real matrix if

every element aij of A is real. A real square matrix

A = (aij ) is said to be

a. Symmetric if AT = A i.e., aji = aij

b. Skew-symmetric if AT = −A, i.e., aji = −aij
c. Orthogonal if AT = A−1

The determinant of an orthogonal matrix is±1 since

1= |I | = |AA−1| = |AAT | = |A||AT |
= |A||A| = |A|2 i.e., |A| = ±1.

Orthogonal Transformation

which geometrically represents a rotation, is a
transformation

Y = AX

where A is an orthogonal matrix.
Norm of a vector X denoted by ||X|| is

||X|| =
 
XT X

represents the length of the vector X.

Orthonormal System (Set) of Vectors

A set of vectors X1, X2, . . . , Xn are said to form an
orthonormal system if

XT
i Xj = δij =

 
1, if i = j

0, if i  = j

i.e, vectors are mutually orthogonal and normalized

Note: Column (row) vectors of an orthogonal ma-

trix form an orthonormal system of vectors (proof on

Page 14.27).

Quadratic Form

Quadratic form in n variables x1, x2, . . . , xn is an
expression of the form

Q = XT AX =
n 

i=1

n 
j=1

aij xixj

= a11x
2
1 + a12x1x2 + · · · + a1nx1xn

+a21x2x1 + a22x
2
2 + · · · + a2nx2xn

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+an1xnx1 + an2xnx2 + · · · + annx

2
n.

Here A is known as the coefficient matrix.
Rewriting

Q = XT AX = a11x
2
1 + (a12 + a21)x1x2 + · · ·

+(a1n + an1)x1xn

+a22x
2
2 + (a23 + a32)x2x3 + · · ·

+(a2n + an2) · · · x2xn

+ · · · · · · · · · · · · · · · · · · · · · + annx
2
n

Put cij = 1
2
(aij + aji) then cij = cji and cij + cji =

aij + aji . Thus the quadratic form can be rewritten
as

Q =
n 

i=1

n 
j=1

cij xixj

where c = 1
2
[A+ AT ] is a real symmetric matrix.

Thus the coefficient matrix in a quadratic form can

always be assumed (can be constructed) as a real

symmetric matrix.

WORKED OUT EXAMPLES

Example 1: Show that any square matrix A can

be written as the sum of a symmetric matrix B and

skew-symmetric matrix C.

Solution: Consider B = 1
2
(A+ AT ) since

BT = 1

2
(A+ AT )T = 1

2
(AT + AT T

)

= 1

2
(AT + A) = 1

2
(A+ AT ) = B,

so B is symmetric.
Similarly, C = 1

2
(A− AT ) is skew-symmetric

because

CT = 1

2
(A− AT )T = 1

2
(AT − AT T

)

= 1

2
(AT − A) = −(A− AT ) = −C
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Now

A = (B + C) = 1

2

 
(A+ AT )+ (A− AT )

 
= A.

Example 2: Show that

A = 1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


 is orthogonal.

Solution: Consider A · AT

AAT = 1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


 1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1




= 1

4




4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4


 = I

i.e., AT = A−1 ... A is orthogonal.

Example 3: Determine a, b, c so that A is orthog-
onal, where

A =

0 2b c

a b −c
a −b c




Solution: For orthogonal matrix AAT = I so

AAT =

0 2b c

a b −c
a −b c




 0 a a

2b b −b
c −c c




=




4b2 + c2 2b2 − c2 −2b2 + c2

2b2 − c2 a2 + b2 + c2 a2 − b2 − c2

−2b2 + c2 a2 − b2 − c2 a2 + b2 + c2


 = I

Solving 2b2 − c2 = 0, a2 − b2 − c2 = 0 (non-
diagonal elements of I )

c = ±
√

2b, a2 = b2 + c2 = b2 + 2b2 = 3b2, a = ±
√

3b

From diagonal elements of I ,

4b2 + c2 = 1, 4b2 + 2b2 = 1

... b = ± 1√
6
, c = ± 1√

3
, a = ± 1√

2

Example 4: If X1 = 1
3
[2 − 1 2]T

and X2 = k[3 − 4 − 5]T

where k = 1√
50

, construct an orthogonal matrix

A = [X1 X2 X3]

Solution: Let X3 = [a1 a2 a3]T be the undeter-
mined vector. Since A is orthogonal, the columns
vectors of A form an orthonormal system XT

i Xj

= δij

XT
1 X2 =

 
2

3
− 1

3

2

3

  3k

−4k

−5k




= 2k + 4

3
− 10

3
k = 0, true

... X1 and X2 are orthogonal.

XT
1 X3 =

 
2

3
− 1

3

2

3

 a1

a2

a3




= 1

3
[2a1 − a2 + 2a3] = 0 (1)

XT
2 X3 = [3k − 4k − 5k]


a1

a2

a3




= (3a1 − 4a2 − 5a3)k = 0 (2)

Since X3 should be normalized

XT
3 X3 = [a1 a2 a3]


a1

a2

a3




= a2
1 + a2

2 + a2
3

1= ||X3|| =
 
XT

3 X3 =
 
a2

1 + a2
2 + a2

3 (3)

Solving (1) (2) (3), we get a1, a2, a3

2a1 − a2 + 2a3 = 0

3a1 − 4a2 + 5a3 = 0

a2
1 + a2

2 + a2
3 = 1

So a1 = −
13

5
a3, a2 = −

16

5
a3,

a2
3 =

25

550
, a3 =

1√
22
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... a1 = −
13

5
k1, a2 = −

16

5
k1, a3 = k1

where k1 =
1√
22

Thus the required orthogonal matrix A is

A =




2
3

3k − 13
5
k1

− 1
3
−4k − 16

5
k1

2
3
−5k k1


 .

Example 5: Find a real symmetric matrix C of

the quadratic form Q = x2
1 + 3x2

2 + 2x2
3 + 2x1x2 +

6x2x3

Solution: The coefficient matrix of Q is

A=

1 2 0

0 3 6

0 0 2


 , so C = symmetric matrix = 1

2
[A+ AT ]

C = 1

2




1 2 0

0 3 6

0 0 2


+


1 0 0

2 3 0

0 6 2




 =


1 1 0

1 3 3

0 3 2




Notes : The simplest of way writing C is

1. Put coefficients of square terms as the diagonal

elements.

2. Place 1
2

of aij , the coefficient of xi xj at cij and the

remaining 1
2

of aij at cji i.e., cij = cji = 1
2
aij

such that cij + cji = 1
2
(aij + aij ) = aij . For ex-

ample 6, coefficient of x2 x3 is equidistributed as

3 and 3 to c23 and c32.

EXERCISE

1. ExpressA as the sum of a symmetric and skew-

symmetric matrix where

A =

 
4 2 −3
1 3 −6
−5 0 −7

 

Ans. A+ AT = 1
2


 8 3 −8

3 6 −6

−8 −6 −14


 symmetric,

A− AT = 1
2


 0 1 2

−1 0 −6

−2 6 0


 skew−symmetric

2. If A and B are square matrices of the same or-

der andA is symmetric, then prove thatBTAB

is also symmetric.

Hint: (BTAB)T = BTAT BT T
but AT = A,

= BTAB.

3. Prove that the inverse of a non-singular sym-

metric matrix A is symmetric.

Hint: (A−1)T = (AT )−1 =A−1 (since (AT )−1

= (A−1)T and A = AT by symmetry).

4. Write A =

 3 −4 −1

6 0 −1

−3 13 −4


 as the sum of a

symmetric R and skew-symmetric S.

Ans. R = 1
2
[A+ AT ] =


 3 1 −2

1 0 6

−2 6 −4


,

S = 1
2
[A− AT ] =


 0 −5 1

5 0 −7

−1 7 0




5. Show that the eigen values of the skew-
symmetric matrix

A =

 0 9 −12

−9 0 20

12 −20 0




are purely imaginary or zero.

Ans. eigen values are 0,−25i, 25i (see Page 14.27)

Find real symmetric matrix C such that Q = XTCX

where

6. Q = 6x2
1 − 4x1x2 + 2x2

2

Ans.

 
6 −2

−2 2

 
7. Q = 2(x1 − x2)2
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Ans.

 
2 −1

−1 2

 
8. Q = (x1 + x2 + x3)2

Ans.


1 1 1

1 1 1

1 1 1




9. Q = 4x1x3 + 2x2x3 + x2
3

Ans.


0 0 2

0 0 1

2 1 1




Verify that the following matrices are orthogonal:

10. 1
3


1 2 2

2 1 −2

2 −2 1




Hint: Show that AAT = I .

11.


0 1 0

1 0 0

0 0 1




12. Prove that the product AB of two symmetric

matrices A and B is symmetric if AB = BA.

Hint: (AB)T = BTAT = BA since A =
AT ,B = BT , so (AB)T = BA = AB then

AB is symmetric. Provided AB = BA.

14.7 CANONICAL FORM:

or SUM OF THE SQUARES FORM

Of a real quadratic form Q = XTAX is YTDY or

λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n (1)

which is obtained by an orthogonal transformation

X = PY . Here P is known as modal matrix. D is

known as spectral matrix. D is a diagonal matrix

with the eigen values of A as the diagonal elements.

Let r be the rank of A and n be the number of

variables x1, x2, · · · , xn in the quadratic form. Then:

Index S of a quadratic form is the number of

positive square terms in the canonical form.

Signature of a quadratic form is the difference

between the number of positive and negative square

terms in the canonical form.

Definiteness A real nonsingular quadratic form

Q = XTAX (with |A|  = 0) is said to be

Positive definite: If rank and index are equal

i.e., r= n, s = n or if all the eigen values of A are

positive

Negative definite: If index equals to zero i.e.,

r = n, s = 0 or if all the eigen values of A are neg-

ative.

Positive semi-definite: If rank and index are
equal but less than n

i.e., s = r < n, (|A| = 0)

or all eigen values of A are non-negative (≥ 0) and

at least one eigen value is zero.

Negative semi definite: If index zero

i.e., s = 0, r < n, (|A| = 0)

or all eigen values of A are non-positive (≤ 0) and

at least one eigen value is zero.

Indefinite: Quadratic form is said to be indefinite

in any other case or some eigen values are positive

and some eigen values are negative.

Note: If Q is negative definite (semi-definite) then

−Q is positive definite (semi-definite).

WORKED OUT EXAMPLES

Example 1: Determine the nature, index and sig-

nature of the quadratic form 2x2
1 + 2x2

2 + 3x2
3 +

2x1x2 − 4x1x3 − 4x2x3.

Solution: The real symmetric matrix A associated
with the Q.F. is

A =

 2 1 −2

1 2 −2

−2 −2 3




Its characteristic equation is      
2− λ 1 −2

1 2− λ −2

−2 −2 3− λ

      
= λ3 − 7λ2 + 7λ− 1 = 0

= (λ− 1)(λ− (3+
√

8))(λ− (3−
√

8)) = 0
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The eigen values are λ = 1, 0.1715, 3.1715 which

are all positive. So Q.F. is positive definite.

Index: 3, Signature : 3− 0 = 3.

Example 2: Find the nature, index and signature
of Q.F.

2x1x2 + 2x1x3 + 2x2x3

Solution: A =

0 1 1

1 0 1
1 1 0




Characteristic equation is      
−λ 1 1

1 −λ 1
1 1 −λ

      = 0

λ3 − 3λ− 2 = 0 or (λ+ 1)2(λ− 2) = 0

The eigen values are 2,−1,−1, some are positive

and some are negative. So the Q.F. is indefinite.

Index: 1, Signature: 1− 2 = −1.

Example 3: Identify the nature, index and signa-
ture of the Q.F.

x2
1 + 4x2

2 + x2
3 − 4x1x2 + 2x3x1 − 4x2x3

Solution: A =

 1 −2 1
−2 4 −2

1 −2 1




Characteristic equation is

|A− λI | =

      
1− λ −2 1
−2 4− λ −2

1 −2 1− λ

      = λ2(λ− 6) = 0

Eigen values are λ = 0, 0, 6. So Q.F. is positive semi

definite.

Index: 3, Signature: 3.

Example 4: Classify the Q.F. and find the index
and signature of

−3x2
1 − 3x2

2 − 3x2
3 − 2x1x2 − 2x1x3 + 2x2x3

Solution: A =

−3 −1 −1
−1 −3 1
−1 1 −3




Characteristic equation is      
−3− λ −1 −1
−1 −3− λ 1
−1 1 −3− λ

      = 0

λ3 + 9λ2 + 24λ+ 16 = (λ+ 1)(λ+ 4)2 = 0

All the eigen values −1,−4,−4, are negative. So

Q.F. is negative definite.

Index: 0, Signature: 0− 3 = −3.

Note:

Q= 3x2
1 + 3x2

2 + 3x2
3

+ 2x1x2 + 2x1x3 − 2x2 x3

is positive definite.

EXERCISE

Determine the nature, index and signature of the

quadratic form:

1. x2
1 + 2x2

2 + 3x2
3 + 2x2x3 − 2x3x1 + 2x1x2

Ans. indefinite (eigen value: 1, 1,−2), index: 2,

signature: 1

2. 5x2
1 + 26x2

2 + 10x2
3 + 4x2x3+ 14x3x1+ 6x1x2

Ans. positive semi definite (eigen value: 5, 0, 5),

index: 3, signature: 3

3. x2
1 + 5x2

2 + x2
3 + 2x1x2 + 2x2x3 + 6x3x1

Ans. indefinite (eigen value: −2, 3, 6), index: 2,

signature: 1

4. 3x2
1 + 5x2

2 + 3x2
3 − 2x2x3 + 2x3x1 − 2x1x2

Ans. positive definite (eigen value: 2, 3, 6), index: 3,

signature: 3

5. 8x2
1 + 7x2

2 + 3x2
3 − 12x1x2 − 8x2x3 + 4x3x2

Ans. positive semi definite (eigen value: 3, 0, 15),

index: 3, signature: 3

6. 6x2
1 + 3x2

2 + 3x2
3 − 4x1x2 − 2x2x3 + 4x1x3

Ans. positive definite (eigen value: 8, 2, 2), index:

3, signature: 3

7. −4x2
1 − 2x2

2 − 13x2
3 − 4x1x2− 8x2x3− 4x1x3

Ans. negative definite, index: 0, signature: −3

8. −3x2
1 − 3x2

2 − 7x2
3 − 6x1x2 − 6x2x3 − 6x3x1

Ans. negative definite, index: 0, signature −3.
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14.8 TRANSFORMATION (REDUCTION) OF

QUADRATIC FORM TO CANONICAL

FORM

Let Q be the quadratic form given by

Q = XT AX =
n 

i=1

n 
j=1

aij xixj (1)

The coefficient matrix A is real symmetric therefore

has n linearly independent orthonormal set of eigen

vectors corresponding n eigen values (which need

not necessarily be distinct). Let P̂ be normalized

modal matrix of A. Then P̂ is an orthogonal matrix.

Thus the transformation

X = P̂ Y (2)

is an orthogonal transformation. This transfers the

quadratic form Q to canonical form, as follows:
We know that P diagonalizes A. Thus

P̂−1AP̂ =D

A= P̂DP̂−1 = P̂DP̂ T (3)

since P̂−1 = P̂ T by virtue of orthogonality
Substituting (3) in (1)

Q = XT AX = XT P̂DP̂ T X = (XT P̂ )(D)(P̂ T X) (4)

Pre-multiplying (2) by P̂−1, we get

P̂−1X = P̂−1P̂ Y = Y

So Y = P̂−1X = P̂ T X (5)

since P̂−1 = P̂ T

Taking transpose of this equation

YT = (P̂ T X)T = XT P̂ (6)

Using (5) and (6) in (4), we have

Q=XT AX = YT DY

= [y1, y2 . . . yn]



λ1 0 0 0
0 λ2 · · · 0
...
0 · · · · · · λn





y1

yz
...

yn




Q= λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n (7)

(7) is known as the canonical form or “sum of the

squares form” or “principal axes form”.

Procedure to Reduce Quadratic Form to

Canonical Form

1. Identify the real symmetric matrix associated

with the quadratic form Q.

2. Determine the eigen values of A.

3. The required canonical form is given by (7)

4. Form the modal matrix containing the n eigen
vectors of A as n column vectors. Normalize.
Then

X = P̂ Y

is the required orthogonal transformation which

reduces Q.F. to C.F.

WORKED OUT EXAMPLES

Example 1: Find the orthogonal transformation
which transforms the quadratic form

x2
1 + 3x2

2 + 3x2
3 − 2x2x3

to canonical form (or “sum of squares form” or “prin-

cipal axes form). Determine the index, signature and

nature of the quadratic form.

Solution: Let X = [x1x2x3]T , Y = [y1y2y3]T . Let
P be the non-singular orthogonal matrix, containing
the (three) eigen vectors of the coefficient matrix A

of the given quadratic form. Then X = P̂ Y is the
required non-singular linear transformation that
transforms (reduces) the given quadratics form to

canonical form. Here P̂ is the normalized modal
matrix P . The coefficient matrix A of the given
quadratic form is

A =

1 0 0

0 3 −1

0 −1 3




The characteristic equation of A is

|A− λI |

=

      
1− λ 0 0

0 3− λ −1

0 −1 3− λ

      
=λ3 − 7λ2 + 14λ− 8

=(λ− 1)(λ− 2)(λ− 4)=0

So there are three distinct real eigen values

λ = 1, 2, 4 of A.
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For λ = 1,

0 0 0

0 2 −1

0 −1 2

∼ 2x2 = x3

x2 = 2x3

... x2 = x3 = 0, x1 = arbitrary,

The eigen vector X1 associated with λ = 1 is

X1 = [1 0 0]T

For λ = 2,

−x1 + 0+ 0 = 0

x2 − x3 = 0

−x2 + x3 = 0

...
x1 = 0

x2 = x3

X2 = [0 1 1]T

For λ = 3,

−3 0 0

0 −1 −1

0 −1 −1

∼ x1 = 0

x2 = −x3

X3 = [0 1 − 1]T

Thus the modal matrix P is

P =

1 0 0

0 1 1

0 1 −1




The norm of the eigen vector X1 is

 X1 =
 

12 + 0+ 0 = 1,

 X2 =
 

0+ 12 + 12 =
√

2,

 X3 =
 

12 + 12 =
√

2.

Then the normalized modal matrix P̂ is

P̂ =




1
1

0 0

0 1√
2

1√
2

0 1√
2
− 1√

2


 = 1√

2



√

2 0 0

0 1 1

0 1 −1




To find inverse of P :
1 0 0 1 0 0

0 1 1 0 1 0

0 1 −1 0 0 1




∼
R32(−1)

R
3(− 1

2
)

R23(−1)




1 0 0 1 0 0

0 1 0 0 1
2

1
2

0 0 1 0 1
2
− 1

2




Thus

P−1 =




1 0 0

0 1
2

1
2

0 1
2
− 1

2




and the normalized P−1 is

P̂−1 = 1√
2



√

2 0 0
0 1 1
0 1 −1




Diagonalization:

P̂−1 A P̂ = 1√
2



√

2 0 0
0 1 1
0 1 −1




1 0 0

0 3 −1
0 −1 3




× 1√
2



√

2 0 0
0 1 1
0 1 −1




= 1√
2



√

2 0 0
0 2 2
0 4 −4





√

2 0 0
0 1 1
0 1 −1




= 1

2


2 0 0

0 4 0
0 0 8




Then

P̂−1 A P̂ =

1 0 0

0 2 0
0 0 4


 = D = diagonal matrix

with the eigen values of A as the diagonal elements.

Transformation (reduction) to canonical form:

Quadratic form (Q.F.)

Q= x2
1 + 3x2

2 + 3x2
3 − 2x2x3

= [x1 x2 x3]


1 0 0

0 3 −1

0 −1 3




x1

x2

x3


 = XT AX

Put X = P̂ Y and XT = (P̂ Y )T = YT P̂ T .

So Q = XTAX = YT P̂ T AP̂ Y = YT (P̂ T AP̂ )Y
But we know that P̂ is an orthogonal matrix

because

P̂ P̂ T = 1√
2



√

2 0 0

0 1 1

0 1 −1


 1√

2



√

2 0 0

0 1 1

0 1 −1




= 1

2


2 0 0

0 2 0

0 0 2


 =


1 0 0

0 1 0

0 0 1


 = I
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Thus

P̂ T = P̂−1

So Q.F. = XT AX = YT (P̂−1 AP̂ )Y

But through diagonalization

P̂−1 A P̂ = D

Therefore

Q=XT AX = YT D Y

= [y1 y2 y3]


1 0 0

0 2 0
0 0 4




y1

y2

y3




= [y1 2 · y2 4y3]


y1

y2

y3




= y2
1 + 2y2

2 + 4y2
3

This is the required canonical form (or sum of

squares form).

Orthogonal transformation:

X =

x1

x2

x3


 = P̂ Y = 1√

2



√

2 0 0

0 1 1
0 1 −1




y1

y2

y3




so x1 = y1; x2 = 1√
2
(y2 + y3), x3 = 1√

2
(y2 − y3) is

the orthogonal transformation which reduces the

Q.F. to canonical form.

Index is 3 for the Q.F. since the number of positive

terms in the canonical form is 3. i.e., S = 3, rank r

is 3. The number of variables is n = 3.

Signature of Q.F. is 2s − r = 6− 3 = 3 (differ-

ence between number of positive and negative terms

in C.F.).

The given Q.F. ispositive definitebecause r = 3 =
n and s = 3 = n.

Example 2: By Lagrange’s reduction transform
the quadratic form XTAX to sum of the squares
form for

A =

1 2 4

2 6 −2
4 −2 18




Solution:

Q.F.=XT AX = [x1 x2 x3]


1 2 4

2 6 −2

4 −2 18




x1

x2

x3




Q.F.= [x1+2x2+4x3 2x1+6x2−2x3 4x1−2x2+18x3]×

×

x1

x2

x3




= x2
1 + 6x2

2 + 18x2
3 + 4x1x2 + 8x1x3 − 4x2x3

= [x2
1 + 4x1(x2 + 2x3)]+ 6x2

2 + 18x2
3 − 4x2x3

= [x2
1 + 4x1(x2 + 2x3)+ 22(x2 + 2x3)2]

−22(x2 + 2x3)2 + 6x2
2 + 18x2

3 − 4x2x3

= [x1 + 2(x2 + 2x3)]2 + 2x2
2 + 2x2

3 − 20x2x3

= [x1 + 2(x2 + 2x3)]2 + 2[x2
2 − 10x2x3]+ 2x2

3

= [x1 + 2(x2 + 2x3)]2

+2[x2
2 − 10x2x3 + 52x2

3 ]− 2 · 52x2
3 + 2x2

3

= [x1 + 2(x2 + 2x3)]2 + 2[x2 − 5x3]2 − 48x2
3

Q.F.= y2
1 + 2y2

2 − 48y2
3

where

y1 = x1 + 2(x2 + 2x3),

y2 = x2 − 5x3,

y3 = x3.

Index: S = 2, (n = 3, r = 3),

Signature: 2s − r = 2 · 2− 3 = 1 (or 2− 1 = 1).

EXERCISE

Transform (reduce) the quadratic form to

canonical form (or “sum of squares form” or

“principal axes form”) by orthogonal transformation.

State matrix for transformation (i.e., modal ma-

trix).

1. 17x2
1 − 30x1x2 + 17x2

2

Ans. A =
 

17 −15

−15 +17

 
, λ = 2, 32,

P =
 

1 −1

1 1

 
1√
2
,C.F.: 2y2

1 + 32y2
2
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2. 3x2
1 + 5x2

2 + 3x2
3 − 2x2x3 + 2x1x3 − 2x1x2

Ans. A =

 3 −1 1

−1 5 −1

1 −1 3


 , λ = 2, 3, 6,

P=




1√
2

1√
3

1√
6

0 1√
3
− 2√

6

− 1√
2

1√
3

1√
6


 ,C.F.: 2y2

1+3y2
2+6y2

3

3. 5x2
1 + 26x2

2 + 10x2
3 + 4x2x3+ 6x1x2+ 14x1x3

Ans. A =

5 3 7

3 26 2

7 2 10


 , λ = 5, 121

3
, 0,

P =

1 − 3

5
− 16

11

0 1 1
11

0 0 1


 ,C.F.: 5y2

1 + 121
3
y2

2

4. 2(x1x2 + x2x3 + x3x1); nature of Q.F.

Ans. A =

0 1 1

1 0 +1

1 +1 0


 , λ = 2,−1,−1,

P =




1√
3
− 1√

2

1√
6

1√
3

1√
2

1√
6

1√
3

0 − 2√
6


 ,

C.F.: 2y2
1 − y2

2 − y2
3

Nature: Indefinite

5. 2(x2
1 + x1x2 + x2

2 )

Ans. A =
 

2 1

1 2

 
, λ = 1, 3,

P = 1√
2

 
1 1

−1 1

 
,C.F.: y2

1 + 3y2
2

6. 2x2
1 + x2

2 − 3x2
3 − 8x2x3 − 4x3x1 + 12x1x2,

find index

Ans. A =

 2 6 −2

6 1 −4

−2 −4 −3


 , λ = 1,−1,−1,

P =



a −3b 11c

17

0 b 2b
17

0 0 c




where a = 1/
√

2, b = 1/
√

17, c=√(17/81),

C.F.: y2
1 − y2

2 − y2
3 , Index = 1

7. 3x2
1 − 2x2

2 − x2
3 − 4x1x2 + 12x2x3 + 8x1x3

Ans. A =

 3 −2 4

−2 −2 6

4 6 −1


 , λ = 3, 6,−9,

P = 1
3


 2 2 1

−2 1 2

−1 2 2


 ,C.F.: 3y2

1 + 6y2
2 − 9y2

3

8. 8x2
1 + 7x2

2 + 3x2
3 + 12x1x2 + 4x1x3 − 8x2x3,

find the rank, index, signature and nature.

Ans. A =

 8 −6 2

−6 7 −4

2 −4 3


 , λ = 3, 0, 15,

P = 1
3


 2 1 2

1 2 −2

−2 2 1


 ,C.F.: 3y2

1 + 15y2
3

rank of Q.F.: 2, index: 2, signature 2, positive

definite.

Lagrange’s reduction

9. x2
1 + 2x2

2 − 7x2
3 − 4x1x2 + 8x1x3

Ans. (x1 − 2x2 + 4x3)2 − 2(x2 − 4x3)2 + 9x2
3

10. 2x2
1 + 5x2

2 + 19x2
3 − 24x2

4 + 8x1x2 +
12x1x3 + 8x1x4 + 18x2x3 − 8x2x4 − 16x3x4

Ans. 2(x1+ 2x2+ 3x3+ 2x4)2− 3(x2+ x3+ 4x4)2

+ 4(x3 − 2x4)2

11. 2x2
1 + 7x2

2 + 5x2
3 − 8x1x2 − 10x2x3 + 4x1x3

Ans. 2(x1 − 2x2 − x3)2 − (x2 + x3)2 + 4x2
3

12. Coefficient matrix A =




1 −1 0 2

−1 4 6 4

0 6 11 8

2 4 8 8




Hint: QF: x2
1 + 4x2

2 + 11x2
3 + 8x2

4 − 2x1x2 +
4x1x4 + 12x2x3 + 8x2x4 + 16x3x4

Ans. (x1 − x2 + 2x3)2 + 3(x2 + 2x3 + 2x4)2 −
(x3 + 4x4)2 + 8x2

4 .
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14.9 COMPLEX MATRICES: HERMITIAN,

SKEW-HERMITIAN, UNITARY

MATRICES

In a complex matrix A, the elements are complex or

real.

A = (aij ) is matrix obtained by replacing

each aij of A by its complex conjugate aij .

A complex square matrix A is said to be

a. Hermitian if AT = A i.e, aji = aij

b. Skew-Hermitian if AT = −A i.e, aji = −aij
c. Unitary if AT = A−1

Thus the Hermitian, Skew-Hermitian and Unitary

matrices are respectively the natural generalization

of the real symmetric, Skew-symmetric and orthog-

onal matrics to complex matrices.

It follows from the definition, that the diagonal

elements of a Hermitian matrix are always real be-

cause aji = aji means aij must be real. Similarly,

for a Skew-Hermitian matrix aii = −aii means that

the diagonal elements are purely imaginary or zero.

Unitary system

of row and column vectors

XT
i Xj = δij =

 
1 if i = j

0 if i  = j

which is a direct analog of orthonormal system.
Hermitian form H (generalization of the real
quadratic form) is given by

H = X
T
AX =

n 
i=1

n 
j=1

aij xixj

where A is Hermitian matrix.

Similarly, Skew-Hermitian form S is given by

S = X
T
AX where A is Skew-Hermitian matrix.

Theorem: For any X, Hermitian form is real.

Proof: H = (X
T
AX) = XTAX = XTATX

since A is Hermitian i.e., A = AT . As the R.H.S.

is a scalar, transposition does not change its values.

Thus H = XTATX = (XTATX)T = X
T
AX = H ,

so H is real.

Similarly,

Theorem: For any X, Skew-Hermitian is purely

imaginary or zero.

Proof: S = (X
T
AX) = XTAX = −XTATX

since A is Skew-Hermitian i.e., A = −AT .
Taking transpose of R.H.S., we have

S = −(XT AT X)T = −XT
AX = −S

So S is purely imaginary or zero.

Theorem: The column (and also row) vectors of

a unitary matrix form a unitary system.

Proof: Let c1, c2, . . . , cn be the n column vectors
of a n-squared unitary matrix A. Consider

I = A−1A = AT A =



cT1

cT2
...

cTn




n×1

[c1, c2, . . . , cn]1×n

since for a unitary matrix A−1 = AT . Then

In×n =



cT1 c1 cT1 c2 . . . cT1 cn

cT2 c1 cT2 c2 . . . cT2 cn

· · · · · · · · · · · ·
cTn c1 cTn c2 . . . cTn cn




n×n

Thus

cTi cj = δij =
#

0 for i  = j

1 for i = j

Hence the column vectors (in a similar way row

vectors) of a unitary matrix A form a unitary system.

Corollary 1: If A is real orthogonal matrix, it fol-
lows that

cTi cj =
#

0 for i  = j

1 for i = j

Thus the column (and also the row) vectors of an

orthogonal matrix form an orthonormal system (of

vectors).

Theorem: Prove that the eigen values of

a. Hermitian matrix A are real

b. Skew-Hermitian S are purely imaginary or zero

c. Unitary matrix U have absolute value 1.
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Proof: Let λ be an eigen value and X(  = 0) be the
corresponding eigen vector. Then

X
T
X = x1x1 + x2x2 + · · · + xnxn = |x1|2 + · · · + |xn|2

is real and not equals to zero.

a. Let A be Hermitian

AX = λX

Pre-multiplying by X
T

, we have

X
T
AX =X

T
λX = λX

T
X

λ= X
T
AX

X
T
X

Fig. 14.1

Hence λ the eigen value of a Hermitian matrix

is real because the numerator X
T
AX is a Hermi-

tian form which is always a real (and X
T
X the

denominator is also real).

b. Let S be Skew-Hermitian (refer Fig. 14.1)

SX = λX

pre multiplying by X
T

, we have

X
T
SX = X

T
λX = λX

T
X

λ = X
T
SX

X
T
X

Since the numerator X
T
SX is a Skew-Hermitian

form which is purely imaginary or zero, therefore

λ the eigen value of the Skew-Hermitian matrix

is purely imaginary or zero.

c. Let U be a unitary matrix

UX = λX (1)

Taking conjugate transpose of (1)

(UX)T = (UX)T = X
T
U

T

= X
T
U−1 = (λX)T = λX

T

i.e., X
T
U−1 = λX

T
(2)

since U
T = U−1 for unitary matrix U and trans-

position on R.H.S. does not affect the scalar λ.

Post multiplying, R.H.S. of (2) by R.H.S. of (1)

and L.H.S. of (2) by L.H.S. of (1), we get

(X
T
U−1)(UX)= (λX

T
)(λX)

X
T

(U−1U )X = (λλ)(X
T
X)

X
T
X = (λλ)X

T
X

Since U−1U = I . Thus

λλ = |λ|2 = 1

Since X
T
X  = 0. Hence eigen values of unitary

matrix are of absolute value 1.

Corollary 2: Eigen values of (a) real symmetric

matrix are real (b) Skew-symmetric are purely imag-

inary or zero (c) orthogonal matrix real or complex

conjugates in pairs and have absolute value 1.

Properties of Unitary Matrix

1. Product of two unitary matrices is unitary.

Proof: Let A and B be unitary matrices so that

AT = A−1, BT = B
−1

.

Consider (AB)−1 = (AB)−1 = B
−1

A−1

= BT AT SinceA,Bare unitary

= (AB)T by transposition rule

Thus (AB)−1 = (AB)T ... AB is unitary.

Corollary 1: Product of two orthogonal matri-

ces is orthogonal.

2. Inverse of a unitary matrix is unitary.

Proof: For a unitary matrix A,AT = A−1

or AT = AT = A−1

AT = A−1 
(A−1)−1

 T
= A−1
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Denote A−1 by B then

(B−1)T = B

or B−1 = B
T

So B is unitary i.e., A−1 is unitary.

Corollary 2: Inverse of an orthogonal matrix

is orthogonal.

3. Transpose of a unitary matrix is unitary.

Proof: For unitary matrix A,AT = A−1

or (AT ) = A−1

Taking transpose on both sides

(AT )T = (A−1)T = (AT )−1

since transposition and inverse taking are
commutative. Taking B = AT

B
T = B−1

Thus B = AT is also unitary.

Corollary 3: Transpose of an orthogonal ma-

trix is orthogonal.

Properties of Hermitian and Skew-Hermitian

Matrices

Book Work:

1. Show that any square matrix A can be written

as the sum of a Hermitian and Skew-Hermitian

matrices.

Proof: Choose B = 1
2
(A+ AT ) and

C = 1
2
(A− AT ). Then

BT = 1

2
(A+ AT )T = 1

2
(AT + A)

B = 1

2
(A+ AT ) = 1

2
(A+ AT ) = 1

2
(A+ AT )

... BT = B

Thus B is Hermitian. Now

C = 1

2
(A− AT ) = 1

2
(A− AT ) = 1

2
(A− AT )

CT = 1

2
(A− AT )T = 1

2
(AT − A) = −C

Therefore C is Skew-Hermitian. Thus

A = B + C = 1
2
(A+ AT )+ 1

2
(A− AT ) = A is

expressed as sum of Hermitian and Skew-

Hermitian matrices.

2. If A,B are Hermitian, prove that AB − BA

Skew-Hermitian.

Proof:

(AB − BA)T = (AB − BA)T = (AB − BA)T

= (AB)T − (BA)T = B
T
AT − AT B

T

= BA− AB = −(AB − BA),

since A,B are Hermitian, AT = A and B
T = B.

Thus (AB − BA)T = −(AB − BA)

Therefore AB − BA is Skew-Hermitian.

3. If A is Hermitian (Skew-Hermitian) then (iA) is

Skew-Hermitian (Hermitian).

Proof: Suppose A is Hermitian. Then

(iA)T = (i A)T = (−iA)T = −iAT

since transposition does not effect scalar i. Thus

(iA)T = −iAT = −iA
since for Hermitian A,AT = A. Hence iA is
Skew-Hermitian. [Similarly let A be Skew-
Hermitian.

(iA)T = (iA)T = (−iA)T = −iAT = iA

since −AT = A for a Skew-Hermitian. Thus iA

is Hermitian.]

WORKED OUT EXAMPLES

Example 1: If

A =

 2 3+ 2i −4

3− 2i 5 6i

−4 −6i 3




Then show that A is Hermitian and iA is Skew-

Hermitian.

Solution:

A=

 2 3− 2i −4

3+ 2i 5 −6i

−4 6i 3
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AT =

 2 3+ 2i −4

3− 2i 5 6i

−4 −6i 3


 = A

Thus A is Hermitian.
Let

B = iA = i


 2 3+ 2i −4

3− 2i 5 +6i

−4 −6i 3




=

 2i −2+ 3i −4i

2+ 3i 5i −6

−4i 6 3i




B =

 −2i −2− 3i 4i

2− 3i −5i −6

4i 6 −3i


 ,

BT =

 2i 2+ 3i −4i

−2+ 3i 5i 6

−4i −6 3i




Thus B = −BT or B is Skew-Hermitian.

Note: From Book Work 3, (Page 450) it follows

that for A Hermitian, iA is Skew-Hermitian.

Example 2: Show that

A =
 

2 3+ 4i

3− 4i 2

 

is Hermitian. Find its eigen values and eigen vectors.

Solution:

A =
 

2 3− 4i

3+ 4i 2

 
, AT =

 
2 3+ 4i

3− 4i 2

 
=A

Thus A is Hermitian.

(Note that the diagonal elements of A are real.)
The characteristic equation for A is

|A− λI | =
    2− λ 3+ 4i

3− 4i 2− λ

    = 0

or

(2− λ)2 − (3+ 4i)(3− 4i)= 4+ λ2 − 4λ− [9+ 16]

= 0

i.e., λ4 − 4λ− 21 = (λ+ 3)(λ− 7) = 0

Eigen values of A, Hermitian matrix are real

−3, 7.

For λ = −3, 
5 3+ 4i

3− 4i 5

  
x1

x2

 
= 0

x1 = −
 

3+ 4i

5

 
x2

The eigen vector corresponding to λ = −3 is

X1 =
 −3− 4i

5

 

For λ = 7, −5 3+ 4i

3− 4i −5

  
x1

x2

 
= 0

x1 =
3 + 4i

5
x2

The eigen vector corresponding to λ = 7 is

X2 =
 
3+ 4i

5

 

Example 3: Show that

A =

 i 0 0

0 0 i

0 i 0




is Skew-Hermitian and also unitary. Find the eigen

values and eigen vectors.

Solution:

A =

−i 0 0

0 0 −i
0 −i 0


 , AT =


−i 0 0

0 0 −i
0 −i 0


 = −A

Thus A is Skew-Hermitian.
Consider

AAT=

 i 0 0

0 0 i

0 i 0




−i 0 0

0 0 −i
0 −i 0


=


1 0 0

0 1 0

0 0 1


=I

Thus AT = A−1, i.e, A is unitary matrix also. The
characteristic equation of A is

|A− λI | =

      
i − λ 0 0

0 0− λ i

0 i 0− λ

      
= (i − λ)(λ2 + 1)

= λ3 − iλ2 + λ− i = 0

= (λ+ i)(λ− i)2 = 0

The eigen values of A are λ = −i, i, i which are

purely imaginary (for Skew-Hermitian) and are of

absolute value unity (i.e., | − i| = |i| = 1)
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For λ = −i,
2i 0 0

0 i i

0 i i




x1

x2

x3


 = 0

Solving

x1 = 0, x2 = −x3,

eigen vector corresponding to λ = −i is

X1 =

 0

1

−1




For λ = i 
0 0 0

0 −i i

0 i −i




x1

x2

x3


 = 0

Solving

x1 = arbitrary, x2 = x3

Choose x1, so that two linearly independent

eigen vectors are obtained (with x1 = 0, x2 = 1

and x1 = 1, x2 = 0)

X2 =

0

1

1


 and X3 =


1

0

0




Example 4: Find the Hermitian form H for

A =

 0 i 0

−i 1 −2i

0 2i 2


 with X =


 i

1

−i




Solution:

H =X
T
AX = [−i 1 i]


 0 i 0

−i 1 −2i

0 2i 2




 i

1

−i




= [−i 1+ 1− 2 0]


 i

1

−i


 = 1, real.

Example 5: Determine the Skew-Hermitian form
S for

A =
 

2i 3i

3i 0

 
with X =

 
4i

−5

 

Solution:

S =X
T
AX = [−4i − 5]

 
2i 3i

3i 0

  
4i

−5

 

= (8− 15i 12)

 
4i

−5

 
= 32i + 60− 60

= 32i, purely imaginary.

EXERCISE

1. Determine for what values of the numbers a

and b, c = aA+ bB is Skew-Hermitian given

that A and B are Skew-Hermitian.

Ans. Both a and b must be real.

2. Show that the eigen vectors Xi,Xj corre-

sponding to two distinct eigen values λi, λj

of a Hermitian matrix H are orthogonal i.e.,

X
T

i Xj = 0.

Hint:HXi = λiXi , HXj = λjXj (1), X
T

i H
T

=λiX
T

i orX
T

i H =λiX
T

i (2) sinceH
T =H, λi

= λi , pre multiply (1) by X
T

i and post multiply

(2) by Xj and subtract.

3. Prove thatA =
 

4 1− 3i
1+ 3i 7

 
is Hermitian

matrix. Find its eigen values.

Ans. characteristic equation: λ2 − 11λ+ 18 = 0,

eigen values 9, 2.

4. Show that B =
 

3i 2+ i
−2+ i −i

 
is Skew-

Hermitian. Find its eigen values.

Ans. characteristic equation: λ2 − 2iλ+ 8 = 0,

eigen values 4i,−2i.

5. Prove that C =

 i

2

√
3

2√
3

2
i
2


 is unitary matrix.

Find its eigen values.

Ans. λ2 − iλ− 1 = 0, λ = (
√

3+ i)/2, (−
√

3+
i)/2
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6. If A =
 

0 1+ 2i
−1+ 2i 0

 
show that (I − A)(I + A)−1 is a unitary

matrix.

Hint: I − A =
 

1 −1− 2i
1− 2i 1

 
,

(I + A)−1 =
 

1 −1− 2i

1− 2i 1

 
7. Find the eigen vectors of the Hermitian matrix

A =
 

a b + ic

b − ic k

 
.

Ans. λ1,2 = [(a + k)± (a − k)2 + 4(b2 + c2)]/2

eigen vectors:

 −(b2 + c2)

(a − λ)(b − ic)
1

 T
at λ=λ1,λ2

8. Find the eigen vectors of the Skew-Hermitian

matrix A =
 

2i 3i

3i 0

 

Ans. λ1,2 = (1 ±
√

10)i, eigen vectors: 
1 ±

√
10−1
3

 T
9. Show that A =

 
a + ic −b + id

b + id a − ic

 
is uni-

tary matrix if a2 + b2 + c2 + d2 = 1.

Hint: |A| = (a2 + c2)+ (b2 + d2)

10. Find the Hermitian form of

A =
 

3 2− i

2+ i 4

 
with X =

 
1+ i

2i

 

Ans. 34

11. Find the Skew-Hermitian form for

a. A =
 

i 0

0 −i
 

with X =
 

1

i

 
,

Ans. 0

b. A =
 

2i 4

−4 0

 
with X =

 
x1

x2

 
Ans. 2i|x1|2 + 8i Im(x1x2)

12. Find the Hermitian form of A =
 

0 i

−i 0

 
,

X =
 

1

i

 

Ans. −2

13. Show that the column (and also row) vectors
of the unitary matrix

A = 1

2

 
1+ i −1+ i

1+ i 1− i

 

form an orthonormal system.

14. Determine the eigen values and eigen vectors

of the unitary matrix 1√
2

 
1 i

−i −1

 
.

Ans. eigen values 1,−1, eigen vectors [1 i ± i
√

2]T

15. Find the Skew-Hermitian form for

A =

 −i 1 2+ i

−1 0 3i

−2+ i 3i i


 with X =


0

1

2




Ans. 16i.

14.10 SYLVESTER’S LAW OF INERTIA

Let Q(x1, x2 . . . xn) =
n$

i=1

n$
j=1

aij xixj = XTAX be

any real quadratic form with the coefficient matrix A

given by A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

an1 an2 . . . ann




Let ‘r’ be the rank of A.

Sylvester’s law of inertia states that any real

quadratic formQ(x1, x2, . . . , xn) can be transformed

by a regular linear transformation (substitution) into

the form

Q∗(y1, y2, . . . yn) = y2
1 + y2

2 + . . .+ y2
s1
− y2

s+1

− y2
s+2 − . . .− y2

s1+s2
where s1 + s2 = r , While the substitution which

transforms Q(x1, x2, . . . xn) to Q∗(y1, y2, . . . yn) is

not unique, however the number of positive terms

(signs) s1 as well as the number of negative

terms (signs) s2 = r − s1 in the resulting term

Q∗(y1, y2 . . . yn) is always the same. Here s1 is

1 James Joseph Sylvester (1814–1897), British mathematician
who in 1850 introduced for the first time the word “matrix” (in
the sense of “The mother of determinants”).
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known as index and s1 − s2 is known as the ‘sig-

nature’ of the real quadratic form Q(x1, x2, . . . xn).

Introducing y = [y1, y2, . . . yn]T and

s =




1

1

1  
. . .

1

−1

−1

. . .

−1

0

. . .

 0




we can rewrite

Q∗(y1, y2, . . . yn)= y2
1 + y2

2 + . . . y2
s1

−y2
s1+1
− y2

s1+2
. . .− y2

s1+s2

= YT SY

The diagonal matrix S with diagonal elements +1,

−1 and 0’s only, is known as “Sylvester’s canonical

form”. The total number of non zero entries in S is

equal to r , the rank of A.

WORKED OUT EXAMPLES

Example 1: Find the rank, index, and signature of

the Sylvester’s canonical form

S =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 0




Solution: r = rank = the number of non zero rows =

4; index = s1 = number of positive signs (ones) = 3,

s2 = number of negative signs (ones) = 1, signature

= s1 − s2 = 3− 1 = 2 (note r=4=s1+s2=3+1).

EXERCISE

Find the rank, index, and signature of the Sylvester’s

canonical form.

1.




1 0 0

0 −1 0

0 0 −1




Ans. r = 3, s2 = 2, s1 = index = 1,

signature = 1− 2 = −1

2.




1 0 0

0 −1 0

0 0 0




Ans. r = 2, s1 = index = 1, s2 = 1,

signature = 1 − 1 = 0

3.




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




Ans. r = 3, s1 = index = 2, s2 = 1,

signature = 2 − 1 = 1

4.




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




Ans. r = 4, s1 = index = 3, s2 = 1,

signature = 3 − 1 = 2



Chapter15

Vector Differential Calculus:
Gradient, Divergence and Curl

INTRODUCTION

Principal application of vector functions is the analy-

sis of motion in space. The gradient defines the nor-

mal to the tangent plane, the directional derivative

gives the rate of change in any given direction. If F

is the velocity field of a fluid flow, then divergence

of F at a point P (x, y, z) (flux density) is the rate at

which fluid is (diverging) piped in or drained away at

P , and the curl F (or circulation density) is the vec-

tor of greatest circulation in flow. We express grad,

div and curl in general curvilinear coordinates and in

cylindrical and spherical coordinates which are use-

ful in engineering, physics or geometry involving a

cylinder or cone or a sphere.

In this Chapter 15, vector differential calculus is

considered, which extends the basic concepts of

(ordinary) differential calculus to vector functions,

by introducing derivative of a vector function and

the new concepts of gradient, divergence and curl.

15.1 VECTOR DIFFERENTIATION

Definitions

Scalar function

Scalar function of a scalar variable t is a function

F = F (t) which uniquely associates a scalar F (t)

for every value of the scalar t in an interval [a, b].

Scalar field

Scalar field is a region in space such that for every

point P in this region, the scalar function f associates

a scalar f (P ).

Scalar function of a vector variableu is a function

F = F (u) which uniquely associates a scalar F (u)

for every vector u.

Vector function

Vector function of a scalar variable t is a function

F = F (t) which uniquely associates a vector F for

each scalar t .

Vector field

Vector field is a region in space such that with every

point P in that region, the vector function V asso-

ciates a vector V (P ).

Vector function

Vector function of a vector variable u is F = F (u)

if for every u a unique vector F (u) is associated.

Derivative

Derivative of a vector function F (u) with respect to
a scalar variable u is denoted by and is defined as

dF

du
= lim
 u→0

F (u+ u) − F (u)

 u
.

Let i, j , k be three mutually orthogonal unit vec-

tors in the direction of the x, y, z-coordinate axes

such that i, j , k form a right handed triad (i.e.,

i·i = 1, i·j = 0, i·k = 0, j ·j = 1, . . . etc.).

Derivative in the Component Form

Let F (u) = F1(u)i + F2(u)j + F3(u)k in the
component form with F1(u), F2(u) and F3(u) as

15.1
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components of F in the x, y, z-coordinate axes.
Then

dF

du
= dF1

du
i + dF2

du
j + dF3

du
k.

Thus the derivative of a vector function F with

respect to a scalar variable u is the vector whose

components are the derivatives of the components

F1, F2, F3 of F with respect to u.

Results: Most of the basic rules of differentiation

that are true for a scalar function of a scalar variable

hold good for vector function of a scalar variable,

provided the order of factors in vector products is

maintained.

1. dC
du

= 0 (C = constant vector)

2. d
du

[F (u) ±G(u)] = dF
du

± dG
du

3. d
du

[α(u)F (u)] = α(u) dF
du

+ F dα
du

4. d
du

[F (u)·G(u)] = dF
du
·G+ F ·dG

du

5. d
du

[F (u) ×G(u)] = F × dG
du

+ dF
du

×G
6. d

du
[A(u)·B(u) × C(u)] = A·B × dC

du
+ A·dB

du
×

C + dA
du
·B × C.

7. d
du

[A× (B × C)] = A×
 
B × dC

du

 
+

A×
 
dB
du

× C
 

+ dA
du

× (B × C).

Velocity and Acceleration

Let r be the position vector of a point P
(x(t), y(t), z(t)) in space where t is the scalar time.
Then r in the component form is

r = r(t) = x(t)i + y(t)j + z(t)k
Derivative of r denoted by r

.
is defined as

dr

dt
= r. = lim

 t→0

r(t + t) − r(t)
 t

= dx

dt
i + dy

dt
j + dz

dt
k

r
.

and r̈ denote the velocity and acceleration of a

particle with position vector r .

Unit Tangent Vector

Let s be the arc length reckoned (measured) from a
fixed pointM0 of a space curve c whose equation is
r = r(s). Then the unit tangent vector of c is

dr

ds
= dx

ds
i + dy

ds
j + dz

ds
k

such that    drds
    =

  
dx

ds

 2

+
 
dy

ds

 2

+
 
dz

ds

 2

= 1.

Partial Derivatives of a Vector Function F

which depends on more than one scalar variables
u, v,w: The partial derivative of F with respect to u
is

∂F

∂u
= lim
 u→0

F (u+ u, v,w) − F (u, v,w)

 u

In the component form, if
F (u,v,w) =F1(u,v,w)i+F2(u,v,w)j+F3(u,v,w)k
then the partial derivative of F with respect to say
u is obtained by taking the partial derivatives of the
components F1, F2, F3 of F with respect to u. i.e.,

∂F

∂u
= ∂F1

∂u
i + ∂F2

∂u
j + ∂F3

∂u
k

Higher order partial derivatives can be obtained

similarly.

WORKED OUT EXAMPLES

Example 1: Find the magnitude of the velocity

and acceleration of a particle which moves along the

curve x = 2 sin 3t , y = 2 cos 3t , z = 8t at any time

t > 0. Find unit tangent vector to the curve.

Solution: The position vector r of the particle is

r(t) = x(t)i + y(t)j + z(t)k
r(t) = 2 sin 3t i + 2 cos 3tj + 8tk

Velocity = V = dr

dt
= 6 cos 3t i − 6 sin 3t j + 8k

Acceleration = a = V
.

= dr̈

dt

= −18 sin 3t i − 18 cos 3t j + 0

|V | =
 

36 cos2 3t + 36 sin2 3t + 64

=
√

36 + 64 = 10

|a| =
 

182 sin2 3t + 182 cos2 3t = 18.

Unit tangent vector = dr
dt

    drdt
   

= 1
10

[6 cos 3t i − 6 sin 3tj + 8k]
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Example 2: If A = t2i − tj + (2t + 1)k,

B = (2t − 3)i + j − tk find (a) d
dt

(A·B)

(b) d
dt

(A× B) (c) d
dt

|A+ B| (d) d
dt

 
A× dB

dt

 
at t = 1.

Solution:

a. A·B = t2(2t − 3) − t + (2t + 1)(−t)
d

dt
(A·B) = 6t2 − 6t − 1 − 4t − 1

    
at t=1

= −6

b. A× B =

      
i j k

t2 −t (2t + 1)

2t − 3 1 −t

      
A× B = i(t2 − 2t − 1) + j (+t3 + 4t2 − 4t − 3)

+k(3t2 − 3t)

d

dt
(A× B) = (2t − 2)i + (3t2 + 8t − 4)j

+(6t − 3)k

At t = 1,
d

dt
(A× B) = 7j + 3k

c. A+ B = (t2 + 2t − 3)i + (1 − t)j + (t + 1)k

|A+ B| =
 

(t2 + 2t − 3)2 + (1 − t)2 + (t + 1)2

=
 
t4 + 4t3 − 12t + 11

d

dt
|A+ B| = 4t3 + 12t2 − 12

2
 
t4 + 4t3 − 12t + 11

at t = 1 is 1.

d. dB
dt

= 2i + 0 − k

A× dB

dt
=

      
i j k

t2 −t (2t + 1)

2 0 −1

      
= t i + (t2 + 4t − 2)j + 2tk

d

dt

 
A× dB

dt

 
= i + (2t + 4)j + 2k at t = 1

is i + 6j + 2k

Aliter :
d

dt

 
A× dB

dt

 
= dA

dt
× dB

dt
+ A× d2B

dt2

dA

dt
= 2t i − j + 2k

dA

dt
× dB

dt
=

      
i j k

2t −1 2

2 0 −1

      

= i + (2t + 4)j + 2k

Also
d2B

dt2
= 0 + 0 + 0

so that A× d2B

dt2
= 0

Thus
d

dt

 
A× dB

dt

 
= i + (2t + 4)j + 2k at t = 1

is i + 6j + 2k.

Example 3: If A = cos xy i + (3xy − 2x2)j−
(3x + 2y)k find

∂A

∂x
,
∂A

∂y
,
∂2A

∂x2
,
∂2A

∂y2
,
∂2A

∂x∂y
,
∂2A

∂y∂x
.

Solution:

∂A

∂x
= −y sin xy i + (3y − 4x)j − (3k)

∂A

∂y
= −x sin xyi + (3xj ) − 2k

∂2A

∂x2
= −y2 cos xy i − 4j

∂2A

∂y2
= −x2 cos xy i

∂2A

∂x∂y
= (− sin xy − xy cos xy)i + 3j.

Example 4: Prove thatA·dA
dt

= 0 ifA is a constant

vector.

Solution: For any vector A, A·A = A2.
Differentiating w.r.t., t

d

dt
(A·A) = A·dA

dt
+ dA

dt
·A = 2A

dA

dt

2A·
dA

dt
= 2A

dA

dt

IfA is a vector of constant magnitude dA
dt

= 0 so that

A·
dA

dt
= 0.

EXERCISE

1. If A = 5t2i + tj − t3k and B = sin t i −
cos tj , find (a) d

dt
(A·B), (b) d

dt
(A× B) (c)

d
dt

(A·A).
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Ans. a. (5t2 − 1) cos t + 11t sin t

b. (t3 sin t − 3t2 cos t)i − (t3 cos t +
3t2 sin t)j +(5t2 sin t − 11t cos t − sin t)k

c. 100t3 + 2t + 6t5

2. Find (a) d
du

(A·B) (b) d
du

(A× B) if A(u) =
2ui − 3u2j + u3k, B(u) = sin ui − uk.

Ans. 2 sin u+ 2u cos u− 4u3; 9u2i + (u3 cos u+
3u2 sin u+ 4u)j + (3u2 cos u+ 6u sin u)k

3. If A = 2t i − t2j + t3k, B = −t i + t2k and

C = t3j − 2tk find d
dt

(A·B × C) at t = 1.

Ans. −12t5 + 8t3 − 7t6,−11

4. If A= sin ui+ cos uj + uk,
B = cos ui− sin uj − 3k andC = 2i + 3j −
k find d

du
(A× (B × C)) at u = 0.

Ans. 7i + 6j − 6k

5. If A = (2x2y − x4)i + (exy − y sin x)j +
(x2 cos y)k find (a) ∂A

∂x
, (b) ∂A

∂y
, (c) ∂

2A

∂x2 ,

(d) ∂
2A

∂y2 , (e) ∂2A
∂x∂y

, (f) ∂2A
∂y∂x

.

Ans. a. (4xy − 4x3)i + (yexy − y cos x)j +
2x cos yk

b. 2x2i + (xexy − sin x)j − x2 sin yk

c. (4y − 12x2)i + (y2exy + y sin x)j +
2 cos yk

d. 0 + x2exyj − x2 cos yk

e, f. 4xi + (xyexy + exy − cos x)j − 2x sin yk

6. Find ∂3

∂x2∂z
(fA) at the point (2,−1, 1) if

f = xy2z,A = xzi − xy2j + yz2k.

Ans. 4y2zi − 2y4j ; 4i − 2j

7. Find ∂2(A×B)

∂x∂y
at (1, 0,−2) if A = x2y zi −

2xz3j + xz2k, B = 2zi + yj − x2k.

Ans. −4i − 8j

8. Prove that A× dA
dt

= 0 if A(t) has constant

(fixed) direction.

Hint: Take A = a(t)B(t) where a(t) = |A|
and B(t) is a unit vector in the direction of

A so that dB
dt

= 0.

9. Given the curve x = t2 + 2, y = 4t − 5,

z = 2t2 − 6t find the unit tangent vector at the

point t = 2.

Ans. t i + 2j + (2t − 3)k/
 √

5t2 − 12t + 13
 
;

(2i + 2j + k)/3
10. Find the angle between the tangents to the

curve r = t2i + 2tj − t3k at the points t =
±1.

Hint: T 1·T 2 = T1T2 cos θ .

Ans. θ = cos−1(9/17)

11. Determine the magnitude of velocity and

acceleration at t = 0 of a particle moving

along a curve whose parametric equations are

x = e−t , y = 2 cos 3t, z = 2 sin 3t ; where t is

the time.

Ans. V = −e−t i − 6 sin 3t j + 6 cos 3t k

a = e−t i − 18 cos 3t j − 18 sin 3t k

|V | at t = 0 is
√

37; |a| at t = 0 is
√

325

12. A particle moves along the curve x = 2t2,

y = t2 − 4t, z = 3t − 5 where t is the time.

Find the components of its velocity and accel-

eration at time t = 1 in the direction i − 3j +
2k.

Hint:Component ofV = dot product ofV with

unit vector in the direction of i − 3j + 2k.

Ans. 8
√

14/7; −
√

14/7

13. If a, b,w are constants show that the accel-

eration of a particle with displacement vec-

tor r = a coswt + b sinwt is always directed

towards the origin.

Hint: a = r̈ = −w2r .

14. Find the angle between the directions of the

velocity and acceleration vectors at time t of

a particle with position vector r = (t2 + 1)i −
2tj + (t2 − 1)k.

Ans. arc cos t
√

2/
√

2t2 + 1

15. Prove that d
du

(A× B) = C × (A× B) if

dA

du
= C × A and

dB

du
= C × B

Hint:
d

du
(A× B) = A× dB

du
+ dA

du
× B

= A× (C × B) + (C × A) × B
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= (A·B)C − (A·C)B − (B·A)C

+(B·C)A

= C × (A× B).

15.2 DIRECTIONAL DERIVATIVE,

GRADIENT OF A SCALAR FUNCTION

AND CONSERVATIVE FIELD

In vector differential calculus, it is very convenient

to introduce the symbolic linear vector differential

“Hamiltonian” operator del defined and denoted as

∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

(1)

This operator read as del (or nabla) is not a vector

(neither has magnitude nor direction) but combines

both differential and vectorial properties analogous

to those of ordinary vectors.

Directional Derivative

If f = f (x, y, z) then the partial derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
are the derivatives (rates of change) off in

the “direction” of the coordinate axesOX,OY,OZ

respectively. This concept can be extended to define

a derivative of f in a “given” direction PQ (Fig.

15.1).

Fig. 15.1

Let P be a point in space and b be a unit vector
fromP in the given direction. Let s be the arc lengths
measured from P to another point Q along the ray
C in the direction of b. Now consider

f (s) = f (x, y, z) = f ((s), y(s), z(s))

Then
df

ds
= ∂f

∂x

dx

ds
+ ∂f

∂y

dy

ds
+ ∂f

∂z

dz

ds
(2)

The directional derivative of f at the point P in the

given direction b is
df

ds
given by (2).

df

ds
gives the rate

of change of f in the direction of b.

Since
dx

ds
i + dy

ds
j + dz

ds
k = b = unit vector (3)

Using the del operator defined by (1)
df

ds
given by (2)

can be rewritten as

df

ds
=

 
i
∂f

∂x
+ j ∂f

∂y
+ k ∂f

∂z

 
·

 
dx

ds
i + dy

ds
j + dz

ds
k

 

df

ds
=

  
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
f

 
·b = ∇f ·b (4)

Thus the directional derivative of f at P is the com-

ponent (dot product) of ∇f in the direction of (with)

unit vector b.

The directional derivative in the direction of any

(non unit) vector a is

df

ds
= ∇f ·

 
a

|a|

 
(5)

Equation (4) introduces the vector quantity, the
gradient of a scalar function f (x, y, z) or gradient
f denoted by ∇f and defined as

∇f =
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
f

= i ∂f
∂x

+ j ∂f
∂y

+ k ∂f
∂z

= grad f = vector

∇f =
 
∂f

∂x
,
∂f

∂y
,
∂f

∂z

 
.

Properties of gradient

1. Projection of ∇f in any direction is equal to the

derivative of f in that direction.

2. The gradient of f is in the direction of the

normal to the level surface f (x, y, z) = C =
constant. So, the angle between any two sur-

faces f (x, y, z) = C1 and g(x, y, z) = C2 is the

angle between their corresponding normals given

by ∇f and ∇g respectively.

3. The gradient at P is in the direction of maximum

increase of f at P .

4. The modulus of the gradient is equal to the largest
directional derivative at a given point P .

i.e., max
df

ds

    
P

=
   ∇f

   
P

=
  

∂f

∂x

 2

+
 
∂f

∂y

 2

+
 
∂f

∂z

 2

      
at P.
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These properties thus state that the vector gradient f

indicates the direction and magnitude of maximum

change of a scalar function f at a given point.

Normal derivative

df

dn
= ∇f ·nwhere n is the unit normal to the surface

f = constant.

Conservative

Avector functionA is said to be a conservative vector

field if A = ∇f i.e., A is the gradient of a scalar

function f . In this case f is known as the potential

function of A.

Instead of applying (operating) on a scalar func-

tion f , if del is applied to a vector function A, we

get divergence and curl: (see Sections 15.3, 15.4)

WORKED OUT EXAMPLES

Example 1: If A = 2x2i − 3yzj + xz2k and

f = 2z− x3y find (i) A·∇f and (ii) A× ∇f at the

point (1,−1, 1).

Solution: Here
∂f

∂x
= −3x2y,

∂f

∂y
= −x3,

∂f

∂z
= 2

so that

∇f = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k

∇f = −3x2yi − x3j + 2k

i. A·∇f = (2x2i − 3yzj + xz2k)·
· (−3x2yi − x3j + 2k)

= −6x4y + 3x3yz+ 2xz2

A·∇f
   
1,−1,1

= 6 − 3 + 2 = 5

ii. A× ∇f =

       
i j k

2x2 −3yz xz2

−3x2y −x3 2

       
Expanding the determinant

A× ∇f = (−6yz+ x4z2)i − j (4x2 + 3x3yz2)

+(−2x5 − 9x2y2z)k

A× ∇f
   
1,−1,1

= 7i − j − 11k.

Example 2: Evaluate

i. ∇rn iv. ∇r
ii. ∇|r|3 v. ∇(ln r)

iii. ∇(3r2 − 4
√
r + 6r− 1

3 ) vi. ∇(r−1)

Solution:

i. ∇rn = i ∂rn
∂x

+ j ∂rn
∂y

+ k ∂rn
∂z

∂rn

∂x
= nrn−1 ∂r

∂x
= nrn−1 x

r

∂rn

∂x
= nrn−2x

Similarly,
∂rn

∂y
= nrn−2y, and

∂rn

∂z
= nrn−2z.

Then ∇rn = nrn−2(xi + yj + zk) = nrn−2r

ii. Put n = 3 in the result (i) above

∇r3 = 3r3−2r = 3rr

iii. ∇(3r2 − 4
√
r + 6r− 1

3 )

= 3∇r2 − 4∇r 1
2 + 6∇r− 1

3

Applying result (i) above with n = 2, 1
2
,− 1

3
, we

get

= 3(2r2−2r) − 4

 
1

2
r

1
2

−2r

 
+ 6

 
−1

3
r− 1

3
−2r

 

=
 
6 − 2r− 3

2 − 2r− 7
2

 
r

iv. ∇r = 1r1−2r = r
r

v. ∇f = ∇ ln r = 1
r
∇r = 1

r
r
r

= r

r2

vi. ∇(r−1) = −1·r−1−2r = −r/r3.

Example 3: Find the directional derivative of

f (x, y, z) = 4e2x−y+z at the point (1, 1,−1) in the

direction toward the point (−3, 5, 6).

Solution:

∇f = 4e2x−y+z(2i − j + k)
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∇f
   
(1,1,−1)

= 4(2i − j + k)

A unit vector â from the point (1, 1,−1) in the
direction toward the point (−3, 5, 6) is

â = −4i + 4j + 7k√
16 + 16 + 49

= −4i + 4j + 7k

9

The required directional derivative is

∇f
   
(1,1,−1)

· â = 4(2i − j + k)· (−4i + 4j + 7k)

9

= −20

9
.

Example 4: Find the values of the constants a, b, c

so that the directional derivative of f = axy2 +
byz+ cz2x3 at (1, 2,−1) has a maximum of magni-

tude 64 in a direction parallel to the z-axis.

Solution: Since k is a unit vector parallel to the
z-axis, the maximum of magnitude of the directional
derivative of f at (1, 2,−1) in the direction parallel
to z-axis is given by

∇fat (1,2,−1)·k

Here ∇f = (ay2 + 3x2cz2)i + (2axy + bz)j
+(by + 2czx3)k

So that

∇fat (1,2−1) = (4a + 3c)i + (4a − b)j + (2b − 2c)k

Maximum = ∇fat (1,2,−1)·k

= [(4a + 3c)i + (4a − b)j + (2b − 2c)k] ·k

= (2b − 2c)

It is given in the problem that this maximum is 64.
Thus

2b − 2c = 64

or b − c = 32 (1)

Since ∇f is in the direction of z-axis, it is perpen-

dicular to the x and y-axes
Thus

∇f
   
(1,2,−1)

· i = [(4a + 3c)i + (4a − b)j

+(2b − 2c)k] · i

= 4a + 3i = 0 (2)

Similarly,

∇f ·j = 4a − b = 0 (3)

Solving the Equations (1), (2), (3), we get

a = 6, b = 24, c = −8.

Example 5: Find the constants a and b so that the

surface ax2 − byz = (a + 2)x will be orthogonal to

the surface 4x2y + z3 = 4 at the point (1,−1, 2).

Solution: The given surfaces

f = ax2 − byz− (a + 2)x = 0 (1)

and g = 4x2y + z3 = 4 (2)

are orthogonal at the point P (1,−1, 2) provided the
normals to (1) and (2) at P are at right angles. The
normal to surface (1) is given by ∇f ,

∇f
   
1,−1,2

= {2ax − (a + 2)}i − bzj − byk
   
1,−1,2

∇f = (a − 2)i − 2bj + bk (3)

and normal to surface (2) by ∇g,
∇g

   
1,−1,2

= 8xyi + 4x2j + 3z2k

   
1,−1,2

∇g = −8i + 4j + 12k (4)

The orthogonality condition is

0 = ∇f ·∇g= [(a− 2)i− 2bj + bk] · [−8i+ 4j + 12k]

0 = −2a + 4 + b (5)

Since (1,−1, 2) lies on the surface (1), we have

a + 2b − (a + 2) = 0

i.e., b = 1.

So from (5), a = 5
2
.

Example 6: If ∇f = (y2 − 2xyz3)i + (3 +
2xy − x2z3)j + (6z3 − 3x2yz2)k, find f if

f (1, 0, 1) = 8.

Solution: Since

∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k = ∇f = (y2 − 2xyz3)i

+(3 + 2xy − x2z3)j

+(6z3 − 3x2yz2)k
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We have

∂f

∂x
= y2 − 2xyz3 (1)

∂f

∂y
= 3 + 2xy − x2z3 (2)

∂f

∂z
= 6z3 − 3x2yz2 (3)

Integrating (1), (2), (3) partially w.r.t., x, y, z respec-
tively, we get

f = xy2 − x2yz3 + c1(y, z) (4)

f = 3y + xy2 − x2yz3 + c2(x, z) (5)

f = 6

4
z4 − x2yz3 + c3(x, y) (6)

where c1, c2, c3 arbitrary functions of the variables

indicated.
To find c1(y, z), differentiate (4) partially w.r.t. z

and equate it with (3). Thus

0 − 3x2yz2 + ∂c1

∂z
= ∂f

∂z
= 6z3 − 3x2yz2

So
∂c1

∂z
= 6z3 (7)

Integrating (7) partially w.r.t. ‘z’, we get

c1(y, z) = 6

4
z4 + c4(y) (8)

where c4 is a function of y alone.

Substituting (8) in (4), we have

f = xy2 − x2yz3 + 3

2
z4 + c4(y) (9)

To find c4, differentiate (9) partially w.r.t. y and
equate it with (2), we get

2xy − x2z3 + 0 + dc4

dy
= ∂f

∂y
= 3 + 2xy − x2z3

So
dc4

dy
= 3 (10)

Integrating (10) w.r.t. y, we have

c4(y) = 3y + c5 (11)

where c5 is a pure arbitrary constant.
Substituting (11) in (9), we get the required

f (x, y, z) = xy2 − x2yz3 + 3

2
z4 + 3y + c5

Since 8 = f (1, 0, 1) = 1 − 0 + 0 + 3 + c5

... c5 = 4.

Hence f = xy2 − x2yz3 + 3

2
z4 + 3y + 4.

Similar result can be obtained by starting from (5) or

(6).

Example 7: Find f (r) such that ∇f = r

r5
and

f (1) = 0.

Solution: It is given that

∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k = ∇f = r

r5
= xi + yj + zk

r5

so
∂f

∂x
= x

r5
,
∂f

∂y
= y

r5
, and

∂f

∂z
= z

r5

We know that

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = x

r5
dx + y

r5
dy + z

r5
dz

df = xdx + ydy + zdz
r5

= rdr

r5
= r−4dr

Integrating f (r) = r−3

−3
+ c

Since 0 = f (1) = −1

3
+ c

so c = 1

3

Thus f (r) = 1

3
− 1

3

1

r3
.

EXERCISE

1. Find ∇f if f = ln(x2 + y2 + z2).
Ans. 2(xi + yj + zk)/(x2 + y2 + z2)

2. If f (x, y, z) = 3x2y − y3z2, find ∇f and

|∇f | at (1,−2,−1).

Ans. ∇f = −12i − 9j − 16k, |∇f | =
√

481

3. If f = 2xz4 − x2y, find ∇f and |∇f | at

(2,−2,−1).

Ans. 10 i − 4j − 16k, 2
√

93

4. Find ∇f when

f = (x2 + y2 + z2) e−
√
x2+y2+z2 .

Ans. (2 − r)e−r r
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5. If U = 3x2y, V = xz2 − 2y evaluate

∇[∇U.∇V ].

Ans. (6yz2 − 12x)i + 6xz2j + 12xyzk

6. Find a unit normal to the surface x2y + 2xz =
4 at the point (2,−2, 3).

Ans. ± 1
3
(i − 2j − 2k)

7. Find the unit outward drawn normal to the

surface (x − 1)2 + y2 + (z+ 2)2 = 9 at the

point (3, 1,−4).

Ans. (2i + j − 2k)/3

8. Determine a unit vector normal to the surface

xy3z2 = 4 at the point (−1,−1, 2).

Ans. ±(i + 3j − k)/
√

11.

9. What is the directional derivative of f =
xy2 + yz3 at the point (2,−1, 1) in the direc-

tion of the normal to the surface x ln z− y2 =
−4 at (−1, 2, 1).

Ans. 15√
17

10. Find the directional derivative of f = x2yz+
4xz2 at (1,−2,−1) in the direction 2i − j −
2k.

Ans.
37

3
11. Find the directional derivative of f = xy +

yz+ zx in the direction of vector i + 2j + 2k

at the point (1, 2, 0).

Ans.
10

3
12. Determine the directional derivative of f =

xy2 + yz3 at the point (2,−1, 1) in the direc-

tion of the vector i + 2j + 2k.

Ans. −11

3
13. Find the maximal directional derivative of

x3y2z at (1,−2, 3).

Ans. 4
√

91

14. a. In what direction from the point (2, 1,−1)

is the directional derivative of f = x2yz3

a maximum?

b. What is the magnitude of this maximum?

Ans. a. The directional derivative is a maximum in

the direction of ∇f = −4i − 4j + 12k.

b. The magnitude of this maximum is 4
√

11.

15. Find the direction in which temperature

changes most rapidly with distance from the

point (1, 1, 1) anddetermine themaximumrate

of change if the temperature at any point is

given by f (x, y, z) = xy + yz+ zx.
Ans. Maximum direction is 2i + 2j + 2k, maxi-

mum: 2
√

3.

16. In what direction from (3, 1,−2) is the

directional derivative of f = x2y2z4

maximum. Find also the magnitude of the

maximum.

Ans. 96(i + 3j − 3k); 96
√

19

17. Find the angle between the surfaces x2 +
y2 + z2 = 9 and z = x2 + y2 − 3 at the point

(2,−1, 2).

Ans. The acute angle = cos−1
 

8
√

21
63

 
= 54◦

· 25.

18. Find the angle of intersection of the spheres

x2 + y2 + z2 = 29 and x2 + y2 + z2 + 4x −
6y − 8z = 47 at (4,−3, 2).

Ans. θ = cos−1(19/29)

19. Determine the angle between the normals to

the surface xy = z2 at the points (4, 1, 2) and

(3, 3,−3).

Ans. cos−1(1/
√

22)

20. Calculate the angle between the normals

to the surface 2x2 + 3y2 = 5z at the points

(2,−2, 4) and (−1,−1, 1).

Ans. θ = cos−1(65/(
√

233
√

77))

21. If ∇f = 2xyz3i + x2z3j + 3x2yz2k, find

f (x, y, z) if f (1,−2, 2) = 4.

Ans. f = x2yz3 + 20

22. Find f given ∇f = 2xi + 4yj + 8zk.

Ans. f = x2 + 2y2 + 4z2

23. a. Determine f when ∇f = (zy i + xz j
− xy k)/z2.

b. If ∇f = xy i + 2xy j find f .

Ans. a. f = xy/z
b. f does not exist

24. Prove that ∇(f/g) = (g∇f − f∇g)/g2.

Hint: Use quotient formula for derivative of

f/g.
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15.3 DIVERGENCE

Divergence of a vector function A(x, y, z) is written
as divergence of A or div of A and denoted by ∇·A
is defined as

∇·A=
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
· (A)

If A= A1i + A2j + A3k, then

∇·A=
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
· (A1i + A2j + A3k)

∇·A= ∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z
= a scalar quantity

Note that ∇·A  = A·∇ because L.H.S. ∇·A is a

scalar quantity, whereas the R.H.S. A·∇ = A1
∂
∂x

+
A2

∂
∂y

+ A3
∂
∂z

is a scalar differential operator.

Physically the divergence of A at point P consti-

tutes the volume density of the flux of A at P. i.e.,

divergence measures outflow minus inflow.

A point P in a vector field A is said to be a source

(sink) if divergence A > (<)0.

Solenoidal Function

A is said to be solenoidal if divergence A = 0 (at all

points of function).

WORKED OUT EXAMPLES

Example 1: Evaluate divergence of (2x2zi −
xy2zj + 3yz2k) at the point (1, 1, 1).

Solution: Divergence of A

= div A = ∇·A

= ∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

Here A= 2x2zi − xy2zj + 3yz2k

= A1i + A2j + A3k

so that
∂A1

∂x
= ∂

∂x
(2x2z) = 4xz

∂A2

∂y
= ∂

∂y
(−xy2z) = −2xyz

∂A3

∂z
= ∂

∂z
(3yz2) = 6yz

Thus ∇·A= 4xz− 2xyz+ 6yz,

∇·A
   
(1,1,1)

= 8.

Example 2: Determine the constant b such that

A = (bx + 4y2z)i+(x3 sin z−3y)j−(ex+4 cos x2y)k

is solenoidal.

Solution: ∇·A = b − 3 = 0 ... b = 3.

Example 3: Find the directional derivative of

∇·U at the point (4, 4, 2) in the direction of the corre-

sponding outer normal of the sphere x2 + y2 + z2 =
36 where U = x4i + y4j + z4k.
Solution: Let f = ∇·U = ∇· (x4i + y4j +
z4k) = 4(x3 + y3 + z3)

∇f
   
(4,4,2)

= 12 (x2i + y2j + z2k)
   
4,4,2

= 48(4i + 4j + k)
Normal to the sphere g = x2 + y2 + z2 = 36 is

∇g
   
4,4,2

= 2(xi + yj + zk)
   
at 4,4,2

= 4(2i + 2j + k)

a = unit normal = ∇g
|∇g| = 4(2i + 2j + k)√

64 + 64 + 16

= 2i + 2j + k
3

The required directional derivative is

∇f · a = 48(4i + 4j + k) · (2i + 2j + k)
3

= 16(8 + 8 + 1) = 272.

Example 4: ∇· (r3r).
Solution: Since ∇· (fA) = f∇·A+ ∇f ·A

∇· (r3r) = r3∇· r + r·∇r3

= 3r3 + r· [3r3−2r]

= 3r3 + 3rr· r

= 3r3 + 3r r2 = 6r3.

Example 5: If f and g are solutions of the Laplace
equation show that

∇· (f∇g − g∇f ) = 0

Solution:

∇· (f∇g − g∇f ) = ∇· (f∇g) − ∇· (g∇f )

= f∇·∇g + ∇f ·∇g
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−g∇·∇f − ∇g·∇f
= f∇2g + ∇f ·∇g

−g∇2f − ∇g·∇f = 0

Note that ∇·∇f = ∇2f .

Since f and g satisfy Laplace’s equation we have

∇2f = 0 and ∇2g = 0, and

also ∇f ·∇g = ∇g·∇f by commutative property.

Example 6: Find ∇(∇·A) where A = r/r .

Solution: Consider

∇ ·A= ∇·
 
r

r

 
= r−1∇· r + r ·∇r−1

= 3r−1 + r · (−r−1−2r)

= 3r−1 − r−3r · r

= 3r−1 − r−3r2 = 2r−1

So ∇(∇ ·A) = ∇
 

∇ · r
r

 
= ∇(2r−1) = 2∇r−1

= 2(−1)r−1−2r = −2r−3r.

EXERCISE

1. Prove that ∇ · r = 3.

2. Find∇ ·AwhenA = (xi + yj + zk)/r where

r =
 
x2 + y2 + z2.

Ans. 2/r

3. Calculate ∇ · (3x2i + 5xy2j + xyz3k) at the

point (1, 2, 3).

Ans. 80

4. If A = 3xyz2i + 2xy3j − x2yzk and f =
3x2 − yzfind (i)∇ ·A (ii)A ·∇f (iii)∇ ·(fA)

(iv) ∇ ·∇f .

Ans. (i) 4 (ii) −15 (iii) 1 (iv) 6

5. Find ∇ ·  
(ey sin x cos z)i + e−x sin y cos zj

+z2ezk .
Ans. ey cos x · cos z+ e−x

· cos y cos z+ (z2 +
2z)ez

6. Show that A = 3y4z2i + 4x3z2j − 3x2y2k is

solenoidal.

7. Prove that A = (2x2 + 8xy2z)i + (3x3y −
3xy)j − (4y2z2 + 2x3z)k is not solenoidal but

B = xyz2A is solenoidal.

8. Determine the constant b such that

A = (bx2y + yz)i + (xy2 − xz2)j +
(2xyz− 2x2y2)k has zero divergence

(i.e., ∇ ·A = 0).

Ans. b = −2

9. Evaluate ∇ · [r∇(1/r3)].

Ans. 3r−4

10. Find most general f (r) such that f (r)r is

solenoidal.

Ans. f (r) = c/r3 where c is an arbitrary constant

11. Show that ∇f × ∇g is solenoidal.

Hint: ∇ · (∇f × ∇g) = ∇g · (∇ × ∇f ) −
∇f · (∇ × ∇g) = 0.

12. Prove that A = (y2 − z2 + 3yz− 2x)i +
(3xz+ 2xy)j + (3xy − 2xz+ 2z)k is both

solenoidal and irrotational.

13. Show that ∇ · (fA) = 5f where f = x2 +
y2 + z2 and A = xi + yj + zk.

14. Find the directional derivative of ∇ · U at the

point (4, 4, 2) in the direction of the corre-

sponding outer normal of the sphere x2 + y2 +
z2 = 36 where U = xzi + yxj + zyk.

Ans. 5/3

15. Show that the vector field V = a(xi+yj )
x2+y2 is a

“source” or “sink” field according as a > 0 or

a < 0.

Hint: If ∇ ·V > 0 then V is a source field and

if ∇ · V < 0 it is a sink field.

16. If f = x2yz and g = xy − 3z2, calculate

∇(∇f ·∇g).
Ans. 2(y3 + 3x2y − 6xy2)zi + 2(3xy2 + x3 −

6x2y)zj + 2(xy2 + x3 − 3x2y)yk.

15.4 CURL

Curl ofA, denoted by ∇ × A also known as rotation
V or rot of V is defined as

curl of A= ∇ × A =
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
× (A1i + A2j + A3k)

=

      
i j k
∂
∂x

∂
∂y

∂
∂z

A1 A2 A3
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= i
 
∂A3

∂y
− ∂A2

∂z

 
+ j

 
∂A1

∂z
− ∂A3

∂x

 
+

+k
 
∂A2

∂x
− ∂A1

∂y

 

∇ × A= a vector quantity.

Irrotational Field

A vector point function A is said to be irrotational,

if curl ofA is zero at every point whereA is defined.

Otherwise it is said to be rotational. The curl of any

vector point function, in general, gives the measure

of the angular velocity at any point of the vector field.

WORKED OUT EXAMPLES

Example 1: Find the curl of V = exyz(i + j + k)
at the point (1, 2, 3).

Solution: Curl of V

= ∇ × V =

       
i j k
∂
∂x

∂
∂y

∂
∂z

exyz exyz exyz.

       
= exyz

 
(xz−xy)i−(yz−xy)j+(yz−xz)k

 
∇ × V

   
1,2,3

= e6
 
i − 4j + 3k

 
.

Example 2: Prove that ∇ × ∇f = 0 for any

f (x, y, z).

Solution:

∇ × ∇f =

       
i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

       
= i

 
∂2f

∂y∂z
− ∂2f

∂z∂y

 
− j

 
∂2f

∂x∂z
− ∂2f

∂z∂x

 

+k
 
∂2f

∂x∂y
− ∂2f

∂y∂x

 
= 0

since fyz = fzy, fxz = fzx and fxy = fyx .
Note: Since V=∇φ for a conservative field,

∇ × V = ∇ × ∇φ = 0. Thus for a conservative field

V , we have ∇ × V = 0.

Example 3: If f (r) is differentiable and r = 
x2 + y2 + z2 show that f (r)r is irrotational.

Hence deduce that (i) rnr is irrotational (ii) ∇ ×
r = 0.

Solution: Here f (r)r = f (r)[xi + yj + zk]

∇ × (f (r)r) =

      
i j k
∂
∂x

∂
∂y

∂
∂z

xf (r) yf (r) zf (r)

      
= i

 
z∂f

∂y
− y∂f

∂z

 
− j

 
z∂f

∂x
− x∂f

∂z

 

+k
 
y∂f

∂x
− x∂f

∂y

 

Here
∂f (r)

∂y
= ∂

∂r
f (r) ·

∂r

∂y
= f  (r) ·

y

r

since
∂r

∂y
= ∂

∂y

 
x2 + y2 + z2

= 1

2

2y 
x2 + y2 + z2

= y

r

Similarly,
∂f

∂x
= f  x

r
and

∂f

∂z
= f  z

r

Substituting these values

∇ × (f r) = i
 
zf  y
r

− yf  z
r

 
− j

 
zf  x
r

− xf  z
r

 
+k

 
yf  x
r

− xf  y
r

 
= 0

i. with f (r) = rn.
∇ × (rnr) = ∇(f (r)r) = 0

follows from the above result.

ii. with n = 0,∇ × r = 0 from above result (i).

Example 4: Prove thatA = (6xy + z3)i + (3x2 −
z)j + (3xz2 − y)k is irrotational. Find a scalar func-

tion f (x, y, z) such that A = ∇f .

Solution:

∇ × A=

      
i j k
∂
∂x

∂
∂y

∂
∂z

6xy + z3 3x2 − z 3xz2 − y

      
= i[−1 − (−1)] − j [3z2 − 3z2] + k[6x − 6x] = 0
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Therefore A is irrotational.

To find f : A = ∇f = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k

comparing components of i, j, k on either side

∂f

∂x
= 6xy + z3 (1)

∂f

∂y
= 3x2 − z (2)

∂f

∂z
= 3xz2 − y (3)

Integrating (1) partially w.r.t. x, we get

f = 3x2y + xz3 + c1(y, z) (4)

Differentiating (4) partially w.r.t. y and equating it
with (2), we get

3x2 + 0 + ∂c1

∂y
= ∂f

∂y
= 3x2 − z

i.e.,
∂c1

∂y
= −z (5)

Integrating (5) partially w.r.t. y, we have

c1(y, z) = −zy + c2(z) (6)

Substituting (6) in (4)

f = 3x2y + xz3 − zy + c2(z) (7)

Differentiating (7) partially w.r.t. z and equating it
with (3), we get

0 + 3xz2 − y + dc2

dz
= 3xz2 − y

So
dc2

dz
= 0

i.e., c2 = a pure constant (independent of z)
Thus the required scalar function

f = 3x2y + xz3 − zy + c2.

Example 5: Find curl curl of A = x2yi − 2xzj +
2yzk at the point (1, 0, 2).

Solution:

∇ × A=

      
i j k
∂
∂x

∂
∂y

∂
∂z

x2y −2xz 2yz

      
∇ × A= i[2z+ 2x] − j [0 − 0]

+k[−2z− x2]

Now ∇ × (∇ × A) =

      
i j k
∂
∂x

∂
∂y

∂
∂z

2(z+ x) 0 −(2z+ x2)

      
= i[0 − 0] − j [−2x − 2] + k[0 − 0]

= 2(x + 1)j

∇ × (∇ × A)

   
at (1,0,2)

= 2(1 + i)j = 4j .

EXERCISE

1. Prove that ∇ × r = 0.

2. Find the curl of yzi + 3zxj + zk at (2, 3, 4).

Ans. −6i + 3j + 8k

3. Find∇ ×  
(yz− 2x2y)i + x(y2 − z2)j + 2xy

(z− xy)k at the point (1, 1, 1).

Ans. 4x(z− xy)i + (y − 2yz+ 4xy2)j + (2x2 +
y2 − z2 − z)k; 3j + k

4. If f = x2yz, g = xy − 3z2, calculate

∇ · (∇f × ∇g).
Ans. zero

5. Determine curl of xyz2i + yzx2j + zxy2k at

the point (1, 2, 3).

Ans. xy(2z− x)i + yz(2x − y)j + zx(2y − z)k;
10i + 3k

6. If A and B are irrotational show that

∇ · (A× B) = 0.

7. Determine the constants a and b such that

curl of (2xy + 3yz)i + (x2 + axz− 4z2)j +
(3xy + 2byz)k = 0.

Ans. a = 3, b = 4.

8. Find the value of constant b such that

A = (bxy − z3)i + (b − 2)x2j + (1 − b)xz2k

has its curl identically equal to zero.

Ans. b = 4

9. Evaluate ∇ × (rr−2). Find f such that rr−2 =
−∇f with f (a) = 0 where a > 0.

Ans. f = ln(a/r)
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10. Determine the constants a, b, c so that

A= (x + 2y + az)i + (bx − 3y − z)j
+(4x + cy + 2z)k

is irrotational. Find a scalar function f (x, y, z)

such that A = ∇f .

Ans. i. a = 4, b = 2, c = −1

ii. f = x2

2
− 3y2

2
+ z2 + 2xy + 4xz− yz

11. Prove that A = (x2 − yz)i + (y2 − zx)j +
(z2 − xy)k is irrotational and find the scalar

potential f such that A = ∇f .

Ans. f (x, y, z) = x3+y3+z3
3

− xyz
12. Show that ∇ × (∇ × (∇ × (∇ × A))) = ∇4A

where A is a solenoidal vector.

13. Prove that (y2 − z2 + 3yz− 2x)i + (3xz+
2xy)j + (3xy − 2xz+ 2z) is both solenoidal

and irrotational.

14. Prove that ∇ · (∇ × A) = 0.

15.5 RELATED PROPERTIES OF

GRADIENT, DIVERGENCE AND

CURL OF SUMS

The gradient, divergence and curl are distributive

with respect to the sum and difference of functions:

1. ∇(f ± g) = ∇f ± ∇g
2. ∇ · (A± B) = (∇ ·A) ± (∇ ·B)

3. ∇ × (A± B) = (∇ × A) ± (∇ × B).

The above results follow, since derivative of sum or
difference of scalars or vectors is sum or difference
of the derivatives of scalars or vectors. For example,

∇ · (A± B) = ∇ · ((A1 ± B1)i + (A2 ± B2)j

+(A3 ± B3)k)

= ∂

∂x
(A1 ± B1) + ∂

∂y
(A2 ± B2)

+ ∂

∂z
(A3 ± B3)

=
 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 

±
 
∂B1

∂x
+ ∂B2

∂y
+ ∂B3

∂z

 

= ∇ ·A± ∇ ·B.

Gradient, Divergence and Curl of Products

1. ∇(fg) = f∇g + g∇f
2. ∇ · (fA) = f∇ ·A+ (∇f ) ·A

3. ∇ × (fA) = f∇ × A+ (∇f ) × A
4. ∇(A ·B) = (B ·∇)A+ (A ·∇)B +
B × (∇ × A) + A× (∇ × B)

5. ∇ · (A× B) = B · (∇ × A) − A · (∇ × B)

6. ∇ × (A× B) = (B ·∇)A− B(∇ ·A) −
(A ·∇)B + A(∇ ·B).

The results 1, 2, 3 follow from the fact that the deriva-

tive of a product of scalar functions is the product of

the derivatives of the scalar functions.
For example,

∇ × (fA) = ∇ × (f (A1i + A2j + A3k))

= ∇ × (fA1i + fA2j + fA3k)

=

       
i j k

∂
∂x

∂
∂y

∂
∂z

fA1 fA2 fA3

       
= i

 
∂(fA3)

∂y
− ∂

∂z
(fA2)

 

−j
 
∂

∂x
(fA3) − ∂

∂z
(fA1)

 

+k
 
∂

∂x
(fA2) − ∂

∂y
(fA1)

 

Expanding the product of the derivatives and rear-
ranging the terms, we get

= f
 
i

 
∂A3

∂y
− ∂A2

∂z

 
− j

 
∂A3

∂x
− ∂A1

∂z

 

+k
 
∂A2

∂x
− ∂A1

∂y

  
+ i

 
A3
∂f

∂y
−A2

∂f

∂z

 

−j
 
A3
∂f

∂x
−A1

∂f

∂z

 
+ k

 
A2
∂f

∂x
−A1

∂f

∂y

 

∇ × (fA) = f∇ × A+ (∇f ) × A.
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Example 1: Prove that ∇ · (A× B) =
B · (∇ × A) − A · (∇ × B).

Solution:

A× B =

      
i j k

A1 A2 A3

B1 B2 B3

      
A× B = i(A2B3 − A3B2) − j (A1B3 − A3B1)

+ k(A1B2 − A2B1)

∇ · (A× B) = ∂

∂x
(A2B3 − A3B2) − ∂

∂y
(A1B3 − A3B1)

+ ∂

∂z
(A1B2 − A2B1).

Expanding the derivatives of the products and rear-
ranging the 12 terms in to 2 groups of 6 terms each,
we get

∇ · (A× B)

=
 
B1

 
∂A3

∂y
− ∂A2

∂z

 
+ B2

 
∂A1

∂z
− ∂A3

∂x

 

+B3

 
∂A2

∂x
− ∂A1

∂y

  
−

 
A1

 
∂B3

∂y
− ∂B2

∂z

 

+A2

 
∂B1

∂z
− ∂B3

∂x

 
+A3

 
∂B2

∂x
− ∂B1

∂y

  

∇ · (A× B) = B · (∇ × A) − A · (∇ × B).

Example 2: Prove that

∇ × (A× B) = (B ·∇)A− B(∇ ·A)

−(A ·∇)B + A(∇ ·B).

Solution:

∇ × (A× B) =
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
× (A× B)

= i × ∂

∂x
(A× B) + j × ∂

∂y
(A× B)

+k × ∂

∂z
(A× B)

Expanding the derivative of the products, we get 6
terms,

=
 
i ×

 
∂A

∂x
× B

 
+ i ×

 
A× ∂B

∂x

  

+
 
j ×

 
∂A

∂y
× B

 
+ j ×

 
A× ∂B

∂y

  

+
 
k ×

 
∂A

∂z
× B

 
+ k ×

 
A× ∂B

∂z

  
(1)

Since a × (b × c) = (a · c)b − (a · b)c,

i ×
 
∂A

∂x
× B

 
= (i ·B)

∂A

∂x
−

 
i ·
∂A

∂x

 
B

= (B · i)
∂A

∂x
−

 
i ·
∂

∂x
A

 
B (2)

We get similar results for the 3rd and 5th terms in
the R.H.S. of (1). Collecting these 3 terms from the
R.H.S. of (1), namely 1st, 3rd and 5th terms and using
the summation notation with respect to i (and x),
we get

i ×
 
∂A

∂x
× B

 
+ j ×

 
∂A

∂y
× B

 

+ k ×
 
∂A

∂z
× B

 

=
 
i ×

 
∂A

∂x
× B

 

=
  

B · i
∂

∂x

 
A−

  
i
∂

∂x
·A

 
B

Since the summation is with respect to i, we get

=
 
B ·

 
i
∂

∂x

 
A

−
   

i
∂

∂x

 
·A

 
B

 
i ×

 
∂A

∂x
× B

 
= (B ·∇)A− (∇ ·A)B (3)

In a similar manner, interchanging the roles ofA and
B, for the remaining 3 terms namely 2nd, 4th and 6th
terms of (1), we get

 
i ×

 
A× ∂B

∂x

 
= (∇ ·B)A− (A ·∇)B (4)

Adding (3) and (4) the required result is obtained.

Example 3: Prove that

∇(A ·B) = A× (∇ × B) + B × (∇ × A)

+(A ·∇)B + (B ·∇)A.
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Solution: ∇(A · B) = i ∂
∂x

(A · B) + j ∂
∂y

(A · B) +
k ∂
∂z

(A ·B).
Expanding the derivative of the product terms and
rearranging the 6 terms, we get

∇(A ·B) =
 
i
∂

∂x
(A ·B)

=
  

i
∂

∂x
A

 
·B + A ·

 
i
∂B

∂x
(1)

Consider

A× (∇ × B) = A×
   

i
∂

∂x

 
× B

 

= A×
  

i × ∂B

∂x

 

Using triple cross product result

=
  

A ·
∂B

∂x

 
i −

 
A ·

 
i
 ∂B
∂x

=
 
i

 
A ·
∂B

∂x

 
−

 
A ·

 
i
∂

∂x

 
B

A× (∇ × B) =
 
i

 
∂B

∂x
·A

 
− (A ·∇)B

Rewriting, we have

A× (∇ × B) + (A ·∇)B =
  

i
∂B

∂x

 
·A

= A ·
  

i
∂B

∂x

 
(2)

Similarly (interchanging the roles of A and B),
we get

B × (∇ × A) + (B ·∇)A = B ·
  

i
∂A

∂x

 
(3)

Addition of (2) and (3) gives the desired result.

15.6 SECOND-ORDER DIFFERENTIAL

OPERATOR

It is a two-fold application of the operator ∇ to

function.

Laplacian Operator ∇2

div grad f = ∇ · (∇f )

= ∇ ·
 
i
∂f

∂x
+ j ∂f

∂y
+ k ∂f

∂z

 

= ∂

∂x

 
∂f

∂x

 
+ ∂

∂y

 
∂f

∂y

 
+ ∂

∂z

 
∂f

∂z

 

= ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2

=
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 
f

= ∇2f =  f
Thus the scalar differential operator (read as

“nabla squared” or “delta”)

∇2 =  = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is known as the Laplacian operator.

Thus we have following second order differential

operators:

1. ∇ ·∇f = div grad f = ∇2f =  f =
∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2

2. ∇ × ∇f = curl grad f = 0

3. ∇ ·∇ × A = div cur A = 0

4. ∇ × (∇ × A) = curl curl A = ∇(∇ · A) − ∇2A

(4) may be rewritten as

5. ∇(∇ ·A) = grad div A = ∇ × (∇ × A) + ∇2A

The possible combinations of second order differ-

ential operators are tabulated below:

Scalar field f Vector field A

grad div curl

grad — grad divA —

div div grad f div curl A = 0

=  f —

curl curl grad f = 0 curl curl A =
— grad div A

− A

Example 1: Prove that ∇ × ∇f = 0 for any scalar

function f .
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Solution: ∇f = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k so

∇ × ∇f =

          

i j k

∂

∂x

∂

∂y

∂

∂z

∂f

∂x

∂f

∂y

∂f

∂z

          
= i

 
∂2f

∂y∂z
− ∂2f

∂z∂y

 
− j

 
∂2f

∂x∂z
− ∂2f

∂z∂x

 

+k
 
∂2f

∂x∂y
− ∂2f

∂y∂z

 

= 0 + 0 + 0 = 0

Since fyz = fzy, fxz = fzx, fxy = fyx .
Note: Gradient field describing a motion, in this

case, is known as “irrotational”.

If gradient field is not a velocity field, then it is

known as “conservative”.

Example 2: Prove that ∇ · (∇ × A) = 0.

for any vector function A.

Solution:

∇ × A= i
 
∂A3

∂y
− ∂A2

∂z

 
− j

 
∂A3

∂x
− ∂A1

∂z

 

+k
 
∂A2

∂x
− ∂A1

∂y

 

So that

∇ · (∇ × A)

= ∂

∂x

  
∂A3

∂y
− ∂A2

∂z

  
+ ∂

∂y

 
∂A1

∂z
− ∂A3

∂x

 

+ ∂

∂z

 
∂A2

∂x
− ∂A1

∂y

 

= ∂2A3

∂x∂y
− ∂2A2

∂x∂z
+ ∂2A1

∂y∂z
− ∂2A3

∂y∂x

+∂
2A2

∂z∂x
− ∂2A1

∂z∂y
= 0.

Example 3: Show that ∇ × (∇ × A) =
∇(∇ ·A) − ∇2A.

Solution:

∇ × (∇ × A)

=

          

i j k

∂

∂x

∂

∂y

∂

∂z

∂A3

∂y
− ∂A2

∂z

∂A1

∂z
− ∂A3

∂x

∂A2

∂x
− ∂A1

∂y

          
Expanding the determinant, we have

∇ × (∇ × A) =
 
∂2A2

∂y∂x
− ∂2A1

∂y2
− ∂2A1

∂z2
+ ∂2A3

∂z∂x

 
i

+
 
∂2A3

∂z∂y
− ∂2A2

∂z2
− ∂2A2

∂x2
+ ∂2A1

∂x∂y

 
j

+
 
∂2A1

∂x∂z
− ∂2A3

∂x2
− ∂2A3

∂y2
+ ∂2A2

∂y∂z

 
k

Rearranging the 12 terms into 2 groups of 6 terms
each, we get

∇ × (∇ × A) =
 
i
∂

∂x

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 

−i
 
∂2A1

∂x2
+ ∂2A1

∂y2
+ ∂2A1

∂z2

  

+
 
j
∂

∂y

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 

−j
 
∂2A2

∂x2
+ ∂2A2

∂y2
+ ∂2A2

∂z2

  

+
 
k
∂

∂z

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 

−k
 
∂2A3

∂x2
+ ∂2A3

∂y2
+ ∂2A3

∂z2

  

=
 
i
∂

∂x
+ j ∂

∂y
+ k ∂

∂z

 
×

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 

−
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

  
A1i + A2j + A3k

 
∇ × (∇ × A) = ∇(∇ ·A) − ∇2A.

Example 4: Prove that

∇ × (f∇g) = ∇f × ∇g= − ∇ × (g∇f ) and de-

duce that ∇ × (f∇f ) = 0

Solution: ∇ × (f∇g) = ∇f × ∇g + f∇ ×∇g =
∇f × ∇g, also

−∇ × (g∇f ) = −∇g × ∇f − g∇ × ∇f
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= ∇f × ∇g − 0

since ∇ × ∇g = 0.

Taking f = g,∇ × (f∇f ) = ∇f × ∇f = 0.

Example 5: Prove that ∇ · (f∇g × g∇f ) = 0.

Solution: Since ∇ · (A× B) = B · (∇ × A) −
A · (∇ × B)

∇ · (f∇g × g∇f ) = g∇f · (∇ × (f∇g))
−f∇g · (∇ × (g∇f ))

= 0

Since ∇ × (f∇g) = ∇f × ∇g and ∇ × (g∇f ) =
−∇f × ∇g, from just above example.

Example 6: Prove that

∇ · (f∇ × A) = ∇f · (∇ × A).

Solution:

∇ · (f∇ × A) = ∇f · (∇ × A) + f∇ · (∇ × A)

= ∇f · (∇ × A)

Since ∇ · (∇ × A) = 0.

WORKED OUT EXAMPLES

Laplacian ∇2

Example 1: Calculate ∇2f when f = 3x2z−
y2z3 + 4x3y + 2x − 3y − 5 at the point (1, 1, 0).

Solution:

∇2f =
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 

×
 
3x2z− y2z3 + 4x3y + 2x − 3y − 5

 
Consider

∂

∂x
(3x2z− y2z3 + 4x3y + 2x − 3y − 5)

= 6xz+ 12x2y + 2

∂2

∂x2
(3x2z− y2z3 + 4x3y + 2x − 3y − 5)

= 6z+ 24xy.

Similarly,

∂2

∂y2
f = −2z3

and
∂2

∂z2
f = −6y2z

Thus substituting these values, we have

∇2f = 6z+ 24xy − 2z3 − 6y2z

∇2f at the point (1, 1, 0) is 0+24 ·1 ·1+0+0= 24.

Example 2: Prove that

a. ∇2f (r) = d2f

dr2
+ 2

r

df

dr

b. Find f (r) such that ∇2f (r) = 0.

Solution:

a. ∇2f (r) = ∇ ·∇f (r)

Since
∂f

∂x
= ∂f

∂r

∂r

∂x
= ∂f

∂r

x

r

∇f (r) = ∂f

∂r
(xi + yj + zk) 1

r

i.e., ∇f (r) = r

r

df

dr
= r

 
f  (r)
r

 
(1)

Using (1), we have

∇2f (r) = ∇ · (∇f (r)) = ∇ ·
 
r
f  

r

 
= ∇ ·

 
r

 
f  

r

  
Applying the result

∇ · (Af ) = f (∇ ·A) + (∇f ) ·A

∇2f = ∇ ·
 
r

 
f  

r

  
= f  

r
∇ · r +

 
∇ f

 

r

 
· r (2)

Consider

∇
 
f  

r

 
= ∇(f  r−1) = r−1∇f  + f  ∇r−1

Using (1) for f  , we get

∇f  = r f
  

r

and ∇r−1 = −1 · r−1−2
· r = − r

r3

We have

∇
 
f  

r

 
= r−1 f

  

r
r + f  

 
− r

r3

 

=
 
f   

r2
− f  

r3

 
r (3)

Also ∇ · r = 3 (4)
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Substituting (3) and (4) in (2), we get

∇2f = 3
f  

r
+

 
f   

r2
− f  

r3

 
r · r

= 3
f  

r
+

 
f   

r2
− f  

r3

 
r2

∇2f (r) = f   + 2

r
f  = d2f

dr2
+ 2

r

df

dr

b. Since ∇2f (r) = d2f

dr2
+ 2

r

df

dr
= 0

This is a 2nd order homogeneous equation which
is separable in f  

df  

dr
+ 2

r
f  = 0

with solution f  = c

r2
.

Integrating w.r.t. r

f (r) = B + A

r

where A and B are arbitrary constants.

Example 3: Prove that

i. ∇2rn = n(n+ 1)rn−2 where n is a constant

ii. ∇2r2 = 6

iii. ∇2
 

1
r

 = 0

iv. ∇2 ln r = 1

r2

vi. ∇2(gh) = g∇2h+ h∇2g.

Solution:

i. With f (r) = rn, from the result from above
Example 3 (i), we get

∇2f = ∇2rn = d2

dr2
(rn) + 2

r

d

dr
(rn)

= d

dr
(n · rn−1) + 2

r
· nrn−1

= n · (n− 1)rn−2 + 2nrn−2

= nrn−2[n− 1 + 2] = n(n+ 1)rn−2

ii. Put n = 2 in (i) ∇2r2 = 2(2 + 1)r2−2 = 6

iii. Put n = −1 in (i)

∇2

 
1

r

 
= (−1)(−1 + 1)r−1−2 = 0

iv. With f (r) = ln r

∇2f = ∇2 ln r = d2

dr2
ln r + 2

r

d

dr
ln r

= − 1

r2
+ 2

r
·
1

r
= 1

r2

v. With f = gh

∇2f = ∇2(gh) = d2

dr2
(gh) + 2

r

d

dr
(gh)

= 2
dg

dr

dh

dr
+ g d

2h

dr2
+ hd

2g

dr2
+ 2

r

 
g
dh

dr
+ hdg

dr

 

= 2
dg

dr

dh

dr
+ g

 
d2h

dr2
+ 2

r

dh

dr

 
+ h

 
d2g

dr2
+ 2

r

dg

dr

 

= 2∇g ·∇h+ g∇2h+ h∇2g

where we have used result of above Example 2(a).
Aliter: The above examples can also be solved
directly. For example consider

∇2 ln r =
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 
ln r

=
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 
ln

 
(x2 + y2 + z2) (1)

Consider

∂

∂x
ln

 
x2 + y2 + z2

= 1 
x2 + y2 + z2

·
1

2
·  
x2 + y2 + z2

· 2x

= x

r2

∂2

∂x2
ln

 
x2 + y2 + z2

= ∂

∂x

 x
r2

 
= r2 · 1 − x · 2r ∂r

∂x

r4

= r2 − 2xr x
r

r4
= r2 − 2x2

r4
(2)

Similarly,

∂2

∂y2
ln

 
x2 + y2 + z2 = r2 − 2y2

r4
(3)

and
∂2

∂z2
ln

 
x2 + y2 + z2 = r2 − 2z2

r4
(4)
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Substituting (2), (3), (4) in (1), we get

∇2 ln r = r2 − 2x2

r4
+ r2 − 2y2

r4
+ r2 − 2z2

r4

= 3r2 −2(x2 +y2 +z2)
r4

= 3r2 +2r2

r4
= r

2

r4
= 1

r2
.

Example 4: Prove that

∇2(fg) = f∇2g + 2∇g ·∇f + g∇2f.

Solution:

∇2(fg) = ∇ ·∇(fg)

= ∇ · [f∇g + g∇f ]

= ∇ · (f∇g) + ∇ · (g∇f )

= [f∇ ·∇g + ∇f ·∇g] + [g∇ ·∇f + ∇g ·∇f ]

∇2fg = f∇2g + 2∇f ·∇g + g∇2f.

Example 5: Find the directional derivative of

∇ · (∇f ) at the point (1,−2, 1) in the direction

of the normal to the surface xy2z = 3x + z2 where

f = 2x3y2z4.

Solution: Let

U (x, y, z) = ∇ ·∇f = ∇2f = ∇2(2x3y2z4)

=
 
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 
(2x3y2z4)

= 2 · [6xy2z4 + 2x3z4 + 12x3y2z2]

Normal to the surface g = xy2z− 3x − z2 = 0 is

∇g = (y2z− 3)i + (2xyz)j + (xy2 − 2z)k

∇g
   
at(1,−2,1)

= i − 4j + 2k

Unit vector â in the direction of normal at the point
P (1,−2, 1) is

â = ∇g
|∇g| = i − 4j + 2k√

1 + 16 + 4
= i − 4j + 2k√

21

Consider

∇U = ∇(12xy2z4 + 4x3z4 + 24x3y2z2)

= (12y2z4 + 12x2z4 + 72x2y2z2)i

+(24xyz4 + 48x3yz2)j

+(48xy2z3 + 16x3z3 + 48x3y2z)k

∇U
   
at(1,−2,1)

= 348i − 144j + 400k

Thus the required directional derivative is

∇U · â = (348i−144j+400k) ·
(i−4j+2k)√

21
= 1724√

21
.

Example 6: Evaluate ∇2
 
∇ ·

 
r

r2

  
.

Solution: Consider

∇ ·
 
r

r2

 
= ∇ · (r−2r)

= r−2∇ · r + r ·∇r−2

= 3r−2 + r · (−2r−4r)

= 3r−2 − 2r−4r · r

∇ ·
 
r

r2

 
= 3r−2 − 2r−4r2 = r−2

Now

∇2

 
∇ ·

 
r

r2

  
= ∇2(r−2)

Applying result (i) of Example 3 above with n = −2

= −2(−2 + 1)r−2−2 = 2r−4.

EXERCISE

Laplacian ∇2

1. Show that ∇ · (∇f ) = ∂2f

∂x2
+ ∂2f

∂y2 + ∂2f

∂z2

2. Calculate ∇2f when f = 4x2 + 9y2 + z2
Ans. 28

3. Find ∇2f at the point (2, 3, 1) when f = xy/z
Ans. 2xy/z3; 12

4. If F = rar prove that

∇2F = a(a + 3)rn−2F

5. Show that ∇f is both solenoidal and irrota-

tional if ∇2f = 0.

15.7 CURVILINEAR COORDINATES:

CYLINDRICAL AND SPHERICAL

COORDINATES

It is more convenient in many problems to de-

fine the position of a point P in space by three
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numbers (q1, q2, q3) instead of the three cartesian

coordinates (x, y, z). Then q1, q2, q3 are known as

“curvilinear coordinates” of the point P. The three

surfaces q1 = c1, q2 = c2 and q3 = c3, (refer Fig.

15.2)where c1, c2, c3 are constants, are known as

“coordinate surfaces” of the system of curvilinear

coordinates. On these coordinates surfaces, say q1 =
c1, one of the coordinates, here q1, remains constant.

The “coordinate curves (lines) (axis)” are the
curves (or lines) of intersection of any two coor-
dinate surfaces. Thus on the coordinate curve say
which is the intersection of q2 = c2 and q3 = c3, only
q1 varies, while q2 and q3 remain constant. Suppose
the rectangular coordinates (x, y, z) of any point P
in space be expressed as functions of (q1, q2, q3) so
that

x = x(q1, q2, q3), y = y(q1, q2, q3),
z= z(q1, q2, q3) (1)

Solving (1) for q1, q2, q3 in terms of x, y, z, we get

q1 = q1(x, y, z), q2 = q2(x, y, z),
q3 = q3(x, y, z) (2)

The set of Equations (1) and (2) are known as “trans-

formation of coordinates”.

Fig. 15.2

If the coordinate surfaces intersect at right an-

gles (and therefore the coordinate lines are at right

angles), then the curvilinear coordinate system is

known as “orthogonal curvilinear system of coor-

dinates”.

Let e1, e2, e3 be unit vectors directed along the

tangents to the coordinates axes q1, q2, q3 at the

point P in the direction of increasing q1, q2, q3 re-

spectively, such that e1, e2, e3 form a right-handed

trihedral (triad).

Example: Rectangular cartesian coordinate

system x, y, z, where the three coordinate surfaces

are planes x = c1, y = c2, z = c3 which are mutu-

ally at right angles.

Note: The basic difference between curvilinear

coordinates and cartesian coordinates is that the unit

vectors i, j , k in the cartesian coordinate system re-

main constant and are same for all points of space,

while in any other system the unit vectors e1, e2, e3,

generally speaking, are not constant i.e., change their

directionswhenpassing fromone point P to the other.

Example: Cylindrical coordinates (refer

Fig. 15.3)

Fig. 15.3

q1 = r, 0 ≤ r < ∞
q2 = θ, 0 ≤ θ < 2π

q3 = z, −∞ < z < +∞


 (3)

coordinate surfaces are

r = constant: circular cylinders coaxial with

z-axis

θ = constant: half plane, adjoining z-axis,

through z-axis

z = constant: plane perpendicular to z-axis
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coordinate lines (or axes) are

r: rays with origin on z-axis and perpendicular to

z-axis

θ : circleswith centre on z-axis and lying in planes

perpendicular to z-axis

z: straight lines parallel to the z-axis

The transformation that relate cartesian coordi-
nates to cylindrical coordinates are

x = r cos θ

y = r sin θ

z = z


 (4)

r =
 
x2 + y2, θ = arc tan

y

x
, z = z

Example: Spherical coordinates (see Fig. 15.4)

Fig. 15.4

q1 = r, 0 ≤ r < +∞
q2 = θ, 0 ≤ θ ≤ π (5)

q3 = φ, 0 ≤ φ < 2π

The coordinate surfaces are

r = c1, spheres centred at origin 0

θ = c2, circular half-angle coneswith z-axis with

vertex at origin.

φ = c3, (half) planes adjoining the z-axis through

z-axis.

coordinate lines are:

r: rays emanating from origin 0

θ : meridians on a sphere

φ: parallel on a sphere

cartesian coordinates are related to spherical coordi-
nates as follows:

x = r cosφ sin θ

y = r sin φ sin θ

z = r cos θ.


 (6)

Unit Vectors in Curvilinear System

Suppose r = r(q1, q2, q3) be the position vector of a
point P . A tangent vector of the q1 curve at P (for

which q2 and q3 are constants) is ∂r
∂q1

. Then a unit

tangent vector e1 in this direction is

e1 = ∂r

∂q1

     ∂r∂q1
    

so that
∂r

∂q1
= h1e1 (7)

where h1 =
    ∂r∂u1

    .
Similarly if e2 and e3 are unit tangent vectors to the
u2 and u3 curves at P respectively then

∂r

∂q2
= h2e2 (8)

and
∂r

∂q3
= h3e3 (9)

where h2 =
    ∂r∂q2

    , h3 =
    ∂r∂q3

    .
The quantities h1, h2, h3 are called scale factors or
Lame coefficients of the given curvilinear system of
coordinates, and are given by

hi =
  

∂x

∂qi

 2

+
 
∂y

∂qi

 2

+
 
∂z

∂zi

 2

;

i = 1, 2, 3 (10)

Thus

dr = ∂r

∂q1
dq1 + ∂r

∂q2
dq2 + ∂r

∂q3
dq3
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or

dr = h1dq1e1 + h2dq2e2 + h3dq3e3 (11)

Example: In rectangular coordinate system
(q1, q2, q3) is replaced by (x, y, z). Here

h1 = h2 = h3 = 1, e1 = i, e2 = j, e3 = k

Example: Cylindrical coordinates

q1 = r, q2 = θ, q3 = z
By virtue of (10)

h1 =Hr =
  

∂x

∂r

 2

+
 
∂y

∂r

 2

+
 
∂z

∂r

 2

= 1

h2 =Hθ =
  

∂x

∂θ

 2

+
 
∂y

∂θ

 2

+
 
∂z

∂θ

 2

= r

h3 =Hz =
  

∂x

∂z

 2

+
 
∂y

∂z

 2

+
 
∂z

∂z

 2

= 1

Example: Spherical coordinates

q1 = r, q2 = θ, q3 = φ
Using (10), we get

h1 = Hr = 1, h2 = Hθ = r, h3 = Hφ = r sin θ.

Expressions of Gradient, Divergence, Curl

and Laplacian in Orthogonal Curvilinear,

Spherical and Cylindrical Coordinates

WORKED OUT EXAMPLES

Example 1: Derive an expression for ∇f in or-

thogonal curvilinear coordinates. Hence deduce ∇
in rectangular cartesian coordinates.

Solution: Let

∇f = f1e1 + f2e2 + f3e3 (1)

where f1, f2, f3 are unknowns to be determined.
Since

dr = ∂r

∂q1
dq1 + ∂r

∂q2
dq2 + ∂r

∂q3
dq3

dr = h1e1dq1 + h2e2dq2 + h3e3dq3 (2)

By taking dot product of (1) and (2), we have

df = ∇f · dr = h1f1dq1 + h2f2dq2 + h3f3dq3 (3)

But by definition of differential,

df = ∂f

∂q1
dq1 + ∂f

∂q2
dq2 + ∂f

∂q3
dq3 (4)

Equating (3) and (4), we get

f1 = 1

h1

∂f

∂q
, f2 = 1

h2

∂f

∂q2
, f3 = 1

h3

∂f

∂q3
(5)

Substituting (5) in (1), we get

∇f = e1

h1

∂f

∂q1
+ e2

h2

∂f

∂q2
+ e3

h3

∂t

∂q3

Thus the nabla operator ∇ in orthogonal curvilinear

coordinates is

∇ = e1

h1

∂

∂q1
+ e2

h2

∂

∂q2
+ e3

h3

∂

∂q3
(6)

Putting

h1 = h2 = h3 = 1, e1 = i,
e2 = j, e3 = k

and q1 = x, q2 = y, q3 = z
(6) reduces to

∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z
.

Example 2: Show that e1 = h2h3∇q2 × ∇q3.

Solution: From Example 1 with f = q1, we have

∇f = ∇q1 = e1

h1

∂q1

∂q1
+ 0 + 0 = e1

h1

Similarly, ∇q2 = e2

h2

and ∇q3 = e3

h3

Now

∇q2 × ∇q3 = e2

h2
× e3

h3
= 1

h2h3
e2 × e3 = e1

h2h3

So e1 = h2h3∇q2 × ∇q3.
In a similar way, we get

e2 = h3h1∇q3 × ∇q1
e3 = h1h2∇q1 × ∇q2.

Example 3: Derive an expression for ∇ · A in

orthogonal curvilinear coordinates. Deduce ∇ ·A in



15.24 HIGHER ENGINEERING MATHEMATICS—IV

rectangular coordinates

Solution: Let

A = A1e1 + A2e2 + A3e3

So that

∇ ·A= ∇ · (A1e1 + A2e2 + A3e3)

= ∇ · (A1e1) + ∇ · (A2e2) + ∇ · (A3e3) (1)

Consider,

∇ · (A1e1) = ∇ · (A1h2h3∇q2 × ∇q3)

Using result of above Example 2

= ∇(A1h2h3) ·∇q2 × ∇q3
+A1h2h3∇ · (∇q2 × ∇q3)

= ∇(A1h2h3) ·
e2

h2
× e3

h3
+ 0

= ∇(A1h2h3) ·
e1

h2h3
.

Using ∇f result from above Example 1.

∇ · (A1e1) =
 
e1

h1

∂

∂q1
(A1h2h3) + e2

h2

∂

∂q2
(A1h2h3)

+ e3
h3

∂

∂q3
(A1h2h3)

 
·
e1

h2h3

∇ · (A1e1) = 1

h1h2h3

∂

∂q1
(A1h2h3) + 0 + 0 (2)

Similarly, we get

∇ · (A2e2) = 1

h1h2h3

∂

∂q2
(A2h3h1) (3)

∇ · (A3e3) = 1

h1h2h3

∂

∂q3
(A3h1h2) (4)

Adding (2), (3), (4) and using (1), we get the required
result as

∇ ·A= 1

h1h2h3

 
∂

∂q1
(A1h2h3) + ∂

∂q2
(A2h3h1)

+ ∂

∂q3
(A3h1h2)

 
.

Putting h1 = h2 = h3 = 1

q1 = x, q2 = y, q3 = z
∇ ·A= ∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

Example 4: Derive an expression for ∇ × A in

orthogonal curvilinear coordinates. Deduce ∇ × A
for cartesian coordinates.

Solution: If

A = A1e1 + A2e2 + A3e3

then

∇ × A= ∇ × (A1e1 + A2e2 + A3e3)

∇ × A= ∇ × (A1e1) + ∇ × (A2e2) + ∇ × (A3e3)

(1)

Consider

∇ × (A1e1) = ∇ × (A1h1∇q1)

Since

e1 = h1∇q1
∇ × (A1e1) = ∇(A1h1) × ∇q1 + A1h1∇ × ∇q1

= ∇(A1h1) × e1

h1
+ 0

Substituting gradient value from above Example 1

∇ × (A1e1) =
 
e1

h1

∂

∂q1
(A1h1) + e2

h2

∂

∂q2
(A1h1)

+ e3
h3

∂

q3
(A1h1)

 
× e1

h1

= 0 − e3

h2h1

∂

∂q2
(A1h1)

+ e2

h3h1

∂

∂q3
(A1h1) (2)

In a similar way, we get

∇ × (A2e2) = e3

h1h2

∂

∂q1
(A2h2)

− e1

h2h3

∂

∂q3
(A2h2) (3)

and ∇ × (A3e3) = e1

h2h3

∂

∂q2
(A3h3)

− e2

h3h1

∂

∂q1
(A3h3) (4)

Adding (2), (3), (4), we get the required expression
for which can be written as
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∇ × A = 1

h1h2h3

          

h1e1 h2e2 h3e3

∂

∂q1

∂

∂q2

∂

∂q3

A1h1 A2h2 A3h3

          
.

For cartesian system,

∇ × A =

          

i j k

∂

∂x

∂

∂y

∂

∂z

A1 A2 A3

          
Example 5: Express∇2f in orthogonal curvilinear

coordinates. Deduce for cartesian system

Solution: From Example 1,

∇f = e1

h1

∂f

∂q1
+ e2

h2

∂f

∂q2
+ e3

h3

∂f

∂q3

If A= A1e1 + A2e2 + A3e3 = ∇f
Then equating coefficients of e1, e2, e3, we get

A1 = 1

h1

∂f

∂q1
, A2 = 1

h2

∂f

∂q2
, A3 = 1

h3

∂f

∂q3

Thus

∇2f = ∇ ·∇f = ∇ ·A

= 1

h1h2h3

 
∂

∂q1
(A1h2h3)

+ ∂

∂q2
(A2h3h1) + ∂

∂q3
(A3h1h2)

 

= 1

h1h2h3

 
∂

∂q1

 
h2h3

h1

∂f

∂q1

 
+ ∂

∂q2

 
h3h1

h2

∂f

∂q2

 

+ ∂

∂q3

 
h1h2

h3

∂f

∂q3

  

For cartesian system,

∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
.

Example 6: Express (a) ∇f , (b) ∇ ·A, (c) ∇ × A,

(d) ∇2f in cylindrical coordinates (r, θ, z).

Solution: For cylindrical coordinates (r, θ, z), we
know that

q1 = r, q2 = θ, q3 = z, e1 = er , e2 = eθ , e3 = ez

and

h1 = hr = 1, h2 = hθ = r, h3 = hz = 1

a. From Example 1

∇f = e1

h1

∂f

∂q1
+ e2

h2

∂f

∂q2
+ e3

h3

∂f

∂q3

∇f = 1

1

∂f

∂r
er + 1

r

∂f

∂θ
eθ + 1

1

∂f

∂z
ez

b. From Example 3

∇ ·A= 1

h1h2h3

 
∂

∂q1
(h2h3A1) + ∂

∂q2
(h3h1A2)

+ ∂

∂q3
(h1h2A3)

 

= 1

1 · r · 1

 
∂

∂r
(r · 1 ·Ar ) + ∂

∂θ
(1 · 1 ·Aθ )

+ ∂

∂z
(1 · r ·Az)

 

∇ ·A= 1

r

 
∂

∂r
(r Ar ) + ∂

∂θ
Aθ + ∂

∂z
(r Az)

 

c.
∇ × A= 1

h1h2h3

        
h1e1 h2e2 h3e3

∂
∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3

        

= 1

1 · r · 1

        
er reθ

ez

∂
∂r

∂
∂θ

∂
∂z

Ar rAθ Az

        
.

d. From Example 5,

∇2f = 1

h1h2h3

 
∂

∂q1

 
h2h3

h1

∂f

∂q1

 

+ ∂

∂q2

 
h3h1

h2

∂f

∂q2

 
+ ∂

∂q3

 
h1h2

h3

∂f

∂q3

  

= 1

1 · r · 1

 
∂

∂r

 
r · 1

1

∂f

∂r

 

+ ∂

∂θ

 
1 · 1

r

∂f

∂θ

 
+ ∂

∂z

 
1 · r

1

∂f

∂z

  

∇2f = 1

r

∂

∂r

 
r
∂f

∂r

 
+ 1

r2

∂2f

∂θ2
+ ∂2f

∂z2
.
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Example 7: Express (a) ∇f , (b) ∇ ·A, (c) ∇ × A,

(d) ∇2f in spherical curvilinear coordinates.

Solution: Here

q1 = r, q2 = θ, q3 = φ,
e1 = er , e2 = eθ , e3 = eφ
h1 = hr = 1, h2 = hθ = r, h3 = hφ = r sin θ.

a. ∇f = e1

h1

∂f

∂q1
+ e2

h2

∂f

∂q2
+ e3

h3

∂f

∂q3

∇f = er

1

∂f

∂r
+ eθ

r

∂f

∂θ
+ e3

r sin θ

∂f

∂φ

b. ∇ ·A= 1

h1h2h3

 
∂

∂q1
(h2h3A1) + ∂

∂q2
(h3h1A2)

+ ∂

∂q3
(h1h2A3)

 

= 1

1 · r · r · sin θ

 
∂

∂r
(r · r sin θAr )

+ ∂

∂θ
(r sin θ · 1 ·Aθ ) + ∂

∂φ
(1 · r ·Aφ)

 

∇ ·A= 1

r2 sin θ

 
∂

∂r
(r2 sin θAr )

+ ∂

∂θ
(r sin θAθ ) + ∂

∂φ
(rAφ)

 

∇ ·A= 1

r2

∂

∂r
(r2Ar ) + 1

r sin θ

∂

∂θ
(sin θAθ )

+ 1

r sin θ
·
∂

∂φ
(Aφ).

c. ∇ × A= 1

h1h2h3

        
h1e1 h2e2 h3e3

∂
∂q1

∂
∂q2

∂
∂q3

h1A1 h2A2 h3A3

        

∇ × A= 1

1 · r · r sin θ

        
er reθ r sin θeφ

∂
∂r

∂
∂θ

∂
∂φ

Ar r Aθ r sin θAφ

        
= 1

r2 sin θ

  
∂

∂θ
(r sin θAφ) − ∂

∂φ
(rAθ )

 
er

−
 
∂

∂r
(r sin θAφ) − ∂

∂φ
(Ar )

 
reθ

+
 
∂

∂r
(rAθ ) − ∂

∂θ
(Ar )

 
r sin θeφ

 
.

d. ∇2f = 1

h1h2h3

 
∂

∂q1

 
h2h3

h1

∂f

∂q1

 

+ ∂

∂q2

 
h3h1

h2

∂f

∂q2

 
+ ∂

∂q3

 
h1h2

h3

∂f

∂q3

  

∇2f = 1

1 · r · r sin θ

 
∂

∂r

 
r · r sin θ

1

∂f

∂r

 

+ ∂

∂θ

 
r sin θ · 1

r

∂f

∂θ

 
+ ∂

∂φ

 
1 · r

r · sin θ

∂f

∂φ

  

∇2f = 1

r2 sin θ

 
sin θ

∂

∂r

 
r2
∂f

∂r

 

+ ∂

∂θ

 
sin θ

∂f

∂θ

 
+ 1

sin θ

∂2f

∂φ2

 
.

Example 8: Prove that a spherical coordinate sys-

tem is orthogonal.

Solution: The position vector of any point in spher-
ical coordinates is

r = xi + yj + zk = ρ sin θ cosφi

+ρ sin θ sin φj + ρ cos θk

The tangent vectors to the ρ, θ, φ curves are given

respectively by ∂r
∂ρ
, ∂r
∂θ
, ∂r
∂φ

where

∂r

∂ρ
= sin θ cosφi + sin θ sin φj + cos θk

∂r

∂θ
= ρ cos θ cosφi + ρ cos θ sin φj − ρ sin θk

∂r

∂φ
= −ρ sin θ sin φi + ρ sin θ · cosφj + 0

The unit vectors in these directions are

e1 = eρ = ∂r/∂ρ

|∂r/∂ρ|

= sin θ cosφi + sin θ sin φj + cos θk

sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ

= sin θ cosφi + sin φ sin θj + cos θk

1

e2 = eθ = ∂r/∂θ

|∂r/∂θ |

= ρ cos θ cosφi + ρ cos θ sin φj − ρ sin θk

ρ
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e3 = eφ = ∂r/∂φ

|∂r/∂φ| = −ρ sin θ sin φi + ρ sin θ cosφj

ρ sin θ

Then

e1 · e2 = sin θ · cos θ · cos2 φ + sin θ · cos θ · sin2 φ

− cos θ sin θ = 0

e1 · e3 = − sin θ · cosφ sin φ + sin θ · sin φ · cosφ = 0

e2 · e3 = − cos θ · cosφ sin φ + cos θ sin φ cosφ = 0.

So e1, e2, e3 are mutually perpendicular and the

spherical coordinate system is orthogonal.

Example 9: Find the Jacobian of x, y, z with

respect to the orthogonal curvilinear coordinates

q1, q2, q3.

Solution:

J

 
x, y, z

q1, q2, q3

 
= ∂(x, y, z)

∂(q1, q2, q3)

=

            

∂x

∂q1

∂y

∂q1

∂z

∂q1

∂x

∂q2

∂y

∂q2

∂z

∂q2

∂x

∂q3

∂y

∂q3

∂z

∂q3

            
This determinant is triple scalar product given by

J =
 
∂x

∂q1
i + ∂y

∂q1
j + ∂z

∂q1
k

 
·

·

 
∂x

∂q2
i + ∂y

∂q2
j + ∂z

∂q2
k

 

×
 
∂x

∂q3
i + ∂y

∂q3
j + ∂z

∂q3
k

 

= ∂r

∂q1
·
∂r

∂q2
× ∂r

∂q3
= h1e1 · h2e2 × h3e3

Jacobian J = h1h2h3e1 · e2 × e3 = h1h2h3.

Note: If J = 0, e1, e2, e3 are coplanar and coordi-

nate transformation breaks.

Example 10: Find the Jacobian J
 

x,y,z

q1,q2,q3

 
for

a. cylindrical,

b. spherical coordinates.

Solution:

a. J = h1h2h3 = 1 · r · 1 = r
b. J = h1h2h3 = 1 · r · r · sin θ = r2 sin θ .

Example 11: Find

∂r

∂q1
,
∂r

∂q2
,
∂r

∂q3
,∇q1,∇q2,∇q3

in cylindrical coordinates.

Solution:

r = xi + yj + zk = ρ cos θi + ρ sin θj + zk
Then

∂r

∂q1
= ∂r

∂ρ
= cos θi + sin θj

∂r

∂q2
= ∂r

∂θ
= −ρ sin θi + ρ cos θj

∂r

∂q3
= ∂r

∂z
= k

∇q1 = ∇ρ = 1

h1

∂ρ

∂ρ
eρ + 1

h2

∂ρ

∂θ
eθ + 1

h3

∂ρ

∂z
ez

= 1

1
· 1 · eρ = cos θi + sin θj

Similarly,

∇q2 = ∇θ = 1

h2

∂θ

∂θ
eθ = 1

ρ
eθ = − sin θi + cos θj

ρ

∇q3 = ∇z = 1

h3

∂z

∂z
ez = ez = k.

Example 12: Prove that the surface area of a

given region R of the surface r = r(u, v) is  
R

√
EG− F 2du dv. Use this to determine the

surface area of a sphere.

Fig. 15.5

Solution: Element of area is given by

dS =
    
 
∂r

∂u
du

 
× ∂r

∂v
dv

    =
    ∂r∂u × ∂r

∂v

    du dv
=

  
∂r

∂u
× ∂r

∂v

 
·

 
∂r

∂u
× ∂r

∂v

 
du dv
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Using

(A× B) · (C ×D) = (A ·C)(B ·D) − (A ·D)(B ·C),

we have

dS =  
∂r

∂u
·
∂r

∂u

  
∂r

∂v
·
∂r

∂v

 
−

 
∂r

∂u
·
∂r

∂v

  
∂r

∂v
·
∂r

∂u

 

× du dv
dS =

 
EG− F 2 du dv

where

E = ∂r

∂u
·
∂r

∂u
, G = ∂r

∂v
·
∂r

∂v
, F = ∂r

∂u
·
∂r

∂v
,

Integrating over the region R, the surface area of the
given region R is given by

S =
  

R

 
EG− F 2 du dv

To find the surface area of a sphere of radius b the
position vector r of any point on the surface is

r = xi + yj + zk
In spherical coordinates

r = b sin θ cosφi + b sin θ sin φj + b cos θk

r = r(θ, φ)

Differentiating partially w.r.t. θ and φ, we get

∂r

∂θ
= b cos θ cosφi + b cos θ sin φj − b sin θk

∂r

∂φ
= −b sin θ sin φi + b sin θ · cosφj

E = ∂r

∂θ
·
∂r

∂θ
= b2,G = ∂r

∂φ
·
∂r

∂φ
= b2 sin2 θ,

F = ∂r

∂φ
·
∂r

∂θ
= 0

S =
  

R

 
EG− F 2dθ dφ

=
 2π

0

 π

0

 
b2 · b2 sin2 θ − 0 dθ dφ

= 2πb2(−1 − 1) = 4πb2.

Example 13: Prove that curl of gradient f = 0 in

any orthogonal curvilinear coordinate system.

Solution: In any orthogonal curvilinear coordinate
system

∇f = 1

h1

∂f

∂q1
e1 + 1

h2

∂f

∂q2
e2 + 1

h3

∂f

∂q3
e3

Then

∇ × ∇f = 1

h1h2h3

           

h1e1 h2e2 h3e3

∂

∂q1

∂

∂q2

∂

∂q3

h1
1

h1

∂f

∂q1
h2

1

h2

∂f

∂q2
h3

1

h3

∂f

∂q3

           
= 1

h1h2h3

 
h1e1

 
∂2f

∂q2∂q3
− ∂2f

∂q3∂q2

 

−h2e2

 
∂2f

∂q1∂q3
− ∂2f

∂q3∂q1

 

+h3e3

 
∂2f

∂q1∂q2
− ∂2f

∂q2∂q1

  
= 0.

Example 14: Find the square of the element of arc

length in cylindrical coordinates and determine the

corresponding scale factors.

Solution: The position vector is

r = ρ cos θi + ρ sin θj + zk

Then

dr = ∂r

∂ρ
dρ + ∂r

∂θ
dθ + ∂r

∂z
dz

= (cos θi + sin θj )dρ

+(−ρ sin θi + ρ cos θj )dθ + k dz
dr = (cos θdρ − ρ sin θdθ)i

+(sin θdρ + ρ cos θdθ)j + k dz
Thus

ds2 = dr · dr = (cos θdρ − ρ sin θdθ)2

+(sin θdρ + ρ cos θdθ)2 + (dz)2

= (dρ)2 + ρ2(dθ )2 + (dz)2

Here

h1 = hρ = 1, h2 = hθ = ρ, h3 = h2 = 1

are the scale factors.

Example 15: A vector field is given in cylindrical
coordinates as
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A(P ) = ρρ + θeθ
Find the vector lines of the field.

Solution: It is given that a1 = 1, a2 = θ, a3 = 0.
So that

dρ

1
= P dθ

θ
= dz

0

whence

z= c1
ρ = c2θ

which are Archimedean spirals lying in planes par-

allel to the xy-plane (i.e., z = constant).

Example 16: Compute the gradient of the scalar

field f = ρ + z cos θ specified in cylindrical coor-

dinates (ρ, θ, z).

Solution:

∇f = ∂f

∂ρ
eρ + 1

ρ

∂f

∂θ
eθ + ∂f

∂z
ez

= 1 · eρ + 1

ρ
(−z sin θ )eθ + cos θez.

Example 17: Compute the curl of A specified in
cylindrical coordinates where

A = sin θeρ + cos θ

ρ
eθ − ρzez

Solution: Since

∇ × A=

          

1

ρ
eρ eθ

1
ρ
ez

∂

∂ρ

∂

∂θ

∂

∂z

a1 a2 a3

          
=

          

1

ρ
eρ eθ

1

ρ
ez

∂

∂ρ

∂

∂θ

∂

∂z

sin θ cos θ −ρz

          
= 1

ρ
eρ (0 − 0) − eθ (−z− 0) + 1

ρ
ez(0 − cos θ )

∇ × A= zeθ − cos θ

ρ
ez

Example 18: Show that the vector fieldA in spher-
ical coordinates

A = 2 cos θ

r3
er + sin θ

r3
eθ

is solenoidal.

Solution: We know that divergence in spherical co-

ordinates

∇ ·A= 1

ρ2

∂(ρ2a1)

∂ρ
+ 1

ρ sin θ

∂

∂θ
(sin θa2) + 1

ρ sin θ

∂a3

∂φ

∇ ·A= 1

ρ2

∂

∂r

 
ρ2
·
2 cos θ

ρ3

 

+ 1

ρ sin θ

∂

∂θ

 
sin θ ·

sin θ

ρ3

 
+ 0

= 1

ρ2

 
−2 cos θ

ρ2

 
+ 1

ρ4 sin θ
· 2 · sin θ cos θ = 0

wherever r  = 0, which means that the vector field A

is solenoidal at all points except at r = 0.

Example 19: Find the potential of

A = 1

ρ
eθφer + θ ln ρ

r sin θ
eθφeφ + ln ρ

ρ
φeθφeθ

given in spherical coordinates.

Solution: In spherical coordinates

∇ × A = 1

ρ2 sin θ

           

er ρeθ r sin θeφ

∂

∂ρ

∂

∂θ

∂

∂φ

1

ρ
eθφ φ ln reθφ θ ln reθφ

           
= 0.

Thus A is a potential field in the region where
r > 0, θ  = nπ (n = 0,  = 1, · s).

Let A = ∇f = ∂f

∂ρ
eρ + ∂f

∂θ
eθ + ∂f

∂φ
eφ

where f = f (ρ, θ, φ) is the desired potential func-
tion, which is the solution of the following system of
differential equations.

∂f

∂ρ
= 1

ρ
eθφ (1)

∂f

∂θ
= φeθφ ln ρ (2)

∂f

∂φ
= θeθφ ln r (3)

Integrating (1) w.r.t. ρ we get

f = eθφ ln ρ + c1(φ, θ) (4)

Differentiating (4) w.r.t. ‘θ ’ and equating it with (2)

φeθφ ln r = ∂f

∂θ
= φeθφ ln r + ∂c1

∂θ
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i.e.,
∂c1
∂θ

= 0 whence

c1(φ, θ) = c2(φ) (5)

Substituting (5) in (4)

f = eθφ ln ρ + c2(φ) (6)

Differentiating (6) w.r.t. φ and equating it with (3)
we obtain

θeθφ ln r = ∂f

∂φ
= θeθφ ln r + dc2

dφ

so
dc2
dφ

= 0 i.e., c2 = c = constant. The desired

potential is

f (r, θ, φ) = eθρ ln r + c

Example 20: Find all the solutions of the Laplace’s

equation ∇2f = 0 that depend solely on the

distance ρ.

Solution: Laplace’s equation is spherical coordi-
nates with spherical symmetry (f must not depend
on θ or φ, i.e., f = f (r)). We have

∇2f = 1

ρ2

∂

∂ρ

 
ρ2 ∂f

∂ρ

 
= 0

so that

ρ2 ∂f

∂r
= c1 = const.

whence

f = c1

ρ
+ c2

where c1 and c2 are constants.

Example 21: Find the Laplacian of

f (ρ, θ, z) = ρ2θ + z2θ3 − ρθz

Solution:

∇2f = 1

ρ

 
∂

∂ρ

 
ρ
∂f

∂ρ

 
+ ∂

∂θ

 
1

ρ

∂f

∂θ

 
+ ∂

∂z

 
ρ
∂f

∂z

  

Here

∂f

∂ρ
= 2ρθ + 0 − θz, ∂

2f

∂ρ2
= 2θ

∂f

∂θ
= ρ2 + 3z2θ2 − ρz, ∂

2f

∂θ2
= 6z2θ

∂f

∂z
= 2zθ3 − ρθ, ∂

2f

∂z2
= 2θ3

∇2f = 1

ρ

 
∂f

∂ρ
+ ρ ∂

2f

∂ρ2
+ 1

ρ

∂2f

∂θ2
+ ρ ∂

2f

∂z2

 

Substituting the above partial derivatives

∇2f = 1

ρ
[2ρθ − θz+ ρ2θ + 1

ρ
6z2θ + ρ2θ3

]

∇2f = 4θ − θz

ρ
+ 6θz2

ρ2
+ 2θ3

Example 22: (a) Find the unit vectors eρ, eθ , eφ in

spherical coordinate system in terms of i, j, k. (b)

Solve for i, j, k in terms of er , eθ , eφ .

Solution: From Example 8

eρ = sin θ cosφi + sin θ sin φj + cos θk (1)

eθ = cos θ cosφi + cos θ sin φj − sin θk (2)

eφ = − sin φi + cosφj (3)

Solving (1), (2), (3) simultaneously

(1) × sin θ : sin θeρ

= sin2 θ (cosφi + sin φj ) + sin θ cos θk

(2) × cos θ : cos θeθ

= cos2 θ (cosφi + sin φj ) − sin θ cos θk

Adding

sin θeρ + cos θeθ = cosφi + sin φj (4) × sin φ

eφ = − sin φi + cosφj (5) × cosφ

Adding

j = (sin θeρ + cos θeθ ) sin φ + cosφeφ (6)

Substituting (6) in (3)

i = 1

sin φ
(cosφJ − eφ)

i = 1

sin φ

  
(sin θeρ + cos θeθ ) sin φ + cosφeφ

!
× cosφ − eφ
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i =  
sin θeρ + cos θeθ + cot φeφ

!
× cosφ − cosecφeφ (7)

Substituting (6) and (7) in (2)

eθ = cos θ · cosφ
 {sin θeρ + cos θeθ + cot φeφ}

× cosφ − cosecφeφ
 + cos θ sin φ

×  
(sin θeρ + cos θeθ ) sin φ + cosφeφ

 − sin θk

Solving for k,

k = cot θ · cosφ
 {sin θeρ + cos θeθ + cot φeφ}

× cosφ − cosecφeφ
 + cot θ sin φ

 
(sin θeρ

+ cos θeθ ) sin φ + cosφeφ
 − cosecθ · eθ (8)

Example 23: Represent the vector A = 2yi −
zj + 3xk in spherical coordinates and determine

Ar,Aθ ,Aφ .

Solution: Substituting (7), (6), (8) in A = 2y i −
zj + 3xk from the above Example 22, we get
A in spherical coordinates as

A =  {sin θeρ + cos θeθ + cot φeφ} cosφ − cosecφeφ
 

×2r sin θ sin φ −  
(sin θeρ + cos θeθ ) sin φ + cosφeφ

 
×r cos θ + 3r sin θ cot θ cosφ

 {sin θeρ + cos θeθ

+ cot φeφ} cosφ − cosecφeρ
 + 3r sin θ · cosφ

× cot θ · sin φ
 
(sin θeρ + cos θeθ ) sin φ + cosφeφ

 
−3r sin θ · cosφ cosec θ eθ .

Collecting the coefficients of eρ, eθ and eφ , we
rewrite

A= [2r sin2 θ · sin φ cosφ − r sin θ cos θ sin φ

+3r sin2 θ cot θ cos2 φ cosφ

+3r sin2 θ cot θ · cosφ sin φ · sin φ]eρ

+[cos θ · cosφ · 2r · sin θ · sin φ − cos θ · sin φr cos θ

+3r sin θ · cosφ · cot θ · cosφ cos θ · cosφ

+3r sin θ · cosφ · cot θ · sin φ cos θ sin φ

−3r sin θ · cosφ · cosecθ ]eθ +
 
(cot φ cosφ

−cosecφ)2r sin θ sin φ − cosφr cos θ

+{cot φ · cosφ − cosecφ}3r sin θ · cot θ · cos2 φ

+ cosφ · 3r sin θ · cot θ · cosφ · sin φ
 
eφ

Simplifying the result, we get

Ar = 2r sin2 θ sin φ · cosφ − r sin θ · cos θ · sin φ

+3r sin θ cos θ · cosφ

Aθ = 2r sin θ cos θ · sin φ cosφ − r cos2 θ · sin φ

−3r sin2 θ · cosφ

Aφ = −2r sin θ sin2 φ − r cos θ cosφ

Example 24: Express the velocity v and accelera-

tion a of a particle in spherical coordinates.

Solution: In rectangular coordinates the position
vector, velocity and acceleration vectors are

r = xi + yj + zk

V = dr

dt
= x. i + y. j + z.k

a = d2r

dt2
= ẍi + ÿj + z̈k

In spherical coordinates

r = xi + yj + zk
= r sin θ cosφi + r sin θ sin φj + r cos θk

Substituting i, j , k from (7), (6), (8) of the previous
Example 22, we get

r = r sin θ cosφ
 
(sin θeρ + cos θeθ ) cosφ − sin φeφ

 
+r sin θ sin φ

 
(sin θeρ + cos θeθ ) sin φ + cosφeφ

 
+r cos θ

 
cot θ · cosφ

 
(sin θeρ + cos θeθ ) cosφ

− sin φeφ
! + r cos θ

 
cot θ sin φ

 
(sin θeρ

+ cos θeθ ) sin φ + cosφeφ
! − r cos θ · cosecθeθ

Collecting the coefficients of eρ, eθ , eφ

r = [r sin2 θ · cos2 φ + r sin2 θ · sin2 φ

+r cos θ · cot θ · sin θ · cos2 φ

+r cos θ · cot θ · sin2 φ · sin θ ]eρ

+eθ [r sin θ · cos2 φ · cos θ + r sin θ sin2 φ · cos θ

+r cos θ · cot θ · cos2 φ cos θ

+r cos θ · cot θ · sin2 φ cos θ − r cos θ cos θ ]

+[−r sin θ · cosφ sin φ + r sin θ · sin φ cosφ

−r cos θ cot θ · cosφ · sin φ

+r cos θ · cot θ · sin φ cosφ]eφ
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Simplifying, we get

r = reρ + 0 · eθ + 0eφ (1)

Differentiating (1) w.r.t. ‘t’

Velocity = V = dr

dt
= dr

dt
eρ + r d

dt
eρ (2)

Here

d

dt
eρ = d

dt
(sin θ cosφi + sin θ sin φj + cos θk)

= cos θ · θ
.
cosφi − sin θ sin φ · φ

.
i

+ cos θ · θ
.
· sin φj + sin θ · cosφφ

.
j − sin θθ

.
k

= θ. (cos θ · cosφi + cos θ sin φj − sin θk)

+φ. sin θ (− sin φi + cosφj )

d

dt
(eρ ) = θ. eθ + φ. sin θeφ (3)

Substituting (3) in (1)

V = r.eρ + r[θ. eθ + φ. sin θeφ]

V = vρeρ + vθ eθ + vφeφ (4)

where

vρ = r. , vθ = rθ. , vφ = rφ. sin θ

Differentiating (4) w.r.t. ‘t’

Acceleration = a = dV

dt

= dvρ

dt
eρ + vρ

d

dt
eρ + dvθ

dt
· eθ

+vθ ·
deθ

dt
+ dvφ

dt
eφ + vφ ·

d

dt
eφ (5)

Here

dvρ

dt
= d

dt
r
. = r̈ ,

dvθ

dt
= d

dt
(rθ

.
) = r.θ. + rθ̈

dvφ

dt
= d

dt
(rφ

.
sin θ ) = r.φ. sin θ + rφ̈ sin θ + rφ. θ. cos θ

deθ

dt
= − sin θ · θ

.
cosφi − cos θ · sin φφ

.
i

− sin θθ
.
sin φj + cos θ · cosφφ

.
j − cos θθ

.
k

= −θ. (sin θ · cosφi + sin θ sin φj + cos θk)

+φ. cos θ (− sin φi + cosφj )

deθ

dt
= −θ. eρ + φ. cos θeφ

deφ

dt
= d

dt
(− sin φi + cosφj ) = − cosφφ

.
i − sin φφ

.
j

= −φ. (cosφi + sin φj )

Substituting these values in (5), we get and replacing

i and j by (7) and (6) of previous Example 22

a = r̈eρ + r. (θ. eθ + φ. sin θeφ) + (r
.
θ
. + rθ̈ )eθ

+rθ. (−θ. eρ + φ. cos θeφ) + (r
.
φ
.
sin θ + rφ̈ sin θ

+rφ. θ. cos θ )eφ − rφ. 2
sin θ · cosφ

 
(sin θeρ

+ cos θeθ ) cosφ − sin φeφ
 − rφ. 2

sin θ sin φ

×  
(sin θeρ + cos θeθ ) sin φ + cos ρeφ

 
Rearranging the terms

a =
 
r̈ − rθ. 2 − rφ. 2

sin2 θ (cos2 φ + sin2 φ)
 
eρ

+
 
2r
.
θ
. + rθ̈ − rφ. 2

sin θ · cos θ · (cos2 φ

+ sin2 ρ)
 
eθ + [r

.
φ
.
sin θ + 2rθ

.
φ
.
cos θ + r.φ. sin θ

+rφ̈ sin θ + rφ. 2
sin θ · cosφ sin φ

−rφ. 2
sin θ · sin φ cosφ]eφ

Thus

a = arer + aθ eθ + aφeφ
where ar = r̈ − rθ. 2 − r sin2 θφ

. 2

aθ = 1

r

d

dt
(r2θ

.
) − r sin θ cos θφ

. 2

aφ = 1

r sin θ
·
d

dt
(r2 sin2 θφ

.
).

EXERCISE

Find the equations of the vector fields A where:

1. A = eρ + 1
ρ
eθ + ez (cylindrical)

Ans. ρ = θ + c1, ρ = z+ c2
2. A = 2α cos θ

ρ3 er + α sin θ

ρ3 eθ , α = constant

(spherical)

Ans. φ = c1, ρ = c2 sin2 θ
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Find the gradient of the scalar fields f :

3. f = ρz cos θ (cylindrical)

Ans. (z cos θ )eρ − (z sin θ )eθ + (ρ cos θ )ez

4. f = ρ2 sin 2θ sin φ (spherical)

Ans. (2ρ sin 2θ sin φ)eρ + (2ρ cos 2θ sin φ)eθ +
(2ρ cos θ cosφ)eφ

5. f = xyz in (a) cylindrical (b) spherical coor-

dinates

Ans. a. (ρz sin 2θ )eρ + (ρz cos 2θ )eθ + 
ρ2

2
sin 2θ

 
ez

b. (3ρ2 sin2 θ cos θ · sin φ cosφ)eρ + ρ2

2

sin 2φ{− sin3 θ + 2 sin θ cos2 θ}eθ +
(ρ2 sin θ cos θ cos 2θ )eφ

6. f = ρ2 + 2ρ cos θ − ez sin θ (in cylindrical)

Ans. 2(ρ + cos θ )eρ − (2 sin θ + 1
ρ
ez cos θ )eθ −

ez sin θez

7. f = 3ρ2 sin θ + eρ cosφ − r (in spherical)

Ans. (6ρ · sin θ + eρ cosφ − 1)eρ + 3ρ cos θeθ −
eρ sin φ

ρ sin θ
eφ

Compute the divergence of A:

8. A = θ arc tan ρeρ + 2eθ − z2ezez (in cylindri-

cal)

Ans. θ
ρ

arc tan ρ + θ

1+ρ2 − (z2 + 2z)ez

9. A = ρ2eρ − 2 cos2 φeθ + φ

ρ2+1
eφ (in spheri-

cal)

Ans. 4ρ − 2
ρ

cos2 φ cot θ + 1

ρ(ρ2+1) sin θ

Compute the curl of A:

10. A = (2ρ + α cosφ)eρ − α sin θeθ +
ρ cos θeφ, α = constant (in spherical)

Ans. cos 2θ
sin θ

er − (2 cos θ + α sin φ

ρ sin θ
)eθ − α sin θ

ρ
eφ

11. A = cos θeρ − sin θ
ρ
eθ + ρ2ez (in cylindrical)

Ans. −2ρeθ + sin θ
ρ
ez

12. a. Show that A = z  (sin θ )eρ + cos θeθ
! −

ρ cos θez (in cylindrical) is solenoidal.

Hint: ∇ ·A = 0

b. Show that A = (ρ z sin 2θ )eρ +
(ρz cos 2θ )eθ + ρ2 sin2 θ

2
ez is irrotational.

Hint: ∇ × A = 0.

13. Show that A is a potential field where

A = 2 cos θ

ρ3 er + sin θ

ρ3 eθ (in spherical)

14. Show that A = f (ρ)eρ is a potential field

where f is any differentiable function.

Hint: e1 = cos θi + sin θj, e2 = − sin θi +
cos θk, e3 = k prove that e1 · e2 = e2 · e3 =
e1 · e3 = 0.

15. In cylindrical coordinate ρ, θ, z, show that

∇(log ρ) and ∇θ are solenoidal vectors (if

ρ  = 0, θ  = 0).

16. Show that ∇2f = 2ρ2 cos 2θ when

f = ρ2z2 cos 2θ (in cylindrical)

17. Prove that ∇2f = 2 sin 2θ + 2 cot θ cos 2θ −
2

ρ2 cosec2θ cos 2φ if f = ρ2 sin 2θ + cos2 φ

(in spherical)

18. Represent the vector A = zi − 2xj + yk
in cylindrical coordinates. Determine

Aρ,Aθ ,Az.

Ans. Aρ = z cos θ − 2ρ cos θ · sin θ

Aθ = −z sin θ − 2ρ cos2 θ

Az = ρ sin θ

19. Represent the vector A = xyi − zj + xzk in

spherical coordinate system.

Ans. Aρ = ρ2 sin3 θ sin φ cos2 φ− ρ sin θ cos θ sin φ

+ ρ2 sin θ cos2 θ cosφ

Aθ = ρ2 sin2 θ cos θ sin φ cos2 φ

−ρ cos2 θ · sin φ−ρ2 sin2 θ · cos θ cosφ

Aφ = −ρ2 sin2 θ sin2 φ cosφ − ρ cos θ cosφ

20. Express A = 2yi − zj + 3xk in spherical

polar coordinate system.

Ans. Aρ=2ρ sin2 θ · sin φ cosφ−ρ sin θ cos θ · sin φ

+ 3ρ sin θ cos θ cos ρ

Aθ = 2ρ sin θ · cos θ sin φ cosφ
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− ρ cos2 θ sin φ − 3ρ sin2 θ cosφ

Aφ = −2ρ sin θ sin2 φ − ρ cos θ cos ρ

21. Prove that a cylindrical coordinate system is

orthogonal.

22. Find the square of the element of arc length in

spherical coordinates and determine the corre-

sponding scale factors.

Ans. (ds)2 = (dr)2 + ρ2(dθ )2 + ρ2 sin2 θ (dφ)2

h1 =hρ = 1, h2 =hθ = ρ, h3 =hφ = ρ sin θ

23. Prove that in any orthogonal curvilinear coor-

dinate system, ∇ ·∇ × A = 0

24. If q1, q2, q3 are general coordinates, show that
∂r
∂q1
, ∂r
∂q2
, ∂r
∂q3

and ∇ q1,∇q2,∇q3 are recipro-

cal system of vectors.

Hint: Use ∇q1 · dr = dq1 =  ∇q1 ·
∂r
∂q1

 
dq1

+ ∇q1 ·
∂r
∂q2

 
dq2 +  ∇q1 ·

∂r
∂q3

 
dq3

25. Prove that 
∂r

∂q1
·
∂r

∂q2
× ∂r

∂q3

 
{∇q1 ·∇q2 × ∇q3} = 1.

Hint: V
 

1
V

 =1 or J
 
x,y,z

q1,q2,q3

 
· J

 
q1,q2,q3
x,y,z1

 =1

26. In cylindrical coordinate system ρ, θ, z prove
that

∇ρn = nρn−1eρ

∇2(ρn cos nθ ) = 0.

27. In spherical coordinate system ρ, θ, φ, prove

that

28. ∇ · [eρ · cot φ − 2eφ] = 0

29. ∇2
  
ρ + 1

ρ2

 
cosφ

 
= 0

30. Find ∂r
∂q1
, ∂r
∂q2
, ∂r
∂q3
,∇q1,∇q2,∇q3 in spherical

coordinate system

Ans. ∂r

∂ρ
= sin θ cosφi + sin θ sin φj + cos θk

∂r

∂θ
= ρ cos θ cos ρi + ρ cos θ sin φj − ρ sin θk

∂r

∂φ
= −ρ sin θ sin φi + ρ sin θ cosφj

∇ρ = sin θ cosφi + sin θ sin φj + cos θk

∇θ = cos θ · cosφi + cos θ · sin φj − sin θk

ρ

∇φ = − sin φi + cosφj

ρ sin θ

31. Express the velocity V and acceleration a of a

particle in cylindrical coordinates.

Ans. r = ρeρ + zez
V = ρ. eρ + ρθ. eθ + z.ez
a = (ρ̈ − ρθ. 2

)eρ + (ρθ̈ + 2ρ
.
θ
.
)eθ + z̈ez



Chapter16

Vector Integral Calculus

INTRODUCTION

Vector integral calculus extends the concepts of

(ordinary) integral calculus to vector functions. It

has applications in fluid flow, design of underwater

transmission cables, heat flow in stars, study of

satellites. Line integrals are useful in the calculation

of work done by variable forces along paths in space

and the rates at which fluids flow along curves (circu-

lation) and across boundaries (flux). In this chapter

we consider three important integral theorems.

Green’s theorem, a great theorem of calculus, which

converts line integrals to double integrals, evaluates

flow and flux integrals across closed plane curves

in non-conservative vector fields. Stokes theorem

states that the circulation of a vector field around the

boundary of a surface in space equals the integral of

the normal component of the curl of the field over

the surface. Gauss divergence theorem, which is im-

portant in electricity, magnetism and fluid flow, says

that the outward flux of a vector field across a closed

surface equals the triple integral of the divergence

of the field over the region enclosed by the surface.

16.1 VECTOR INTEGRATION:

INTEGRATION OF A VECTOR

FUNCTION OF A SCALAR

ARGUMENT

Definitions

Primitive

A vector function F (u) is the primitive of the vector
function f (u) if

dF (u)

du
= f (u)

Indefinite integral

Indefinite integral of the vector function f = f (u) of
a scalar argument u is the collection of all primitive
functions of f (u) and is denoted by 

f (u)du =
 
dF (u)

du
du = F (u)+ c

where c is an arbitrary constant vector.

Properties

1.
 
αf (u)du = α  f (u)du,

(α = numerical constant)

2.
 
[f (u)± g(u)]du =  

f (u)du±  
g(u)du

3. If f (u) = f1(u)i + f2(u)j + f3(u)k then 
f (u)du = i  f1(u)du+ j

 
f2(u)du+

k
 
f3(u)du

Note: The integration of a vector function reduces

to the evaluation of three ordinary real (scalar) inte-

grals.

Definite integral between limits u = a and u = b
is  b

a

f (u)du = F (u)+ c
    b
a

= F (b)− F (a)

WORKED OUT EXAMPLES

Example 1: Evaluate

a.
 
A(u) du and

16.1
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b.
 4

2
A(u) du

if A(u) = (3u2 − u)i + (2− 6u)j − 4uk.

Solution:

a.

 
A(u)du=

  
(3u2 − u)i + (2− 6u)j − 4uk

 
du

= i
 

(3u2 − u)du+ j
 

(2− 6u)du

+k
 
−4udu

=
 
u3 − u

2

2

 
i + (2u− 3u2)j

−2u2k + c

b.

 4

2

A(u)du=
 
u3 − u

2

2

 
i

+(2u− 3u2)j − 2u2k

    4
2

= 50i − 32j − 24k.

Example 2: If A(u) = ui − u2j + (u− 1)k and

B(u) = 2u2i + 6uk then evaluate
 2

0
A× B du.

Solution:

A× B =

      
i j k

u −u2 (u− 1)

2u2 0 6u

      
A× B =−6u3i + (2u3 − 8u2)j + 2u4k 2

0

A× Bdu=
 2

0

 
−6u3i + (2u3 − 8u2)j + 2u4k

 
du

=−6u4

4
i +

 
2u4

4
− 8u3

3

 
j + 2u5

5
k

    2
0

=−24i − 40

3
j + 64

5
k.

Example 3: Let A = t i − 3j + 2tk, B = i − 2j

+2k, D = 3i + tj − k. Evaluate
 2

1
A · B ×D dt .

Solution:

A · B ×D =

      
t −3 2t

1 −2 2

3 t −1

      
= t(2− 2t)+ 3(−1− 6)+ 2t(t + 6)

=+14t − 21

 2

1

(A · B ×D)dt =
 2

1

(14t − 21)dt = (7t2 − 21t)

   2
1

= 0.

Example 4: The acceleration a of a particle at any

time t ≥ 0 is given by

a(t) = e−t i − 6(t + 1)j + 3 sin t k

If the velocity v and displacement r are zero at t = 0,

find v and r at any time t .

Solution: a = dv
dt
= et i − 6(t + 1)j + 3 sin tk.

Integrating with respect to t

v(t)= i
 
e−t dt − j

 
6(t + 1)dt + 3k

 
sin t dt

=−e−t i − j (3t2 + 6t)− 3k cos t + c
Given that v = 0 when t = 0

so 0= −i − 3k + c
or c = i + 3k

Thus

v(t) = (1− e−t )i − j (3t2 + 6t)+ 3k(1− cos t)

Integrating v = dr
dt

with respect to t

r(t)=
 
v(t)dt = i

 
(1− e−t )dt − j

 
(3t2+ 6t)dt

+3k

 
(1− cost)dt

r = i(t + e−t )− j (t3 + 3t2)+ 3k(t − sin t)+ c1
since r = 0 at t = 0,we have

0= i + c1 so c1 = −i
Thus

r(t) = i(−1+ t + e−t )− j (t3 + 3t2)+ (3t − 3 sin t)k.

Example 5: If A(u) = ui + u2j + u3k, B(u) =
u3i + u2j + uk

find

 2

1

 
A(u)× dB

du
+ dA
du
× B(u)

 
du

Solution:

I =
 2

1

 
A× dB

du
+ dA
du
× B

 
du
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=
 2

1

d

du
(A× B)du = A× B + c

   2
1

since d
du

(A× B) = A× dB
du
+ dA
du
× B.

Here A× B =

      
i j k

u u2 u3

u3 u2 u

      
= (u3 − u5)i + (u6 − u2)j + (u3 − u5)k

I = −24i + 60j − 24k.

Example 6: Evaluate
 3

2
A · dA

dt
if

A(2) = 2i − j + 2k and A(3) = 4i − 2j + 3k.

Solution: Since A · dA
dt
= AdA

dt
where A = |A| 3

2

A · dA
dt
dt =

 3

2

A
dA

dt
dt =

 3

2

AdA

= A
2

2

   3
2
= 1

2
[A2(3)− A2(2)]

= 1

2
[29− 9] = 10

since
A(3)= |A|(3)| =

√
16+ 4+ 9 =

√
29,

A(2)= |A(2)| =
√

4+ 1+ 4 =
√

9.

EXERCISE

1. Find (a)
 
A(u)du and (b)

 2

1
A(u)du if

A(u) = (u− u2)i + 2u3j − 3k.

Ans. a.
 
u2

2
− u3

3

 
i + u4

2
j − 3uk + c

b. −5
6
i + 15

2
j − 3k

2. Evaluate
 π/2
0

(3 sin ui + 2 cos uj )du.

Ans. 3i + 2j

3. Find
 
A(u)du where A(u) = (3u2 −

sinu)i + (eu + cos u)j + 4u3k.

Ans. (u3 + cos u)i + (eu + sin u)j + u4k + c
4. Find

 1

0
tF (t)dt when F (t) = 2t i − t2j +

t3k.

Ans. 2
3
u3i − u4

4
j + u5

5
k
  1
0
= 2

3
i − 1

4
j + 1

5
k

5. Evaluate
 2

0
A · B dt where A = t i − t2j +

(t − 1)k and B = 2t2i + 6tk.

Ans. 12

6. LetA = t i − 3j + 2tk, B = i − 2j + 2k,
D = 3i + tj − k then evaluate 2

1

A× (B ×D) dt.

Ans. −87
2
i − 44

3
j + 15

2
k

7. Evaluate  
A× d

2A

dt2
dt

Hint:

d

dt

 
A× dA

dt

 
= A× d

2A

dt2
+ dA
dt
× dA
dt

= A× d
2A

dt2
.

Ans. A× dA
dt
+ c

8. Let A(t) = e−t sin t i + e−t cos tj + t2k.
Evaluate  2

1

A·
dA

dt
dt.

Hint: see Worked Out Example 6, on page

16.3, above.

Ans. 1
2

 
15+ e−4 − e−2

 
9. The acceleration of a particle at any time t ≥ 0

is given by a = 12 cos 2t i − 8 sin 2tj + 16tk.

If the velocity V and displacement r are zero

at t = 0, find V and r at any time t.

Ans. V = 6 sin 2t i + (4 cos 2t − 4)j + 8t2k

r = (3− 3 cos 2t)i + (2 sin 2t − 4t)j + 8 t
3

3
k

10. Find the velocity anddisplacemant of a particle

having acceleration 4t3i − 5t4j + 3t2k at any

time t , given that acceleration and velocity are

initially i − j and i + j + k respectively.

Ans. Velocity: (t4 + 1)i − (t4 + 1)j + t3k
displacement: 
t5

5
+ t + 1

 
i −

 
t6

6
+ t − 1

 
j +

 
t4

4
+ 1

 
k
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11. Find A if d
2A

du2
= 6ui − 12u2j + 4 cos uk and

given that dA
du
= −1− 3k and A = 2i + j

when u = 0.

Ans. (u3 − u+ 2)i + (1− u4)j + (4− 4 cos u−
3u)k

12. Find the areal velocity of a particle which

moves along the path r=a coswti+b sinwtj

where a, b,w are constants and t is time.

Hint: Areal velocity = 1
2
r × V , where V =

velocity.

Ans. 1
2
a bwk

16.2 LINE INTEGRALS: WORK DONE,

POTENTIAL, CONSERVATIVE FIELD

AND AREA

For the ordinary definite integral
 b
a
f (x)dx the re-

gion of integration is an interval a ≤ x ≤ b on the

x-axis. i.e., we integrate along the x-axis from a to b.

This concept can be generalized to define a definite

integral evaluated along a curve.

Line Integrals

Let c be curve defined from A to B with corre-
sponding arc lengths s = a and s = b respectively.
Divide c into n arbitrary portions (see Fig. 16.1).

Fig. 16.1

Evaluate the given function f at a point in each of
these portions and form the sum

Jn =
n 
m=1

f (Qm)!sm

where !sm = sm − sm−1. The limit of this sum as

n→∞ is known as the line integral of f along c

from A to B and is denoted by 
c

f (p)ds =
 b

a

f (s)ds =
 
c

f (x, y, z)ds (1)

when P has coordinates x(s), y(s), z(s). The line

integral (1) is also known as curve integral or curvi-

linear integral.

Thus in a line integral, the integrandf is integrated

(evaluated) along a curve (line). The curve c is known

as path of integration. Its end points a and b are called

the initial and terminal points.

The direction along the curve c from a to b is called

the sense of integration.

Curve is said to be a closed curve (path) when the

end points coincide. In such case the line integral is

denoted as
 
c
.

Let the parametric equation of the curve c be

r(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b (2)

Properties of line integrals

Let F = F (r) = F1i + F2j + F3k be a vector func-

tion. Then a line integral of F (r) along (taken over)

the curve c is defined as 
c

F (r) · dr =
 
c

F1dx + F2dy + F3dz

=
 
c

F1
dx

dt
+ F2

dy

dt
+ F3

dz

dt

=
 b

a

F 1(r(t)) ·
dr

dt
dt (3)

Observation

Evaluation of a line integral reduces to evaluation

of an ordinary integral along a coordinate axis (say

x-axis).

For the line integral (3) the following properties

follow from integral calculus:

1.
 
c
kF · dr = k.  

c
F · dr, k = constant

2.
 
c
(F ±G) · dr =  

c
F · dr ±  

c
G · dr

3.
 
c
F · dr =  

c1
F · dr +  

c2
F · dr

Fig. 16.2

where c is the sum of two curves c1 and c2 (see

Fig. 16.2)

4.
 b
a
F · dr = −  a

b
F · dr .
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Applications of Line Integral

A. Work done by a force (work integral)

A natural application of the line integral is to

define the work done by a force F in moving

(displacing) a particle along a curve c from point

P1 to point P2 as

Work done =
 P2

P1

F · dr (4)

When F denotes velocity of a fluid, then the
circulation of F around a closed curve c is
defined by

Circulation =
 
c

F · dr

B. Independence of path; conservative field

and scalar potential

If F = ∇φ then the line integral from P1 and P2

is independent of path joiningP1 toP2 (Fig. 16.3) P2

P1

F · dr =
 P2

P1

∇φ · dr

=
 P2

P1

 
∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz

 

=
 P2

P1

dφ = φ(P2)− φ(P1)

Thus the line integral depends only on the end

pointsP1 andP2 and not on the path joining them.

Recall that when F = ∇φ, then ∇ × F = ∇ ×
∇φ = 0. In such a case, F is called a conserva-

tive vector field andφ is called its scalar potential.

Note: That a conservative force field is also

irrotational (since ∇ × F = 0).

Result 1: The work done in a conservative

force field in moving a particle from P1 to P2

is independent of the path joining P1 and P2, but

depends only on the end points P1 and P2. In

such cases a scalar potential φ exists such that

force field F = ∇φ and thus the work done from

P1 to P2 = φ(P2)− φ(P1) (without the need to

evaluate the work integral).

Result 2: In a conservative field F

 
c

F · dr = 0

Fig. 16.3

along any closed curve c because 
c

F · dr =
 
P1P3P2P4

F · d r =
 
P1P3P2

+
 
P2P4P1

=
 
P1P3P2

F · dr −
 
P1P4P2

F · dr = 0.

which follows from the independence of path.

C. Test for exact differential

For F = F1i + F2j + F3k, the necessary and
sufficient condition that

F1dx + F2dy + F3dz

be an exact differential is that F must be conser-

vative i.e., ∇ × F = 0. When ∇ × F = 0, there

exists a scalar φ such that F = ∇φ· Then

F1dx + F2dy + F3dz= F · dr = ∇φ · dr = dφ
= Exact differential

D. Area A of a regular region D

Bounded by a curve c (Fig. 16.4):

Fig. 16.4

A=
 b

a

y2(x)dx −
 b

a

y1(x)dx

=−
 
NPM

y dx −
 
MQN

y dx = −
 
c

ydx
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Similarly, A=
 
c

x dy

Thus A= 1

2

 
c

(x dy − y dx)

WORKED OUT EXAMPLES

Example 1: Evaluate
 
c
y2dx − 2x2dy along the

parabola y = x2 from (0, 0) to (2, 4).

Solution: 
c

(y2dx − 2x2dy)=
 2

0

(x2)2dx − 2x2d(x2)

=
 2

0

x4dx − 4x3dx

= x
5

5
− 4
x4

4

    2
0

= −48

5
.

Example 2: Evaluate the line integral 
c

x−1(y + z)ds

where c the arc of circle x2 + y2 = 4, z = 0 from

(2, 0, 0) to (
√

2,
√

2, 0) in the counterclockwise

direction.

Solution: Equation of circle in parametric form is

x = 2 cos t, y = 2 sin t

when x = 2, then t = 0 and when x = √2, then

t = π
4

r = xi + yj + zk = 2 cos t i + 2 sin tj + 0

dr

dt
=−2 sin t i + 2 cos tj

r
. · r. = dr

dt
· dr
dt
= 4 sin2 t + 4 cos2 t = 4

ds

dt
=
√
r
. · r. =

√
4 = 2

Along c: z = 0 and ds = 2dt so that 
c

x−1(y + z)ds =
 
y + 0

x
ds =

 
e

2 sin t

2 cos t
· 2dt

= 2

 π/4

0

tan t · dt = 2 ln sec t

    
π
4

0

= 2 ln
√

2 = ln 2.

Example 3: IfF = (2x + y2)i + (3y − 4x)j eval-

uate
 
c
F · dr around a triangleABC in the xy-plane

withA(0, 0), B(2, 0), C(2, 1) (refer Fig. 16.5). (a) in

the counterclockwise direction (b) what is the value

in the opposite direction?

Solution: a. In the counterclockwise direction:

I =
 
c

F · dr =
 
c1

F · dr +
 
c2

F · dr +
 
c3

F · dr

= I1 + I2 + I3
Along c1: The straight line from A(0, 0) to B(2, 0),
y = 0, z = 0 and x varies from 0 to 2

Thus r = xi, dr = idx, dy = 0,

So with y = 0

I1=
 
c1

F ·dr =
 2

0

(2xi) · idx=
 2

0

2xdx= x2

    2
0

= 4

Fig. 16.5

Along c2: The straight line from B(2, 0) to C(2, 1),

x = 2, z = 0, y varies from 0 to 1

Thus r = 2i + yj, dr = jdy
So with x = 2

I2 =
 
c2

F · dr =
 1

0

 
(4+ y2)i + (3y − 8)j

 
· [jdy]

=
 1

0

(3y − 8)dy

= 3y2

2
− 8y

   1
0
= 3

2
− 8 = −13

2

Along c3: Straight line from C(2,1) to A(0, 0) is

y = 1
2
x, dy = 1

2
dx, x varies from 2 to 0

Thus r = xi + 1

2
xj, dr =

 
i + 1

2
j

 
dx



VECTOR INTEGRAL CALCULUS 16.7

So with y = x
2

I3 =
 
c3

F · dr =

=
 0

2

  
2x + x

2

4

 
i +

 
3x

2
− 4x

 
j

 
·

 
i + j

2

 
dx

=
 0

2

 
2x + x

2

4
+ 3x

4
− 4x

2

 
dx = x

3

12
+ 3x2

8

   0
2

=−
 

8

12
+ 12

8

 
= −13

6

The required line integral in the counterclockwise
direction

I =
 
c

F · dr = I1 + I2 + I3 = 4− 13

2
− 13

6
= −14

3

b. Line integral value in the opposite direction

is 14
3
.

Example 4: Evaluate
 
c
f dr where f = 2xy2z+

x2y and c is the curve x = t, y = t2, z = t3 from

t = 0 to 1.

Solution:

r = xi + yj + zk = t i + t2j + t3k

dr = (i + 2tj + 3t2k)dt

Along c:

f = 2t · (t2)2(t3)+ (t2) · t2 = 2t8 + t4 
c

f dr =
 1

0

 
2t8 + t4

  
i + 2tj + 3t2k

 
dt

= i
 1

0

(2t8 + t4)dt + j
 1

0

(4t9 + 2t5)dt

+k
 1

0

(6t10 + 3t6)dt

= i
 

2t9

9
+ t

5

5

    1
0
+ j

 
4t10

10
+ 2t6

6

    1
0

+k
 

6t11

11
+ 3t7

7

    1
0

= 19

45
i + 11

15
j + 75

77
k.

Example 5: Find the work done in moving a par-

ticle in the force field F = 3x2i + (2xz− y)j + zk
along

a. straight line from A(0, 0, 0) to B(2, 1, 3)

b. space curve c: x = 2t2, y = t, z = 4t2 − t from

t = 0 to t = 1

c. curve c: defined by x2 = 4y, 3x3 = 8z from

x = 0 to x = 2.

Solution: Work done along a curve c is
 
c
F ·dr:

a. r = 2t i + tj + 3tk

dr = (2i + j + 3k)dt

F = 3x2i + (2xz− y)j + zk
= 12t2i + (12t2 − t)j + 3tk

work done by F in moving along the straight line
from A(0, 0, 0) to B(2, 1, 3)

=
 B

A

F · dr

=
 1

0

 
12t2i + (12t2 − t)j + 3tk

 
· [2i + j + 3k]dt

=
 1

0

 
24t2 + 12t2 − t + 9t

 
dt

= 12t3 + 4t2
   1
0
= 16

b. r = xi + yj + zk
r = 2t2i + tj + (4t2 − t)k
dr = 4t i + j + (8t − 1)k

F = 3(2t2)2i +
 
2 · (2t2)(4t2 − t)− t

 
j + (4t2 − t)k

Work done

=
 
c

F · dr =
 1

0

 
12t4i +

 
4t2(4t2 − t)− t

 
j

+(4t2 − t)k
 
· [4t i + j + (8t − 1)k]

=
 1

0

 
48t5 + (16t4 − 4t3 − t)+ (8t − 1)(4t2 − t)

 
dt

= 8t6 + 16
t5

5
+ 7t4 − 4t3

   1
0
= 8+ 16

5
+ 7− 4

= 14.2



16.8 HIGHER ENGINEERING MATHEMATICS—V

c. r = xi + yj + zk = xi + x
2

4
j + 3

8
x3k

= t i + t
2

4
j + 3

8
t3k

dr =
 
·i + t

2
j + 9

8
t2k

 

F = 3x2i +
 

2 · x · 3
8
x3 − x

2

4

 
j + 3

8
x3k

Work done

=
 
F · d r =

 2

0

 
3t2 + t

2

 
3

4
t4 − t

2

4

 
+ 27

64
t5

 
dt

= t3 + t
6

16
− t

4

32
+ 27t6

384

     
2

0

= 16

Example 6: IfA = (y − 2x)i + (3x + 2y)j, com-

pute the circulation of A about a circle c in the xy

plane with centre at the origin and radius 2, if c is

traversed in the positive direction.

Solution: c : circle: x2 + y2 = 4

In parametric form x = 2 cos t, y = 2 sin t with t

varying 0 to 2π

A= (2 sin t − 2(2 cos t))i + (3(2 cos t)+ 2(2 sin t))j

dr = d(xi + yj ) = dxi + dyj
dr = (−2 sin t i + 2 cos t j )dt

By definition

circulation along curve c =  
c
F · dr

=
 2π

0

[(2 sin t − 4 cos t)i

+(6 cos t + 4 sin t)j ] · [−2 sin t i + 2 cos t j ]dt

= 4

 2π

0

 
−sin2 t+2 sin t cos t+3 cos2 t+2 sin t cos t

 
dt

= 16

 2π

0

sin t d(sin t)− 4

 2π

0

1− cos 2t

2
dt

+12

 2π

0

1+ cos 2t

2
dt

= 8π.

Example 7: Prove that F = (y2 cos x + z3)i +
(2y sin x − 4)j + (3xz2 + 2)k is (a) conservative

field (b) find scalar potential of F (c) find work done

in moving an object in this field from P1(0, 1,−1)

to P2

 
π
2
,−1, 2

 
.

Solution:

a. F is conservative if ∇× F = 0

∇ × F =

          

i j k

∂

∂x

∂

∂y

∂

∂z

y2 cos x + z3 2y sin x − 4 3xz2 + 2

          
= i(0− 0)− j (3z2 − 3z2)

+k(2y cos x − 2y cos x)

= 0

Hence F is conservative.

b. Letf be the scalarpotential such thatF = ∇f
then comparing the components of i, j , k, we get

∂f

∂x
= y2 cos x + z3 (1)

∂f

∂y
= 2y sin x − 4 (2)

∂f

∂z
= 3xz2 + 2 (3)

Integrating (1) partially w.r.t. x,

f = y2 sin x + xz3 + g(y, z) (4)

Differentiating (4) partially w.r.t. y and using (2)

2y sin x + 0+ ∂g
∂y
= ∂f
∂y
= 2y sin x − 4

Integrating w.r.t. y

g(y, z) = −4y + c1(z) (5)

Substituting (5) in (4)

f = y2 sin x + xz3 − 4y + c1(z) (6)

Differentiating (6) partially w.r.t. z and using (3)

0+ 3xz2 − 0+ dc1
dz
= ∂f
∂z
= xz2 + 2

Integrating w.r.t. z

c1(z) = z2 + c (7)
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Substituing (7) in (6)

f (x, y, z) = y2 sin x + xz3 − 4y + z2 + c

c. Work done

= f (P2)− f (P1)= f (
π

2
,−1, 2)− f (0, 1,−1)

= 12+ 4π.

Example 8: Show that (z− e−x sin y)dx + (1+
e−x cos y)dy + (x − 8z)dz is an exact differential of

a function f and find f .

Solution: Let

A= Ai + A2j + A3k = (z− e−x sin y)i

+(1+ e−x cos y)j + (x − 8z)k

Then

∇ × A=

         

i j k

∂

∂x

∂

∂y

∂

∂z

z− e−x sin y 1+ e−x cos y x − 8z

         
= i(0− 0)− j (1− 1)+ k(−e−x cos y

−(−e−x cos y)) = 0

Since ∇ × A = 0 (see Section 16.2 C)
A1dx + A2dy + A3dz will be an exact dif-

ferential

(z− e−x sin y)dx + (1+ e−x cos y)dy

+ (x − 8z)dz = df
Regrouping

(zdx + xdz)− 8zdz+ dy + (e−x cos ydy

− e−x sin y dx) = df
... df = d(xz)− d(4z2)+ dy + d(e−x sin y)

... f = xz− 4z2 + y + e−x sin y.

Example 9: If A = (x − y)i + (x + y)j evaluate 
c
A ·dr around the curve c consisting of y = x2 and

y2 = x

Solution:

... I =
 
c

F · dr =
 
c1

F · dr +
 
c2

F · dr = I1 + I2

Fig. 16.6

where c1: y = x2 and c2 : y2 = x as shown in Fig.

16.6 meet at points A(0, 0) and B(1, 1).
Along the curve c1 : y = x2, so that,

r = xi + yj = xi + x2j = t i + t2j
dr = (i + 2tj )dt · with t varying from 0 to 1

I1 =
 
c1

(A · dr)

=
 1

0

 
(t − t2)i + (t + t2)j

 
· [i + 2tj ]dt

=
 1

0

 
(t − t2)+ 2t(t + t2)

 
dt =

 1

0

(2t3 + t2 + t)dt

I1 =
2t4

4
+ t

3

3
+ t

2

2

   1
0
= 1

2
+ 1

3
+ 1

2
= 1+ 1

3
= 4

3

Along the curve c2 : y2 = x, y = √x
r = xi + yj = xi +√xj = t i +

√
tj

dr = (i + 1

2
√
t
j )dt

with t varying from 1 to 0

I2 =
 
c2

A · dr

=
 0

1

 
(t −
√
t)i + (t +

√
t)j

 
·

 
i + 1

2
√
t
j

 
dt

=
 0

1

 
(t −
√
t)+ 1

2
(
√
t + 1)

 
dt

=
 0

1

 
t −
√
t

2
+ 1

2

 
dt

= t
2

2
− t

3
2

3
+ 1

2
t

   0
1
= −1

2
+ 1

3
− 1

2
= −2

3

Line integral I = I1 + I2 = 4
3
− 2

3
= 2

3
.

Example 10: Compute the area of the region

bounded by one arch of a cycloid x = a(t − sin t),
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y = a(1− cos t) and the x-axis.

Solution: Area A = 1
2

 
c
xdy − ydx

A= 1

2

 2π

0

a(t − sin t) · [a sin tdt]

−a(1− cos t)[a(1− cos t)dt]

= a
2

2

 2π

0

(t sin t − sin2 t − 1− cos2 t + 2 cos t)dt

= a
2

2

 2π

0

(−2+ t sin t + 2 cos t)dt

= a
2

2
[−4π − 2π + 0] = −−6πa2

2
.

EXERCISE

Evaluate the following line integrals:

1.
 
c
xy3ds where c is the segment of the line

y = 2x in the xy plane from A(−1,−2, 0) to

B(1, 2, 0).

Ans. 16/
√

5.

2.
 
c
(x2 + xy)dx + (x2 + y2)dy; c: square:

x ± 1, y = ±1

Ans. 0

3.
 
c
x2ydx + (x − z)dy + xyz dz

where c is the arc of parabola y = x2 in plane

z = 2 from A(0, 0, 2) to B(1, 1, 2).
Ans. −17/15

4.
 
c
(x2 + y2 + z2)2ds

where c is the arc of circular helix

r(t) = cos t i + sin t j + 3t k from A(1, 0, 0)

to B(1, 0, 6π ).

Ans.
√

10(2π + 6(2π )3 + 81
5
(2π )5)

5. If A(t) = t i − t2j + (t − 1)k, B(t) = 2t2i +
6tk evaluate

 2

0
A · Bdt .

Ans. 12

6. If A(t) = t i − 3j + 2tk, B(t) = i − 2j +
2k, c(t) = 3i + tj − k then evaluate

a.
 2

1
A · (B × C)dt

b.
 2

1
(A× (B × C))dt

Ans. a. 0 b. − 87
2
i − 44

3
j + 15

2
k

7. If A(2) = 2i − j + 2k,A(3) = 4i − 2j + 3k

then evaluate
 3

2
A · dA

dt
dt .

Ans. 10

8. Evaluate
 
c
A× dr whereA = 2yi − zj + xk

and c is the curve

x = cos t, y = sin t, z = 2 cos t from t = 0 to

π/2.

Ans. i(2− π
4
)+ j (π − 1

2
)

9. Evaluate
 
c
A · dr where

a. A = 2xi + 4yj − 3zk,

c: curve: r(t) = cos t i + sin t j + t k from

t = 0 to π

b. A = yi + zj + xk
c: circle y2 + z2 = 1, x = 0

c. A = yzi + zxj + xyk
c: curve from (0, 0, 0) to (1, 1, 0) along the

curve x = y2, z = 0 in xy-plane, followed

by the straight line path from (1, 1, 0) to

(1, 1, 1).

Ans. a. − 3π2/2 b. − π c. 3/4

10. Determine whether the force field

F = 2xzi + (x2 − y)j + (2z− x2)k

is conservative or not.

Ans. ∇ × F  = 0 so non-conservative

11. a. Prove that F = (4xy − 3x2z2)i + 2x2j −
2x3zk is a conservative field.

b. Find its scalar potential f .

c. Also find thework done inmoving an object

in this field from (1, 1, 1) to (0, 0, 0).

Ans. a. ∇ × F = 0, so conservative

b. scalar potential f = 2x2y − x3z2 + c.
c. work done = f (1, 1, 1)− f (0, 0, 0) = 1.

12. If A = (2xy + z3)i + x2j + 3xz2k

a. Prove that the line integral
 
c
A · dr is in-

dependent of the curve c joining two given

points P1(1,−2, 1) and P2(3, 1, 4).

b. Show that there exists a scalar function f

such that A = ∇f and find f .

c. Also find thework done inmoving an object

from P1 to P2.

Ans. a. ∇ × A = 0, A is conservative, so line

integral is independent of path

b. x2y + xz3+ constant

c. work done: 202
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13. Find b such that the force field

A = (exz− bxy)i + (1− bx2)j + (ex +
bz)k is conservative. Find the scalar potential

f of A when A is conservative.

Ans. b = 0, f = y + zex + c
14. Find the scalar potential f of

F = (z+ sin y)i + (−z+ x cos y)j + (x − y)k.
Ans. f = xz+ x sin y − yz+ c
15. Find the total work done in moving a parti-

cle in a force field A = 3xyi − 5zj + 10xk

along the curve x = t2 + 1, y = 2t2, z = t3
from t = 1 to t = 2.

Ans. 303

16. Calculate the work done in a force field given

by A = (2y + 3)i + xzj + (yz− x)k when

an object is moved from the point P1(0, 0, 0)

to P2(2, 1, 1) along the curve x = 2t2,

y = t, z = t3.
Ans. 288

35

17. If A = (2x − y + 2z) i + (x + y − z)j +
(3x − 2y − 5z)k calculate the circulation of

A along the circle in the xy-plane of radius 2

and centre at origin.

Ans. Circulation =  
A · dr = 8π .

18. Determine the circulation of A = yi + zj +
xk around the curve x2 + y2 = 1, z = 0.

Ans. −π
19. If

 p2

p1
A · dr is independent of the path join-

ing any two given points P1 and P2 in a given

region then
 
c
A · dr = 0 for all closed paths

in the region passing through P1 and P2 .

Hint: P1BP2DP1 be any closed curve c 
c

=
 
P1BP2DP1

=
 
P1BP2

+
 
P2DP1

=
 
P1BP2

−
 
P1DP2

= 0.

20. Prove that the work done in moving an object

from P1 to P2 in a conservative force field F is

independent of the path joining the two points

P1 and P2.

Hint: Since F is conservative, F = ∇f P2

P1

F · dr =
 P2

P1

∇f · dr

=
 P2

P1

∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

=
 P2

P1

df = f (P2)− f (P1)

Hint: Use 1
2

 
c
xdy − ydx to compute area

enclosed by c.

21. Compute the area of the ellipse x = a cos t ,

y = b sin t .

Ans. πab

22. Find the area under of one arch of the astroid

x = a cos3 t, y = a sin3 t .

Ans. 3πa2/8

23. Find the area of the loop of the folium of

descartes

x = 3at

1+t3 , y =
3at2

1+t3

Ans. 3a2/2.

16.3 SURFACE INTEGRALS: SURFACE

AREA AND FLUX

The concept of surface integral is a simple andnatural
generalization of a double integral  

R

f (x, y)dxdy

taken over a plane region R. In a surface integral

f (x, y) is integrated over a curved surface.

Let S be a two-sided surface with one side of S

taken arbitrarily as the positive side (the outer side if

S is closed) (refer Fig. 16.7). A unit normal n at any

point of the positive side of S is known as positive

outward drawn unit normal.
In the xyz-space, the equation of a surface S is

g(x, y, z) = 0

with unit normal n = ∇g
|∇g|

When S is represented in parametric form as

r(u, ν) = x(u, ν)i + y(u, ν)j + z(u, ν)k
with the two parameters u and ν varying in a region
R of uν-plane, then the unit normal n to S at P is
given by

n = N

|N |
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Fig. 16.7

where

N = ru × rν
The surface integral of a given vector function F

taken over a surface S is defined as  
S

F · n dS =
  
S

F · dS

=
  
R

F (r(u, ν)) ·N (u, ν)dudν

In the component form, where

F = F1i + F2j + F3k

n= cosαi + cosβj + cos γ k

N =N1i +N2j +N3k

the surface integral takes the form  
S

F · n dS =
  
S

(F1 cosα + F2 cosβ + F3 cos γ )dS

=
  
R

(F1N1 + F2N2 + F3N3)du dv

Here α, β, γ are the angles between n and the pos-

itive directions of the coordinate axes (i.e, n · i =
|n||i| cosα = cosα, etc.)

Apart from the normal surface integral  
S

F (r) · n dS

the other types of surface integrals are  
S

φ dS,

  
S

φ n dS,

  
S

A× n dS

where φ is a scalar function.

Evaluation of a Surface Integral

A surface integral is evaluated by reducing it to a

double integral by projecting the given surfaceS onto

one of the coordinate planes. LetD be the projection

of S onto the xy-plane (see Fig. 16.7).
Then,

dS = dxdy|n · k|
Then,   

S

F · n dS =
  
D

F .n
dx dy

|n · k|
where n is unit outward drawn normal to S. The

R.H.S. double integral in x, y over the plane region

D is evaluated as an two-fold iterated integral. In a

similar way the surface integral can be evaluated by

projecting S onto the Yz-plane as D1 and Xz-plane

as D2 as follows  
S

F · n dS =
  
D1

F · ndy dz|n · i|  
S

F · n dS =
  
D2

F · ndx dz|n · j |

Surface Area of a Curved Surface

Let S be a surface represented by the equation

F (x, y, z) = 0 (1)

Then the unit normal to the surface S is given by

n̂ = ∇F|∇F | =
Fxi + Fyj + Fzk 
F 2
x + F 2

y + F 2
z

where Fx, Fy, Fz are partial derivatives of F w.r.t.
x, y, z respectively. LetD be the projection of S onto
the xy-plane. Then

Surface area of S=
  
S

dS =
  
D

dx dy

|n · k|

=
  
D

 
F 2
x + F 2

y + F 2
z

|Fz|
dxdy

since n · k = Fz 
F 2
x + F 2

y + F 2
z

Corollary 1: If the equation of the surface S is
z = f (x, y) then

Surface area =
   

1+ z2x + z2y dxdy.
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Flux

The normal component F ·n is a scalar. Let ρ be the
density, V be the velocity of a fluid and F = ρV .
Then flux of F represents the total quantity of fluid
flowing in unit time through (across) the surface S
in the positive direction. The flux of F across S is
given by the flux integral

Flux of F across S =
  
S

F · n dS.

WORKED OUT EXAMPLES

Example 1: Evaluate
  
S
A · n dS over the en-

tire surface S of the region bounded by the cylin-

der x2 + z2 = 9, x = 0, y = 0, z = 0 and y = 8

where A = 6zi + (2x + y)j − xk (see Fig. 16.8).

Solution: Here the entire surface S consists of 5

surfaces namely S1 the curved (lateral) surface of

the cylinder, ABDCA, S2 : AOEC, S3 : OBDE, S4 :

OAB, S5 : CDE. Thus  
S

A · n dS =
  
S1+S2+···+S5

=
  
S1

+
  
S2

+ · · · +
  
S5

= SI1 + SI2 + SI3 + SI4 + SI5

For the curved (lateral) surface S1 of the cylinder

unit normal n= ∇(x2 + z2)
|∇(x2 + z2)| =

2xi + 2zk 
4x2 + 4z2

= xi + zk
3

so

A · n= (6zi + (2x + y)j − xk) ·
 
xi + zk

3

 
= 5

3
xz

n · k = z
3

S I1 =
  
S1

A · n dS =
  

A · n

|n · k|dxdy

=
  

5

3

xz

(z/3)
dxdy

= 5

 8

0

 3

0

x dxdy = 180

Fig. 16.8

On the plane S2 : AOEC : z = 0, n = −k,
A · n = x

S I2 =
  
S2

A · n dS =
 8

0

 3

0

x dx dy = 36

On the plane S3: OBDE : x = 0, n = −i,
A · n = −6z

S I3 =
  
S3

A · n dS =
 8

0

 3

0

−6z dz dy = −216

On the sector S4 : OAB : y = 0, n = −j,
A · n = −(2x + y) = −2x

S I4 =
  
S4

A · n dS =
  
OAB

−2x dxdz

In polar coordinates

S I4 =
 π

2

0

 3

0

−2 · r cos t · r dr dt = −18

On the sector S5 : CDE : y = 8, n = j, A · n =
2x + y = 2x + 8

S I5 =
  
S5

A · n dS =
  
CDE

(2x + 8)dxdz

In polar coordinates

S I5 =
 π

2

0

 3

0

(2 r cos t + 8)r dr dt = 18+ 18π

Thus the required surface integral is

S I = (180)+ (36)+ (−216)+ (−18)+ (18+ 18π )

= 18π.

Example 2: Evaluate

a.
  
S
(∇ × F ) · ndS and
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b.
  
φndS if F = (x + 2y)i − 3zj + xk,

φ = 4x + 3y − 2z and S is the surface of the

plane 2x + y + 2z = 6 bounded by the coordi-

nate planes x = 0, y = 0 and z = 0 (Fig. 16.9).

Solution: The unit normal n̂ to the surface S is

n̂= ∇(2x + y + 2z)

|∇(2x + y + 2z)| =
2i + j + 2k√

4+ 1+ 4

n̂= 2i + j + 2k

3

Fig. 16.9

a. ∇ × F =

       
i j k

∂
∂x

∂
∂y

∂
∂z

x+2y −3z x

       = 3i − j − 2k

so (∇ × F ) · n̂ = (3i − j − 2k) ·
 

2i+j+2k

3

 
= 1

3

S I =
  
S

(∇ × F ) · n̂dS = 1

3

  
S

dS = 1

3

  
dxdy

|n · k|

= 1

3
·
 3

x=0

 6−2x

y=0

dydx

2/3
= 1

2

 3

0

(6− 2x)dx = 9

2

b. SI =   
φn̂dS =   

(4x + 3y − 2z)
(2i+j+2k)

3
dS

Eliminate z using, z = 6−2x−y
2

SI = 2i + j + 2k

3
·
 3

x=0

 6−2x

y=0

(6x + 4y − 6)
dydx

2/3

= (2i + j + 2k)

 3

0

[3(x − 1)(6− 2x)+ (6− 2x)2]dx

SI = 72i + 36j + 72k.

Example 3: Find the surface area of the plane

x + 2y + 2z = 12 cut off by x = 0, y = 0, and

x2 + y2 = 16 (refer Fig. 16.10).

Solution: Rewriting equation of plane

z = 12− x − 2y

2

we have zx = − 1
2
, zy = −1

Surface area =
  
R

 
1+ z2x + z2ydxdy

=
   

1+ 1+ 1

4
dxdy

= 3

2

  
dxdy

In polar coordinates = 3
2

 π
2

0

 4

0
r dr dθ = 6π .

Fig. 16.10

x y z+ 2 + 2 = 12

Aliter: F (x, y, z) = x + 2y + 2z− 12 = 0, so
Fx = 1, Fy = 2, Fz = 2 

F 2
x + F 2

y + F 2
z =
√

1+ 4+ 4 = 3

Surface area =
   

F 2
x + F 2

y + F 2
z

|Fz|
dxdy

=
  

3

2
dx dy = 6π.

Flux

Example 4: Find the flux of the vector field A =
(x − 2z)i + (x + 3y + z)j + (5x + y)k through the

upper side of the triangle ABC with vertices at

the points A(1, 0, 0), B(0, 1, 0), C(0, 0, 1) (see Fig.

16.11).

Solution: Equation of the plane in which the
triangle ABC lies is

x + y + z = 1

Unit normal n̂ to ABC is

∇(x + y + z− 1)

|∇(x + y + z− 1)| =
i + j + k√

3
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Fig. 16.11

A · n = 1√
3

[(x − 2z)+ (x + 3y + z) +(5x + y)]

= 7x + 4y − z√
3

Let AOB be the projection of ABC onto the xy-plane
Then

dS = dx dy|n · k| =
√

3dxdy

Flux across the triangle ABC =   
S
A · n dS

=
  
AOB

7x + 4y − z√
3

√
3dxdy

Replace z by 1− x − y

=
  

[7x + 4y − (1− x − y)] dxdy

=
 1

x=0

 1−x

y=0

(8x + 5y − 1)dydx = 5

3
.

EXERCISE

1. If S is the surface 2x + y + 2z = 6 bounded

by x = 0, x = 1, y = 0, y = 2, evaluate (a)  
(∇ × F ) · ndS and (b)

  
S
φndS.

Ans. a. 1 b. 2i + j + 2k

2. Evaluate
  
S
A · n dS where A = 18zi −

12j + 3yk and S is that part of the plane

2x + 3y + 6z = 12which is located in thefirst

octant.

Ans. 24

3. Evaluate
  
S
(∇ × F ) · ndS where F = yi +

(x − 2xz)j − xyk and S is the surface of the

sphere x2 + y2 + z2 = a2 above the xy-plane.

Ans. 0

4. If S is the entire surface of the cube bounded

by x = 0, x = b, y = 0, y = b, z = 0, and

z = b and A = 4xzi − y2j + yzk then eval-

uate
  
S
F · ndS.

Ans. 3b4/2

5. Let S be the surface of the cylinder x2 + y2 =
16 included in the first octant between z = 0

and z = 5. Evaluate
  
S
A · ndS where A =

zi + xj − 3y2zk.

Ans. 90

6. For the surface S defined in the previous prob-

lem 5, evaluate
  
S
φndS where φ = 3

8
xyz.

Ans. 100(i + j ).
7. Find the surface integral over the parallelop-

iped x = 0, y = 0, z = 0, x = 1, y = 2, z =
3 when A = 2xyi + yz2j + xzk.

Ans. 33

8. If S is the surface of the sphere x2 + y2 +
z2 = d2 and A = axi + byj + czk, evaluate  
S
F · ndS.

Hint: Project S onto xoy-plane and use sym-

metry.

Ans. 2 · 2πd3

3
(a + b + c)

9. Let S be the surface of the cylinder x2 +
y2 = a2 in the first octant between the planes

z = 0 and z = h. Evaluate
  
A · ndS where

A = zi + xj − 3zy2k.

Ans. ah(a + h)/2
Flux

10. Calculate the flux of water through the

parabolic cylinder y = x2, between the planes

x = 0, z = 0, x = 3, z = 2 if the velocity

vector is A = yi + 2j + xzk m/sec.

Hint: Flux of F across S is
  
S
F · ndS.

Ans. 69 m3/sec

11. Find the flux across the surface of the parabolic

cylinder y2 = 8x in the first octant bounded by

the planes y = 4 and z = 6 when the velocity

vector V = 2yi − zj + x2k.

Ans. 132
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12. Find the flux ofA = i − j + xyzk through the

circular regionS obtained by cutting the sphere

x2 + y2 + z2 = a2 with a plane y = x (take

the side of S facing the positive side of the

x-axis).

Hint: S is bounded by the ellipse 2x2 + z2 =
a2, n̂ = (i − j )/

√
2, dS =

√
2dx dz, area of

the ellipse with semi axis a/
√

2 and a is

πa2/
√

2.

Ans.
√

2πa2

13. Compute the flux of the vector field A = xi
+ yj +

 
x2 + y2 − 1 k through the outer

side of the hyperboloid of one sheet z = 
x2 + y2 − 1 bounded by the planes z = 0

and z =
√

3.

Hint: n̂ = xi+yj√
x2+y2−1

− k, A · n = 1√
x2+y2−1

with polar coordinates, flux =  2π

0

 2

1
r dr dθ√
r2−1

= 2
√

3π .

Ans. 2
√

3π

14. Evaluate
  
S
F · ndS where F = r/r3 and S

is the sphere x2 + y2 + z2 = b2.

Ans. 4π

15. Calculate the surface integral of the vector

function A = xi + yj over the portion of the

surface of the unit sphere S: x2 + y2 + z2 = 1

above the xy-plane z ≥ 0.

Ans. 4π
3

16. If S is the triangular surface with vertices

(2, 0, 0), (0, 2, 0) and (0, 0, 4) and A = xi +
(z2 − zx)j − xyk then evaluate

  
S
F · n dS.

Ans. − 22
3

Surface area

17. What is the surface area of the surface S whose

equation is F (x, y, z) = 0?

Ans.

  
R

 
F 2
x + F 2

y + F 2
z

|Fz|
dxdy

where R is the projection of S on xy-plane.

18. Find the surface area of the plane x + 2y

+2z = 12 cut off by x = 0, y = 0, x = 1,

y = 1.

Ans.
3

2

19. Find the surface area of z = x2 + y2 included

between z = 0 and z = 1.

Ans. π
6

 √
125− 1

 
20. Find the surface area of the region common

to the intersecting cylinders x2 + y2 = a2 and

x2 + z2 = a2.

Ans. 16 a2.

16.4 VOLUME INTEGRALS

Let V be a region in space enclosed by a closed
surface r = r(u, v). Let F (r) be a vector point
function. Then the triple integral   

V

F (r)dV or briefly

   
V

FdV

is known as volume integral or space integral.
In the component form   

V

FdV = i
   

V

F 1dxdydz

+j
   

V

F2dxdydz

+k
   

V

F3dxdydz   
V

φdV is another form of a volume integral.

These integrals are evaluated as three-fold iterated

integrals.

WORKED OUT EXAMPLES

Example 1: Evaluate
   

V
f dV where f = 2x +

y, V is the closed region bounded by the cylinder

z = 4− x2 and the planes x = 0, y = 0, y = 2 and

z = 0 (see Fig. 16.12).

Solution: This closed region is covered if x and z
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Fig. 16.12

varies covering the areaOAB and y varies from 0 to
2. Thus   

V

(2x + y)dV =
 2

y=0

 4

z=0

 √4−z

x=0

(2x + y)dxdzdy

=
 2

0

 4

0

(x2 + xy)
     
√

4−z

0

dzdy

=
 2

0

 4

0

 
(4− z)+ y

√
4− z

 
dzdy

=
 2

0

4z− z
2

2
− 2

3
y(4− z) 3

2

     
4

0

=
 2

0

 
8+ 16

3
y

 
dy

= 8y + 16

6
y2

    2
0

= 80

3
.

Example 2: If V is the region in the first octant
bounded by y2 + z2 = 9 and the plane x = 2 and
F = 2x2yi − y2j + 4xz2k. Then evaluate   

V

(∇ · F )dV .

Solution: ∇ · F = 4xy − 2y + 8xz
The volume V of the solid region is covered

by covering the plane region OAB while x varies

Fig. 16.13

from 0 to 2 (Fig. 16.13). Thus   
V

(∇ · F )dV

=
 2

x=0

 3

y=0

 √9−y2

z=0

(4xy − 2y + 8xz)dzdydx

=
 2

0

 3

0

4xyz− 2yz + 4xz2
   
√

9−y2

0
dydx

=
 2

0

 3

0

 
(4xy − 2y)

 
9− y2 + 4x(9− y2)

 
dydx

=
 2

0

(4x − 2)(−1

3
(9− y2)

3
2 +4x

 
9y − y

3

3

      
3

0

dx

=
 2

0

[9(4x − 2)+ 72x]dx

= 18x2 − 18x + 36x2
   2
0
= 180.

Example 3: Evaluate
   

V
∇ × AdV where A =

(x + 2y)i − 3zj + xk and V is the closed region in

the first octant bounded by the plane 2x+ 2y+ z= 4

Solution: The solid region is covered by cover-
ing the plane region OAB in the xy-plane while z is
varying from 0 to the plane 2x + 2y + z = 4 (Fig.
16.14).

Thus z varies from 0 to 4− 2x − 2y,

y varies from 0 to 2− x
and x varies from 0 to 2.
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Fig. 16.14

Here

∇ × A=

         

i j k

∂

∂x

∂

∂y

∂

∂z

x + 2y −3z x

         
= 3i − j − 2k

   
V

∇ × AdV

=
 2

x=0

 2−x

y=0

 4−2x−2y

z=0

(3i − j + 2k)dz dy dx

= (3i − j + 2k)

 2

0

 2−x

0

(4− 2x − 2y)dy dx

= 2(3i − j + 2k)

 2

0

 
(2− x)2 − (2− x)2

2

 
dx

= (3i − j + 2k)

 
4x + x

3

3
− 2x2

 2

0

= 8

3
(3i − j + 2k).

Example 4: Find the volume enclosed be-

tween the two surfaces S1 : z = 8− x2 − y2 and

S2 : z = x2 + 3y2 (see Fig. 16.15).

Solution: Eliminating z from the given two surfaces

S1 and S2, we get 8− x2 − y2 = z = x2 + 3y2 i.e.,

x2 + 2y2 = 4. Thus the given two surfaces S1 and S2

intersect on the elliptic cylinder x2 + 2y2 = 4.
So the solid region between S1 and S2 is covered

when

z varies from x2 + 3y2 to 8− x2 − y2,

y varies from−
 

4−x2
2

to

 
4−x2

2
and

x varies from− 2 to 2.

Fig. 16.15

So the required volume V enclosed between the two
surfaces S1 and S2 is

V =
 2

−2

 √(4−x2)

2

−
√

(4−x2)

2

 8−x2−y2

x2+3y2
dzdydx

=
 2

−2

 √(4−x2)

2

−
√

(4−x2)

2

(8− 2x2 − 4y2)dydx

=
 2

−2


2(8− 2x2)

 
4− x2

2
− 8

3

 
4− x2

2

 3
2


 dx

V = 4
√

2

3

 2

−2

(4− x2)
3
2 dx = 8π

√
2.

EXERCISE

1. Evaluate
   

V
f dV where f = 45x2y and

V denotes the closed region bounded by the

planes 4x + 2y + z = 8, x=0, y = 0, z = 0.

Ans. 128

2. If A = (2x2 − 3z)i − 2xyj − 4xk and V is

the closed region bounded by the planes

x = 0, y = 0, z = 0 and 2x + 2y + z = 4,

evaluate
   

V
(∇ × A)dV .

Ans. 8
3
(j − k)

3. Evaluate
   

V
AdV where A = xi + yj +

2zk andV is the volume enclosed by the planes

x = 0, y = 0, y = a, z = b2 and the surface

z = x2.

Ans. ab4

4
i + a2b3

3
j + 4ab5

5
k

4. Evaluate
   

V
B dV where V is the re-

gion bounded by the surfaces x = 0, y = 0,

y=6, z=x2, z = 4 andB = 2xzi − xj + y2k.
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Ans. 128i − 24j + 384k

5. If A = (x3 − yz)i − 2x3yj + 2k, evaluate   
V
(∇ · A)dV over the volume of a cube of

side b.

Ans. 1
3
b3

6. Evaluate
   

V
(∇ · B)dV over the solid

region of the sphere x2 + y2 + z2 = a2

whenB = pxi + qyj + rzk wherep, q, r are

constants.

Ans. 4
3
πa2(p + q + r)

Volume

7. Find the volume of the region common to

the intersecting cylinders x2 + y2 = a2 and

x2 + z2 = a2.

Ans. 16a3/3

8. Find the volume of the region bounded below

by the paraboloid z = x2 + y2 and above by

the plane z = 2y.

Ans. π
2

9. Find the volume cut from the sphere x2 + y2 +
z2 = 4a2 by the cylinder x2 + y2 = a2.

Ans. 4πa3(8− 3
√

3)/3

10. Find the volume bounded above by the

sphere x2 + y2 + z2 = 2a2 and below by the

paraboloid az = x2 + y2.

Ans. (8
√

2− 7)πa3/6.

16.5 GREEN’S∗ THEOREM IN PLANE:

TRANSFORMATION BETWEEN LINE

INTEGRAL AND DOUBLE INTEGRAL

AREA IN CARTESIAN AND POLAR

COORDINATES

If R is a closed region in the xy-plane bounded by a
simple closed curve c and ifM(x, y) andN (x, y) are
continuous functions of x and y having continuous
derivatives in R, then 

c

M dx +N dy =
  
R

 
∂N

∂x
− ∂M
∂y

 
dxdy

∗George Green (1793–1841) English mathematician.

where c is traversed in the positive direction (refer

Fig. 16.16).

Proof: Let the equations of the curves AEB and
AFB by y = Y1(x) and y = Y2(x) respectively,
consider  

R

∂M

∂y
dx dy =

 b

x=a

 Y2(x)

y=Y1(x)

∂M

∂y
dy dx

=
 b

a

[M(x, Y2)−M(x, Y1)]dx

=−
 a

b

M(x, Y2)dx −
 b

a

M(x, Y1)dx

=−
 
BFA

M(x, y)dx −
 
AEB

M(x, y)dx

=−
 
BFAEB

M(x, y)dx

=−
 
c

M(x, y)dx (1)

Fig. 16.16

Similarly let the equations of the curves EAF and
EBF be x = X1(y) and x = X2(y) respectively.
Then  

R

∂N

∂x
dx dy =

 f

y=e

 X2(y)

x=X1(y)

∂N

∂x
dx dy

=
 f

e

[N (X2, y)−N (X1, y)] dy

=
 f

e

N (X2, y)dy +
 e

f

N (X1, y)dy

=
 
c

N (x, y)dy (2)

Adding (1) and (2), we get 
c

M dx +N dy =
  
R

 
∂N

∂x
− ∂M
∂y

 
dxdy
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Corollary 1: Vector notation of Green’s theo-

rem
Let A = Mi +Nj and r = xi + yj so that

A · dr =M dx +N dy

∇ × A=

         

i j k

∂

∂x

∂

∂y

∂

∂z

M N O

         
=
 
∂N

∂x
− ∂M
∂y

 
k

Thus  
c

A · dr =
  
R

(∇ × A) · k dR

where dR = dxdy.
Corollary 2: Area A of the plane region R

bounded by the simple closed curve c
Let N = x,M = −y so that 

c

x dy − y dx =
  
R

(1+ 1)dxdy

= 2

  
R

dxdy = 2A

Thus

A = 1

2

 
c

x dy − y dx.

Corollary 3: Area A in polar coordinates

Let x = r cos t, y = r sin t, so that

dx = cos t dr − r sin t dt

dy = sin t dr + r sin t dt

Thus

A = 1

2

 
c

r2 dt

Corollary 4: Green’s theorem is valid for a doubly

(multiply) connected domainRwhere c is the bound-

ary of the region R consisting of c1 and c2 (several)

curves all traversed in the positive direction.

Corollary 5: If ∂M
∂y
= ∂N

∂x
then by Green’s theorem 

c

M dx +N dy = 0.

WORKED OUT EXAMPLES

Green’s theorem in plane

Example: Verify Green’s theorem in plane for 
c

(x2 − 2xy)dx + (x2y + 3)dy

where c is the boundary of the region defined by

y2 = 8x and x = 2 (refer Fig. 16.17).

Solution: Green’s theorem states that

Line integral = Double integral.

a. The L.H.S. of the Green’s theorem result is the
line integral
= LI =  

c
(x2 − 2xy)dx + (x2y + 3)dy.

Here c consists of the curvesOA,ADB,BO, so

LI =
 
c

=
 
OA+ADB+BO

=
 
OA

+
 
ADB

+
 
BO

= LI1 + LI2 + LI3

Fig. 16.17

Along OA: y = −2
√

2
√
x, so dy = −

 
2
x
dx

LI1 =
 
OA

(x2 − 2xy)dx + (x2y + 3)dy

=
 2

0

[x2 − 2x(−2
√

2
√
x)]dx

+[x2(−2
√

2
√
x)+ 3]

 
−
 

2

x

 
dx

=
 2

0

(5x2 + 4
√

2x
3
2 − 3

√
2x−

1
2 )dx

= 5x3

3
+ 4
√

3 · 2
5
· x 5

2 − 3
√

2 · 2√x
     
2

0

= 40

3
+ 64

5
− 12

Along ADB: x = 2, dx = 0

LI2 =
 
ADB

(x2 − 2xy)dx + (x2y + 3)dy

=
 4

−4

(4y + 3)dy = 24
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Along BO: y = 2
√

2
√
x with x : 2 to 0,

dy =
 

2
x
dx

LI3 =
 
BO

(x2 − 2xy)dx + (x2y + 3)dy

=
 0

2

(5x2 − 4
√

2x
3
2 + 3

√
2x−

1
2 )dx

=−40

3
+ 64

5
− 12

LI = LI1 + LI2 + LI3 =
 

40

3
+ 64

5
− 12

 
+ (24)

+
 
−40

3
+ 64

3
− 12

 
= 128

5

b. Here

M = x2 − 2xy,N = x2y + 3,

∂M

∂y
=−2x,

∂N

∂x
= 2xy.

So theR.H.S. of theGreen’s theorem is the double
integral given by

DI =
  
R

 
∂N

∂x
− ∂M
∂y

 
dxdy

=
  
R

[(2xy − (−2x))]dxdy

The region R is covered with y varying from

−2
√

2
√
x of the lower branch of the parabola

to its upper branch 2
√

2
√
x while x varies from 0

to 2. Thus

DI =
 2

x=0

 √8x

y=−
√

8x

(2xy + 2x)dydx

=
 2

0

xy2 + 2xy

   √8x

−
√

8x
dx

= 8
√

2

 2

0

x
3
2 dx = 128

5

Since L.I. = D.I. the Green’s theorem is thus

verified.

Area of a plane region

Example 2: Using Green’s theorem, find the area

of the region in the first quadrant bounded by the

curves y = x, y = 1
x
, y = x

4
. (see Fig. 16.18)

Solution: By Green’s theorem area A of the region
bounded by a closed curve c is given by

A = 1

2

 
c

xdy − ydx

Fig. 16.18

Here c consists of the curves c1: y = x
4
, c2: y = 1

x
and c3: y = x. So

A = 1

2

 
c

= 1

2

  
c1

+
 
c2

+
 
c3

 
= 1

2

 
I1 + I2 + I3

 

Along c1: y = x
4
, dy = 1

4
dx, x: 0 to 2

I1 =
 
c1

xdy − ydx =
 
c1

x
1

4
dx − x

4
dx = 0

Along c2: y = 1
x
, dy = − 1

x2
dx, x: 2 to 1

I2 =
 
c2

xdy − ydx =
 1

2

x ·
 
− 1

x2

 
dx − 1

x
dx

=−2 ln x

    1
2

= 2 ln 2

Along c3: y = x, dy = dx; x: 1 to 0

I3 =
 
c3

xdy − ydx =
 
xdx − xdx = 0

A= 1

2
(I1 + I2 + I3) =

1

2
(0+ 2 ln 2+ 0) = ln 2.

Example 3: Find the area bounded by the hypocy-

cloid x
2
3 + y 2

3 = a 2
3 with a > 0 (see Fig. 16.19).

Solution: Parametric equations of the hypocycloid
are

x = a cos3 t, y = a sin3 t

dx =−3a cos2 t sin tdt,

dy = 3a sin2 t cos tdt
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Fig. 16.19

Area bounded by the hypocycloid

= 4 · area under one leaf AB

= 4 area of the region AOB

Area of region AOB = 1
2

 
ABOA

xdy − ydx

= 1

2

 
AB

+
 
BO

+
 
OA

= 1

2

 
AB

+ 0+ 0

since x = 0 along BO and y = 0 along OA

= 1

2

 π/2

0

 
a cos3 t · (3a sin2 t cos tdt)

−a sin3 t(−3a) cos2 t sin tdt
 

= 3a2

2

 π/2

0

sin2 t cos4 tdt + cos2 t sin4 tdt

= 3a2

2

 
1 · 3 · 1
6 · 4 · 2 ·

π

2

 
+ 3a2

2

 
3 · 1 · 1
6 · 4 · 2

π

2

 
= 3
πa2

32

Area bounded by hypocycloid = 4 · 3πa2

32
= 3πa2

8
.

Doubly connected region

Example 4: Verify Green’s theorem in the plane
for  

c

(2x − y3)dx − xydy

where c is the boundary of the annulus (doubly con-

nected) region enclosed by the circles x2 + y2 = 1

and x2 + y2 = 9 (refer Fig. 16.20).

Solution: Here M = 2x − y3, N = xy so that
∂M
∂y
= −3y2, ∂N

∂x
= y

Thus R.H.S. of Green’s theorem is

=
  
R

 
∂N

∂x
− ∂M
∂y

 
dxdy

=
  
R

(y + 3y2)dxdy

where R is the annulus region.

Fig. 16.20

Put x = r cos t, y = r sin t , so that t varies from 0 to

2π and r from 1 to 3

R.H.S.=
 2π

0

 3

1

(r sin t + 3r2 sin2 t)r drdt

= 26

3

 2π

0

sin tdt + 60

 2π

0

1− sin 2t

2
dt = 60π

L.H.S.=
 
c

Mdx +Ndy =
 
c1+c2

(2x − y3)dx − xydy

Changing to polar coordinate r, t

=
 

(2r cos t − r3 sin3 t)(−r sin tdt)−
 
r3 cos2 t sin tdt

= r4 3π

4

    3
1

= 60π.

EXERCISE

Use Green’s theorem to evaluate the line integral 
c
Mdx +Ndy whenMdx +Ndy equals to:

1. −y3dx + x3dy where c: circle x2 + y2 = 1

Ans. 3π
2

2. x−1eydx + (ey ln x + 2x)dy where c: the

boundary of the region bounded by y = 2,

y = x4 + 1,

Ans. 16
5
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3. (cos x sin y − xy)dx + sin x cos y · dy where

c: circle x2 + y2 = 1

Ans. 0

4. (x2 − cosh y)dx + (y + sin x)dy where c: the

boundary of the rectangle 0≤ x ≤π, 0≤ y ≤ 1

Ans. π (cosh 1− 1)

5. (3x2 − 8y2)dx + (4y − 6xy)dy where c:

boundary of the region defined by x = 0,

y = 0, x + y = 1.

Ans. 5
3

6. e−x(sin ydx + cos ydy) where c: rectangle

with vertices at (0, 0), (π, 0), (π, π/2),

(0, π/2)

Ans. 2(e−π − 1)

Verify Green’s theorem or evaluate the line inte-

gral
 
c
Mdx +Ndy (a) directly (b) using Green’s

theorem, whereMdx +Ndy is:

7. (xy + y2)dx + x2dy with c: closed curve of

the region bounded by y = x and y = x2

Ans. common value: − 1
20

8. (3x2 − 8y2)dx + (4y − 6xy)dy with c:

boundary of the region defined by y = √x and

y = x2

Ans. common value: 3
2

9. (2x − y3)dx − xydy with c: boundary of the

region enclosed by the circles x2 + y2 = 1 and

x2 + y2 = 9

Ans. common value: 60π

10. (3x + 4y)dx + (2x − 3y)dy with

c: x2 + y2 = 4

Ans. common value: −8π

Area using Green’s theorem

11. Find the area of the region bounded by y = x2

and y = x + 2.

Ans. 9
2

12. Calculate the area bounded by the ellipse

x2

a2
+ y

2

b2
= 1

Deduce the area bounded by the circle

x2 + y2 = a2.

Hint: Put x = a cos t, y = b sin t .

Ans. Area of ellipse πab

put a = b, area of circle:πa2

13. Find the area of the loop of the folium of

descartes x3 + y3 = 3axy, a > 0.

Hint: Put y = tx, t : 0 to∞.

Ans. A = 1
2

 
x2dt = 9

2

 ∞
0

a2t2

(1+t3)2
dt = 3a2

2

14. Find the area of a loop of the four-leafed rose

ρ = 3 sin 2φ.

Hint: A = 1
2

 π/2
0
ρ2dφ = 9π

8
.

15. Find the area of the cardioid ρ = a(1− cos θ ),

with 0 ≤ θ ≤ 2π .

Ans. 3πa2

2

16. Find the area bounded by one arch of the cy-

cloid x= a(θ − sin θ ), y= a(1− cos θ ), a > 0

and the x-axis.

Ans. 3πa2

17. Evaluate
 
c
A · dr where

A= α[−3a sin2 t cos t i

+a(2 sin t − 3 sin3 t)j + b sin 2tk]

and the curve c is given by

r = a cos t i + a sin tj + btk
and t varying from π/4 to π/2.

Ans. α
2
(a2 + b2)

18. Show that
 
c
f dg =   

R

 
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

 
dxdy

where R is the region bounded by the simple

closed curve c.

Hint:UseGreen’s theoremwithM = f ∂g
∂x

and

N = f ∂g
∂y

.

19. Prove that
 
c
dF
dn
dS =   

R

 
∂2F

∂x2
+ ∂2F

∂y2

 
dxdy

where dF
dn

is the directional derivative of F in

the direction of the outer normal n to the curve

c bounding the region R.

Hint: Choose M = − ∂F
∂y
, N = ∂F

∂x
and note

that n = dy

ds
i − dx

ds
j .

20. If ∇2f = 0 in R, show that  
R

  
∂f

∂x

 2

+
 
∂f

∂y

 2
 
dxdy =

 
c

f
∂f

∂n
dS.
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Hint: Take M = −f ∂f
∂y
, N = f ∂f

∂x
and note

that n = dy

dS
i − dx

dS
j .

21. Show that Green’s theorem can be written in

the form
 
c
F · nds =   

R
∇ · Fdxdy where

F = Mi −Nj and n is the outer unit normal

to the curve c.

16.6 STOKES’∗ THEOREM

Transformation between line integral and surface
integral. Let A be a vector function, having contin-
uous first partial derivatives in a domain in space
containing an open two sided surface S bounded by
a simple closed curve c then  

S

(∇ × A) · ndS =
 
c

A · dr (1)

where n is a unit normal of S and c is traversed in the

positive direction.

Proof: See Fig. 16.21. Assume that S can
be represented as z = f (x, y) or x = g(y, z), or
y = h(x, z) where f, g, h are continuous, differen-
tiable functions. Also assume that projections of S
on the xy, yz, zx planes are regions bounded by sim-
ple closed curves. IfA = A1i + A2j + A3k then the
result of Stokes’ theorem (1) can be written as  
S

(∇ × A) · ndS

=
  
S

(∇ × (A1i + A2j + A3k)) · ndS =
 
c

A · dr

=
 
c

(A1i + A2j + A3k) · (dxi + dyj + dzk)

=
 
c

A1dx + A2dy + A3dz (2)

Fig. 16.21

∗Sir George Gabriel Stokes (1819–1903) Irish mathematician.

To show that  
S

(∇ × A1i) · ndS =
 
c

A1dx (3)

Consider

∇ × A1i =

         

i j k

∂

∂x

∂

∂y

∂

∂z

A1 0 0

         
= ∂A1

∂z
j − ∂A1

∂y
k

so that

(∇ × A1i) · ndS =
 
∂A1

∂z
n · j − ∂A1

∂y
n · k

 
dS (4)

Take the equation of S as z = f (x, y). Then the
position vector r to any point of S is

r = xi + yj + zk = xi + yj + f (x, y)k

so
∂r

∂y
= 0+ j + ∂f

∂y
k (5)

Now n · ∂r
∂y
= 0

since normal n to S is perpendicular to the tangent
∂r
∂y

to S.

Thus taking dot product of (5) with n, we have

0= n · ∂r
∂y
= n · j + ∂f

∂y
n · k

or n · j = −∂f
∂y
n · k = − ∂z

∂y
n · k (6)

Substituting (6) in (4), we get

(∇ × A1i) · ndS = −
 
∂A1

∂z

∂z

∂y
+ ∂A1

∂y

 
n · kdS (7)

Now on S,
A1(x, y, z) = A1(x, y, f (x, y)) = F (x, y)

so that
∂A1

∂y
+ ∂A1

∂z

∂z

∂y
= ∂F
∂y

(8)

Using (8) in (7), we get  
S

(∇ × A1i) · ndS =
  
S

−∂F
∂y
n · kdS

=−
  
R

∂F

∂y
dxdy (9)

where R is the projection of S on xy-plane and

n · kdS = dxdy
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Applying Green’s theorem in plane

−
  
R

∂F

∂y
dxdy =

 
c1

Fdx =
 
c

A1dx (10)

since at each point (x, y) of c1 the value of F is the
same as the value of A1 at each point (x, y, z) of c
and since dx is same for both the curves c and c1.
Thus from (9) of (10), we arrive at  

S

(∇ × A1i) · ndS =
 
c

A1dx (3)

Similarly by projecting S on to other coordinate
planes, we get  

S

(∇ × A2j ) · ndS =
 
c

A2dy (11)

and   
S

(∇ × A3k) · ndS =
 
c

A3dz (12)

Adding (3), (11) and (12), we get (1) the result of

Stokes’ theorem.

Note 1: Stokes’ theorem in rectangular form is

  
S

  
∂A3

∂y
− ∂A2

∂z

 
cosα +

 
∂A1

∂z
− ∂A3

∂x

 
cosβ

+
 
∂A2

∂x
− ∂A1

∂y

 
cos γ

 
dS

=
 
c

A1dx + A2dy + A3dz

where n = cosαi + cosβj + cos γ k, and α, β, γ

are angles made by normal n with i, j , k.

Note 2: Green’s theorem in plane is a special case

of Stoke’s theorem.

Note 3: The circulation ofA around a closed curve
c is given by the line integral 

c

A · dr

where A represents the velocity of a fluid cir-

culation has applications in fluid mechanics and

aerodynamics.

WORKED OUT EXAMPLES

Example 1: Prove that
 
c
f dr =   

S
dS ×∇f .

Solution: Choose A = f c, where c is a constant
vector, in the Stoke’s theorem. Then

L.H.S.=
 
c

A ·dr =
 
c

f c ·dr

=
 
c

c · (f dr) = c ·
 
c

f dr

Now ∇ × A = ∇ × (f c) = (∇f )× c +
f (∇ × c) = ∇f × c since ∇ × c = 0

So (∇ × A) · n = (∇f × c) · n = c · (n×∇f )

R.H.S.=
  
S

(∇ × A) · nds =
  
S

c · (n×∇f )dS

= c ·
  
S

(n×∇f )dS

Thus

c ·

 
c

f dr = c ·
  
S

(n×∇f )dS

Since this is true for any arbitrary constant c, hence,
we get the result. 

c

f dr =
  
S

(n×∇f )dS =
  
S

ndS ×∇f

=
  
S

dS ×∇f.

Example 2: Evaluate
  
S
(∇ × A) · ndS over the

surface of intersection of the cylinders x2 + y2 =
a2, x2 + z2 = a2 which is included in the first octant,

given that A = 2yzi − (x + 3y − 2)j + (x2 + z)k
(refer Fig. 16.22).

Fig. 16.22
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Solution: By Stokes’ theorem the given surface
integral can be converted to a line integral i.e.,

SI =
  
S

(∇ × A) · ndS =
 
c

A · dr = LI

Here c is the curve consisting of the four curves c1 :

x2 + z2 = a2, y = 0; c2 : x2 + y2 = a2, z = 0,

c3 : x = 0, y = a, 0 ≤ z ≤ a; c4 : x = 0, z = a, 0 ≤
y ≤ a

LI =
 
c

A · dr =
 
c1+c2+c3+c4

=
 
c1

+
 
c2

+
 
c3

+
 
c4

= LI1 + LI2 + LI3 + LI4
On the curve c1: y = 0; x2 + z2 = a2

LI1 =
 
c1

A · dr =
 
c1

(x2 + z)dz

=
 0

a

 
(a2 − z2)+ z

 
dz = −2

3
a3 − a

2

2

On the curve c2: z = 0, x2 + y2 = a2

LI2 =
 
c2

A · dr =
 
c2

−(x + 3y − 2)dy

=−
 a

0

  
a2 − y2 + 3y − 2

 
dy

=−πa
2

4
− 3

2
a2 + 2a

On the curve c3: x = 0, y = a, 0 ≤ z ≤ a

LI3 =
 
c3

A · dr =
 a

0

zdz = a
2

2

On c4: x = 0, z = a, 0 ≤ y ≤ a

LI4 =
 
A · dr =

 0

a

(2− 3y)dy = −2a + 3a2

2

SI =
  
S

(∇ × A) · ndS = LI =
 
−2a3

3
− a

2

2

 

+
 
−πa

2

4
− 3a2

2
+ 2a

 
+ a

2

2
+
 
−2a + 3a2

2

 

SI = −a
2

12
(3π + 8a).

Example 3: Verify Stokes’ theorem forA = xzi −
yj + x2yk where S is the surface of the region

bounded by x = 0, y = 0, z = 0, 2x + y + 2z = 8

which is not included in the xz-plane (Fig. 16.23).

Solution: Stokes’ theorem states that 
c

A · dr =
  
S

(∇ × A) · ndS

Fig. 16.23

Here c is curve consisting of the straight lines
AO,OD and DA.

L.H.S.=
 
c

A · dr =
 
AO+OD+DA

=
 
AO

+
 
OD

+
 
DA

= LI1 + LI2 + LI3

On the straight line AO: y = 0, z = 0, A = 0 so

LI1 =
 
AO

A · dr = 0

On the straight line OD: x = 0, y = 0, A = 0 so

LI2 =
 
OD

A · dr = 0

On the straight line DA: x + z = 4 and y = 0 so

A = xzi = x(4− x)i

LI3 =
 
DA

A·dr =
 4

0

x(4−x)i·dxi=
 4

0

x(4−x)dx= 32

3

LI = 0+ 0+ 32

3
= 32

3

Here the surface S consists of 3 surfaces (planes)
S1 : OAB, S2 : OBD, S3 : ABD, so that

R.H.S.=
  
S

(∇ × A) · ndS =
  
S1+S2+S3

=
  
S1

+
  
S2

+
  
S3

= SI1 + SI2 + SI3

∇ × A=

         

i j k

∂

∂x

∂

∂y

∂

∂z

xz −y x2y

         
= x2i + x(1− 2y)j
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On the surface S1: planeOAB: z = 0, n = −k, so
(∇ × A) · n=

 
x2i + x(1− 2y)j

 
· (−k) = 0

SI1 =
  

S1

(∇ × A) · ndS = 0

On surface S2: plane OBD: plane x = 0, n = −i
so

∇ × A= 0

SI2 =
  

S2

(∇ × A) · ndS = 0

On surface S3: plane ABD: 2x + y + 2z = 8.

Unit normal n̂ to the surface S3 = ∇(2x+y+2z)

|∇(2x+y+2z)|

n̂= 2i + j + 2k√
4+ 1+ 4

= 2i + j + 2k

3

(∇ × A) · n= 2

3
x2 + 1

3
x(1− 2y)

To evaluate the surface integral on the surface S3,
project S3 on to say xz-plane i.e., projection ofABD
on xz-plane is AOD

dS = dxdz
n · j =

dxdz

1
3

= 3dxdz

Thus

SI3 =
  
S3

(∇ × A) · ndS

=
  
AOD

 
2

3
x2 + x

3
(1− 2y)

 
3dxdz

=
 4

x=0

 4−x

z=0

 
2x2 + x(1− 2y)

 
dzdx

since the region AOD is covered by varying
z from 0 to 4− x, while x varies from 0
to 4. Using the equation of the surface S3,
2x + y + 2z = 8, eliminate y, then

SI3 =
 4

0

 4−x

0

 
2x2 + x[1− 2(8− 2x − 2z)]

 
dzdx

=
 4

0

 4−x

0

(6x2 − 15x + 4xz)dzdx

=
 4

0

6x2z− 15xz+ 4xz2

2

    4−x
0

dx

=
 4

0

(23x2 − 4x3 − 28x)dx = 32

3

Thus L.H.S = L.I. = R.H.S. = S.I.

Hence Stokes’ theorem is verified.

Example 4: Verify Stokes’ theorem forA = y2i +
xyj − xzk where S is the hemisphere

x2 + y2 + z2 = a2, z ≥ 0.

Solution: The curve c which is the boundary of the
given hemisphere is the base circle (see Fig. 16.24)

x2 + y2 = a2

Fig. 16.24

On curve c: z = 0, x2 + y2 = a2

L.H.S. = LI =
 
c

A · dr =
 
y2dx + xydy − xzdz

=
 
y2dx + xydy

Introducing polar coordinates x = a cos t,

y = a sin t , with t varying from 0 to 2π

LI =
 2π

0

a2 sin2 t d(a cos t)+ a cos t · a sin t · d(a sin t)

= a3

 2π

0

(− sin3 t + cos2 t sin t)dt = 0

Now

∇ × A=

         

i j k

∂

∂x

∂

∂y

∂

∂z

y2 xy −xz

         
= zj − yk

Unit normal n̂ to the sphere is

n̂= ∇(x2 + y2 + z2)
|∇(x2 + y2 + z2)| =

2xi + 2yj + 2zk 
4x2 + 4y2 + 4z2

= xi + yj + zk
a

(∇ × A) · n= (zj − yk) ·
 
xi + yj + zk

a

 

= 1

a
(zy − zy) = 0
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so

R.H.S. =SI =
  
S

(∇ × A) · ndS = 0

Thus

L.H.S. = L.I. = 0 = S.I. = R.H.S.

Hence the Stokes’ theorem is verified.

EXERCISE

Stokes’ theorem

1. If ∇ × A = 0, then prove that
 
c
A · d r = 0

for every closed curve c.

2. Prove that
  
S
∇ × A · ndS = 0 for any closed

surface S.

3. Prove that
 
c
d r × B =   

S
(n×∇)× B ds.

Hint: Choose A = B × c, where c is a con-
stant vector, and apply Stokes’ theorem. Note
that

(n×∇)× B = ∇(B · n)− n(∇ ·B).

4. Prove that 
c
f∇g · d r =   

S
(∇f ×∇g) · n dS and de-

duce that
 
c
f∇f · d r = 0.

Hint:TakeA = f∇g in Stokes’ theorem.Note

that ∇ × ∇g = 0.

For deduction, take f = g and note that

∇f ×∇f = 0.

5. Evaluate
  
S
(∇ × A) · n dS where S is the

surface of the hemisphere x2 + y2 + z2 = 16

above the xy-plane and A = (x2 + y − 4)i +
3xyj + (2xz+ z2)k.

Ans. −16π

6. If A = (y2 + z2 + x2)i + (z2 + x2 − y2)j +
(x2 + y2 − z2)k evaluate

  
S
(∇ × A) · n dS

taken over the surface S = x2 + y2 − 2ax +
az = 0, z ≥ 0.

Ans. 2πa3

7. Evaluate
  
S
∇ × (yi + zj + xk) · n dS over

the surface of the paraboloid

z = 1− x2 − y2, z ≥ 0.

Ans. π

8. Evaluate
  
S
∇ × (yi + 2xj + zk) · n dS

where S is the paraboloid z = 1− x2 −
y2, z ≥ 0.

Ans. π

9. What is the surface integral of the normal

component of the curl of the vector function

(x + y)i + (y − x)j + z3k over the upper half

of the sphere x2 + y2 + z2 = 1.

Ans. −2π

10. Evaluate
 
c
y dx + z dy + x dz where c is the

curve given by x2 + y2 + z2 − 2ax − 2ay =
0, x + y = 2a, beginning at the point (2a, 0, 0)

and going at first below the z-plane.

Ans. −2
√

2πa2

11. Evaluate
 
c
sin z dx − cos x dy + sin y dz

where c: rectangle 0 ≤ x ≤ π , 0 ≤ y ≤ 1,

z = 3.

Ans. 2

12. Evaluate
 
c
y dx + z dy + x dz where c is the

curve of intersection of the sphere x2 + y2 +
z2 = a2 and the plane x + z = a.

Ans. −πa2/
√

2.

Verification of Stokes’ theorem

13. Evaluate
 
c
y dx + xz3dy − zy2dz (a) directly

(b) using Stokes’ theorem, given that c is the

circle: x2 + y2 = 4, z = −3.

Ans. −28.4π

14. Evaluate (a) directly (b) using Stokes’ theo-

rem
 
c
4z dx − 2x dy + 2x dz where c is the

ellipse x2 + y2 = 1, z = y + 1.

Ans. −4π

Verify Stokes’ theorem in the following examples

for:

15. A = (2x − y)i − yz2j − y2zkwhere S: upper

half surface of the sphere x2 + y2 + z2 = 1

Hint: Here c: x2 + y2 = 1, z = 0.

Ans. π

16. A = x2i + xyj where S is square 0 ≤ x ≤
a, 0 ≤ y ≤ a in the xy-plane

Hint: c: square 0 ≤ x ≤ a, 0 ≤ y ≤ a, z = 0
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Ans. a3/2

17. A = (x2 + y2)i − 2xyj taken around the rect-

angle bounded by x = a, x = −a, y = 0,

y = b
Ans. −4ab2

18. A = ez(i + sin yj + cos yk) where S: z = y2,

0 ≤ x ≤ 4, 0 ≤ y ≤ 2

Ans. ±4(1− e4) from (0, 0, 0) to (4, 0, 0)

∓4e4 from (4, 2, 4) to (0, 2, 4)

The integrals over the parabolas cancel each

other.

19. A = y2i + z2j + x2k where S: portion of

paraboloid x2 + y2 = z, y ≥ 0, z ≤ 1

Ans. ± 4
3
.

Work done around closed curve by Stokes’

theorem

Find the work done by the force F in the displace-

ment around the closed curve c where:

20. F = 2xy3 sin zi + 3x2y2 sin zj + x2y3 cos zk

c: intersection of paraboloid z = x2 + y2 and

cylinder (x − 1)2 + y2 = 1

Hint: ∇ × F = 0.

Ans. 0

21. F = x3i + e3yj + e−3zk, c: x2 + 9y2 = 9,

z = x2

Hint: ∇ × F = 0.

Ans. 0.

16.7 GAUSS∗ DIVERGENCE THEOREM

Transformation between surface integral and vol-

ume integral. Let A be a vector function of posi-

tion, having continuous derivatives, in a volume V

bounded by a closed surface S then

 
  
S

A · ndS =
   

V

∇ ·AdV (1)

where n is the outward drawn (positive) normal to S.

Proof: Assume that S is such that any line parallel

to coordinate axes meets S in at most two points. Let

∗Karl Frierich Gauss (1777–1855), German mathematician.

S1 and S2 be the lower (below) and upper (top), por-

tions of S having equations z = f1(x, y) and z =
f2(x, y) and having n1 and n2 as normals respecti-

vely (See Fig. 16.25). Let R be the projection of

the surface S on the xy-plane. IfA=A1i+A2j+A3k,

then the result of Gauss divergence theorem (1) in

component form is

Fig. 16.25

  
S

(A1i + A2j + A3k) · n dS

=
   

V

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 
dV (2)

Consider   
V

∂A3

∂z
dV =

   
V

∂A3

∂z
dzdydx

=
  
R

  z=f2

z=f1

∂A3

∂z
dz

 
dydx

=
  
R

[A3(x, y, f2)− A3(x, y, f1)] dydx

=
  
R

A3k · n2dS2 −
  
R

A3k · (−n1)dS1

since for upper surface S2, k · n2dS2 = dydx while

for lower surface S1, k · (−n1)dS1 = dydx. Thus   
V

∂A3

∂z
dV =

  
S

A3k · ndS (3)

Similarly, projecting S on to yz-plane and xz-
planes we have   

V

∂A1

∂x
dV =

  
S

A1i · ndS (4)

   
V

∂A2

∂y
dV =

  
S

A2j · ndS (5)
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Adding (3), (4), (5), we get the required result

(2).

Note 1: Gauss divergence theorem (G.D.T.) trans-

forms volume integrals to surface integrals and vice

versa.

Note 2: G.D.T in rectangular form   
V

 
∂A1

∂x
+ ∂A2

∂y
+ ∂A3

∂z

 
dxdydz

=
  
S

(A1i + A2j + A3k) · (n1i + n2j + n3k)ds

=
  
S

(A1n1 + A2n2 + A3n3)dS

=
  
S

(A1 cosα + A2 cosβ + A3 cos γ )dS

where n1 = n · i = cosα, n2 = n · j = cosβ, n3 =
n · k = cos γ . Here α, β, γ are the angles which n

makes with the positive x, y, z axes.

Note 3: Apart from (1), G.D.T. can also be written
in the following forms:  

S

n× A dS =
   

V

∇ × AdV (see Example 14

on Page 16.33)  
S

nφdS =    
V ∇φdV (see W.O.E. 7 on

Page 16.31)

Note 4: G.D.T. is also known as “Green’s theorem

in space” because G.D.T. generalizes the “Green’s

theorem in plane” by replacing the (plane) region R

and its closed boundary (curve) c by a (space) region

V and its closed boundary (surface) S.

Note 5: When A = V = velocity of a fluid then
G.D.T. has the following physical interpretation:

Volume of fluid emerging

(diverging) from a closed

surfaces in unit time


 =




Volume of fluid

supplied from within

volume V in unit time

WORKED OUT EXAMPLES

Surface to volume integral using

divergence theorem

Example 1: Find the volumeV of a regionbounded

by a surface S.

Solution: By Gauss’ divergence theorem   
V

∇ · A dV =
  
S

A · ndS (1)

Choose A = xi, so that ∇ · A = 1, with this (1)
reduces to

V = Volume =
   

1 · dV

=
  
S

x(i · n)dS =
  
S

xdydz

Similarly by taking A = yj and A = zk, we get

V =
  
S

ydzdx and V =
  
S

zdxdy

or V = 1

3

  
S

(xdydz+ ydzdx + zdxdy).

Example 2: Evaluate
  
S
exdydz− yexdzdx +

3zdxdy where S is the surface of the cylinder

x2 + y2 = c2, 0 ≤ z ≤ h (Fig. 16.26).

Solution: Here A1 = ex, A2 = −yex, A3 = 3z, so

that ∇ · A = ∂A1
∂x
+ ∂A2

∂y
+ ∂A3

∂z
= ex − ex + 3 = 3

using divergence theorem, given surface integral

Fig. 16.26

=
   

∇ · AdV = 3

   
dxdydz

= 3

 h

z=0

 c

−c

 +√c2−x2
−
√
c2−x2

dydxdz

= 3 · 2 · 2 ·
 h

0

 c

0

 √c2−x2
0

dydxdz

= 12h

 c

0

 
c2 − x2dx a = 3πhc2.

Example 3: Evaluate
  
S
A · ndS where A =

2xyi + yz2j + xzk, and S is the surface of the
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region bounded by x = 0, y = 0, z = 0, y = 3 and

x + 2z = 6 (refer Fig. 16.27).

Solution: ∇ · A = 2y + z2 + x.
By Gauss’ divergence theorem

Fig. 16.27

SI =
  
S

A · ndS =
   

V

∇ · AdV

=
   

V

(2y + z2 + x)dV

=
 3

y=0

 6

x=0

 6−x
2

z=0

(2y + z2 + x)dzdxdy

=
 3

0

 6

0

(2y + x)z+ z
3

3

     
6−x

2

0

=
 3

0

 6

0

 
y(6− x)+ 6x − x2

2
+ 1

24
(6− x)3

 
dx

=
 3

0

y

 
6x − x

2

2

 
+ 1

2

 
6x2

2
− x

3

3

 

− 1

24

 
6− x

4

 4
     
6

0

=
 3

0

 
18y + 216

 
1

12
+ 1

16

  
dy = 351

2
.

Example 4: Evaluate
  
S
r

r2
· ndS.

Solution: Take A = r

r2
= xi+yj+zk
x2+y2+z2 so that

∇ ·A= ∇ ·

 
r

r2

 

= (r2 − 2x2)

r4
+ (r2 − 2y2)

r4
+ (r2 − 2z2)

r4

= 3r2 − 2r2

r4
= 1

r2

Applying Gauss divergence theorem, we get  
r

r2
· n dS =

  
S

A · ndS =
   

V

∇ · AdV

=
   

V

1

r2
dV

Example 5: Evaluate
  
S
r5n dS

Solution: Put f = r5 so that ∇f = ∇r5 = 5r3r
Applying Gauss divergence theorem  

S

r5ndS =
  

f ndS =
   

V

∇f dV

=
   

V

5r3rdV

Example 6: Evaluate
  
S
B · ndS when

B = ∇ × A and S is any closed surface.

Solution: By Gauss divergence theorem  
S

B · ndS =
   

V

∇ · BdV

=
   

V

∇ · (∇ × A)dV = 0

since ∇ · (∇ × A) = 0 for any A.

Example 7: Prove that
   ∇f dV =   

S
f n dS.

Solution: Choose A = f c where c is a constant
vector

so that ∇ · A = ∇ · (f c) = c · ∇f + f∇ · c = c · ∇f
since ∇ · c = 0

Also A · n = (f c) · n = (f n) · c = c · (f n)
Applying Gauss divergence theorem   

V

∇ · A dV =
   

V

c · ∇f dV

=
  
S

A · ndS

=
  
S

c · (f n)dS

or c ·
   

V

∇f dV = c ·
  
S

f n dS

Since c is arbitrary constant vector, the result follows.
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Example 8: Prove that  
S
r × dS = 0 for any closed surface S.

Solution: We know that  
S

n× BdS =
   

V

∇ × BdV (1)

Consider  
S

r × dS =
  
S

r × ndS = −
  

n× rdS

Choose B = −r in the above result (1). Note that

∇ × B = ∇ × (−r) =

         

i j k

∂

∂x

∂

∂y

∂

∂z

−x −y −z

         
= 0

Thus   
r × dS =−

  
n× r dS

=−
   

V

∇ × r dV = 0

Green’s formulas:

Green’s first formula (identity)

Example 9: Prove that  
S

f
∂g

∂n
dS =

   
V

(f∇2g +∇f ·∇g)dV

Solution: Choose A = f∇g in the divergence the-
orem then

∇ ·A= ∇ · (f∇g) = f∇ ·∇g +∇f ·∇g
= f∇2g +∇f ·∇g

A · n= n · f∇g = f n ·∇g = f∇g · n = f ∂g
∂n

From divergence theorem  
S

A · ndS =
  
S

f
∂g

∂n
dS =

   
V

∇ · AdV

=
   

V

(f∇2g +∇f · ∇g)dV

since
∂g

∂n
dS = ∇g · ndS = ∇g · dS

Green’s first identity can also be written as  
S

f∇g · dS =
   

V

(f∇2g +∇f · ∇g)dV

Green’s second formula (identity) or

symmetrical theorem

Example 10: Show that   
(f∇2g − g∇2f )dV =

  
S

 
f
∂g

∂n
− g ∂f

∂n

 
dS

Solution: From Green’s first formula (above

Example 9) we have  
S

f
∂g

∂n
dS =

   
V

(f∇2g +∇f · ∇g)dV (1)

Interchanging f and g, we obtain  
S

g
∂f

∂n
dS =

   
V

(g∇2f +∇g · ∇f )dV (2)

Subtracting (2) from (1), we get  
S

 
f
∂g

∂n
− g ∂f

∂n

 
dS =

   
V

(f∇2g − g∇2f )dV

Note: Since  
S

[f (∇g · n)− g∇f · n] dS

=
  
S

(f∇g − g∇f ) · n dS =
  
S

(f∇g − g∇f ) · dS

Green’s second identity can also be written as  
S

(f∇g − g∇f ) · dS =
   

V

(f∇2g − g∇2f )dV .

EXERCISE

Surface to volume integral, using

divergence theorem

Using divergence theorem, evaluate the surface

integral:

1.
  
S
yzdydz+ zxdzdx + xydxdy where S:

x2 + y2 + z2 = 4

Ans. 0

2.
  
S
x3dydz+ x2ydzdx + x2zdxdy where S:

closed surface consisting of the circular cylin-

der x2 + y2 = a2, (0 ≤ z ≤ b) and the circular

disks z= 0 and z= b, (x2+ y2≤ a2).

Ans. 5πa4b/4
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3.
  
S
sin xdydz+ (2− cos x)ydzdx where S:

parallelopiped 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤
z ≤ 1

Ans. 12

4.
  
S
(ax2 + by2 + cz2)dS where S: sphere of

unit radius centered at origin.

Ans. 4π (a + b + c)/3
5.

  
S
(x2 − yz)dzdy − 2x2ydzdx + zdxdy

where S: cube of side b and three of whose

edges are along the axes.

Ans. b3(b2 + 3)/3

6.
  
S
9xdydz+ y cosh2 xdzdx −

z sinh2 xdxdy where S: ellipsoid

4x2 + y2 + 9z2 = 36

Ans. 480π

7.
  
S
sin xdydz+ ydzdx + zdxdy where S:

surface of 0≤ x ≤π/2, x ≤ y ≤ z, 0≤ z≤ 1

Ans. 3
2
− π2

4

8.
  
S
r · n dS where S: sphere of radius 2 with

centre at origin

Ans. 32π

9.
  
S
r · n dS where S: surface of cube bounded

by the planes x = −1, y = −1, z = −1, x =
1, y = 1, z = 1

Hint: For examples 6 and 7 use result of

worked example 4

Ans. 24

10.
  
S
F · n dS where F = 2xyi + yz2j + xzk

and S : surface of parallelopiped

0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3

Ans. 30

11. If S is any closed surface enclosing a vol-

ume V and A = axi + byj + czk, then eval-

uate
  
S
A · n dS.

Ans. (a + b + c)V
12. If n is the unit outward drawn normal to any

closed surface of area S, then evaluate   ∇ · ndV .

Ans. S

13. Prove that
  
S
ndS=0 for any closed surface S.

Hint: Choose f = 1.

14. Prove that
  
S
n× BdS =    

V
∇ × BdV .

Hint:TakeA = B × C in divergence theorem,

with C any arbitrary constant vector.

15. Evaluate
   

V
∇ × BdV whereV is the region

bounded by a closed surface S and B is always

normal to S.

Hint: Normal n to S and B are parallel, so

n× B = 0. Use result of Exercise Example 14

Ans. 0

16. Prove that
  
S

∂f

∂n
dS =    

V
∇2f dV . Further

if f is harmonic (solution of Laplace’s equa-

tion) in a domain D, then evaluate
  

∂f

∂n
dS.

Hint:TakeA = ∇f in divergence theoremand

note that A · n = ∇f · n = ∂f

∂n
.

Ans. 0

17. If f and g are harmonic in V then evaluate  
S

 
f
∂g

∂n
− g ∂f

∂n

 
dS.

Hint: Use Green’s second identity (formula)

and note that ∇2f = 0 and ∇2g = 0

Ans. 0

Gauss’ theorem

18. Let S be a closed surface and let r be the po-
sition vector of any point (x, y, z) measured
from an origin 0. Then prove that  

S
n·r
r3
dS = 0 if o lies outside S

= 4π if o lies inside S

Hint: If 0 lies outside S, note that r  = 0 and

∇ · r
r3
= 0. Now use divergence theorem

If 0 lies inside S, enclose 0 by a small sphere
S∗ of radius a then from the above result  

S+S∗
n · r
r3
dS = 0

Note that
  
S∗
n·r
r3
dS = −4π

19. Prove that
  
S
∇(x2 + y2 + z2) · ndS = 6V

where S is any closed surface enclosing a vol-

ume V .

20. If A = (x2 + y − 4)i + 3xyj + (2xz+ z2)k
and S is the surface of the paraboloid

x2 + y2 + z = 4 above the xy-plane, evaluate  
S
(∇ × A) · ndS

Ans. −4π .
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Verification of Gauss Divergence Theorem

WORKED OUT EXAMPLES

Example 1: Verify the divergence theorem forA =
2x2yi − y2j + 4xz2k taken over the region in the

first octant bounded by the cylinder y2 + z2 = 9 and

the plane x = 2 (refer Fig. 16.28).

Solution: Here ∇ · A = 4xy − 2y + 8xz

R.H.S. =
   

V

∇ · AdV

Fig. 16.28

The solid region is covered when z varies from 0 to 
9− y2, y varies from 0 to 3 and x varies from 0 to

2 (height of the cylinder) so

R.H.S.=
 2

0

 3

0

 √9−y2

0

(4xy − 2y + 8xz)dz dy dx

=
 2

0

 3

0

 
(4xy − 2y)

  
9− y2

 

+ 4x(9− y2)

 
dy dx

=
 2

0

(2− 4x)

2

(9− y2)
3
2

3/2

     
3

0

dx

+
 2

0

36yx − 4x
y3

3

     
3

0

dx

=
 2

0

−18(1− 2x)dx +
 2

0

(108x − 36x)dx

R.H.S.= 180

The entire surface S consists of five surfaces
S1, S2, S3, S4, S5. So

L.H.S.=
  
S

A · n dS =
  
S1

+
  
S2

+ · · ·

+
  
S5

= SI1 + SI2 + · · · + SI5

On S1: OAB: x = 0, n̂ = −i, A · n = 0 so

SI1 =
  
S1

A · n dS = 0

On S2: CED: x = 2, n̂ = i, A · n = 8y so

SI2 =
  
S2

A · n dS =
  
S2

8y dy dz

=
 3

0

 √9−z2

0

8y dy dz =
 3

0

4(9− z2)dz = 72

On S3: planeOBDE: y = 0, n = −j, A · n = 0 so

SI3 =
  
S3

A · n dS = 0

On S4: plane: OACE: z = 0, n = −k,A · n = 0, so

SI4 =
  
S4

A · n dS = 0

On S5: the curved surface ABDC of the cylinder:

y2 + z2 = 9

unit normal n̂ to S5:
∇(y2+z2)

|∇(y2+z2)| =
2yj+2zk√
4y2+4z2

n̂ = yj + zk
3

so that A · n̂ = −y
3 + 4xz3

3

and n · k = yj + zk
3

· k = z
3
=

 
9− y2

3

Projecting the surface S5 on the yx-plane

SI5 =
  
S5

A · n dS =
  

(4xz3 − y3)

3
· dx dy
n · k

=
  
R

(4xz3 − y3)

3

√
9−y2
3

dx dy

=
 2

x=0

 3

y=0

 
4x(9− y2)− y3(9− y2)−

1
2

 
dy dx

=
 2

0

72x dx + 18

 2

0

dx = 144− 36 = 108
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so

L.H.S. = 0+ 72+ 0+ 0+ 108 = 180

Hence the divergence theorem is verified.

Example 2: Compute the flux of the vector field

A=
 
x2y

1+ y2
+ 6yz2

 
i +

+ 2x arc tan y j − 2xz(1+ y)+ 1+ y2

1+ y2
k

through the outer side of that part of the surface of

the paraboloid of revolution z = 1− x2 − y2 located

above the xy-plane.

Solution: The flux ofA through a surface S is given

by the surface integral,

flux =
  
S

A · n dS (1)
Since the given surface of S1 is the surface of the

paraboloid of revolution z = 1− x2 − y2, which is

not a closed surface, so we close this surface from

below with the circular portion S2 of the xy-plane

that is bounded by the circle x2 + y2 = 1, z = 0 (see

Fig. 16.29).

Fig. 16.29

LetV be the volume of the resulting solid bounded

above by S1 and below by S2.
Now the flux (1) is calculated, using divergence
theorem for the closed region V . Thus

Flux =
  
S

A · n dS =
   

V

(∇ · A)dV = 0

Since

∇ · A = 2xy

1+ y2
+ 2x

1+ y2

−2x(1+ y)
1+ y2

= 0

Flux across S = S1 + S2 is additive. So

Flux =
  
S

=
  
S1+S2

=
  
S1

+
  
S2

= 0

Thus   
S1

A · n dS = −
  
S2

A · n dS

i.e., flux across the required surface S1 = −flux

across the circular region S2

On S2: z = 0, x2 + y2 ≤ 1, n = −k so that

A · n =
 
x2y

1+ y2
i + 2x arc tan y j − k

 
· k = 1

  
S2

A · n dS =
  
S2

dS = S2 = area of the circular
region

= πr2 = π · 12 = π

Thus the required flux of A across the outer side

of that part of the surface S1 of the paraboloid of

revolution z = 1− x2 − y2 is −π

EXERCISE

Verify Gauss divergence theorem for:

1. A = 4xi − 2y2j + z2k taken over the region

bounded by x2 + y2 = 4, z = 0 and z = 3.

Ans. common value: 84π

2. A = (x3 − yz)i − 2x2yj + zk taken over

the entire surface of the cube 0 ≤ x ≤ a,
0 ≤ y ≤ a, 0 ≤ z ≤ a.

Ans. common value: a
5

3
+ a3

3. A = axi + byj + czk, theorem taken over the

entire surface of the sphere of radius d and cen-

tered at origin.

Ans. common value: 4π
3
d3(a + b + c)

4. A = 2xyi + yz2j + xzk and S is the

total surface of the rectangular parallelop-

iped bounded by the coordinate planes and

x = 1, y = 2, z = 3.

Ans. common value: 33

5. A = 2xzi + yzj + z2k over the upper half of

the sphere x2 + y2 + z2 = a2

Ans. common value: 5πa4/4
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6. A = (x2 − yz)i + (y2 − zx)j + (z2 − xy)k
taken over the rectangular parallelopiped

bounded by the coordinate planes and

x = a, y = b and z = c
Ans. common value: abc(a + b + c)

7. A = x2i + y2j + z2k taken over the surface of
the ellipsoid

x2

a2
+ y

2

b2
+ z

2

c2
= 1

Ans. common value: 0

8. A = xi + yj taken over the upper half of the

unit sphere x2 + y2 + z2 = 1

Ans. common value: 4π/3

9. A = x3i + x2yj + x2zk taken over the closed

region of the cylinder x2 + y2 = a2, bounded

by the planes z = 0 and z = b
Ans. common value; 5πba4/4

10. Compute the flux of the vector A = 4xi −
yj + zk through the surface of a torus.

Hint: Volume of a torus with R1 and R2 as the

inner and outer radii of the torus is π2

4
(R2 −

R1)
2(R2 + R1).

Ans. flux = π2(R2 − R1)
2(R2 + R1).
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Chapter17

Fourier Series

INTRODUCTION

Fourier series introduced in 1807 by Fourier (after

work by Euler and Daniel Bernoulli) was one

of the most important developments in applied

mathematics. It is very useful in the study of heat

conduction, mechanics, concentrations of chemicals

and pollutants, electrostatics, acoustics and in areas

unheard of in Fourier’s day such as computing and

CAT scan (computer assisted tomography).

Fourier* series is an infinite series representation

of periodic function in terms of the trigonometric

sine and cosine functions. Fourier series is very

powerful method to solve ordinary and partial differ-

ential equations particularly with periodic functions

appearing as non-homogeneous terms. While

Taylor’s series expansion is valid only for functions

which are continuous and differentiable, Fourier

series is possible not only for continuous functions

but for periodic functions, functions discontinuous in

their values and derivatives. Further, because of the

periodic nature, Fourier series constructed for one

period is valid for all values. Harmonic analysis is

the theory of expanding functions in Fourier series.

Periodic Function

A function f (x) is said to be periodic if f (x + T ) =
f (x) for all real x and for some positive number T.

T is known as the period of f (x).

* Jean-Baptiste Joseph Fourier (1768–1830), French physicist
and mathematician.

Fundamental period

or primitive period or simply period of f (x) is the

smallest positive period of f.

Example: cos x, sin x, sec x, cosec x, are periodic

functions with period 2π .

tan x, cot x are periodic with period π .

Result 1: If T is the period of f (x) then nT is also
period of f for any integer n.

i.e. f (x + nT ) = f (x) (n  = 0)

Example: cos(x+ 4π )= cos(x+ 2 · 2π )= cos((x

+ 2π) + 2π ) = cos(x + 2π ) = cos 2π.

Result 2: The function h(x) = af (x) + bg(x) has

period T if f (x) and g(x) have period T. Here a, b

are constants.

Example: If h(x) = a cos x + b sin x, then

h(x + 2π ) = a cos(x + 2π ) + b sin(x + 2π )

= a cos x + b sin x = h(x).

Result 3: If f (x) is a periodic function of period

T, then f (ax) with a  = 0, is a periodic function of

period T
a
.

Example: sin 2x has period 2π
2

= π

cos 3x has period 2π
3
and so on.

Result 4: The period of a sum of a number of pe-

riodic functions is the least common multiple of the

periods.

Example: f (x) = sin x + 1
2
sin 2x + 1

3
sin 3x +

1
4
sin 4x. Note that sin x, sin 2x, sin 3x, sin 4x have

17.1
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periods 2π, π, 2π
3

and π
2
respectively. Then the pe-

riod of f (x) is 2π which is the L.C.M. of these pe-

riods.

Result 5: A constant function is periodic for any

positive T.

Trigonometric Series is a functional series of the
form
a0

2
+ a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + . . .

or
a0

2
+

∞ 
n=1

(an cos nx + bn sin nx)

where the constants a0, an, bn(n = 1, 2, 3, . . .) are

called the coefficients.

Result 1: Let n and m be integers, n  = 0,m  = 0.

For m  = n

a.
 α+2π

α
cosmx · cos nx dx = 0

b.
 α+2π

α
sinmx · sin nx dx = 0

c.
 α+2π

α
sinmx · cos nx dx = 0

d.
 α+2π

α
cosmx dx = 0

e.
 α+2π

α
sinmx dx = 0

For m = n

a.
 α+2π

α
cosmx · cos nx dx =  α+2π

α
cos2mx dx

= π

b.
 α+2π

α
sin2mx dx = π

c.
 α+2π

α
cosmx · sinmx dx = 0.

17.1 EULER’S (FOURIER–EULER)

FORMULAE

Let f (x), a periodic function with period 2π defined

in the interval (α, α + 2π ), be the sum of a trigono-

metric series i.e.,

f (x) = a0

2
+

∞ 
n=1

(an cos nx + bn sin nx) (1)

To determine the coefficient a0

Integrate both sides of (1) with respect to x in the
interval α to α + 2π . Then α+2π

α

f (x)dx

=
 α+2π

α

a0

2
dx +

 α+2π

α

 ∞ 
n=1

an cos nx

+ bn sin nx

 
dx

= a0

2
· x
    α+2π

α

+
∞ 
n=1

 
an

 α+2π

α

cos nx dx

+bn
 α+2π

α

sin nx dx

 

From result 6, the last two integrals for all n will
be zero. Thus α+2π

α

f (x)dx = a0

2
· 2π = πa0

Hence

a0 = 1

π

 α+2π

α

f (x)dx (2)

To determine coefficient an for n = 1, 2, 3 . . .:

Multiplying both sides of (1) by cosmx and inte-

grating w.r.t. x in (α, α + 2π ), we get

 α+2π

α

f (x) cosmx dx

=
 α+2π

α

a0

2
· cosmx dx

+
 α+2π

α

 ∞ 
n=1

an · cos nx · cosmx
 
dx

+
 α+2π

α

  
bn sin nx · cosmx

 
dx

In R.H.S., except the integral of an (with m = n)

all other integrals vanish (Result 6). For m = n, the

integral of an is π . Thus

an = 1

π

 α+2π

α

f (x) cos nx dx for n = 1, 2, 3 · · · (3)

Similarly,

bn = 1

π

 α+2π

α

f (x) sin nx dx for n = 1, 2, 3 · · · (4)

The formulae (2), (3), (4) are known as Euler (or

Fourier–Euler) formulaewhich gives the coefficients

a0, an and bn, which are known as Fourier coeffi-

cients of f (x).
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Fourier series

Fourier Series of a periodic function f (x) with pe-

riod 2π is the trigonometric series (1) with the

Fourier coefficients a0, an, bn given by the Euler

formulae (2), (3), (4). The individual terms in Fourier

series are known as harmonics.

Dirichlet conditions

Dirichlet conditions for the expansion of f (x) in

Fourier series:

Let f (x) be a periodic function with pe-

riod 2π . Let f (x) be piecewise continuous, and

bounded in the interval (α, α + 2π ) with finite

number of extrema. Then at the points of continuity,

the Fourier series of f (x) (R.H.S. of (1)) converges

to f (x) (L.H.S. of (1)). At a point of discontinuity

x0, the Fourier series of f (x) converges to the arith-

metic mean of the left and right hand limits of f (x)

at x0 i.e., f (x0) = 1
2
[f (x0 − 0) + f (x0 + 0)].

Method of obtaining Fourier series of f (x)

I. f (x) = a0
2

+
∞ 
n=1

an cos nx +
∞ 
n=1

bn sin nx

II. a0 = 1
π

 α+2π

α
f (x)dx

III. an = 1
π

 α+2π

α
f (x) cos nx dx, n= 1, 2, 3, . . .

IV. bn = 1
π

 α+2π

α
f (x) sin nx dx, n= 1, 2, 3, . . .

Result 1: Leibnitz’s Rule:
 
u v dx = uv1 − u v2

+ u  v3 − u   v4 + · · · where  denotes differentiation
and suffix integration w.r.t. x.

Result 2: cos nπ = (−1)n; sin nπ = 0; cos(2n+
1)π

2
= 0; sin(2n+ 1)π

2
= (−1)n.

WORKED OUT EXAMPLES

Example 1: Find the Fourier series of

f (x) =
 

0, when − π ≤ x ≤ 0

x2, when 0 ≤ x ≤ π

which is assumed to be periodic with period 2π .

Solution: The Fourier series is given by

f (x) = a0

2
+

∞ 
n=1

(an cos nx + bn sin nx)

Here

a0 = 1

π

 π

−π
f (x)dx = 1

π

 0

−π
0 dx + 1

π

 π

0

x2dx

a0 = 1

π

x3

3

     
π

0

= π3

3π
= π2

3

an = 1

π

 π

−π
f (x) cos nx dx

= 1

π

 0

−π
0 · cos nx dx + 1

π

 π

0

x2 cos nx dx

Integrating by parts,

= 1

π

 
x2 · sin nx

n
− (2x) ·

 − cos nx

n2

 

+2 ·
 − sin nx

n3

      π
0

an = 1

π

2π

n2
cos nπ = 2

n2
(−1)n, for n = 1, 2, 3, . . .

bn = 1

π

 π

−π
f (x) sin nx dx = 1

π

 π

0

x2 sin nx dx

= 1

π

 
x2
 − cos nx

n

 
− 2x ·

 − sin nx

n2

 

+2

 + cos nx

n3

  π
0

bn = 1

π

 
−π2

n
cos nπ + 2

n3
(cos nπ − 1)

 

= −π
n

(−1)n + 2

πn3

 
(−1)n − 1

 
Substituting a0, an and bnweget the required Fourier

series of f (x) in the internal (−π, π) as

f (x) = π2

6
+ 2

∞ 
n=1

(−1)n

n2
cos nx

+
∞ 
n=1

 
π

n
(−1)n+1 + 2

πn3

 
(−1)n − 1

  
sin nx.
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Example 2: Obtain the Fourier series expansion of

f (x) = eax in (0, 2π ).

Solution:

a0 = 1

π

 2π

0

f (x)dx = 1

π

 2π

0

eaxdx = eax

π

    2π
0

a0 = e2aπ − 1

π

an = 1

π

 2π

0

f (x) cos nx dx

= 1

π

 2π

0

eax cos nx dx

Using 
eax cos bx dx = eax [a cos bx + b sin bx]/(a2 + b2)

an = 1

π

 
eax

{a cos nx + n · sin nx}
(a2 + n2)

    
2π

0

 

an = 1

π (a2 + n2)
[ae2aπ cos 2nπ − e0 · cos 0]

= 1

π (a2 + n2)
[ae2aπ − 1]

bn = 1

π

 2π

0

eax sin nx dx

= 1

π

 
eax

(a sin nx − n cos nx)

a2 + n2

     2π
0

Since 
eax sin bx dx = eax [a sin bx − b cos bx]/(a2 + b2)

bn = n

π (a2 + n2)
· [−e2aπ cos 2nπ + 1]

= n

π (a2 + n2)
(1 − e2aπ )

Substituting these values the required Fourier series
is

f (x) =
 
e2aπ − 1

π

  
1

2
+

∞ 
n=1

 
1

a2 + n2

 
(−n sin nx)

 

+ae
2aπ − 1

π

∞ 
n=1

cos nx

(a2 + n2)
.

Example 3: If f (x) = x in
 −π

2
, π
2

 
and f (x) = 0

in
 
π
2
, 3π/2

 
find the Fourier series of f (x). Deduce

that π
2

8
=

∞ 
n=1

1

(2n−1)2
(refer Fig. 17.1).

Solution:

a0 = 1

π

 3π
2

−π
2

f (x)dx = 1

π

 π
2

−π
2

x dx + 1

π

 3π
2

π
2

0 · dx

a0 = 1

π

 
x2

2

 π
2

−π
2

= 1

2π

 
π2

4
− π2

4

 
= 0

an = 1

π

 3π
2

−π
2

f (x) cos nx dx = 1

π

 π
2

−π
2

x cos nx dx

an = 1

π

 
x
sin nx

n
+ 1

n
· cos nx

n

 π
2

−π
2

= 0

bn = 1

π

 3π
2

−π
2

f (x) sin nx dx = 1

π

 π
2

−π
2

x sin nx dx

= 1

π

 
x · (− cos nx)

n
+ 1

nπ

sin nx

n

 π
2

−π
2

bn = −1

n

 
cos n

π

2

 
+ 2

n2π
sin

nπ

2

Fig. 17.1

For n = 1, b1 = 2
π
, b2 = 0 + 1

2
, b3 = − 2

9π
, b4 =

− 1
4
, b5 = 2

25π
etc. Thus the Fourier series is

f (x) = 0 + 0 +
∞ 
n=1

 − cos nπ
2

n
+ 2

n2π
sin n

π

2

 
sin nx

At x = π
2
which is a point of discontinuity,

f
 π
2

 
= 1

2

 
f
 π
2

− 0
 

+ f
 π
2

+ 0
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= 1

2

 π
2

+ 0
 

= π

4
.

Putting x = π
2
in the Fourier series expansion

π

4
= f

 π
2

 
=

∞ 
n=1

 − cos

n

 nπ
2

 
+ 2

n2π
· sin nπ

2

 
sin

nπ

2

=
∞ 
n=1

 
0 + 2

(2n− 1)2π

 
(−1)2n

or π2

8
=

∞ 
n=1

1

(2n− 1)2
.

Example 4: Obtain the Fourier series of
f (x) = (π − x)/2 in the interval (0, 2π ). Deduce

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

Solution:

a0 = 1

π

 2π

0

f (x)dx = 1

π

 2π

0

 
π − x

2

 
dx

= 1

2π

 
πx − x2

2

 2π
0

= 0

an = 1

π

 2π

0

f (x) cos nx dx

= 1

π

 2π

0

 
π − x

2

 
cos nx dx

an = 1

2π

 
(π − x) · sin nx

n
− (−1)

(− cos nx)

n2

 2π
0

= 0

bn = 1

π

 2π

0

 
π − x

2

 
sin nx dx

= 1

2π

 
(π − x)

 − cos nx

n

 
− (−1)

 −1

n

 

× sin nx

n

 2π
0

bn = 1

2π

 π
n

+ π

n

 
= 1

n

f (x) = π − x

2
= 0 + 0 +

∞ 
n=1

1

n
sin nx

= sin x + sin 2x

2
+ sin 3x

3
+ · · ·

Put x = π
2

then
π− π

2
2

= π
4

=
∞ 
n=1

1
n
sin nπ

2

= 1 − 1
3

+ 1
5

− 1
7

+ · · ·

Example 5: Sum of functions: suppose the Fourier

series of f (x) = a0
2

+
∞ 
n=1

 
an cos

nπx
L

+ bn sin
nxπ
L

 
and g(x) = c0

2
+

∞ 
n=1

 
cn cos

nπx
L

+ dn sin
nπx
L

 
in the

interval e to e + 2L then find the Fourier series of

h(x) = αf (x) + βg(x).

Solution:

h(x) = α
 a0
2

+
 

an cos
nπx

L
+ bn sin

nπx

L

 

+β
 
C0

2
+
 

cn cos
nπx

L
+ dn sin

nπx

L

 

h(x) =
 
α
a0

2
+ β

c0

2

 
+
 

(αan + βcn) cos
nπx

L

+
 

(αbn + βdn) sin
nπx

L

h(x) = A0

2
+

∞ 
n=1

 
An · cos

 nπx
L

 
+ Bn sin

 nπx
L

  

whereA0 = αa0 + βc0,An = αan + βcn,Bn = αbn+
+βdn.

EXERCISE

f (x) = a0

2
+

∞ 
n=1

(an cos nx + bn sin nx)

Find the Fourier series of the following functions

f (x) which are periodic with period 2π and defined

in the indicated interval.

1. Modified saw-toothed wave form

f (x) = 0 for − π < x ≤ 0

= x for 0 < x ≤ π .

Deduce π2

8
=

∞ 
n=1

1/(2n− 1)2.

Hint: an = 1

πn2
cos nx

   π
0

= −2

πn2
for n odd,

0 when n is even.

bn = − cos nπ
n

= 1
n
for n odd, −1

n
for n even

Put x = 0 in the equation below

0 = π
4

− 2
π

∞ 
n=1

1

(2n−1)2
.
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Ans. f (x) = π
4

− 2
π

 
cos x

12
+ cos 3x

32
+ cos 5x

52
+ · · ·

 
+  

sin x
1

− sin 2x
2

+ · · ·  .
2. f (x) = 0 in (−π, 0)

= sin x in (0, π)

Deduce π−2
4

= 1
1.3

− 1
1.5

+ 1
5.7

+ · · ·
Hint: a0 = 2

π
, a1 = 0, an = 1+cos nπ

π (1−n2) , b1 = 1
2
,

bn = 0

Put x = π
2
, sin π

2
= 1 = 1

π
+ 1

2
sin π

2
−

2
π

∞ 
n=1

1+cos nπ/2

π (1−n2) . 
1 − 1

2
− 1

π

 
π
2

=
∞ 
n=1

(−1)n+1

(2n+1)(2n−1)
.

Ans. f (x) = 1
π

+ sin x
2

− 2
π

 
cos 2x

3
+ cos 4x

15
+ cos 6x

35

+ cos 8x
63

+ · · ·  .
3. f (x) = x in (0, 2π ).

Ans. f (x)= x = π − 2
 
sin x + 1

2
sin 2x + 1

3
sin 3x

+ · · ·  
a0 = π, an = 0, bn = 1

π

 − 2π cos 2nπ
n

 = − 2
n

4. f (x) = x if 0 ≤ x ≤ π

= 2π − x if π ≤ x ≤ 2π .

Hint: an = 1
π

 
cos nπ−1

n2
− 1−cos nπ

n2

 
, bn = 0.

Ans. f (x) = π
2

− 4
π

 
cos x + cos 3x

32
+ cos 5x

52
+ · · ·  

5. f (x) = eax in (−π, π); Deduce when x = 0.

Ans. a0 = 2 sinh aπ
aπ

, an = 2a(−1)n sinh aπ

π (n2+a2)

bn = −(2n)(−1)n sinh aπ/[π (n2 + a2)]

when x = 0, π
2 sinh aπ

=  
1
2a

− a

a2+12
+ a

a2+22
− a

a2+32
+ · · ·  

6. f (x) = a sin t , if 0 ≤ t ≤ π (Half-wave

= 0, if π ≤ t ≤ 2π rectifier)

Deduce 1
2

= 1
1.3

+ 1
3.5

+ 1
5.7

+ · · ·

Ans. f (x) = a
π

+ 1
2
a sin x − 2a

π

∞ 
n=1

cos 2nx

4n2 − 1

Put t = π , then 0 = a sin π = a
π

+ a
2
sin π −

2a
π

∞ 
n=1

cos 2nπ

4n2−1

7. f (x) = −π , if −π < x < 0

= x, if 0 < x < π

Deduce that π
2

8
= 1

12
+ 1

32
+ 1

52
+ · · ·

Ans. a0 = −π
2
, an = 1

πn2
(cos nπ − 1);

bn = 1

n
(1 − 2 cos nπ )

f (x) = −π
4

− 2

π

 
cos x+ cos 3x

32
+ cos 5x

52
+ · · ·

 

+3 sin x− sin 2x

2
+ 3 sin 3x

3
− sin 4x

4
+ · · ·

x = 0 is a point of discontinuity. At x = 0,

−π
2

= 1

2
[−π + 0] = 1

2
[f (0 − 0) + f (0 + 0)]

= −π
4

− 2

π

 
1

12
+ 1

32
+ 1

52
+ · · ·

 

8. f (x) = x2 when 0 < x < 2π

Deduce π2

6
= 1

12
+ 1

22
+ 1

32
+ · · ·

Ans. f (x) = x2 = 4π2

3
+

∞ 
n=1

 
4

n2
cos nx − 4π

n
· sin nx

 

x = 0 is a point of discontinuity. So

f (0) = 1

2
[f (0 − 0) + f (0 + 0)]

= 1

2

 
(2π )2 + 02

 
= 2π2

Putting x = 0 in Fourier series expansion

2π2 = f (0) = 4π2

3
+

∞ 
n=1

 
4

n2
cos 0 − 0

 

9. f (x) = e−x in 0 < x < 2π .

Ans. e−x = 1−e−2π

π

 
1
2

+  
1
2
cos x + 1

5
cos 2x +

1
10
cos 3x + · · ·  +  

1
2
sin x + 2

5
sin 2x +

3
10
sin 3x + · · ·   

10. f (x) = x + x2 in (−π, π).
Hint: Treating f (x) = x + x2 = g(x) + h(x)

as the sum of two functions g(x) = x and

h(x) = x2, the Fourier series of f (x) can be

obtained as the sum of the Fourier series of

g(x) and h(x) i.e. FS of f (x) = FS of g(x) +
FS of h(x) or
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f (x) =
 
2

∞ 
n=1

(−1)n+1 sin x

n

 

+
 
π2

3
+ 4

∞ 
n=1

(−1)n
cos nx

n2

 
.

Ans. x + x2 = π2

3
+ 2

∞ 
n=1

(−1)n+1

n
sin nx +

4
∞ 
n=1

(−1)n

n2
cos nx

11. f (x) =  
π−x
2

 2
in (0, 2π ).

Deduce π2

6
=

∞ 
n=1

1

n2
.

Ans. f (x) = π2

12
+

∞ 
n=1

cos nx

n2
; put x = 0 for

deduction.

12. f (x) = x sin x in 0 ≤ x ≤ 2π .

Ans. a0 = −2, a1 = − 1
2
, an = 2

n2−1
, b1 =π, bn = 0

f (x) = −1 − cos x
2

+ ∞
n=2

 
2 cos nx

(n2−1)

 
+

π sin x
13. f (x) = 2x when 0 ≤ x ≤ π

= x when −π < x ≤ 0.

Ans. f (x) = π
4

− 2
π

 
cos x

12
+ cos 3x

32
+ cos 5x

52

+ · · ·  + 3
 
sin x
1

− sin 2x
2

+ sin 3x
3

− · · ·  
14. f (x) = −x if −π < x ≤ 0

= 0 if 0 < x ≤ π .

Ans. f (x) = π
4

− 2
π

∞ 
n=0

cos (2n+1) x

(2n+1)2

−
∞ 
n=1

(−1)n−1 sin nx
n

15. f (x) = 1 if −π < x ≤ 0
= −2 if 0 < x ≤ π

Ans. f (x) = − 1
2

− 6
π

∞ 
n=0

sin (2n+1) x

2n+1
.

17.2 FOURIER SERIES FOR EVEN

AND ODD FUNCTIONS

Definitions

Even function

A function f (x) is said to be even if

f (−x) = f (x) for all x.

Notes :

1. The graph of f (x) is symmetric about y-axis.

2. f (x) contains only even powers of x and may

contain only cos x, sec x.

3.
 a

−a f (x)dx = 2
 a
0
f (x)dx when f (x) is even.

4. The sumof two even functions is even i.e.,h(x) =
f (x) + g(x) is even when both f (x) and g(x) are

even (or e + e = e).

5. Product of two even functions is even i.e., h(x) =
f (x) · g(x) is even when both f and g are even

(or e · e = e).

Example: x2, cos x, x4 + cos 2x + 2

Odd function

A function f (x) is said to be odd if

f (−x) = −f (x) for all x.

Notes :

1. The graph of f (x) is symmetric about the origin

(lies in opposite quadrants Ist and IIIrd).

2. f (x) contains only odd powers of x and may

contain only sin x, cosec x.

3.
 a

−a f (x)dx = 0 when f (x) is odd.

4. The sum of two odd functions is odd i.e., h(x) =
f (x) + g(x) is odd when both f (x) and g(x) are

odd (or 0 + 0 = 0).

5. Product of an odd function and even function is

odd i.e., h(x) = f (x)g(x) is odd when f is even

and g is odd or vice versa (or) 0 · e = 0.

6. Product of two odd fucntions is even even i.e.,

0 · 0 = e.

Example: x3, sin x.

Result: Most functions are neither even nor odd.

But any functionf (x) canbewritten as the arithmetic

mean of an even and odd function as

f (x) = 1

2
[f (x) + f (−x)] + 1

2
[f (x) − f (−x)] .

Fourier Series for Even and Odd Functions

Let the Fourier series of f (x) in (−π, π) be

f (x) = a0

2
+

∞ 
n=1

(an cos nx + bn sin nx) (1)

where a0 = 1

π

 π

−π
f (x)dx (2)
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an = 1

π

 π

−π
f (x) cos nx dx (3)

bn = 1

π

 π

−π
f (x) sin nx dx (4)

Case 1: Suppose f (x) is even function in (−π, π).
Then all bn’s will be zero since the integrand in (4)

is an odd function (e · 0 = 0). Thus the Fourier series

of an even function contains “only cosine terms” and

is known as “Fourier cosine series” given by

f (x) = a0

2
+

∞ 
n=1

an cos nx (5)

where

a0 = 1

π

 π

−π
f (x)dx = 2

π

 π

0

f (x)dx (6)

and

an = 1

π

 π

−π
f (x) cos nx dx = 2

π

 π

0

f (x) cos nx dx

(7)

Case 2: Suppose f (x) is odd function in (−π, π).
Then all an’s are zero because the integrand in (3)

is an odd function (0 · e = 0). Also a0 is zero since

f is odd. Thus the Fourier series of an odd function

contains “only sine terms” and is known as “Fourier

sine series” given by

f (x) =
∞ 
n=1

bn sin nx (8)

where

bn = 1

π

 π

−π
f (x) sin nx dx = 2

π

 π

0

f (x) sin nx dx

(9)

(Note that the integrand in the above integral is even

i.e. 0 · 0 = e).

Procedure

1. Identify whether the given function f is even or

odd function in the given interval.

2. If f is even, calculate only a0 and an’s from (6)

and (7) (no need to calculate bn’s). The Fourier

cosine series is given by (5).

3. If f is odd, calculate only bn’s from (9). The

Fourier sine series is given by (8).

WORKED OUT EXAMPLES

Example 1: Expand the function f (x) = π2

12
− x2

4

in Fourier series in the interval (−π, π) (Fig. 17.2).
Solution: f (x) is even since f (−x) = f (x). The
Fourier series reduces to Fourier cosine series
given by

f (x) = a0

2
+

∞ 
n=1

an cos nx

Fig. 17.2

where

a0 = 2

π

 π

0

f (x)dx = 2

π

 π

0

 
π2

12
− x2

4

 
dx

= 2

π

 
π2

12
x − x3

12

 π
0

= 0

an = 2

π

 π

0

 
π2

12
− x2

4

 
cos nx dx

= 2

π

  
π2

12
− x2

4

 
sin nx

n
−
 −2x

4

 

×
 − cos nx

n2

 
+
 

−1

2

  − sin nx

n3

  π
0

an = 2

π

 
− 1

n2

 
π

2
· cos nπ = (−1)n+1

n2

f (x) =
∞ 
n=1

(−1)n+1

n2
· cos nx

= cos x − cos 2x

22
+ cos 3x

32
− cos 4x

42
+ · · ·

Example 2: Find Fourier series of f (x) = x3 in

(−π, π).
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Solution: Since f (x) is odd (i.e., f (−x) = f (x))
the series reduces to Fourier sine series given by

f (x) =
∞ 
n=1

bn sin nx

where

bn = 2

π

 π

0

f (x) sin nx dx = 2

π

 π

0

x3 sin nx dx

= 2

π

 
x3
 − cos nx

n

 
− 3x2

 − sin nx

n2

 

+6x(−1)(−)
cos nx

n3

−6

n4
sin nx

 π
0

bn = 2

π

 
−π3

n
cos nπ + 6π

n3
cos nπ

 

= 2(−1)n

 
−π2

n
+ 6

n3

 

f (x) = 2

∞ 
n=1

 
6

n3
− π2

n

 
(−1)n sin nx

= 2

  
π2

1
− 6

13

 
sin x−

 
π2

2
− 6

23

 
sin 2x+ · · ·

 
.

EXERCISE

Find the Fourier series expansion of the follow-

ing functions f (x) in the indicated interval. f (x) is

periodic with period 2π :

1. Saw-toothed wave form: f (x) = x in (−π, π).

Ans. Odd function, f (x) =
∞ 
n=1

− 2
n
(−1)n sin nx.

2. f (x) = x2 in (−π, π)
Deduce that

a.
π2

12
= 1

12
− 1

22
+ 1

32
− 1

42
+ · · ·

b.
π2

6
= 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · ·

c.
π2

8
= 1

12
+ 1

32
+ 1

52
+ 1

72
+ · · ·

Ans. Even function, f (x) = π2

3
+ 4

∞ 
n=1

(−1)n

n2
cos nx

(a) and (b) are obtained by putting x = 0 and

x = π in Fourier series respectively. (c) is the

arithmetic mean of results (a) and (b).

3. Triangular waveform

f (x) = 1 + 2x
π

if −π ≤ x ≤ 0

= 1 − 2x
π

if 0 ≤ x ≤ π

Deduce that π
2

8
= 1

12
+ 1

32
+ 1

52
+ · · ·

Ans. f (x) = 0 + 4

π2

∞ 
n=1

[1−(−1)n]
n2

cos nx

since f is even function.

Putting x = 0, 1 = f (0) = 8

π2

 
1

12
+ 1

32
+ 1

52

+ · · ·
 

4. f (x) = |x| in (−π, π) or

f (x) = −x in (−π, 0) and

= x in (0, π).

Ans. f (x) = π
2

+ 2
π

∞ 
n=1

[(−1)n−1]
n2

cos nx,

even function.

5. Square waveform:

f (x) = −k, if − π < x < 0

= k, if 0 < x < π.

Ans. Odd function, f (x) = 2k
π

∞ 
n=1

(1−cos nπ )

n
sin nx

6. f (x) = −(π + x)/2 for −π ≤ x < 0

= (π − x)/2 for 0 ≤ x < π .

Ans. Odd function, f (x) = sin x + 1
2
sin 2x +

1
3
sin 3x + · · ·

7. f (x) = | cos x| in (−π, π).

Ans. Even function, f (x)= 2
π

+ 4
π

∞ 
n=1

cos n π
2

1−n2 cos nx.

8. f (x) = | sin x| in (−π, π).

Ans. Even function, f (x) = 2
π

− 4
π

∞ 
n=1

cos 2nx

(4n2−1)
.

9. f (x) = sin ax in (−π, π), where a is not an

integer.
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Ans. Odd function, f (x) = 2 sin aπ
π

∞ 
n=1

(−1)nn

a2−n2 sin nx.

10. f (x) = cos ax in (−π, π), where a is not an

integer.

Ans. f (x) = sin aπ
π

+ 2a sin aπ
π

∞ 
n=1

(−1)n

a2−n2 cos nx,

even function.

11. f (x) = x sin x in (−π, π).
Deduce that π−2

4
= 1

1.3
− 1

3.5
+ 1

5.7
− 1

7.9
+ · · ·

Ans. f (x)=1− 1
2
cos x+

∞ 
n=2

2(−1)n+1

n2−1
cos nx,

even function.

Put x = π
2
,

π
2
sin π

2
= 1−0− 2

1.3
(−1)+ 2

2.4
· (0)− 2

3.5
+ · · ·

12. f (x) = x cos x in (−π, π).

Ans. f (x) = − 1
2
sin x +

∞ 
n=2

(−1)n

(n2−1)
sin nx,

odd function.

13. f (x) = √
1 − cos x in (−π, π) or −

√
2 sin x

2

in (−π, 0) and
√
2 sin (x/2) in (0, π).

Ans. Even, f (x) = 2
√
2

π
− 4

√
2

π

∞ 
n=1

cos nx/(4n2 − 1)

14. f (x) = −x2 in (−π, 0) and = x2 in (0, π).

Ans. f (x) = 2
π

∞ 
n=1

 
π2

n
(−1)n+1 + 2[1−(−1)n]

n3

 
sin nx

odd function.

17.3 FOURIER SERIES FOR FUNCTIONS

HAVING PERIOD 2L

Fourier series of periodic function with period 2π

was considered so far. Now consider the Fourier

series expansion of a function in an interval of

length 2L.

Let f (x) be a periodic function with arbitrary

period 2L defined in the interval c < x < c + 2L.

Introduce a new variable z as

x

2L
= z

2π
or x = Lz

π
or z = πx

L
(1)

At x = c, z = πc
L

= d say

At x = c + 2L, z = π
L
(c + 2L) = πc

L
+ 2π =

d + 2π

Thus as c < x < c + 2L, the new variable z lies

in the interval

d < z < d + 2π

So z varies in the interval (d, d + 2π ) of length

2π . Substituting for x from (1)

f (x) = f

 
Lz

π

 
= F (z) (2)

Let the Fourier series of F (z) defined in the interval

(d, d + 2π ) and with period 2π be

F (z) = a0

2
+

∞ 
n=1

(an cos nz+ bn sin nz) (3)

where a0 = 1
π

 d+2π

d
F (z) dz.

Changing the variable to x

a0 = 1

π

 c+2L

c

f (x) ·
 π
L
dx
 

Since dz= π

L
dx

Thus a0 = 1

L

 c+2L

c

f (x) dx (4)

Similarly,

an = 1

π

 d+2π

d

F (z) cos(nz) dz

= 1

π

 c+2L

c

f (x) · cos
 nπx
L

 π
L
dx

So an = 1

L

 c+2L

c

f (x) · cos
 nπx
L

 
dx (5)

In a similar way

bn = 1

L

 c+2L

c

f (x) sin
 nπx
L

 
dx (6)

Hence the Fourier series expansion for a function
f (x) with period 2L is

f (x) = F (z)

= a0

2
+

∞ 
n=1

 
an · cos

 nπx
L

 
+ bn sin

 nπx
L

  

with the Fourier coefficients a0, an, bn given by (4),

(5), (6).
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Result: L

−L
cos

 mπx
L

 
· cos

 nπx
L

 
dx =



2L if m = n = 0

L if m = n  = 0

0 if m  = n

Result: L

−L
sin

 mπx
L

 
· sin

 nπx
L

 
dx =



0 if m = n = 0

L if m = n  = 0

0 if m  = n

Result: L

−L
sin

 mπx
L

 
· cos

 nπx
L

 
dx = 0

for all integers

m and n.

Fourier Series for Even and Odd Functions

Defined in the interval (−L,L) of length 2L.
Case 1: f (x) be even function in (−L,L). Then
the Fourier cosine series is

f (x) = a0

2
+

∞ 
n=1

an cos
nπx

L

where

a0 = 2

L

 L

0

f (x)dx

and

an = 2

L

 L

0

f (x) cos
nπx

L
dx.

Case 2: f (x) be odd function in (−L,L). Then the
Fourier sine series is

f (x) =
∞ 
n=1

bn sin
nπx

L

where

bn = 2

L

 L

0

f (x) sin
nπx

L
dx.

WORKED OUT EXAMPLES

Example 1: Find the Fourier series of f (x) defined

f (x) = 0 when − c < x < 0

= 1 when 0 < x < c

Find the value of Fourier series at the point of

discontinuity x = 0.

Solution: The given interval is of length 2c. The
fourier series is

f (x) = a0

2
+

∞ 
n=1

 
an cos

nπx

c
+ bn sin

nπx

c

 

Here

a0 = 1

c

 c

−c
f (x) dx = 1

c

 0

−c
0 · dx + 1

c

 c

0

1 · dx

= 1

c
· x
    c
0

= 1

an = 1

c

 c

−c
f (x) cos

nπx

c
dx = 1

c

 c

0

cos
nπx

c
dx

an = 1

c
·
 c

nπ

 
sin

 nπx
c

    c
0

= 1

nπ
[sin nπ − sin 0] = 0

bn = 1

c

 c

−c
f (x) sin

nπx

c
dx = 1

c

 c

0

sin
nπx

c
dx

= 1

c

 c

nπ

  − cos nπx

c

     c
0

= − 1

nπ
[cos nπ − 1]

bn = 1

nπ
[1 − (−1)n]

Thus the required Fourier series is

f (x) = 1

2
+ 1

π

∞ 
n=1

 
1 − (−1)n

n

 
sin

 nπx
c

 

The sum of the series at x0 = 0 is obtained by putting

x = 0 in the above series

i.e., f (0) = 1
2

+ 1
π

· 0 = 1
2
. At a point of discon-

tinuity x0 = 0, f (0) = 1
2
[f (0 + 0) + f (0 − 0)] =

1
2
[1 + 0] = 1

2
.

Example 2: Obtain the Fourier series expansion of

f (x) = (π − x)/2 in 0 < x < 2.

Solution: Here the length of interval is 2L = 2
(i.e., L = 1)

a0 = 1

1

 2

0

f (x) dx =
 2

0

π − x

2
dx

= 1

2

 
πx − x2

2

 2
0

= (π − 1)

an = 1

1

 2

0

f (x) cos
nπx

1
dx
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=
 2

0

 
π − x

2

 
cos nπx dx

= 1

2

 
(π − x)

 
1

nπ

 
sin nπx

−(−1) × 1

nπ
· (−1)

cos nπx

nπ

 2
0

an = − 1

2n2π2
[cos 2nπ − cos 0]

= − 1

2n2π2
[1 − 1] = 0

bn = 1

1

 2

0

f (x) sin
nπx

1
dx

=
 2

0

 
π − x

2

 
sin nπx dx

= 1

2

 
(π − x)

 − cos nπx

nπ

 
− (−1) · (−1)

sin nπx

n2π2

 2
0

bn = −1

2nπ
[(π − 2) cos 2nπ − π · cos 0] = 1

nπ

f (x) = π − x

2
= (π − 1)

2
+ 0 +

∞ 
n=1

1

nπ
· sin nπx.

Example 3: Find the Fourier series of (Fig. 17.3)

f (t) =




0 if − 2 ≤ t ≤ −1

1 + t if − 1 ≤ t ≤ 0

1 − t if 0 ≤ t ≤ 1

0 if 1 ≤ t ≤ 2.

Solution: f (t) is defined in the interval (−2, 2) of

length 2L = 4 (i.e., L = 2). Observe that f (t) is an

even function (symmetric about y-axis). Fourier se-

ries reduces to Fourier cosine series (with all bn = 0).

f (t) = a0

2
+

∞ 
n=1

an · cos nπt
2

Fig. 17.3

Here

a0 = 2

L

 L

0

f (t) dt = 2

L

 2

0

f (t) dt

a0 =
 1

0

(1 − t)dt +
 2

1

0 · dt =
 
t − t2

2

     1
0

= 1

2

Now

an = 2

L

 L

0

f (t) cos

 
nπt

2

 
dt

= 2

2

 2

0

f (t) cos

 
nπt

2

 
dt

=
 1

0

(1 − t) cos

 
nπt

2

 
dt + 0

=
 
(1 − t) · 2

nπ
· sin

 
nπt

2

 

−(−1)
2

nπ
· 2

nπ
· (−1) cos

 
nπt

2

      1
0

an = −4

n2π2

 
cos

nπ

2
− 1

 
= 0 when n = 4, 8, 12, . . .

= 8

n2π2
when n = 2, 6, 10, . . .

= 4

n2π2
when n = 1, 3, 5, . . .

Thus the Fourier series is

f (t) = 1

4
+ 4

π2

∞ 
n=1

1 − cos(nπ/2)

n2
· cos

 
nπt

2

 

Example 4: Obtain Fourier series expansion of

f (x) = x · cos  πx
L

 
in the interval −L ≤ x ≤ L.

Solution: f (x) is an odd function (since 0 · e = 0)
in the interval (−L,L) of length 2L. So a0 and an’s
are zero. The Fourier sine series is

f (x) =
∞ 
n=1

bn · sin
 nπx
L

 

For n = 1, b1 = 2
L

 L
0
f (x) sin

 
πx
L

 
dx

b1 = 2

L

 L

0

x · cos
 πx
L

 
· sin

 πx
L

 
dx

= 2

L
· L
π

·
 L

0

x · sin
 πx
L

 
d

 
sin πx

L
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= 2

π

 L

0

x

2
· d

 
sin2 πx

L

 

= 1

π

 
x · sin2 πx

2

    L
0

−
 L

0

sin2
πx

L
dx

 

= − 1

π

 L

0

sin2
πx

L
dx

= − 1

π

 L

0

1

2

 
1 − cos

2πx

L

 
dx

= − 1

2π

 
x − L

2π
· sin 2πx

L

 L
0

So b1 = − L
2π

For n  = 1

bn = 2

L

 L

0

 
x · cos πx

L

 
sin

 nπx
L

 
dx

= 2

L

 L

0

x
1

2

 
sin

 
(n− 1)πx

L

 

+ sin

 
(n+ 1)πx

L

  
dx

= I1 + I2

where

I1 = 1

L

 L

0

x · sin
 
(n− 1)πx

L

 
dx

= 1

L

 
x · L

(n− 1)π

 
− cos

(n− 1)πx

L

 

−1 · L2

(n− 1)2π2
(−1) · sin (n− 1)πx

L

 L
0

I1 = L

π (n− 1)
(−1)(−1)n−1

similarly,

I2 = 1

L

 L

0

x · sin
 
(n+ 1)

L
πx

 
dx

I2 = 1

L

 
x · L

(n+ 1)π

 
− cos

(n+ 1)πx

L

 

− L2(−1)

(n+ 1)2π2
· sin

 
(n+ 1)πx

L

  L
0

I2 = L

π (n+ 1)
(−1)(−1)n+1

Thus

bn = I1 + I2 = L(−1)n

π

 
1

n− 1
+ 1

n+ 1

 

= 2Ln

π

(−1)n

(n2 − 1)

Hence

f (x) = − L

2π
sin

 πx
L

 
+ 2L

π

∞ 
n=2

(−1)nn

n2 − 1
sin

 nπx
L

 
.

EXERCISE

Find the Fourier series of f (x) in the indicated

interval:

1. f (t) =
 
0 if − L < t < 0

E sinwt if 0 < t < L

Ans. a0 = 2E
π
, an = −2E

(n2−1)π
for n = 2, 4, 6, . . .

b1 = E/2, bn = 0 for n = 2, 3, 4, . . .

f (t) = E

π
+ E

2
sinwt

−2E

π

 
1

1.3
cos 2wt + 1

3.5
cos 4wt + · · ·

 

2. f (x) = ex in (−L,L)

Ans. f (x) = sinhL
 
1
L

+ 2L
∞ 
n=1

(−1)n cos (nπx/L)

L2+n2π2

+ 2π
∞ 
n=1

(−1)n−1n·sin(nπx/L)
L2+n2π2

 
3. f (x) = x for 0 < x < 1

= 0 for 1 < x < 2

Ans. f (x) = 1
4

+ 1

π2

∞ 
n=1

 
cos nπ−1

n2

 
cos nπx

+ 1
π

∞ 
n=1

(−1)n−1

n
sin nπx

4. f (x) = x for −1 < x ≤ 0

= x + 2 for 0 < x ≤ 1

Deduce that π
4

= 1 − 1
3

+ 1
5

− 1
7

+ · · ·

Ans. f (x) = 1 + 2
π

∞ 
n=1

1
n
[1 − 2(−1)n] sin nπx

Put x = 1
2
on both sides to deduce the result.
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5. f (x) = 0 when −5 < x < 0

= 3 when 0 < x < 5

Ans. f (x) = 3
2

+
∞ 
n=1

3(1−cos nπ )

nπ
sin

 
nπx
5

 
6. f (x) = πx when 0 ≤ x ≤ 1

= π (2 − x) when 1 ≤ x ≤ 2

Ans. f (x) = π
2

+ 2
π

∞ 
n=1

[(−1)n−1]

n2
cos nπx

7. f (x) =
 
1 if 0 < x < 1

2 if 1 < x < 2

Ans. f (x) = 3 −
∞ 
n=1

2
(2n−1)π

· sin(2n− 1)πx

Even and odd functions

8. f (x) =



0 if − 2 < x < −1

k if − 1 < x < 1

0 if 1 < x < 2

Ans. even, f (x) = k
2

+ 2k
π

∞ 
n=1

sin (nπ/2)

n
· cos  nπx

2

 
9. f (t) = 4 − t2 in (−2, 2)

Ans. even, f (t) = 8
3

+ 16

π2

 (−1)n+1

n2
cos nπt

2

10. f (x) = 1
2

+ x when −1 ≤ x ≤ 0

= 1
2

− x when 0 ≤ x ≤ 1

Ans. even, f (x) = − 4

π2

∞ 
n=1

cos[(2n−1)πx]

(2n−1)2

11. f (x) = |x| in (−L,L)
Ans. even, f (x) = L

2
− 4L

π2

 
n=odd

cos (nπx/L)

n2

12. f (x) = x2 in (−L,L)

Ans. even, f (x) = L3

3
+

∞ 
n=1

(−1)n4L2

n2π2
cos

 
nπx
L

 
13. f (x) = πx from x = −c to x = c

Ans. 2c sin πx
c

− 1
2
sin 2πx

c
+ 1

3
sin 3πx

c

− 1
4
sin

 
4πx
c

 + · · ·
14. f (x) = −a when −c < x < 0

= a when 0 < x < c

Ans. odd, f (x) = 2a
π

∞ 
n=1

 
1−cos nπ

n

 · sin  nπx
c

 
15. f (x) = sin ax in (−L,L)

Ans. odd, f (x) = sin a L
∞ 
n=1

(−1)n+1

n2π2−a2L2 sin
 
nπx
L

 
16. f (x) = x + x2 in (−1, 1)

Hint: f (x) may be treated as the sum of an

odd function g(x) = x and an even function

h(x) = x2. Fourier series of f (x) is obtained

by adding the Fourier series of g(x) and h(x).

Ans. f (x)= 1
3

+ 4

π2

∞ 
n=1

(−1)n

n2
cos nπx+

+ 2
π

∞ 
n=1

(−1)n+1

n
sin nπx.

17.4 HALF RANGE EXPANSIONS:

FOURIER COSINE AND SINE SERIES

So far we have considered the Fourier series expan-

sion of a function which is periodic, defined in an in-

terval c to c + 2L of length 2L. Nowwe consider the

procedure to expand a non-periodic function f (x)

defined in half of the above interval say (0, L) of

length L. Such expansions are known as half range

expansions or half range Fourier series. In partic-

ular, a half range expansion containing only cosine

terms is known as half range Fourier cosine series

of f (x) in the interval (0, L). In a similar way half

range Fourier sine series contains only sine terms.

Note that the given function f (x) is neither

periodic nor even nor odd. In order to obtain a

Fourier cosine series for f (x) in the interval (0, L),

we construct (define) a new function g(x) such that

i. g(x) ≡ f (x) in the interval (0, L) (Fig. 17.4)

ii. g(x) is even function in (−L,L) and is periodic

with period 2L. (Fig. 17.5)

Such a function g(x) is known as the “even periodic

continuation (or extension) of f (x)”. The Fourier

cosine series for g(x) valid in (−L,L) (or in fact

for all x) is readily obtained as

g(x) = a0

2
+

∞ 
n=1

an cos
 nπx
L

 
(1)

where

a0 = 2

L

 L

0

g(x)dx = 2

L

 L

0

f (x)dx (2)
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an = 2

L

 L

0

g(x) cos
nπx

L
dx

or

an = 2

L

 L

0

f (x) cos
 nπx
L

 
dx (3)

Since by construction f (x) and g(x) are equal in

(0, L), the required half-range Fourier cosine series

(or half-range expansion in cosines) of f (x) is given

by (1) with a0, an given by (2) and (3).

Fig. 17.5

Fig. 17.4

Here g(x) = f (x) in (0, L)

= f (−x) in (−L, 0)
Important Note: The series expansion of f (x)

given by (1) is valid for f (x) only in the interval

(0, L) but not outside this interval.

In a similar way, to obtain the half-range Fourier

sine series (or half range expansion in sines) for f (x)

in (0, L), define g(x) such that

i. g(x) = f (x) in (0, L) (refer Fig. 17.6) and

ii. g(x) is an odd function in (−L,L), (refer Fig.
17.7) periodic with priod 2L.

Fig. 17.6

Fig. 17.7

Odd Periodic

The new function g(x) is called as on odd periodic

continuation of f (x). Now the Fourier sine series of

g(x) is given by

g(x) =
∞ 
n=1

bn sin
nπx

L
(4)

with

bn = 2

L

 L

0

g(x) sin
nπx

L
dx

or

bn = 2

L

 L

0

f (x) sin
nπx

L
dx (5)

Since f (x) and g(x) are equal in (0, L), the required

half range Fourier sine series expansion of f (x) in

the interval (0, L) is given by (4) with bn’s given by

(5). This expansion (4) is valid for f (x) only in the

interval (0, L). Thus a given non-periodic function

f (x) can be expanded in cosine series or sine series.

WORKED OUT EXAMPLES

Example 1: If f (x) = 1 − x
L

in 0 < x < L find

(a) Fourier cosine series (b) Fourier sine series of
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f (x). Graph the corresponding periodic continuation

of f (x).

Solution: The given function f (x) is neither peri-

odic nor even nor odd. In order to obtain

a. Fourier cosine series of a nonperiodic, not even

function f (x). Define (or construct) a new func-

tion g(x) such that (i) g(x) = f (x) in (0, L)

(ii) g(x) is even periodic function in (−L,L).
Now obtain the Fourier cosine series of g(x) in

(−L,L) which is the required Fourier cosine se-

ries of f (x) in (0, L) since f (x) and g(x) coincide

in (0, L). Define

g(x) = f (x) = 1 − x

L
in 0 < x < L

g(x) = 1 + x

L
in − L < x < 0

and g(x + 2L) = g(x).

Now g(x) is even in (−L,L) and is periodic with
period 2L. The graph in Fig. 17.9 is the even pe-

Fig. 17.9

Fig. 17.8

riodic continuation (or extension) of f (x) shown

in Fig. 17.8. The Fourier cosine series of g(x) is

g(x) = a0

2
+
 

an cos
nπx

L

where

a0 = 2

L

 L

0

f (x)dx = 2

L

 L

0

 
1 − x

L

 
dx

a0 = 2

L

  
x − x2

2L

     L
0

 
= 2

L

 
L− L2

2L

 
= 1

an = 2

L

 L

0

f (x) cos n
πx

L
dx

= 2

L

 L

0

 
1 − x

L

 
cos n

πx

L
dx

= 2

L

  
1 − x

L

 
· L
nπ

sin
nπx

L

−
 

− 1

L

 
· L2

n2π2
·
 

− cos
nπx

L

  L
0

an = 2

n2π2
[1 − (−1)n]

so

g(x) = 1

2
+ 2

π2

 [1 − (−1n)]

n2
cos

nπx

L

Thus the required Fourier cosine series of f (x)
in (0, L) is

f (x) = g(x) = 1

2
+ 2

π2

∞ 
n=1

[1 − (−1)n]

n2
cos

 nπx
L

 

(since f (x) equals to g(x) in the interval (0, L)).

Note: The above series expansion is valid for

f (x) only in (0, L) not outside this interval.

b. Fourier sine series of f (x) in (0, L): On similar

lines, define a new function h(x) such that

(i) h(x) = f (x) in (0, L) and (ii) h(x) is odd

periodic function. Define

h(x) = f (x) = 1 − x

L
in (0, L)

h(x) = −
 
1 + x

L

 
in (−L, 0)

and h(x + 2L) = h(x) (6)

Thus h(x) is odd periodic function in (−L,L)
with period 2L. The graph in Fig. 17.11 is the

odd periodic continuation (or extension) of f (x)

shown in Fig. 17.10.
Now the Fourier sine series expansion of

g(x) in the interval (−L,L) is

h(x) =
∞ 
n=1

bn sin
nπx

L
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Fig. 17.10

Fig. 17.11

where

bn = 2

L

 L

0

f (x) sin
nπx

L
dx

bn = 2

L

 L

0

 
1 − x

L

 
sin

nπx

L
dx

= 2

L

  
1 − x

L

 
(−1)

 
cos

nπx

L

 
· L
nπ

−
 −1

L

 
L2

n2π2
sin

nπx

L

 L
0

bn = 2

nπ

so

h(x) = 2

π

∞ 
n=1

1

n
sin

 nπx
L

 

Thus the required Fourier sine series of f (x) in
the interval (0, L) is

f (x) = h(x) = 2

π

∞ 
n=1

1

n
sin

 nπx
L

 

Note: Thus a non-periodic function f (x) can

be expanded in two different series in (0, L).

Example 2: Represent f (x) = sin πx
L

in 0 < x <

L by a Fourier cosine series. Graph the correspond-

ing periodic continuation of f (x). (See Figs. 17.12

and 17.13)

Solution: In 0 < x < L, f (x) is neither periodic
nor odd nor even. Construct

g(x) = f (x) = sin
πx

L
in 0 < x < L

g(x) = − sin
πx

L
in − L < x < 0

g(x) is even, periodic with period 2L.

Fig. 17.12

Fig. 17.13

Fourier cosine series of g(x) is

g(x) = a0

2
+

∞ 
n=1

an cos
nπx

L
where

a0 = 2

L

 L

0

f (x)dx = 2

L

 L

0

sin
 πx
L

 
dx

= 2

L

L

π

 
− cos

πx

L

     L
0

a0 = −2

π
[−1 − 1] = 4

π

For n  = 1

an = 2

L

 L

0

f (x) cos
nπx

L
dx

= 2

L

 L

0

sin
 πx
L

 
· cos

 nπx
L

 
dx

= 2

L

1

2

 L

0

 
sin(1 + n)

πx

L
+ sin(1 − n)

πx

L

 
dx

an = 1

L

 −L
π (n+ 1)

· cos(1 + n)
πx

L

− L

π (1 − n)
cos(1 − n)

πx

L

 L
0
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= 1

π

 
1

n+ 1
− 1

n− 1

  
(−1)n + 1

 

= − 4

π

1

n2 − 1
if n is even

= 0 if n is odd

i.e., a2n = − 4

π

1

4n2 − 1
= −4

π (2n− 1)(2n+ 1)

For n = 1, a1 = 2
L

 L
0
sin πx

L
· cos πx

L
dx = 0.

Thus

g(x) = 2

π
− 4

π

∞ 
n=1

1

(2n− 1)(2n+ 1)
cos 2n

πx

L

= 2

π
− 4

π

 
1

1.3
cos

2πx

L
+ 1

3.5
cos

4πx

L

+ 1

5.7
cos

6πx

L
+ · · ·

 

Hence the Fourier cosine series representation of
f (x) in (0, L) is

f (x)=g(x)= 2

π
− 4

π

∞ 
n=1

1

(2n− 1)(2n+ 1)
cos

 
2nπx

L

 

Example 3: Show that in the interval (0, 1)

cosπx = 8

π

∞ 
n=1

n

4n2 − 1
sin 2nπx

(refer Figs. 17.14 and 17.15)

Solution: This is a Fourier sine series representa-
tion of cosπx in the interval 0 < x < 1. Putπx = z,
for 0 < x < 1, then 0 < z < π . Rewriting

cos z = 8

π

∞ 
n=1

n

4n2 − 1
sin 2nz

To expand cos z in Fourier sine series in (0, π):
Define

g(z) = f (z) = cos z in 0 < z < π

g(z) = − cos z in − π < z < 0

Now g(z) is an odd function in (−π, π) and is
periodic of period 2π . Then

g(z) =
∞ 
n=1

bn sin n z

For n  = 1,

bn = 2

π

 π

0

g(z) sin nz dz

= 2

π

 π

0

cos z · sin nz dz

= 2

π

 π

0

1

2
[sin(n+ 1)z+ sin(n− 1)z]dz

= 1

π

 − cos(n+ 1)z

n+ 1
− cos(n− 1)z

(n− 1)

 π
0

bn = − 1

π

 
(−1)n+1

n+ 1
+ (−1)n−1

n− 1
− 1

n+ 1
− 1

n− 1

 

= 2n

π (n2 − 1)
{(−1)n + 1}

bn = 0 for n odd

b1 = 2

π

 π

0

cos z sin z dz = 0.

Fig. 17.14

Fig. 17.15

The required Fourier sine series in (0, π) is

f (z) = g(z) =
∞ 
n=1

2n{(−1)n + 1}
π (n2 − 1)

sin nz

=
∞ 
n=1

2(2n) · 2
π [(2n)2 − 1]

sin 2nz

=
∞ 
n=1

8n

π (4n2 − 1)
sin 2nz
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Replacing z by πx

cos z= cosπx=
∞ 
n=1

8n

π (4n2 − 1)
sin 2nπx in 0 < x < 1.

EXERCISE

1. Expand f (x) = x in (0, π) by (a) Fourier sine

series (Fig. 17.16) (b) Fourier cosine series

(Fig. 17.17).

Ans. a. g(x) = x in (0, π)

= +x in (−π, 0)
f (x) = x = 2

 
sin x

1
− sin 2x

3
+ sin 3x

3
· · ·
 

=
∞ 
n=1

2

n
(−1)n+1 sin nx

Fig. 17.16

b. g(x) = |x| in (−π, π)
f (x) = x = π

2
− 4

π

 
cos x

1
+ cos 3x

32

+cos 5x

52
+ · · ·

 

= π

2
− 4

π

∞ 
n=1

cos(2n− 1)x

(2n− 1)2

Fig. 17.17

2. Find the two half-range expansions of

f x =
 
2kx/L if 0 < x < (L/2)

2k(L− x)/L if L
2
< x < L.

Ans. a. Even periodic extension: (Fourier cosine
series) (refer Fig. 17.18).

f (x) = k

2
+ 4k

π2

∞ 
n=1

 
2 cos nπ

2
− cos nπ − 1

n2

 

× cos
nπx

L

Fig. 17.18

b. Odd periodic extension: (Fourier sine
series) (refer Fig. 17.19)

f (x) = 8k

π2

∞ 
n=1

1

n2
sin

nπ

2
· sin nπx

L

Fig. 17.19

3. Obtain the Fourier cosine series of

f (x) = sin x in the interval 0 < x < π .

Ans. f (x) = 2
π

− 4
π

∞ 
n=1

cos 2nx

4n2−1

4. Represent f (x) =
 
1 if 0 < x < 1

2

0 if 1
2
< x < 1

in (a) a Fourier sine series (b) Fourier cosine

series (c) a Fourier series (with period 1).

Ans. a. f (x) = 2
π

∞ 
n=1

(1 − cos nπ
2
) 1
n

· sin nπx

b. f (x) = 1
2

+ 2
π

∞ 
n=1

1
n

· sin nπ
2

· cos nπx

c. f (x) = 1
2

+ 1
π

 
[1 − (−1)n] 1

n
· sin nπx

5. Find the Fourier sine and cosine series of

f (x) =
 
x when 0 < x < π

2

0 when π
2
< x < π.

Ans. Fourier sine series

f (x) = 2

π

∞ 
n=1

 
1

n2
sin

nπ

2
− π

2n
· cos nπ

2

 
sin nx
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Fourier cosine series:

f (x) = π

8
+

∞ 
n=1

 
1

n
sin nπ/2

+ 2

πn2

 
cos

nπ

2
− 1

  
cos nx.

6. Obtain the half-range Fourier sine and co-

sine series for f (x) = x in 0 < x < π
2

and

f (x) = π − x in π
2
< x < π .

Ans. Sine series: f (x) =
∞ 
n=1

4

πn2
sin nπ

2
· sin nx

Cosine series:
π
4

+ 2
π

∞ 
n=1

1

n2

 
2 cos nπ

2
− 1 − (−1)n

 
cos nx

7. Determine the half-range sine series for

f (x) = ex in 0 < x < 1.

Ans. f (x) = 2π
∞ 
n=1

n[1−e(−1)n]

1+n2π2 sin nπx.

8. Find the half-range Fourier cosine series of

f (x) = x3 in (0, L).

Ans. f (x) = L3

4
+ 6L3

π2

∞ 
n=1

1

n2

 
(−1)n +

2

n2π2
{1 − (−1)n}

 
cos nπx
L

.

9. Represent f (x) = x2 in 0 < x < L by Fourier

sine series.

Ans. 2L2

π

∞ 
n=1

 
2

n3π2
{(−1)n − 1} − (−1)n

n

 
sin nπx

L
.

10. Find the two half-range Fourier series of

f (x) = 1 in 0 < x < L.

Ans. Sine series:

f (x) = 1 = 2
π

∞ 
n=1

1
n
[1 − (−1)n] sin nπx

L
.

cosine series f (x) = 1 = 2
2

= 1

(a0 = 2, an = 0 for n ≥ 1)

11. Obtain two half-range Fourier series of

f (x) = x in 0 < x < 2.

Ans. Sine series: f (x) = 4
π

∞ 
n=1

(−1)n+1

n
sin nπx

2

f (x) = 1 + 4

π2

∞ 
n=1

1

n2
[(−1)n − 1] cos nπx

2
is

cosine series.

12. Expand f (x) = 1
4

− x if 0 < x < 0.5

= x − 3
4

if 0.5 < x < 1

as Fourier series of sine terms

Ans.
∞ 
n=1

 
1

2nπ
[1 − (−1)n] − 4 sin(nπ/2)

n2π2

 
sin nπx

13. Find the half-range Fourier sine series of

f (x) = sin x when 0 ≤ x ≤ π
4
and

f (x) = cos x in
 
π
4
, π
2

 
.

Ans. f (x) = 8
π
cos π

4

 
sin 2x
1.3

− sin 6x
5.7

+ sin 10x
9.11

· · · 
14. Expand x sin x in (0, π) as Fourier cosine

series. Deduce that 1 + 2
1·3 − 2

3·5 + 2
5·7 · · · = π

2

Ans. f (x)=1− 1
2
cos x+2

∞ 
n=1

(−1)n−1

(n−1)(n+1)
cos nx

put x = π
2
then π

2
· sin π

2
= 1 − 0 +

+ 2
∞ 
n=1

(−1)n−1

(n−1)(n+1)
cos nπ

2
.

17.5 PRACTICAL HARMONIC ANALYSIS

Harmonic analysis is the theory of expanding a given
function in Fourier series. We know that the Euler-
Fourier coefficients of a function f (x) with period
2π in the interval (−π, π) are given by

a0 = 1

π

 π

−π
f (x)dx (1)

am = 1

π

 π

−π
f (x) cosmxdx (2)

bm = 1

π

 π

−π
f (x) sinmxdx. (3)

When f (x) is given in analytical form, the integrals
in the R.H.S. of (1), (2), (3) can be evaluated and the
Fourier coefficients ao, am, bm’s can be determined
completely. However, in many practical problems,
the function f (x) is in tabulated form. In such cases,
practical harmonic analysis deals with the determi-
nation of the approximate values of the Fourier coef-
ficients ao, am, bm. Divide the interval [−π, π] into
n equal parts with (n+ 1) points

−π = x0, x1, x2, . . . , xn = π

and subinterval size h = π−(−π )
n

= 2π
n
. Let yi =

f (xi), for i = 0, 1, 2, . . . n.
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Now the integrals on the R.H.S. of (1), (2), (3)
are approximately evaluated using, say, rectangular

formula (area = sum of n rectangles =
n 
i=1

width h×
ordinate yi). Then the Fourier coefficients (1), (2),
(3) are determined approximately by the following:

a0 = 1

π

 π

−π
f (x)dx = 1

π

 
n 
i=1

h · yi
 

= 1

π
· 2π
n

n 
i=1

yi

or a0 = 2

n

n 
i=1

yi (4)

Also

am = 1

π

 π

−π
f (x)dx = 1

π

 
n 
i=1

h · yi cosmxi
 

= 1

π
· 2π
n

n 
i=1

yi cosmxi. Thus

am = 2

n

n 
i=1

yi cosmxi (5)

Similarly,

bm = 2

n

n 
i=1

yi sinmxi (6)

When f (x) is given in the form of a graph, Fourier

analyzer instruments determine the approximate val-

ues of the Fourier coefficients a0, am’s, bm’s.

Note: Choose n as a number divisibly by 4 since

the values of sine and cosine are repeated in four

quadrants. Usual choicen = 6, 12, 24 (inwhich case

(4),(5),(6) get simplified).

WORKED OUT EXAMPLES

Example 1: Compute approximately the Fourier
coefficients a0, a1, a2, a3 and b1, b2, b3 in the
Fourier series expansion of function tabulated as
follows. Find the amplitude of the first harmonic.
Calculate y(3)

x : 0 1 2 3 4 5

y : 9 18 24 28 26 20

Solution: Here n = number of sub-intervals = 6.

The interval (0, 2π ) is divided into 6 sub-intervals of

size 2π
6

= 60◦.

Table 17.1

x θ cos θ cos 2θ cos 3θ y y cos θ y cos 2θ y cos 3θ

0 0◦ 1 1 1 9 9 9 9

1 60◦ + 1
2

− 1
2

−1 18 −9 −9 −18

2 120◦ − 1
2

− 1
2

1 24 −12 −12 24

3 180◦ −1 +1 −1 28 −28 28 −28

4 240◦ − 1
2

− 1
2

1 26 −13 −13 26

5 300◦ + 1
2

− 1
2

−1 20 10 −10 −20

Totals
 

125 −25 −7 −7

Now

a0 = 2

n

n 
i=1

yi = 2

6
(215) = 41.666

a1 = 2

n

n 
i=1

yi cos xi = 2

6
(−25) = −8.333

a2 = 2

n

n 
i=1

yi cos 2xi = 2

6
(−7) = −2.333

a3 = 2

6

n 
i=1

yi cos 3xi = 2

6
(−7) = −2.337
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Similarly

Table 17.2

x θ sin θ sin 2θ sin 3θ y y sin θ y sin 2θ y sin 3θ

0 0 0 0 0 9 0 0 0

1 π
3

= 60
√
3
2

√
3
2

0 18 9
√
3 9

√
3 0

2 2π
3

= 120
√
3
2

−
√
3
2

0 24 12
√
3 −12

√
3 0

3 π = 0 0 0 0 28 0 0 0

4 4π
3

= 240 −
√
3
2

√
3
2

0 26 −13
√
3 13

√
3 0

5 5π
3

= 300 −
√
3
2

−
√
3
2

0 20 −10
√
3 −10

√
3 0

Totals 125 −2
√
3 0 0

b1 = 2

n

n 
i=1

yi sin xi = 2

6
(−2

√
3) = −1.1547

b2 = 2

n

n 
i=1

yi sin 2xi = 2

6
(0) = 0, b3 = 0

Amplitude of the first harmonic =
!
a21 + b21 ="

(−8.333)2 + (−1.1547)2 = 8.4126.

The Fourier series of y(x) containing the first 4 cos
terms and 3 sine terms is

y = 41.666

2
+ (−8.333) cos x − 2.333 cos 2x −

−2.337 cos 3x + (−1.1547) sin x + 0 + 0

At x = 3, θ = π, y(3) = y(θ = π ) = 41.666
2

+
(−8.33)(−1) − 2.333(1) − (2.337)(−1) = 29.166

(Exact value: y(3) = 28).

EXERCISE

1. Find the direct current part and amplitude of the
first harmonic from the following table consist-
ing of the variations periodic current

t sec : 0 T
6

T
3

T
2

2T
3

5T
6

T

A amp : 1.98 1.30 1.05 1.30 −.88 −.25 1.98

Ans. Direct current part = a0
2

= 0.75, ampli-

tude of the first harmonic =
!
a21 + b21 ="

(0.373)2 + (1.005)2 = 1.072

2. Compute T (θ = 75◦) using the first four terms

of the Fourier sine series representation of

turning moment T given for a series of values
of the crank angle θ◦ = 75◦.

θ◦ : 0 30 60 90 120 150 180

T : 0 5224 8097 7850 5499 2626 0

Hint: T (θ ) = 785 sin θ + 150 sin 2θ, b3 =
0, b4 = 0

b1 = 2

6

 
(5224 + 2626)

 
1

2

 

+(8097 + 5499)(.866) + 7850

 
= 785

b2 = 2

6

 
(5224 + 8097)(.866)

+(5499 + 2626)(−.866)
 

= 150

Ans. 8332

3. Determine the first three coefficients of co-
sine and two coefficients of sine terms in the
Fourier series expansion of the following tab-
ulated function.

x : 0 π
6

π
3

π
2

2π
3

5π
6

y : 0 9.2 14.4 17.8 17.3 11.7

Hint: y = 11.733 − 7.733 cos 2x−
−2.833 cos 4x − 1.566 sin 2x + 0.116 sin 4x,

Length of interval is π ;L = π
2
.
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Ans. a0 = 23.46, a1 = −7.73, a2 = −2.83, b1 =
−1.566, b2 = +.116

4. Find the harmonics a0, a1, a2, a3, b1, b2, b3 of
the Fourier series of the following data

x : 0 π
3

2π
3

π 4π
3

5π
3

2π

y : 1.0 1.4 1.9 1.7 1.5 1.2 1.0

Ans. a0 = 2.9, a1 = −.37, a2 = −0.1, a3 =
0.03, b1 = 0.17, b2 = −0.06, b3 = 0

5. Compute a0, a1, a2, a3 in the Fourier cosine se-
ries for y which is tabulated below

x : 0 1 2 3 4 5

y : 4 8 15 7 6 2

Ans. a0 = 14, a1 = −2.8, a2 = −1.5, a3 = 2.7

6. Compute a0, a1, a2, a3, b1, b2, b3 in the
Fourier series expansion f (θ ) tabulated below

θ : 0 30 60 90 120 150 180 210 240 270 300 330

f (θ ) : 298 356 373 337 254 155 80 51 60 93 147 221

Ans. f (θ ) = 202 + 107 cos θ − 13 cos 2θ +
2 cos 3θ + 121 sin θ + 9 sin 2θ − sin 3θ .



Chapter18

Partial Differential Equations

INTRODUCTION

Real world problems in general involve functions of

several (independent) variables giving rise to par-

tial differential equations more often than ordinary

differential equations. Thus most problems in engi-

neering and science abound with first and second or-

der linear non homogeneous partial differential equa-

tions. In this chapter, we consider methods of obtain-

ing solutions by Lagrange’s and Charpits method for

first order. The general solution of non homogeneous

second order linear P.D.E. with constant coefficients

is obtained as the sum of complementary function

and particular integral. Monge’s method is also con-

sidered for solving nonlinear second order P.D.E.

18.1 PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation is an equation involv-
ing two (or more) independent variables x, y and a
dependent variable z and its partial derivatives such

as ∂z
∂x
, ∂z
∂y
, ∂

2z

∂x2 ,
∂2z
∂x∂y

, etc.,

i.e., F

 
x, y, z,

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
, . . .

 
= 0

Standard notation

p = ∂z

∂x
= zx, q = ∂z

∂y
= zy, r = ∂2z

∂x2
= zxx,

s = ∂2z

∂x∂y
= zxy, t = ∂2z

∂y2
= zyy

Order of a partial differential equation (P.D.E.) is

the order of the highest ordered derivative appearing

in the P.D.E.

Formation of Partial Differential Equation

By elimination of arbitrary constants

Let

f (x, y, z, a, b) = 0 (1)

be an equation involving two arbitrary constants a
and b. Differentiating this equation partially with
respect to x and y, we get

∂f

∂x
+ ∂f

∂z

∂z

∂x
= 0 (2)

∂f

∂y
+ ∂f

∂z

∂z

∂y
= 0 (3)

By eliminating a, b from (1), (2), (3), we get an equa-

tion of the form

F (x, y, z, p, q) = 0 (4)

which is a partial differential equation of first order.

Note 1: If the number of arbitrary constants equals

to the number of independent variables in (1), then

the P.D.E. obtained by elimination is of first order.

Note 2: If the number of arbitrary constants is more

than the number of independent variables then the

P.D.E. obtained is of 2nd or higher orders.

18.1
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By elimination of arbitrary functions of

specific functions

a. One arbitrary function (resulting in first order

P.D.E.):

Consider

z = f (u) (5)

where f (u) is an arbitrary function of u and

u is a given (known) function of x, y, z i.e.,

u = u(x, y, z).

Differentiating (5) partially w.r.t. x and y by chain
rule

∂z

∂x
= ∂f

∂u

∂u

∂x
+ ∂f

∂u

∂u

∂z

∂z

∂x
(6)

∂z

∂y
= ∂f

∂u

∂u

∂y
+ ∂f

∂u

∂u

∂z

∂z

∂y
(7)

By eliminating the arbitrary function f from (5),

(6), (7) we get a P.D.E. of first order.

b. Two arbitrary functions:

Differentiating twice or more, the elimination

process results in a P.D.E. of 2nd or higher

order.

Note: When n is the number of arbitrary functions,

one may get several P.D. equations. But generally the

one with the least order is chosen.

Example: For z = x f (y) + y g(x) involving two

arbitrary functions f and g, ∂4z

∂x2∂y2 = 0 is also a

P.D.E. obtained by elimination. The other P.D.E.

xys = xp + yq − z of second order obtained by

elimination may be chosen.

Elimination of Arbitrary Function F

from the equation

F (u, v) = 0 (8)

where u = u(x, y, z) and v = v(x, y, z) are given

functions of x, y, z.

Differentiating the Equation (8) partially w.r.t. x

by chain rule, we get

∂F

∂u

 
∂u

∂x
+ ∂u

∂z

∂z

∂x

 
+ ∂F

∂v

 
∂v

∂x
+ ∂v

∂z

∂z

∂x

 
= 0 (9)

Similarly, differentiating Equation (8) partially w.r.t.

y, we get

∂F

∂u

 
∂u

∂y
+ ∂u

∂z

∂z

∂y

 
+ ∂F

∂v

 
∂v

∂y
+ ∂v

∂z

∂z

∂y

 
= 0 (10)

Eliminating ∂F
∂u

and ∂F
∂v

from (9) and (10),
we have       

∂u
∂x

+ ∂u
∂z
∂z
∂x

∂v
∂x

+ ∂v
∂z
∂z
∂x

∂u
∂y

+ ∂u
∂z
∂z
∂y

∂v
∂y

+ ∂v
∂z
∂z
∂y

      = 0

Rewriting 
ux + puz vx + pvz
uy + quz vy + qvz

 
= 0

Expansion of this determinant results in a P.D.E.
which is free of the arbitrary function F as

(ux + puz)(vy + qvz) − (uy + quz)(vx + pvz) = 0

or Pq +Qq = R

which is a first order linear P.D.E. Here

P = uzvy − uyvz = ∂(u, v)

∂(y, z)

Q= uxvz − uzvx = ∂(u, v)

∂(z, x)

R = uyvx − uxvy = ∂(u, v)

∂(x, y)
.

WORKED OUT EXAMPLES

Elimination of arbitrary constants

Form (obtain) partial differential equation by elimi-

nating the arbitrary constants/functions:

Example 1: z = ax2 + by2

Solution: Differentiating partially w.r.t. x and y, we
get

zx = 2ax, zy = 2by or a = zx

2x
, b = zy

2y
.
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Eliminating the two arbitrary constants a and b

z = zx

2x
· x2 + zy

2y
· y2 or 2z = xzx + yzy = xp + yq

Example 2: (x − a)2 + (y − b)2 = z2 cot2 α

where α is a parameter.

Solution: Differentiating partially w.r.t. x and y,
we get

2(x − a) + 0 = 2z · zx · cot2 α

2 · 0 + 2(y − b) = 2z zy cot2 α

Substituting (zzx cot2 α)2 + (zzy cot2 α)2 = z2 cot2 α

p2 + q2 = tan2 α

Example 3: Find the differential equation of all

spheres whose centres lie on the z-axis.

Solution: Equation x2 + y2 + (z− a)2 = b2

where a and b are arbitrary constants.
Differentiating

2x + 0 + 2(z− a)zx = 0 (1)

2y + 2(z− a)zy = 0 (2)

From (2),

(z− a) = − y

zy
(3)

Substituting (3) in (1)

x +
 

− y

zy

 
· zx = 0

xzy − yzx = 0

or xq − yp = 0.

Example 4: ax + by + cz = 1

Solution: Differentiating w.r.t. x, a + 0 + czx = 0.

Differentiating again w.r.t. x, 0 + czxx = 0, since

c  = 0, zxx = 0. Similarly by differentiating w.r.t. y

and z twice, we get zyy = 0, zxy = 0 so r = 0 or

s = 0 or t = 0. Thus we get 3 PDE.

Elimination of one arbitrary functions

Example 5:

z = (x + y) φ (x2 − y2) (1)

Solution: Differentiating

zx = 1 · φ + (x + y)2x · φ (2)

zy = 1 · φ + (x + y)(−2y)φ (3)

From (3),

φ = φ − zy
2y(x + y)

(4)

Substituting (4) in (2)

zx = φ + 2x(x + y) ·
 
φ − zy

2y(x + y)

 

p = φ + x

y
(φ − q)

p =
 
x + y
y

 
φ − x

y
q

From the given Equation (1), φ = z
(x+y)

Substituting φ,

p = (x + y)

y
· z

x + y − x

y
q = z

y
− x

y
q

or yp + xq = z

Example 6: z = xnf
 
y

x

 
Solution: By differentiation,

zx = nxn−1 · f + xn ·
 

− y

x2

 
· f  

zy = xn · 1

x
· f  or f  = zy

xn−1

Eliminatingf  ,

zx = nxn−1f − xn−2 · y · zy

xn−1

xp = nxnf − yq
or xp = nz− yq

Example 7: xyz = f (x + y + z)

Solution: Differentiating w.r.t. x and y

yz+ xy zx = 1 · f  + f  · zx (1)

xz+ xy zy = 1 · f  + f  · zy (2)

From (2),

f  = xz+ xy zy
1 + zy

= xz+ xyq
1 + q (3)
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Put (3) in (1)

yz+ xyp = (1 + p)f  = (1 + p)

 
xz+ xyq

1 + q

 
(1 + q)(yz+ xyp) = (1 + p)(xz+ xyq)

or x(y − z)p + y(z− x)q = z(x − y)

Elimination of two arbitrary functions

Example 8: z = f (x) g(y)

Solution: Differentiating w.r.t. x and y, we get
zx = f  g, zy = fg 

zx · zy = f  g fg = fg f  g = z f  g 

But

zxy = f  g so

zx · zy = z · zxy
or pq = z · s.

Example 9: z = f (x + y) · g(x − y)

Solution: Differentiating partially w.r.t. x and y, we
get

p = zx = f  · 1 · g + f · 1 · g (1)

q = zy = f  · 1 · g + f · (−1)g (2)

r = zxx = f   g + f  g + f  g + fg  

= f   g + 2f  g + fg  (3)

t = zyy = f   g + f  g (−1)

−f  g − fg  (−1)

= f   g − 2f  g + fg  (4)

s = zxy = f   g + f  g (−1)

+f  g + fg  (−1)

= f   g − fg  (5)

Adding (1) and (2),

f  = p + q
2g

(6)

Subtracting (2) from (1),

g = p − q
2f

(7)

Adding (3) and (4)

r + t = 2(f   g + fg  )
From (5), 2s = 2(f   g − fg  )

Adding r + t + 2s = 4f   g (8)

Subtracting r + t − 2s = 4fg  (9)

Substituting (6), (7), (8), (9) in (3)

r =
 
r + t + 2s

4

 
+ 2 · (p + q)

2g
· (p − q)

2f

+
 
r + t − 2s

4

 
(r − t)z= (p + q)(p − q)

Example 10: z = xf (ax + by) + g(ax + by)

Solution: Differentiating w.r.t. x and y, we get

zx = f + xaf  + ag 

zxx = af  + af  + ax f   a + a2g  

= a[2f  + axf   + ag  ] (1)

zy = bx f  + bg 

zyy = b2xf   + b2g  = b2[xf   + g  ] (2)

zyx = bf  + bx af   + ba g  

= b[f  + a(xf   + g  )] (3)

Substituting (2) in (3)

zyx

b
= f  + a · zyy

b2

Solving

f  = zyx

b
− a

b2
zyy (4)

Substituting (2) and (4) in (1)

zxx = 2af  + a2[xf   + g  ]

= 2a ·
 zyx
b

− a

b2
zyy

 
+ a2

 zyy
b2

 
b2zxx + a2zyy = 2ab zxy

b2r + a2t = 2abs

Elimination of arbitrary function of specific func-

tions

F (u, v) = 0 where u and v are given.
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Example 11:

F (xy + z2, x + y + z) = 0 (1)

Solution:

Let u(x, y, z) = xy + z2 (2)

v(x, y, z) = x + y + z (3)

Differentiating (1) partially w.r.t. x by chain rule

∂F

∂u

 
∂u

∂x
+ ∂u

∂z

∂z

∂x

 
+ ∂F

∂v

 
∂v

∂x
+ ∂v

∂z

∂z

∂x

 
= 0

i.e., Fu · (y + 2z zx ) + Fv · (1 + zx ) = 0

Differentiating w.r.t. ‘y’, we get

Fu(x + 2z zy ) + Fv(1 + zy ) = 0

Eliminating Fu and Fv (i.e., the coefficient matrix
should be singular)      y + 2z zx 1 + zx

x + 2z zy 1 + zy

     = 0

or (1 + q)[y + 2zp] − (1 + p)[x + 2zq] = 0

(2z− x)p + (y − 2z)q = x − y.

Example 12: xyz = f (x + y + z)
Solution: Put u = x + y + z, v = xyz so that the

given equation may be written as F (u, v) = 0
Differentiating w.r.t. x and y, we get

Fu · (1 + zx ) + Fv(yz+ xy zx ) = 0

Fu(1 + zy ) + Fv(xz+ xy zy ) = 0

Eliminating Fu, Fv , we have     1 + p yz+ xyp
1 + q xz+ xy q

     = 0

or (xz+ xy q)(1 + p) − (1 + q)(yz+ xyp) = 0

x(z− y)p + (x − z)y q + z(x − y) = 0.

Example 13: F (x2 + y2 + z2, z2 − 2xy) = 0

Solution: Let u = x2 + y2 + z2, v = z2 − 2xy
Differentiating F partially w.r.t. x, we get

∂F

∂u

∂u

∂x
+ ∂F

∂u

∂u

∂z

∂z

∂x
+ ∂F

∂v
· ∂v
∂x

+ ∂F

∂v

∂v

∂z

∂z

∂x
= 0

Fu · 2x + Fu · 2z · p + Fv(−2y) + Fv 2z · p = 0

Similarly w.r.t. y, we get

∂F

∂u

∂u

∂y
+ ∂F

∂u

∂u

∂z

∂z

∂y
+ ∂F

∂v

∂v

∂y
+ ∂F

∂v

∂v

∂z

∂z

∂y
= 0

Fu · 2y + Fu 2z · q + Fv(−2x) + Fv · 2z · q = 0

Solving      x + zp −y + zp
y + zq −x + zq

     = 0

(x + zp)(zq − x) − (zp − y)(y + zq) = 0

xz(q − p) + yz(q − p) + (y2 − x2) = 0

(x + y)[z(q − p) + (y − x)] = 0.

EXERCISE

Form (obtain) partial differential equation by elimi-

nating the arbitrary constants/functions:

Elimination of arbitrary constants

1. 2z = x2

a2 + y2

b2

Ans. 2z = xp + yq
2. z = ax + by + a2 + b2

Ans. z = px + qy + p2 + q2

3. z = (x2 + a2)(y2 + b2)

Ans. 4xyz = pq

4. z = axy + b
Ans. px = qy

5. z = axey + 1
2
a2e2y + b

Ans. q = px + p2

6. z = (x − a)2 + (y − b)2 + 1

Ans. 4z = p2 + q2 + 4

7. z = a(x + y) + b(x − y) + abt + c
Hint:Number of independent variables x, y, t

are 3 = number of arbitrary constants a, b, c.

So P.D.E. is of 1st order.

Ans. z2
x − z2

y = 4zt

8. x2

a2 + y2

b2 + z2

c2
= 1

Ans. pz = xp2 + xz r
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or qz = yq2 + zy t

Note: Number of arbitrary constants a, b, c

is three > number of independent variables x, y

is two so P.D.E. is of 2nd order.

9. z = ae−b2t cos bx

Ans. ∂z
∂t

= ∂2z

∂x2

10. z = aebx sin by

Ans. ∂2z

∂x2 + ∂2z

∂y2 = 0

11. z = xy + y
√
x2 + a2 + b

Ans. pq = py + qx

Find the differential equation of:

12. All planes which are at a constant distance b

from the origin.

Hint: Equation lx +my + nz = b with l2 +
m2 + n2 = 1.

Ans. z = px + qy + b
 

1 + p2 + q2

13. All planes having equal x and y intercepts.

Hint: Equation x
a

+ y

a
+ z

b
= 1.

Ans. p = q

14. All spheres of given radius c having their cen-

tres in the xy-plane.

Hint: (x − a)2 + (y − b)2 + z2 = c2;

a, b constants.

Ans. z2(p2 + q2 + 1) = c2

15. All cones with their vertices at the origin.

Ans. px + qy = z

Elimination of arbitrary functions

16. z = f (x2 − y2)

Ans. yp + xq = 0

17. x + y + z = f (x2 + y2 + z2)

Ans. (y − z)p + (z− x)q = x − y
18. z = y f

 
y

x

 
Ans. z = px + qy
19. z = f (sin x + cos y)

Ans. p sin y + q cos x = 0

20. z = eax+by · f (ax − by)

Ans. bp + aq = 2abz

21. z = y2 + 2f
 

1
x

+ ln y
 

Ans. x2p + yq = 2y2

22. z = x + y + f (xy)

Ans. xp − yq = x − y
23. z = f

 
xy

z

 
Ans. xp = yq

24. z = f (x + at) + g(x − at)
Ans. ztt = a2zxx

25. z = f (x) + eyg(x)

Ans. t = q

26. z = f (x + iy) + g(x − iy)

Ans. zxx + zyy = 0

27. z = yf (x) + xg(y)

Ans. xys = px + qy − z
28. z = xf (

y

x
) + yg(x)

Ans. x ∂3z

∂x∂y2 + ∂2z

∂y2 + y ∂3z

∂y3 = 0

29. z = f (xy) + g(x + y)

Ans. rx(y − x) − s(y2 − x2) + t y(y − x)

+ (p − q)(x + y) = 0

30. z = [f (r − at) + g(r + at)]/r
Ans. ztt = a2

r2
∂
∂r

 
r2 ∂z
∂r

 
Elimination of arbitrary function F(u, v) =0

31. F (x2 + y2, z− xy) = 0

Ans. xq − yp = x2 − y2

32. F (x + y + z, x2 + y2 − z2) = 0

Ans. (y + z)p − (z+ x)q = x − y
33. F (x2 + y2, x2 − z2) = 0

Ans. yp − xq = xy

z

34. F (ax + by + cz, x2 + y2 + z2) = 0

Ans. (bz− cy)p + (cx − az)q = ay − bx
35. z = x2φ(x − y)

Hint: Rewrite the given equation in the form
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F ( z
x2 , x − y) = 0.

Ans. 2z = xp + xq.

18.2 PARTIAL DIFFERENTIAL EQUATIONS

OF FIRST ORDER

The general form of a first order partial differential

equation is

F (x, y, z, p, q) = 0 (1)

where x, y are the two independent variables, z is the

dependent variable and p = zx, q = zy .

Complete Solution

Any function

f (x, y, z, a, b) = 0 (2)

involving two arbitrary constants a, b and satisfy-

ing the P.D.E. (1) is known as complete solution or

complete integral or primitive.

General Solution

of P.D.E. (1) is any arbitrary function F of specific

(given) functions u, v

F (u, v) = 0 (3)

satisfying P.D.E. (1).

Here u = u(x, y, z) and v = v(x, y, z) are known

functions of x, y, z.

Linear

A partial differential equation is said to be linear

(after rationalization and cleared of fractions) if the

dependent variable z and its derivatives are of degree

(power) one and products of z and its derivatives do

not appear in the equation.

Quasi-linear

P.D.E. is said to be quasi-linear if degree of highest

ordered derivative is one and no products of partial

derivatives of the highest order are present.

Example: x2p + y2q = z

is linear in z and of first order.

Example: z zxx + (zy)
2 = 0 is a quasi-linear of

second order.

Non-linear

A P.D.E. which is not linear is known as non-linear

P.D.E.

Example:
 
∂2u

∂x2

 2

+ u2
 
∂u
∂y

 
= f (x, y)

is non-linear in u and of second order.

Homogeneous

if each term contains the dependent variable or its

derivatives.

Otherwise non-homogeneous.

18.3 LINEAR PARTIAL DIFFERENTIAL

EQUATIONS OF FIRST ORDER

The general form of a quasi-linear partial differential

equation of the first order is

P (x, y, z)zx +Q(x, y, z)zy = R(x, y, z) (1)

This Equation (1) is known as “Lagrange’s linear

equation”.

If P andQ are independent of z and R is linear in

z then (1) is a linear equation. The general solution

of the Lagrange’s linear P.D.E.

Pp +Qq = R (1)

is given by the equation

F (u, v) = 0 (2)

since the elimination of the arbitrary functionF from

(2) results in (1).

Here u = u(x, y, z), v = v(x, y, z) are specific

(known) functions of x, y, z.

Method of Obtaining General Solution

1. Rewrite the equation in the standard form

Pp +Qq = R

2. Form the Lagrange’s auxiliary equations (A.E.)

dx

P
= dy

Q
= dz

R
(3)
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3. Nature of solution to the simultaneous equations

of the form dx
P

= dy

Q
= dz

R
:

u(x, y, z) = c1 and v(x, y, z) = c2 are said to be

the complete solution of the system of simulta-

neous equations (provided u1 and u2 are linearly

independent i.e., u1/u2  = constant).

Case 1: One of the variables is either absent or

cancells out from the set of auxiliary equations.

Case 2: If u = c1 is known but v = c2 is not

possible by case I, then use u = c1 to get v = c2.

Case 3: Introducing Lagrange’s multipliers

P1,Q1, R1, which are functions of x, y, z or con-

stants, each fraction in (3) is equal to

P1dx +Q1dy + R1dz

P1P +Q1Q+ R1R
(4)

If P1,Q1, R1 are so chosen that P1P +Q1Q+
R1R = 0 then P1dx +Q1dy + R1dz = 0 which

can be integrated.

Case 4: Multipliers may be chosen (more than

once) such that the numerator P1dx +Q1dy +
R1dz is an exact differential of the denomina-

tor P1P +Q1Q+ R1R. Now combine (4) with

a fraction of (3) to get an integral.

4. General solution of (1) is

F (u, v) = 0 or v = φ(u).

WORKED OUT EXAMPLES

Solve the following:

Example 1: xp + yq = 3z

Solution: This is a linear P.D.E. of first order Pp +
Qq = R with P = x,Q = y and R = 3z. The
Lagrange’s auxiliary equations are

dx

x
= dy

y
= dz

3z

Integrating the first two equations (or fractions)
dx
x

= dy

y
, we get ln x = ln y + c1 or x

y
= c

Integrating first and the last equations dx
x

= dz
3z

, we
have

3 ln x = ln z+ cz ... x3 = c1z

Thus the required solution is x3 = zf
 
x
y

 
.

The general solution can also be written as

F (x3/z, x/y) = 0.

Note: By integrating 2nd and 3rd equations
dy

y
=

dz
3z

, we also get y3 = c2z so the general solution is

also given by y3 = zf
 
x
y

 
.

Example 2: yzp − xzq = xy

Solution: Auxiliary equations are

dx

yz
= dy

−xz = dz

xy

From first and second fractions, we get

dx

yz
= dy

−xz

or
dx

y
= dy

−x
or xdx + ydy = 0

Integrating x2 + y2 = c1

From first and third fractions

dx

yz
= dz

xy

or
dx

z
= dz

x

Integrating x2 − z2 = c2

Thus the general solution is

F (x2 + y2, x2 − z2) = 0.

Example 3: p − q = ln (x + y)

Solution: Auxiliary equations are

dx

1
= dy

−1
= dz

ln (x + y)

Integrating the first two fractionsdx + dy = 0 yields

x + y = c1

From first and last fractions ln (x + y)dx = dz

Put x + y = c1, then ln c1dx = dz
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Integrating x ln c1 = z+ c2

or x · ln(x + y) = z+ c2
The general solution is

F (x + y, x ln(x + y) − z) = 0.

Example 4: z(z2 + xy)(px − qy) = x4

Solution: Auxiliary equations are

dx

xz(z2 + xy)
= dy

−yz(z2 + xy)
= dz

x4

From first and second fractions, we get

dx

x
= dy

−y
on integration xy = c1

From first and third fractions

x3dx = (z3 + xyz)dz

using xy = c1, x3dx = (z3 + c1z)dz

Integrating x4

4
= z4

4
+ c1

z2

2
+ c2

or x4 − z4 − 2c1z
2 = c2

Substituting for c1, x
4 − z4 − 2(xy)z2 = c2

The general solution is

F (xy, x4 − z4 − 2xyz2) = 0

Example 5: xzp + yzq = xy

Solution: Auxiliary equations dx
xz

= dy

yz
= dz

xy

From one and two dx
xz

= dy

yz
or dx

x
= dy

y

Integrating x = c1y
Choosing the multipliers as y, x, 2z

ydx + xdy
yxz+ xyz = 2zdz

2zxy

or ydx + xdy − 2z dz= 0

d(xy) − d(z2) = 0

Integrating xy − z2 = c2

The general solution is

F

 
x

y
, xy − z2

 
= 0.

Example 6: (z− y) p + (x − z) q = y − x

Solution: Auxiliary equations are

dx

z− y = dy

x − z = dz

y − x
Choosing multipliers as, 1, 1, 1

dx + dy + dz = (z− y) + (x − z) + (y − x) = 0

Integrating x + y + z = c1

Choosing multipliers as x, y, z

xdx + ydy + zdz=x(z− y) + y(x − z) + z(y − x) = 0

Integrating x2 + y2 + z2 = c2

The general solution is

F (x + y + z, x2 + y2 + z2) = 0

Example 7: (y + zx)p − (x + yz)q = x2 − y2

Solution: Auxiliary equations are

dx

y + zx = dy

−(x + yz) = dz

x2 − y2

Choosing multipliers as x, y,−z
xdx + ydy − zdz

= x(y + zx) + y(−1)(x + yz) − z(x2 − y2) = 0

Integrating x2 + y2 − z2 = c1

Choosing multipliers as y, x, 1, we get

ydx + xdy + dz
= y(y + zx) + x(−1)(x + yz) + (x2 − y2) = 0

Integrating xy + z = c2

The general solution is

F (x2 + y2 − z2, xy + z) = 0.

Example 8: (y2 + z2)p − xyq + zx = 0

Solution: Auxiliary equations are

dx

y2 + z2 = dy

−xy = dz

−zx
From the 2nd and 3rd fractions

dy

y
= dz

z
or

y

z
= c1

Choosing multipliers as x, y, z

xdx + ydy + zdz=x(y2 + z2) + y(−xy) + z(−zx) = 0
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Integrating x2 + y2 + z2 = c2

The general solution is

F

 
y

z
, x2 + y2 + z2

 
= 0.

Example 9: px(x + y) = qy(x + y)−
−(2x + 2y + z)(x − y)

Solution: Auxiliary equations are

dx

x(x + y)
= dy

−y(x + y)
= dz

−(x − y)(2x + 2y + z)
From first two fractions, cancelling (x + y),

we get

dx

x
= −dy

y
or d(ln x) + d(ln y) = c

which on integration gives xy = c1

dx + dy
x(x + y) − y(x + y)

= dx + dy
(x + y)(x − y)

= dz

−(x − y)(2x + 2y + z)
Cancelling the (x − y) term, we get

(2x + 2y + z)(dx + dy) + (x + y)dz = 0

or

(x+y+z)(dx+dy)+(x+y)(dx+dy)+(x+y)dz= 0

(x+y+z) d(x+y)+(x+y) d(x+y+z) = 0

i.e., d ((x + y)(x + y + z)) = 0

Integrating (x + y)(x + y + z) = c2

Thus the general solution is

F (xy, (x + y)(x + y + z)) = 0

Example 10: (x2 − y2 − yz)p +
(x2 − y2 − zx)q = z(x − y)

Solution: Auxiliary equations are

dx

x2 − y2 − yz = dy

x2 − y2 − zx = dz

z(x − y)

dx − dy − dz= x2 − y2 − yz− (x2 − y2 − zx)

−z(x − y) = 0

Integrating x − y − z = c1

From first and second

xdx − ydy
x3 − xy2 − x2y − y3

= dz

z(x − y)

or
xdx − ydy

(x2 − y2)(x − y)
= dz

z(x − y)

i.e.,
1

2
d(ln(x2 − y2)) = d(ln z)

... (x2 − y2)/z2 = c2.

... The general solution is

f (x − y − z, (x2 − y2)/z2) = 0

EXERCISE

Solve the following:

1. y2zp + x2zq = xy2

Ans. F (x3 − y3, x2 − z2) = 0

2. p tan x + q tan y = tan z

Ans. F
 

sin x
sin y
,

sin y

sin z

 
= 0

3. xp + yq = z

Ans. F
 
x
z
,
y

z

 = 0

4. 2p + 3q = 1

Ans. F (3x − 2y, y − 3z) = 0

5. x2p + y2q = z2

Ans. F
 

1
x

− 1
y
, 1
y

− 1
z

 
= 0

6. pyz+ qzx = xy

Ans. F (x2 − y2, y2 − z2) = 0

7. x2p + y2q = (x + y)z

Ans. F
 
xy

z
,
x−y
z

 = 0

8. p + 3q = 5z+ tan(y − 3x)

Hint: Use the solution y − 3x = c obtained

from dx
1

= dy

3
.

Ans. F (y − 3x, e−5x{5z+ tan (y − 3x)}) = 0

9. z(p − q) = z2 + (x + y)2



PARTIAL DIFFERENTIAL EQUATIONS 18.11

Hint: Use solution x + y = c obtained from
dx
1

= dy

−1
.

Ans. F [x + y, e2y{z2 + (x + y)2}] = 0

10. z(xp − yq) = y2 − x2

Hint: Use x, y, z as multipliers.

Ans. F (xy, x2 + y2 + z2) = 0

11. (x3 + 3xy2)p + (y3 + 3x2y)q = 2(x2 + y2)z

Hint: Choose multipliers (1/x, 1/y, 0),

(1, 1, 0), (1,−1, 0).

Ans. F [(x − y)−2 − (x + y)−2, xy/z2] = 0

12. x2(y3 − z3)p + y2(z3 − x3)q = z2(x3 − y3)

Ans. F (x2 + y2 + z2, 1
x

+ 1
y

+ 1
z
) = 0

13. (2x2 + y2 + z2 − 2yz− zx − xy)p +
(x2 + 2y2 + z− yz− 2zx − xy)q =
(x2 + y2 + 2z2 − yz− 2xy)

Hint:
dx−dy
x−y = dy−dz

y−z = dz−dx
z−x .

Ans. F
 
x−y
y−z ,

y−z
z−x

 
= 0

14. (mz− ny)p + (nx − lz)q = ly −mx
Ans. F (x2 + y2 + z2, lx +my + nz) = 0

15. (x2 − yz)p + (y2 − zx)q = z2 − xy

Ans. F
 
x−y
y−z , xy + yz+ zx

 
= 0

16. (x2 − y2 − z2)p + 2xyq = 2xz

Ans. F (x2 + y2 + z2, y/z) = 0

17. (x + 2z)p + (4zx − y)q = 2x2 + y
Hint: Multipliers y, x,−2z and 2x,−1,−1.

Ans. F (xy − z2, x2 − y − z) = 0

18. x(y − z)p + y(z− x)q = z(x − y)

Ans. F (x + y + z, xyz) = 0

19. (y − z)p + (x − y)q = (z− x)

Ans. F (x + y + z, x2

2
+ yz) = 0

20. (y + z)p + (z+ x)q = x + y
Ans. F

 
x−y
y−z ,

y−z√
x+y+z

 
= 0

21. x2(y − z)p + y2(z− x)q = z2(x − y).

Hint: Multipliers: 1/x, 1/y, 1/z and

1/x2, 1/y2, 1/z2.

Ans. F
 
xyz, 1

x
+ 1

y
+ 1

z

 
= 0

22. (z2 − 2yz− y2)p + (xy + zx)q = xy − zx
Ans. F (x2 + y2 + z2, y2 − 2yz− z2) = 0

23. px(z− 2y2) = (z− qy)(z− y2 − 2x3)

Hint: Multiply A.E. by (z− y2 − 2x3), use

multipliers 1, 2xy,−x, divide by x2 through-

out.

Ans. F
 
y/z,

y2

x
− z

x
− x2

 
= 0

24. x(y2 − z2)p + y(z2 − x2)q = z(x2 − y2)

Hint: Multipliers x, y, z and 1/x, 1/y, 1/z.

Ans. F (x2 + y2 + z2, xyz) = 0.

18.4 NON-LINEAR PARTIAL

DIFFERENTIAL EQUATIONS OF

FIRST ORDER

Non-linear P.D.E. of first order contains p and q

of degree (power) other than one and/or product

terms of p and q. Its complete solution is given by

f (x, y, z, a, b) = 0 where a and b are any two ar-

bitrary constants. Some special types of non-linear

first order P.D.E. are presented.

Form I: f (p, q)= 0

i.e., equation contains only p and q (or x, y, z are

absent)

Assume that p = a then f (a, q) = 0

Solving q = φ(a)
Consider

dz= ∂z

∂x
dx + ∂z

∂y
dy = p dx + q dy

dz= a dx + φ(a)dy

Integrating z = ax + φ(a)y + c
where a and c are arbitrary constants.

Thus the complete solution is

z = ax + by + c
where a, b satisfy the equation f (a, b) = 0

i.e., b = φ(a)
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Form II: f (z, p, q)= 0

i.e., equation does not involve the independent vari-

ables x and y.

Assume q = ap. Substituting q in the given equa-

tion f (z, p, ap) = 0 and solving for p, we get
p = φ(z). Now

dz= pdx + qdy = pdx + ap dy
dz= p(dx + ady) = φ(z)(dx + ady)

Integrating x + ay =  
dz
φ(z)

+ b
where a and b are two arbitrary constants.

Form III: f (x, p)=g (y, q)

i.e., x, p and y, q are separable.

Assume f (x, p) = g(y, q) = a = constant.
Solving each equation for p and q, we get

p = f1(x, a) and q = g1(y, a)

Now dz= pdx + qdy=f1(x, a)dx +g1(y, a)dy

Integrating z=  
f1(x, a)dx +  

g1(y, a)dy + b.

Form IV: Clairaut Equation:

z=px+qy+ f (p, q)

The complete solution of this equation is

z = ax + by + f (a, b)

which is obtained by replacing p by a and q by b in

the given clairaut equation.

Note: All these four forms can be solved by

Charpit’s method.

WORKED OUT EXAMPLES

Form I: f (p, q)= 0

Solve the following:

Example 1: p3 − q3 = 0

Solution: The complete solution is

z = ax + by + c
where a, b are connected by a3 − b3 = 0 or a = b

Thus z = ax + ay + c is the complete integral.

Example 2: p2 + q2 = npq

Solution: The complete solution is

z = ax + by + c
where a, b satisfy the equation a2 + b2 = nab.
Solving for b

b = −na ±
 
n2a2 − 4a2

2
= +a

2

 
+n±

 
n2 − 4

 
so complete integral:

z = ax + a
2

 
n∓

√
n2 − 4

 
y + c

Example3: (x+ y)(p+ q)2 + (x− y)(p− q)2 = 1

Solution: To reduce this equation to f (P,Q) = 0
form, put x + y = X2 and x − y = Y 2. Then

X = √
x + y, Y = √

x − y

p = zx = ∂z

∂x
= ∂z

∂X

∂X

∂x
+ ∂z

∂Y
· ∂Y
∂x

= 1

2X

∂z

∂X
+ 1

2Y

∂z

∂Y

since

∂X

∂x
= 1

2

1√
x + y = 1

2X
and

∂Y

∂x
= 1

2

1√
x − y = 1

2Y

Similarly,

q = zy = ∂z

∂y
= ∂z

∂X

∂X

∂y
+ ∂z

∂Y
· ∂Y
∂y

= 1

2X
zx − 1

2Y
zy

Adding p + q = zx · 1
X

,

subtracting p − q = zy
1
Y

.
Thus the given equation reduces to

X2 ·
 
zx

1

X

 2

+ Y 2

 
zy

1

Y

 2

= 1 or z2X + z2Y = 1

The complete solution is

z= aX + bY + c
where a2 + b2 = 1 or b =

 
1 − a2

or z= a
 

(x + y) +
 

1 − a2
 

(x − y) + c.

Example 4: (x − y)(px − qy) = (p − q)2

Solution:

Put x + y = u and xy = v (1)

Then p = ∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x
= zu + yzv (2)
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Since ux = 1, uy = 1, vx = y, vy = x

Similarly, q = ∂z

∂y
= ∂z

∂u

∂u

∂y
+ ∂z

∂v

∂v

∂y
= zu + xzv (3)

From (2) and (3)

p − q = (y − x)zv (4)

xp − qy = (x − y)zu (5)

Using (4), (5) the given equation transforms to

(x − y)(x − y)zu = (y − x)2z2v

or zu = z2v

P = Q2

Its complete solution is

z= au+ bv + c

where a = b2.

Using (1), replace u, v then

z = b2(x + y) + bxy + c
where b, c are arbitrary constants.

Form II: f (z, p, q)= 0

Example 5: zpq = p + q

Solution: Assume q = ap.
Substituting in the given equation

zp · ap = p + ap
Solving for p, we get

p = 1 + a
az

We know that dz = pdx + qdy = p(dx + ady)

dz = 1 + a
az

(dx + ady) or az dz = (1 + a)(dx + ady)

Integrating: a z
2

2
= (1 + a)[x + ay] + b.

Example 6: p2z2 + q2 = p2q

Solution: Let q = ap then the given equation re-
duces to

p2z2 + a2p2 = p2 · ap
Solving p = (z2 + a2)/a.

Then dz= pdx + qdy = p(dx + ady)

dz= (z2 + a2)

a
(dx + ady)

or
adz

(z2 + a2)
= dx + ady

Integrating tan−1
 
z
a

 = x + ay + b. Thus the
complete solution is

z = a tan(x + ay + b).

Example 7: p2x2 = z(z− qy)

Solution: To reduce this equation to f (z, p, q) = 0

form, put X = ln x, Y = ln y so that

dx = dx
x
, dy = dy

y

Rewriting

 
x
∂z

∂x

 2

= z
 
z− y ∂z

∂y

 
 
∂z

∂X

 2

= z
 
z− ∂z

∂Y

 

Let P = ∂z
∂X
,Q = ∂z

∂Y
. Then the given equation

reduces to

P 2 = z(z−Q)

which is of the form f (z, P,Q) = 0
Let Q = aP . Substituting this in the new equa-

tion

P 2 = z2 − zQ = z2 − zaP

or P 2 + azP − z2 = 0

Solving P = −az±
√
a2z2+4z2

2
= z · k

where k =
 

−a ±
√
a2 + 4

 
/2

now dz= P dX +QdY = P (dX + adY )

or dz= k · z(dX + adY ) since P = kz

Replacing X and Y by ln x and ln y

1

k

dz

z
= d ln x + ad ln y

Integrating z
1
k = xyab

where a, b are arbitrary constants and

k =
 

−a ±
 
a2 + 4

 
/2
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Form III: f (x, p)= g (y, q)

Example 8: yp + xq + pq = 0

Solution: Rewriting (x + p)q = −yp

or
x + p
p

= −y
q

= a, say

Then solving for p and q

p = x

a − 1
and q = −y

a

Now dz = pdx + qdy = x
(a−1)

dx +  − y

a

 
dy

Integrating z = 1
(a−1)

x2

2
− y2

2a
+ b.

Example 9: p2q2 + x2y2 = x2q2(x2 + y2)

Solution: To transform this to the standard form,

put x2 = X and y2 = Y so that

2x dx = dX, 2y dy = dY

Then p = ∂z

∂x
= ∂z

∂X
· ∂X
∂x

= 2x zx, q = 2xP

Similarly, q = ∂z

∂y
= ∂z

∂Y
· ∂Y
∂y

= 2y zy = 2yQ

Substituting these values, the given equation re-
duces to

4x2P 2 · 4y2Q2 + x2y2 = x24y2Q2(x2 + y2)

4XP 2 · 4YQ2 +XY = 4XYQ2(X + Y )

or 16P 2Q2 + 1 = 4Q2(X + Y )

Now rewrite this as

16P 2Q2 − 4XQ2 = 4YQ2 − 1

(4P 2 −X) = 4YQ2 − 1

4Q2
= a2 say

This is in the standard form

f (P,X) = g(Q,Y ).

Solving for P andQ, we get

P = 1

2
(X + a2)

1
2

Q= 1

2

1

(Y − a2)
1
2

Now dz= PdX +QdY

dz= 1

2
(X + a2)

1
2 dX + 1

2
(Y − a2)− 1

2 dY

Integrating z = 1
3
(X + a2)

3
2 + (Y − a2)

1
2 + b

or z = 1

3
(x2 + a2)

3
2 + (y2 − a2)

1
2 + b

where a, b are arbitrary constants.

Example 10: zpy2 = x(y2 + z2q2).

Solution: To get rid of z in the equation, putZ = z
2

2

or dZ = zdz. Then

zp = z∂z

∂x
= ∂Z

∂x
= P, similarly, zq = z

∂z

∂y
= ∂Z

∂y
= Q

Now the equation gets transformed to

Py2 = x(y2 +Q2)

or
P

x
= Q2 + y2

y2
= a say

Solving P = ax, Q = √
a − 1y

So dz= Pdx +Qdy = ax dx +
√
a − 1y dy

or zdz= ax dx +
√
a − 1y dy

Integrating z2 = ax2 + √
a − 1y2 + b

where a, b are arbitrary constants.

Form IV: Clairaut’s equation

Example 11: z = px + qy + lnpq

Solution: The complete solution of this Clairaut’s
equation is

z = ax + by + ln ab

Example 12: (p − q)(z− px − qy) = 1

Solution: Rewriting this in Clairaut’s form

z = px + qy + 1

p − q
The complete solution is

z = ax + by + 1

a − b
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EXERCISE

Find the complete solution of:

Form I: f (p, q)= 0

1. pq = k

Ans. z = ax + k y
a

+ c
2. p2 + q2 = m2

Ans. z = ax +
√
m2 − a2 y + c

3.
√
p + √

q = 1

Ans. z = ax + (1 − √
a)2y + c

4. p2 − q2 = 4

Ans. z = ax +
√
a2 − 4 y + c

5. p + q = pq

Ans. z = ax + ay/(a − 1) + c
6. p = eq

Ans. z = ax + y ln a + c
7. 2p2 + 6p + 2q + 4 = 0

Ans. z = ax − (2 + 3a + a2/2)y + c
8. x2p2 + y2q2 = z2

Hint: Put Z = ln z,X = ln x, (where

a= cosα, b=
√

1−a2= sin α,) Y= ln y, which

transforms the given equation toP 2 +Q2 = 1.

Ans. z = c∗xcosα · ysin α

9. (x2 + y2)(p2 + q2) = 1

Hint: Put x = r cos θ, y = r sin θ , (where r = 
x2 + y2, tan θ = y/x, R = ln r , then equa-

tion reduces to
 
∂z
∂R

 2 +  
∂z
∂θ

 2 = 1)

Ans. z = a ln r +
√

1 − a2 θ + c
10. pq = xmynzl

Ans. zp = p
 
axq

q
+ 1

a

yr

r
+ c

 
where p = 1 − l

2
, q = m+ 1, r = n+ 1

Hint: Put Z = zp

p
,X = xq

q
, Y = yr

r

Then equation reduces to

∂Z

∂X
· ∂Z
∂Y

= 1.

Form II: f (z, p, q)= 0

1. p2z2 + q2 = 1

Ans. az(1 + a2z)
1
2 − ln

 
az+ (1 + a2z2)

1
2

 
=

2a(ax + y + b)
2. p(1 + q) = qz

Ans. ln (az− 1) = x + ay + b
3. q2 = z2p2(1 − p2)

Ans. a2z2 = (y + ax + c)2 + 1

4. p3 + q3 = 27z

Ans. (1 + a3)z2 = 8(x + ay + b)3

5. z2(p2 + q2 + 1) = α2

Ans. (1 + b2)(α2 − z2) = (x + by + c)2

6. z2 = 1 + p2 + q2

Ans. z = cosh(x + ay + c/
√

1 + a2)

7. p(1 + q2) = q(z− α)

Ans. 4a(z− α) = 4 + (x + ay + c)2

8. 9(p2z+ q2) = 4

Ans. (z+ a2)3 = (x + ay + b)2

9. z2(p2x2 + q2) = 1

Hint: Put X = ln x, equation reduces to

z2

  
∂z
∂X

 2 +
 
∂z
∂y

 2
 

= 1.

Ans. z2
√

1 + a2 = ±2 (ln x + ay) + b
10. q2y2 = z(z− px)

Hint:PutX = ln x, Y = ln y then equation re-

duces toQ2 = z2 − zP
Ans. xya · b = z

1
k

where k =
 

−1 ±
√

1 + 4a2

 
/(2a2)

Form III: f (x, p)= g (y, q)

1. p2 ± q2 = x ± y
Ans. z = 2

3
(a + x)

3
2 + 2

3
(∓a + y)

3
2 + b

2.
√
p + √

q = x + y
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Ans. z = (a+x)3

3
+ (y−a)3

3
+ b

3. p + q = sin x + sin y

Ans. z = ax − cos x − cos y − ay + b
4. p2y(1 + x2) = qx2

Ans. z = a
√

1 + x2 + 1
2
a2y2 + b

5. pey = qex

Ans. z = a(ex + ey) + b
6. p − q = x2 + y2

Ans. z = 1
3
(x3 − y3) + a(x + y) + b

7. y2q2 − xp + 1 = 0

Ans. z = (a2 + 1) ln x + a ln y + b
8. z2(p2 + q2) = x2 + y2

Hint: Put Z = 1
2
z2 equation reduces to P 2 +

Q2 = x2 + y2 where P = zp,Q = zq.

Ans. z2 = x
√
x2 + a + y

 
y2 − a +

a ln
x+

√
x2+a

y+
√
y2−a

+ 2b

9. z(xp − yq) = y2 − x2

Hint: Put Z = z2

2
equation reduces to xP −

yQ = y2 − x2 where P = ∂Z
∂x
,Q = ∂Z

∂y
.

Ans. z2 = 2a ln xy − (x2 + y2) + 2b

10. z(p2 − q2) = x − y
Hint: Put Z = 2

3
z

3
2 , equation reduces to P 2 −

Q2 = x − y where P = ∂Z
∂x
,Q = ∂Z

∂y

Ans. z
3
2 = (a + x)

3
2 + (a + y)

3
2 + c.

Form IV: z= px+ qy+ f ( p, q):

Clairaut’s equation

1. 2q(z− px − qy) = 1 + q2

Ans. z = ax + by + b2+1
2b

2. pqz = p2(xq + p2) + q2(yp + q2)

Ans. z = ax + by +
 
a3

b
+ b3

a

 
3. z = px + qy ± pq

Ans. z = ax + by ± ab
4. (px + qy − z)2 = d (1 + p2 + q2)

Ans. z = ax + by ±
 √

1 + a2 + b2

 
d

5. (p + q)(z− xp − yq) = 1

Ans. z = ax + by + 1
a+b

6. 4xyz = pq + 2px2y + 2q xy2

Hint: Put X = x2, Y = y2, equation reduces

to z = PX +QY + PQ.

Ans. z = ax2 + by2 + ab.

18.5 CHARPIT’S METHOD

Charpit’s method is a general method to find the

complete solution of the first order non-linear P.D.E.

of the form

f (x, y, z, p, q) = 0 (1)

We know that

dz = ∂z

∂x
dx + ∂z

∂y
dy = p dx + q dy (2)

Integrating (2), we get the complete solution of (1).

In order to integrate (2), we must know p and q in

terms of x, y, z. For this purpose, introduce another

first order non-linear P.D.E. of the form

g(x, y, z, p, q, a) = 0 (3)

involving an arbitrary constant “a” compatible with

(1). Solving (1) and (3), we get

p = p (x, y, z, a), q = q(x, y, z, a) (4)

On substitution of (4) in (2), equation (2) becomes

integrable, resulting in the complete solution of (1)

in the form

F (x, y, z, a, b) = 0 (5)

containing two arbitrary constants a and b.
Now differentiating (1) and (3) partially w.r.t.

x and y and eliminating
∂p

∂x
and

∂q

∂x
, we get after

simplification, a Lagrange’s linear equation of φ
(as dependent variable) in terms of x, y, z, p, q (as
independent variables) as

fq
∂g

∂x
+ fq

∂g

∂y
+ (pfp + qfq )

∂g

∂z
− (fx + pfz)

∂g

∂p

− (fy + qfz)
∂g

∂q
= 0 (6)
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The subsidiary equations of (6) are

dx

fp
= dy

fq
= dz

pfp + qfq
= dp

−(fx + pfz)

= dq

−(fy + qfz)
(7)

These Equations (7) are known as Charpit’s equa-

tions. Solving (7), we get relations (4) of p and q,

using which, the equation (2) is integrated resulting

in the complete solution (5) of (1).

Note: Not all of the Charpit’s Equations (7) need

be used. Choose the simplest of (7) so that p and q

are easily obtained.

WORKED OUT EXAMPLES

Example 1: Solve z2 = pq xy.

Solution: Heref (x, y, z, p, q) = z2 − pq xy = 0.
Differentiating f partially w.r.t. x, y, z, p, q, form
the auxiliary equations

dx

fp
= dy

fq
= dz

pfp+qfq
= dp

−(fx+pfz)
= dq

−(fy+qfz)
dx

−qxy = dy

−pxy = dz

−2pqxy
= dp

−(−pqy + p2z)

= dq

−(−pqx + 2qz)

Using the multipliers p, q, o, x, y, we have

p dx + xdp
−pq xy + xpq y − 2pxz

= q dy + y dq
−q pxy + ypq x − 2y qz

or

p dx + x dp
−2xpz

= q dy + y dq
−2yqz

d(xp)

(xp)
= d(yq)

(yq)

Integrating xp = a yq.
Solving q = xp

ay
. Substituting q in given P.D.E.

z2 = p ·
 
xp

ay

 
xy = p2x2

a
or p = √

a · z
x

;

Then q = xp

ay
= x

ay
· √
a
z

x
= z√

ay

Now dz= pd x+q dy=√
a
z

x
dx+ 1√

a

z

y
dy

dz

z
= √

a
dx

x
+ 1√

a

dy

y
.

Integrating, we get the complete solution as

z = b xa y
1
a

where a and b are two arbitrary constants.

Example 2: Solve 2(z+ xp + yq) = yp2.

Solution: Here f = 2(z+ xp + yq) − yp2

Forming the auxiliary equations

dx

2x − 2yp
= dy

2y
= dz

2xp − 2yp2 + 2qy
= dp

−(2p + 2p)

= dq

−(2q − p2 + 2q)

dx

x−yp = dy

y
= dz

xp−yP 2+yq= dp

−2p
= dq

−(2q−p2

2
)

Using second and fourth

dy

y
= dp

−2p
or p = ay−2 = a

y2

Substituting p in the given P.D.E.

2 yq = y
 
a

y2

 2

− 2z− 2x

 
a

y2

 
or

q = a2

2y4
− z

y
− ax

y3

Now dz = p dx + q dy = a

y2
dx +

 
a2

2y4
− z

y
− ax

y3

 
dy

Regrouping the terms 
y dz+ z dy

y

 
=

 
ay dx − ax dy

y3

 
+ a2

2y4
dy

Multiplying throughout by y:

d(yz) = ad

 
x

y

 
+ a2

2

dy

y3
.

Integrating yz= a
x

y
+ a2

2
·
 

1

−2y2

 
+ b

z= ax

y2
− a2

4y3
+ b

y

is the required complete solution involving two arbi-

trary constants a and b.
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EXERCISE

Solve (obtain the complete solution):

1. 16p2z2 + 9q2z2 + 4z2 − 4 = 0

Hint:
dp

32p3z+18pq2z+8pz
= dq

32p2qz+18q3z+8qz
=

−dx
32pz2

= −dy
+18qz2

= −dz
32p2z2−18q2z2

4z dp + 0 · dq + 1 · dx + 0 · dy +
4p dz = 0, x + 4pz = a, p = − x−a

4z
, q =

2
3z

 
1 − z2 − 1

4
(x − a)2.

Ans.
(x−a)2

4
+ (y−b)2

9/4
+ z2 = 1

2. p(1 + q2) + (b − z)q = 0.

Hint:
dp

pq
= dq

q2 = dz

3pq2+p+(b−z)q = dx

q2+1
=

dy

−z+b+2pq
(i)(ii) q = pc, sub q = √

c(z−b)−1.

Ans. 2
√

[c(z− b) − 1] = x + cy + a; a, c are arbi-

trary constants.

3. 2xz− px2 − 2qxy + pq = 0.

Hint: q = a, p = 2x(z−ay)

x2−a .

Ans. z− ay = b(x2 − a)

4. q ∓ px − p2 = 0.

Hint: q = a, p = 1
2

 
∓x ±

√
x2 + 4a

 
.

Ans. z = ∓ x2

4
± 1

2

 
x
2

√
x2 + 4a+

+2a ln{x +
√
x2 + 4a}

 
+ ay + b

5. px + qy ∓ pq = 0.

Hint: p= aq, q = − (y+ax)

a
, p = −(y + ax).

Ans. az = − 1
2
(y + ax)2 + b

6. qz− p2y − q2y = 0.

Hint: p2 + q2 = a, q = ay

z
, p2 = az2−a2y2

z2
.

Ans. z2 = a(y2 + (x + b)2)

7.
p2+qy

2
= −(z+ y2).

Hint: p=−x+a, q= 1
y
[−2z−2y2−(a−x)2].

Ans. y2[(x − a)2 + 2z+ y2] = b

8. yz− p(xy + q) − qy = 0.

Hint: p = a, q = y(z−ax)

a+y .

Ans. (z− ax)(y + a)a = bey

9. 2(xy − px − qy) + p2 + q2 = 0.

Hint: dp+dq=dx+dy, (p−x)+(q−y)=a

p − x = 2a ±
 

4a2 − 8{a2 − (x − y)2}
4

q = y + 1

2

 
a ±

 
{2(x − y)2 − a2}

 
.

Ans. z= x2

2
+ y2

2
− a

2
(x+y)± 1√

2

 
x−y

2

  
(x−y)2− a2

2

 

− a2

4
ln

 
(x−y)+

  
(x−y)2− a2

2

  

10. z− q2y − p2x = 0.

Hint: 2px dp + p2dx = 2qy dq + q2dy,

p2x = q2ya, q2 =  
z

1+a
 
, p2 = za

(1+a)x
.

Ans.
√

(1 + a)
√
z = √

a
√
x + √

y + b.

18.6 HOMOGENEOUS LINEAR PARTIAL

DIFFERENTIAL EQUATIONS WITH

CONSTANT COEFFICIENTS

Consider a partial differential equation of the form 
A0

∂nz
∂xn

+ A1
∂nz

∂xn−1∂y
+ . . .+ An ∂nz∂yn

 
+

+
 
B0
∂n−1z

∂xn−1
+ B1

∂n−1z

∂xn−2∂y
+ . . .+ Bn−1

∂n−1z

∂yn−1

 
+

+ · · · +
 
M0

∂z

∂x
+M1

∂z

∂y

 
+N0z = 0 (1)

Here A0, A1, · · ·An, B0, B1, · · · , Bn−1, M0, M1,

N0 are all constants. In this equation the dependent

variable z and its derivatives are linear. Since

each term (in the LHS) of (1) contains z or its

derivatives, equation (1) is known as as homo-

geneous* linear partial differential equation of

order n with constant coefficients. Introducing the

notation Dx = ∂
∂x

and Dy = ∂
∂y

equation (1) takes

the form (A0D
n
x + A1D

n−1
x Dy + · · · + AnDny )z

+(B0D
n−1
x + B1D

n−2
x Dy + · · · + Bn−1D

n−1
y )z+

* Some authors call an equation homogeneous of each term in
the equation is of the same order.
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· · · +(M0Dx +M1Dy)z+N0z = 0

or F (Dx,Dy)z = 0 (2)

where F (Dx,Dy) is a linear differential operator

given by

F (Dx,Dy) = A0D
n
x + · · · + AnDny + · · · +M0Dx

+M1Dy + N0 (3)

Reducible

The differential operator (3) is said to be reducible

if (3) can be written as the product of linear factors

of the form (aiDx + biDy + ci) where ai , bi , ci are

constants. Otherwise (3) is said to be irreducible.

Here we consider only reducible case. Then the re-

ducible equation (2) can be written asF (Dx,Dy)z =
(a1Dx + b1Dy + c1) . . . (anDx + bnDy + cn) = 0

=
n 
i=1

(aiDx + biDy + ci)z = 0 (4)

Here the order in which the linear factors in the LHS

of (4) occurs is immaterial.

BookWork 1: Prove that the general solution (G.S.)

of the first order linear homogeneous partial differ-

ential equation

(aDx + bDy + c)z = 0 (5)

is given by

z = e−cx/aφ(ay − bx), (a  = 0) (6)

or

z = e−cy/bψ(ay − bx), (b  = 0) (7)

Proof: The given equation is of the form P (x)p +
Q(x)q = R(x) where P (x) = a,Q(x) = b, R(x) =
−cz. Then the auxiliary system of (5) is

dx

a
= dy

b
= dz

−cz
From dx

a
= dy

b
, we get ay − bx = A = const. From

dx
a

= dz
−cz , we get ln z = − c

a
x + lnB provided a  =

0. Then z = Be−cx/a . Thus the general solution of

(5) involving one arbitrary function φ is

z = e−cx/aφ(ay − bx), a  = 0

Instead from
dy

b
= dz

−cz , we get z = ce−cx/b provided

b  = 0. Thus the general solution of (5) involving one

arbitrary function ψ is

z = e−cy/bψ(ay − bx), b  = 0

Corollary 1: If c = 0, then the general solution

of (aDx + bDy)z = 0 (8)

is z = φ(ay − bx) (9)

Corollary 2: If c  = 0, a = 0, b  = 0, then the gen-

eral solution of

(bDy + c)z = 0 (10)

is z = e−cy/bψ(x) (11)

Corollary 3: If c  = 0, a  = 0, b = 0. Then G.S. of

(aDx + c)z = 0 (12)

is z = e−cx/aφ(y) (13)

Corollary 4: If c = 0, a = 0, b  = 0 then G.S. of

bDyz = 0 (14)

is z = φ(x) (15)

Corollary 5: If c = 0, b = 0, a  = 0, then G.S. of

aDxz = 0 (16)

is z = ψ(y) (17)

Recall the linearity principle which states that if
z1, z2, . . . , zn are linearly independent solutions of
the homogeneous linear partial differential equation

F (Dx,Dy)z = 0, then z =
n 
i=1

cizi is also a solution

since

F (Dx,Dy )z= F (Dx,Dy )

 
n 
i=1

cizi

 

=
n 
i=1

F (Dx,Dy )(cizi )
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=
 
i=1

ciF (Dx,Dy )zi = 0

Here c1, c2, · · · , cn are arbitrary constants. Using

the linearity principle and book work 1 which pro-

vides general solution to each linear factor of the

form (aiDx + biDy + ci), we now get the general

solution of the linear homogeneous equation (4)

as the sum of n arbitrary functions given by z =
e−α1xφ1(a1y − b1x) + e−α2xφ2(a2y − b2x) + · · · +
e−αnxφn(any − bnx)

or z =
n 
i=1

e−αixφi(aiy − bix) (18)

where αi = ci/ai . We can also write the general so-

lution of (4) as

or z =
n 
i=1

e−βiyψi(aiy − bix) (19)

where βi = ci/bi .

Multiple Factors

The solution corresponding to a multiple factor say

(aiDx + biDy + ci)2 of multiplicity z, in the decom-

position of F (Dx,Dy) into linear factors is given by

z = e−cix/ai [φ1(aiy − bix) + xφ2(aiy − bix)].

Extending this to a factor (aiDx + biDy + ci)k of

multiplicity k, the corresponding solution is given

by

z = e−cix/ai [φ1(aiy − bix) + xφ2(aiy − bix)

+ · · · + xk−1φk(aiy − bix)] (20)

or

z = e−cix/ai
k 
j=1

xj−1φj (aiy − bix).

Special case:

When the total degree of each term in F (Dx,Dy)

is same (i.e., the derivatives involved are all of the

same order) then the above analysis gets simplified.

Replacing Dx by m and Dy by 1 (or equivalently

Dx/Dy bym) in the differential operator F (Dx,Dy)

we get an auxiliary equation (A.E.) of the form

F (m, 1) = 0 (21)

which is an nth degree polynomial in m hav-

ing n roots. Then the general solution (G.S.) of

F (Dx,Dy)z = 0 is given as follows depending on

the nature of the roots of the auxiliary equation (21).

Case i : n distinct real roots: m1  = m2  = · · ·  = mn
then the general solution is

z=φ1(y+m1x)+φ2(y+m2x)+· · ·+φn(y+mnx).

Case ii : One root of multiplicity k, so that

m1 = m2 = · · · = mk  = mk+1  = · · ·  = mn.

Then G·S. is

z= φ1(y +m1x) + xφ2(y +m1x) + x2φ3(y +m1x) + · · ·
+ xk−1φk(y +m1x) + φk+1(y +mk+1x) + · · ·
+ φn(y +mnx).

Case iii : If m1, m2 are complex conjugate pair say
m1 = a + bi, m2 = a − bi then general solution is

z= φ1(y + ax + ibx) + φ1(y + ax − ibx)

+ i{φ2(y + ax + ibx) − φ2(y + ax − ibx)}
+ φ3(y +m3x) + · · · + φn(y +mnx).

WORKED OUT EXAMPLES

Complementary functions

Example 1: Find the complementary function of

the following P.D.E. (a to g)

(a) (D3
x − 3D2

xDy + 2D2
yDx)z = 0

Solution: Auxiliary equation (A.E.) is obtained by
replacing Dx by m and Dy by 1. So the A.E.

is m3 − 3m2 · 1 + 2 · 12 ·m = 0 or m(m− 1)(m−
2) = 0 i.e., roots are m = 0, 1, 2. Then the comple-
mentary function (C.F.) is

z = φ1(y + 0 · x) + φ2(y + x) + φ3(y + 2x)

(b) 25r − 40s + 16t = 0 or (25D2
x − 40Dxy +

16D2
y)z = 0

Solution: A.E.: 25m2 − 40m+ 16 = 0 or (5m−
4)2 = 0 so double roots are m = 4

5
, 4

5
. Then C.F. is

z = φ1

 
y + 4

5
x

 
+ xφ2

 
y + 4

5
x
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or z = f1(5y + 4x) + xf2(5y + 4x)

(c) (D4
x +D3

xDy − 3D2
xD

2
y − 5DxD

3
y −

2D4
y)z = 0

Solution: A.E. is m4 +m3 − 5m− 2 = 0, or (m−
2)(m+ 1)3 = 0 so roots arem = 2,−1,−1, −1 with
−1 repeated three times. Then C.F. is

z = φ1(y + 2x) + φ2(y − x) + xφ3(y − x) + x2φ4(y − x)

(d) r + b2t = 0 or (D2
x + b2D2

y)z = 0

Solution: A.E.: m2 + b2 = 0 with complex conju-
gate rootsm = ±bi . The complementary function is

z= φ1(y + ax + ibx) + φ1(y + ax − ibx)

+ i[φ2(y + ax + ibx) − φ2(y + ax − ibx)]

Here a = 0. So the C.F. is

z= φ1(y + ibx) + φ1(y − ibx)

+ i[φ2(y + ibx) − φ2(y − ibx)]

(e) (Dx + 2Dy − 3)(Dx +Dy − 1)z = 0

Solution: If aDx + bDy + c is a factor then the

solution is z = e− c
a xφ(bx − ay).

For the first factor a = 1, b = 2, c = −3 and for the
second factor a = 1, b = 1, c = −1. So the C.F. is

z = e
−
 

−3
1

 
x
φ1(2x − y) + e− (−1)x

1 · φ2(x − y).

or
z = e3xφ1(2x − y) + exφ2(x − y)

(f) (Dx + 2Dy)(+Dx + 3Dy + 1)(Dx + 2Dy +
2)2z = 0

Solution: Here the last factor is repeated twice. C.F.
is

z = e0.xφ1(2x − y) + e−1.xφ2(3x − y)

+ e−2x{φ3(2x − y) + xφ4(2x − y)}

(g) Irreducible:

(D2
x +DxDy −D2

y +Dx −Dy)z = 0

Solution: C.F. is z =
∞ 
i=1

cie
aix+biy where ai, bi sat-

isfy the equation a2
i + aibi − b2

i + ai − bi = 0 and

ci are arbitrary constants.

EXERCISE

Solve the following:

1. (D2
x −DxDy − 6D2

y)z = 0

Ans. z = f (y − 2x) + g(y + 3x)

Hint: Roots of auxiliary equation are −2, 3

2. (D3
x −D2

xDy − 8DxD
2
y + 12D3

y)z = 0

Ans. z = f (y + 2x) + xg(y + 2x) + h(y − 3x)

Hint: Roots are 2, 2 (double), −3

3. (D4
x −D3

xDy + 2D2
xD

2
y − 5DxD

3
y +

3D4
y)z = 0

Ans. z = f1(y + x) + xf2(y +
x) + f3

 
y − 1

2
(1 + i

√
11x)

 
+f3

 
y − 1

2
(1 − i

√
11x)

 
+i

 
f4

 
y − 1

2
(1 + i

√
11x)

 
−f4

 
y − 1

2
(1 − i

√
11x)

  
Hint: Roots 1, 1 (double), −1

2
(1 ± i

√
11)

(complex conjugate).

4. (2D2
x + 5DxDy + 2D2

y)z = 0

Ans. z = f (y − 2x) + g  y − 1
2
x
 

or = f (y − 2x) + h(2y − x)

Hint: Roots −2, − 1
2

5. (D2
x + 6DxDy + 9D2

y) = 0

Ans. z = f (y − 3x) + xg(y − 3x)

Hint: m = −3,−3 (repeated root)

6. (D4
x −D4

y)z = 0

Ans. z = f1(y + x) + f2(y − x) + f3(y + ix) +
f3(y − ix) +i[f4(y + ix) − f4(y − ix)]

7. (D2
x − a2D2

y)z = 0

Ans. z = f (y + ax) + g(y − ax)

Hint: Roots ±a
8. (9D2

x + 24DxDy + 16D2
y)z = 0

Ans. z = f
 
y − 4

3
x
 + xg  y − 4

3
x
 

or z = f1(3y − 4x) + xg1(3y − 4x)
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Hint: Roots: − 4
3
,− 4

3
(repeated)

9. (2Dx +Dy + 1)(D2
x + 3DxDy − 3Dx)z = 0

Ans. z = f1(y) + e−x/2.f2(2y − x)+e3xf3(y−
3x)

or

z = f1(y) + e−yf2(2y − x) + f3(y − 3x)

10. (2Dx +Dy + 5)(Dx − 2Dy + 1)2z = 0

Ans. z = e−5yf1(2y − x) + e−x[f2(y + 2x) +
xf3(y + 2x)]

11. (D2
x −D2

y + 3Dx − 3Dy)z = 0

Ans. z = f1(y + x) + e−3xf2(y − x)

12. (2Dx + 3Dy − 1)2(Dx − 3Dy + 3)3z = 0

Ans. z = e
x
2 [f1(2y − 3x) + xf2(2y − 3x)]+

ey[f3(y + 3x) + yf4(y + 3x) + y2f5(y +
3x)]

13. (D4
x +D4

y − 2D2
xD

2
y)z = 0 (biharmonic equa-

tion)

Ans. z = xf1(x − y) + f2(x − y) + x f3(x +
y) + f4(x + y)

Hint: Root 1,−1 (both repeated twice)

14. (D3
x − 3D2

xDy + 2DxD
2
y)z = 0

Ans. z = f1(y) + f2(y + x) + f3(y + 2x)

Hint: Roots: 0, 1, 2

15. (D3
x − 6D2

xDy + 11DxD
2
y − 6D3

y)z = 0

Ans. z = f1(y + x) + f2(y + 2x) + f3(y + 3x)

18.7 NON-HOMOGENEOUS LINEAR PAR-

TIAL DIFFERENTIAL EQUATIONS

WITH CONSTANT COEFFICIENTS

A partial differential equation of the form

F (Dx,Dy) = f (x, y) (1)

is known as a non-homogeneous linear equation with

constant coefficients. The general solution of the cor-

responding homogeneous equation

F (Dx,Dy) = 0 (2)

is known as the “complementary function (C.F.)” of

(1). Any solution of (1) is known as the “particular

integral” (P.I.) of (1). Then the general solution of

the non-homogeneous equation (1) is the sum of the

complementary function zc and the particular inte-

gral zp. Thus

General solution = complementary function

+ particular integral

(G.S = C.F.+ P.I.) (3)

Methods of obtaining complementary function were

considered in detail in this section.

Methods of Obtaining Particular Integral

Suppose F (Dx,Dy) is factored intom linear factors

so that (1) takes the form

F (Dx,Dy) = (Dx −m1Dy)(Dx −m2Dy) . . .

. . . (Dx −mnDy) = f (x, y)

Then the particular integral is

zp = 1

(Dx −m1Dy) . . . (Dx −mndy)
f (x, y) (4)

or zp =
 

1

(Dx −m1Dy)

  
1

Dx −m2Dy)

 
. . .

. . .

 
1

Dx −mn−1Dy

  
1

Dx −mnDy

 
f (x, y)

By introducing u1 = 1
Dx−mnDy f (x, y),

u2 = 1
Dx−mn−1Dy

u1, . . ., z = un = 1
Dx−m1Dy

un−1

the solution of (4) reduces to solution of above n

first order equations which can be solved by the

following, book work.

Book work: Prove that the particular integral of p −
mq = g(x, y) is given by z =  

g(x, a −mx)dx

where a is replaced by y +mx after integration.

Also the constant of integration is omitted.

Proof: The auxiliary system of the first order linear

equation

p −mq = g(x, y)

is
dx

1
= dy

−m = dz

g(x, y)
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From dx
1

= dy

−m , we get y +mx = constant = a.

From dx
1

= dz
g(x,y)

we get

z =
 
g(x, y)dx

Substituting y = a −mx,

z =
 
g(x, a −mx)dx

Here the constant of integration is omitted and a is

replaced by y +mx after integration.

Special case: If F (Dx,Dy) is a homogeneous func-

tion of Dx and Dy of degree n and RHS function

f (x, y) is of the form φ(ax + by), then a particular

integral of equation

F (Dx,Dy) = f (x, y) (1)

is given by zp = 1
F (Dx,Dy )

φ(ax + by)

or zp = 1
F (a,b)

  
. . .

 
φ(v)dvn ,F (a, b)  = 0

where v = ax + by, i.e., integrate φ(v) w.r.t v, n

times and after integration replace v by ax + by,

provided F (a, b)  = 0.

If F (a, b) = 0 so that

F (Dx,Dy)= (bDx−aDy)mG(Dx,Dy),G(a, b)  =0,

then the particular integral is

zp = 1

(bDx − aDy)m
φ(ax + by)

zp = xm

bmm!
φ(ax + by)

Short Methods of Obtaining Particular Inte-

grals

The inverse operator short methods of obtaining par-

ticular integrals similar to those used in ordinary dif-

ferential equations are listed here.

Case 1: f (x, y) = eax+by

P.I. : z = 1

F (Dx,Dy)
eax+by = 1

F (a, b)
eax+by

provided F (a, b)  = 0.

Case 2: If F (a, b) = 0 then F (Dx,Dy) = (Dx −

a
b
Dy)

rg(Dx,Dy) so that g(a, b)  = 0. Thus

P.I. : z = 1 
Dx − a

b
Dy

 r 1

g(Dx,Dy)
eax+by

= 1

g(a, b)
· x

r

r!
eax+by

provided g(a, b)  = 0.

Case 3: f (x, y) = sin(ax + by) or cos(ax + by).

Replace D2
x by −a2, D2

y by −b2 and Dx ·Dy by

−ab. Thus

1

F (D2
x,DxDy,D

2
y)

sin(ax + by)

= 1

F (−a2,−ab,−b2)
sin(ax + by)

and
1

F (D2
x,DxDy,D

2
y)

cos(ax + by)

= 1

F (−a2,−ab,−b2)
cos(ax + by)

provided F (−a2,−ab,−b2)  = 0.

Note: If F (−a2,−ab,−b2) = 0, then use the

Book work stated above.

Case 4: f (x, y) = xmyn wherem and n are positive

constants. Then particular integral is

zp = 1

F (Dx,Dy)
xmyn = [F (Dx,Dy)]

−1xmyn

(a) If n < m, 1
F (Dx,Dy )

is expanded in powers of
Dy

Dx
.

(b) If m < n, 1
F (Dx,Dy )

is expanded in powers of Dx
Dy

.

Note: Although the answers in (a) and (b) are dif-

ferent, the difference can be merged into the arbitrary

functions of C.F.

Case 5: Exponential shift: f (x, y) = eax+by ·
V (x, y) where V (x, y) is any function of x and y.

Then

zp = 1

F (Dx,Dy)

 
eax+by · V (x, y)

 
= eax+by 1

F (Dx + a,Dy + b)V (x, y)
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WORKED OUT EXAMPLES

Example 1: Obtain the particular solution of

p − 2q = sin(x + 2y)

Solution: dx
1

= dy

−2
= dz

sin(x+2y)

Integrating y + 2x = c1. From (1) and (3), we have

z =  
sin(x + 2y)dx =  

sin(x + 2(c1 − 2x))dx

since y = c1 − 2x. So

z =  
sin(2c1 − 3x)dx =

cos(3x−2c1)

3
.

Replacing c1 by y + 2x, z = cos(3x−2(y+2x))

−3
=

cos(x+2y)

3
.

Thus the particular integral is 3z = cos(x + 2y).

Example 2: Solve (D2
x + 5DxDy + 6D2

y)z =
ex−y

Solution: A.E. is m2 + 5m+ 6 = 0 or (m+
2)(m+ 3) = 0. So C.F. is zc = φ1(y − 2x) +
φ2(y − 3x).

P.I. is zp = 1

f (Dx,Dy)
ex−y =

1

(D2
x + 5DxDy + 6D2

y)
ex−y . Here a = 1, b = −1,

so replace Dx by a = 1, Dy by b = −1. Then

zp = 1

12 + 5 · 1(−1) + 6(−1)2
ex−y = 1

2
ex−y.

Then the general solution is

z = C.F.+ P.I. = φ1(y − 2x) + φ2(y − 3x)

+ 1

2
ex−y

Example 3: Solve 4r + 12s + 9t = e3x−2y

Solution: P.D.E. is (4D2
x + 12DxDy + 9D2

y)z =
e3x−2y .

A.E. is 4m2 + 12m+ 9 = 0 or (2m+ 3)2 = 0 i.e.,

m = − 3
2
, − 3

2
. (repeated roots)

So C.F. is zc = f1

 
y − 3

2
x
 + xf2

 
y − 3

2
x
 =

φ1(2y − 3x) + xφ2(2y − 3x).

P.I.: zp = 1

4D2
x + 12DxDy + 9D2

y

e3x−2y =
1

4
 
Dx −  − 3

2

 
Dy

 2
e3x−2y

Here a = 3, b = −2. Since − 3
2

is a (double) root

of the AE this is a failure case and Dx and Dy can

not be replaced by 3 and −2 respectively because

f (+3,−2) = 0. Applying the B.W. (on page 18.22)

we get

P.I.: zp = 1
4

· x2

2!
e3x−2y . Thus G.S = z = C.F. + P.I. =

φ1(2y − 3x) + xφ2(2y − 3x) + 1
8
x2e3x−2y

Aliter: Put u =  
Dx + 3

2
Dy

 
z, then PDE reduces to

(4D2
x + 12DxDy + 9D2

y)z = 4

 
Dx + 3

2
Dy

 2

z

= 4

 
Dx + 3

2
Dy

 
u = e3x−2y.

Solution is u =  
F (x, c −mx)dx. Here

y − 3
2
x = c1 or 2y − 3x = c. Then u = 

e3x−2ydx =  
e3x−(c+3x)dx = e−c  dx = xe−c.

Thus u = xe−2y+3x . Now 4
 
Dx + 3

2
Dy

 
z = u =

xe3x−2y . Solution by BW (see page 18.22) z =
1
4

 
F (x, c −mx)dx. Here 2y − 3x = c.

z = 1

4

 
xe3x−2ydx = 1

4

 
xe−cdx = e−c

4

 
x dx =

= e−c x
2

2
= 1

4

x2

2
.e−c = x2

8
e3x−2y

Example 4: Solve
∂2z

∂x2
− 2

∂2z

∂x∂y
+ ∂2z

∂y2
= sin x.

Solution: A.E.:m2 − 2m+ 1 = 0 or (m− 1)2 = 0

with repeated (double) roots 1, 1. So C.F. is

zc = φ1(y + x) + xφ2(y + x).

P.I. : zp = 1

D2
x − 2DxDy +D2

y

· sin x.

Here a = 1, b = 0. Replace D2
x by −m2 = −12 =

−1,D2
y = −n2 = 0 andDxDy = −m · n = −1.0 =

0, then

P.I. : zp = 1

−1 − 0 − 0
sin x = − sin x.

Thus

z = G.S. = C.F.+ P.I. = φ1(y + x)

+ xφ2(y + x) − sin x
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Example 5: Solve r − 2s = sin x · cos 2y

Solution: PDE is
∂2z

∂x2
− 2

∂2z

∂x∂y
= sin x · cos 2y.

AE is m2 − 2m = m(m− 2) = 0 i.e., m = 0, 2

C.F. :zc = f1(y + 0x) + f2(y + 2x)

P.I. :zp = 1

D2
x−2DxDy

sin x · cos 2y

= 1

2
· 1

D2
x − 2DxDy

[sin(x + 2y) + sin(x − 2y)]

Using the result (on page 18.23) (with a = 1, b = 2

for the first term and a = 1, b = −2 for the second

term)

= 1

2

 
1

−12 − 2 · 0(−2)
sin(x + 2y)+

+ 1

−12 − 2.0(+2)
sin(x − 2y)

 

= +1

2

 
1

3
(sin x · cos 2y + sin 2y · cos x)

−1

5
(sin x · cos 2y − sin 2y · cos x)

 

= 1

15
sin x · cos 2y + 4

15
sin 2y · cos x

z = G.S. = C.F.+ P.I. = f1(y) + f2(y + 2x)

+ 1

15
(sin x cos 2y + 4 sin 2y. cos x)

Example 6: Solve (2D2
x − 5DxDy + 2D2

y)z =
5 sin(2x + y)

Solution: A.E. is 2m2 − 5m+ 2 = 0 or (2m−
1)(m− 2) = 0 i.e.,m = 2, 1

2
. So C.F. is zc = φ1(y +

1
2
x) + φ2(y + 2x) or

zc = φ3(2y + x) + φ2(y + 2x).

Here a = 2, b = 1. Note a = 2 is a root of the A.E.

P.I. : zp = 1

2D2
x − 5DxDy + 2D2

y

5 · sin(2x + y)

= 5

2

1

D2
x − 5

2
DxDy +D2

y

sin(2x + y)

= 5

2

1

(Dx − 1
2
Dy)(Dx − 2Dy)

sin(2x + y)

At D2
x = −a2 = −4, D2

y = −b2 = −1, DxDy =
−a · b = −2, f (Dx,Dy) = 2D2

x − 5DxDy +
2D2

y = 0. So rewriting

(2Dx −Dy)(Dx − 2Dy)z = 5 sin(2x + y)

Put u = (Dx − 2Dy)z then (2Dx −Dy)u =
5 sin(2x + y)

u = 5

2Dx −Dy
· sin(2x + y).

Here 2y + x = x, or y = c−x
2

.

u = 5

 
sin

 
2x + c − x

2

 
dx

= 5

 
sin

 
3x + c

2

 
dx

Integrating, u = 5 · 2
3

 − cos
 

3x+c
2

  
= −10

3
· cos

 
3x + 2y + x

2

 
= −10

3
cos(2x + y)

Now P.I.:= zp = 1

Dx − 2Dy
[u] =

1

Dx − 2Dy

 −10

3
cos(2x + y)

 
Using y + 2x = c,

zp =
 −10

3
· cos cdx = −10

3
cos c

 
dx

= −10

3
· x · cos c = −10

3
· x · cos(y + 2x)

Thus G.S. = C.F. + P.I.

z=f1(y+2x)+f2(2yx)− 10

3
· x · cos (y+2x)

Example 7: Solve (D2
x +D2

y)z = x2y2

Solution: A.E.: m2 + 1 = 0 or m = ±i. So

C.F.:zc = φ1(y + ix) + φ1(y − ix)

+i[φ2(y + ix)−φ2(y − ix)]

P.I.: zp = 1

D2
x+D2

y
x2y2 = 1

D2
x

1 
1+

 
Dy
Dx

 2
 x2y2

Expanding by binomial series

= 1

D2
x

 
1 −

 
Dy

Dx

 2

+
 
Dy

Dx

 4

+ . . .
 
x2y2

= 1

D2
x

(x2y2) − 1

D4
x

D2
y(x

2y2) + 0 + . . .
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Integrating and differentiating

= 1

Dx

x3

4
y2 − 1

D4
x

2x2 = x4

12
y2 − 2 · x6

3 · 4 · 5 · 6

zp = 1

180
(15x4y2 − x6).

Thus G.S. = C.F. + P.I. = zc + zp

z = φ1(y + ix) + φ1(y − ix)

+i[φ2(y + ix) − φ2(y − ix)]

+ 1

180
(15x4y2 − x6)

Exponential shift

Example 1: Solve zxx − zxy − 2zyy = (y − 1)ex

Solution: (D2
x −DxDy − 2D2

y)z = (y − 1)ex

A.E.: m2 −m− 2 = 0 or (m+ 1)(m− 2) = 0

... m = −1, 2

C.F.: zc = f1(y − x) + f2(y + 2x)

P.I.: zp = 1

D2
x−DxDy−2D2

y
(y − 1)ex

Applying exponential shift with a = 1, b = 0

zp = ex

(Dx + 1)2 − (Dx + 1)Dy − 2D2
y

(y − 1)

= ex
1

1 + (D2
x + 2Dx −DxDy −Dy − 2D2

y)
(y − 1)

= ex[1 − (D2
x + 2Dx −DxDy −Dy − 2D2

y)

+ . . .](y − 1)

= ex[(y − 1) − (0 + 0 − 0 − 1 − 0) + . . .] = yex

... G.S. : z = C.F.+ P.I. = zc + zp = f1(y − x)+
+f2(y + 2x) + yex

Method of undetermined coefficients

Example 1: Solve (D2
x +DxDy − 6D2

y)z =
x2 sin(x + y)

Solution: A.E.: m2 +m− 6 = 0 or (m− 2)(m+
3) = 0 so m = 2,−3.

C.F.: zc = f1(y + 2x) + f2(y − 3x).

To find the particular integral, use the

method of undetermined coefficients. So as-

sume the P.I. as zp = x2(A sin(x + y) +

B cos(x + y)) + x(C sin(x + y) +D cos(x + y))

+(E sin(x + y) + F cos(x + y)

or

zp = (Ax2 + Cx + E) sin(x + y) + (Bx2 +Dx +
F ) cos(x + y)

Differentiating z partially w.r.t. x and y, we get

zx = (2Ax + C − Bx2 −Dx − F ) sin(x + y) +
(Ax2 + Cx + E + 2Bx +D) cos(x + y)

zxx = (2A−Ax2−Cx−E−4Bx−2D) sin(x+y)

+(4Ax + 2C + 2B − Bx2 −Dx − F ) cos(x + y).

zxy = −(Ax2 + Cx + E + 2Bx +D) sin(x + y)+
+(2Ax + C − Bx2 −D · x − F ) cos(x + y)

zyy =−(Ax2+Cx+E) sin(x+y)−(Bx2 +D · x
+F ) cos(x + y).

Substituting these values in the given PDE, we obtain

[(2A− Ax2 − Cx − E − 4Bx − 2D) +(−Ax2 −
Cx − E − 2Bx −D) +6(Ax2 + Cx + E)]

× sin(x + y) + cos(x + y) +[(4Ax + 2C + 2B −
Bx2 −D · x − F ) +(2Ax + C − Bx2 −D · x −
F ) + 6(Bx2 +Dx + F )] = x2 sin(x + y).

Now equating the coefficients on both sides, we have

x2 sin x : −A− A+ 6A = 1 ... A = 1
4

x sin x : −C − 4B − C − 2B + 6C = 0

... 2C − 3B = 0

x0 sin x : 2A− E − 2D − E −D + 6E = 0

... 3D − 4E = 1
2

x2 cos x : −B − B + 6B = 0 ... B = 0 ... C = 0

x cos x : 4A−D + 2A−D + 6D = 0 ... D = − 3
8

... E = −13
32

x0 cos x : 2C + 2B − F + C − F + 6F = 0

... F = 0

Thus A= 1
4
, B=C=0, D= −3

8
, E= −13

32
, F =0.

Hence the P.I. is

zp= 1
4
x2 sin(x+y) − 13

32
sin(x+y)− 3

8
x cos(x + y)

Thus G.S. = z = C.F. + P.I. = zc + zp.
Example 2: Solve (D2

x − 2DxDy +D2
y)z =

tan(y + x).

Solution: (Dx −Dy)2z = tan(y + x). So the com-

plementary function is zc = φ1(y + x) + xφ2(y +
x). Now particular integral is zp = 1

(Dx−Dy )2
tan(y +

x). Since F (Dx,Dy) = (Dx −Dy)2 = (1 − 1) = 0.

So applying the result, on page 18.23 zp =
x2

2!
tan(y + x). Thus the general solution is z =

φ1(y + x) + xφ2(y + x) + x2

2
tan(y + x).
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Example 3: Solve (D2
x + 3DxDy +Dx + 2D2

y −
2)z = e3x+4y + y(1 − 2x).

Solution: Factorizing the L.H.S. we have (Dx +
Dy − 1)(Dx + 2Dy + 2)z = e3x+4y + y(1 − 2x).

For the first factor (Dx +Dy − 1), the associated

solution is exφ1(y − x) with a = 1, b = 1, c = −1

and for the second factor Dx + 2Dy + 2, the

associated solution is e−yφ2(y − 2x) with a = 1,

b = 2, c = 2. Then the complementary function

zp is zp = exφ1(y − x) + e−yφ2(y − 2x). Now the

particular integral is

zp =
1

(Dx+Dy−1)(Dx+2Dy+2)
· [e3x+4y+y(1−2x)]

zp = I1 + I2

For I1 = 1

(Dx +Dy − 1)(Dx + 2Dy + 2)
e3x+4y

= 1

(3 + 4 − 1)(3 + 8 + 2)
e3x+4y

with a = 3, b = 4

I1 = 1

78
e3x+4y

Now

I2 = 1

(Dx +Dy − 1)(Dx + 2Dy + 2)
y(1 − 2x)

Consider
1

(Dx +Dy − 1)
y(1 − 2x) =

−1

1 − (Dx +Dy)
y(1 − 2x) = −[1 + (Dx +Dy) +

(Dx +Dy)2 + . . .][y(1 − 2x)]

= −[(y − 2xy) − 2y + 1 − 2x + 0 + 0 + 2(−2)]

= (2xy + y + 2x + 3)

Then I2 = 1
Dx+2Dy+2

(2xy + y + 2x + 3)

= 1

2

1

1 +  
Dx
2

+Dy
 (2xy + y + 2x + 3)

= 1

2

 
1 −

 
Dx

2
+Dy

 
+

 
Dx

2
+Dy

 2

+ . . .
 

[2xy + y + 2x + 3] = 1

2
[(2xy + y + 2x + 3) −

1

2
(2y + 2)− (2x + 1) + 1

4
· 0 + 0 + 2]

= 1

2
[2xy + 0 + 0 + 3] = xy + 3

2
.

Thus the particular integral is

zp = 1

78
e3x+4y +

 
xy + 3

2

 
Hence the general solution is

z = zc + zp = exφ1(y − x) + e−yφ2(y − 2x)

+ 1

78
e3x+4y + xy + 3

2
.

Example 4: Solve (3DxDy − 2D2
y −Dy)z =

cos(3y + 2x)

Solution: Rewriting Dy(3Dx − 2Dy − 1)z =
cos(3y + 2x)

For Dy the corresponding solution is φ1(x) and

for (3Dx − 2Dy − 1) the corresponding solution is

ey/2φ2(3y + 2x) with a = 3, b = −2, c = −1. Then

the complementary function is

zc = φ1(x) + ey/2φ2(3y + 2x).

The particular integral is

zp = 1

3DxDy − 2D2
y −Dy

· cos(3y + 2x)

Here a = 2, b = 3. So replaceD2
y by −b2 = −32 =

−9 and replace DxDy by −a · b = −2 · 3 = −6.

Then zp = 1
3(−6)−2(−9)−Dy cos(3y + 2x)

= − 1

Dy
cos(3y + 2x)

zp = − sin(3y + 2x)

3

Thus the general solution is

z = zc + zp = φ1(x) + ey/2φ2(3y + 2x)

−1

3
sin(3y + 2x)

Example 5: Solve (6D2
x + 5DxDy − 6D2

y)z =
132 log(x + 3y)

Solution: Rewriting (2Dx + 3Dy)(3Dx −
6Dy)z = 132 log(x + 3y). For the first factor

a = 2, b = 3 so the corresponding solution is

φ1(2x + 3y).

For the second factor a = 3, b = −2 so the corre-

sponding solution is φ2(3x − 2y). Thus the comple-

mentary function is

zc = φ1(2x + 3y) + φ2(3x − 2y).
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The particular integral is

zp = 1

6D2
x + 5DxDy − 6D2

y

[132 log(x + 3y)]

Since the operator F (Dx,Dy) = 6D2
x + 5DxDy −

6D2
y is homogeneous of degree n = 2, the P.I. is ob-

tained by integrating 132 log v, twice w.r.t. v and

dividing by F (a, b). Here v = x + 3y and a = 1,

b = 3. Thus the particular integral is

zp = 132

F (1, 3)

  
ln v dv dv

= 132

6 · 12 + 5 · 1 · 3 − 6 · 32 + · · ·

  
ln v dv dv

= 132

−33

 
[v ln v − v] dv = 4

 
v2

2
−

 
v ln v dv

 

=4

 
v2

2
−
 

ln v d

 
v2

2

  
= 4

 
v2

2
− v2

2
. ln v+ 1

2

v2

2

 
= v2[3 − 2 ln v]

Replacing v by x + 3y, we get P.I. as

yp = (x + 3y)2[3 − 2 ln(x + 3y)]

Then the general solution is

z = zc + zp = φ1(2x + 3y) + φ2(3x − 2y)

+(x + 3y)2[3 − 2 ln(x + 3y)]

EXERCISE

Solve (obtain the general solution (G.S.))

1. (D2
x −D2

y)z = x − y
Ans. z = f1(x + y) + f2(x − y) + 1

4
x(x − y)2

2. (D2
x + 3DxDy + 2D2

y)z = x + y
Ans. z = f1(y − x) + f2(y − 2x) + 1

36
(x + y)2

3. (4D2
x − 4DxDy +D2

y)z = 16 log(x + 2y)

Ans. z = f1(2y + x) + xf2(2y + x) +
2x2 log(x + 2y)

4. (D2
x +D2

y)z = cosmx · cos ny

Ans. z = f1(y + ix) + f2(y − ix) − cosmx·cos ny

(m2+n2)

5. (D2
x − 6DxDy + 9D2

y)z = 12x2 + 36xy

Ans. z = f1(y + 3x) + xf2(y + 3x) + 10x4 +
6x3y

6. (D2
x −D2

y +Dx + 3Dy − 2)z = ex−y − x2y

Ans. z = e−2xf1(y + x) + exf2(y − x) − 1
4
ex−y

+ 1
2

 
x2y + xy + 3

2
x2 + 3y

2
+ 3x + 21

4

 
7. (Dx − 3Dy − 2)2z = 2e2x tan(y + 3x)

Ans. z = e2x[f1(y + 3x) + xf2(y + 3x)] +
x2e2x tan(y + 3x)

Hint: Use exponential shift.

8. (D2
x +DxDy − 6D2

y)z = y cos x

Ans. z = f1(y + 2x) + f2(y − 3x) + sin x −
y cos x

9. (D2
x +DxDy − 6D2

y)z = cos(2x + y)

Ans. z = φ1(y − 3x) + φ2(y + 2x)+
x
5

sin(2x + y) + 1
25

cos(2x + y)

10. (D2
x + 2DxDy +D2

y − 2Dx − 2Dy)z =
sin(x + 2y)

Ans. z = f1(y − x) + e2xf2(y − x) +
1
39

[2 cos(x + 2y) − 3 sin(x + 2y)]

11. D2
x + 5DxDy + 5D2

y)z = x · sin(3x − 2y)

Ans. z = f1(y + (−5 +
√

5) x
2
) + f2(y + (−5 −√

5) x
2
) +x sin(3x − 2y) + 4 cos(3x − 2y)

Hint: Assume P.I. as Ax sin(3x − 2y) +
Bx cos(3x − 2y) +C sin(3x − 2y) +
D cos(3x − 2y). By method of undeter-

mined coefficients A = 1, B = C = 0,

D = 4.

12. (D3
x +D2

xDy −DxD2
y −D3

y)z = ex cos 2y

Ans. z = f1(y − x) + xf2(y − x) + f3(y + x)+
1
25
ex cos 2y + 2

25
ex sin 2y

Hint: a) Assume P.I. as Aex cos 2y +
Bex sin 2y then A = 1

25
and B = 2

25

(b) Applying exponential shift

P.I. =

ex 1

(Dx+1)3+(Dx+1)2Dy−(Dx+1)D2
y−D3

y
·cos 2y,

(replace D2
x = 0, D2

y = −4, DxDy = 0)

= ex
Dy

Dy(5Dy + 3Dx + 5)
cos 2y

= −2

5
ex

1

Dy − 4
sin 2y = −2

5
ex
Dy + 4

D2
y − 16

sin 2y
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= ex

50
(Dy + 4) sin 2y

13. (D3
x − 7DxD

2
y − 6D3

y)z = sin(x + 2y) +
e3x+y

Ans. z = f1(y − x) + f2(y − 2x) + f3(y + 3x) −
1
75

cos(x + 2y) + x
20
e3x+y

14. (D2
x + 2DxDy − 8D2

y)z = √
2x + 3y

Ans. z = f1(y + 2x) + f2(y − 4x)−
1

210
(2x + 3y)5/2

15. (D3
x − 7DxD

2
y − 6D3

y)z = cos(x − y) +
x2 + xy2 + y3

Ans. z = f1(y − x) + f2(y − 2x) + f3(y + 3x) +
1
4
x cos(x − y) + 5

72
x6 + 1

60
x5(1 + 21y) +

1
24
x4y2 + 1

6
x3y3

Find the particular integral (see pages 18.22

and 18.23)

16. p + 3q = cos(2x + y)

Ans. z = 1
5

sin(2x + y)

Hint: y − 3x = c1,

z =  
cos(2x + c1 + 3x)dx

17. p − 2q = (y + 1)e3x

Ans. z = 1
3

 
y + 5

3

 
e3x

Hint: y + 2x = c1,

z =  
[(c1 − 2x) + 1]e3xdx

18. (D3
x − 3D2

xDy − 4DxD
2
y + 12D3

y)z =
sin(y + 2x)

Ans. z = 1
4
x sin(y + 2x).

Hint: P.I.= 1
(Dx+2Dy )(Dx−3Dy )(Dx−2Dy )

· sin(y+
2x)

= 1

D2
x−DxDy−6D2

y )
· 1

(Dx−2Dy )
· sin(y + 2x)

= − 1
4

 
1

Dx−2Dy

 
sin(y + 2x).

Now dx
1

= dy

−2
= dz

sin y+2x
, y + 2x = c,

z =  
sin(y + 2x)dx,

z = sin c
 
dx = x · sin c = x · (y + 2x)

19. (Dx +Dy − 1)(Dx +Dy − 3)(Dx +Dy)z =
ex+y+z cos(2x − y)

Ans. z = exφ1(y − x) + e3xφ2(y − x) + φ3(y −
x) − 1

10
ex+y+z[sin(2x − y) + 2 cos(2x − y)]

Hint: Use exponential shift.

20. [D2
x +DxDy − 2D2

y]z = 8 ln(x + 5y)

Ans. z = φ1(2x − y) + φ2(x + y) + 1
22

[3 −
2 ln(x + 5y)](x + 5y)2

Hint: Since F (Dx,Dy) is homogeneous of

degree 2, integrate 8 ln v twice w.r.t. v and

divide divide by F (1, 5). Here v = x + 5y.

21. (D2
x −DxDy)z = cos x · cos 2y

Ans. z = φ1(y) + φ2(y + x) + 1
2

cos(x + 2y) −
1
6

cos(x − 2y)

22. (D3
x − 2D2

xDy)z = 2e2x + 3x2y

Ans. z = φ1(y) + xφ2(y) + φ3(y + 2x) +
1
60

(15e2x + 3x5y + x6)

23. (D2
x − 4DxDy + 4D2

y)z = e2x+y

Ans. z = φ1(y + 2x) + xφ2(y + 2x) + 1
2
x2e2x+y

18.8 CAUCHY TYPE DIFFERENTIAL

EQUATION

The partial differential equation of the form

F (xDx, yDy) = f (x, y)

with variable coefficients can be transformed to

P.D.E. with constant coefficients by putting x = eu

and y = ev . Then u = ln x, v = ln y, x ∂
∂x

= ∂
∂u

,

x2 ∂2

∂x2 = ∂
∂u

 
∂
∂u

− 1
 

i.e, xDx = Du and x2D2
x =

Du (Du − 1). Similarly yDy = Dv and y2D2
y =

Dv(Dv − 1). Here Dv is ∂
∂v

. The transformed equa-

tion in the new dependent variablesu and vwhich is a

D.E. with constant coefficients, is then solved using

the above methods. In the solution z(u, v), replace

u by ln x and v by ln y to get the general solution

z(x, y).

WORKED OUT EXAMPLES

Euler-Cauchy equation

Example 1:

Solve (x2D2
x − y2D2

y)z = x2y.
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Solution: Put x = eu, y = ev then x2y = e2u+v .
Also xDx = Du, x

2D2
x = Du(Du − 1). Similarly

yDy = Dv , y
2D2

y = Dv(Dv − 1). Then the given

D.E. in the new variables u and v is

[Du(Du − 1) −Dv(Dv − 1)]z = e2u+v

(Du −Dv)(Du +Dv − 1)z = e2u+v

The complementary function is

zc = φ1(v + u) + euφ2(v − u)

or zc = φ1(ln y + ln x) + xφ2(ln y − ln x)

zc = φ1(ln xy) + xφ2(ln(y/x))

zc = ψ1(xy) + xψ2

 y
x

 
Now the particular integral is

zp = 1

D2
u −Du −D2

v +Dv
· e2u+v

Here a = 2, b = 1. Replace Du by a = 2, Dv by

b = 1.

Then zp = 1
4−2−1+1

e2u+v = 1
2
e2u+v

or zp = 1
2
x2y.

Hence the general solution is

z = zc + zp = ψ1(xy) + xψ2

 y
x

 
+ 1

2
x2y

EXERCISE

1. (x2D2
x − 4xyDxDy + 4y2D2

y + 6yDy)z =
x3y4

Ans. z = φ1(x2y) + xf2(x2y) + 1
30
x3y4

Hint: Put x = eu, y = ev then

(Du − 2Dv)(Du − 2Dv − 1)z = e3u+4v

where Du = ∂
∂u

and Dv = ∂
∂v

.

2.
 

1

x2D
2
x − 1

x3Dx − 1

y2D
2
y + 1

y2Dy

 
z = 0

Ans. z = φ1(y2 + x2) + φ2(y2 − x2)

Hint: Put x2 = 2u, y2 = 2v, then (D2
u −

D2
v )z = 0

3. (x2D2
x − y2D2

y + xDx − yDy)z = log x

Ans. z = φ1(xy) + φ2

 
y

x

 + 1
6
(log x)3

Hint: Put x = eu, y = ev then (D2
u −D2

v )z =
u.

4. (xD3
xD

2
y − yD2

xD
3
y)z = 0

Ans. z = ψ1(y) + ψ2(x) + xψ3(y) + yψ4(x) +
ψ5(xy)

Hint: Put x = eu, y = ev , (x3y2D3
xD

2
y −

x2y3D2
xD

3
y)z = 0

DuDv(Du − 1)(Dv − 1)(Du −Dv)z = 0

5. (x2D2
x + xyDxDy − 2y2D2

y − xDx −
6yDy)z = 0

Ans. z = φ1(y/x2) + x2φ2(xy)

6. (x2D2
x − 2xyDxDy − 3y2D2

y + xDx −
3yDy)z = x2y sin(ln x)2

Ans. z = φ1(x3y) + φ2(y/x) − 1
65
x2y[4 cos(ln x)2

+7 sin(ln x)2].

7. (x2D2
x + y2D2

y + 2xyDxDy − nxDx −
nyDy + n)z = x2 + y2

Ans. z = xφ1(y/x) + xnφ2(y/x) + 1
(2−n)

(x2 + y2)

Hint: Put x = eu, y = ev , then

(Du +Dv − n)(Du +Dv − 1)z =
e2u + e2v

18.9 NON-LINEAR PARTIAL DIFFER-

ENTIAL EQUATIONS OF SECOND

ORDER: MONGE’S METHOD

The most general second order non-linear partial dif-

ferential equation in two independent variables x and

y, and z as the dependent variable has the form

F (x, y, z, p, q, r, s, t) = 0 (1)

whose solution can be obtained by Monge’s∗ method

in special cases. The first step in Monge’s method

consists of finding one or two intermediate integrals

(also known as first integrals) of the form

u1 = ψ1(v1) (2)

and/or u2 = ψ2(v2) (3)

* Gaspard Monge (1746-1818), Professor at Paris.
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Here u1, u2, v1, v2 are functions of x, y, z, p, q

and the functions ψ1 and ψ2 are arbitrary. Note that

an intermediate integral may not exist for PDE (1).

By differentiating

u = ψ(v) (4)

w.r.t. x and y and eliminating ψ  we obtain the most

general PDE of the form

Rr + Ss + T t + U (rt − s2) = V (5)

which has (4) as an intermediate integral (I.I.). Here

R, S, T , U , V are functions of x, y, z, p and q.

When U = vpuq − vqup = 0 then (5) reduces to

Rr + Ss + T t = V. (6)

Since the coeffiecients R, S, T , V are functions of p

and q as well as x, y, z, P.D.E. (6) is non-linear (also

referred to as “quasilinear” or “uniform non-linear”

equation unlike (5) which is known as “non-uniform”

equation).

We know that

dz = ∂z

∂x
dx + ∂z

∂y
dy = pdx + qdy (7)

dp = ∂p

∂x
dx + ∂p

∂y
dy = rdx + sdy (8)

dq = ∂q

∂x
dx + ∂q

∂y
dy = s dx + t dy (9)

Solving (8) and (9), we get

r = dp − sdy
dx

, t = dq − sdx
dy

(10)

Using (10) eliminate r and t from (6), we have

R

 
dp − sdy
dx

 
+ Ss + T

 
dq − sdx
dy

 
= V

or

s
 
R(dy)2 − S dxdy + T (dx)2

 = Rdydp+
+ T dxdq − V dxdy

Thus we obtain

R(dy)2 − Sdxdy + T (dx)2 = 0 (11)

Rdydp + T dxdq − V dxdy = 0 (12)

The two simultaneous equations (11) and (12) are

known as Monge’s (subsidiary) equations (M.E.). By

solving the Monge’s equations (11) and (12) one or

two intermediate integrals of (6) are obtained.

In general, the quadratic (11) can be resolved into

two (or one repeated) equations.

Case I: Suppose (11) can be resolved as

R(dy)2 − Sdxdy + T (dx)2 =
= (A1dy + B1dx)(A2dy + B2dx) = 0

where A1B2  = A2B1. Then we have two systems

A1dy + B1dx = 0

and

R dydp + T dx dq − V dx dy = 0


 (13)

and

A2dy + B2dx = 0

Rdydp + T dxdq − V dxdy = 0

!
(14)

Integrating (13), we get two integralsu1 = a, v1 = b.

Thus we get an intermediate integral of (6) as

u1 = ψ1(v1) (2)

Similarly from (14), we get another intermediate in-

tegral of (6) as

u2 = ψ2(v2). (3)

Solving (2) and (3), determine p and q as functions

(in terms) of x, y and z. Substituting p and q in

dz = p dx + q dy (7)

which on integration yields the required general so-

lution of (6) involving two arbitrary functions.

Note 1: Some cases, the second intermediate inte-

gral can be obtained from the first one by inspection.

Note 2: When inspection fails, rearrange the first

intermediate integral in the form Pp +Qq = R∗

and solve by Lagrange’s method.

Case II:When (11) is a perfact square, i.e.,R(dy)2 −
S dx dy + T (dx)2 = (Ady + Bdx)2 = 0, then we

have only one system

Ady + Bdx = 0

and R dy dp + T dx dq − V dx dy = 0

!
. (15)
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Solving (15) we get only one intermediate inte-

gral u = ψ(v) of the form Pp +Qq = R∗ which

is integrated using Lagrange’s method. (or Charpit’s

method).

Note: When equation (11) gives neither two factors

nor a perfect square, then use the methods explained

in Section 18.7 on page 18.22.

WORKED OUT EXAMPLES

Example 1: Solve r + (a + b)s + abt = xy

Solution: Comparing the given equation with

Rr + Ss + T t = V

we get R = 1, S = a + b, T = ab, V = xy. Then

the Monge’s subsidiary equations

R(dy)2 − S dx dy + T (dx)2 = 0

and Rdp dy + T dq dx − V dx dy = 0

reduces to

(dy)2 − (a + b)dx dy + ab(dx)2 = 0 (1)

and dpdy + ab dq dx − xydxdy = 0 (2)

Factorising equation (1), we get

(dy − adx)(dy − bdx) = 0

which yields dy − adx = 0 (3)

and dy − bdx = 0 (4)

Integrating (3) and (4), we get

y − ax = c1 (5)

y − bx = c2 (6)

Substitute dy = adx from (3) in (2) then

dp(a dx) + ab dq dx − x y dx(a dx) = 0

or dp + b dq − xy dx = 0

Integrating we get

p + bq − y x
2

2
= constant = ψ1(y − ax) (7)

Similarly using dy = bdx from (4) in (2), we get

dp(b dx) + ab dq dx − x y dx(b dx) = 0

or dp + a dq − xy dx = 0

Integrating

p + aq − y x
2

2
= constant = ψ2(y − bx) (8)

Now solve (7) and (8) for p and q. Multiply (7) by

‘a’ and (8) by ‘b’ and subtract, then

(b − a)p − (b − a)
x2y

2
= bψ2 − aψ1

or p = bψ2−aψ1
b−a + x2y

2
(9)

Similarly subtracting (8) from (7), we get

q = ψ2 − ψ1

a − b . (10)

We know that

dz = p dx + q dy.

Substituting p and q from (9) and (10), we have

dz =
 
bψ2 − aψ1

b − a + x2y

2

 
dx +

 
ψ2 − ψ1

a − b

 
dy

Rearranging

(a − b)dz = −ψ1(dy − a dx) + ψ2(dy − bdx)

+ (a − b)x
2y

2
dx

Integrating

z = φ1(y − ax) + φ2(y − bx) + x3y

6
which is the required general solution involving two

arbitrary functions φ1 and φ2 which are functions of

their arguments.

Example 2: Solve q2r − 2pqs + p2t = pt − qs.
Solution: Rewriting the equation in the standard

form

q2r − q(2p − 1)s + p(p − 1)t = 0

Here R = q2, S = q − 2pq, T = p2 − p, V = 0

The first Monge’s equation (11) is

q2(dy)2 + (2pq − q)dx dy + (p2 − p)(dx)2 = 0
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Rewriting

q2(dy)2 + q(p − 1)dxdy + pq dx dy+
+p(p − 1)(dx)2 = 0

or [p dx + q dy][q dy + (p − 1)dx] = 0

The two factors are

p dx + q dy = dz = 0 or z = c1

and

q dy + (p − 1)dx = q dy + p dx − dx
= dz− dx = 0

or z− x = c2

The second Monge’s equation (12) is

q2dpdy + p(p − 1)dq dx = 0.

Since p dx + q dy = 0, substitute q dy = −p dx,

then

q dp(−p dx) + p(p − 1)dq dx = 0

or −q dp + p dq − dq = 0

Rewriting,
q dp − p dq

q2
+ dq

q2
= 0

or d

 
p

q

 
+ d

 
− 1

q

 
= 0.

Integrating
p

q
− 1

q
= constant = ψ1(z)

or p − ψ1(z)q = 1

which is a Lagrange’s equation, with auxiliary equa-

tions.
dx
1

= dy

−ψ1
= dz

1

From the first and third, x − z = constant = c2

From second and third

ψ1(z)dz+ dy = 0

Integrating

ψ2(z) + y = constant = ψ3(x − z).
Thus the general solution is

y = ψ2(z) + ψ3(x − z)
where ψ2, ψ3 are arbitrary functions.

Example 3: Solve x2r − 2xs + t + q = 0

Solution: HereR = x2,S = −2x,T = 1,V = −q
The first Monge’s equation is

x2(dy)2 + 2x dx dy + (dx)2 = 0

or (x dy + dx)2 = 0, repeated factors.

Then x dy + dx = 0 or dy + dx

x
= 0

Integrating y + ln x = c1

Now the second Monge’s equation is

x2dp dy + dq dx + q dx dy = 0

Substituting xdy = −dx

x dp(−dx) + dq dx + q dx
 
dx

−x

 
= 0

or − xdp + dq − q dx
x

= 0

i.e., −dp + dq

x
− q dx

x2
= 0

or − dp + d
 q
x

 
= 0

Integrating p = q

x
+ c1(y + ln x)

or p − q

x
= c1

which is Lagrange’s equation with auxiliary equa-

tions

dx

1
= dy

− 1
x

= dz

c1

From one and two, 1
x
dx + dy = 0 or y + ln x = c

From one and three, dz = c1dx or z = c1x + c2.

Thus the general solution involving two arbitrary

function is

z = xψ1(y + ln x) + ψ2(y + ln x)

Example 4: Solve (ex − 1)(qr − ps) = pq ex

Solution: Rewriting in standard form

(ex − 1)q · r + p(1 − ex)s = pqex

Here R = q(ex − 1), S = p(1 − ex), T = 0,

V = pqex .

Monge’s first equation is

q(ex − 1)(dy)2 − p(1 − ex)dx dy = 0
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(ex − 1)dy[q dy + pdx] = 0

so (ex − 1)dy = 0, p dx + q dy = dz = 0

Integrating y = c1, z = c2.

Now the Monge’s second equation is

q(ex − 1)dy dp − p q exdx dy = 0

Substituting q dy = −p dx, we get

(ex − 1)(−p dx) · dp − p qexdx dy = 0

or (ex − 1)dp + qexdy = 0

i.e., (ex − 1)dp − pexdx = 0

dp

p
= exdx

ex − 1
= d(ex − 1)

(ex − 1)
Integrating

p = c1(ex − 1)

or
∂z

∂x
= p = ψ1(z)(ex − 1)

Integrating

dz

ψ1(z)
= (ex − 1)dx

ψ2(z) = ex − x + ψ3(y)

... x = ψ3(y) − ψ2(z) + ex

Example 5: Solve (1 − q)2r − 2(2 − p − 2q +
pq)s + (2 − p)2t = 0

Solution: Here R = (1 − q)2, S = −2(2 − p −
2q + pq), T = (2 − p)2, V = 0.

Monge’s first equation is

(1 − q)2(dy)2 + 2(2 − p − 2q + pq)dxdy+
+ (2 − p)2(dx)2 = 0

[(1 − q)dy + (2 − p)dx]2 = 0

or (1 − q)dy + (2 − p)dx = 0

dy − q dy + 2dx − p dx = dy + 2dx−
− (p dx + q dy) = 0

i.e. dy + 2dx − dz = 0

Since dz = p dx + q dy.

Integrating y + 2x − z = c1

Substituting (1 − q)dy = −(2 − p)dx in the

Monge’s second equation

(1 − q)2dy dp + (2 − p)2dx dq = 0

reduces to

(1 − q)dp[−(2 − p)dx] + (2 − p)2dx dq = 0

or

(1 − q)dp + (2 − p)dq = 0

i.e.,
dp

p − 2
= dq

q − 1
Integrating (p − 2) = c2(q − 1)

q − 1 = c3(p − 2) = ψ(y + 2x − z)(p − 2).

Then c3p − q = 2c3 − 1

which is a Lagrange’s equation with subsidiary equa-

tions.
dx

c3

= dy

−1
= dz

2c3 − 1

From first and second

dx + c3dy = 0

which on integration gives

x + y · ψ(y + 2x − z) = φ(y + 2x − z)
Example 6: Solve r − 3s − 10t = −3.

Solution: Here R = 1, S = −3, T = −10, V =
−3. Monge’s equations are

(dy)2 + 3 dx dy − 10(dx)2 = 0 (1)

and dy dp − 10dx dq + 3dxdy = 0 (2)

Equation (1) can be factorized as

(dy + 5dx)(dy − 2dx) = 0

Thus dy + 5dx = 0 (3)

and dy − 2dx = 0 (4)

which on integration gives

y + 5x = c1 (5)

y − 2x = c2 (6)

Substituting dy = −5dx from (3) in (2), we get

(−5 dx)dp − 10dx dq + 3dx(−5 dx) = 0

or dp + 2dq + 3dx = 0

Integrating we have

p + 2q + 3x = c3 (7)

Substituting dy = 2 dx from (4) in (2), we get

(2dx)dp − 10 dx dq + 3dx(2dx) = 0
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dp − 5dq + 3dx = 0

which on integration gives

p − 5q + 3x = c4 (8)

Thus p + 2q + 3x = f (y − 5x) (9)

and p − 5q + 3x = g(y − 2x) (10)

Solving (9) and (10), we get

7p = 5f + 2g − 21x

7q = f − g.
Substituting p and q in

dz = p dx + q dy
7dz = (5f + 2g − 21x)dx + (f − g)dy

7 dz = (5dx + dy)f (5x + y) − (dy − 2dx)g(y − 2x)

−21x dx

Integrating z = φ(5x + y) + φ(y − 2x) − 3x2

2
.

EXERCISE

Solve (obtain the general solution (G.S.)) of the fol-

lowing examples by Monge’s method.

1. qs − pt = q3

Ans. G.S.: y + xz = f (z) + g(x)

Hint: Monge’s Equations (M.E.) are

q dx dy + p(dx)2 = 0, p dx dq +
q3dx dy = 0; dz = pdx + qdy = 0 so

z = c1.

Intermediate integral (I.I.): 1
q

+x=c2 =ψ(z)

2. q2r − 2pqs + p2t = 0

Ans. G.S.: y + xψ(z) = φ(z)

Hint: M.E.: (pdx + qdy)2 = 0, q2dp dy +
p2dq dx = 0; dz = 0, z = c1, q dp = p dq or

p = c2q; Lagrange’s dx
1

= dy

−ψ(z)
= dz

0
, z = c1,

y + xf (c1) = c2

3. r − t cos2 x + p tan x = 0

Ans. G.S.: z = f (y − sin x) + g(y + sin x)

Hint: M.E.: (dy)2 − cos2 x(dx)2 = 0,

dpdy − cos2 x dq dx+ p tan x · dxdy = 0;

y − sin x = c1, I.I., p sec x − q =
c1 = f (y − sin x), y + sin x = c2, I.I.:

p sec x + q = c2 = g(y + sin x), solving

p = f+q
2 sec x

, q = 1
2
(g − f ).

4. x(r + 2xs + x2t) = p + 2x3

Ans. G.S.: z = ψ(x2 − 2y) + x2

2
φ(x2 − 2y) + x4

4

Hint: M.E.: (dy − xdx)2 = 0, x dy dp +
x3dx dq − (p + 2x3)dx dy = 0.

x2 − 2y = c1, I.F. 1

x2 , I.I.: p + xq =
x3 + xf (x2 − 2y).

Lagrange’s:
dx

1
= dy

x
= dz

x3 + xf (x2 − 2y)

5. (x − y)(xr − xs − ys + yt) = (x + y)(p −
q)

Ans. G.S.: Z = f (xy) + g(x + y)

Hint: M.E.: (xdy + ydx)(dx + dy) = 0,

x dp dy + ydq dx
− x+y
x−y · (p − q) dy dx = 0, xy = c1,

x + y = c2,

I.I.: dp − dq − dx−dy
x−y (p − q) = 0

i.e., p − q = c3(x − y); use Lagrange’s
dx
1

= dy

−1
= dz

(x−y)f (xy)

6. y2r − 2ys + t − p − 6y = 0

Ans. G.S.: z = y3 − yf (y2 + 2x) + g(y2 + 2x)

Hint: M.E.: (ydy + dx)2 = 0, y2 + 2x = c1,

ydp − dq + (p + 6y)dy = 0

I.I.: py − q + 3y2 = c2, use Lagrange’s

auxiliary equations.

7. 2x2r − 5xys + 2y2t = −2(px + qy)

Ans. G.S.: z = f (yx2) + g(xy2)

Hint: M.E.: (x dy + 2y dx)(2x dy + y dx) =
0, x2y = c1, xy2 = c2, 2x2dpdy +
2y2dqdx + 2(px + qy)dxdy = 0

I.I.: 2xp − yq = c3 use Lagrange’s equa-

tions dx
2x

= dy

−y = dz

f (yx2)

8. q(1 + q)r − (1 + 2q)(1 + p)s + (1 + p)2t=
0

Ans. G.S.: x = ψ(x + y + z) + φ(x + z)
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Hint: M.E.: qdy + (1 + p)dx = 0,

q(1 + q)dydp + (1 + p)2dxdq = 0

x + z = c1, I.I.:
1+p
φ

= f (x + z) · (1 + q);

M.E.: (1 + q)dy + (1 + p)dx = 0,

q(1 + q)dy dp + (1 + p)2dx dq = 0,

x + y + z = c2, I.I.: 1 + p = g(x + y +
z) · q. Solving p = fg+f−g

g−f , q = f

g−f ,

dz = p dx + q dy,

fgdx = −f (dx + dy + dz) + g(dx + dz),

dx = −dx + dy + dz
g(x + y + z) + dx + dz

f (x + z)

9. xy(t − r) + (x2 − y2)(s − 2) − py + qx = 0

Ans. G.S.: z = xy + f (x2 + y2) + g  y
x

 
Hint: M.E.: (x dy − ydx)(ydy + x dx) = 0,

x2 + y2 = c1,
y

x
= c2, −xy dp dy + xydqdx −[py −

qx + 2(x2 − y2)]dx dy = 0

I.I.: xp + yq = 2xy + ψ(x2 + y2). Use

Lagrange’s A.E.

10. y2r + 2xys + x2t + px + qy = 0

Ans. G.S.: z = f (x2 − y2) + g(x2 − y2) log(x +
y)

Hint: M.E.: (x dx − y dy)2 = 0, x2 − y2 =
c1, y2dp dy + x2dq dx +(px + qy)dxdy =
0, I.I.: yp + xq = c2 = ψ(x2 − y2). Use

Lagrange’s A.E.: dz

ψ(x2−y2)
= dy

x
= dy√

y2+c1
,

integrating

z− ψ(c1) log{y +
 
y2 + c2} = c3

11. qs − pt + s − t = 0

Ans. G.S. z = f (x) + g(x + y + z)
Hint: M.E.: −(p + 1)dq dx = 0, −(q +
1)dx dy − (p + 1)(dx)2 = 0; dq = 0, dx +
dy + p dx + qdy = dx + dy + dz = 0, x +
y + z = c1, integrate q = c2 = ψ(x + y + z)
w.r.t. y.

12. q2r − 2pqs + p2t − pq2 = 0

Ans. G.S.: y = exf (z) + g(z)

Hint: M.E.: (p dx + q dy)2 = 0, z = c1,

q2dy dp + p2dx dq −pq2dx dy = 0, − dp

p
+

dq

q
+ dx = 0, I.I.: exq = pψ(z). Use La-

grange’s A.E.

13. x2r + 2xys + y2t = 0

Ans. z = xφ(y/x) + ψ(y/x)

14. qr − ps = p3

Ans. x = yz− φ(z) + ψ(y).

18.10 SOLUTION OF SECOND ORDER

P.D.E.: MISCELLANEOUS

A large class of P.D.E. of first and second order can

be integrated by methods similar to integration of

O.D.E. . While integrating a P.D.E. partially w.r.t.

say one independent variable x, the resulting con-

stant of integration will be a function of the other

independent variable(s) say y.

Type I

P.D.E. can be reduced to a linear equation in p and x,

p and y, q and x or q and y which can be integrated

as a linear first order ordinary D.E.

Type II

P.D.E. may be rewritten as partial derivatives w.r.t. a

single independent variable say x which after inte-

gration can be solved by Lagrange’s method.

Type III

P.D.E. can easily be integrated by inspection. Note

that while integration partially w.r.t. one independent

variable say x, the other independent variables(s) is

(are) held constant.

WORKED OUT EXAMPLES

Reduciable to linear equation

Example 1: Solve yt − q = xy

Solution: Rewriting the given P.D.E. we get

y
∂q

∂y
− q = xy or

∂q

∂y
− q

y
= x
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which is linear in q and y. The integration factor

for this D.E. is I.F. = e
 − 1

y dy = 1
y
. So the solution is

q · 1
y

=  
x · 1

y
dy + f (x) where f (x) is an arbitrary

function of x. Then

q

y
= x ln y + f (x)

or q = xy ln y + yf (x)

i.e.,
∂z

∂y
= xy ln y + yf (x)

Integrating partially w.r.t. ‘y’, we get

z = x

 
y ln y dy + y2

2
f (x) + g(x)

where g(x) is an arbitrary function of x. Then

z = x

 
y2 ln y − y2

2

 
+ y2

2
f (x) + g(x)

Use of Lagrange’s method

Example 1: Solve p + r + s = 1

Solution: Rewriting the given P.D.E.

∂z

∂x
+ ∂p

∂x
+ ∂q

∂x
= 1

which is expressed as partial derivatives w.r.t. x. In-

tegrating partially w.r.t. x, we have

z+ p + q = x + f (y)

where f (y) is an arbitrary function of y. Rewriting

this as a linear first order P.D.E.

p + q = x + f (y) − z
We get the auxiliary equations as

dx

1
= dy

1
= dz

x + f (y) − z
Using first two, we get x = y or x − y = c1. From

two and three, we get

dz

dy
= x + f (y) − z

or
dz

dy
+ z = x + f (y)

which is a first order linear D.E. in z. Its I.F. is

e
 
dy = ey.

Then

ey · z =
 

[x + f (y)]eydy + c2

ey · z = xey +
 
f (y)eydy + c2.

Thus the general solution is

z=x+F (y) · e−y+c2e−y=x+F (y)e−y+e−yφ(x − y)

where F (y) =
 
f (y)dy

Equations solvable by direct integration

Example 1: Solve

∂3z

∂x2∂y
= cos(2x + 3y)

Solution: Integrating partially w.r.t. x, we get

∂2z

∂x∂y
=

 
cos(2x+3y)dx+f (y)= sin(2x+3y)

2
+f (y)

Integrating again partially w.r.t. x, we have

∂z

∂y
=

 
1

2
sin(2x + 3y)dx +

 
xf (y)dx + g(y)

Here f (y) and g(y) are the arbitrary functions of y.
Thus

∂z

∂y
= −1

4
cos(2x + 3y) + x2

2
f (y) + g(y).

Now integrating partially w.r.t. ‘y  , we get

z = −1

4

 
cos(2x + 3y)dy +

 
x2

2
f (y)dy

+
 
g(y)dy + h(x)

z = − 1

12
sin(2x + 3y) + x2

2
ψ(y) + n(y) + h(x)

where

ψ(y) =
 
f (y)dy, n(y) =

 
g(y)dy and h(x)

is an arbitrary function of x.

Example 2: Solve zx = 6x + 3y
and

zy = 3x − 4y.

Solution: Integrating zx = 6x + 3y partially w.r.t.
x, we have z = 3x2 + 3xy + f (y) where f (y) is an
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arbitrary function of y. To determine f (y), differen-
tiate the above equation partially w.r.t. y and equate
it with the given second equation. Then

0 + 3x + df

dy
= zy = 3x − 4y

or
df

dy
= −4y. Integrating w.r.t. y, we get

f (y) = −2y2 + c

where c is a pure constant. Thus the solution is

z = 3x2 + 3xy − 2y2 + c

Example 3: Solve
∂2z

∂x2
= a2z if

∂z

∂x
= a sin y and

∂z

∂y
= 0 when x = 0.

Solution: If z is a function of x alone, then

d2z

dx2
= a2z

whose auxiliary equation ism2 − a2 = 0 and general

solution is

z = c1e
ax + c2e

−ax (1)

But since z is actually a function of x and y, vary the

constants c1 and c2 as functions of y. Thus

z = f (y)eax + g(y)e−ax. (2)

Use the two conditions, to determine the two un-

known functions f (y) and g(y).

a sin y = ∂z

∂x

    
x=0

= af (y)eax + g(y)(− a)e−ax  
x=0

sin y = f (y) − g(y) (3)

Also 0 = ∂z
∂y

   
x=0

= f  (y)eax + g (y)e−ax  
x=0

0 = f  (y) − g (y) (4)

Solving (3) and (4), we get

f  (y) = 1
2

cos y and g (y) = − 1
2

cos y.

Integrating w.r.t. y, we get

f (y) = 1
2

sin y + c1, g(y) = − 1
2

sin y + c2 (5)

Substituting (5) in (2), we have

z =
 

1

2
sin y + c1

 
eax +

 
−1

2
sin y + c2

 
e−ax

= sin y · sinh ax + c1e
ax + c2e

−ax

z = sin y · sinh ax + c3 cosh ax

Since f − g =  − 1
2

sin y + c1

 − − 1
2

sin y + c2

 = sin y, so c1 = c2.Here c3 = 2c1.

EXERCISE

Solve the following P.D.E.

1. ∂2z
∂x∂y

= sin x

Ans. z = −y cos x + g(x) + F (y)

2. ∂2z
∂x∂y

= sin x · sin y given that ∂t
∂y

= −2 sin y

when x = 0, and z = 0 when y is an odd mul-

tiple of π
2
.

Ans. z = cos x · cos y + cos y.

Hint: ∂z
∂y

= − cos x · sin y + f (y), use B.C.

f (y) = − sin y, z = cos x · cos y + cos y +
g(x), use B.C., g(x) = 0.

3. zx = 3x − y and zy = −x + cos y

Ans. z = 3x2

2
− xy + sin y + c

Hint: z = 3x2

2
− xy + f (y), use 2nd equation,

f  = cos f (y) = sin y + c
4. ys + p = cos(x + y) − y sin(x + y)

Ans. zy = y sin(x + y) + F (y) + φ(x)

5. Show that the surface satisfying t = 6x3y and

containing the two lines y = 0, z = 0, y = 1,

z = 1 is z = x3y3 + y(1 − x3)

Hint: z = x3y3 + yf (x) + φ(x), use condi-

tions, φ(x) = 0, 1 = x3 + f + φ
6. Prove that the surface 8axz = 4ax − y2

passes through the parabolas z = 0, y2 = 4ax

and z = 1, y2 = −4ax and satisfies the equa-

tion xr + 2p = 0

7. Solve ∂3z

∂x2∂y
+ 18xy2 + sin(2x − y) = 0

Ans. z = 1
4

cos(2x − y) − x3y3 + xf (y) + g(y) +
h(x)
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8. Solve ∂2z

∂x2 + z = 0 if z = ey and ∂z
∂x

= 1 when

x = 0.

Ans. z = sin x + ey cos x

9. Solve t − xq = x2

Ans. z = −xy + exy f (x)

x
+ g(x)

Hint: Rewrite
∂q

∂y
− xq = x2, I.F.: e−xy

10. Solve xs + q = 4x + 2y + 2

Ans. xyz = 2x2y + y2x + 2xy + 
f (y)dy + g(x)

Hint:Rewrite x
∂q

∂x
+ q = 4x + 2y + z, I.F.: x

11. Solve t + s + q = 0

Ans. zex = F (x) + g(x − y) where F (x) = 
f (x)exdx

Hint: Rewrite
∂q

∂x
+ ∂p

∂y
+ ∂z

∂y
= 0. Integrate

w.r.t. y,p + q = f (x) − z, dx
1

= dy

1
= dz

f (x)−z ,

x − y = c1, dz
dx

+ z = f (x).

12. Show that the equation of the surface sat-

isfying r + s = 0 and touching the elliptic

paraboloid z = 4x2 + y2 along its section

by the plane y = 2x + 1 is z+ 4x2 + y2 −
8yx + 8x − 4y + 2 = 0

Hint: Rewrite
∂p

∂x
+ ∂q

∂x
= 0, integrate

w.r.t. x, p + q = f (y), y − x = c1,

z = F (y) + φ(y − x), φ(y − x) = 8(y −
x) − 4(y − x)2 + c1, F (y) = 3y2 − 4y + c2.



Chapter19

Applications of Partial Differential
Equations

INTRODUCTION

Several problems in fluid mechanics, solid mechan-

ics, heat transfer, electromagnetic theory and other

areas of physics are modeled as Initial Boundary

Value Problems (IBVP) consisting of partial differ-

ential equations and initial conditions (I.C.s) spec-

ifying the state of the system at some initial time)

and/or boundary conditions (B.Cs) (specifying the

state of the system on the boundary say end points

of an interval over which the solution is defined).

Method of separation of variables is a powerful tool

to solve such IBVP when PDE is linear and bound-

ary conditions are homogeneous. In this chapter, we

derive and solve by separation of variables tech-

nique some of the most important PDE’s of one-

dimensional heat equation, wave equation, Laplace’s

equation in two dimensions and in polar coordinates,

two-dimensional heat equation, wave equation, vi-

brations of circular membrane, transmission lines.

Unlike the ordinary differential equations, the gen-

eral solution of PDE’s involve arbitrary functions

which require the knowledge of single and double

Fourier series.

19.1 METHOD OF SEPARATION OF

VARIABLES

Separation of variables is a powerful technique to

solve P.D.E. For a P.D.E. in the function u of two

independent variables x and y, assume that the re-

quired solution is separable, i.e.,

u(x, y) = X(x)Y (y) (1)

where X(x) is a function of x alone and Y (y) is a

function of y alone. Then substitution of u from (1)

and its derivatives reduces the P.D.E. to the form

f (X,X , X  , . . .) = g(Y, Y  , Y   , . . .) (2)

which is separable in X and Y . Since the L.H.S. of
(2) is a function of x alone andR.H.S. of (2) is a func-
tion of y alone, then (2) must be equal to a common
constant say k. Thus (2) reduces to

f (X,X , X  , . . .)= k (3)

g(X,X , X  , . . .)= k (4)

Thus the determination of solution to P.D.E.

reduces to the determination of solutions to two

O.D.E. (with appropriate conditions).

WORKED OUT EXAMPLES

1. Solve uxx − uy = 0 by separation of variables.

Solution: Assume that u(x, y) = X(x)Y (y).
Differentiating w.r.t. x and y, we get

uxx =X  Y, uy = XY  so the P.D.E. reduces to

2X  Y −XY  = 0

or
2X  

X
= Y

 

Y
= 2k = constant

Solving X  − kX = 0, we have A.E.: m2 − k = 0,

solution is X(x) = c1e
√
kx + c2e−

√
kx

19.1
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Solving Y  − 2kY = 0, we have solution as

Y (y) = c3e2ky

Hence the required solution is

u(x, y)=X(x)Y (y) =
 
c1e

√
kx + c2e−

√
kx

 
(c3e

2ky )

u(x, y)=
 
Ae
√
kx + Be−

√
kx

 
e2ky

2. Use the separation of variables technique to solve

3ux + 2uy = 0 with u(x, 0) = 4e−x .

Solution: Assume u(x, y) = X(x)Y (y). Then
P.D.E. becomes 3X Y + 2XY  = 0

or
X 

X
= −2

3

Y  

Y
= k = constant

Solving X − kX = 0, we get X(x) = c1ekx
Similarly, Y  + 3

2
kY = 0, we get Y (y) = c2e−

3
2
ky

So u(x, y)=X(x)Y (y)=c1ekx · c2e−
3
2
ky=ce k2 (2x−3y)

Given that 4e−x = u(x, 0) = X(x)Y (0) = ceekx
Thus c = 4, k = −1.Hence the required solution is

u(x, y) = 4e−
1
2
(2x−3y).

EXERCISE

Solve the following P.D.E. by the method of separa-

tion of variables:

1. 4ux + uy = 3u and u(0, y) = e−5y
Ans. u(x, y) = e2x−5y
2. 2xzx − 3yzy = 0

Ans. z(x, y) = Ax3by2b where A = c1c2, k = 6b

3. ux = 4uy, u(0, y) = 8e−3y

Ans. u(x, y) = 8e−12x−3y

4. uxt = e−t cos x with u(x, 0) = 0 and

∂u(0,t)

∂t
= 0

Ans. u(x, t) = sin x − e−t sin x
5. y3zx + x2zy = 0

Ans. z(x, y) = cek
 
x3

3
− y4

4

 

6. uxx = uy + 2u, with u(0, y) = 0,
∂u(0,y)

∂x
=

1+ e−3y
Ans. u(x, y) = 1√

2
sinh

√
2x + e−3y sin x

7. zxx − 2zx + zy = 0

Ans. z(x, y) = [c1e
ax + c2ebx]e−ky where

a = (1+√1+ k), b = (1−√1+ k)
8. ux = 2ut + u where u(x, 0) = 6e−3x

Ans. u(x, t) = 6e−(3x+2t)

19.2 CLASSIFICATION OF PARTIAL

DIFFERENTIAL EQUATIONS OF

SECOND ORDER

In the fields of wave propagation, heat conduction,

vibrations, elasticity, boundary layer theory, etc.,

second order partial differential equations are of par-

ticular interest.
The general form of a second-order P.D.E. in the

function u of the two independent variables x, y is
given by

A(x, y)
∂2u

∂x2
+B(x, y) ∂

2u

∂x∂y
+ C(x, y)∂

2u

∂y2
+

+f
 
x, y, u,

∂u

∂x
,
∂u

∂y

 
= 0 (1)

This equation is linear in second order terms. PDE

(1) is said to be “linear or quasi-linear” according as

f is linear or non-linear.

PDE (1) is classified as elliptic, parabolic or hy-

perbolic according as B2 − 4AC < 0,= 0 or > 0.

Example:

Elliptic: (B2 − 4AC < 0)

Laplace’s equation in two dimensions

∂2u

∂x2
+ ∂

2u

∂y2
= 0 (2)

Poisson’s equation

∂2u

∂x2
+ ∂

2u

∂y2
= f (x, y) (3)

Parabolic: (B2 − 4AC = 0)

One dimensional heat-flow equation

a2
∂2u

∂x2
= ∂u
∂t

(4)

Hyperbolic: (B2 − 4AC > 0)

One-dimensional wave equation

∂2u

∂t2
= a2 ∂

2u

∂x2
(5)
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P.D.E. (2), (4), (5) are homogeneouswhile (3) is non-

homogeneous.

Note: For an elliptic Equation (2) or (3) bound-

ary conditions are prescribed in a closed region,

whereas for parabolic or hyperbolic Equations (4)

or (5) boundary conditions and initial conditions are

prescribed in an open-ended region.

19.3 DERIVATION OF ONE-DIMENSIONAL

HEAT EQUATION

Consider a heat conducting homogeneous rod of

length L, placed along the x-axis with one end of

the rod at x = 0 (origin) and the other end of the rod

at x = L (Fig. 19.1). Assume that the rod has con-

stant density ρ and uniform cross section A. Also

assume that the lateral surface of the rod is impen-

etrable to heat transfer i.e., rod is insulated laterally

and therefore heat flows only in the x-direction. The

rod is sufficiently thin so that the temperature is same

at all points of any cross sectional area of the rod. Let

u(x, t) be the temperature of the cross section at the

point x at any time t .

Fig. 19.1

The amount of heatQ(t) in a small segment of the

rod between the cross sections at x and x + x is

Q(t) =
 x+ x

x

(c) (ρA) u(s, t) ds (1)

where c is specific heat of the rod. By Fourier law of

heat conduction, rate of propagation of heat (i.e., the

quantity of heat passing through a cross section at x

in unit time) is

q = −k ∂u
∂x
· A (2)

where k is the coefficient of thermal conductivity.
Since heat flows in the direction of decreasing tem-
perature, a negative sign appears in (2). The rate of

heat flow at cross section x + x is
−kA ∂u

∂x
(x + x, t)

The rate of change of heat content in the segment

of the rod between x and x + x must be equal to

net heat flow into this segment of the rod. Thus

∂Q

∂t
= kA

 
∂u

∂x

   
x+ x

− ∂u
∂x

   
x

 
(3)

By mean value theorem,

∂Q

∂t
= ∂

∂t

 x+ x

x

cρAu(s, t) dt =
 x+ x

x

cρA
∂u

∂t
ds

= cρA · ut (ξ, t) x (4)

where ξ lies between x and x + x. Replacing
L.H.S. of (3) by (4)

cρA
∂u

∂t
(ξ, t) x = kA

 
∂u

∂x

   
x+ x

− ∂u
∂x

   
x

 
Rewriting this and taking the limit as  x → 0,

∂u(x, t)

∂t
= a2 ∂

2u

∂x2
(5)

where a2 = k
cp

known as diffusivity constant. Equa-

tion (5) is the one-dimensional heat equation which

is second order, homogeneous and parabolic type.

19.4 SOLUTION OF ONE-DIMENSIONAL

HEAT EQUATION

By separation of variables technique

Consider a long thin wire or rod or bar of constant

cross section and homogeneous heat conducting ma-

terial. Let the bar be of length L oriented along

the x-axis with one end A coinciding with origin

(Fig. 19.2). Suppose that the lateral surface of the

bar is perfectly insulated. Then the heat flows in the

bar along the x-direction only.

Fig. 19.2

Thus the temperature u of the bar depends only

on x and t . This phenomenon is described by the



19.4 HIGHER ENGINEERING MATHEMATICS—V

initial boundary value problem consisting of one-

dimensional heat equation

∂u

∂t
= c2 ∂

2u

∂x2
(1)

where c2 is the thermal diffusivity, the boundary con-

ditions (B.C.’s) prescribed at the end points A and B.

x(0, t) = 0, x(L, t) = 0 (2)

i.e., the end points are assumed to be at zero temper-

ature and the initial temperature distribution in the

bar given by

u(x, 0) = f (x) (3)

where f (x) is a given (prescribed) function of x.

Solution by the separation of variables technique or

themethod of separating variables or productmethod

reduces the IBVP to the solution of two ordinary

differential equations as follows:

Step I. Assume that the solution u(x, t) is separa-

ble i.e.,

u(x, t) = X(x)T (t) (4)

where X(x) is a function of x alone and T (t) is a

function of t only.
Differentiating (4) w.r.t. t and x, we get

∂u

∂t
= XT. , ux = X T , uxx = X  T

where  denotes differentiation w.r.t x and
.
denotes

differentiationw.r.t. t . Substituting these in theP.D.E.
(1), we get

XT
. = c2X  T

X  

X
= T

.

c2T
(5)

Since the L.H.S. of (5) is a function of x alone
while R.H.S. of (5) is a function of t alone, both
sides of (5) must be a constant. Thus

X  

X
= T

.

c2T
= k = constant

which results in two ordinary differential equations

X  − kX = 0 (6)

and T
. − c2kT = 0 (7)

Using (4) the boundary conditions (2) reduce to

0= u(0, t) = X(0)T (t) =⇒ X(0) = 0 (8)

0= u(L, t) = X(L)T (t) =⇒ X(L) = 0 (9)

since T (t)  = 0 (otherwise if T (t) = 0, u = 0 for all

t which is a trivial solution).

Step II.

Case 1: k = 0, X  = 0

Solution is X(x)= ax + b
using (8) and (9) 0= X(0) = a · 0+ b ... b = 0,

0= X(L) = a · L ... a = 0

Thus X(x) = 0 for all x or u = 0 for all x which

is a trivial solution.

Case 2: k = λ2 > 0, X  − λ2X = 0

Solution is X(x)= Aeλx + Be−λx
using (8) 0=X(0) = A+ B or A = −B
using (9) 0=X(L) = A(eλL − e−λL)

=⇒ A = 0 = B
since eλL − e−λL = 2 sinh λL = 0 only when λ = 0.

Thus X(x) = 0 for all x or u = 0 for all x which

is a trivial solution.

Case 3: k = −λ2
Equation is X  + λ2X = 0

Solution is X(x)= A cos λx + B sin λX

using (8) 0=X(0) = A+ B · 0 ... A = 0

using (9) 0=X(L) = B · sin λL
We must take B  = 0 since otherwise X(x) = 0.

Hence sin λL = 0 or λL = nπ
... λ = nπ

L
, n integer (10)

AssumingB = 1,weget infinitelymany solutions

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . . (11)

Solving (7) T
. + e2λ2T = 0, we get

Tn(t) = Bne−λ
2
nt = Bne−n

2π2t/L2 (12)

Hence the “eigen functions”

un(x, t)=Xn(x)Tn(t)

= Bn
sin nπx

L
· e−λ2nt , n = 1, 2, 3, . . . (13)

satisfy Equation (1) and boundary conditions (2).

Step III. In order to satisfy the initial condition (3)

we invoke the superposition or linearity

principle which states that



APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 19.5

u(x, t)=
∞ 
n=1
un(x, t)

=
∞ 
n=1
Bn sin

nπx

L
· e−c2n2π2t/L2 (14)

satisfies (1) and (2). To determine the unknown con-

stants Bn, use initial condition (3) in (14)

f (x) = u(x, 0) =
∞ 
n=1
Bn · sin

nπx

L
(15)

Since the R.H.S. of (15) is a half range Fourier

sine series expansion of f (x) in the interval (0, L),

the Fourier coefficients Bn’s are given by

Bn =
2

L

 L

0

f (x) sin
nπx

L
dx, n = 1, 2, . . . (16)

Thus the temperature distribution in the bar is

given by the solution (14) with Bn’s calculated from

(16).

Note: Solution (14) is transient contains (negative

exponential) i.e., u decreases as t increases which is

consistent with physical nature of the heat conduc-

tion problem.

Steady-state condition

A condition (phenomena) is said to be steady-state if

the (dependent) variables are independent (free) of

time t .

Non-homogeneous boundary conditions are bound-

ary conditions which are all not zero.

Non-homogeneous (Non-zero) Boundary

Conditions

Suppose a bar AB of length L has its ends A

and B maintained at A◦0 and B◦0 respectively until

steady-state condition is reached. Then the tempera-

tures at A and B are suddenly and simultaneously

changed to A◦1 and B◦1 and maintained thereafter.

To find the subsequent temperature distribution in

the bar:

Step I. Initial temperature distribution in the bar

is determined using the steady-state con-

dition in which u will be independent of t

 
i.e., ∂u

∂t
= 0

 
. Therefore the heat equation

reduces to

d2u

dx2
= 0

Its solution is u(x) = ax + b
The boundary conditions in the steady-state are

u(0) = A0 and u(L) = B0. Using these

A0 = u(0) = a · 0+ b ... b = A0

B0 = u(L) = a · L+ A0 ... a = (B0 − A0)/L

Thus the initial temperature distribution in the

bar is

u(x, 0) = (B0 − A0)

L
x + A0 (17)

Now the boundary conditions (temperatures) at A

and B have been changed to

u(0, t) = A1 and u(L, t) = B1 (18)

Thus the heat flow problem is to solve the one-

dimensional heat equation (1) with B.C.’s (18) and

initial condition (17). Unlike the previous problem,

here the boundary conditions are non-homogeneous

(non-zero). Therefore assume that the required solu-

tion u(x, t) as

u(x, t) = us (x)+ utr (x, t) (19)

where us(x) is the steady-state solution and utr (x, t)

is the transient solution (containing negative expo-

nential of time t).

Step II. To determine us(x):

The equation is
d2us (x)

dx2
= 0

Its solution is us (x) = Ax + B

Use (18) A1 = us (0) = A · 0+ B ... B = A1

B1 = us (L) = A · L+ B ... A =
B1 − A1

L

Thus us (x)=
B1 − A1

L
x + A1 (20)

Step III. To find utr (x)t :

From (19), utr (x, t) = u(x, t)− us (x)

So utr (0, t)= u(0, t)− us (0) = A1 − A1 = 0 (21)

utr (L, t)= u(L, t)− us (L) = B1 − B1 = 0 (22)
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Thus the boundary conditions for utr (x, t) are ho-

mogeneous (zero).
The initial condition is

utr (x, 0)= u(x, 0)− us (x)

=
 
B0 − A0

L
x + A0

 
−
 
B1 − A1

L
x + A1

 

utr (x, 0)= [(A1 − A0)+ (B1 − B0)] ·
x

L
+ (A0 − A1)

= A2
x

L
+ A3 (23)

where A2 = (A1 − A0)+ B1 − B0, A3 = A0 − A1

Therefore utr (x, t) satisfying one-dimensional

heat equation, the zero B.C.’s (21), (22), and the ini-

tial condition (23) is given by

utr (x, t) =
 
An sin

nπx

L
· e−c2n2π2t/L2 (24)

where An =
2

L

 L

0

·f (x) · sin nπx
L
dx

An =
2

L

 L

0

 
A2x

L
+ A3

 
sin
nπx

L
dx

= 2

L

  
A2x

L
+ A3

  −L
nπ

 
· cos nπx

L

−A2

L
·
 
−L2

n2π2

 
· sin nπx

L

 L
0

An =
−2
nπ

[(A2 + A3) cos nπ − A3]

= 2

nπ

 
A3 − (A2 + A3)(−1)n

 
(25)

Hence the required temperature distribution in bar
is given by (19), (20), (24), (25) i.e.,

u(x, t)= us (x)+ utr (x, t)
=
 
(B1 − A1)

x

L
+ A1

 
+

+ 2

π

  
A3 − (A2 + A3)(−1)n

 
n

×

× sin
nπx

L
· e−c2n2π2t/L2 .

Bar with both ends insulated

Whenboth ends of the bar are insulated, no heat flows

through them and then the corresponding boundary

conditions are

∂u

∂x

    
x=0

= ux (0, t) = 0,
∂u

∂x

    
x=L

= ux (L, t) = 0 (26)

Using (4), these boundary conditions reduce to

0= ux (0, t) = X (0)T (t) ... X (0) = 0 (27)

0= ux (L, t) = X (L)T (t) ... X (L) = 0 (28)

DifferentiatingX(x)=A cos λx+B sin λx w.r.t. ‘x’

X (x) = −Aλ sin λx + Bλ cos λx
Using (27), 0 = X (0) = Bλ and then using (28)

0=X (L) = −Aλ sin λL
Thus assuming A = 1 and B = 0, then λ = nπ

L
,

n integer

Hence Xn(x) = cos
nπx

L
, n = 0, 1, 2, 3, . . .

No change in the solution for T (t). The required

eigen functions are un(x, t) = Xn(x)Tn(t), with

n = 0, 1, 2, . . .
By the linearity principle, the required solution is

u(x, t)=
∞ 
n=0
un(x, t) =

∞ 
n=0
Xn(x) · Tn(t)

u(x, t)=
∞ 
n=0
An · cos

nπx

L
· e−c2n2π2t/L2

where A0 =
2

L

 L

0

f (x)dx

An =
2

L

 L

0

f (x) cos
nπx

L
dx.

WORKED OUT EXAMPLES

Homogeneous (zero) boundary conditions

Example 1: Find the temperature in a bar of length

2whose ends are kept at zero and lateral surface insu-

lated if the initial temperature is sin πx
2
+ 3 sin 5πx

2
.

Solution: Let u(x, t) be the temperature in the bar.
The boundary conditions are u(0, t) = u(2, t) = 0
for any t . The initial condition is u(x, 0) = sin πx

2
+

3 sin 5π x
2
. Then the solution is
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u(x, t) =
∞ 
n=1
An sin

nπx

l
· e−n2π2c2t/ l2

Here l = length of bar = 2 and

An =
2

l

 l

0

f (x) sin
nπx

l
dx

An =
2

2

 2

0

 
sin
πx

2
+ 3 sin

5πx

2

 
sin
nπx

2
dx

A1 = 1, A2, 3, 4 = 0, A5 = 3, An = 0 for n ≥ 6

Thus

u(x, t)= sin
 πx

2

 
·e−c2π2t/4+3 sin

 
5πx

2

 
·e−c2π225t/4

Example 2: Find the temperature u(x, t) in a ho-

mogeneous bar of heat conducting material of length

L cmwith its ends kept at zero temperature and initial

temperature given by dx(L− x)/L2.

Solution: The initial boundary value problem con-

sists of

i. P.D.E. heat equation: ∂u
∂t
= c2 ∂2u

∂x2

ii. Boundary conditions: u(x, 0) = 0, u(L, 0) = 0,

for any t

iii. Initial condition: u(x, 0) = dx(L− x)/L2,

0 < x < L

The solution is

u(x, t) =
∞ 
n=1
An · sin

nπx

L
· e−n2π2c2t/L2

where

An =
2

L

 L

0

f (x) sin
nπx

L
dx for n = 1, 2, 3, . . .

An =
2

L

 L

0

dx(L− x)
L2

sin n
πx

L
dx

= 2d

L3

 
x(L− x) ·

 −L
nπ

 
cos

nπx

L

−(L− 2x) ·
 
−L2

n2π2

 
· sin nπx

L

+(−2)
 
−L3

n3π3

  
− cos

nπx

L

  L
0

= 2d

L3

 
0+ 0− 2L3

n3π3

 
(−1)n − 1

  

= 8d

n3π3
if n is odd

Therefore the temperature distribution in the bar
is given by

u(x, t)= 8d

π3

∞ 
n=1

1

(2n− 1)3
sin

(2n− 1)πx

L
×

× e−(2n−1)2π2c2t/L2 .

Steady-state conditions and zero B.C.’s

Example 3: A bar of length L, laterally insulated,

has its ends A and B kept at 0◦ and u◦0 respectively
until steady-state conditions prevail. If the tempera-

ture at B is then suddenly reduced to 0◦ and kept so

while that of A is maintained at 0◦ find the tempera-

ture in the bar at any subsequent time.

Solution: Let u(x, t) be the temperature in the bar
AB. The initial temperature distribution in the bar is
to be determined from the steady-state condition (in
which uwill be independent of time t). The equation
governing this steady-state condition is

d2u

dx2
= 0

whose solution is

u(x) = ax + b

with a and b two arbitrary constants. Use the bound-
ary conditions u(x = 0) = 0 and u(x = L) = u0 to
determine a and b.

0= u(0) = a · 0+ b ... b = 0

u0 = u(L) = a · L+ 0 ... a = u0
L

Thus the initial temperature distribution in the bar is

u(x, 0) = u0
L
x (1)

and the boundary conditions are

u(0, t) = 0, u(L, t) = 0 (2)

The solution to the one-dimensional heat equation
ut = c2uxx with the initial condition (1) and bound-
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ary conditions (2) is

u(x, t)=
∞ 
n=1
An · sin

 nπx
L

 
· e−(n2π2c2t/L2)

where An =
2

L

 L

0

f (x) sin
nπx

L
dx

= 2

L

 L

0

u0x

L
· sin nπx

L
dx

= 2u0

L2

 
−xL
nπ

cos
nπx

L
+ L2

n2π2
sin
nπx

L

 L
0

=−2u0L
2

L2nπ
(−1)n

Thus the required solution (temperature distribution
in the bar) is

u(x, t) = 2u0

π

∞ 
n=1

(−1)n+1
n

sin
nπx

L
· e−(n2π2c2t/L2).

Non-homogeneous (non-zero) boundary condi-

tions

Example 4: A barAB of length 10 cm has its ends

A and B kept at 30◦ and 100◦ temperatures respec-

tively, until steady-state condition is reached. Then

the temperature at A is lowered to 20◦ and that at B

to 40◦ and these temperatures are maintained. Find

the subsequent temperature distribution in the bar.

Solution: In order to find the initial temperature

distribution in the bar, make use of the steady-state

condition that the temperature u(x, t) is independent

of time t .

Then the one-dimensional heat equation

∂u

∂t
= c2 ∂

2u

∂x2
(1)

reduces to d
2u

dx2
= 0whose solution is given byu(x) =

ax + b. The two arbitrary constants a and b are deter-
mined using the boundary conditions u(0, t) = 30◦

and u(10, t) = 100◦. Thus

30◦ = u(0, t) = 0 · 0+ b ... b = 30◦

100◦ = u(10, t) = a · 10+ b = a · 10+ 30◦ ... a = 7

So the initial temperature distribution in the bar is

u(x, 0) = 7x + 30 (2)

When steady-state condition is reached, the temper-

atures at the ends A and B has been changed to 20◦

and 40◦. So the boundary conditions are

u(0, t) = 20 and u(10, t) = 40 (3)

which are non-homogeneous. Therefore assume the

solution as

u(x, t) = us (x)+ utr (x, t) (4)

To find us(x): solve d2us
dx2

= 0 with us(0) =
20, us(10) = 40. The solution is us(x) = a1x + b1.
Using boundary conditions, we get

20= us (0) = a1 · 0+ b1 ... b1 = 20

40= us (10) = a1 · 10+ 20 ... a1 = 2

Thus us (x)= 2x + 20 (5)

To find utr (x, t): From (4)

utr (x, t) = u(x, t)− us (x)
the boundary conditions are

utr (0, t)= u(0, t)− us (0) = 20− 20 = 0 (6)

utr (10, t)= u(10, t)− us (10) = 40− 40 = 0 (7)

i.e., boundary conditions are homogeneous. The ini-
tial condition is

utr (x, 0)= u(x, 0)− us (x) = (7x + 30)− (2x + 20)

utr (x, 0)= 5x + 10 (8)

Thus to determine utr (x, t), solve the one-
dimensional heat equation

∂utr

∂t
= c2 ∂

2utr

∂x2

with the homogeneous boundary conditions (6), (7)
and initial condition (8). Hence the required solution
utr (x, t) is given by

utr (x, t)=
∞ 
n=1
An sin

nπx

L
· e−c2n2π2t/L2

where An =
2

L

 L

0

f (x) · sin nπx
L
dx

= 2

L

 L

0

(5x + 10) sin
nπx

L
dx

= 2

L

 
(5x + 10) ·

 −L
nπ

 
cos

nπx

L
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−5
 
−L2

n2π2

 
· sin nπx

L

 L
0

An =
20

nπ
[1− 6(−1)n] with L = 10

Therefore the temperature distribution in bar is

u(x, t)= us (x)+ utr (x, t)

= (2x + 20)+ 20

π

∞ 
n=1

 
1− 6(−1)n

n

 
×

× sin
nπx

10
· e−c2π2n2t/100

Both ends insulated

Example 5: Find the temperature in a thin metal

rod of length L, with both the ends insulated (so that

there is no passage of heat through the ends) andwith

initial temperature in the rod sin(πx/L).

Solution: Let u(x, t) be the temperature in rod.
Then the initial boundary value problem is

∂u

∂t
= c2 ∂

2u

∂x2
, P.D.E.

∂u

∂x

    
x=0

= 0,
∂u

∂x

    
x=L

= 0, B.C.

u(x, 0)= sin
 πx
L

 
, I.C.

Its solution is

u(x, t)= c0
2
+

∞ 
n=1
cn cos

nπx

L
· e−n2π2c2t/L2

where c0 =
2

L

 L

0

f (x)dx = 2

L

 L

0

sin
nπx

L
dx

c0 =
2

L

L

π

 
− cos

πx

L

 L
0

= 2

π
[+1+ 1] = 4

π

c1 =
2

L

 L

0

sin
πx

L
· cos πx

L
dx = 0

cn =
2

L

 L

0

sin
πx

L
· cos nπx

L
dx for n  = 1

= 2

L

1

2

 L

0

 
sin
 
1+ n)πx

L

 

+ sin

 
(1− n)πx

L

  
dx

= 1

L

 −L
(n+ 1)π

cos(1+ n)πx
L

− L

(1− n)π · cos(1− n)
πx

L

 L
0

=− [(−1)n+1 − 1]

π

 
1

n+ 1
− 1

n− 1

 

= −2[(−1)
n+1 − 1]

π (n2 − 1)

= 4

π (n2 − 1)
where n is even.

Thus the temperature u(x, t) in the rod

= 2

π
− 4

π

∞ 
n=1

1

(4n2−1) · cos
 
2nπx

L

 
· e−(4n2c2tπ2/L2).

One end insulated

Example 6: Solve ut = c2uxx when
i. u  = ∞ as t →∞
ii. ux = 0 when x = 0 for all t

iii. u = 0 when x = L for all t

iv. u = u0 = constant

when t = 0 for 0 < x < L.

Solution: The given equations represent heat flow
in a rod of lengthLwhose one end (at x = 0) is insu-
lated and the initial temperature in the rod is constant.
Assume that the temperature in the rod

u(x, t) = X(x)T (t)
The P.D.E. reduces to

X  

X
= T

.

c2T
= k = constant

with ux (0, t)= x (0)T = 0⇒ X (0) = 0

u(L, t)=X(L)T = 0⇒ X(L) = 0

when k = −λ2 < 0, non-trivial solutions exist. So

X  + λ2X = 0, X (0) = 0, X(L) = 0

X(x)= A cos λx + B sin λx

X (x)=−Aλ sin λx + Bλ cos λx
0=X (0) = 0+ Bλ ... B = 0
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0=X(L) = A cos λL

... λ= (2n− 1)

L

π

2
, n = 1, 2, . . .

Thus Xn(x)= cos
(2n− 1)

L

π

2
· x

Tn(t)= e−c
2λ2nt

Hence the general solution (by principle of superpo-
sition) is

u(x, t) =
∞ 
n=1
An cos(λnx) · e−c

2λ2nt

To find An’s use the initial condition

u0 = u(x, 0)=
∞ 
n=1
An cos(λnx)

So An =
2

L

 L

0

f (x) · cos(λnx)dx

An =
2

L

 L

0

u0 · cos
 
(2n− 1)

L

π

2
x

 
dx

= 2u0

L
· 2L

(2n− 1)π
· sin

 
(2n− 1)πx

2L

     L
0

= 4u0(−1)n−1
(2n− 1)π

... u(x, t)= 4u0

π

∞ 
n=1

(−1)n−1
(2n− 1)

cos

 
(2n− 1)πx

2L

 
×

×e−(c2(2n−1)2π2t)/(4L2).

EXERCISE

Homogeneous B.C.’(s)

Find the temperature u(x, t) in a laterally insulated

heat conducting bar of length L with its ends kept

at 0◦ and with the initial temperature in the bar is

u(x, 0):

1. u(x, 0) = 100 sin(πx/80);L = 80 cm

Ans. u(x, t) = 100 sin(πx/80) · e−c2π2t/L2

2. u(x, 0) = sin πx
2
− 3 sin 2πx;L = 2

Ans. u(x, t) = sin
 
πx
2

 · e−π2c2t/4
− 3 sin 2πx · e−42π2c2t/4

3. “Triangular” temperature:

u(x, 0)= 2T x

L
, when 0 ≤ x ≤ L

2

= 2T

L
(L− x), when

L

2
≤ x ≤ L

Ans. u(x, t) = 8T

π2

∞ 
n=1

1

(2n−1)2 sin
(2n−1)π

2
· sin (2n−1)πx

L

×e−(2n−1)2π2c2t/L2

4. u(x, 0) = x(L− x), 0 < x < L

Ans. u(x, t) =
∞ 
n=1

8L2

(2n−1)2π2 sin
 
(2n−1)πx

L

 
×e−(2n−1)2π2c2t/L2

5. u(x, 0) = u0 = constant

Ans. u(x, t) = 4u0
π

∞ 
n=1

1
(2n−1) · sin

 
(2n−1)πx

L

 
×e−(2n−1)2π2c2t/L2

6. u(x, 0) = bx, 0 < x < L, b = constant

Ans. u(x, t) =
∞ 
n=1

2Lb
πn

(−1)n+1 sin  nπx
L

 
×e−π2c2n2t/L2

7. u(x, 0) = T1 when 0 < x < L
2

= T2 when L
2
< x < L

where T1, T2 are constants.

Ans. u(x, t) =
∞ 
n=1

 
2T1
nπ

 
1− cos nπ

2

 + 2T2
nπ
×

×  cos nπ
2
− cos nπ

  
sin nπx

L

×e−n2π2c2t/L2

8. A bar of 30 cm length has its ends kept at 20◦

and 80◦ respectively until steady-state condi-

tions prevail. The temperature at each end is

then suddenly reduced to 0◦ and maintained

thereafter. Find the temperature in bar.

Hint: u(x, 0) = 2x + 20 obtained from

steady-state.

Ans. u(x, t) = 40
π

∞ 
n=1

 
1− 4(−1)n

n

 
sin
 nπx

30

 
×e−c2n2π2t/900.
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Non-homogeneous B.C.’s

9. Solve ut = c2uxx, 0 ≤ x ≤ 1 with u(0, t) =
2, u(1, t) = 3, u(x, 0) = x(1− x).

Ans. u(x, t) = x + 2+
2
∞ 
n=1

 
3(−1)n
nπ

− 2(−1)n
n3π3

− 2
nπ
+ 2

n3π3

 
sin nπx×

×e−n2π2c2t
10. A bar of 10 cm long with its ends A and B

kept at 20◦ and 40◦ respectively until steady-

state conditions prevail. The temperature at

A is then suddenly raised to 50◦ and at the

same time at B is lowered to 10◦. Find the

subsequent temperature distribution. Show

that the temperature at the middle point of the

bar reamains unaltered for all time.

Ans. u(x, t) = 50− 4x −
− 120

π

∞ 
n=1

1
2n

sin 2nπx
10
×e−4n2π2c2t/100

At the mid-point x = 5, u(5, t) = −20+
50+ 0 = 30 = constant.

11. A bar of length L is laterally insulated with its

ends A and B kept at 0◦ and 100◦ respectively
until steady-state condition is reached. Then

suddenly the temperature at A is raised to 20◦

and at B reduced to 80◦ simultaneously. Find

the subsequent temperature distribution in

the bar.

Hint: Initial condition u(x, 0) = 100x/L.

Assume u(x, t) = us(x)+ utr (x, t) where

us(x) = 20+ 60x/L.

Ans. u(x, t) = 60x
L
+ 20− 40

π

∞ 
n=1

1
n
sin
 
2nπx
L

 
×e−4c2n2π2t/L2

12. A rod of length L has its ends A and B main-

tained at 0◦ and 100◦ respectively until steady-
state conditions reached. Then suddenly the

temperature at A and B have been changed to

25◦ and 75◦ respectively. Find the subsequent

temperature in rod.

Hint: u(x, 0) = 100x
L
, us(x) = 50x

L
+ 25

Ans. u(x, t) = 50x
L
+ 25− 50

π

∞ 
n=1

1
n
sin 2nπx

L

×e−4c2n2π2t/L2 .
Both edges insulated

Find the temperature in a laterally insulated bar of

length L whose both ends are insulated and

13. with initial temperature u(x, 0) = x if
0 < x < L

2
and = L− x if L

2
< x < L

Ans. u(x, t)= L
4
− 2L

π2

∞ 
n=1

1

n2

 
2 cos nπ

2
− cos nπ−1 

× cos nπx
L
· e−c2n2π2t/L2

14. with initial temperature u(x, 0) = 60,

0 < x < 50,= 40, 50 < x < 100;L = 100

Ans. u(x, t) = 50+
∞ 
n=1

 
40
nπ

 
sin nπ

2
· cos nπx

100

×e−c2n2π2t/L2

15. with initial temperature u(x, 0) = x(L− x)

Ans. u(x, t) = L2

6
− L2

π2

∞ 
n=1

1

n2
cos

 
2nπx
L

 
×e−4n2π2c2t/L2

16. A rod of 100 cm length has its ends kept

at 0◦ and 100◦ until steady-state conditions

prevail. The two ends are then suddenly insu-

lated and maintained so. Find the temperature

in the rod. Show that the sum of the temper-

atures at any two points equidistant from the

centre is always 100◦.

Hint: u(x, t)+ u(l − x, t) = L = 100 since

cos
 
(2n−1)π (L−x)

L

 
= − cos (2n−1)πx

L

Ans. u(x, t) = L
2
− 4L

π2

∞ 
n=1

1

(2n−1)2 cos
 
(2n−1)πx

L

 
×

×e−c2(2n−1)2π2t/L2
One edge insulated

Obtain the temperature in bar of length L and with

one edge insulated:

17. L = 1, ux(1, t) = 0, u(0, t) = 10,

u(x, 0) = 1− x, 0 < x < 1
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Ans. u(x, t) = 10+
∞ 
n=1

 
8(−1)n

(2n−1)2π2 −
36

(2n−1)π

 
× sin (2n−1)πx

2
· e−(2n−1)2π2c2t/4

18. ux(0, t) = 0, u(L, t) = 0, u(x, 0) = x

Ans. u(x, t) = 8L

π2

∞ 
n=1

1

(2n−1)2
 
(2n−1)π

2
(−1)n+1 − 1

 
× cos (2n−1)πx

2L
· e−(2n−1)2π2c2t/(4L2).

19.5 DERIVATION OF ONE-DIMENSIONAL

WAVE EQUATION

The classical one-dimensional wave equation, which

is hyperbolic, arises in the study of transverse vibra-

tions of an elastic string or torsional oscillations or

longitudinal vibrations of a rod.

Vibrating string:

Consider an elastic string, stretched to its length L

and alinged (placed) along the x-axis, with its two

ends x = 0 and x = L fixed. Let ρ be the constant

density of the string (i.e., homogeneous string). Let

the function u(x, t) denote the displacement (or

deflection) of string at any point x and at any time

t > 0 from the equilibrium position (x-axis). When

the string is distorted, then it vibrates. The small

transverse vibrations of such a vibrating string are

mathematically modelled by one-dimensional wave

equation.

Fig. 19.3

Assume that the string is perfectly flexible and

offers no resistance to bending. Applying Newton’s

second law of motion for a small portion of the string

between x and x + x, the equation is derived. Let

T1 and T2 be tension at the end points P and Q of

this portion of the string.
Assuming that points on the string move only in

the vertical direction, there is no motion in the hori-
zontal direction. Thus the sum of the forces in the
horizontal direction must be zero i.e.,

−T1 cosα + T2 cosβ = 0

or T1 cosα = T2 cosβ = T = constant (1)

Neglecting the gravitational force on the string, the
only two forces acting on the string are the vertical
components of tension −T1 sin α at P and T2 sin β
at Q with upward direction takes as positive. By
Newton’s second law

resultant of forces=mass× acceleration

T2 sin β − T1 sin α = (ρ x)

 
∂2u

∂t2

 
(2)

Dividing (2) by (1), we have

T2 sin β

T2 cosβ
− T1 sin α

T1 cosα
= ρ x

T

∂2u

∂t2

tan β − tan α = ρ x
T

∂2u

∂t2
(3)

Replace tan α by ∂u(x,t)

∂x
and tan β by ∂u(x+ x,t)

∂t
because they are slopes of the string at x and x + x.
Then

∂u(x + x, t)
∂t

− ∂u(x, t)
∂t

= ρ x
T

∂2u

∂t2

Rewriting and taking the limit as  x → 0

lim
 x→0

1

 x

 
∂u

∂x

   
x+ x

− ∂u
∂x

   
x

 
= ρ

T

∂2u

∂t2

Thus

∂2u

∂t2
= c2 ∂

2u

∂x2
(4)

where c2 = T
ρ
. Equation (4) is known as one-

dimensional wave equation; which is second order,

homogeneous, hyperbolic type.
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19.6 SOLUTION OF ONE-DIMENSIONAL

WAVEEQUATIONBYSEPARATIONOF

VARIABLES:

Consider an elastic string, placed along the x-axis,

stretched to length L between two fixed points

x = 0 and x = L. Let y(x, t) denote the deflection

(displacement from equilibrium position). Then the

small transverse vibrations of the string is governed

by the one-dimensional wave equation

∂2y

∂t2
= a2 ∂

2y

∂x2
(1)

with boundary conditions

y(0, t) = 0, y(L, t) = 0 (2)

The form of motion of the string will depend on the

initial displacement (deflection at time t = 0)

y(x, 0) = f (x) (3)

and the initial velocity

∂y

∂t

    
t=0

= g(x) (4)

The initial boundary value problem can be solved by

the separation of variables techniques.

Step I. Assume that y is separable i.e.,

y(x, t) = X(x)T (t) (5)

Substituting (5) in (1), we get

X  

X
= T̈

a2T
(6)

Since L.H.S. of (6) is a function of x only and R.H.S.
of (6) is a function of t only, both sides of (6) must
be equal to common constant k. This results in two
ordinary differential equations for X and T as

X  − kX = 0 (7)

T̈ − ka2T = 0 (8)

The boundary conditions (2) reduce to

0= y(0, t) = X(0)T (t) i.e., X(0) = 0 (9)

0= y(L, t) = X(L)T (t) i.e, X(L) = 0 (10)

It can be shown that for k ≥ 0, only trivial
solutions exist. So for non-trivial solutions consider
k = −λ2 < 0. Then the solution ofX  + λ2X = 0 is

X(x) = A cos λx + B sin λx

using (9), 0 = X(0) = A+ B · 0 ... A = 0

using (10), 0 = X(L) = B sin λL
Since B should not be zero,

sin λL= 0

i.e., λL= nπ
or λn =

nπ

L
for n = 1, 2, 3, . . . (11)

This results in infinitely many solutions to (7) given

by

Xn(x) = sin
 nπx
L

 
, n = 1, 2, 3, . . . (12)

With k = −λ2 = − n2π2

L2
solve (8). Its solution is

Tn(t) = An cos λnat + Bn sin λnat (13)

The set of solutions satisfying (1) and (2) are

yn(x, t) = Xn(x)Tn(t) n = 1, 2, 3, . . . .

By the principle of superposition the general solution
of (1) is

y(x, t)=
∞ 
n=1
yn(x, t)

=
∞ 
n=1

(An cos λnat + Bn sin λnat) sin λnx (14)

The unknown constants An and Bn’s are deter-

mined using the initial conditions

Case 1: When initial displacement is given:
y(x, 0) = f (x).
Put t = 0 in (14). Then

f (x) = y(x, 0) =
∞ 
n=1
An sin

nπx

L
(15)

Thus An’s are the Fourier coefficients in the half

range Fourier sine series expansion of f (x) in the

interval (0, L).
Hence

An =
2

L

 L

0

f (x) sin
 nπx
L

 
dx (16)



19.14 HIGHER ENGINEERING MATHEMATICS—V

with n = 1, 2, 3, . . .

Case 2: When initial velocity is given:

yt (x, 0) = g(x).
Differentiate (14) w.r.t., t

∂y

∂t
=

∞ 
n=1

[−Anλna sin λnat + Bnλna cos λnat] sin
nπx

L

Put t = 0

g(x)= ∂y

∂t

    
t=0

=
∞ 
n=1
Bn · λna sin

 nπx
L

 

Then Bn · λn =
2

L

 L

0

g(x) · sin
 nπx
L

 
dx

or Bn =
2

a · nπ

 L

0

g(x) sin
 nπx
L

 
dx (17)

Hence the general solution of the one-dimensional
wave Equation (1) with boundary conditions (2) and
initial conditions (3) and (4) is

y(x, t)=
∞ 
n=1

 
An · cos

 
nπat

L

 
+ Bn sin

 
nπat

L

  

× sin
 nπx
L

 
where An and Bn’s are given by (16) and (17).

Corollary 1: When only displacement is given,
f (x)  = 0 and g(x) = 0, in which case all Bn’s are
zero. Then the general solution is

y(x, t) =
∞ 
n=1
An · cos

 
nπat

L

 
· sin

 nπx
L

 

with An’s given by (16).

Corollary 2: When only initial velocity is prescri-
bed i.e., g(x)  = 0 and f (x) = 0 then the solution is

y(x, t) =
 
Bn · sin

 
nπat

L

 
· sin

 nπx
L

 
with Bn’s given by (17).

WORKED OUT EXAMPLES

Initial displacement

Example 1: A string of lengthL is fastened at both

ends A and C. At a distance ‘b’ from the end A, the

string is transversely displaced to a distance ‘d’ and is

released from rest when it is in this position. Find the

equation of the subsequent motion (refer Fig. 19.4).

Solution: Let y(x, t) denote the displacement of the

string. The initial displacement is given by ABC.

Fig. 19.4

Equation of AB is y = dx
b
.

Equation of BC is y = d(x−L)
(b−L) . Thus the problem is

to solve the one-dimensional wave equation

∂2y

∂t2
= a2 ∂

2y

∂x2

with boundary conditions

y(0, t) = 0, y(L, t) = 0

and with initial displacement

y(x, 0) = f (x) =
 
dx
b

if 0 ≤ x ≤ b
d(x−L)
(b−L) if b ≤ x ≤ L

The solution is given by

y(x, t)=
∞ 
n=1
An sin

nπx

L
· cos nπat

L

where An =
2

L

 L

0

f (x) · sin nπx
L
dx

An =
2

L

 b

0

d

b
x · sin

 nπx
L

 
dx +

+ 2

L

d

(b − L)

 L

b

(x − L) sin nπx
L
dx

= 2d

bL

 
x ·
 −L
nπ

 
· cos nπx

L
−
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−
 
−L2

n2π2

 
· sin nπx

L

 b
0

+ 2d

L(b − L)

 
(x − L)

 −L
nπ

 
cos

nπx

L
−

−
 
−L2

n2π2

 
· sin nπx

L

 L
b

=− 2dbL

bLnπ
· cos nπb

L
+ 2dL2

bLn2π2
· sin nπb

L

+ 2d

nπ
· cos nπb

L
− 2dL2

L(b − L)n2π2
· sin nπb

L
.

Thus An =
2dL2

b(L− b)n2π2
· sin nπb

L

Hence the subsequent displacement of the string is
given by the displacement function

y(x, t)= 2dL2

b(L− b)π2

∞ 
n=1

1

n2
sin
nπb

L

× sin
nπx

L
· cos nπat

L
.

Initial velocity

Example 2: Find the displacement of a string
stretched between two fixed points at a distance 2c
apart when the string is initially at rest in equilib-
rium position and points of the string are given initial
velocities v where

v =
 
x
c
, when 0 < x < c

2c−x
c
, when c < x < 2c

x being the distance measured from one end.

Solution: The initial displacement f (x) = 0 while
the initial velocity g(x) = v(x). The solution is

y(x, t)= 2c

πa

∞ 
n=1

Bn

n
sin
 nπx

2c

 
sin

 
nπat

2c

 

where Bn =
2

2c

 2c

0

f (x) · sin
  nπx

2c

 
x
 
dx

Bn =
1

c

 c

0

x

c
sin
 nπx

2c

 
dx

+1

c

 2c

c

 
2c − x
c

 
· sin

 nπx
2c

 
dx

= 1

c

 
x

c
(−1)

 
2c

nπ

 
cos

 nπx
2c

 

−1

c
(−1) 4c2

n2π2
· sin

 nπx
2c

  c
0

+1

c

  
2c − x
c

 
·
 −2c
nπ

 
· cos

 nπx
2c

 

−
 −1
c

 
·
 
−4c2
n2π2

 
· sin

 nπx
2c

  2c
c

= −2
nπ

cos
nπc

2c
+ 4

n2π2
· sin nπc

2c

+ 2

nπ
cos

nπ

2
+ 4

n2π2

sin nπ

2

Bn =
8

n2π2
· sin nπ

2

Hence the displacement function is given by

y(x, t)= 2c

πa
· 8

π2

∞ 
n=1

1

n
· 1

n2
sin
 nπ

2

 

× sin
 nπx

2c

 
· sin

 
nπat

2c

 

y(x, t)= 16c

aπ3

∞ 
n=1

1

n3
sin
 nπ

2

 

× sin
 nπx

2c

 
· sin

 
nπat

2c

 
.

Note: Here a is the constant appearing in wave

equations.

Both initial displacement and initial velocity

Example 3: Solve the vibrating string problem

with:

i. y(0, t) = 0, y(L, t) = 0

ii. y(x, 0) = x when 0 < x < L
2

= L− x when L
2
< x < L

iii. yt (x, 0) = x(x − L) when 0 < x < L
Solution: Here f (x) = y(x, 0) is the initial
displacement and g(x) = yt (x, 0) is the initial
velocity. The solution is

y(x, t)=
∞ 
n=1

 
An cos

 nπ
L
at
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+Bn sin
 nπ
L
at
  

sin
nπx

L

where An =
2

L

 L

0

f (x) sin
 nπx
L

 
dx

An =
2

L

  L
2

0

x sin
 nπx
L

 
dx

+
 L

L
2

(L− x) sin
 nπx
L

  
dx

= 2

L

 
x ·
 −L
nπ

 
· cos

 nπx
L

 

−1 ·
 
−L2

n2π2

 
· sin

 nπx
L

  L2
0

+ 2

L

 
(L− x)

 −L
nπ

 
cos

 nπx
L

 

−(−1)
 
−L2

n2π2

 
· sin

 nπx
L

  L
L
2

= 2

L

 
−L2

2nπ
· cos nπ

2
+ L2

n2π2
· sin nπ

2

+ L2

2nπ
cos

nπ

2
+ L2

n2π2
sin
nπ

2

 

An =
4L

n2π2
sin
nπ

2

Now Bn =
L

anπ
· 2
L

 L

0

g(x) · sin
 nπx
L

 
dx

Bn =
2

nπa

  L

0

x(x − L) sin
 nπx
L

 
dx

 

= 2

nπa

 
x(x − L)

 −L
nπ

 
cos

 nπx
L

 

−(2x − L)
 
−L2

n2π2

 
· sin nπx

L

+(2)
 
−L3

n3π3

 
cos

nπx

L

 L
0

Bn =
2

nπa

 
− 2L3

n3π3

 
(−1)n − 1

  

Bn =
8L3

an4π4
when n is odd.

Thus the required solution is

y(x, t)= 4L

π2

∞ 
n=1

 
1

n2
· sin nπ

2
· cos

 
nπat

L

 
· sin

 nπx
L

  

+ 8L3

aπ4

∞ 
n=1

 
1

(2n− 1)4
· sin

 
(2n− 1)πat

L

 

× sin
(2n− 1)πx

L

 
Example 4: Find the displacement of a string

stretched between the fixed points (0, 0) and (1, 0)

and released from rest from the position A sin πx +
B sin 2πx.

Solution: Here initial deflection y(x, 0) = f (x) =
A sin πx + B sin 2πx

So An =
2

1

 1

0

(A sin πx + B sin 2πx) sin
nπx

1
· dx

On integration,A1 = A,A2 = B,An = 0 for n ≥ 3.
So the displacement is given by

y(x, t)= A sin πx · cosπat + B sin 2πx · cos 2πat.

EXERCISE

A string of length L is stretched and fastened to two

fixed points. Find the solution of the wave equation

ytt = a2yxx when:

1. Initial displacement y(x, 0) = f (x) =
b sin

 
πx
L

 
Ans. y(x, t) = b sin  πx

L

 · cos  πat
L

 
2. Initial displacement y(x, 0) = f (x) where

f (x) =




3b
L
x if 0 ≤ x ≤ L

3
3b
L
(L− 2x) if L

3
≤ x ≤ 2L

3
3b
L
(x − L) if 2L

3
≤ x ≤ L

Ans. y(x, t) = 9b

π2

∞ 
n=1

1

n2
sin
 
2nπ
3

 · sin  2nπx
L

 
× cos

 
2nπat
L

 
3. Triangular initial deflection

f (x) =
 

2kx
L
, if 0 < x < L

2

2k(L−x)
L

, if L
2
< x < L
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Ans. y(x, t) = 8k

π2

∞ 
n=1

1

n2
sin
 
nπ
2

 · sin nπx
L

× cos
 
nπat
L

 
4. Initial displacement y(x, 0) = f (x) =
b0 sin

3
 
πx
L

 
Ans. y(x, t) = 3

4
sin πx

L
· cos πat

L
− 1

4
sin 3πx

L

× cos 3πat
L

5. Initial displacement y(x, 0) = f (x) =
4bx(L−x)
L2

Ans. y(x, t) = 32b

π3

∞ 
n=1

1

(2n−1)3 sin
 
(2n−1)πx

L

 

× cos
 
(2n−1)πat

L

 
6. Initial displacement y(x, 0) = f (x) =
k(Lx − x2)

Ans. y(x, t) = 8kL2

π3

∞ 
n=1

1

(2n−1)3 sin
 
(2n−1)πx

L

 

× cos
 
(2n−1)πat

L

 
7. Initial displacement y(x, 0) = f (x)

f (x) =




0 if 0 < x < 1
4

4h
 
x
L
− 1

4

 
if L

4
< x < L

2

4h
 
3
4
− x
L

 
if L

2
< x < 3L

4

0 if 3L
4
< x < L

Ans. y(x, t)= 32h

π2

∞ 
n=1

sin
 
nπ
2

 
sin2

 
nπ
8

 
1

n2
sin
 
nπx
L

 ×
× cos

 
nπat
L

 
8. Initial velocity

 
∂y

∂t

 
t=0
= g(x) = b0 sin3 πxL

Ans. y(x, t)= Lbo
12aπ

 
9 sin

 
πx
L

 
sin
 
aπt
L

 − sin
 
3πx
L

 ×
× sin

 
3aπt
L

  
9. Initial velocity

 
∂y

∂t

 
t=0
= g(x) = bx(L− x)

Ans. y(x, t) = 8bL3

aπ4

∞ 
n=1

1

(2n−1)4 sin
 
(2n−1)πx

L

 
×

× sin
 
(2n−1)πat

L

 
10. Initial velocity

 
∂y

∂t

 
t=0
=g(x)=b sin  3πx

L

 ×
× cos

 
2πx
L

 

Ans. y(x, t) = Lb
2aπ

sin
 
πx
L

 · sin  πat
L

 
+ Lb

5aπ
sin
 
5πx
L

 · sin  5πat
L

 
11. Initial velocity

 
∂y

∂t

 
t=0
= g(x)

=
 
cx, 0 ≤ x ≤ L

2

c(L− x), L
2
≤ x ≤ L

Ans. y(x, t) = 4cL2

aπ3

∞ 
n=1

1

n3
sin
 
nπ
2

 · sin  nπx
L

 
× sin

 
nπat
L

 
12. Initial velocity yt (x, 0) = g(x) = 1, L = 1

Ans. y(x, t) = 4

aπ2

∞ 
n=1

1

(2n−1)2 sin
 
(2n− 1)πx

 
× sin

 
(2n− 1)πat

 
.

19.7 LAPLACE’S EQUATION or

POTENTIAL EQUATION or

TWO-DIMENSIONAL STEADY-

STATE HEAT FLOW

The two-dimensional heat equation

∂u

∂t
= a2

 
∂2u

∂x2
+ ∂

2u

∂y2

 

reduces to Laplace’s equation or potential equation

in two dimensions given by

∂2u

∂x2
+ ∂

2u

∂y2
= 0 (1)

when the heat-flow is in the steady-state (i.e., ∂u
∂t
=

0). The solution u(x, y) of the Laplace’s Equation (1)

in a rectangular region can be obtained by the sepa-

ration of variables technique both in the Dirichlet

problem (where u is prescribed on the boundary) and

in the Neumann problem (where derivative of u in

the normal direction to the boundary is prescribed).

A rectangular thin plate, with its two surfaces (faces)

insulated, is considered so that the heat flow is

purely two-dimensional. The boundary conditions

are prescribed on the four edges of the plate. The

steady-state heat flow in such a plate is obtained by

solving Laplace’s equation in two-dimensions.
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WORKED OUT EXAMPLES

Example 1: Solve the Laplace’s equation

∂2u

∂x2
+ ∂

2u

∂y2
= 0 (1)

in a rectangle in the xy-plane, 0 < x < a and
0 < y < b (Fig. 19.5) satisfying the following
boundary conditions

Fig. 19.5

u(x, 0)= 0 (on OA) (2)

u(x, b)= 0 (on BC) (3)

u(0, y)= 0 (on OB) (4)

u(a, y)= f (y) (on AC) (5)

i.e., u is zero on three sides OA,OB,BC and is

prescribed by given function f (y) on the fourth side

AC of the rectangle OACB.

Solution: By separation of variables:

Step I. Assume that u is separable i.e.,

u(x, y) = X(x) · Y (y) (6)

Substituting (6) in (1), we get

X  X +XŸ = 0

where  denotes differentiation w.r.t., x and · denotes

differentiation w.r.t., y.

so
Ÿ

Y
= −X

  

X
(7)

Both sides of (7) must be equal to a constant k since
L.H.S. of (7) is a function of y only and the R.H.S.
of (7) is a function of x only. Then

Ÿ

Y
= −X

  

X
= k

or the boundary value problem reduces to two ordi-

nary differential equations in X and Y .

Ÿ − kY = 0 (8)

X  + kX = 0 (9)

The boundary conditions (2) (3) (4) reduces to

0= u(x, 0) = X(x)Y (0) i.e., Y (0) = 0 (10)

0= u(x, b) = X(x)Y (b) i.e., Y (b) = 0 (11)

0= u(0, y) = X(0)Y (y) i.e., X(0) = 0 (12)

If k ≥ 0, (8) will have only trivial solutions. So
assume k = −λ2 < 0. Then the Equation (8)

Ÿ + λ2Y = 0

has the general solution

Y (y)= A cos λy + B sin λy

Using (10), 0= Y (0) = A · 1+ B · 0 i.e., A = 0

Using (11), 0= Y (b) = B sin λb

Since B  = 0, sin λb = 0 i.e., λb = nπ
or λn =

nπ

b
, for n = 1, 2, 3, . . . (13)

Thus we get infinitely many solutions

Yn(y) = sin
nπy

b
(14)

(assuming B = 1). Now the solution of (9) is

X(x) = A∗e−λx + B∗eλx

Using (12), 0 = X(0) = A∗ + B∗ i.e., A∗ = −B∗

or X(x)= 2B∗
(e+λx − e−λx )

2
= B sinh λx

Thus Xn(x)= Bn sinh
 nπ
b
x
 

(15)

Hence the solution to (1) with boundary conditions
(2) (3) (4) is

un(x, y) = Bn sinh
 nπx
b

 
· sin

 nπy
b
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By superposition principle:

u(x, y)=
 
un(x, y)

=
∞ 
n=1
Bn sinh

 nπx
b

 
sin
 nπy
b

 
(16)

To find the unknown constants Bn, use the fourth
boundary condition (5)

f (y) = u(a, y) =
  

Bn · sinh
 nπa
b

  
· sin

 nπy
b

 
Thus Bn’s are the Fourier coefficients of the Fourier
half range sine series of f (y) in the interval (0, b)
and are given by

Bn · sinh
 nπa
b

 
= 2

b

 b

0

f (y) · sin
 nπy
b

 
dy

or Bn =
2

b · sinh  nπa
b

  b

0

f (y) sin
 nπy
b

 
dy,

for n = 1, 2, 3, . . . (17)

Hence the harmonic function u(x, y) satisfying the

Laplace’s equation (1) and the four boundary condi-

tions (2), (3), (4), (5) is given by (16) withBn’s deter-

mined by (17).

Example 2: Solve the above problem when

f (y) = ky(b − y), 0 < y < b

and k is a constant.

Solution: Consider

I =
 b

0

f (y) sin
 nπy
b

 
dy

=
 b

0

ky(b − y) sin
 nπy
b

 
dy

=
 
ky(b − y) ·

 −b
nπ

 
cos

 nπy
b

 

−k(b − 2y)

 
−b2
n2π2

 
· sin nπy

b

+k(−2)
 
−b3
n3π3

 
cos

 nπy
b

  b
0

= 2b3k

n3π3

 
(−1)n − 1

 = −4kb3
n3π3

when n is odd.

Now substituting I in (17)

Bn =
2

b sinh
 
nπa
b

  b

0

f (y) sin
 nπy
b

 
dy

= 2

b · sinh  nπa
b

 
 
−4kb3
n3π3

 
for n odd

Bn =
−8kb2

n3π3 sinh
 
nπa
b

 with n odd

Hence the required solution (16) becomes

u(x, y)=
 
n=odd

−8kb2
n3π3 sinh

 
nπa
b

 ×
× sinh

 nπx
b

 
· sin

 nπy
b

 

u(x, y)= −8kb
2

π3

∞ 
n=1

1

(2n− 1)3 sinh
 
(2n−1)πa

b

 ×

× sinh

 
(2n− 1)πx

b

 
· sin

 
(2n− 1)πy

b

 
.

Example 3: Solve Laplace’s equation in rect-

angle with u(0, y) = 0, u(a, y) = 0, u(x, b) = 0

and u(x, 0) = f (x) (on OA) (refer Fig. 19.6).

Solution: Boundary conditions are

0= u(0, y) = X(0) Y (y) i.e., X(0) = 0

0= u(a, y) = X(a) Y (y) i.e., X(a) = 0

0= u(x, b) = X(x) Y (b) i.e., Y (b) = 0

Fig. 19.6
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The Equation (7) is taken as

X  

X
= − Ÿ

Y
= k = −λ2 < 0

Thus the problem reduces to solving

X  + λ2X = 0 with X(0) = 0, X(a) = 0

and Ÿ − λ2Y = 0 with Y (b) = 0

Solving Xn(x)= sin
nπx

a
, with n = 1, 2, . . .

Y (y)= A∗eλy + B∗e−λy with Y (b) = 0

0= Y (b) = A∗eλb + B∗e−λb

or A∗ = −B
∗e−λb

eλb

Rewriting

Y (y)= −B
∗e−λb

eλb
· eλy + B∗e−λy

Y (y)= B∗

eλb

 
eλbe−λy − e−λbeλy

 
= B sinh {λ(b − y)}

Thus Yn(y)= Bn · sinh
 nπ
a

(b − y)
 

The required solution is

u(x, y) =
∞ 
n=1
Bn sin

 nπx
a

 
· sinh

 
nπ (b − y)

a

 

Use the condition on side OA to find Bn’s.

f (x)= u(x, 0) =
∞ 
n=1
Bn · sin

 nπx
a

 
· sinh nπ (b)

a

Then Bn =
2

a · sinh
 
nπb
a

  a

0

f (x) sin
 nπx
a

 
dx.

Example 4: Solve the above problem in a square

of length π and f (x) = sin2 x, 0 < x < π .

Solution: Consider

I =
 a

0

f (x) sin
nπx

a
dx =

 π

0

sin2 x · sin nxdx

=
 π

0

 
1− cos 2x

2

 
sin nxdx = 1

2

 π

0

sin nxdx

−1

4

 π

0

 
sin(n+ 2)x + sin(n− 2)x

 

= 1

2

 − cos nx

n

 π
0

+ 1

4

 
cos(n+ 2)x

n+ 2

+cos(n− 2)x

(n− 2)

 π
0

for n  = 2

= 1

2n
[1− (−1)n]+ 1

4

 
(−1)n+2 − 1

 
×

×
 

1

n+ 2
− 1

n− 2

 

I =− 4

n(n2 − 4)
for n odd.

(Note for n = 2, even, I = 0)

Thus Bn =
2

π sinh
 
nπ · π

π

  π

0

sin2 x · sin nxdx

= 2

π sinh nπ

 −4
n(n2 − 4)

 

= −8
nπ (n2 − 4) sinh nπ

Hence the solution is

u(x, y) = − 8

π

 
n=odd

sin nx · sinh  n(π − y) 
(sinh nπ ) · n(n2 − 4)

.

Example 5: Find the steady-state temperature dis-
tribution in a rectangular thin plate with its two sur-
faces insulated and with the conditions. (Fig. 19.7)

u(0, y) = 0, u(x, 0) = 0, u(a, y) = g(y), u(x, b) = f (x)

Solution: Superposition applied to boundary condi-

tions dismantles the given problem to solution of two

simpler problems eachofwhich can readily be solved

by separation of variables.

Fig. 19.7
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Assume u(x, y) = u1(x, y)+ u2(x, y). Then

Fig. 19.8

Thus the two boundary value problems are to be

solved. (Actually if one problem is solved, the other

can be obtained by interchanging x by y, a by b and

f (x) by g(y).)

I.
∂2u1

∂x2
+ ∂

2u1

∂y2
= 0

u1(0, y) = 0, u1(a, y) = 0

u1(x, 0) = 0, u1(x, b) = f (x)

II.
∂2u2

∂x2
+ ∂

2u2

∂y2
= 0

u2(0, y) = 0, u2(x, 0) = 0

u2(x, b) = 0, u2(a, y) = g(y)

Problem I: X  + λX = 0, X(0) = X(a) = 0

Xn(x) = sin
nπx

a

Y   − λY = 0, Y (0) = 0,

Y (y) = c1eλy + c2e−λy ... c1 = −c2

Yn(y) = An · sinh
nπy

a

Thus u1(x, y) =
 
An sin

 nπx
a

 
· sinh

 nπy
a

 

Since f (x) = u1(x, b) =
  

An · sinh
 
nπb

a

  

× sin
 nπx
a

 

Therefore An =
2

a · sinh
 
nπb
a

  a

0

f (x) · sin
 nπx
a

 
dx.

In a similarway, the solution to problem II is obtained
(by swapping x by y, a by b, f (x) by g(y))

u2(x, y)=
∞ 
n=1
Bn · sin

 nπy
b

 
· sinh

 nπx
b

 

where Bn =
2

b · sinh  nπa
b

  b

0

g(y) sin
 nπy
b

 
dy.

The required solution is

u(x, y) = u1(x, y)+ u2(x, y).

Example 6: Solve the above problem when

u(a, y) = g(y) = 0 and u(x, b) = f (x) = 2x
a
when

0 < x < a
2
and f (x) = 2(a−x)

a
when a

2
< x < a.

Solution: Since g(y) = 0, all Bn’s are zero,

u2(x, y) = 0
Consider

I =
 a

0

f (x) sin
 nπx
a

 
dx

=
 a

2

0

2x

a
· sin

 nπx
a

 
dx +

 a

a
2

2(a − x)
a

sin
 nπx
a

 
dx

I = 2

a

 
x ·
 −a
nπ

 
cos

 nπx
a

 
− 1

 
−a2
n2π2

 
sin
 nπx
a

  a2
0

+ 2

a

 
(a − x)

 −a
nπ

 
cos

 nπx
a

 

−(−1)
 
−a2
n2π2

 
sin
 nπx
a

  a
a
2

= 2

a

  
a

2
·
 −a
nπ

 
cos

nπ

2
+ a2

n2π2
sin
nπ

2

 

−
 
a

2

 −a
nπ

 
cos

nπ

2
− a2

n2π2
sin
 nπ

2

   

= 4a

n2π2
sin
 nπ

2

 
.

Substituting I in An, we get

An =
2

a sinh
 
nπb
a

 · 4a

n2π2
sin
 nπ

2
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= 8

n2π2

(−1)n

sinh
 
nπb
a

 
when n is odd.
Hence solution is

u(x, y)= 8

π2

∞ 
n=1

(−1)n
(2n− 1)2

×

×
sinh

 
(2n−1)πy

a

 
· sin

 
(2n−1)πx

a

 
sinh

 
(2n−1)πb

a

 .

Insulated edges

Example 7: Find the steady-state temperature in

a rectangular plate 0<x<a, 0<y<b when the sides

x = 0, x = a, y = b are insulated while the edge

y = 0 is kept at temperature k
cosπx

a
(Fig. 19.9).

Solution: The boundary conditions are

∂u

∂x
|x=0 = 0;

∂u

∂x

    
x=a

= 0,
∂u

∂y

    
y=b

= 0

u(x, 0)= f (x) = k cos
 πx
a

 
.

Fig. 19.9

The boundary conditions reduce to

X (0) = 0, X (a) = 0, Y  (b) = 0.

Differentiating the solution

X(x)= A cos λx + B sin λx

X (x)= −Aλ sin λx + Bλ cos λx

Using, 0= X (0) = 0+ Bλ1 ... B = 0

0= X (a) = −Aλ sin λa ... λ = nπ
a

So Xn(x)= An · cos
nπx

a
, n = 0, 1, 2, . . .

Differentiating the solution

Y (y)= c1e
λy + c2e−λy

Y  (y)= λc1e
λy − c2λe−λy

Using, 0 = Y  (b)= λ(c1e
λb − c2e−λb)

or c1 =
c2e

−λb

eλb

Thus Y (y)= c2

 
eλ(b−y) + e−λ(b−y)

2

 

= c3 cosh

 
nπ (b − y)

a

 

Hence the solution is

u(x, y)=
∞ 
n=0
An cos

 nπx
a

 
· cosh

 
nπ (b − y)

a

 

where An =
2

a cosh
 
nπb
a

  a

0

f (x) cos
 nπx
a

 
dx

An =
2

a cosh
 
nπb
a

  a

0

k · cos πx
a

× cos
 nπx
a

 
dx

A1 =
2k

a cosh
 
πb
a

 · π
2
· a
π
,

An = 0. for n = 0, n ≥ 2

u(x, y)= k sech
 
πb

a

 
· cos

 πx
a

 

× cosh

 
π (b − y)
a

 
.

Example 8: Find the steady-state temperature

distribution in a thin sheet of metal plate which
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occupies the semi-infinite strip, 0 ≤ x ≤ L and 0 ≤
y <∞ when the edge y = 0 is kept at temperature

u(x, 0) = f (x) = kx(L− x), 0 < x < L while

i. The edges x = 0 and x = L are kept at zero

temperature.

ii. The edges x = 0 and x = L are insulated.

Assume that u(x,∞) = 0.

Solution:

Case 1: u(0, y) = 0, u(L, y) = 0 for every y: (Fig.

19.10)
Solution of X  + λ2X = 0, X(0) = X(L) = 0 is

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . .

Solution of Y   − λ2y = 0 is Y (y) = Aeλy + Be−λy .
A must be zero since y(∞) = 0. So

Fig. 19.10

Y (y)= Bne−λy

Thus u(x, y)=
∞ 
n=1
Bne

−nπy/L · sin nπ
L
x

where Bn =
2

L

 L

0

kx(L− x) · sin nπx
L
dx

= 2k

L

 
x(L− x) ·

 −L
nπ

 
cos

nπx

L
−

−(L− 2x)

 
−L2

n2π2

 
sin
nπx

L

+ 2L3

n3π3
cos

nπx

L

 L
0

Bn =
2k

L

2L3

n3π3

 
(−1)n − 1

 

= −8kL
2

n3π3
when n is odd

u(x, t)= −8kL
2

π3

∞ 
n=1

1

(2n− 1)3
e−(2n−1)πy/L ×

× sin

 
(2n− 1)πx

L

 
.

Case 2: Both edges insulated (Fig. 19.11):

∂u

∂x

    
x=0

= 0,
∂u

∂x

    
x=L

= 0

the solution of X  + λ2X = 0 with the boundary
conditions X (0) = 0 and X (L) = 0 is

Xn(x) = A cos
nπx

L
, n = 0, 1, 2, . . .

The solution of Y   − λ2Y = 0 with Y (∞) = 0 is

Yn(y) = e−nπy/L

Thus the solution to the problem is

Fig. 19.11

u(x, y)=
∞ 
n=0
Ane

−nπy/L · cos
 nπx
L

 

where A0 =
1

L

 L

0

kx(L− x)dx = k

L

 
Lx2

2
− x

3

3

 L
0

A0 =
kL2

6

An =
2

L

 L

0

kx(L− x) · cos
 nπx
L

 
dx

= 2k

L

 
x(L− x) ·

 −L
nπ

 
sin
nπx

L
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−(L− 2x) ·
 
−L2

n2π2

 
· cos nπx

L

+(−2)
 
−L3

n3π3

 
· sin

 nπx
L

  L
0

An =
2k

L

L3

n2π2

 
(−1)n + 1

 

= 4kL2

n2π2
where n is even

Hence the required solution is

u(x, y)= kL
2

6
+ 4kL2

π2

 1

4n2
e−(2nπy/L) · cos

 
2nπx

L

 
.

EXERCISE

Rectangular plate

Find the steady-state temperature distribution in

a thin rectangular metal plate 0 < x < a, 0 <

y < b with its two-faces insulated (so that the

flow is two dimensional) (or solve the two-

dimensional Laplace’s equation ∂
2u

∂x2
+ ∂2u

∂y2
= 0)with

the following (temperatures) boundary conditions

prescribed on the four edges.

1. u(0, y) = u(x, 0) = u(x, b) = 0,

u(a, y) = g(y), 0 < y < b

Ans. u(x, y) =
∞ 
n=1
Bn sinh

 
nπx
b

 · sin  nπy
b

 
where

Bn =
2

b
cosech

 nπa
b

  b

0

g(y) sin
 nπy
b

 
dy

2. Solve problem 1, with g(y) = 100.

Ans. Bn =
400 

nπ sinh
 
nπa
b

  for n odd.
3. u(0, y) = u(a, y) = u(x, 0) = 0, u(x, b) =
f (x), 0 < x < a

Ans. u(x, y) =
∞ 
n=1
An sin

 
nπx
a

 · sinh  nπy
a

 
with

An =
2

a sinh
 
nπb
a

  a

0

f (x) sin
 nπx
a

 
dx.

4. Solve problem 3 with a = b = L, u(x, L) =
f (x) = x(L− x) for 0 ≤ x ≤ L.

Ans. u(x, y) = 8L2

π2

 
n=odd

sinh
 
nπy

L

 · sin  nπx
L

 
n3 sinh nπ

5. Solve problem 3 with u(x, b) = f (x) = 100

Ans. u(x, y) = 400

π

 
n=odd

1
n
sin
 
nπx
a

 · sinh  nπy
a

 

×cosech
 
nπb

a

 
.

6. Solve problem 3 with u(x, b) = f (x) =
sin
nπx

a
.

Ans. u(x, y) = sin
 nπx
a

 
· sinh

 nπy
a

 

×cosech
 
nπb

a

 

7. u(0, y) = u(a, y) = u(x, b) = 0, u(x, 0) =
f (x) = x(a − x), 0 < x < a

Ans. u(x, y) = 8a2

π3

 
n=0

1

m3 sin
 
mπx
a

 · sinh  mπ (b−y)
a

 

×cosech
 
mπb

a

 
where m = 2n+ 1

8. u(0, y) = u(a, y) = u(x, b) = 0, u(x, 0) =
5 sin

4πx

a
+ 3 sin

3πx

a
.

Ans. u(x, y) = 3 · cosech
 
3πb

a

 
· sin

 
3πx

a

 
×

× sinh
 
3π (b−y)
a

 
+5·cosech  4πb

a

 ×
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× sin
 
4πx
a

 · sinh  4π (b−y)
a

 

9. u(0, y) = u(a, y) = 0,

 
∂u

∂y

     
y=b

= 0

(i.e., y = b is insulated) u(x, 0) = f (x)

Ans. u(x, y)=  
Bn· sin

 
nπx
a

 · cosh  nπ (b−y)
a

 
×

×sech
 
nπb

a

 
where

Bn =
2

a

 a

0

f (x) sin
 nπx
a

 
dx

10. ux(0, y) = ux(L, y) = 0 = uy(x, 0), u(x, z0)
= gz0 + gcx (three faces insulated)

Ans. u(x, y) =
 
gz0 +

gcL

2

 
−

−4gcL

π2

∞ 
n=0

cos(mπxL )·cosh(mπyL )

m2 cosh
 
mπz0
L

 where

m=2n+1.

Semi infinite strip

Find the steady-state temperature distribution in a

thin sheet of metal plate which occupies the semi-

infinite strip, 0 ≤ x ≤ L and 0 ≤ y <∞ with the

boundary conditions

11. u(0, y) = 0, u(π, y) = 0 for all y, L = π
u(x,∞) = 0, u(x, 0) = u0 in 0 < x < π

Ans. u(x, y) = 4u0

π

∞ 
n=1

1

(2n− 1)
· sin(2n− 1)x

×e−(2n−1)y

12. u(0, y) = 0, u(a, y) = 100 for all y, L = a
u(x,∞) = 0, u(x, 0) = f (x) for 0 < x < a

Ans. u(x, y) = 100 x
a
+

∞ 
n=1
Bne

−nπy/a · sin  nπx
a

 
where Bn = 2

a

! a
0

 
f (x)− 100x

a

 · sin nπx
a
dx

13. u(0, y) = 0, u(10, y) = 0 for all y; L− 10

u(x,∞) = 0, u(x, 0) =

f (x) =
 
20x, 0 ≤ x ≤ 5

20(10− x), 5 ≤ x ≤ 10

Ans. u(x, y) = 800

π2

∞ 
n=1

(−1)n+1
(2n−1)2 · sin

 
(2n−1)πx

10

 

×e−(2n−1)πy/10

14. u(x, 0) = 0, u(x, L) = 0 for all x,

u(∞, y) = 0, u(0, y) = g(y) for 0 ≤ y ≤ L

Ans. u(x, y) =
∞ 
n=1
Bn sin

nπy

L
· e−nπxL where

Bn =
2

L

 L

0

g(y) sin
 nπy
L

 
dy

15. u(0, y) = 0, u(8, y) = 0 for all y, L = 8

u(x,∞) = 0, u(x, 0) = f (x) = 100 sin
πx

8

Ans. u(x, y) = 100 sin
 πx

8

 
· e−πy8

19.8 LAPLACE EQUATION IN POLAR

COORDINATES

The two dimensional Laplace equation in Cartesian

coordinates

∇2u = ∂
2u

∂x2
+ ∂

2u

∂y2
= 0

gets transformed to the Laplace equation in polar

coordinates r, θ as

∇2u = ∂
2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0 (1)

by the transformations

x = r cos θ, y = r sin θ

(see WE6 on page 15.25)
Consider the problem of solving Laplace equation
(1), by the method of separation of variables in
the plane region a < r < b, 0 < θ < α with the
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following boundary conditions

on QR : u(r, 0) = c, a < r < b (2)

on T S : u(r, α) = d, a < r < b (3)

on TQ : u(a, θ) = 0, 0 < θ < α (4)

on SR : u(b, θ) = f (θ ), 0 < θ < α (5)

Assume that u(r, θ ) = R(r)φ(θ ) (6)

T

r

S

R
Q
a b

a q

r r( , )q

Ñ =

2 0u

Fig. 19.12

Substituting (6) in (1), we get

r2R  + rR 
R

+ φ̈
φ
= 0

Here  denotes differentiation w.r.t. r and (.)

denotes differentiation w.r.t. θ .

or

r2R  + rR 
R

= − φ̈
φ
= constant = λ (7)

since the R.H.S. is a function of φ alone and the

L.H.S. is a function of ‘r’ alone, the equality holds

good only when both of them are constant.
In order to have physically meaningful solutions

satisfying the given boundary conditions choose the
unknown constant λ = +p2. This (7) given rise to
two ordinary differential equations

r2R  + rR − p2R = 0 (8)

and φ̈ + p2φ = 0 (9)

Equation (8) is Euler-Cauchy equation which can be
solved by substitution x = et . Forp = 0, the general
solutions of (8) and (9) are

R(r)= c1 + c2 ln r
φ(θ )= c3 + c4θ

For p  = 0, the general solutions of (8) and (9) are

R(r)= c5rp + c6r−p

φ(θ )= c7 cospθ + c8 sinpθ

Using the principle of superposition, we get

u(r, θ ) = (c1 + c2 ln r)(c3 + c4θ )+
+(c5rp + c6r−p)(c7 cospθ + c8 sinpθ ) (10)

The arbitrary constants c1, c2.., c8 will be determined

using the boundary conditions (2), (3), (4) and (5).

Using (2) in (10), we have

c = u(r, 0) = (c1 + c2 ln r)(c3)+ (c5r
p + c6r−p)c7

Then c1c3 = c, c2 = 0, c7 = 0. Then (10) reduces to

u(r, θ ) = c + c9θ + (c10r
p + c11r−p) sinpθ (11)

where c = c1c3, c9 = c1c4, c10 = c5 · c8,
c11 = c6 · c8. Using (3) in (11), we have

d = u(r, α) = c + c9α + (c10r
p + c11r−p) sinpα

Then d = c + c9α and sinpα = 0 or c9 = d−c
α

and

pα = nπ i.e., p = nπ
α
, n = 1, 2, . . .

Thus (11) reduces to

u(r, θ ) = c + (d − c)
+ αθ +

+
∞ 
n=1

(Anr
nπ/α + Bnr−nπ/α) sin

 
nπθ

α

 
(12)

Using (4) in (12), we get

0 = u(a, θ) = c +
 
d − c
α

 
θ +

+
∞ 
n=1

(Ana
nπ/α + Bna−nπ/α) sin

 
nπθ

α

 
(13)

Therefore the third term in the R.H.S. of (13) is a half
range Fourier since series expansion of the function

−c − (d−c)θ
α

in the interval 0 < θ < α. From Fourier
series, we have

(Ana
p + Bna−p) =

= 2

α

α 
0

 
−c − (d − c)

α
θ

 
· sinpθdθ (14)
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Finally using (5) in (12), we get

f (θ ) = u(b, θ)= c +
 
d − c
α

 
θ +

+
 

(Anb
p + Bnb−p) sinpθ

By similar analysis

(Anb
p+Bnb−p)=

2

α

α 
0

 
f (θ )−c− (d−c)

α
θ

 
sinpθdθ

(15)

For given c, d, α, f (θ ), equations (14) and (15)
constitute two equations for the two unknowns An
and Bn. A non-trivial unique solution exists because
the coefficient determinant is zero i.e.,    ap a−p
bp b−p

    =  a
b

 p
−
 
b

a

 p
 = 0 ... b  = a

Thus the general solution to the Laplace equation

(1) with boundary conditions (2), (3), (4), (5) is given

by (12) with the coefficients An’s and Bn’s obtained

by solving (14) and (15).

Dirichlet Problem for Circular Disk

Consider a thin circular disk of radius ‘b’with the two

faces insulated and the temperature on the circum-

ference is prescribed as

u(b, θ) = f (θ ), (−∞ < θ <∞) (16)

Fig. 19.13

b

q
r

u b f( , ) = ( )q q

r r( , )q

Ñ

By the method of separation of variables the solu-
tion to the Laplace equation (1) is given by (10) (of

the previous section)

u(r, θ )= (c1 + c2 ln r)(c3 + c4θ )+
+(c5rp + c6r−p)(c7 cospθ + c8 sinpθ )

(10)

Apparently there is only one boundary condition
(16) in the circular disk problem, unlike the previous
problemwhere four boundary conditions (2), (3), (4),
(5) are available. The circular disk (Fig. 19.13) may
be considered as the limiting case of the region (Fig.
19.12) as a→ 0 andα→ 2π . So assume thatu(r, θ )
is bounded as r → 0. Using this in (10), as r → 0, c2
and c6 must be zero (because ln r →∞, r−p →∞)
as r → 0. Thus

u(r, θ )= c9 + c10θ +
+rp(c11 cospθ + c12 sinpθ ) (17)

where c9 = c1c3, c10 = c1c4, c11 = c5c7, c12 =
c5c8. Note that the domain of θ is infinite in

the present problem (−∞ < θ <∞) unlike the

previous problem where θ is finite (0 < θ < α).

So we assume that u(r, θ ) is periodic, i.e.,

u(r, θ + 2π ) = u(r, θ ) in order that u(r, θ ) is single-
valued function of θ . In equation (17), since c10θ

is not periodic, we take c10 = 0. The constant c9 is

anyway periodic. Finally in order that the remaining

two terms cospθ and sinpθ are periodic, we must

have

cosp(θ + 2π ) = cospθ (18)

and

sinp(θ + 2π ) = sinpθ (19)

Expanding equation (18), we have cospθ ·
cos 2πp − sinpθ · sin 2πp = cospθ . Then

cos 2πp = 1 for k = 1, 2, 3, . . . and sin 2πp = 0

for k = 1
2
, 1, 3

2
, 2 · · ·. Thus equation (18) is satisfied

for the common values k = 1, 2, 3, . . .. Similar

result holds good for equation (19) also. Now with

c10 = 0 and p = n, the equation (17) reduces to

u(r, θ ) = A0

2
+

∞ 
n=1
rp(An cos nθ + Bn sin nθ ) (20)

Here c9 = A0
2
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Now making use of the only boundary condition

of the present problem (16) in (20), we have

f (θ ) = u(b, θ) = A0

2
+

∞ 
n=1
bn(An cos nθ + Bn sin nθ )

(21)

Observe that the R.H.S. of equation (21) is the
(full) Fourier series expansion of the periodic func-
tion f (θ ) of period 2π . Then the Fourier coefficients
are given by

A0 =
1

π

π 
−π
f (θ )dθ (22)

An =
1

πbn

π 
−π
f (θ ) cos nθdθ (23)

Bn =
1

πbn

π 
−π
f (θ ) sin nθdθ (24)

Thus the solution to the circular disk problem is given

by equation (20) where the coefficientA0,An,Bn are

determined by equation (22), (23) and (24).

Note:Putting r = 0 in equation (20),weget the value

of u at the centre of the disk which equals to
A0
2
.

WORKED OUT EXAMPLES

Determine the steady-state temperature distribution

u(r, θ ) in a semi-circular plate of radius ‘b’ cm with

insulated faces. The bounding diameter is kept at

0◦C and the temperature on the circumference is

prescribed by u(b, θ) = kθ (π − θ ) when 0 ≤ θ ≤
π .

Solution The boundary value problem consists of the

two-dimensional Laplace equation in polar coordi-

nates

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0, 0 < r < b (1)

with boundary conditions

u(r, 0) = 0, u(r, π) = 0, 0 < r < b (2)

u(b, θ) = f (θ ) = kθ (π − θ ), 0 ≤ θ ≤ π (3)

Assume u(r, θ ) = R(r)φ(θ ) (4)

Fig. 19.14

0

00

b

kq p( – )q

Using (4) equation (1) takes the form

r2R  + rR 
R

= − φ̈
φ
= λ = constant

consider
d2φ

dθ2
+ λφ = 0, (5)

with boundary conditions u(r, 0) = R(r)φ(0) =
0 ... φ(0) and

u(r, π) = R(r)φ(π ) = 0 ... φ(π ) = 0

For λ ≤ 0, we get trivial solutions.

For λ = 0, the solution of (5) is φ(θ ) = c1θ + c2
Since 0 = φ(0) = c10+ c2 ... c2 = 0

Since 0 = φ(π ) = c1 · π ... c1 = 0.

Thus φ(θ ) = 0 for any θ .

Similarly for λ = −p2, the solution of (5) is

φ(θ ) = c1epθ + c2e−pθ

since 0 = φ(0) = c1 + c2 or c1 = −c2
since 0 = φ(π ) = c1epπ + c2e−pπ = c1(epπ −
e−pπ ) ... c1 = 0 and c2 = −c1 = 0.

Again φ(θ ) = 0 for any θ .

So consider λ = p2 > 0 to obtain non-trivial solu-

tions. In this case the solution of (5) is

φ(θ ) = c1 cospθ + c2 sinpθ
using 0 = φ(0) = c1 · 1+ c2 · 0 ... c1 = 0

using 0 = φ(π ) = c2 · sin πθ
since c2  = 0, therefore sin πp = 0

or πp = nπ
or p = n for n = 1, 2, 3 . . . (6)

Thus φn(θ ) = sin nθ where the constant c2 is taken

as unity.

Now the D.E. in R is

r2
d2R

dr2
+ r dR

dr
− p2R = 0
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which is Euler-Cauchy equation.

Put r = ez. Then r2
d2R

dr2
= dR

2

dz2
− dR
dz

and

r dR
dr
= dR

dz

Then the D.E. reduces to

d2R

dz2
− dR
dz
+ dR
dz
− n2R = 0 ... p = n.

The general solution of this equation is

R(z) = c1enz + c2e−nz

or R(r) = c1rn + c2r−n

since u(r, θ ) is bounded, lim u(r, θ )

as r → 0
= finite

Now since n is a positive integer limR(r)

as r → 0
is

finite provided c2 = 0

Thus Rn(r) = c1rn
Then by superposition principle

u(r, θ ) =
∞ 
n=1
Bnr

n sin nθ (7)

To determine the unknown coefficients B  ns use the
boundary condition u(b, θ), in (7). So

Kθ (π − θ ) = u(b, θ) =
∞ 
n=1
Bnb

n sin nθ

which is a half range Fourier sine series expansion
ofKθ (π − θ ) in the interval (0, π). Then the Fourier
coefficients are given by

bnBn =
2

π

π 
0

Kθ (π − θ ) sin nθdθ

Integrating by parts

bnBn =
2K

π

 
θ (π − θ ) ·

 
− 1

n
cos nθ

 

− (π − 2θ )

 −1
n2

 
sin nθ

+ (−2) ·
 

1

n3

 
cos nθ

     π
θ=0

bnBn =
2K

π

 
2

n3
(1− cos nπ )

 

= 4K

πn3
(1− (−1)n)

Thus the steady-state temperature distribution in the
circular plate is

u(r, θ ) = 4K

π

∞ 
n=1

[1− (−1)n]
bnn3

rn sin nθ

EXERCISE

1. A plate having the shape of a quadrant of a

circle of radius 10 cm has insulated faces. The

bounding radii θ = 0 and θ = π
2
are kept at

0◦C while the temperature along the circular

quadrant is kept at 100(πθ − 2θ2) when 0 ≤
θ ≤ π

2
until steady-state conditions prevail.

Find the temperature at the centroid of the plate

having coordinates
 
4θ
√
2

3π
, π
4

 
.

Ans. 45.8

Hint: φ(0) = φ  π
2

 = 0, p = 2n, u(r, θ ) =
∞ 
n=1
cnr

2n sin 2nθ , u(10, θ ) = 100(πθ − 2θ2),

cn =
−400

πn3(10)2n
, for n = 1, at centroid, u

= 400

π

 
4
√
2

3π

 2

2. The bounding diameter of a semi-circular plate

of radius ‘b’ cm, with insulated faces, is kept

at 0◦C. The semi-circumference is maintained

at a temperature given by Kθ
π

in 0 ≤ θ ≤ π
2

and K
π
(π − θ ) in π

2
≤ θ ≤ π . Determine the

steady-state temperature distribution in the

plate.

Ans: u(r, θ ) = 4K

π2

∞ 
n=1

(−1)n−1
(2n−1)2

 
r
b

 2n−1 · sin(2n−
1)θ.

3. Find the steady-state temperature distribution

in a semi-circular plate of redius ‘b’ cm with

the bounding diameter kept at 0◦C and with

a constant temperature K on the semicircular

boundary.

Ans. u(r, θ ) = 4K
π

∞ 
n=1

1
(2n−1)

 
r
b

 2n−1
sin(2n− 1)θ



19.30 HIGHER ENGINEERING MATHEMATICS—V

4. Solve the Laplace equation in two dimen-

sions for u(r, θ ) defined in the region a ≤ r ≤
b, 0 ≤ θ ≤ π

2
and with boundary conditions

u(r, 0) = u  r, π
2

 = 0, u(b, θ) = 0, u(a, θ) =
θ
 
π
2
− θ .

Ans. u(r, θ ) = 2

π

∞ 
m=1

 
r
b

 n −  b
r

 n 
a
b

 n −  b
a

 n sin nθ

(2m− 1)

where n = 4m− 2

5. Solve the Dirichlet problem:

urr +
1

r
ur +

1

r2
uθθ = 0

a < r < b, 0 < θ < α

u(r, 0) = 0, u(r, α) = 0, (a < r < b)

u(a, θ) = 0, u(b, θ) = 100, (0 < θ < α)

Ans. u(r, θ ) = 400

π

∞ 
n=1

1

m

 
r
a

 λ −  a
r

 λ
 
b
a

 λ −  a
b

 λ · sin λθ
Here m = 2n− 1, λ = (2n− 1)π/α

6. Determine the steady-state temperature u(r, θ )

in the annulus region 2 < r < 4 with the

temperatures along the boundaries given

by u(2, θ ) = 6 cos θ +10 sin θ , u(4, θ ) =
15 cos θ +17 sin θ .

Ans. u(r, θ ) = 4
 
r − 1

r

 
cos θ +4  r + 1

r

 
sin θ .

Hint: u(r, θ ) = (a0 + b0 log r)
+

∞ 
n=1

(anr
n + bnr−n) cos nθ

+
∞ 
n=1

(cnr
n + dnr−n) sin nθ

Dirichlet Problem for Disk

7. Find the steady-state temperature distribution
in a circular plate of radius ‘b’, with insulated
faces and with the temperature on circumfer-
ence prescribed by

f (θ ) = u(a, θ) =
 
100, 0 ≤ θ ≤ π
0, π ≤ θ ≤ 2π

Ans. u(r, θ ) = 50+
200
π

∞ 
n=1

1
(2n−1)

 
r
b

 2n−1
sin(2n− 1)θ

Hint: u(r, θ ) = a0
2
+

∞ 
n=1
rn(an cos nθ +

bn sin nθ )

a0=
1

2π

π 
−π

f (θ )dθ, an=
1

πbn

π 
−π

f (θ ) cos nθdθ

bn =
1

πbn

π 
−π

f (θ ) sin nθdθ

Solve theLaplace equation∇2u = 0 foru(r, θ )

with the following boundary conditions in the

region specified.

8. 1 < r < 2, 0 < θ < π , u(r, π) = 100,

u(r, 0) = ur (1, θ ) = u(2, θ ) = 0

Ans. u(r, θ ) = 100θ
π

+ 200
π

∞ 
n=1

1
n

(−1)n
2n+2−n (r

n + r−n) sin nθ

9. 1 < r < 2, 0 < θ < π , u(1, θ ) = uθ (r, 0) =
uθ (r, π) = 0, u(2, θ ) = 100

Ans. u(r, θ ) = 100 ln r
ln 2

10. r < 1, u bounded, u(1, 0) = 50+ 20 cos θ

Ans. u(r, θ ) = 50+ 20r cos θ

19.9 DERIVATION AND SOLUTION

OF TWO-DIMENSIONAL

HEAT EQUATION

Consider a thin flat metal rectangular plate of

uniform thickness θ (cm) of a heat conducting mate-

rial sandwichedbetween sheets of insulation.Choose

the coordinate system such that one face of the plate

is taken as theXOY− plane as shown in Fig. 19.15.

Assume that the temperature u at any point of the

plate depends on the position in the xy-plane and

time t and is independent of the z-coordinate so that

u is function of x, y, t i.e. u = u(x, y, t). Thus, the
flow is two-dimensional. Let r denote the rate of heat

generation per unit volume,ρ(gr/cm3) be the density

s(cal/gr deg) be the heat capacity and k(cal/cm sec

deg) be the thermal conductivity of the plate. Let

qx(x, y) qy(x, y) denote the heat flow rates in the x

and y directions.



APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 19.31

Fig. 19.15

Now the two-dimensional heat equation is derived
by applying the law of conservation of energy in the
rate form to a small rectangle ABCD with sides  x
and  y. The conservation of energy states that rate
in + rate of generation = rate out + rate of storage or
rate in – rate out = rate of storage – rate of generation 
qx

 
x, y + 1

2
 y

 
− qx

 
x + x, y + 1

2
 y

  
θ y

+
 
qx

 
x + 1

2
 x, y

 
− qx

 
x + 1

2
 x, y + y

  
θ x

=
 
−r + ρs ∂u

∂t

 
 x · y · θ.

Dividing throughout by θ x y and taking the limit
as  x and  y tend to zero, we get

−∂qx
∂x

− ∂qy
∂y

= −r + ρs ∂u
∂t

Using Fourier law,

∂

∂x

 
κx
∂u

∂x

 
+ ∂

∂y

 
κy
∂u

∂y

 
= ρs ∂u

∂t
− r

Assuming that thematerial is isotropic,we have κx =
κy = κ we have the 2-dimensional heat equation

κ

 
∂2u

∂x2
+ ∂

2u

∂y2

 
= ρs ∂u

∂t
− r

In the absence of source of heat generation, r = 0.
The flow of thermal energy in a two-dimensional
region is given by

∂u

∂t
= c2

 
∂2u

∂x2
+ ∂

2u

∂y2

 
(1)

Here c2 = κ
ρs
, is a positive constant, is the diffusivity.

The temperature distribution u(x, y, t) in the metal

plate at any time in the transient state is described

by equation (1). In addition to (1), specification of

temperature on the boundary (condition) of the plate

and initial temperature distribution is required.

Steady-state

When u is independent of time t , temperature distri-
bution is said to be in the steady-state and in this case
the equation (1) reduces to

∂2u

∂x2
+ ∂

2u

∂y2
= 0 (2)

Equation (2) is known as two-dimensional Laplace’s

equation or steady-state heat equation.

Solution of Two-dimensional Heat Equation

by the Method of Separation of Variables

The diffusion of heat in a rectangular metal plate

of uniform, isotropic material, with both faces

insulated and with the four edges kept at zero

temperature is given by the transient temperature

u(x, y, t) which satisfies the following initial

boundary value problem (IBVP) consisting of

1. Partial Differential Equation (P.D.E.)

∂u

∂t
= c2

 
∂2u

∂x2
+ ∂

2u

∂y2

 
(1)

in the region of the plate

0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 < t

2. With Boundary Conditions (B.C.)

u(x, 0, t) = 0, u(x, b, t) = 0,

0 < x < a, 0 < t (2)

u(0, y, t) = 0, u(a, y, t),

0 < y < b, 0 < t (3)

3. Initial Conditions (I.C.)

u(x, y, 0) = f (x, y), 0 < x < a, 0 < y < b

(4)
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We can apply saparation of variables technique to
the above IBVP because both the P.D.E. (1) and the
B.C. (2) and (3) are homogeneous. Assume that

u(x, y, t) = φ(x, y)T (t)
substituting u in (1), we have 

∂2φ

φx2
+ ∂

2φ

∂y2

 
T = 1

c2
φT
.

or  
∂2φ

φx2
+ ∂

2φ

∂y2

 
1

φ
=

.

T

c2T

The mutual value of the L.H.S. and R.H.S. of the

above equation must be a constant. Since the time-

dependent part of the product solution exponentially

decays (ifλ > 0), a separation constant in the formof

−λ2 may be introduced. Then the resulting equations

are

T
. + λ2c2T = 0, t > 0 (5)

∂2φ

∂x2
+ ∂

2φ

∂y2
= −λ2φ, 0 < x < a, 0 < y < b

(6)
The eigen value λ relates to the decay of the time-
dependent part. The boundary conditions (2), (3) take
the form

φ(x, 0)T (t) = 0, φ(x, b)T (t) = 0

φ(0, y)T (t) = 0, φ(a, y)T (t) = 0

If T (t) = 0, we get trivial solution that u = 0 for all

t . Thus, the required boundary conditions are

φ(x, 0) = 0, φ(x, b) = 0, 0 < x < a (7)
φ(0, y) = 0, φ(a, y) = 0, 0 < y < b (8)

In the new two-dimensional eigen value problem
consisting of equations (6), (7), (8) the P.D.E. and
B.C. are linear and homogeneous. So separation of
variable can be applied again. Assuming

φ(x, y) = X(x)Y (y)
equation (6) becomes

X  

X
+ Y

  

Y
= −λ2, 0 < x < a, 0 < y < b

The ratios X  
X

and Y   
Y

should be a negative

constant, denoted by −µ2 and −ν2 respectively

because the sum of a function of x and a function

of y can be a constant only if each of these two func-

tions are individually constants. The separate equa-

tions for x and y are

X  + µ2X = 0, 0 < x < a (9)

Y   + ν   Y = 0, 0 < y < b (10)

The three separation constants are connected by the

relation

λ2 = µ2 + ν2 (11)

the boundary conditions (7) and (8) takes the form

X(x)Y (0) = 0, X(x)Y (b) = 0, 0 < x < a

X(0)Y (y) = 0, X(a)Y (y) = 0, 0 < y < b

Again X(x) = 0 for all x or Y (y) = 0 for all y,

leads to trivial solution u = 0. Thus, the appropriate

boundary conditions are

Y (0) = 0, Y (b) = 0 (12)

X(0) = 0, X(a) = 0 (13)

Equations (9) and (13) and Eqns (10) and (12) form

two independent eigen value problems, with the

following solutions:

Xm(x) = sin
 mπx
a

 
, µ2

m =
 mπ
a

 2
and

Ym(y) = sin
 nπy
b

 
, ν2n =

 nπ
b

 2
Here the indices n andm are independent. The solu-
tions of the two-dimensional eigen value problems
(6), (7), (8) are

φmn(x, y)=Xm(x)Yn(y)
with λ2mn = µ2m + ν2n
and the corresponding solution of (5) is

Tmn = exp(−λ2mnc2t)

The P.D.E. (1) and B.C. (2), (3) are satisfied by the
function

umn(x, y, t)= φmn(x, y) · Tmn(t)
= sin

 mπx
a

 
· sin

 nπy
b

 
exp(−λ2mnc2t)
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for each pair of indices m, n (with m = 1, 2, 3, . . .

and n = 1, 2, 3, . . .).

Using the superposition principle, we obtain the

double series

u(x, y, t) =
∞ 
m=1

∞ 
n=1
Amnφmn(x, y)Tmn(t) (14)

which satisfies equations (1), (2), (3). The unknown

coefficients Amn are determined using the initial

condition (4) as follows:

The key idea here is the double Fourier series (also

known as double trigonometric series).
In a problem involving a rectangle 0 < x < a, 0 <

y < b, a double Fourier sine series is given by

∞ 
m=1

∞ 
n=1
Amn sin

 mπx
a

 
· sin

 nπy
b

 

Similarly a double Fourier cosine series is given
by

∞ 
m=1

∞ 
n=1
Amn · cos

 mπx
a

 
· cos

 nπy
b

 

clearly other combinations of sines and cosines could
be considered.
All these double series are of the form

∞ 
m=1

∞ 
n=1
φm(x)ψn(y)

where φm, ψn are the eigen functions of a Sturm-
Liouville problem, satisfying the orthogonality rela-
tions. For example, in the case of double Fourier sine
series, the orthogonality relation is a

0

 b

0

sin
 mπx
a

 
sin
 nπy
b

 
sin
 pπx
a

 
sin
 qπx
b

 
dx dy

=
 
ab
4
, if both m = p and n = q

0, otherwise

Thus, many functions can be expressed as sums
of multiple Fourier series. The expansion formula in
the case of double Fourier sine series in the rectangle
0 < x < a, 0 < y < b is

f (x, y) =
∞ 
m=1

∞ 
n=1
Amn sin

 mπx
a

 
sin
 nπy
b

 

Here the unknown coefficients Amn are given by

the generalized Euler Formula.

Amn=
4

ab

b 
0

a 
0

f (x, y) sin
 mπx
a

 
sin
 nπy
b

 
dx dy

(15)

with m = 1, 2, 3, . . . and n = 1, 2, 3, . . ..
Now consider the general solution given by equa-

tion (14) as

u(x, y, t) =
∞ 
m=1

∞ 
n=1
Amn sin

 mπx
a

 
sin
 nπy
b

 
exp(−λ2mnc2t).

(16)

Using the initial condition (4) in (16) we have

f (x, y)= u(x, y, 0)

=
∞ 
m=1

∞ 
n=1
Amn sin

 mπx
a

 
sin
 nπy
b

 

which is a double Fourier sine series. Here Amn are

determined by (15). Thus, the complete solution to

the IBVP (1), (2), (3), (4) is given by (16) with coef-

ficients Amn determined by (15).

WORKED OUT EXAMPLES

Edges at zero temperature

Example 1: Determine the transient temperature

in a rectangular metal plate of uniform isotropic

material with both faces insulated, with the four

edgesmaintained at zero temperature andwith unitial

temperature distributation given by xy.

Solution: Here the initial condition is
u(x, y, o) = f (x, y) = xy
Then from (15),

Amn =
4

ab

 b

0

 a

0

xy sin
 mπx
a

 
sin
 nπy
b

 
dxdy

= 4

ab

  b

0

sin
 mπy
b

 
dy

   a

0

x sin

 
nπx

z

 
dx
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Integrating by parts

Amn =
4

ab

 
y

 
b

nπ

 
(−1) cos mπy

b

−1 b2

n2π2
(−1) sin nπy

b

      
b

y=0
×

×
 
x
 a
nπ

 
(−1) cos

 nπx
a

 

−1 a2

n2π2
(−1) sin

 nπy
b

       
a

x=0

= 4

ab

 
−b2
mπ

cosmπ

  
−a2
nπ

cos nπ

 

= 4ab

mnπ2
cosmπ cos nπ

Thus, the required solution is

u(x, y, t)= 4ab

π2

∞ 
m=1

∞ 
n=1

(−1)m+n
mn

sin
nπx

a

sin
mπy

a
e−λ

2
mnc

2t

where λ2mn = µ2
m + ν2n .

Two edges insulated

Example 1: Find the temperature distribution in a
rectangular plate 0 < x < 1, 0 < y < 2, with both
its faces insulated, top and bottom edges insulated
and right and left edges kept at zero temperature.
The initial temperature distribution is given by

u(x, y, 0)= x(1− x)y2(3− y),
0 < x < 1, 0 < y < 2. Refer Fig. 19.16.

Solution: The initial boundary value problem

consists of PDE

∂u

∂t
= c2

 
∂2u

∂x2
+ ∂

2u

∂y2

 
(1)

B.C : Left edge OC : u(0, y, t)= 0, 0 < y < 2,

all t (2)

Right edge AB u(1, y, t)= 0, 0 < y < 2,

all t (3)

Bottom edge OA : uy (x, 0, t)= 0, 0 < x < 1,

Fig. 19.16

all t (4)

Top edge CB : uy (x, 2, t)= 0, 0 < x < 1,

all t (5)

I.C. : u(x, y, 0)= x(1− x)y2(3− y), 0 < x < 1,

0 < y < 2 (6)

substitution of

u(x, y, t) = X(x)Y (y)T (t) (7)

into the P.D.E. (1) gives

XYT
. = c2(X  YT +XY   T )

or

X  

X
=

.

T

c2T
− Y

  

Y

Assuming the common value of the two sides of this
equation as a constant −λ2, we get

X  

X
+ Y

  

Y
= −λ2 = T

.

c2T

Assuming the ratios X
  
X

and Y
  
Y
as negative constants

−µ2 and−ν2 respectively,we get the following three
ordinary differential equations.

X  + µ2X = 0 (8)

Y   + ν2Y = 0 (9)

T
. + c2λ2T = 0 (10)

Using (7) in the boundary conditions (2), (3), (4), (5),
we get

X(0) = X(1)= 0 (11)

Y  (0) = Y  (2)= 0 (12)

The non-trivial solutions to the eigenvalue problem
(8), (11) are given by constant multiples of



APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 19.35

Xm = sin
mπx

1

with µm =m2π2, andm a positive integer. Similarly
the corresponding non trivial solutions of (9), (12)
are constant multiples of

Yn = cos
nπy

2

with νn = n2π2

4
, and n a positive integer (here y0 =

cos 0 = 1)

with λ2mn = µ2
m + ν2n = m2 π2

12
+ n2π2

4
, the equation

(10) becomes

T
. + λ2mnc2T = 0

with solutions as constant multiples of

Tmn(t) = exp(−λ2mnc2t)

Then the most general solution satisfying (1), (2),

(3), (4), (5) is given by

u(x, y, t) =
∞ 
m=1

∞ 
n=0
Amn sin

mπx

1
· cos nπy

2

·e−λ2mnc2t (13)

The unknown coefficients Amn are now determined

by using the initial condition (6) in (13).

So, u(x, y, 0) =
∞ 
m=1

∞ 
n=0
Amn sinmπx · cos nπy2

= x(1− x)y2(3− y)
which is a double trigonometric series. Now for each
fixed value of y, express the initial temperature distri-
bution as a sine series in x. Put

Am(y) =
∞ 
n=0
Amn cos

nπy

2

Then

x(1− x)y2(3− y) =
∞ 
m=1

Am(y) · sinmπx

with y treated as constant, we have

Am(y)=
2

1

 1

x=0
x(1− x)y2(3− y) · sinmπx dx

= 2y2(3− y)
 1

0

x(1− x) sinmπx dx

Integrating by parts

Am(y)= 2y2(3− y)
 
x(1− x)

 −1
mπ

 
cosmπx

−(1− 2x)(−1) 1

m2π2
sinmπx

+(−2)(−1)(−1) 1

m3π3
· cosmπx

 1
x=0

=− 2

m3π3
[cosmπ − 1] 2y2(3− y)

Am(y)=+
8y2(3− y)
m3π3

when m is odd

= 0 when m is even

Now expand each function Am(y) in a cosine series
of the form

Am(y) =
∞ 
n=0
Amn cos

nπy

2

If m is even then Am(y) = 0 so

amn = 0 for all n.

If m is odd, then for n = 0, we have

Am0 =
1

2

 2

y=0

8y2(3− y)
m3π3

dy

2Am0 =
1

m3π3

 
24
y3

3
− 8

y4

y

      
2

y=0
= 32

m3π3
.

For n > 0,

Amn =
2

2

 2

y=0

8y2(3− y)
m3π3

cos
nπy

2
dy

Amn =
8

m3π3

 
y2(3− y)

 
2

nπ

 
sin
nπy

2

−(6y − 3y2)

 
−22
n2π2

 
cos

nπy

2

+(6− 6y)

 
−22
n2π2

  
2

nπ

 
· sin nπy

2

−(6)(−1) 24

n4π4
(−1) · cos nπy

2

 2
y=0

= 8

m3π3

 
(−1) 16.6

n4π4
(cos nπ − 1)

 

=
 

1536

m3n4π7
if n is odd

0 if n is even
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Thus, the required solution is

u(x, y, t) =
∞ 
m=1

∞ 
n=0
Amn sinmπx · cos

nπy

2
e
−c2λ2mn t

where

Amm =



0 if n is even or if m> 0 is even

16

m3π3
if n is odd and m = 0

1536

m3n4π7
if n and m are both odd

EXERCISE

1. Find the temperature u(x, y, t) in a rectan-
gular plate 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 with both
faces insulated and the four edges kept at zero
temperature and with initial temperature given
by

u(x, y, 0)= 4 sin

 
3πx

2

 
sin πy

−2 sin πx · sin 2πy

3

Ans. u(x, y, t) = 4 exp
 
−π2

  
3
2

 2 + 12
 
c2t
 
sin 3πx

2
×

sin πy − 2 · exp
 
−π2

 
12 +  2

3

 2 
c2t
 
sin πx ×

sin
2πy

3
.

2. Solve the problem (two edges insulated )

D.E. : ut = uxx + uyy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 0

B.C. : u(x, 0, t)= 0, uy (x, 1, t) = 0, ux (0, y, t)

= 0, u(1, y, t) = 0

I.C. : u(x, y, 0)= sin

 
π
(3x + y)

2

 

− sin

 
3πx

2

 
· cos

 πy
2

 

Ans. u(x, y, t)=exp
 
−π2

  
3
2

 2+ 1
2

 2
t
  

cos
 
3πx
2

 ×
× sin

 
πy

2

 
.

3. Solve the two-dimensional heat conduction

problem in a rectangle 0 < x < a, 0 < y < b if

all the four edges are insulated and with initial

temperature distribution given as

(a) u(x, y, 0) = 1

(b) u(x, y, 0) = x + y
(c) u(x, y, 0) = xy

Ans. (a) u(x, y, t) = 1
The solution for (b) and (c) is of the form

u(x, y, t)=
∞ 
m=0

∞ 
n=0
Amn cos

mπx

a
×

cos
 nπy
b

 
exp

 
−λ2mnc2t

 

with λ2mn =
 
mπ
a

 2 +  nπ
b

 2
and m and n

varying from 0 to∞.

(b) A00 =
a + b
2
, Amo =

−2b(1− cosmπ )

m2π2
,

A0n =
−2a(1− cos nπ )

n2π2
,

Amn = 0, otherwise

(c) A00 =
ab

4
, Amo =

−ab(1− cosmπ )

m2π2
,

Aon =
−(ab)(1− cos nπ )

n2π2
,

Amn =
4ab(1− cos nπ )(1− cosmπ )

m2n2π2

when m and n are greater than zero.

4. Solve the two-dimensional heat conduc-
tion problem in 0 ≤ x ≤ L, 0 ≤ y ≤ M, t ≥
0. With

B.C. : u(x, 0, t)= 0, uy (x,M, t) = 0

ux (0, y, t)= 0, ux (L, y, t) = 0

(three edges insulated) and with

I.C. : u(x, y, 0) = cos

 
2πx

L

 
· sin

 
3πy

2M

 

Ans. u(x, y, t) = cos
 
2πx
L

 · sin  3πy

2M

 
×

× exp
 
−
  

2
L

 2 +  3
2M

 2 
π2c2t

 
5. Solve the two-dimensional heat equation in a

rectangular plate 0 < x < L1, 0 < y < L2 with

all the four edges maintained at zero temper-

ature and with prescribed initial temperature

distribution given by u(x, y, 0) = 1. Find the

relaxation time.

Ans. u(x, y, t) = 4

π2

∞ 
m=1

∞ 
n=1

 
1−(−1)m
m

  
1−(−1)n

n

 
×
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sin mπx
L1
× sin

nπy

L2
· e−λmn·c2t

Relaxation time τ isL2
1L

2
2/
 
c2π2(L2

1 + L2
2)
 

6. Solve the initial value problem for the heat

equation in 0 < x < a, 0 < y < b with BC’s

ux(0, y, t) = 0, ux(a, y, t) = 0, u(x, 0, t) = T1,

u(x, b, t) = T2 and IC u(x, y, 0) = T3 where T1,

T2, T3 are constants.

Ans. u(x, y, t) = T2y

b
+ (b−y)T1

a
+

∞ 
n=1
An sin

nπy

b
· exp

 
−  nπ

b

 2
c2t
 

with An = 2(T3−T1)[1−(−1)n]
nπ

+ 2(T1−T2)(−1)n
bnπ

7. Solve the heat equation in a square plate of

length a, with left, right, bottom edges at

zero temperature and top edge at T1 constant

temperature and with zero initial temperature

distribution.

Ans. u(x, y, t) = T1y

a
−

4T1
π2a2

∞ 
m=1

∞ 
n=1

 
1−(−1)m
m

  
1−(−1)n+1

n

 
× sin

 
mπx
a

 ×
sin
 
nπy

a

 
e−λmnc

2t

with λmn = (m2+n2)π2
a2

19.10 DERIVATION AND SOLUTION

OF TWO-DIMENSIONAL

WAVE EQUATION

The small transverse vibrations of a membrane

tightly stretched over a flat frame (in the xy-plane)

are governed by the two-dimensional wave equation.

Let u(x, y, t) denote the transverse displacement of

the membrane from its equilibrium position at time

t . Assume that (a) surface tension T is constant and

is independent of position (b) membrane is homo-

geneous with ρ surface density (mass/unit area)

constant (c) deflections are small so that all angles of

inclination are small. The wave equation is derived

by applying Newton’s law of motion to a small rect-

angle of dimensions  x and  y of the membrane.

On each edge of the rectangle a concentrated force of

magnitude T x or T y is exerted. Refer Fig. 19.17.

Looking at the projections on the xu- and yu-

planes (Figs. 19.18a and b), the resultant of hori-

zontal forces in x-direction is T y(cos β − cos α)

u

T xD

a

T yD

T xD

T yD

b

Y

y

y y+ D

x x+ Dx
x

Fig.19.17 Vibrating membrane

and in the y-direction is T x(cos δ − cos γ ). For

small α, β, δ, γ , their cosines are close to 1 and

hence, the horizontal components at opposite sides

are equal.
Equating the sumof the forces in the vertical direc-

tion to mass times acceleration, we get

T y(sin β − sin α)+ T x(sin δ − sin γ ) = ρ x y · ∂
2u

∂t2

Assuming α, β, δ, γ to be small, we have

u

x

a

TDy

TDy

b

(a)

u

y

TDx

TDx

d

(b)

g

Fig. 19.18
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sin α  tan α = ∂u

∂x

    
at (x,y,t)

sin β  tan β = ∂u

∂x

    
at (x+ x,y,t)

etc. then the above equation becomes

T y

 
∂u

∂x
(x + x, y, t)− ∂u

∂x
(x, y, t)

 

+T x
 
∂u

∂y
(x, y,+ y, t)− ∂u

∂y
(x, y, t)

 

= ρ x y ∂
2u

∂t2

Now dividing throughout by  x y and taking the
limit as  x→ 0 and  y→ 0, we get

T

 
∂2u

∂x2
+ ∂

2u

∂y2

 
= ρ ∂

2u

∂t2

or

∂2u

∂t2
= c2

 
∂2u

∂x2
+ ∂

2u

∂y2

 

This equation is known as two-dimensional wave

equation.

Here c2 = T
ρ
is a positive constant.

Vibrating Rectangular Membrane

To analyze the transverse vibrations of a rectangular

membrane 0 < x < a, 0 < y < b, determine the

vertical displacement (or deflection) u(x, y, t) of the

vibratingmembrane as a solution of the IBVP. (Refer

Fig. 19.19).

x

y

( , )a bb

aO

Fig. 19.19 Rectangular membrane

P.D.E. :
∂2u

∂t2
= c2

 
∂2u

∂x2
+ ∂

2u

∂y2

 
(1)

B.C.: Membrane is fixed to a flat frame so that all
four sides are having zero displacement

u(0, y, t)= 0, u(x, 0, t) = 0 (2)

u(a, y, t)= 0, u(x, b, t) = 0 (3)

I.C. : u(x, y, 0)= α(x, y) (4)

where α(x, y) is the given initial displacement and

∂u

∂t
(x, y, 0) = β(x, y) (5)

where β(x, y) is the given initial velocity. We apply

the method of separation of variables since both

the P.D.E. and B.C.’s are linear and homogeneous.

First we separate only the time variable by seeking a

product solution of the form

u(x, y, t) = h(t)φ(x, y) (6)

substituting (6) into wave equation (1), we get

ḧφ = c2(hφxx + hφyy )
or

ḧ

c2h
= φxx + φyy

φ
= −λ2

wherewe have introduced a separation constant−λ2.
This results in an O.D.E.

ḧ+ c2λ2h = 0 (7)

for the time furnction h(t) and a P.D.E.

φxx + φyy + λ2φ = 0 (8)

for the amplitude function φ(x, y). Equation (8)

is known as two-dimensional Helmholtz equation.

Substitution of (6) in B.C.’s (2), (3) gives

φ(0, y) = 0, φ(x, 0) = 0 (9)

φ(a, y) = 0, φ(x, b) = 0 (10)

i.e.,φ = 0 along the entire boundary. Equation (8) and

B.C.’s (9) (10) constitute a two-dimensional eigen

value problem. Since this eigen value problem has a

linear homogeneous P.D.E. in two independent vari-

bles with homogeneous B.C.’s we can again apply

the method of separation of variables. So we assume

that

φ(x, y) = f (x)g(y) (11)
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a product of functions of each independent variable.
Using (11) in (8), we get

g(y)
d2f

dx2
+ f (x)d

2g

dy2
= −λ2f (x)g(y)

or

1

f

d2f

dx2
= −λ2 − 1

g

d2g

dx2
= −µ2

where we have introduced a second separation
constant −µ2. If µ > 0, we get oscillatory solutions.
Thus, we get

d2f

dx2
+ µ2f = 0 (12)

d2g

dy2
+ (λ2 − µ2)g = 0 (13)

with the assumption of separability for the func-

tionu(x, y, t) = f (x)g(y)h(t), for theP.D.E. in three
variables, we obtain three O.D.E. one function for

each independent variable, with only two separation

constants. Using (11), the B.C.’s (9), (10) reduce to

f (0) = 0, f (a) = 0 (14)

g(0) = 0, g(b) = 0 (15)

Thus, we have one Sturm-Liouville eigen value

problem in the x-variable namely (12), (14) with µ2

as the eigen value and f (x) as the eigen function.

Similarly, we have another Sturm-Liouville eigen

value problem in the y-variable namely (13), (15)

with λ2 − µ2 as the eigen value and g(y) as the eigen

function. In the familiar way, for the first eigen value

problem, we obtain the eigen value as

µ2
n =

 nπ
L

 2
, n = 1, 2, 3, . . . (16)

with corresponding eigen functions as

fn(x) = sin
 nπx
a

 
(17)

For each value of µn in (16), There are an infinite

number of eigen values λ. Thus, for the second eigen

value problem we get the eigen values as

λ2mn − µ2
n =

 mπ
b

 2
,m = 1, 2, 3, . . . (18)

with corresponding eigen functions as

gnm(y) = sin
 mπy
b

 
(19)

then

λ2nm = µ2
n +

 mπ
b

 2
=
 nπ
a

 2
+
 mπ
b

 2
(20)

where n = 1, 2, 3, . . . and m = 1, 2, 3, . . .
Thus, φmn(x, y) = sin

 
nπx
a

 
. sin

 
mπy

b

 
with

n = 1, 2, 3, . . . and m = 1, 2, 3, . . . solving (7) we
get the time-dependent part of the product solutions
as sin cλnmt and cos cλnm(t) oscillations with

natural frequencies cλnm = c
" 

nπ
a

 2 +  mπ
b

 2
with

n = 1, 2, 3 . . . and m = 1, 2, 3 . . .. The two doubly
infinite families of product solutions

sin
 nπx
a

 
sin
 mπy
b

 
sin(cλmnt)

and

sin
 nπx
a

 
· sin

 mπy
b

 
· cos(cλmn)t

are known as modes of vibration. As time varies, the

shape remains the same but only the amplitude varies

periodically.
Applying the principle of superposition, we get

the displacement function as

u(x, y, t)=
∞ 
m=1

∞ 
n=1
un,m(x, y, t)

=
∞ 
m=1

∞ 
n=1

sin
 
nπx
a

 · sin  mπy
b

 ×
× [Amn cos(cλmnt)+ Bnm sin(cλnmt)]

(21)

The functionunm(x, y, t) is known as the (n,m)-th

harmonic of the rectangular drum.
Using the two initial conditions (4) and (5), the two

families of coefficientsAnm andBnm are determined.
Putting t = 0 in (21) and using IC(4)we have a double
Fourier series

α(x, y)= u(x, y, 0)

=
∞ 
m=1

 ∞ 
n=1
Anm sin

 nπx
a

  
sin
 mπy
b

 
(22)

Put

A∗m(x) =
∞ 
n=1
Amn sin

 nπx
a

 
. (23)
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For fixed x, A∗m(x) depends only on m. Now from

(22)

α(x, y) =
∞ 
m=1

A∗m(x) sin
 mπy
b

 
.

From the above observation that A∗m(x) is the coef-
ficients of the Fourier sine series in y of α(x, y) in 0

< y < b. Thus, the Fourier sine coefficients are given

by

A∗m(x) =
2

b

 b

0

α(x, y) · sin
 mπy
b

 
dy (24)

for each m. R.H.S. of (24) is a function of x alone
(since integration wrt y is performed) and is valid for
all x. Then from (23)

∞ 
n=1
Anm sin

 nπx
a

 
= A∗m(x)

In other words Anm are the coefficients in the

Fourier sine series in x ofA∗m(x) in 0 < x < a. Then

Anm =
2

a

 a

0

A∗m(x) · sin
 nπx
a

 
dx (25)

substituting A∗m(x) from (24) in (25), we get

Anm =
2

a

 a

0

 
2

b

 b

0

α(x, y) sin
 mπy
b

 
dy

 
×

× sin
 nπx
a

 
dx

or as a double integral

Anm =
4

ab

 a

0

 b

0

α(x, y) sin
mπy

b
dy · sin

 nπx
a

 
dx

(26)

To obtain the coefficients Bnm, differentiate (21)
w.r.t. t and put t = 0 and use the IC (5). Then

β(x, y)= ∂u
∂t

    
(x,y,0)

=
∞ 
m=1

∞ 
n=1

sin
 nπx
a

 
· sin

 mπy
b

 
×

× [−cλnmAnm sin(cλnm · 0)
+Bnm · cλnm cos(cλnm · 0)]

or

β(x, y)=
∞ 
n=1

∞ 
m=1

cλnmBnm sin
 nπx
a

 
· sin

 mπy
b

 

The coefficients in this double Fourier series are
given by

c·λnm ·Bnm=
4

ab

 a

0

 b

0

B(x, y)·sinmπy
b

· sin nπx
a
dydx

(27)

Thus, the solution to the IBVP (1), (2), (3), (4), (5)

is the doubly infinite series given by (21) with the

coefficients Anm and Bnm determined by (26) and

(27) respectively.

Corollary 1: If the membrane starts from rest,
then B(x, y) = 0 so all Bnm are zero. The solution
(21) reduces to

u(x, y, t)=
∞ 
m=1

∞ 
n=1
Anm sin

 nπx
a

 
×

× sin
 mπy
b

 
× cos(cλnmt) (28)

with Anm’s determined by (26).

Corollary 2: If the initial displacement is zero,
then α(x, y) = 0 so all Anm’s are zero. Then (21)
reduced to

u(x, y, t)=
∞ 
m=1

∞ 
n=1
Bnm sin

 nπx
a

 
×

× sin
 mπy
b

 
· sin(cλnmt) (29)

with Bnm’s determined by (27).

WORKED OUT EXAMPLES

Initial Displacement

Example 1: Find the deflection u(x, y, t) of a rect-

angular membrane 0 < x < a, 0 < y < b given

that its entire boundary is fixed, initial velocity is

zero (starts from rest) and initial deflectionα(x, y) =
κxy(a − x)(b − y).
Solution: Here β(x, y) = 0 since membrane starts
from rest. Therefore Bnm are all zero. The displace-
ment (or deflection) function u(x, y, t) is given by
(28)

u(x, y, t)=
∞ 
m=1

∞ 
n=1
Anm · sin

 nπx
a

 
· sin

 mπy
b

 
×

× cos(cλnmt)
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where the coefficients Anm’s are determined by

Anm =
4

ab

 a

0

 b

0

κxy(a − x)(b − y) sin
 nπx
a

 
×

× sin
 mπy
b

 
dy · dx

ab

4κ
Anm =

  a

0

x(a − x) sin
 nπx
a

 
dx

 
×

×
  b

0

y(b − y) sin
 mπy
b

 
dy

 
= I1 × I2

Integrating by parts,

I1 =
 
x(a − x)

 a
nπ

  
− cos

 nπx
a

  

−(a − 2x) ·
 
−a2
n2π2

 
· sin

 nπx
a

 

+(−2)(−1) a
3

n3π3
(−1) · cos nπx

a

      
a

x=0

I1 = 0+ 0− 2a3

n3π3
· [cos nπ − 1]

similarly

I2 =
−2b3
m3π3

[cosmπ − 1]

Then

ab

4κ
Anm = I1I2 = 
−2a3
n3π3

[(−1)n − 1]

  
−2b3
m3π3

[(−1)m − 1]

 

Thus,

Anm =




64a2b2

π6n3m3 , when both m and n are odd

0, otherwise

The required deflection is

u(x, y, t)= 64a2b2

π6

∞ 
m=1

∞ 
n=1

1

n3
sin
 nπx
a

 

× 1

m3
· sin

 mπy
b

 
· cos(cλnmt)

where

λ2nm =
 ηπ
a

 2
+
 mπ
b

 2
Initial Velocity

Example 2: Determine the displacement function

u(x, y, t) of a rectangular membrane 0 < x < L1, 0 <

y <L2 with the entire boundary fixed and with initial

conditionsu(x, y, 0) = α(x, y) = 0 andut (x, y, 0) =
β(x, y) = 1.

Solution: In this problem the initial displacement
is zero, so the solution is given by (29)

u(x, y, t)=
∞ 
m=1

∞ 
n=1
Bnm sin

 
nπx

L1

 
· sin

 
mπy

L2

 

× sin(cλnmt)

with the coefficients Bnm given by (27) as

cλnmBnm =
4

L1 · L2

 L1

0

 L2

0

1 · sin
 
mπy

L2

 
×

× sin

 
nπx

L1

 
dydx

= 4

L1L2

  −L2

mπ

 
cos

 
mπy

L2

  L2
y=0

×

  −L1

nπ

 
cos

 
nπx

L1

  L1
x=0

= 4

mnπ2

 
(−1)m − 1

  
(−1)n − 1

 
So

Bnm

 
16

mnπ2cλnm
if both m and n are odd

0 otherwise

the required solution is

u(x, y, t)= 16

π2c

∞ 
m=odd

∞ 
n=odd

sin

 
nπx

L1

 
· sin

 
mπy

L2

 

× 1

mnλnm
· sin(cλnmt)

where

λ2nm =
 
nπ

L1

 2

+
 
mπ

L2

 2
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Example 3: Find the deflection at any time is

a unit square membrane, tightly stretched. If the

membrane starts from rest and has initial displace-

ment α(x, y) = k · sin 2πx · sin πy.
Solution: Here β(x, y) = 0 so all Bnm are zero.
The solution is given by (28)

u(x, y, t)=
∞ 
m=1

∞ 
n=1
Anm sin

 nπx
1

 
· sin

 mπy
1

 
×

× cos(cλnmt)

where

Anm =
4

1.1

 1

0

 1

0

 
sin
mπy

1
· sin nπx

1

 
×

×k · sin 2πx · sin πy dy dx

A21 = 4k · 1
2
· 1
2
= k,

λ221 =
 
2π

1

 2

+
 
1 · π
1

 2

= 5π2

All other coefficientsAnm are zero form  = 2, n  = 1.
Thus, the deflection function is

u(x, y, t) = k · sin 2πx · sin πy · cos(c
√
5πt)

EXERCISE

1. Find the deflection u(x, y, t) of the square

membrane with a = b = 1 and c = 1 if the

initial velocity is zero and the initial deflection

is α(x, y) where

1. k sin πx · sin 2πy
2. k sin 3πx · sin 4πy

Ans: 1. k · cosπ
√
5t · sin πx · sin 2πy

2. k · cos 5πt · sin 3πx · sin 4πy
2. Solve the IVBP for the vibrating membrane

in the square 0 < x < L, 0 < y < L, with the
initial condition

u(x, y, 0)= 3 sin
πx

L
· sin 2πy

L

+ 4 sin
3πx

L
· sin 5πy

L
, ut (x, y, 0) = 0

Ans: u(x, y, t) = 3 sin πx
L
· sin 2πy

L
×

cos(πct
√
5 /L)+ 4 sin

 
3πx
L

 · sin  5πy

L

 
×

cos(πct
√
34 /L)

3. Find the separated solutions of the wave

equation utt = c2(uxx + uyy) in the square

0 < x < L, 0 < y < L with the B.C.’s

ux(0, y, t) = 0, ux(L, y, t) = 0, uy(x, 0, t) =
0, uy(x, L, t) = 0 and I.C. u(x, y, 0) = 0.

Ans: umn(x, y, t) = cos
 
mπx
L

 
cos

 
nπy

L

 ·
sin
 
λnm

πct
L

 
with λ2nm = m2 + n2 with

m, n = 0, 1, 2, . . .

4. Solve IBVP: utt = c2(uxx + uyy), 0 ≤ x ≤
1, 0 ≤ y ≤ 1.

B.C. : u(x, 0, t)= 0, u(x, 1, t) = 0, u(0, y, t)

= 0, u(1, y, t) = 0

I.C. : u(x, y, 0)= 0, ut (x, y, 0)

= x(x − 1)y(y − 1)

Ans: u(x, y, t) =  
m=odd

 
n=odd

 
4

mnπ2

 3
 
πc2(n2 +m2)

1
2

 −1
× sin[πc(n2 +

m2)
1
2 t] sin(nπx) · sin(mπy)

5. Solve the IBVP for a vibrating rectangular

membrane 0 < x < a, 0 < y < b subject to

u(x, y, 0) = 0 and ∂u
∂t
(x, y, 0) = β(x, y) and

ux(0, y, t) = 0, uy(x, 0, t) = 0, ux(a, y, t) = 0,

uy(x, b, t) = 0.

Ans: u(x, y, t) =
∞ 
n=0

∞ 
m=0

Anm cos
nπx
a
· cos mπy

b

×φnm(t)

where

φnm(t) =
 
t, for n = 0,m = 0

sin λnmt otherwise

Here λ2nm = c2
  
nπ
a

 2 +  mπ
b

 2 

Anmφ
 
nm(0) =

! !
β(x, y) cos nπx

a
· cos mπy

b
dxdy! !

cos2
 
nπx
a

 · cos2  mπy
b

 
dxdy
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19.11 VIBRATIONS OF CIRCULAR

MEMBRANE

In engineering, circular membranes, which occur in
drums, pumps, microphones, telephones and so on,
are of great importance. The vibrations (or displace-
ment) of a plane, thin elastic membrane, offering no
resistance to bending, stretched tightly and fixed to
a circular frame of radius R are modelled by the
two-dimensional wave equation in polar coordinates
given by

∂2u

∂t2
= c2

 
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2

 

Fig. 19.20 Circular membrane

y

x
R

Assume that the initial conditions are circularly

symmetric, (or radially or rotationally symmetric,

Fig. 19.20). Then the displacement function u =

u(r, t) is independent of θ . Therefore, the above

equation reduces to

∂2u

∂t2
= c2

 
∂2u

∂r2
+ 1

r

∂u

∂r

 
, 0 < r < R (1)

with boundary condition (fixed along its entire

boundary)

u(R, t) = 0, for t > 0 (2)

and with initial conditions

u(r, 0) = α(r), 0 < r < R (3)

∂u

∂t
(r, 0) = β(r), 0 < r < R (4)

Hereα(r) is the initial deflection andβ(r) is the initial

velocity.

Applying the method of separation of variables,

we look for product solutions of the form

u(r, t) = φ(r)h(t) (5)

substitution of (5) in (1) yields

1

c2

1

h

d2h

dt2
= 1

rφ

d

dr

 
r
dφ

dr

 
= − λ2

Here we have introduced a separation constant

−λ2 since displacement oscillates in time for λ >

0. The time dependent equation is

d2h

dt2
+ λ2c2h = 0 (6)

having solutions sin cλt and cos cλt when λ > 0. The
eigen value problem for the separation constant λ is

d

dr

 
r + dφ

dr

 
+ λ2rφ = 0

or

r
d2φ

dr2
+ dφ
dr
+ λ2rφ = 0 (7)

with B.C. φ(R) = 0 (8)

since r = 0 is a singular point of D.E. (7) we add the

requirement that |φ(r)| is bounded at r = 0

i.e., |φ(0)| <∞ (9)

(7), (8), (9) form a Sturm-Liouville problem, with

eigen functions orthogonal wrt weight r . Using the

transformation

z = λr
The O.D.E. (7) becomes

z2
d2φ

dz2
+ zdφ

dz
+ z2φ = 0

which is a Bessel’s equation of order zero, with the
general solution

φ = AJ0(z)+ BY0(z) = AJ0(λr)+ BY0(λr)
a linear combination of the zeroth-order Bessel func-
tions. Since Y0(λr) has a logarithmic singularity at r
= 0, the boundedness condition (9) demands that B
= 0. Then

φ(r) = AJ0(λr)
Now using the B.C. (8) at r = R we have

J0(λR) = 0
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Thus, λR must be a zero of the zeroth Bessel func-
tion. We thus obtain an infinite number of eigen
values λ1, λ2, λ3, . . . Using the principle of super-
position, we have

u(r, t)=
∞ 
n=1
AnJ0(λnr) cos(cλnt)

+
∞ 
n=1
BnJ0(λnr) sin(cλnt) (10)

The I.C. (3) and (4) are satisfied if

u(r, 0) =
∞ 
n=1
AnJ0(λnr) = α(r) (11)

for 0 < r < R

and

∂u

∂t
(r, 0) =

∞ 
n=1
BnλnCJ0(λnr) = β(r) (12)

for 0 < r < R

Thus, (11) and (12) are the Fourier-Bessel series

representation of α(r) and β(r) in 0 < r < R respec-

tively. The Fourier-Bessel coefficients of order zero

of these series are given by the integral formulas

An =
1

In

 R

0

r · α(r)J0(λnr)dr (13)

Bn =
1

c · λn · In

 R

0

r · β(r)J0(λnr)dr (14)

where

In =
 R

0

r · [J0(λnr)]2dr (15)

Using the orthogonality relation R

0

r · [Jm(λ r)]2dr =
R2

2
[Jm+1(Rλ)]2 (16)

with m = 0, we have

In =
R2

2
[J1(R λ)]

2 (17)

Thus, the displacement function u(r, t) of the

vibrating circular membrane is given by (10) with

coefficients An’s and Bn’s determined by (13), (14),

(17).

WORKED OUT EXAMPLES

Initial Displacement and Initial Velocity

Example 1: Determine the displacement u(r, t) of

circular membrane tightly stretched and fixed to

a circular frame of radius R with initial displace-

mentα(r) = 3J0(r λ1)+ J0(r λ3) and initial velocity
β(r) = J0(r λ2).
Solution: The displacement u(r, t) is given by

u(r, t)=
∞ 
n=1
AnJ0(λnr) cos(cλnt)

+
∞ 
n=1
βnJ0(λnr) sin(cλnt)

Here the initial conditions are

u(r, 0) = α(r) = 3J0(rλ1)+ J0(rλ3)

and

∂u

∂t
(r, 0) = β(r) = J0(rλ2).

So the Fourier-Bessel coefficients are given by (13)
and (14) as

An =
1

In

 R

0

r · [3J0(λ1r)+ J0(rλ3)]J0(λnr)dr

Using the orthoganality relation (16) we have
A1 = 3, A2 = 0, A3 = 1 and An = 0 for n > 3. From

Bn =
1

cλnIn

 R

0

rJ0(rλ2)J0(λnr)dr

We have B1 = 0, B2 = 1, Bn = 0 for n > 2. Thus, the
required displacement function is

u(r, t)= 3(J0λ1) · cos(cλ1t)+ J0(rλ3) · cos(cλ3t)

+ 1

cλ2
J0(rλ2) sin(cλ2t)

EXERCISE
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1. Find the deflection u(r, t) of a unit circular

membrane (with c = 1) andwith initial velocity

zero and initial displacement α(r) = k(1−
r2).

Ans: u(r, t) = 4k
∞ 
n=1

J2(λn)

λ2nJ
2
1
(λn)

cos (λnt) · J0(λnr)

Note: J2(λn) = [2 J1(λn)]/λn

2. Determine the displacement u(r, t) of a unit

circular membrane (with c = 1) and with initial

displacement zero and initial velocity β(r) =
k(1− r2).

Ans: u(r, t) = 4k
∞ 
n=1

J2(λn)

λ3nJ
2
1
(λn)

sin(λnt) · J0(λnr)

19.12 TRANSMISSION LINE EQUATIONS

The purpose of transmisssion lines network is to

transfer electric energy from generating units at

various locations to the distribution system which

ultimately supplies the load. All transmission lines

in a power system exhibit the electrical properties of

resistance R (ohms/km), inductance L(henries/km),

capacitance to ground C (farads/km), and conduc-

tance to ground G (mhos/km) of the cable per unit

length. Consider a long cable or telephone wire (see

Fig. 19.21) that is imperfectly insulated so that leaks

occur along the entire length l km of the cable (Fig.

19.21). The sourceS (the sending end) be at x = 0 and

the terminal T (the receiving end) be at x = l. Let
P be any point x km from the source S. The instan-

taneous current and voltage (or potential) at point P

be i(x, t) and ν(x, t), where t is time.

Fig. 19.21 Transmission line

Derivation of Transmission Line Equations

LetQ be at a distance  x from P . Applying Kirch-
hoff’s voltage law to a small portion PQ of the cable
between x and x + x, we have difference of poten-
tials (voltage) at x and x +  x = resistive drop +
inductive drop, i.e.

− ν = iR x + L x · ∂i
∂t

After dividing by  x and taking limit as  x → 0
we have

− ∂ν
∂x
= Ri + L∂i

∂t
(1)

known as first transmission line equation.
Similarly applyingKirchhoff’s current law: differ-

ence of the current at x and x +  x = Loss due to
leakage to: ground + captive loss,

i.e., − i = Gν x + C ∂ν
∂t
 x

After dividing by x and taking limit as x → 0
we have

− ∂i
∂x
= Gν + C ∂ν

∂t
(2)

known as second transmission line equation.

Telephone Equations

Elimination of i or ν from the two transmission line

equations (1) and (2) leads to a second order P.D.E.

in i or ν known as telephone equations as follows:

Rewrite (1) and (2) as 
R + L ∂

∂t

 
i + ∂ν

∂x
= 0 (3) 

G+ C ∂
∂t

 
ν + ∂i

∂x
= 0 (4)

Operate (3) by ∂
∂x

and (4) by
 
R + L ∂

∂t

 
and

subtracting results in

∂2ν

∂x2
−
 
R + L ∂

∂t

  
G+ C ∂

∂t

 
ν = 0

or

νxx = Lcνtt + (RC +GL)νt + RGν (5)

Similarly operate (3) by
 
G+ C ∂

∂t

 
and (4) by ∂

∂x
and subtracting leads to
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G+ C ∂

∂t

  
R + L ∂

∂t

 
i − ∂2i

∂x2
= 0

or

ixx = LCitt + (RC +GL)it + RGi (6)

Replacement of ν by i in (5) results in (6) and vice

versa.

Telegraph Equations

For a submarine cable, leakages are negligible so G

= 0 and frequencies are low so L = 0. In this case

with G = 0, L = 0, equations (5) and (6) reduces to

νxx = RCνt (7)

and

ixx = RCit (8)

known as submarine cable equations or telegraph

equations. Equations (7) and (8) are similar to one-

dimensional heat equation.

High Frequency Line Equations

In the case of alternating currents of high frequencies

we can neglect leakages and resistance. Thus, with

G = 0 and R = 0, equations (5) and (6) reduces to

νxx = LCνtt (9)

and ixx = LC itt (10)

known as high-frequency line equations or radio

equation.
Equations (9) and (10) are similar to one dimen-

sional wave equation utt = a2uxx where a2 = 1
LC

.
Thus, the general solution of (9) is

ν(x, t)= f (x + at)+ g(x − at)
ν(x, t)= c1eαx cos(ωt + βx)+ c2e−αx · cos(ωt − βx)
So at any point along the lossless transmission

line, the voltage ν(x, t) can be considered as

the sum of an incident wave (progressive wave

for which eαx increases as x increases) and a

reflected wave (receding wave for which e−αx

decreases as x increases) travelling with equal

velocity a. Similarly current i(x, t) can also be

considered as the superposition of incident and

reflected waves which behave like travelling waves

similar to disturbance inwater at some sending point.

WORKED OUT EXAMPLES

Radio equation

Example 1: AssumingR andG are negligible, find

the voltage ν(x, t) and current i(x, t) in a trans-

mission line of length l, t seconds after the ends

are suddenly grounded. The initial conditions are

ν(x, 0) = ν0 sin
 
πx
l

 
and i(x, 0) = i0.

Solution: When R = 0 and G = 0, for ν, we have

P.D.E. the radio equation

νxx = LC νtt (1)

the boundary conditions are

ν(0, t) = 0 and ν(l, t) = 0 (2)

since the ends are suddenly grounded. The given

initial condition is

ν(x, 0) = ν0 sin
 πx
l

 
(3)

we use the separation of variables technique.Assume

that

ν(x, t) = X(x)T (t) (4)

Substituting (4) in (1), we get

X  

X
= LC T̈

T
= −λ2

where we have taken the separation constant as−λ2,
results in the two ordinary differential equations

X  + λ2X = 0 (5)

and T̈ + λ2

LC
T = 0 (6)

General solution of (5) is

X(x) = A cos λx + B sin λx

Use B.C. (2) which take the form

X(0)= 0, X(l) = 0

So 0=X(0) = A · 1+ B · 0 ... A = 0

0=X(l) = B · sin λl
or λl = nπ,
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i.e. λ= nπ
l

General solution of (6) is

T (t) = C cos
λ√
LC

t +D · sin λ√
LC

t

Using superposition principle, themost general solu-

tion of IBVP is

ν(x, t) =
∞ 
n=1

sin
nπx

l
· (An · cosµt + Bn sinµt)

(7)

where µ = nπ

l
√
LC

From equation

− ∂i
∂x
= C ∂ν

∂t
+Gν

with G = 0, we have

∂ν

∂t
= − 1

C

∂i

∂x

or

∂ν

∂t

    
(x,0)

= − 1

C

∂i(x, 0)

∂x
= − 1

C

∂i0

∂x
= 0 (8)

This is another initial condition. Differentiating (7)
w.r.t. t , we get

∂ν

∂t
=

∞ 
n=1

sin
 nπx
l

 
· [−µAn · sinµt + µBn cosµt]

Using (8)

0 = ∂ν

∂t

    
(x,0)

=
∞ 
n=1
µBn · sin

nπx

l

Thus, Bn = 0 for all n. Now (7) reduces to

ν(x, t) =
∞ 
n=1
An sin

 nπx
l

 
· cos nπt

l
√
LC

(9)

The unknown coefficient An’s are determined using
the initial condition (3). Putting t = 0 in (9), we have

ν0 sin
 πx
l

 
= ν(x, 0) =

∞ 
n=1
An sin

 nπx
l

 
· 1

so A1 = ν0 and An = 0 for n > 1. Thus, the required

voltage is

ν(x, t) = ν0 · sin
 πx
l

 
· cos

 
πt

l
√
LC

 
(10)

To determine the current i(x, t), use

− ∂i
∂x
= Gν + C ∂ν

∂t

with G = 0. So

∂i

∂x
=−C ∂ν

∂t
= −C ∂

∂t

 
ν0 · sin

 πx
l

 
· cos

 
πt

l
√
LC

  

∂i

∂x
= C · ν0 · sin

 πx
l

 
· π

l
√
LC

· sin
 
πt

l
√
LC

 

Integrating partially w.r.t. x we get

i(x, t) = Cν0 ·
π

l
√
LC

· sin πt

l
√
LC

·
 − l
π

 
cos

πx

l
+ C1

where C1 is the constant of integration.
Using the initial condition

i0 = i(x, 0) = 0+ C1 ... C1 = i0
then the current

i(x, t) = i0 − ν0
#
C

L
· cos

 πx
l

 
· sin

 
πt

l
√
LC

 
.

Telegraph Line

Example 1: In a telephone wire of length l, a steady

voltage distribution of 20 volts at the source end and

12 volts at the terminal end is maintained. At time

t = 0, the terminal end is grounded. Determine the

voltage and current. Assume that L = 0 and G = 0.

Solution: The equation of telegraph line is

νxx = RCνt
or

νt =
1

RC
· νxx

In steady-state voltage distribution, ν is independent
of time t , so that the above equation reduces to

∂2ν

∂x2
= 0
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with solution ν(x) = ax + b.
At the source end, x = 0, ν = 20
At the terminal end, x = l, ν = 12
Using these boundary conditions, we get

20= ν(0) = a · 0+ b
... b = 20

12= ν(l) = a · l + b = a · l + 20

... a = 12− 20

l
= −8

l
.

Thus, initial steady-state voltage is given by

νs(x) =
−8
l
x + 20 (1)

Now, at time t =0 the terminal end is grounded. So the
boundary conditions change to ν = 20 at x = 0 and
ν = 0 at x = l. Using these new boundary conditions
we have the steady-state voltage (after grounding the
terminal end) as

ν∗s (x)= ax + b
Then 20= a · 0+ b ... b = 20

0= a · l + b = a · l + 20 ... a = −20
l

Thus, ν∗s (x) = −20
l
x + 20 = 20

l
(l − x). Assume that

ν(x, t) = ν∗s (x)+ ν∗∗(x, t)
Here ν∗∗(x, t) is the transient solution of the IBVP
consisting of telegraph equation (similar to one-
dimensional heat equation with 1

RC
as a2) and zero

boundary conditions i.e. both ends grounded and is
given by

ν∗∗(x, t) =
∞ 
n=1
An · sin

 nπx
l

 
e
−
 
n2π2 / (l2RC)

 
t

Thus

ν(x, t)= 20

l
(l − x)+

∞ 
n=1
An · sin

 nπx
l

 
×

×e−[n2π2 / (l2RC)]t (2)

The unknown coefficientsAn’s are determined using
the initial condition (1). Thus, putting t = 0 in (2),
we have

−8
l
x + 20= νs (x) = ν(x, 0)

= 20

l
(l − x)+

∞ 
n=1
An · sin

 nπx
l

 

or

12x

l
=

∞ 
n=1
An · sin

nπx

l

so

An =
2

l

 l

0

 
12x

l

 
sin
 nπx
l

 
dx

An=
24

l2

 
x ·
 −l
nπ

 
cos
nπx

l
− 1 ·

 
−l2
n2π2

 
sin
nπx

l

      
l

x=0

= 24

l2

 
l ·
 −l
nπ

 
cos nπ

 

= 24

nπ
(−1)n+1

Thus, the required voltage distribution is

ν(x, t)= 20(l − x)
l

+

+24

π

 (−1)n+1
n

sin
 nπx
l

 
e−[n

2π2 / (l2RC)]t

To obtain current i(x, t), use the equation

− ∂ν
∂x
= R i + L∂i

∂t

with L = 0, then

i(x, t)=− 1

R

∂ν

∂x

i(x, t)=− 1

R

∂

∂x

 
20(l − x)

l
+ 24

π

 (−1)n+1
n

sin
nπx

l
×

×e−[n2π2 / l2RC)t
 

=− 1

R

 
−20

l
+ 24

π

 (−1)n+1
n

nπ

l
cos

 nπx
l

 
×

×e−[n2π2 / l2RC)t
 

Thus,

i(x, t)= 20

Rl
+ 24

lR

 
(−1)n cos

 nπx
l

 
×

×e−[n2π2 / (l2RC)]t
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EXERCISE

1. Solve νxx = LCνtt assuming that the initial

voltage is ν0 · sin πxl , νt (x, 0) = 0 and ν = 0

at the ends, x = 0 and x = l for all t .
Ans: ν(x, t) = ν0 cos

 
πt

l
√
LC

 
· sin  πx

l

 
2. In the case of a submarine cable, assumingL =
C = 0, find the voltage and current given that

ν(0) = ν0 and i(0) = i0.

Ans: ν(x) = ν0 cosh αx − i0z0 sin h αx,
i(x) = i0 cosh αx − ν0

z0
· sin h αx

where α =
√
GR, z0 =

"
R
G

Hint: Solve νxx = GRν and use Ri = −∂ν
∂x

to

find i(x).

3. Determine the electromotive force ν(x, t) in a

transmission line of length l, t seconds after the

ends were suddenly grounded. Assume that R

andG are negligible and initial conditions are

ν(x, 0) = a1 sin πxl
+a5 sin 5πx

l
and i(x, 0) = i0.

Ans: ν(x, t) = a1 sin πxl · cos πt

l
√
LC

+ a5 sin
5π
l
· cos 5πt

l
√
LC

4. Consider a telephone line 3000 km long with

resistance 4 ohms/km and capacitance of 5×
10−7 farad/km. Assume that L = 0 andG = 0.

Initially both the ends are grounded so that the

transmission line is not charged.At time t =0, a

constant emfE0 is applied at one endwhile the

other end is left grounded. Find the steady state

current at the grounded end after 1 second.

Ans: i = (0.053)i∞ = 5.3% of i∞
Hint: Solve νxx = RCνt , obtaining ν(x, t) =
E0x

l
+ 2E0

π

∞ 
n=1

sin nπx
l
· e−n2π2t / (RC l2) · (−1)n

n

to compute, i, use i = − 1
R
∂ν
∂x

obtaining

i = −E0
lR
− 2E0

lR

∞ 
n=1

(−1)ne−n2π2t / (RCl2)

Put t = 1

Note: e−π
2 /(RCl2) = e−0.548 = 0.578

5. Assuming L = 0, G = 0, find the potential

ν(x, t) in a transmission line of 1000 km long

which is initially under steady-state conditions

with potential 1300 volts at the source end (x

= 0) and 1200 volts at the terminal end (x =

1000). The terminal end of the line is suddenly

grounded, while the potential at the source end

is maintained at 1300 volts.

Ans: ν(x, t) = 1300− 1.3x +
2400
π

∞ 
n=1

(−1)n+1
n

sin nπx
1000
e−[n

2π2t/(l2 RC)]



Chapter20

Fourier Integral, Fourier
Transforms and Integral

Transforms

INTRODUCTION

Just as theFourier series decomposes a periodic func-

tion into a discrete set of contributions of various

frequencies (all multiples of one fundamental fre-

quency), the Fourier transform provides a continu-

ous frequency resolution of a (possibly nonperiodic)

function. Fourier transform is useful in the study of

frequency response of a filter, solution of PDE, dis-

crete Fourier transform and Fast Fourier transform

in signal analysis.

Two more integral transforms Hankel transforms∗

useful in problems involving Bessel functions and

Hilbert transform are considered.

20.1 FOURIER INTEGRAL THEOREM

A periodic function f (x) defined in a finite interval

(−L,L) can be expressed in Fourier series. By ex-
tending this concept, non-periodic functions defined

in −∞ < x <∞ (for all x) can be expressed as a

Fourier integral, since in practice periodic functions

are fairly rare.

Theorem: A function f (x), which is piecewise

continuous in every finite interval and is absolutely

integrable on the x-axis, can be represented by a

Fourier integral

f (x) =
 ∞

0

[A(α) cosαx + B(α) sin αx] dα (1)

which is valid at all points of continuity.

At a point of discontinuity x0, the Fourier

integral = 1
2

 
f (x0 − 0)+ f (x0 + 0)

 
i.e., aver-

age of the left and right hand limits.

∗Available on our Web site http://www.mhhe.com/ramanahem

Proof: Consider the Fourier series expansion of
f (x) in any interval [−L,L] given by

f (x)= a0

2
+

∞ 
n=1

 
an cos

nπx

L
+ bn sin

nπx

L

 
(2)

where an =
1

L

 L

−L
f (t) cos

 nπ
L
t
 
dt (3)

bn =
1

L

 L

−L
f (t) sin

 nπ
L
t
 
dt (4)

By substituting the coefficients an and bn from (3)

and (4), the Fourier series (1) takes the form

f (x)= 1

2L

 L

−L
f (t)dt +

+ 1

L

∞ 
n=1

  L

−L
f (t) cos

 nπ
L
t
 
dt

 
cos

nπx

L

+ 1

L

∞ 
n=1

  L

−L
f (t) sin

 
nπt

L

 
dt

 
sin

 nπx
L

 

= 1

2L

 L

−L
f (t)dt + 1

L

∞ 
n=1

 L

−L
f (t)

 
cos

 
nπt

L

 

× cos
 nπx
L

 
+ sin

 
nπt

L

 
· sin

 nπx
L

  
dt

f (x)= 1

2L

 L

−L
f (t)dt

+ 1

L

∞ 
n=1

 L

−L
f (t) cos

 
nπ (t − x)

L

 
dt (5)

20.1



20.2 HIGHER ENGINEERING MATHEMATICS—V

Put αn =
nπ

L
and  αn = αn+1 − αn

= (n+ 1)
π

L
− nπ

L
= π

L
(6)

Then

f (x)= 1

2L

 L

−L
f (t)dt +

+ 1

π

∞ 
n=1

  L

−L
f (t) cos (αn(t − x)) dt

 
 αn (7)

As L→ ∞, 1
L
→ 0 and αn = π

L
→ 0, the infinite

series in (7) becomes an integral from 0 to∞. Thus

f (x) = 1

π

 ∞

0

  ∞

−∞
f (t) · cos (α(t − x)) dt

 
dα (8)

since the first term in the right hand side of (7) be-

comes zero because f (x) is absolutely integrable.

Thus asL→ ∞ the Fourier series becomes aFourier

Integral.
Expanding cos(α(t − x)), (8) is rewritten as

f (x)= 1

π

 ∞

0

  ∞

−∞
f (t) cosαt dt

 
cosαxdα

+ 1

π

 ∞

α=0

  ∞

−∞
f (t) sin αt dt

 
sin αxdα (9)

The Fourier integral expansion of f (x) is the right

side (expression) of (8) or (9).
Introducing

A(α)= 1

π

 ∞

−∞
f (t) cos(αt)dt (10)

B(α)= 1

π

 ∞

−∞
f (t) sin(αt)dt (11)

(9) can be rewritten as

f (x) =
 ∞

0

[A(α) cos(αx)+ B(α) sin(αx)] dα (1)

Note: Fourier integral is very useful in solving dif-

ferential equations and integral equations.

Particular cases of Fourier integral (10):

Fourier Cosine Integral

When f (x) is an even function, then B(α) = 0 and

A(α) = 2

π

 ∞

0

f (t) cos(αt)dt (12)

Then the Fourier integral (1) reduces to the Fourier

cosine integral

f (x) =
 ∞

0

A(α) cos(αx)dα (13)

Fourier Sine Integral

When f (x) is odd function, then A(α) = 0 and

B(α) = 2

π

 ∞

0

f (t) sin(αt)dt (14)

Then the Fourier integral (1) reduces to the Fourier
sine integral

f (x) =
 ∞

0

B(α) sin αxdα (15)

Suppose f (x) is defined in the interval (0,∞). Then

for x > 0, f (x) can be represented by Fourier cosine

integral (13) by redefining f (x) in (−∞, 0) such that
f (x) is even function in (−∞,∞).

Similarly, by redefining f (x) in (−∞, 0) such that
f (x) is an odd function in (−∞,∞), the given func-

tion f (x) can be represented by the Fourier sine

integral (15) valid for x > 0.

Fourier Integral in Complex Form

Since cos(α(t − x)) is an even function of α, then (8)
can be written as

f (x)= 1

2
· 1
π

 ∞

−∞

  ∞

−∞
f (t) cos

 
α(t − x)

 
dt

 
dα

(16)

Since sin(α(t − x)) is an odd function of α, then

0= 1

2
· 1
π

 ∞

−∞

  ∞

−∞
f (t) sin

 
α(t − x)

 
dt

 
dα.

(17)

Multiplying (17) by − i
2π

and adding it to (16), we
get

f (x)= 1

2π

 ∞

−∞

  ∞

−∞
f (t) · cos

 
α(t − x)

 

−i sin
 
α(t − x)

 
dt

 
dα

f (x)=
 ∞

−∞

 
1

2π

 ∞

−∞
f (t) · e−iαt dt

 
eiαxdα (18)

or f (x)= 1√
2π

 ∞

−∞

 
1√
2π

 ∞

−∞
f (t)e−iαt dt

 
eiαxd∝ .

Note: A list of standard results which are very often

used are given below:



FOURIER INTEGRAL, FOURIER TRANSFORMS & INTEGRAL TRANSFORMS 20.3

Standard Results

1.
 
eax · sin bxdx = eax

a2+b2 (a sin bx − b cos bx)
2.

 ∞
0
e−ax · sin bxdx = b

a2+b2

3.
 
eax · cos bxdx = eax

a2+b2 (a cos bx + b sin bx)
4.

 ∞
0
e−ax cos bxdx = a

a2+b2

5.
 ∞
−∞ e

−x2dx = √
π

6.
 ∞
0

eax−e−ax
eπx−e−πx dx = 1

2
tan a

2

7.
 ∞
0

eax+e−ax
eπx−e−πx dx = 1

2
sec a

2

8.
 ∞
0

e−ax
x

sin bxdx = tan−1 b
c
, c > 0, b > 0

9.
 ∞
0

sin ax
x
dx = π

2
if a > 0.

20.2 FOURIER TRANSFORM

From the Fourier integral representations (18),

(13) and (15), we get Fourier transform, (which is

complex), Fourier cosine transform (which is real)

and Fourier sine transform (which is real) of f (x)

as follows:

Fourier Transform of f (x )

The Fourier integral of f (x) in the complex form

given by (18)

f (x) =
 ∞

−∞

 
1

2π

 ∞

−∞
f (t)e−iαt dt

 
eiαxdα (18)

can be written as

f (x)=
 ∞

−∞
F (α)eiαxdα (19)

where F (α)= 1

2π

 ∞

−∞
f (x)e−iαxdx (20)

F (α) defined by (20) is known as the Fourier trans-

form of f (x).

f (x) defined by (19) is known as the inverse

Fourier transform ofF (α).F (α) and f (x) are known

as Fourier transform pair which differ in form only

in the sign of the exponent.

Note: The factor 1
2π

can multiply the f (x) integral

(19) instead of the F (α) integral (20). Alternatively

the factor 1√
2π

can multiply each of the integrals in

(19) and (20).

Fourier transform breaks up the function into a

continuous spectrum of frequencies α.

Fourier transformmethod is the process of obtain-

ing F (α) for a given function f (x).

Fourier Cosine Transform of f (x )

TheFourier integral of an even functionf (x) reduces
to Fourier cosine integral given by (13)

f (x)= 2

π

 ∞

0

  ∞

0

f (t) cos(αt)dt

 
cos(αx)dα

Put Fc(α)=
 ∞

0

f (x) cosαxdx (21)

Then f (x)= 2

π

 ∞

0

Fc(α) cos(αx)dα (22)

Fc(α) given by (21) is called the Fourier cosine trans-

form of f (x) in the interval 0 < x <∞ and f (x)

given by (22) as the inverse Fourier cosine transform

of Fc(α).

Fourier Sine Transform of f (x )

The Fourier integral of an odd function f (x) reduces
to the Fourier sine integral given by (15)

f (x)= 2

π

 ∞

0

  ∞

0

f (t) sin(αt)dt

 
sin(αx)dα

Take Fs (α)=
 ∞

0

f (x) sin(αx)dx (23)

Then f (x)= 2

π

 ∞

0

Fs (α) sin(αx)dα (24)

The function Fs(α) defined by (23) is known as the

Fourier sine transform of f (x) in 0 < x <∞. The

function f (x) given by (24) is known as the inverse

Fourier sine transform of Fs(α).

Linearity Property

Fourier transform, Fourier cosine transform and
Fourier sine transform are all linear operations (since
the integral operation is linear). For example for any
two functions f (x) and g(x) and for any two con-
stants a and b, the Fourier transform of af (x)+
bg(x) is given by

F (af (x)+ bg(x))= 1

2π

 ∞

−∞

 
af (x)+ bg(x)

 
e−iαxdx

= a · 1

2π

 ∞

−∞
f (x)e−iαxdx

+ b

2π

 ∞

−∞
g(x)e−iαxdx

= aF
 
f (x)

 
+ bF

 
g(x)
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In a similar way

Fc(af (x)+ bg(x))

=
 ∞

0

(af + bg) cosαxdα

= a
 ∞

0

f cosαxdα + b
 ∞

0

g cosαx dα

= aFc(f )+ bFc(g).

Fourier Transform of Derivatives

Fourier transform of a derivative of a function f (x)
corresponds to multiplication of the Fourier trans-
form by iα i.e.,

F
 
f  (x)

 
= F

 
df

dx

 
= (iα)F

 
f (x)

 
Proof: By definition

F
 
f  (x)

 
= 1

2π

 ∞

−∞
f  (x)e−iαxdx

Integrating by parts

= 1

2π

 
f · e−iαx

   ∞
−∞

− (−iα)
 ∞

−∞
f · e−iαxdx

 

Assuming that f (x) → 0 as |x| → ∞, we have

F
 
f  (x)

 
= (iα)F

 
f (x)

 

In general F
 
dnf

dxn

 
= (iα)nF {f }.

In particular

F

 
d2f

∂x2

 
= −α2F {f }. (25)

Fourier Cosine and Sine Transforms

of Derivatives

Prove that

a. Fc
 
f  (x)

 = αFs
 
f (x)

 − f (0)
b. Fs

 
f  (x)

 = −αFc
 
f (x)

 
Proof:

a. By definition and applying integration by parts

Fc{f  } =
 ∞

0

f  cos(αx)dx = f · cosαx
   ∞
0

+w
 ∞

0

f · sin αxdx

Fc{f  } = −f (0)+ wFs{f }

b. Similarly,

Fs{f  } =
 ∞

0

f  sin(αx)dα = f sin αx
   ∞
0

−α
 ∞

0

f cosαxdx

= 0− αFc{f }.

Corollary 1:

Fc{f   } = αFs{f  } − f  (0)

= α(−αFc{f })− f  (0)

Fc{f   } = −α2Fc{f } − f  (0) (26)

Corollary 2:

Fs{f   } = −αFc{f  } = −α
 
αFs{f } − f (0)

 
Fs{f   } = −α2Fs{f } + αf (0) (27)

Application to Initial Boundary Value

Problem (IBVP)

The solution of a IBVP consisting of a partial

differential equation together with boundary and

initial conditions can be solved by the Fourier

transform method. If the boundary conditions are

of the Dirichlet type where the function value is

prescribed on the boundary, then the Fourier sine

transform is used. If the boundary conditions are of

the Neumann type where the derivative of function

is prescribed on boundary, then Fourier cosine

transform is applied. In either case, the P.D.E.

reduces to an O.D.E. in Fourier transform which

is solved. Then the inverse Fourier sine (or cosine)

transform will give the solution to the problem.

20.3 CONVOLUTION

Convolution of two functions f (x) and g(x) denoted
by f ∗ g is defined as

h(x) = (f ∗ g)(x)=
 ∞

−∞
f (s)g(x − s)ds

=
 ∞

−∞
f (x − s)g(s)ds

Theorem: The Fourier transform of the convo-

lution of f and g is the product of their Fourier

transforms.
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Proof: By definition

F {f ∗ g} = 1

2π

 ∞

−∞
(f ∗ g)e−iαxdx

= 1

2π

 ∞

−∞

  ∞

−∞
f (s)g(x − s)ds

 
e−iαxdx

Interchange the order of integration

= 1

2π

 ∞

−∞

  ∞

−∞
f (s)g(x − s)e−iαxdx

 
ds

Now put x − s = q, so x = s + q, with q as the
new variable of integration instead of x.

= 1

2π

 ∞

−∞

 ∞

−∞
f (s)g(q)e−iα(s+q)dq ds

=
 
1

2π

 ∞

−∞
f (s)e−iαsds

  
2π

2π

 ∞

−∞
g(q)e−iαqdq

 

= 2π · F {f } · F {g}.

Note: Convolution is commutative f ∗ g= g ∗ f ,
associative f ∗ (g ∗ h) = (f ∗ g) ∗ h.

WORKED OUT EXAMPLES

Fourier integral

Example 1: Using Fourier integral representation
show that

 ∞

0

cos xα + α sin xα
1+ α2 dα =



0 if x < 0

π

2
if x = 0

πe−x if x > 0.

Solution: Consider the function defined by

f (x) =



0 if x < 0

1

2
if x = 0

e−x if x > 0.

Now find the Fourier integral representation of f (x)

in the exponential form: By definition

f (x)= 1

2π

 ∞

−∞

  ∞

−∞
f (t) · e−iαt dt

 
eiαxdα

Consider I =
 ∞

−∞
f (t)e−iαt dt

=
 0

−∞
0+

 ∞

0

e−xe−iαt dt

= e−t(1+iα)

−(1+ iα)

     
∞

t=0
= 1

1+ iα = 1− iα
1+ α2

So f (x)= 1

2π

 ∞

−∞
Ieiαxdα

= 1

2π

 ∞

−∞

 
1− iα
1+ α2

 
eiαxdα

=
 ∞

−∞

1

2π (1+ α2) (1− iα) ×

× (cosαx + i sin αx)dα

=
 ∞

−∞

1

2π (1+ α2)

 
(cosαx + α sin αx)+

+i(sin αx − α cosαx)] dα
The second integral on the right side is zero because
the integrand is an odd function.

f (x) = 2

2π (1+ α2)

 ∞

0

(cosαx + α sin αx)dα

For x > 0, f (x) = e−x so

e−x = 1

π

 ∞

0

cosαx + α sin αx
1+ α2 dα (1)

For x < 0, f (x) = 0 so

0 = 1

π

 ∞

0

cosαx + α sin αx
1+ α2 dα (2)

At x = 0, f (x) has a discontinuity. So

f (x) = 1

2

 
f (x + 0)+ f (x − 0)

 
= 1

2
[1+ 0] = 1

2

For x = 0

1

2
= 1

π

 ∞

0

cosαx + α sin αx
1+ α2 dα. (3)

From (1), (2), (3) the result follows.

Example 2: Find the (a) Fourier cosine integral and
(b) Fourier sine integral (representation) of

f (x) = sin x if 0 ≤ x ≤ π
= 0 if x > π
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Solution: a. The Fourier cosine integral of

f (x)=
 ∞

0

A(α) cosαxdα where

A(α)= 2

π

 ∞

0

f (t) cosαt dt

A(α)= 2

π

  π

0

sin t · cosαtdt +
 ∞

π

0

 

= 1

2

2

π

 π

0

 
sin(1+ α)t + sin(1− α)t

 
dt

=− 1

π

 
cos(1+ α)t

1+ α + cos(1− α)t
1− α

 π
t=0

=+ 1

π

 
1− cos(1+ α)π

1+ α + 1− cos(1− α)π
1− α

 

A(α)= 1

π

 
1+ cosαπ

1+ α + 1+ cosαπ

1− α

 

= 2(1+ cosαπ )

π (1− α2)
For α = 1, A(1) = 0.
SubstitutingA(α), we get the Fourier cosine integral
of f (x) as

f (x)=
 ∞

0

2(1+ cosαπ )

π (1− α2) · cosαx dα

= 2

π

 ∞

0

1+ cosαπ

1− α2 cosαx dα

b. Fourier sine integral of f (x):

f (x)=
 ∞

0

B(α) sin αxdα, where

B(α)= 2

π

 ∞

0

f (t) · sin αtdt

= 2

π

  π

0

sin t · sin αtdt +
 ∞

π

0

 

= 2

π

1

2

 π

0

 
cos(1− α)t − cos(1+ α)t

 
dt

= 1

π

 
sin(1− α)t
1− α − sin(1+ α)t

1+ α

 π
t=0

= 1

π

 
sin απ

1− α + sin απ

1+ α

 
= 2 sin απ

π (1− α2)

For α = 1, B(1) = 1.

Thus f (x)=
 ∞

0

2 sin απ

π (1− α2) · sin αxdα

= 2

π

 ∞

0

sin απ

(1− α2) sin αxdα.

Fourier transform

Example 3: Represent f (x) as an exponential
Fourier transform when

f (x) =
 
sin x, 0 < x < π

0, otherwise

show that the result can be written as

f (x) = 1

π

 ∞

0

cosαx + cosα(x − π )
1− α2 dα

Solution: Fourier transform in the exponential form
is given by

F
 
f (x)

 
= F (α) = 1

2π

 ∞

−∞
f (x) · e−iαxdx

= 1

2π

  0

−∞
0+

 π

0

sin x · e−iαxdx +
 ∞

π

0

 

= 1

2π

 π

0

 
eix − e−ix

2i

 
e−iαxdx

since sin x = (eix − e−ix)
2i

= 1

4πi

 π

0

 
ei(1−α)x − e−i(α+1)x

 
dx

= 1

4πi

 
ei(1−α)x

i(1− α) −
e−i(1+α)x

−i(1+ α)

 π
0

= 1

4πi

 
ei(1−α)π

i(1− α) +
e−i(1+α)π

i(1+ α) − 1

i(1− α) −
1

i(1+ α)

 

= 1

2π

e−iπα + 1

1− α2 since e±iπ = −1

Then f (x)=
 ∞

−∞
F (α)eiαxdx

=
 ∞

−∞

1

2π

 
e−iπα + 1

1− α2

 
eiαxdx
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is the required exponential Fourier transform repre-

sentation. Expanding the integrand

(1+ e−iπα)eiαx
= [1+ cosαπ − i sin απ ][cosαn+ i sin αx]
= cosαx + cosα(π − x)+ i[+ sin αx · sin απ ]

f (x) = 2

2π

 ∞

0

cosαx + cosα(π − x)
(1− α)2 dx

+ 1

2π

 ∞

−∞
+ sin απ · sin αx

1− α2 dx.

Since the 2nd integral is zero (odd function), result

follows.

Example 4: Find the Fourier transform of

f (x) = 1

2a
, if |x| ≤ a

= 0, if |x| > a

Solution: By definition, the Fourier transform of
f (x) is

F
 
f (x)

 
= 1

2π

 ∞

−∞
f (x) · e−iαxdx

= 1

2π

  −a

−∞
+

 a

−a
+

 ∞

a

 

= 1

2π

  −a

−∞
0+

 a

−a

1

2a
e−iαxdx +

 ∞

a

0

 

= 1

4πa

e−iαx

−iα

     
a

x=−a

= −1
4πaαi

 
e−iαa − e+iαa

 

= 1

2πaα

 
eiαa − e−iαa

2i

 
= sin(αa)

2πaα
.

Example 5: Find the (a) Fourier cosine and (b)

sine transform of f (x) = e−ax for x ≥ 0 and a > 0.

Deduce the integrals known as "Laplace integrals" ∞
0

cosαx

a2+α2 dα and
 ∞
0

α sin αx

a2+α2 dα.

Solution: a. By definition Fourier cosine trans-
form of f (x) is

Fc

 
f (x)

 
= Fc(α) =

 ∞

0

f (x) cosαx dx

Fc{f } =
 ∞

0

e−ax cosαxdx = a

a2 + α2

The inverse Fourier cosine transform

f (x)= 2

π

 ∞

0

Fc(α) cosαxdx

= 2

π

 ∞

0

a

a2 + α2 cosαxdα

Since f (x) = e−ax , the above integral can be rewrit-
ten as  ∞

0

cosαx

a2 + α2 dα = πe−ax

2a

b. The Fourier sine transform of f (x) is

Fs

 
f (x)

 
= Fs (α)=

 ∞

0

f (x) sin αxdx

=
 ∞

0

e−ax sin αxdx = α

a2 + α2

Now the inverse Fourier sine transform

f (x)= 2

π

 ∞

0

Fs (α) sin αxdx

= 2

π

 ∞

0

α

a2 + α2 sin αxdx

with f (x) = e−ax , this above integral takes the form ∞

0

α sin αx

a2 + α2 dα = πe−ax

2

Note: For a= 0,
 ∞
0

α sin αx

α2
dα=  ∞

0
sin αx
α
dα= π

2
.

Example 6: Find the inverse Fourier sine transform

of 1
s
e−as .

Solution:

f (x)= F−1
s

 
e−as

s

 

f = 2

π

 ∞

0

e−as

s
sin sxds (1)

Differentiating w.r.t., x

df

dx
= 2

π

 ∞

0

e−as

s

d

dx
(sin sx)ds

= 2

π

 ∞

0

e−as

s
· s · cos sxds

df

dx
= 2

π

 ∞

0

e−as cos sxds = 2

π

a

x2 + a2
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Integrating f (x)= 2

π

 
a

dx

x2 + a2

= 2

π
tan−1

x

a
+ A (2)

From (1) at x = 0, f (0) = 0. Using this in (2)

0= f (0) = 0+ A ... A = 0

Thus f (x)= 2

π
tan−1

x

a

is the required inverse Fourier sine transform.

Note: When a = 0, f (x) = F−1
s

 
1
s

 
= 2

π
tan−1 ∞ = 1

Example 7: Find f (x) whose Fourier cosine trans-

form is sin as
s
.

Solution: It is given Fc{f (x)} = sin sa
s
.

f (x)= F−1
c

 
sin sa

s

 
= 2

π

 ∞

0

sin sa

s
cos sxds

= 2

π

1

2

 ∞

0

sin(s(a + x))+ sin(s(a − x))
s

ds

= 1

π

 ∞

0

sin s(a + x)
s

ds + 1

π

 ∞

0

sin s(a − x)ds
s

= 1

π

 π
2
+ π

2

 
if a − x > 0 i.e., x < a

= 1

π

 π
2
− π

2

 
if x − a > 0 i.e., x > a

since
 ∞
0

sin ax
x
dx = π

2
when a > 0. (See note ofWE

5 on page 20.7)
Thus

f (x) =
 
1 if x < a

0 if x > a.

Example 8: Solve for f (x) the integral equation

 ∞

0

f (x) sin xtdx =



1, 0 ≤ t < 1

2, 1 ≤ t < 2

0, t ≥ 2

Solution: By definition

Fs (t)=Fs
 
f (x)

 
=

 ∞

0

f (x) sin xtdx =



1, 0 ≤ t < 1

2, 1 ≤ t < 2

0, t ≥ 2

f (x)= 2

π

 ∞

0

Fs (t) sin txdt

= 2

π

  1

0

1· sin txdt +
 2

1

2 sin txdt +
 ∞

2

0

 

= 2

π

 
− cos tx

x

    1
t=0

−2 cos tx

x

    2
t=1

 

f (x)= 2

πx
[1+ cos x − 2 cos 2x].

Example 9: Find the temperature distribution in

semi-infinite barwith its end point and lateral surface

insulated and with initial temperature distribution in

the bar is prescribed by f (x). Deduce the solution

when f (x) = e−ax .

Solution: This problem is represented by the one-
dimensional heat equation

∂u

∂t
= c2 ∂

2u

∂x2

for 0 < x <∞, t > 0 with boundary condition

ux (0, t) = 0 (insulated)

and with initial condition

u(x, 0) = f (x) (given) for 0 < x <∞

Since the boundary condition is of the Neumann

(derivative) type, apply Fourier cosine transforma-

tion to the equation

 ∞

0

∂u

∂t
cos sxdx = c2

 ∞

0

∂2u

∂x2
cos sxdx

Integrating the R.H.S. by parts

∂

∂t

 ∞

0

u cos sxdx = c2
 
∂u

∂x
cos sx

    ∞
0

+
 ∞

0

s sin sx · ∂u
∂x
dx

 

Assuming ∂u
∂x

→ 0 as x → ∞ and using the bound-

ary condition ∂u
∂x

   
x=0

= 0, the first term in R.H.S.

becomes zero. Integrating by parts again

∂

∂t

 ∞

0

u · cos sxdx

= c2s
 
u · sin sx

   ∞
0

−
 ∞

0

us · cos sxdx
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Assuming that u is bounded i.e., u→ 0 as x → ∞
the first term is R.H.S. becomes zero.

Put U (t, s)= Fc
 
u(x, t)

 
=

 ∞

0

u(x, t) · cos sxdx

Then
d

dt
U =−s2c2U

Note that the result of Fourier transforming on x is

to eliminate derivatives of x from the heat equa-

tion, thus leaving an ordinary differential equation

w.r.t., ‘t’.
Integrating by separation of variables

U (s, t)= Ae−c
2s2t

At t = 0, U (s, 0) = A

Thus A= U (s, 0) =
 ∞

0

u(x, 0) · cos (sx)dx

From the initial condition u(x, 0) = f (x),

then A =
 ∞

0

f (x) cos (sx)dx

Taking inverse Fourier cosine transform

u(x, t)= F−1
c {U} = F−1

c

 
Ae−c

2s2t
 

= 2

π

 ∞

0

Ae−c
2s2t · cos (sx)ds

Special Case: when f (x) = e−ax then

A =
 ∞

0

e−ax cos (sx)dx = a

a2 + b2

Thus the solution in this case is

u(x, t)= F−1
c

 
a

a2 + b2 e
−c2s2t

 

u(x, t)= 2

π

 ∞

0

a

a2 + b2 · e−c2s2t · cos (sx)ds

Example 10: Solve the Laplace’s equation in the

semi infinite strip shown in Fig. 20.1.

Fig. 20.1

Solution: To solve the Laplace’s equation

∂2u

∂x2
+ ∂2u

∂y2
= 0 (1)

with the boundary conditions

u(0, y)= 0, for 0 < y < b (2)

u(x, b)= 0 for 0 < x <∞ (3)

u(x, 0)= e−ax with a > 0. (4)

Region is: 0 < x <∞, 0 < y < b.
Applying Fourier sine transform of (1) on both sides ∞

0

∂2u

∂x2
sin sxdx +

 ∞

0

∂2u

∂y2
sin sxdx = 0 (5)

The first integral is simplified by successive integra-

tion by parts and gives ∞

0

∂2u

∂x2
sin sxdx = ∂u

∂x
· sin sx

    ∞
0

−
 ∞

0

∂u

∂x
· s · cos sxdx

Assuming that ∂u
∂x

→ 0 as x → ∞

= −s
 
u · cos sx

   ∞
0

−
 ∞

0

u · s · (− sin sx)dx

 

using the boundary condition (2), u(0, y) = 0 and
assuming u is bounded i.e., u→ 0 as x → ∞

= −s2
 ∞

0

u sin sxdx

Put U (s, y) = Fs
 
u(x, y)

 =  ∞
0
u(x, y) sin sxdx

Thus  ∞

0

∂2u

∂x2
sin sxdx = −s2U. (6)

Substituting (6) in (5) and rewriting

−s2U + d2

dy2

  ∞

0

u(x, y) sin sx dx

 
= 0

−s2U + d2U

dy2
= 0 (7)

Thus Laplace Equation (1) has been reduced to an

ordinary differential equation in y (with s as a pa-

rameter). Solution of (7) is

U (s, y) = A cosh sy + B sinh sy (8)
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when y = b,U (s, b) = Fs
 
u(x, b)

 = Fs{0} = 0

since from (3), u(x, b) = 0. From (8), at y = b,
0 = U (s, b) = A cosh sb + B sinh sb (9)

When y = 0, U (s, 0) =  ∞
0
u(x, 0) sin sxdx

From (4), u(x, 0) = e−ax so

U (s, 0) =
 ∞

0

e−ax sin sxdx = s

a2 + s2 (10)

Putting y = 0 in (8)

s

a2 + s2 = U (s, 0) = A+ B · 0

or A= s

a2 + s2 (11)

Substituting (11) in (9)

B = − s

a2 + s2 coth sb (12)

Thus the solution (8) becomes

U (s, y)= s

a2 + s2 cosh sy

− s

a2 + s2 coth sb sinh sy (13)

Taking inverse Fourier sine transform of (12)

u(x, y) = F−1
s

 
U (s, y)

 

= 2

π

 ∞

0

s

a2 + s2 (cosh sy − coth sb · sinh sy) sin sxds.

EXERCISE

Fourier integrals

Find the Fourier integral representation of f (x):

1. f (x) =
 
x, |x| < 1

0, |x| > 1

Ans. f (x) =  ∞
−∞

sin α−α cosα
iπα2

eiαxdα

2. f (x) =
 
cos x, −π

2
< x < π

2

0, |x| > π
2

Ans. f (x) = 1
π

 ∞
−∞

cos(απ/2)

1−α2 eiαxdα

3. f (x) =
 
1, |x| ≤ 1

0, |x| > 1
. Hence evaluate

 ∞
0

sin λ cos λx
λ

dλ =



π
2
, if |x| < 1

π
4
, if |x| = 1

0, if |x| > 1

Ans. f (x) = 2
π

 ∞
0

sin λ cos λx
λ

dλ.

4. Find the Fourier cosine and sine integrals of

f (x) = e−kx , for x > 0, k > 0.

Ans. Fourier cosine integral (F.C.I.)

f (x) = e−kx = 2k

π

 ∞

0

cos sx

k2 + s2 ds

Fourier sine integral (F.S.I.) = f (x) = e−kx
= 2

π

 ∞
0

s sin sx

k2+s2 ds.

5. Find the Fourier cosine integral of f (x) =
e−x cos x.

Ans. f (x) = e−x cos x = 2
π

 ∞
0

(s2+2) cos sxds
s4+4

6. Find the Fourier sine integral of f (x) =
e−ax − e−bx .

Ans. f (x) = e−ax − e−bx = 2
π

 ∞
0

(b2−a2)s sin sxds
(a2+s2)(b2+s2) ,

a > 0, b > 0

7. Using Fourier integral representation, show
that

 ∞

0

sin s · cos xs
s

ds =



π
2
, if 0 ≤ x < 1

π
4
, if x = 1

0, If x > 1.

Hint: Find Fourier integral of

f (x) =
 
1, if 0 ≤ x < 1

0, if x ≥ 1.

Fourier transforms

Find the Fourier transform of f (x):

8. f (x) =
 
1, for |x| < a
0, for |x| > a .

Hence evaluate
 ∞
0

sin ax
x
dx

Ans. F {f (x)} = 2 sin sa
s

, for s  = 0, For s = 0,

F (s) = 2, Integral = π
2
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9. f (x) =
 
1− x2, if |x| ≤ 1

0, if |x| > 1
. Hence evaluate

 ∞
0

x cos x−sin x
x3

cos x
2
dx

Ans. F {f (x)} = −4(s cos s − sin s)/s3,

Integral = −3π
16

10. f (x) =
 
x, for |x| ≤ a
0, for |x| > a

Ans. 2i

s2
(as cos sa − sin sa)

11. f (x) = e−x2
2 ,−∞ < x <∞

Ans.
√
2πe−

s2

2

12. f (x) =



0, −∞ < x < a

x, a ≤ x ≤ b
0, x > b

Ans. 1
s
(aeisa − beisb)+ 1

s2
(eisb − eisa)

13. f (x) = xe−x, 0 ≤ x <∞
Ans. 1

2π
· (1+is)2
(1+s2)2

14. f (x) =
 
cos x, if 0 < x < 1

0, otherwise

Ans. 1
4π

 
sin(s+1)
s+1 + sin(s−1)

s−1 +
+i

 
1−cos(s+1)

s+1 + 1−cos(s−1)
s−1

  
.

Fourier cosine and sine transforms

15. Find F.C.T. and F.S.T. of

f (x) =
 
k, if 0 < x < a

0, if x > a.

Ans. Fc {f (x)} = k · sin as
s
, Fs {f (x)} = k(1−cos as)

s

16. Find F.S.T. of e−|x|. Hence show that ∞

0

x sin mx

1+ x2 dx = πe−m

2
,m > 0.

Ans. F.S.T. = s

1+s2

17. Find F.S.T. of e
−ax
x
.

Ans. tan−1 s
a
+ c

18. Find F.C.T. of f (x) =



x, 0 < x < 1

2− x, 1 < x < 2

0, x > 2.

Ans.
(2 cos s−cos 2s−1)

s2

19. Find F.S.T. and F.C.T. of 2e−5x + 5e−2x .

Ans. F.S.T.: 2s

s2+25 +
5s

s2+4 , F.C.T.:
10

s2+4 +
10

s2+25

20. Find F.C.T. of f (x) = e−ax cos ax.
Ans.

a(s2+2a2)
s4+4a4 .

Inverse Fourier transform

21. Findf (x) if its F.C.T. is 1

1+s2 and F.S.T. is
s

1+s2 .

Ans. f (x) = e−x, f (x) = e−x
22. Find f (x) if its F.C.T. is 1

2π

 
a − s

2

 
if s < 2a

and zero if s ≥ 2a.

Ans. (2 sin2 ax)/π2x2

23. Find the inverse F.S.T. of sne−as

Ans.
2·n! sin[(n+1)x]
π ·(a2+x2)

n+1
2

24. Find the inverse Fourier transform of e−|s|y

Ans.
y

[π (y2+x2)] .

Integral equations

Solve the integral equations:

25.
 ∞
0

·f (x) · sin αx dx =
 
1− α, 0 ≤ α ≤ 1

0, α > 1

Ans. f (x) = 2(x−sin x)
(πx2)

26.
 ∞
−∞

f (u)du

(x−u)2+a2 = 1

x2+b2 , 0 < a < b

Ans. f (x) = (b−a)α
bπ[x2+(b−a)2]

27.
 ∞
0
f (x) cosαxdx =

 
1− α, 0 ≤ α < 1

0, α > 1.

Hence evaluate
 ∞
0

sin2 t

t2
dt

Ans. f (x) = 2 (1−cos x)
(πx2)

28.
 ∞
0
f (x) cosαxdx = e−α

Ans. 2

π (1+x2) .
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Solution to boundary value problems

(B.V.P.): Laplace’s equation

29. Find the steady-state temperature distribution

u(x, y) in an infinite metal plate covering the

first quadrant with the edge along the y-axis

held at 0◦ and the edge along the x-axis held

at u(x, 0) =
 
100, 0 < x < 1

0, x > 1
.

Hint: Use F.S.T. to solve Laplace’s equation.

Ans. u(x, y) = 200
π

 ∞
0

1−cos s
s
e−sy sin sxds

oru(x, y)= 200
π

 
arc tan

 
x
y

 
− 1

2
arc tan

 
x+1
y

 
− 1

2
arc tan

 
x−1
y

  
30. Solve uxx + uyy = 0 in the upper half-

plane when the temperature along the x-axis

u(x, 0) = f (x). Deduce (a) when u(x, 0) = 1

if |x| < 1 (b) u(x, 0) =



2u0, x < −1
u0, −1 < x < 1

0, x > 1

Ans. u(x, y) = 1
π

 ∞
−∞

yf (s)

(x−s)2+y2 ds known as

Poisson integral formula for the half-plane

y > 0 or Schwarz integral formula.

a. u(x, y) = 1
π

 
tan−1

 
1−x
y

 
+ tan−1

 
x+1
y

  
b. u(x, y) = u0

π

 
π − tan−1

 
1+x
y

 
+ tan−1

 
1−x
y

  
.

One-dimensional heat equation

31. Find the temperature distribution u(x, t) in a

semi-infinite metal bar with the end x = 0 at

zero temperature and initial temperature dis-

tribution f (x). Deduce when f (x) = e−x .
Ans. u(x, t) = 2

π

 ∞
0
U (s, 0)e−c

2s2t sin sxds

where U (s, 0) =  ∞
0
u(x, 0) · sin sxdx = ∞

0
f (x) sin sxdx

when f (x) = e−x : U (s, 0) = s

1+s2 ;

u(x, t) = 2
π

 ∞
0

se−c2p2 t
1+s2 sin sxds

32. Find the temperature u(x, t) in a semi-infinite

bar with ∂u
∂x

= µ when x = 0 and with initial

temperature 0. Assume that ∂u
∂x

→ 0 as x →
∞ and is bounded.

Ans. u(x, t) = 2
π

 ∞
0

µ

s2
(1− e−s2c2t ) cos sxds

33. Solve ∂u
∂t

= c2 ∂2u
∂x2
, x > 0, t > 0 with ∂u

∂x

  
x=0

= 0 and u(x, 0) =
 
x, 0 ≤ x ≤ 1

0, x > 1
.

Ans. u(x, t)= 2
π

 ∞
0

 
sin s
s

+ 1

s2
(cos s− 1)

 
e−s

2c2t×
× cos sxds

34. Solve ∂u
∂t

= c2 ∂2u
∂x2
, x > 0, t > 0 with

u(x, 0) = 0, x > 0 and u(0, t) = u0 for

t > 0.

Ans. u(x, t) = u0
 
1− 2

π

 ∞
0

e−s2c2 t
s

· sin sxds
 
.

Vibrating string

35. An infinite string is initially at rest and has

an initial transverse displacement y(x, 0) =
f (x),−∞ < x <∞. Show that the dis-

placement y(x, t) of the string is y(x, t) =
1
2
[f (x + ct)+ f (x − ct)].

20.4 FINITE FOURIER SINE AND COSINE

TRANSFORMS

Let f (x) be a function defined in a finite interval
0 < x < L i.e.,when the rangeof oneof the variables
say x is finite. Suppose f (x) is neither periodic nor
even nor odd. Now by redefining f (x) as an odd
function in−L < x < L, the half range Fourier sine
series expansion of f (x) can be obtained as

f (x)=
∞ 
n=1
bn sin

 nπx
L

 

where bn =
2

L

 L

0

f (x) sin
 nπx
L

 
dx.

Then the finite Fourier sine transform of f (x) in
0 < x < L is defined as

Fs (n) =
 L

0

f (x) sin
 nπx
L

 
dx

which is a function of n, an integer.
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The inverse finite Fourier sine transform of Fs(n)
is given by

f (x) = 2

L

 
Fs (n) · sin

 nπx
L

 
In a similarway, thefinite Fourier cosine transform

of f (x) in 0 < x < L is defined as

Fc(n) =
 L

0

f (x) cos
 nπx
L

 
dx

The inverse finite Fourier cosine transform of
Fc(n) is given by

f (x) = 1

L
Fc(0)+

2

L

∞ 
n=1
Fc(n) cos

nπx

L
.

Result 1:

Fs

 
∂2f

∂x2

 
= −n2π2

L2
Fs (f )−

−nπ
L

 
(−1)nf (L, T )− f (0, t) 

By definition

Fs

 
∂2f

∂x2

 
=

 L

0

 
∂2f

∂x2

 
· sin nπx

L
dx,

integrating by parts

= ∂f

∂x
· sin nπx

L

   L
0
− nπ

L

 L

0

∂f

∂x
cos

nπx

L
dx

= 0− nπ

L

  
f (x, t) · cos

 nπx
L

  L
0

+nπ
L

 L

0

f (x, t) · sin
 nπx
L

 
dx

 

Fs

 
∂2f

∂x2

 
=−nπ

L

 
(−1)nf (L, t)− f (0, t) 

−n
2π2

L2
Fs (f ).

Similarly,

Result 2:

Fc

 
∂2f

∂x2

 
=−  

fx (0, t)− (−1)nfx (L, t)
 −

−n
2π2

L2
Fc(f ).

By definition

Fc

 
∂2f

∂x2

 
=

 L

0

∂2f

∂x2
· cos

 nπx
L

 
dx,

integrating by parts

= ∂f

∂x
· cos nπx

L

   L
0
+ nπ

L

 L

0

∂f

∂x
· sin nπx

L
dx

=  −fx (0, t)+ (−1)nfx (L, t)
 

+nπ
L

 
f · sin nπx

L

   L
0
−

−nπ
L

 L

0

f cos
nπx

L
dx

 

Fc

 
∂2f

∂x2

 
=  

(−1)nfx (L, t)− fx (0, t)
 − n2π2

L2
Fc(f ).

Note 3:

1. Apply finite Fourier sine transform when the

boundary conditon f prescribed.

2. Apply finite Fourier cosine transform when the

boundary condition fx prescribed.

WORKED OUT EXAMPLES

Example 1: Find the finite Fourier sine and cosine

transform of f (x) = x(π − x) in 0 < x < π .

Solution: Finite Fourier sine transform of f (x) is

Fs (n)=
 L

0

f (x) sin
nπx

L
dx

=
 π

0

x(π − x) · sin nxdx

= x(π − x) ·
 − cos nx

n

    π
0

−

−(π − 2x) ·
 − sin nx

n2

     π
0

+ (−2) · cos nx
n3

 π
0

Fs (n)= 0+ 0+ 2

n3
[1− cos nπ ]

= 2

n3
[1− (−1)n]
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Finite Fourier cosine transform of f (x) is

Fc(n)=
 L

0

f (x) cos
nπx

L
dx

=
 π

0

x(π − x) · cos nxdx

=
 
x(π − x) · sin nx

n
−

−(π − 2x)

 − cos nx

n2

 
+ (−2)− sin nx

n3

 π
0

Fc(n)= 0− (π cos nπ + π )
n2

= −π
n2

[1+ (−1)n].

Example 2: Find the inverse finite Fourier cosine

transformf (x) ifFc(n) = sin( nπ2 )
2n

forn = 1, 2, 3, . . .

and = π
4
when n = 0 in 0 < x < π

Solution:

f (x)= Inverse finite Fourier cosine transform ofFc(n)

= 1

π
Fc(0)+

2

π

∞ 
n=1
Fc(n) · cos

 nπx
L

 

= 1

π
· π
4
+ 2

π

∞ 
n=1

sin
 nπ
2

 
·
 
1

2n

 
· cos

 nπx
π

 

f (x)= 1

4
+ 1

π

 1

n
· sin

 nπ
2

 
· cos nx.

Example 3: Find the inverse finite Fourier sine

transform f (x) if fs(n) = 2π (−1)n−1
n2

, n = 1, 2, . . .

when 0 < x < π .

Solution:

f (x)= f−1
s {Fs (n)} =

2

L

∞ 
n=1
Fs (n) · sin

 nπx
L

 

= 2

π

∞ 
n=1

 
2π (−1)n−1

n2

 
· sin nx

f (x)= 4

∞ 
n=1

(−1)n−1
n2

sin nx.

Example 4: Find the temperature distribution in a

bar of lengthL, with its both ends and lateral surface

insulated when the initial temperature in the bar is

f (x). Deduce when f (x) = x2 and L = 10.

Solution: This problem is to solve the one-

dimensional heat equation ∂u
∂t

= c2 ∂2u
∂x2

for 0 < x <

L, with boundary conditions ux(0, t) = ux(L, t)= 0

and with initial condition u(x, 0) = f (x). Since
the boundary conditions are of the Neumann type

(derivatives) apply finite Fourier cosine transform to

both sides of the equation. L

0

∂u

∂t
· cos

 nπx
L

 
dx = c2

 L

0

∂2u

∂x2
cos

 nπx
L

 
dx

(1)

Put U = Fc {u(x, t)} and use (2)

Fc

 
∂2u

∂x2

 
=  

(−1)nux (L, t)− ux (0, t)
 − n2π2

L2
Fc(u)

the equation (1) reduces to

d

dt

 L

0

u · cos
 nπx
L

 
dx

= c2
  
(−1)nux (L, t)− ux (0, t)

 − n2π2

L2
Fc(u)

 

or
dU

dt
= c2

 
−n2π2
L2

 
U (3)

since the first term in theR.H.S. is zero because of the

zero boundary conditions (ux(L, t) = ux(0, t) = 0)

Here U = U (n, t).
Solving (3), we get

U (n, t) = Ae
−
 
n2π2c2 t

L2

 
(4)

To determine the arbitrary constant A in (4) use the

initial condition.
Put t = 0 in (4) this yields

A= U (n, 0) = Fc {u(x, 0)} = Fc {f (x)}

=
 L

0

f (x) · cos
 nπx
L

 
dx (5)

... U (n, t)=
  L

0

f (x) · cos
 nπx
L

 
dx

 
e−n

2π2c2t/L2

(6)

Taking inverse finite Fourier cosine transform

u(x, t)= F−1
c {U (n, t)}

= 1

L
Fc(0)+

2

L

∞ 
n=1
Fc(n) cos

 nπx
L
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where Fc(0)=
 L

0

f (x)dx

and Fc(n)= Fc {u(x, t)} = U (n, t) given by (6)

Thus u(x, t)= 1

L

 L

0

f (x)dx +

+ 2

L

∞ 
n=1

  L

0

f (x) cos
 nπx
L

 
dx

 
×

× cos
nπx

L
e−(n

2π2c2t/L2) (7)

When f (x) = x2, and L = 10,

Fc(0)=
 10

0

x2dx = x3

3

     
10

0

= 1000

3

U (n, 0)= Fc {u(x, 0)} =
 10

0

x2 · cos
 nπx
10

 
dx

= x2 ·
 
10

nπ

 
· sin

 nπx
10

 
− 2x ·

 
−102
n2π2

 

× cos
 nπx
10

 
+ 2

 
−103
n3π3

 
sin
nπx

10

    10
0

= 2000

n2π2
(−1)n.

Thus u(x, t)= 100

3
+ 2

10
· 2000
π2

∞ 
n=1

(−1)n
n2

× e−(n2π2c2t/100) · cos
 nπx
10

 
.

Example 5: Solve the Laplace’s equation ∂2u

∂x2
+

∂2u

∂y2
= 0 in square plate of length L with the fol-

lowing conditions u(0, y) = u(L, y) = 0, u(x, 0) =
0, u(x, L) = f (x). Deduce when f (x) = x2 and

L = π .
Solution: Since the boundary conditions are

Dirichlet type (u prescribed), take finite Fourier sine

transform of the Laplace equation on both sides L

0

∂2u

∂x2
sin

 nπx
L

 
dx +

 L

0

∂2u

∂y2
sin

 nπx
L

 
dx = 0

Integrating by parts

∂u

∂x
· sin

 nπx
L

    π
0
− nπ

L

 L

0

∂u

∂x
· cos

 nπx
L

 
dx

+ ∂2

∂y2

 L

0

u(x, y) sin
 nπx
L

 
= 0

Put U = Fs {u(x, y)} =
 L

0

u(x, y) sin
 nπx
L

 
dx

= U (n, y)

Then
d2U

dy2
+ 0− nπ

L

 
u(x, y) · cos nπx

L

    L
0

+nπ
L

 L

0

u(x, y) · sin
 nπx
L

 
dx

 
= 0

d2U

dy2
− nπ

L

 
u(L, y)(−1)n − u(0, y) 

−n
2π2

L2
U = 0

Using the boundary condition u(L, y) = u(0, y)
= 0,

d2U

dy2
− λ2U = 0 where λ = nπ

L
(1)

The solution of this 2nd order ordinary differential

equation is

U (n, y) = A cosh ·λy + B sinh λy (2)

Using the boundary condition u(x, 0) = 0

0 = U (n, 0) = A · 1+ B · 0 ... A = 0 (3)

Using u(x, L) = f (x)
U (n,L)= Fs {u(x, L)} = Fs {f (x)}

=
 L

0

f (x) sin
 nπx
L

 
dx (4)

Substituting (3), (4) in (2)

U (n,L)= B · sinh λL

... B = U (n,L)

sinh λL
(5)

Thus (2) reduces to

U (n, y) = B · sinh λy (6)

where B and λ are given by (5) and (1).
Taking the inverse finite Fourier sine transform of

(6), we get

u(x, y)= F−1
s {U} = 2

L

∞ 
n=1
U (n, y) · sin nπx

L

u(x, y)= 2

L

∞ 
n=1
B · sinh

 nπy
L

 
· sin

 nπx
L

 
(7)
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When f (x) = x2 and L = π , from (4), we get

U (n,L)=
 L

0

f (x) sin
 nπx
L

 
dx =

 π

0

x2 sin nxdx

= x2 ·
 − cos nx

n

 
− 2x ·

 
− 1

n2
sin nx

 

+2
 
+ 1

n3

 
· cos nx

    π
0

U (n,L)= −π2(−1)n
n

+ 2

n3
(−1)n − 2

n3
(8)

Substituting (5), (8) in (7), we get

u(x, y)= 2

π

∞ 
n=1

1

sinh nπ

 
(−1)n

 
2

n3
− π2

 
− 2

n3

 

× sinh ny · sin nx

EXERCISE

Find the finite Fourier sine transform (F.F.S.T.) and

finite Fourier cosine transform (F.F.C.T.) of f (x):

1. f (x) = 2x in 0 < x < 4

Ans. F.F.S.T.: 32
sπ
(−1)n+1, F.F.C.T.: 32

sπ
((−1)n − 1)

2. f (x)

 
1, 0 < x < π/2

−1, π/2 < x < π

Ans. F.F.S.T. = (−2 cos(sπ/2)+ 1+ cos sπ/2)/s

F.F.C.T. = 2 sin(sπ/2)/2, s = 1, 2, 3, . . .

3. f (x) = x2 in 0 < x < L

Ans. F.F.S.T.: −L
3 cos nπ
nπ

+ 2L3

n3π3
(cos nπ − 1), n =

1, 2, 3, . . .

F.F.C.T.: 2L3(cos nπ − 1)/n2π2

4. Find F.F.S.T. of f (x) = eax in (0, L)
Ans. sπL

 
(−1)s+1 · eaL + 1

 
/
 
a2L2 + s2π2

 
5. Find F.F.C.T. of f (x) = x2

2π
− π

6
in (0, π)

Ans. (−1)n/n2 for n = 1, 2, 3 and zero for n = 0

6. Determine the inverse F.F.S.T. of 16(−1)n−1
n3

,

n = 1, 2, 3, · · · and 0 < x < 8

Ans. f (x) = 2
8

∞!
n=1

16(−1)n−1
n3

sin nπx
8

7. Determine the inverse F.F.C.T. of
6 sin nπ

2
−cos nπ

(2n+1)π
for n = 1, 2, 3, . . . and equals to 2

π
for n = 0

in 0 < x < 4

Ans. f (x)= 1
4
· 2
π
+ 2

4

∞!
n=1

6(sin(nπ/2)− cos nπ )

(2n+ 1)π
cos

 
nπ
4

 
8. Determine F.F.S.T. of (1− cos nπ )/n2π2

where 0 < x < π

Ans. f (x) = 2

π3

∞!
n=1

 
1−cos nπ
n2

 
sin nx

Solve the one-dimensional heat equation ∂u
∂t

= c2 ∂2u
∂x2

with

9. u(0, t) = u(4, t) = 0, u(x, 0) = 2x

Ans. u(x, t) = 2
4

∞!
n=1

32(−1)n+1
nπ

e−n
2π2c2t/16 · sin nπx

4

10. ux(0, t) = ux(6, t) = 0, u(x, 0) = 2x

Ans. u(x, t) = 6+ 2π

π2

∞!
n=1

(−1)n−1
n2

e−n
2π2c2t/36×

× cos nπx
6

11. Solve the Laplace’s equation ∂
2u

∂x2
+ ∂2u

∂y2
= 0 in

squaremetal plate of sideπ with u(x, π) = u0,
u(0, y) = 0,u(π, y) = 0,u(x, 0) = 0.Assume

u(x, y) is bounded

Ans. u(x, y) = 4u0
π

∞!
n=0

sin h((2n+1)y) sin(2n+1)x
(2n+1)·sin h((2n+1)sπ )

12. Find the displacement y(x, t) of a string of

length π governed by the wave equation
∂2y

∂t2
=

c2∂2y

∂x2
with one end fixed y(π, t) = 0, initially

at rest y(x, 0) = 0, with initial displacement

u(0, t) = a sinwt .
Ans. y(x, t) = a sinwt · sinw (π−x)

c
cosec

 
πw
c

 + 
2awc
π

 ∞!
n=1

(w2 − n2c2)−1 sin nx sin nct .



FOURIER INTEGRAL, FOURIER TRANSFORMS & INTEGRAL TRANSFORMS 20.17

20.5 PARSEVAL’S* IDENTITY FOR

FOURIER TRANSFORMS

Let F (α) andG(α) be respectively the Fourier trans-

forms of f (x) and g(x). Then ∞

−∞
F (α)G(α)dα = 1

2π

 ∞

−∞
f (x)g(x)dx (1)

where bar implies the complex conjugate.

Proof: Using the inversion formula for Fourier

transform for g(x) in the R.H.S. of (1), ∞

−∞
f (x)g(x)dx =

 ∞

−∞
f (x)

  ∞

−∞
G(α)eiαxdα

 
dx

Interchanging the order of integrain in R.H.S.

=
 ∞

−∞
G(α)

  ∞

−∞
f (x)eiαxdx

 
dα

Observing that inner most integral is the Fourier
transform of f (x), we have

=
 ∞

−∞
G(α) {2πF (α)} dα = 2π

 ∞

−∞
F (α)G(α)dα

Thus 1
2π

 ∞
−∞ f (x)g(x)dx =  ∞

−∞ F (α)G(α)dx.

Corollary 1: Put g(x) = f (x) and note that zz =
|z|2. Then (1) reduces to ∞

−∞
F (α)F (α)dα =

 ∞

−∞
|F (α)|2dα

= 1

2π

 ∞

−∞
f (x)f (x)dx

= 1

2π

 ∞

−∞
|f (x)|2dx

i.e.,

 ∞

−∞
|F (α)|2dα = 1

2π

 ∞

−∞
|f (x)|2dx (2)

Results (2) and its generalization (1) are known

as Parseval’s identity for Fourier transforms

(integrals).

Corollary 2: The Parseval’s identity for Fourier

cosine sine transform are

(a) 2
π

 ∞
0
Fc(α)Gc(α)dα =  ∞

0
f (x)g(x)dx

Marc Antoine Parseval (1755–1836) French mathematician.

(b) 2
π

 ∞
0

|Fc(α)|2αα =  ∞
0

|f (x)|2dα

Parseval’s identity for Fourier sine transform are

(c) 2
π

 ∞
0
Fs(α)Gs(α)dα =  ∞

0
f (x)g(x)dx

(d) 2
π

 ∞
0

|Fs(α)|2dα =  ∞
0

|f (x)|2dx

These results can be proved on similar lines as above.

WORKED OUT EXAMPLES

Example 1: Prove that
 ∞
0

(x cos x−sin x)2
x6

dx = π
15
.

Solution: Consider the function f (x) defined as

f (x) =
 
a2 − x2 if |x| ≤ a

0 if |x| > a

Fourier transform of f (x) = F {f (x)} = F (α) =
1
2π

 ∞
−∞ f (x)e

−iαxdx = 1
2π

  −a
−∞ +  a

−a +  ∞
a

 
.

Since f (x) = 0 in (−∞,−a) and (a,∞), we have

F (α) = 1

2π

 a

−a
(a2 − x2)e−iαxdx = 1

2π
[I1 − I2]

where

I1=
 a

−a
a2e−iαxdx=a2

 
e−iαx

−iα

      
a

−a
=a

2

iα
[eiαa−e−iαa]

and integrating by parts.

I2 =
 a

−a
x2e−iαxdx

=
 
x2
e−iαx

−iα − 2x
e−iαx

i2α2
+ 2

e−iαx

−i3α3

      
a

−a

= a2

iα

 
eiαa − e−iαa

 
+ 2a

α2

 
eiαa + e−iαa

 
+

+ 2

iα3

 
e−iαa − eiαa

 
So

F (α)= 1

2π
[I1−I2]=

1

2π

 −2a
α2

(2 cosαa)+ 2

α3
2· sin αa

 

F (α)=+ 2

πα3
[sin αa − aα cosαa]
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Apply Parseval’s identity for f (x) and F (α).

 ∞

−∞
|F (α)|2dα =

 ∞

−∞

4

π2

 
sin αa − aα cosαa

α3

 2

dα

= 1

2π

 ∞

−∞
|f (x)|2dx

= 1

2π

 a

−a
(|a2 − x2|)2dx

= 1

2π

 a

−a
(a4 + x4 − 2a2x2)dx

= 1

2π

 
a4x + x5

5
− 2a2

x3

3

      
a

−a

= 1

2π
· 2a2

 
1+ 1

5
− 2

3

 

= 16a5

15
· 1

2π
= 8

15

a5

π

Thus

2

 ∞

0

4

π2

 
ax cos ax − sin ax

x3

 2

dx = 8

15

a5

π

or

 ∞

0

(ax cos ax − sin ax)2

x6
dx = πa5

15

For a = 1, we get the required result.

Example 2: Evaluate
 ∞
0

x2

(a2+x2)(b2+x2)dx and

hence find
 ∞
0

 
x

x2+1

 2
dx.

Solution: We know that if f (x)=e−ax then Fourier
sine transform of f (x)=Fs{f (x)}=Fs(α) = α

a2+α2 .
Similarly for g(x)=e−bx then Gs{g(x)} = α

b2+α2 .
Recall Parseval’s identity for sine transform

2

π

 ∞

0

Fs (α)Gs (α)dα =
 ∞

0

f (x)g(x)dx

 ∞

0

 
α

a2 + α2
  

α

b2 + α2
 
dα

=
 ∞

0

e−ax · e−bxdx = 2

π

 ∞

0

e−(a+b)xdx

= π

2

e−(a+b)x

−(a + b)

     
∞

x=0
= 1

(a + b)
π

2

Thus  ∞

0

x2

(a2 + x2)(b2 + x2)dx = π

2(a + b)

For a = b = 1,
 ∞
0

 
x

x2+1

 2
dx = π

4
.

EXERCISE

Solve the following problems using Parseval’s iden-

tity for Fourier tansforms.

1. Show that
 ∞
0

sin2 ax

x2
dx = πa

2

Hint: Consider f (x) = 1, |x| < a
and f (x) = 0 for |x| > a. Then

F {f (x)} = F (α) = 2 sin aα
α

, apply P.I. then a
−a(1)

2dx = 1
2π

 ∞
−∞

4 sin2 aα

α2
dα

2. Evaluate (a)
 ∞
0

dx

(a2+x2)(b2+x2) and hence find

(b)
 ∞
0

dx

(x2+1)2 .

Hint: Fc{e−ax} = a

a2+α2 , Fc{e−bx} =
b

b2+α2 ,
use P.I.

Ans. (a) π
2ab(a+b) (b) For a = b = 1, π

4
.

3. Prove that
 ∞
0

 
sin x
x

 4
dx = π

3

Hint: Take f (x) = 1− |x|, for |x| < 1, 0,

otherwise, F {f (x)} =
"

2
π

 
1−cosα
α2

 
, use P.I.

4. Evaluate (a)
 ∞
0

 
1−cos x
x

 2
dx (b)

 ∞
0

sin4 x

x2
dx

Hint: Take f (x) = 1, for 0 ≤ x < 1, 0 oth-

erwise, then Fc{f (x)} = 1−cosα
α
, Fs{f (x)} =

sin α
α
, use P.I.

Ans. (a) π
2

(b) π
2

5. Evaluate
 ∞
0

sin ax

x(a2+x2)dx

Hint: Fc{e−ax} = a

a2+α2 , Fc{g(x)} =
sin aα
α

where g(x) = 1, 0 < x < a, zero for x > a.

use (a) in cor. 2.

Ans. π
2

 
1−e−a2
a2

 



Chapter21

Linear Difference Equations and
Z-Transforms

INTRODUCTION

Difference Equations

Difference equations model processes in which we

know relationships between changes or differences

rather than rates of changes which lead to differen-

tial equations. Thus a difference equation is an equa-

tion relating various terms of a sequence a0, a1, a2,

. . .. A string loaded with a finite number of beads at

equally spaced points leads to a difference equation.

Recurrence relations obtained in the solution of DE

by power series or Frobenius method are also differ-

ence equations. Numerical solution of DE also leads

to difference equations.

Z-transforms

Solution of a discrete system, expressed as a differ-

ence equation is obtained using z-transform.Discrete

analysis played important role in the development of

communication engineering.

21.1 LINEAR DIFFERENCE EQUATIONS

Difference equations are functional equations that

define sequences just as differential equations define

functions. They arise in several situations as follows.

Finance: Compound Interest

Let P0 be the amount of money deposited (invested)

in a bank earning interest periodically saymonthly or

quarterly or annually. The conversion period r is the

time period between interest payment. Let Pn denote

the value of the deposit at the end of the nth conver-

sion period, after n interest payments have accrued.

Then in case of simple interest,

Pn+1 = Pn + rP0

which is a first order difference equation

Pn+1 − Pn = rP0

with solution Pn = P0(1 + nr)
In case of compound interest

Pn+1 = Pn + rPn
which is a homogeneous difference equation

Pn+1 − (1 + r)Pn = 0

with solution Pn = P0(1 + r)n. In this discrete pro-

cess P is a function of an integer n rather than a

continuous variable.

Fibonacci Relation:

Suppose there is only one pair of rabbits male and

female just born. Further suppose that every month

each pair of rabbits that are one month old produce

a new pair of offspring of opposite sexes. Then Fn
the number of rabbits after n months is given by the

recurrence relation.

Fn = Fn−1 + Fn−2 for n ≥ 2

with the initial conditions F0 = F1 = 1. This gives

rise to a second order homogeneous difference equa-

21.1
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tion

Fn − Fn−1 + Fn−2 = 0

By repeated application of the recurrence relation

the equation can be solved recursively. Then we get

F2 = 2, F3 = 3, F4 = 5, F5 = 8, F6 = 13, F7 = 21,

F8 = 34 etc. The disadvantage here is that Fn is cal-

culated upto certain value of n and these values are

also dependent on the initial conditions. Instead the

general solution

Fn = c1
�

1 +
√

5

2

�n
+ c2

�
1 −

√
5

2

�n

is function of n and is independent of the initial con-

ditions.

Differential Equations

In the numerical solution of ordinary differential

equations, the derivatives are discretized by replac-

ing them by the finite (forward) differences. This

gives rise to difference equations of the higher order.

Thus a continuous process described by a differential

equation is approximated by a discrete process de-

scribed by its counterpart a difference equation. (see

Chapter on Numerical Analysis 33). For example, in

a third order ordinary differential equation

a3y
   + a2y   + a1y  + a0y = F (x)

the derivatives can be replaced by y  = yn+1 − yn
h

,

y   = yn+2 − 2yn+1 + yn
h2

y    = yn+3 − 3yn+2 + 3yn+1 − yn
h3

, which results

in a third order differences equation of the form

b3yn+3 + b2yn+2 + b1yn+1 + b0yn = F (x)

Recall that a sequence is a numerical valued function

whose domain of definition is the set of integers. It

is denoted by {an} or an or a(n).

A kth order linear difference equation in the se-

quence yn is of the form

akyn+k + ak−1yn+k−1 + . . .+ a1yn+1+
+ a0yn = f (n) (1)

where n = 0, 1, 2, 3, . . . . Thus (1) represents not

just a single equation but an infinite system of equa-

tions one equation for every n. Here the coefficients

a0, a1, . . . , ak are all constants and do not depend on

n. Heref (n) depends only onn.Whenak is chosen as

one, (1) is said to be in the standard form. If fn  = 0

for all n, then (1) is said to be non-homogeneous.

Otherwise it is said to be homogeneous if fn = 0 for

all n. The order of the difference equation (1) is the

positive integer k which is the greatest difference in

the index of non-zero values of y. Equation (1) is

linear because each term in (1) is of first degree (lin-

ear) in yn. Thus (1) is a non-homogeneous kth order

linear difference equation with constant coefficients.

Difference equation is also referred to as recur-

rence relation since it expresses yn+k in terms of

one or more of the previous terms (of the sequence)

namely yn+k−1, . . . , yn+1, yn. In this case (1) can

be written as yn+k = −ak−1yn+k−1 . . .− a1yn+1 −
a0yn + f (n). The difference equation (1) models a

physical system. So fn is known as system input

(system excitation or forcing sequence or driving se-

quence) while yn is referred to as system output (sys-

tem response). The structure of the system is defined

by the values of the coefficients and order of the equa-

tion. Thus any system output depends on the system

input and the structure of the system. The general

solution of (1) determines the output yn which de-

pends only on n (but no longer on the prior terms of

the sequence) and describes the complete sequence

yn in the closed form. Thus any sequence yn that

satisfies the difference equation (1) is a solution of

(1). The solution of (1) can be obtained by (a) classi-

cal approach similar to those used for solving linear

non-homogeneous differential equations with con-

stant coefficients (b) Laplace transform method (c)

z-transformmethod (d) recursive method (which is a

numerical solution yielding a finite number of terms

of the sequence and is disadvantageous because it is

influenced by the change of initial conditions). Here

we consider only the classical approach since theory

of difference equations is analogous to that of dif-

ferential equations (which is considered in chapter

9).

Homogeneous Equations

First order homogeneous difference equa-

tion

Consider a first order linear homogeneous differ-

ence equation yn+1 − byn = 0 for n ≥ 0 and b is a
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constant. Assume the solution of the form yn = crn
where c  = 0, r  = 0. Then yn+1 = crn+1. Substitut-

ing in the given difference equation, we have

crn+1 − bcrn = crn(r − b) = 0 ⇒ r − b = 0

or b = r . Thus the general solution of the differ-

ence equation yn+1 − byn = 0 is given by yn = cbn.
In addition, if a boundary condition y0 = d then

d = y0 = cb0 ... c = d. Then theparticular solution

is yn = dbn. The solution yn defines a discrete func-

tion whose domain is the set N of all non-negative

integers.

Second-order linear homogeneous differ-

ence equation with constant coefficients

Consider a2yn+2 + a1yn+1 + a0yn = 0 (2)

Assume yn = crn (with c  = 0, r  = 0) (3)

as a solution of (2). Then substituting (3) in (2), we

get

a2cr
n+2 + a1crn+1 + a0crn = 0

or crn(a2r
2 + a1r + a0) = 0

Thus (3) is solution of (2) if

a2r
2 + a1r + a0 = 0 (4)

since c  = 0 and r  = 0. The equation (4) which is

a quadratic in r is known as the characteristic or

auxiliary equation of (2). Three cases arise.

Case 1:When the roots of the characteristic equation

are real and distinct given by r1 and r2 then rn1 and

rn2 are two linearly independent solutions. Thus the

general solution of (2) is

yn = c1rn1 + c2rn2 (5)

where c1, c2 are two arbitrary constants.

Case 2: If the roots are real and equal, say r , then

the general solution of (2) is

yn = c1rn + c2 · n · rn = (c1 + n · c2)rn (6)

Case 3: Suppose the roots of (4) are complex con-

jugate given by a ± bi. Then the general solution of

(2) is

yn = rn(c1 cos nθ + c2 sin nθ ) (7)

where r =
√
a2 + b2, tan θ = b

a
.

This analysis can easily be extended to kth order

difference equation by considering the nature of the

k roots of the auxilary equation which is a kth degree

polynomial. (see Chapter 9).

Note 1: The forward-difference or advancing-

difference operator is defined by fk = fk+1 − fk
Note 2: The shift operatorE is defined as the oper-

ator that increases the argument of a function by one

tabular interval. Thus

Efk = Ef (xk) = f (xk + h) = f (xk+1) = fk+1

Note 3:  and E are related by E = 1 + .

Note 4: The difference equation

akyn+k + ak−1yn+k−1 + . . .+ a1yn+1 + a0yn
= f (n) (1)

can be written in terms of E as follows

(akE
k + ak−1E

k−1 + . . .+ a1E + a0)yn = f (n)

(8)

Non-homogeneous Equations

The general solution of a non-homogeneous linear

difference equation with constant coefficients (1) is

the sum of the complementary function and any par-

ticular solution. Here the complementary function

(C.F.) of (1) is the general solution of the correspond-

ing homogeneous equation (2). Particular solution,

more often known as particular integral of (1) can be

obtained by (a) method of undetermined coefficients

(b) short cut inverse operator methods.

(a) In the method of undetermined coeffi-

cients

Theparticular integral is assumed in a particular form

depending on the form of the RHS function fn.

(b) Inverse operator methods

The non-homogeneous equation (8) can be written

as

F (E)yn = f (n) (9)
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where F (E) = (akE
k + ak−1E

k−1 + . . .+
a1E + a0) (10)

is a function of the operator E.

Then the particular integral is

P.I. = 1

F (E)
f (n)

Case 1: If f (n) = an then

P.I. = 1

F (E)
an = 1

F (a)
an, provided F (a)  = 0.

Case 2: Failure case: If F (a) = 0, then

P.I. = 1

(E − a)3 a
n = n(n− 1)(n− 2)

3!
an−3

Case 3: If f (n) = sin αn then

P.I. = 1

F (E)
sin αn = 1

F (E)

�
eiαn − e−iαn

2i

�

= 1

2i

�
1

F (E)
an − 1

F (E)
bn
�

where a = eiαn and b = e−iαn.
Similarly if f (n) = cosαn, replace

cosαn = 1

2
(eiαn + e−iαn) = 1

2
(an + bn)

Case 4: If f (n) = nm or polynomial in n. Replace

E by 1 + and expand 1/F (1 + ) in binomial

series in ascending powers of  upto  m. Express

f (n) in factorials and use  [x]n = n[x]n−1

Case 5: If f (n) = anV (n) where V (n) is a poly-

nomial in n. Then

P.I. = 1

F (E)
{anV (n)} = an 1

F (aE)
V (n)

A. Homogeneous difference equations

WORKED OUT EXAMPLES

First-order difference equation

Example 1: Find the general solution of the first

order difference equation 2an − 3an−1 = 0, n ≥ 1,

a4 = 81.

Solution: The general solution of an − 3
2
an−1 = 0

oran+1 − 3
2
an = 0 forn ≥ 0 isan = Adn = A � 3

2

�n
.

Since 81 = a4 = A � 3
2

�4
... A = 16. Thus the unique solution is an =
16

�
3

2

�n
for n ≥ 0.

Finance: Compound interest

Example 2: If Raju invests Rs 1000 at 6% interest

compounded quarterly, how many month must he

wait for his money to double (Note that Raju can not

withdraw the money before the quarter is up). How

many months it trebles.

Solution: Annual interest rate is 6%so the quarterly

rate is 6%
4

= 3
2
% = 3

200
= 0.015. For 0 ≤ n ≤ 4, Pn

denotes the value of Raju’s deposit at the end of n

quarters.

Then Pn+1 = Pn + 0.015Pn where 0.015Pn
is the interest earned on Pn during (n+ 1)th

quarter. Here P0 = 1000. The solution of

the difference equation Pn+1 − 1.015Pn = 0

is Pn = P0(1.015)
n = 1000(1.015)n. If the

money doubles then Pn = 2P0 = 2000. Then

2000 = 1000(1.015)n or
ln 2

ln(1.015)
= n

or n = 46.56 ≈ 47 quarters. So money doubles in

47 × 3 = 141 months.

If money trebles then 3000 = 1000(1.015)n so

n = ln 3

ln(1.015)
= 73.80 ≈ 74,

i.e. in 74 × 3 = 222. Thus money trebles in 222

months.

Formation of difference equation

Example 3: Form the differences equation corre-

sponding to the family of curves by eliminating the

two arbitrary constants.

(a) yn = A3n + B5n (b) y(x) = ax + b2x

Solution: (a) From yn = A3n + B5n with

n = n+ 1 and n+ 2 we get yn+1 = A3n+1 + B5n+1

= 3A3n + 5B5n and yn+2 = A3n+2 + B5n+2 =
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9A3n + 25B5n. Eliminating A and B, we get������
yn 1 1

yn+1 3 5

yn+2 9 25

������ = 0.

Expanding the determinant

yn(75 − 45) − 1(25yn+1 − 5yn+2) + 1(9yn+1

−3yn+2) = 0

or the required differences equation is

30yn − 16yn+1 − 2yn+2 = 0

(b) Rewriting yn = an + b2n, we get

 yn = yn+1 − yn = [a(n+ 1) + b2n+1]

−[an+ b2n]

 yn = a + b2n(2 − 1) = a + b2n

Now  2yn =  yn+1 − yn
= (a + b2n+1) − (a + b2n)
= b2n(2 − 1) = b2n

Thus b =  2yn
2n

.

Substituting b, we get

 yn = a + b2n = a + 2yn

or a =  yn − 2yn

Now eliminating a and b

yn = an + b2n = ( yn − 2yn)n+ 2yn

yn =  yn + (1 − n) 2yn

since  2yn =  yn+1 − yn =
(yn+2 − yn+1) − (yn+1 + yn)
= yn+2 − 2yn+1 + yn

We get

yn = (yn+1 − yn) + (1 − n)(yn+2 − 2yn+1 + yn)
or (1 − n)yn+2 + yn+1(1 − 2 + 2n)

+yn(−2 + 1 − n)
Thus the difference equation is

(1 − x)yx+2 + (2x − 1)yx+1 − (x + 1)yx = 0

Real, distinct roots

Example 4: Solve yn+2 − 3yn+1 − 10yn = 0

Solution: The auxiliary equation (A.E.) is ob-

tained by assuming yn = crn and substituting in

the given difference equation. Thus yn+1 = crn+1,

yn+2 = crn+2 so

crn+2 − 3crn+1 − 10crn = 0

or r2 − 3r − 10 = 0

is the characteristic equation with distinct real roots

r1 = 5 and r2 = −2 (since r2 − 3r − 10 = (r −
5)(r + 2) = 0). Symbolically the A.E. is obtained by

replacing yn by 1, yn+1 by r , yn+2 by r2 (or equiva-

lently E by r and E2 by r2).

Then yn = 5n and yn = (−2)n are two linearly in-

dependent solutions because one is not a multiple

of the other. Thus the general solution of the given

difference solution is

yn = c15n + c2(−2)n

Equal roots

Example 5: Solve an − 6an−1 + 9an−2 = 0,

n ≥ 2, a0 = 5, a1 = 12.

Solution: The auxilary equation is r2 − 6r + 9 = 0

or (r − 3)2. So the roots are r = 3, 3, real equal. The

general solution is

an = c13n + c2 · n3n

Since 5 = a0 = c1 · 1 + c2 · 0 · 1 ... c1 = 5

Since 12 = a1 = 5 · 3 + c2 · 1 · 3 ... c2 = −1

The required (particular) solution satisfying the

given two conditions is

an = 53n − n3n = (5 − n)3n

Complex conjugate roots

Example 6: Solve (E3 − E2 + E − 1)y = 0 with

y0 = 1, y1 = 0 and y2 = 2.

Solution: Here E is the shift operator. So the given

equation is yn+3 − yn+2 + yn−1 − yn = 0.

Its auxiliary equation is m3 −m2 +m− 1 = 0 or

(m− 1)(m2 + 1) = 0. Som = 1 andm = ±i are the



21.6 HIGHER ENGINEERING MATHEMATICS—V

three roots. For the complex conjugate roots a = 0,

b = 1, so in the polar form i = 1 · ei π2 . Here r =√
a2 + b2 = 1, θ = tan b

a
= ∞ ... θ = π/2.

Then the general solution is

yn = c11n + rn(c2 cos nθ + c3 sin nθ )

yn = c1 + 1n
�
c2 cos n

π

2
+ c3 sin n

π

2

�
Since 1 = y0 = c1 + c2 + c3 · 0 ... c1 + c2 = 1

Since 0 = y1 = c1 + c2 · 0 + c3 ... c1 + c3 = 0

Since 2 = y2 = c1 − c2 + c3 · 0 ... c1 − c2 = 2

Solving c1 = 3
2
, c2 = − 1

2
, c3 = − 3

2
.

Thus the particular solution is

yn = 3

2
− 1

2
cos

nπ

2
− 3

2
sin
nπ

2

Simultaneous equations

Example 7: Solve xn+1 − 7xn − 10yn = 0 and

yn+1 − xn − 4yn = 0, with x0 = 3 and y0 = 2.

Solution: Introducing the shift operatorE notation,

the given two equations can be written as

(E − 7)xn − 10yn = 0 (1)

−xn + (E − 4)yn = 0 (2)

Multiplying (1) by (E-4) and (2) by 10 and adding,

we get

(E − 7)(E − 4)xn − 10xn = 0

or (E2 − 11E + 28 − 10)xn

= (E2 − 11E + 18)xn = 0.

Its auxiliary equation is r2 − 11r + 18 = 0 with two

real distinct roots 2 and 9. Then

xn = c12n + c29n (3)

Using 3 = x0 = c1 · 1 + c2 ·1, we get c1+c2 =3 (4)

Substituting (3) in (1) we have

(c12
n+1 + c29n+1) − 7(c12

n + c29n) − 10yn = 0

So yn = 1
10

[−5c12
n + 2c29

n]

Using 2 = y0 = 1
10

[−5 · c1 · 1 + 2c2 · 1], we get

−5c1 + 2c2 = 20 (5)

Solving (4) and (5) we have c1 = −2, c2 = 5. Thus

the required solution is

xn = −2 · 2n + 5 · 9n

and yn = 1
10

[102n + 109n] = 2n + 9n

Determinant

Example 8: Express the following nth order deter-

minantDn as an explicit function of n. When a > 2,

show that Dn = sinh(n+1)µ

sinhµ
where coshµ = a

2
. What

is the value ofDn when (i) a = 2 (ii) a = −2 where

Dn =

������������

a 1 0 . . . 0 0

1 a 1 . . . 0 0

0 1 a . . . 0 0

. . . . . . . .

0 0 0 . . . a 1

0 0 0 . . . 1 a

������������
Solution: Expanding Dn in terms of the elements

in the first row (or column), we get

Dn = a ·

������������

a 1 0 . . . 0 0

1 a 1 . . . 0 0

0 1 a . . . . . . . . .

. . . . . . 0 . . . . . . . . .

0 0 0 . . . a 1

0 0 0 . . . 1 a

������������
−

−1 ·

������������

1 1 . . . . . . 0 0

0 a 1 . . . 0 0

0 1 a 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . a 1

0 0 0 . . . 1 a

������������
The first determinant in RHS is identical in structure

to Dn except that it contains only n− 1 rows and

n− 1 columns. Thus the first determinant in RHS is

Dn−1. The second determinant in RHS does not have

the form of Dn. But expanding the second determi-
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nant by the first row, we get

Dn = a ·Dn−1 − 1 · 1

������������

a 1 0 . . . 0 0

1 a 1 . . . 0 0

0 1 a . . . 0 0

. . . . . . . . . . . . 0 0

0 0 0 . . . a 1

0 0 0 . . . 1 a

������������
Now the second determinant in RHS has the same

structure as Dn but is of (n− 2) order. Thus

Dn = aDn−1 −Dn−2

or Dn+2 − aDn+1 +Dn = 0

i.e., (E2 − aE + 1)Dn = 0 (1)
The auxiliary equation is

m2 − am+ 1 = 0

Its roots are given by

m = a ±
√
a2 − 4

2
= a ± b

2
where b =

�
a2 − 4

(2)

If a > 2 then b > 0 so the roots are real, distinct

given by

m1 = a + b
2
, m2 = a − b

2
(3)

Then the general solution of the difference equation

(1) is

Dn = c1mn1 + c2mn2

Dn = c1
�
a + b

2

�n
+ c2

�
a − b

2

�n
(4)

Thus (4) expresses the nth order determinant Dn as

an explicit function of n (in terms of the parameter

‘a’).

Put coshµ = a
2
then b = a2 − 4 =

�
4 cosh2 µ− 4

so ‘b’ = 2 sinhµ. Then m1 = a+b
2

=
2·coshµ+2·sinhµ

2
= eµ

Similarly m2 = a−b
2

= coshµ− sinhµ = e−µ,
then the general solution (4) takes the form

Dn = c1(eµ)n + c2(e−µ)n

= c1(coshµn+ sinhµn) + c2(coshµn− sinhµn)

Dn = A coshµn+ B sinhµn

whereA = c1 + c2 andB = c1 − c2. ChoosingA =
1 and B = cothµ, we get

Dn = coshµn+ cothµ · sinhµn = sinh(n+ 1)µ

sinhµ

Now for n = 1, D1 = a and n = 2, D2 =����a 1

1 a

���� = a2 − 1. Thus D1 = a = 2 coshµ, D2 =
4 cosh2 µ− 1 = 2 cosh 2µ. Using 2 coshµ = a =
D1 = A coshµ+ B sinhµ. So A = 2 and B = 0.

Using 2 cosh 2µ = D2 = 2 · cosh 2µ+ 0 · sinh ·2µ
= 2 cosh 2µ which is true.

Case 1: For a = 2, b = 0, the roots are real and

equal given by m1 = m2 = 1. Then the general so-

lution is

Dn = (c1 + nc2) · 1n = c1 + nc2
For n = 1, D1 = a = 2 = c1 + 1 · c2.
For n = 2, D2 = a2 − 1 = 4 − 1 = 3 = c1 + 2c2
Solving c1 = c2 = 1. Thus when a = 2, Dn = 1 +
n.

Case 2: When a = −2, the general solution is

Dn = (c1 + c2 · n)(−1)n

For n = 1, D1 = a = −2 = (c1 + c2)(−1)

For n = 2, D2 = a2 − 1 = 3 = c1 + 2c2
Solving c1 = c2 = 1. Thus when a = −2, we get

Dn = (1 + n)(−1)n

Example 9: A seed of a particular plant produces

8-fold when one year old and produces 18-fold when

two or more years old. If an denotes the number of

seeds produced at the end of the nth year, express an
in term of n.

Solution: At the end of (n+ 1)th year, the an seeds

which are one year old produces 8-fold. The an−1

seedswhich are two years old produces 18-fold. Sim-

ilarly the an−2, an−3, . . . a2, a1 which are more than

two years old also produces 18 fold. Thus the recur-

rence relation is

an+1 = 8(an) + 18(an−1 + an−2 + . . .+ a2 + a1)
Similarly

an+2 = 8(an+1) + 18(an + an−1 + . . .+ a3 + a2 + a1)
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Subtracting

an+2 − an+1 = 8an+1 + 18an − 8an

or the difference equation is

an+2 − 9an+1 − 10an = 0.

Its characteristic equation is

m2 − 9m− 10 = (m− 10)(m+ 1) = 0

with real distinct rootsm1 = 10,m2 = −1. The gen-

eral solution is

an = c1(10)n + c2(−1)n

Non-homogeneous difference equations

WORKED OUT EXAMPLES

Method of undetermined coefficients

Example 1: Determine a formula for the sum of

the first n cubes of natural numbers.

Solution: Let Sn be the partial sum of the cubes of

the first n natural numbers. Then

Sn = 13 + 23 + 33 + . . .+ n3 =
n�
i=1

i3

Now Sn+1 = 13 + 23 + 33 + . . .+ n3 + (n+ 1)3

=
n+1�
i=1

i3

Subtracting

Sn+1 − Sn = (n+ 1)3 (1)

This is a first order non-homogeneous difference

equation with auxiliary equation m− 1 = 0. So the

complementary function is

Sc = c · 1n = c (2)

where c is an arbitrary constant. To determine the

particular integral, use the method of undetermined

coefficients. Since the RHS is a function of the type

(n+ 1)3 = n3 + 3n2 + 3n+ 1

We assume the particular integral of the form

Sn = An4 + Bn3 + Cn2 +Dn (3)

(Even if we take an additional constant E, it will

become redundant). Substituting (3) in (1), we get

Sn+1 − Sn = [A(n+ 1)4 + B(n+ 1)3 + C(n+ 1)2

+D(n+ 1)] − [An4 + Bn3 + Cn2 +Dn] = (n+ 1)3

(5)

The unknown coefficients A, B, C, D will be deter-

mined by equating the coefficients of like powers of

n on both sides of (5).

A(n4+4n3+6n2+4n+1)+B(n3+3n2+3n+1)

+C(n2 + 2n+ 1) − (An4 + Bn3 + Cn2 +Dn)
= n3 + 3n2 + 3n+ 1

or (4A)n3 + (6A+ 3B)n2 + (4A+ 3B + 2C)n

+(A+ B + C +D) = n3 + 3n2 + 3n+ 1

Then 4A = 1, 6A+ 3B = 3, 4A+ 3B + 2C = 3,

and A+ B + C +D = 1

SolvingA = 1
4
,B = 1

2
,C = 1

4
,D = 0. Thus the par-

ticular integral is 1
4
n4 + 1

2
n3 + 1

4
n2. Then the general

solution of the difference equation (1) is given by

Sn = C.F.+ P.I. = c + 1

4
n4 + 1

2
n3 + 1

4
n2 (6)

For n = 1, we know that S1 = 13 = 1. Using this in

(6), we get

1 = S1 = c + 1

4
+ 1

2
+ 1

4
... c = 0

Thus the formula expressing the sum of cubes of the

first n natural numbers is

Sn =
n�
i=1

i3 = 0 + 1

4
n4 + 1

2
n3 + 1

4
n2

Sn = n2(n+ 1)2

4

Short cut inverse operator methods

Power function

Example 2: Solve an+2 − 6an+1 + 5an = 2n with

a0 = 0, a1 = 0.

Solution: The auxiliary equation is m2 − 6m+
5 = 0 with real distinct roots m1 = 1, m2 = 5. So

the complementary function is c1 · 1n + c25n. The

particular integral is obtained by inverse operator

method. The given difference equation is rewritten in
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terms of the shift operator E as (E2 − 6E + 5)an =
2n. Then the particular integral is

P.I. = 1

E2 − 6E + 5
· 2n = 1

22 − 6 · 2 + 5
· 2n

= −1

3
2n

Here E is replaces by 2. Thus the general solution is

an = C.F.+ P.I. = c1 + c25n − 1

3
2n

Since 0 = a0 = c1 + c2 − 1
3
... c1 + c2 = 1

3

Since 0 = a1 = c1 + 5c2 − 2
3
... c1 + 5c2 = 2

3

Solving c1 = 1
4
, c2 = 1

12
. Then

an = 1

4
+ 1

12
5n − 1

3
2n

Failure case

Example 3: Solve yn+3 − 12yn+2 +
48yn+1 − 64yn = 5 · 4n.

Solution: A.E. is m3 − 12m2 + 48m− 64 = 0

or (m− 4)3 = 0. The roots are real, equal repeated

thrice m = 4, 4, 4. So the

C.F. = c14n + c2 · n · 4n + c3n24n

Now P.I. = 1

E3 − 12E2 + 48E − 64
5 · 4n

= 5

(E − 4)3
· 4n

HereE can not be replaced by 4. Then by result (case

2 on page 21.4) we have

P.I. = 5 · n(n− 1)(n− 2)

3!
4n−3

Thus the general solution is

yn = C.F.+ P.I. = (c1 + c2 · n+ c3 · n2)4n+

+5n(n− 1)(n− 2)

3!
4n−3

Trigonometric function

Example 4: Find the general solution of (E2 +
4)yn = cosαn.

Solution: A.E. is m2 + 4 = 0 with conjugate

complex roots ±2i. So a = 0, b = 2, then r =√
a2 + b2 = 2, and tan θ = 2

0
= ∞. ... θ = π

2
.

Thus

C.F. = rn(c1 cos nθ + c2 sin nθ )

C.F. = 2n
�
c1 cos

nπ

2
+ c2 sin

nπ

2

�
Now P.I. = 1

E2+4
cosαn = 1

(E+2i)(E−2i)
cosαn.

But cosαn = 1
2
(einα + e−inα). So

P.I. = 1

(E + 2i)(E − 2i)

�
1

2
(einα + e−inα)

�

= 1

(E + 2i)(E − 2i)

1

2
(an + bn)

where a = eiα , b = e−iα

= 1

2

1

(a + 2i)(a − 2i)
an + 1

2

1

(b + 2i)(b − 2i)
bn

= 1

2
· 1

a2 + 4
an + 1

2

1

(b2 + 4)
bn

= 1

2

�
1

e2iα + 4
eiαn + 1

e−2iα + 4
e−iαn

�

= 1

2

�
(e−2iα + 4)eiαn + (e2iα + 4)e−iαn

(e2iα + 4)(e−2iα + 4)

�

= 4 cosαn+ 1
2
{eiα(n−2) + eiα(n−2)}

1 + 4(e2iα + e−2iα) + 16

= 4 cosαn+ cosα(n− 2)

17 + 8 cos 2α

Thus the general solution is

yn = 2n
�
c1 cos

nπ

2
+ c2 sin

π

2

�
+

+
�

4 cosαn+ cosα(n− 2)

17 + 8 cos 2α

�

Polynomial

Example 5: Solve an+2 − 5an+1 + 6an = 2n2 −
6n− 1.
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Solution: A.E. is m2 − 5m+ 6 = 0 with real dis-

tinct roots 2 and 3. SoC.F. = c12n + c23n. The given

difference equation in shift oeprator E is

(E2 − 5E + 6)an = 2n2 − 6n− 1

So P.I. = 1

E2 − 5E + 6)
(2n2 − 6n− 1)

Replace E by 1 + then

E2 − 5E + 6 = (1 + )2 − 5(1 + ) + 6

= 1 + 2 + 2 − 5 − 5 + 6 =  2 − 3 + 2

Then

P.I. = 1

 2 − 3 + 2
(2n2 − 6n− 1)

= 1

2

1

1 +
�
 2−3 

2

� (2n2 − 6n− 1)

Expanding in binomial series

= 1

2

�
1 −

�
 2 − 3 

2

�
+
�
 2 − 3 

2

�2

+ . . .
�

×

×(2n2 − 6n− 1)

Neglecting powers of  more than 2, we get

P.I. = 1

2

�
1 + 3

2
 + 7

4
 2

�
[2n2 − 2n− 4n− 1]

= 1

2

�
1 + 3

2
 + 7

4
 2

�
{2[n]2 − 4[n] − 1}

where [n]2 = n(n− 1). Then

P.I. = 1

2

�
{2[n]2 − 4[n] − 1} + 3

2
{4[n] − 4} + 7

4
{4}
�

= 1

2

�{2n2 − 6n− 1} + 6{(n− 1)} + 7
� = n2

Therefore the general solution is

an = c12n + c23n + n2

Exponential shift

Example 6: Solve (E2 + E − 56)an = 2n(n2 − 3)

Solution: A.E. is m2 +m− 56 = (m+ 8)(m−
7) = 0 with distinct real roots −8, 7. So C.F. =
c1(−8)n + c2(7)n.
Since the R.H.S. is of the form anF (n), apply shift

result for obtaining particular integral. So replace E

by 2E, we get

P.I. = 1

E2 + E − 56
{2n(n2 − 3)}

= 2n

(2E)2 + 2E − 56
{(n2 − 3)}.

= 2n

2(2E2 + E − 28)
(n2 − 3)

= 2n

2[2(1 + )2 + (1 + ) − 28)]
(n2 − 3)

where E is replaced by 1 + .

P.I. = 2n

2[2 2 + 5 − 25]
(n2 − 3)

= − 2n

50

�
1 −

�
5 + 2 2

25

��−1

(n2 − 3)

Expanding in binomial series we get

P.I.=− 2n

50

�
1+ 5 +2 2

25
+
�

5 +2 2

25

�2

+. . .
�

×

×(n2 − 3).

Neglecting powers of  more than 2 we have

P.I. = − 2n

50

�
1 + 5

25
 + 3

25
 2

�
{[n]2 + [n] − 3}

where n2 − 3 = n2 − n+ n− 3 = n(n− 1) + n−
3= [n]2 + [n] − 3.

P.I. = − 2n

50
[{[n]2 + [n] − 3} + 5

25
{2[n] + 1} + 3

25
{2}]

P.I. = − 2n

50

�
n2 + 2

5
n− 64

25

�

Therefore the general solution is

an = c1(−8)n + c2(7)n − 2n−1

25

�
n2 + 2

5
n− 64

25

�
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Homogeneous difference equations

EXERCISE

First order

Solve the difference equation

1. an − 7an−1 = 0 when n ≥ 1 and a2 = 98

Ans. an = 2(7)n for n ≥ 0

2. a2
n+1 − 5a2

n = 0 when an > 0 for n ≥ 0 and

a0 = 2. Also find a12.

Ans. an = 2(
√

5)n, a12 = 2(
√

5)12 = 31, 250

Hint: a2
n = bn and solve for bn.

3. How much will be the deposit of Rs 1000 a

year later, if the bank pays 6% annual interest,

compounding the interest monthly.

Ans. Rs 1061.68

Hint: Pn+1 = Pn + 0.005Pn, Pn =
P0(1.005)

n, P0 = 1000, n = 12

4. How much will be Rs 10,000 after 30 years

in a bank yielding 11% per year interest com-

pounded annually.

Ans. Rs 228,922.97

Hint: Pn+1 = Pn + 0.11Pn, Pn = P0(1.11)
n,

P0 = 10,000, n = 30

5. Solve the following difference equations

(a) an − 3an−1 = 0, a0 = 2

Ans. an = 2 · 3n
(b) an − 2an−1 + 1 = 0, a0 = 1

Ans. an = 1

(c) an − 2nan−1 = 0, a0 = 1,

Ans. an = 2n · n!
Second and higher order

Solve the following difference equations

6. yn+2 + yn+1 − 6yn = 0 with a0 = −1, a1 = 8

Ans. yn = 2n − 2(−3)n

7. Fn+2 − Fn+1 − Fn = 0 for n ≥ 0, with F0 =
0, F1 = 1.

Ans. Fn = 1
a

��
1+a
2

�n − �
1−a
2

�n�
, n ≥ 0, a =

√
5

8. an − an−1 + 2an−2 = 0, a0 = 2, a1 = 7

Ans. an = 3 · 2n − (−1)n

9. an − 6an−1 + 9an−2 = 0, a0 = 1, a1 = 6

Ans. an = (1 + n)3n
10. yn+3 − 6yn+2 + 11yn+1 − 6yn = 0 with ini-

tial conditions y0 = 2, y1 = 5, y2 = 15.

Ans. yn = 1 − 2n + 2 · 3n
11. yn+3 + 3yn+2 + 3yn+1 + yn = 0 with y0 = 1,

y1 = −2 and y2 = −1.

Ans. yn = (1 + 3n− 2n2)(−1)n.

12. yn+3 − 2yn+2 − yn+1 + 2yn = 0 with y0 = 0,

y1 = 1, y2 = 1. Also find y10.

Ans. yn = 1
3
{2n − (−1)n}, y10 = 341

13. yn+2 − 2yn+1 + 2yn = 0, with y0 = 0, y1 = 1

Ans. yn = (1+i)n−(1−i)n
2i

14. yn+3 − 2yn+2 − 5yn+1 + 6yn = 0

Ans. yn = c1 · 1n + c2(−2)n + c33n
15. yn+1 − 2yn cosα + yn−1 = 0

Ans. yn = c1 cos nα + c2 sin nα

16. am+4 + 16am = 0

Ans. am = 2m
�
c1 cos mπ

4
+ c2 sin mπ

4
+ c3 cos 3mπ

4

+ c4 · sin 3mπ
4

�
17. (E2 + 2E + 4)yn = 0

Ans. yn = 2n(
�
c1 cos 2nπ

3
+ c2 sin 2nπ

3

�
18. Determine Dn as a function of n where

Dn =

��������������

2 2 0 0 . . . 0 0

1 2 2 0 . . . 0 0

0 1 2 2 . . . 0 0

0 0 1 2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 2 2

0 0 0 0 . . . 1 2

��������������
Ans. Dn = 2n/2

�
cos nπ

4
+ sin nπ

4

�
Hint Solve Dn − 2Dn−1 + 2Dn−2 = 0.
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Non-homogeneous difference equations

EXERCISE

Solve

1. Determine a formula for the sum of the squares

of the first n natural numbers.

Ans. Sn = n(n+ 1)(2n+ 1)/6

Hint: Solve Sn+1 − Sn = (n+ 1)2, use S1 =
1.

2. yn − yn−1 = 3n2, n ≥ 1, y0 = 7

Ans. yn = 7 + 1
2
n(n+ 1)(2n+ 1)

3. yn+1 − 3yn = 357n, y0 = 2

Ans. yn = 5
4
7n+1 − 1

4
3n+3

4. Tower of Hanoi: an+1 − 2an = 1, a0 = 0, find

a64.

Ans. an=2n−1,

a64 =18, 446, 744, 073, 709, 551, 615

5. A car loan of S rupees is to be paid back in T

periods of time. Determine the equi (constant)

payment P at the end of each period if r is the

interest rate per period for the loan.

Ans. P = (S · r)/[1 − (1 + r)−T ]
Hint: Solve an+1 − an(1 + r) = P , a0 = S,
aT = 0 and 0 ≤ n ≤ T − 1

6. (E2 + 2E − 8)an = 5n+ 3(2n)

Ans. an = c12n + c2(−4)n − n− 4
5

+ n2n−2

7. an+2 + 2an+1 + an = n+ 2, a0 = 0, a1 = 0

Ans. an = 1
4
(3n− 1)(−1)n + 1

4
(n+ 1)

8. an+2 − 5an+1 + 6an = 2n+ 1, a0 = 0, a1 =
1

Ans. an = 5
2
3n − 5 · 2n + n+ 5

2

9. an+2 + 4an+1 − 5an = 24n− 8, a0 = 3, a1 =
−5

Ans. an = 2n2 − 4n+ 2 + (−5)n

10. an+2 − 4an+1 + 3an = 5n

Ans. an = c1 + c2 · 3n + 1
8
5n

11. (E2 − 4E + 4)an = 2n

Ans. an = (c1 + c2 · n)2n + n(n− 1)2n−3

12. (E2 − 2 cosαE + 1)an = cosαn

Ans. an = c1 cosαn+ c2 sin αn+ n · sin(n−1)α

2 sin α

13. (E2 − 4)an = n2 + n− 1

Ans. an = c12n + c2(−2)n − n2

3
− 7n

9
− 17

27

14. (E2 − 2E + 1)an = 2n · n2

Ans. an = c1 + c2 · n+ 2n(n2 − 8n+ 20)

15. an − 7an−1 + 10an−2 = 7 · 3n for n ≥ 2

Ans. an = c12n + c25n + �−63
2

�
3n

16. an − 6an−1 + 8an−2 = n · 4n with a0 = 8,

a1 = 22

Ans. an = 3 · 4n + 5 · 2n + n(n− 1)4n

Simultaneous equations

Solve

17. xn+1 − yn = 1; yn+1 − xn = 1; x0 = 0, y0 =
−1

18. xn+1 + yn − 3xn = n, 3xn + yn+1 − 5yn =
4n with x1 = 2, y1 = 0

Ans. xn = (1.33)2n − (0.0167)6n − 0.8n−
0.76 + 4n−1,

yn = (1.33)2n − (0.05)6n − 0.6n− 1.36 −
4n−1

19. xn+1 − 3xn − 2yn = −n,
−xn + yn+1 − 2yn = n, x0 = 0, y0 = 3

Ans. xn = 2 · 4n − 2 − 1
2
n(n− 1),

yn = 4n + 2 + 1
2
n(n+ 1)

20. xn+1 − yn − 1 = 0, yn+1 + xn = 0, x0 = 0,

y0 = −1.

21.2 Z-TRANSFORMS

Introduction

Z-transform is useful in solving difference equations

which represent a discrete system. Z-transform

operates on a sequence un of discrete integer-valued

arguments n = 0,±1,±2, . . . unlike the Laplace

transform which operates on continuous functions.
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Thus Z-transform is the discrete analogue of Laplace

transform. Therefore for every operational rule and

application of Laplace transform, there corresponds

an operational rule and application of Z-transform.

Definition

The Z-transform of a sequence un defined for dis-

crete values n = 0, 1, 2, · · · (and un = 0 for n < 0)

is denoted by Z(un) and is defined as

Z(un) =
∞�
n=0

unz
−n = U (z) (1)

where U is a function of z.

Z-transforms exists only when the infinite series

in (1) is convergent.

Inverse Z-transform

is denoted by Z−1(U (z)) = un determines the se-

quence un which generates the given Z-transform.

Results

Z-transform of some standard sequences

1. Un = {an} = {1, a, a2, a3, . . . , an, . . .}
By definition,

Z(un) = Z(an) =
�
unz

−n =
∞�
n=0

anz−n

= 1+a
z

+ a

z2
+ a

z3
+ · · · +a

n

zn
+ · · · = 1

1 − a
z

Z(an) = z

z− a .

Recurrence formula

2. un = {np} = {0, 1p, 2p, 3p, . . . , np, . . .} where

p is a positive integer

By definition

Z(np) =
∞�
n=0

npz−n (i)

Replacing p by p − 1

Z(np−1) =
∞�
n=0

np−1z−n (ii)

Differentiating (ii) w.r.t. z, we get

d

dz

�
Z(np−1)

�
= d

dz

� ∞�
n=0

np−1z−n
�

=
∞�
n=0

np−1 · (−n)z−n−1

= −z−1
∞�
n=0

np · z−n

= −z−1Z(np), using (i)

Thus Z(np) = −z d
dz

�
Z(np−1)

�
Special cases of result 1.

3. Z(1) = z
z−1

obtained by putting a = 1 in result 1.

4. Z(k) = kz
z−1

(where k is a constant)

since z(k) = �
kz−n = k 1

1− 1
z

= k z
z−1

5. Z [(−1)n] = z
z+1

obtained by taking a = −1 in result 1.

Special cases of result 2.

6. Z(n) = z

(z−1)2

since with p = 1, Z(n) = −z · d
dz

[Z(1)] =
−z d

dz

�
z
z−1

� = −z ·
�

(z−1)·1−z·1
(z−1)2

�
= z

(z−1)2

7. Z(n2) = z2+z
(z−1)3

by taking p = 2 in result 2.

8. Z(n3) = z3+4z2+z
(z−1)4

9. Z(n4) = z4+11z3+11z2+z
(z−1)5

10. Z
�

1
n!

� =
∞�
n=0

1
n!
z−n = 1 + 1

z
+ 1

2!
1

z2
+ 1

3!
1

z3
+

· · · + 1
n!

1
zn

+ · · · = e( 1z )

11. Unit step sequence u(n) =
�
0, for n < 0

1, for n ≥ 0

Z(u(n)) =
∞�
n=0

u(n)z−n =
∞�
n=0

1 · z−n

= 1 + 1

z
+ 1

z2
+ · · · + 1

zn
+ · · ·

Z[u(n)] = 1

1 − 1
z

= z

z− 1
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12. Unit impulse sequence δ(n) =
�
1, for n = 0

0, for n  = 0

Z[δ(n)] =
∞�
n=0

δ(n)z−n = 1 + 0 + 0 + 0 · · · = 1.

Properties

I. Linearity

Z(aun + bvn) = aZ(un) + bZ(vn)

since Z(aun + bvn) =
�

(aun + bvn)z−n

= a
�
unz

−n + b
�
vnz

−n.

II. Change of scale (or damping rule)

If Z(un) = U (z) then Z(a−nun) = U (az)
since

Z(a−nun) =
∞�
n=0

a−nunz−n =
∞�
n=0

un(az)
−n = U (az)

Similarly,

Z(anun) = U (z/a)

Results from application of damping rule:

13. Z(nan) = az

(z−a)2

because Z(n) = z

(z−1)2
then Z(nan) is obtained

by replacing z by z/a. So Z(nan) = z/a

(z/a−1)2
=

az

(z−a)2

14. Z(n2an) = az2+a2z
(z−a)3

since Z(n2) = z2+z
(z−1)3

by damping rule. Z(n2an)

is obtained by replacing z by z/a

i.e., Z(n2an) = (z/a)2 + (z/a)

[(z/a) − 1]3
= a(z2 + az)

(z− a)3

15. Z(cos nθ ) = z(z−cos θ )

z2−2z cos θ+1

Solution:

Z(e−inθ ) = Z
�
(e−iθ )n

�
= Z

�
(e−iθ )n · 1

�
since Z(1) = z

z−1
, apply damping rule and replace z

by z/a where a = e−iθ i.e., z by z/e−iθ or zeiθ . Thus

Z
�
(e−iθ )n · 1

�
= z

z− 1

����
zeiθ

= zeiθ

zeiθ − 1

= z

z− e−iθ = z(z− eiθ )
(z− e−iθ )(z− eiθ )

= z[z− cos θ − i sin θ ]
z2 − z(eiθ + e−iθ ) + 1

Thus

Z(e−inθ ) = Z(cos nθ − i sin nθ )

= z(z− cos θ ) − iz sin θ
z2 − 2z cos θ + 1

Since cos θ = (eiθ + e−iθ )/2
Applying linearity property and comparing the

real parts on both sides, we get

Z(cos nθ ) = z(z− cos θ )

z2 − 2z cos θ + 1

Similarly, comparing the imaginary parts

16. Z(sin nθ ) = z sin θ

z2−2z cos θ+1

17. Z(an cos nθ ) = z(z−a cos θ )

z2−2az cos θ+a2 obtained by re-

placing z by z/a in (15) by damping rule.

Similarly,

18. Z(an sin nθ ) = az sin θ

z2−2az cos θ+a2

III. Shifting property

a. Shifting un to the right

If Z(un) = U (z) then Z(un−k) = z−kU (z) for

k > 0

This follows from the definition

Z(un−k) =
∞�
n=0

un−kz−n

= u0z−k + u1z−(k+1) + u2z−(k+2) + · · ·
since un = 0 for n < 0 (so u−k, u1−k, u2−k, . . .
are all 0)

= Z−k
∞�
n=0

unz
−n = z−kU (z)
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b. Shifting to the left

If Z(un) = U (z) then

Z(un+k) = zk
�
U (z) − u0 − u1

z
− u2

z2
· · · uk−1

zk−1

�

Proof:

Z(un+k) =
∞�
n=0

un+kz−n = zk
∞�
n=0

un+kz−(n+k)

= zk
�
ukz

−k+u1+kz−(1+k)+u2+kz−(2+k)+ · · ·
�

= zk
�
(u0 + u1z−1 + u2z−2 + · · · + uk−1z

−(k−1))+

+ukz−k + uk+1z
−(k+1)+···

�
−

−zk
�
u0 + u1z−1 + u2z−2 + · · · + uk−1z

−(k−1)
�

Z(un+k) = zk
� ∞�
n=0

unz
−n −

k−1�
n=0

unz
−n
�

Z(un+k) = zk
�
U (z) − u0 − u1z−1 − u2z−2 · · ·

−uk−1z
−(k−1)

�
In particular for k = 1, 2, 3

19. Z(un+1) = z[U (z) − u0]

20. Z(un+2) = z2[U (z) − u0 − u1z
−1]

21. Z(un+3) = z3[U (z) − u0 − u1z
−1 − u2z

−2].

IV. Multiplication by n

If Z(un) = U (z) then Z(nun) = −z dU
dz

(z).

Proof:

Z(nun) =
∞�
n=0

n · unz−n = −z
∞�
n=0

un(−n)z−n−1

= −z
∞�
n=0

un
d

dz
(z−n) = −z

� d

dz
(unz

−n)

= −z d
dz

��
unz

−n
�

= −z · d
dz
U (z)

In general (by mathematical induction)

Z(npun) = (−z)p d
pU (z)

dzp

Initial value and final value theorems determine

the values of un for n = 0 and for n → ∞ without

the complete knowledge of un.

V. Initial value theorem

Theorem: If Z(un) = U (z) then u0 = lim
z→∞

U (z)

Proof: By definition

U (z) = Z(un) = u0 + u1

z
+ u2

z2
+ · · · + un

zn
+ · · ·

Taking the limit as z → ∞

22. lim
z→∞

U (z) = u0 + 0 + 0 · · · = u0

23. lim
z→∞

z[U (z) − u0] =
lim
z→∞

�
u1 + u2

z
+ u3

z2
+ · · ·

�
= u1

24. lim
z→∞

z2
�
u(z) − u0 − u1

z

�
=

lim
z→∞

�
u2 + u3

z
+ u4

z2
+ · · ·

�
= u2.

VI. Final value theorem

Theorem: If Z(un) = U (z) then

lim
n→∞ un = lim

z→1
{(z− 1)U (z).}

Proof: Consider

Z(un+1 − un) = Z(un+1) − Z(un)

= Z[U (z) − u0] − U (z) using (19)

= U (z) · (z− 1) − u0z
From definition and the above result, we have

(z− 1)U (z) − u0z = Z(un+1 − un) =
∞�
n=0

(un+1 − un)z−n

As z → 1, we have

lim
z→1

[(z− 1)U (z)] − u0

= lim
z→1

∞�
n=0

(un+1 − un)z−n =
∞�
n=0

(un+1 − un)

= lim
n→∞[(u1 − u0) + (u2 − u1) + · · · + (un+1 − un)]

= lim
n→∞[un+1 − u0] = lim

n→∞ un+1 − u0

Thus

lim
n→∞ un = lim

z→1
[(z− 1)U (z)].
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VII. Convolution theorem

Theorem: If Z−1[U (z)] = un and
Z−1[V (z)] = vn then
Z−1[U (z) · V (z)] = un ∗ vn = convolution of un and vn

=
n�
m=0

umvn−m

Proof:

U (z) · V (z) =
� ∞�
n=0

unz
−n
�� ∞�

n=0

vnz
−n
�

=
�
u0 + u1

z
+ u2

z2
+ · · · + un

zn
+ · · ·

�
×

×
�
v0 + v1

z
+ v2

z2
+ · · · + vn

zn
· · ·
�

Collecting the coefficients of z−n

=
∞�
n=0

(u0vn + u1vn−1 + u2vn−2 + · · · + unv0)z−n

= Z(u0vn + u1vn−1 + · · · + unv0) by definition

= Z
�

n�
m=0

umvn−m

�

Taking inverse Z-transform the result follows.

VIII. Region of convergence (R.O.C.)

The region of convergence of Z-transform is the

region in the z-plane where the infinite series con-

vergence absolutely.
Thus the region of convergence of a one-sided Z-

transform of a right-sided sequence i.e.,

U (z) =
∞�
n=0

unz
−n

is |z| > a i.e., the exterior of the circle with centre at

origin and of radius a.
Similarly the R.O.C. of

U (z) =
0�

n=−∞
unz

−n

is |z| < a. Finally the R.O.C. of two-sided Z-
transform defined by

U (z) =
∞�

n=−∞
unz

−n

is the annulus region a < |z| < b.

IX. Solution of difference equations

Step 1. Take Z-transform on both sides of the given

difference equation.

Step 2. Use given conditions and solve for U (z).

Step 3. Apply partial fractions method.

Step 4. Take inverse Z-transform on both sides

which results in the given sequence.

Note: A list of standard Z-transforms is presented

on page 21.30.

WORKED OUT EXAMPLES

Linearity property

Example 1: Find the Z-transform of

2n+ 5 sin nπ
4

− 3a4.

Solution: By linearity property

Z
�
2n+ 5 sin

nπ

4
− 3a4

�

= 2Z(n) + 5Z
�
sin
nπ

4

�
− 3a4Z(1)

= 2 · z
(z− 1)2

+ 5 · z · sin π
4

z2 − 2z · cos π
4

+ 1
− 3a4

z

z− 1

= 2z

(z− 1)2
+ 5(z/

√
2)

z2 −
√

2z+ 1
− 3a4

z

z− 1
.

Example 2: Find Z(cos θ + i sin θ )n.
Solution: We know that (cos θ + i sin θ ) = eiθ

Z(cos θ + i sin θ )n = Z
�
(eiθ )n

�
= z

z− eiθ

since Z(an) = z

z− a .

Example 3: Find Z
�
(n+ 1)2

�
.

Solution:

Z(n+ 1)2 = Z(n2 + 2n+ 1) = Z(n2) + 2Z(n) + Z(1)

= z2 + z
(z− 1)3

+ 2 · z
(z− 1)2

+ z

z− 1

= (z2+z)+ 2z(z− 1)+ z(z−1)2

(z−1)3
= z3+z2

(z−1)3
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Damping rule

Example 4: Find Z(e−an · sin nθ ).

Solution: We know that Z(sin nθ ) = z sin θ

z2−2z cos θ+1

Now Z(e−an · sin nθ ) = Z �(ea)−n sin nθ
�

Applying damping rule Z[a−nun] = U (az)

Replace z by az i.e., eaz then

z[e−an sin nθ ] = z sin θ

z2 − 2z cos θ + 1

����
z=eaz

= eaz · sin θ
e2az2 − 2eaz cos θ + 1

.

Multiplication by n

Example 5: Find Z(n cos nθ ).

Solution: We know that Z(nun) = −z d
dz

(U (z))

Here un = cos nθ

and Z(un) = U (z) = z(z− cos θ )

z2 − 2z cos θ + 1

so Z(n cos nθ ) = −z · d
dz

�
z(z− cos θ )

z2 − 2z cos θ + 1

�

Z(n cos nθ ) = −z · [−z2 cos θ + 2z− cos θ ]

(z2 − 2z cos θ + 1)2

= z3 cos θ − 2z2 + z cos θ
(z2 − 2z cos θ + 1)2

.

Shift and initial value theorems

Example 6: Find Z(un+2) if Z(un) = z
z−1

+ z

z2+1
.

Solution:

Here Z(un) = U (z) = z
z−1

+ z

z2+1

To find u0, u1 by initial value theorem

u0 = lim
z→∞U (z) = lim

z→∞

�
z

z− 1
+ z

z2 + 1

�
= 1

u1 = lim
z→∞ {z [U (z) − u0]}

= lim
z→∞ z · 2z2 − z+ 1

(z− 1)(z2 + 1)
= 2

From shift to left we know that

Z(un+2) = z2
�
U (z) − u0 − u1z−1

�

Z(un+2) = z2
�
z

z− 1
+ z

z2 + 1
− 1 − 2

z

�

= z3
�

1

z− 1
+ 1

z2 + 1
− (z+ 2)

z2

�

Z(un+2) = z(z2 − z+ 2)

(z− 1)(z2 + 1)
.

Inverse transform by partial fractions

Example 7: Find the inverse Z-transform of
4z2−2z

z3−5z2+8z−4
.

Solution: Consider

4z2 − 2z

z3 − 5z2 + 8z− 4
= 2z(2z− 1)

(z− 1)(z− 2)2

By partial fractions

2z− 1

(z− 1)(z− 2)2
= A

z− 1
+ B

z− 2
+ C

(z− 2)2

(2z− 1) = A(z− 2)2+B(z− 1)(z− 2)+C(z− 1)

when z = 2, 3 = C; when z = 1, A = 1 and when
z = 0

−1 = 4A+ 2B − C ... B = −1

Thus

Z−1

�
4z2 − 2z

(z− 1)(z− 2)2

�

= Z−1

�
2z · 1

z− 1

�
+ Z−1

�
2z

−1

z− 2

�

+Z−1

�
2z · 3

(z− 2)2

�

= 2 · 1 − 2 · 2n + 3z−1

�
2z

(z− 2)2

�

= 2 − 2n+1 + 3n · 2n

since Z(nan) = az

(z− a)2
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Region of convergence

Example 8: Find Z−1
�
(z− 5)−3

�
when |z| > 5.

Determine the region of convergence.

Solution: Consider

(z− 5)−3 = 1

(z− 5)3
= 1

z3

1�
1 − 5

z

�3

Expanding byBinomial serieswhich is validwhen

| 5
z
| < 1 or |z| > 5, we have

1

(z− 5)3
= 1

z3

�
1 + 3

�
5

z

�
+ 3 · 4

1 · 2 ·
�

5

z

�2

+3 · 4 · 5
1 · 2 · 3 ·

�
5

z

�3

+ 3 · 4 · 5 · 6
1 · 2 · 3 · 4

�
5

z

�4

+ · · ·
�

1

(z− 5)3
= 1

2
· 1

z3

�
1 · 2

�
5

z

�0

+2 · 3
�

5

z

�1

+3 · 4
�

5

z

�2

+4 · 5
�

5

z

�3

+ 5 · 6
�

5

z

�4

+ · · ·
�

= 1

2

∞�
m=0

(m+1)(m+2)5m · z−m−3; put m+3=n

U (z) = (z− 5)−3 = 1

2

∞�
n=3

(n− 1)(n− 2)5n−3z−n

=
∞�
n=0

unz
−n

Taking inverse Z-transform

Z−1[U (z)] = Z−1
�
(z− 5)−3

�
= un

= 1

2
(n− 1)(n− 2)5n−3

for n ≥ 3

= 0 for n < 3

Fig. 21.1

The region of convergence is the exterior of the

circle |z| = 5 i.e., with centre at origin and of

radius 5 (Fig. 21.1).

Convolution

Example 9: Using convolution theorem, find the

inverse Z-transform of
�
z
z−a

�3
. Deduce for

�
z
z−1

�3
.

Solution: We know that

Z−1

�
z

z− a

�
= an, Z−1

�
z

z− a

�
= an

So

Z−1

�
z2

(z− a)2

�

= Z−1

�
z

z− a · z

z− a

�
= an ∗ an

by convolution theorem

=
n�
m=0

aman−m = an
�
am · a−m = an

n�
m=0

1

= an · [1 + 1 + 1 + · · · + 1] = an(n+ 1).

Applying convolution theorem again

Z−1

�
z3

(z− a)3

�
= Z−1

�
z2

(z− a)2 · z

z− a

�

= �
an · (n+ 1)

� ∗ an

=
n�
m=0

am · (m+ 1) · an−m

= an
n�
m=0

(m+ 1)

Z−1

��
z

z− a

�3
�

= an · [1 + 2 + 3 + · · · + (n+ 1)]

= an · 1

2
· (n+ 1)(n+ 2)

Put a = 1, then

Z−1

�
z

(z− 1)3

�
= 1

2
(n+ 1)(n+ 2).

Solution of difference equations

Example 10: Using Z-transform, solve the differ-

ence equation un+2 − 4un+1 + 3un = 5n.
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Solution: Take Z-transform on both sides of the
difference equation

Z(un+2) − 4Z(un+1) + 3Z(un) = Z(5n)

Denote Z(un) = U (z), then

Z(un+2) = z2
�
U (z) − u0 − u1z−1

�
Z(un+1) = z[U (z) − u0]

Substituting these values

z2
�
U (z)−u0−u1z−1

�
−4z [U (z)−u0] + 3U (z) = z

z−5

U (z)
�
z2−4z+ 3

�
−u0

�
z2−4z

�
−u1z = z

z−5

Solving

U (z)

z
= 1

(z− 5)(z− 1)(z− 3)
+ u0(z− 4) + u1

(z− 1)(z− 3)

By partial fractions

U (z)

z
=
�

A

(z− 1)
+ B

(z− 3)
+ C

(z− 5)

�

+
�

D

(z− 1)
+ E

z− 3

�

U (z) =
�
1

8

z

z− 1
− 1

4

z

z− 3
+ 1

8

z

z− 5

�

+
�
(u1 − 3u0)z

2(z− 1)
+ 3z(u0 − u1)

2(z− 3)

�

Taking inverse Z-transform on both sides

un = Z−1[U (z)] = 1

8
· 1 − 1

4
3n + 1

8
5n

+
�
u1 − 3u0

2

�
1 + 3(u0 − u1)

2
3n

un = C1 + C23
n + 1

8
5n is the solution

Here C1 = 1

8
+ u1 − 3u0

2
, C2 = 3(u0 − u1)

2
− 1

4
.

Example 11: Solve un+2 + 2un+1 + un = n with

u0 = u1 = 0

Solution: Taking Z-transform on both sides

Z(un+2) + 2Z(un+1) + Z(un) = Z(n)

z2
�
U (z)−u0−u1z−1

�
+ 2z[U (z)−u0] + U (z) = z

(z−1)2

Putting u0 = u1 = 0 and solving

U (z) = z

(z− 1)2(z+ 1)2

By partial fractions

1

(z− 1)2(z+ 1)2
= A

(z− 1)
+ B

(z− 1)2
+

+ C

(z+ 1)
+ D

(z+ 1)2

we get A = − 1
4
, B = C = D = 1

4
so

U (z) = 1

4

�
− z

z− 1
+ z

(z− 1)2
+ z

z+ 1
+ z

(z+ 1)2

�

Taking inverse Z-transform on either side

un = 1

4

�−1n + n+ (−1)n − n(−1)n
�

un =
�
n− 1

4

� �
1 − (−1)n

�
.

EXERCISE

Find the Z-transform:

1. 1
(n+2)!

Ans. z2(e
1
z − 1 − z−1)

2. cosh nθ Ans.
z(z−cosh θ )

z2−2z cosh θ+1

3. an · sinh nθ
Hint: Use damping rule for z(sinh nθ ) =

z sinh θ

z2−2z cosh θ+1

Ans. az·sinh θ
z2−2az·cosh θ+a2

4. ane−a/n! Ans. ea(z
−1−1)

5. sin(n+ 1)θ Ans. z2 sin θ

z2−2z cos θ+1

6. 1
n+1

Ans. z ln
�
z
z+1

�
7. Find u2, u3 if U (z)= (2z2+5z+14)

�
(z−1)4.

Ans. u0 = 0, u1 = 0, u2 = 2, u3 = 13

8. Find u2, u3 when U (z) = (5z2 + 3z+ 12)
�

(z− 1)4.

Ans. u0 = 0, u1 = 0, u2 = 5, u3 = 23

9. Determine u2 where U (z) = (2z2 + 3z+ 4)
�

(z− 3)3
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Ans. u0 = 0, u1 = 2, u2 = 21

10. Use convolution theorem to find the inverseZ-

transform of z2
�
[(z− a)(z− b)].

Ans. (an+1 − bn+1)
�
(a − b)

11. By convolution, evaluate Z−1[z2
�
(z− a)2]

Ans. (n+ 1)an

Find the inverse Z-transform of

12. 2z2+3z
(z+2)(z−4)

Ans. 1
6
(−2)n + 11

6
4n

13. z3−20z

(z−2)3(z−4)

Ans. 1
2
(2n + 2 · n22n) − 4n

14. z

z2+11z+24

Ans. 1
5
[(−3)n − (−8)n]

15. z

z3−z2+z−1

Ans. 1
2

�
1 − cos

�
nπ
2

�− sin
�
nπ
2

��
16. z

(z+3)2(z−2)

Ans. − 1
25

(−3)n − 1
5
n(−3)n + 1

25
2n

17. 2(z2−5z+6.5)

(z−2)(z−3)2

for 2 < |z| < 3

Ans. un = 2n−1, for n ≥ 1

un = −(n+ 2)3n−2, for n ≤ 0

18. 1
(z−2)(z−3)

for

i. |z| < 2

ii. 2 < |z| < 3

iii. |z| > 3

Ans. i. −
�

1
3

+ z

32
+ z2

33
+ z3

34
+ · · ·

+
�

1
2

+ z

22
+ z2

23
+ z3

24
+ · · ·

�
ii. (−2n−1) for n > 0

iii. 3n−1 − 2n−1, n ≥ 1, 0 for n < 0

Using Z-transform solve the difference equation:

19. un+2 + 4un+1 + 3un = 3n with u0 = 0, u1 = 1

Ans. un = 3
8
(−1)n + 1

24
3n − 5

12
(−3)n

20. un+2 + 6un+1 + 9un = 2n with u0 = u1 = 0

Ans. un = 1
25

�
2n − (−3)n + 5

3
n(−3)n

�
21. un+2 − 5un+1 + 6un = yn with u0 = 0, u1 =

1 where y(n) = 1 for n = 0, 1, 2, 3, . . .

Ans. un = 1
2

− 2(2)n + 3
2
(3)n

22. un + 1
4
un−1 = yn + 1

3
yn−1 where yn is a unit

step sequence.

Ans. 1
12

�− 1
4

�n−1

23. un+2 − 2un+1 + un = 3n+ 5

Ans. 1
2
n(n− 1)(n+ 3) + C0 + C1n where

C0 = u0, C1 = u1 − u0

24. 4un − un+2 = 0 with u0 = 0, u1 = 2

Ans. un = (−2)n−1 + 2n−1

25. un+2 − 2un+1 + un = 2n with u0 = 2, u1 = 1

Ans. un = 2n + 1 − 2n.

21.3 STANDARD Z-TRANSFORMS

Sequence un U (z):

(for n ≥ 0) Z-transform

1. n z/(z− 1)2

2. n2 (z2 + z)/(z− 1)3

3. np −z d
dz

�
Z(np−1)

�
(p is positive integer)

4. an z/(z− a)
5. nun −z d

dz
[U (z)]

6. anun U (z/a)

7. un+1 z[U (z) − u0]
8. un+2 z2

�
U (z) − u0 − u1z−1

�
9. un+3 z2

�
U (z) − u0 − u1z−1 − u2z−2

�
10. un−k z−kU (z)

11. u0 lim
z→∞U (z)

12. lim
n→∞ un lim

z→1
[(z− 1)U (z)]

13. sin nθ z sin θ

z2−2z cos θ+1

14. cos nθ
z(z−cos θ )

z2−2z cos θ+1
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Chapter22

Complex Function Theory

INTRODUCTION

Complex-valued functions or simply complex func-

tions are functions which produce complex numbers

from complex numbers. Complex analysis or com-

plex function theory is the study of complex analytic

functions. It is an elegant and powerful method

useful in the study of heat flow, fluid dynamics and

electrostatics. Two-dimensional potential problem

can be solved using analytic functions since the

real and imaginary part of an analytic function are

solutions of two-dimensional Laplace’s equation.

22.1 COMPLEX FUNCTION

Basic Definitions

Circle

|z− z0| = ρ represents a circle with centre at the

point z0 and of radius ρ.

Neighbourhood

Neighbourhood of a point z0 is the set of all points z

for which |z− z0| < δ where δ is a positive constant

(Fig. 22.1).

Fig. 22.1

Deleted neighbourhood of z0 is 0 < |z− z0| < δ.
Annulus of z0 is : ρ1 < |z− z0| < ρ2.

Interior point z0 of a set S

If there exists some neighbourhood of z0 which con-

tains only points of S.

Boundary point z0 of S

If every neighbourhood of z0 contains both points in

S and points not in S.

Connected set

If any twopoints of the set S are joined by a polygonal

line, all the points of which lie in S.

Domain

A set S is said to be a domain if every point of S is

an interior point and connected.

Boundary of a domain is the collection of all

boundary points of S.

Region

is a domain together with some of its boundary

points.

Closed region

is a region together with the boundary (all boundary

points included).

22.1
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Bounded region

is bounded if it can be enclosed in a circle of finite

radius.

Examples:

1. |z| ≤ 1 is closed bounded region.

2. Im (z2) > 0 i.e., xy > 0 is open unbounded,

unconnected region.

Complex variable is denoted by z = x + iy where x

and y are real variables.

Complex Function of a Complex Variable z

If for every z in a setS, a unique valuew is associated,
then w is said to be a function of z and is denoted
by

w = f (z)

S is known as the domain of definition of f . Range

of f is the totality (set of) all values of f (z) corre-

sponding to z in S.
Since w is complex, it is written as

w = f (z) = u(x, y) + iv(x, y)

Here u(x, y) and v(x, y), real valued functions of

x and y, are known as the real and imaginary parts of

the functions w(orf (z)).

Example:

f (z) = 2z2 − 3iz = 2(x + iy)2 − 3i(x + iy)
= 2(x2 − y2) + 4ixy − 3ix + 3y

So u(x, y) = 2x2 − 2y2 + 3y, v = 4xy − 3x

Multi-valued function f is one in which for every z

more than one value ofw is associated.We consider

only single-valued functions.
Polynomial in z of degree n (zero or positive inte-

ger) is the function

f (z) = Pn(z) = a0 + a1z+ . . .+ anzn

where a0, a1, . . . , an are complex constants. Ratio-

nal fractional function is the quotient of polynomials

P (z)/Q(z) defined for all z except those for which

Q(z) = 0.

Limit: L is said to be the limit of f (z) as z ap-
proaches z0 and is denoted by

lim

z → z0
= f (z) = L

if for every  > 0, there exists δ > 0 such that

|f (z) − L| <  whenever |z− z0| < δ.
Here z may approach z0 from any direction.

22.2 CONTINUITY

A function f (z) is said to be continuous at a point z0
if f (z0) exists, lim

z→z0
f (z) exists and

lim
z→z0

f (z) = f (z0)

i.e., limiting value of f (z) as z approaches z0 coin-

cides with the value f (z0).

A function is said to be continuous in a domain if

it is continuous at every point of the domain.

A function which is not continuous at z0(f (z0)

does not exist, or lim
z→z0

f (z) does not exist or lim
z→z0

f (z)

 = f (z0)) is known as discontinuous at z0.

Result 1: If f (z) and g(z) are continuous func-

tions in D, then their sum f + g, difference f − g,
product fg, quotient f/g are all continuous in D.

Continuous function of a continuous function is

continuous.

Result 2: f = u+ iv is continuous if both u and

v are continuous.

22.3 DIFFERENTIABILITY

A function f (z) is said to be differentiable at a point

z0 if the limit

f  (z0) = lim
 z→0

f (z0 + z) − f (z0)

 z

= lim
z→z0

f (z) − f (z0)

z− z0
(with z = z0 + z)

exists. The limit f  (z0) is known as the derivative

of f (z) at z0. The above limit should be the same

along any path from z to z0. Thus differentiability of

a complex function is a severe requirement.
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Differentiation rules

of real calculus are valid in complex differentiation

also.

1.
dc

dz
= 0, where c = complex constant

2.
d

dz
[f ± g] = df

dz
± dg

dz

3.
d

dz
[cf (z)] = cdf

dz

4.
d

dz
[f · g] = f dg

dz
+ df

dz
· g

5.
d

dz
[
f

g
] =

g
df

dz
− f dg

dz

g2

6. a.
d

dz
[f (z)]n = n[f (z)]n−1 df

dz

b.
d

dz
zn = nzn−1

7. Chain rule
dw

dz
= dw

dζ
· dζ
dz

if w = f (ζ ),

and ζ = g(z).

22.4 ANALYTICITY

A function f (z) is said to be analytic at a point z0 if

f is differentiable not only at z0 but at every point of

some neighbourhood of z0.

A function f (z) is analytic in a domain if it is

analytic at every point of the domain.

An analytic function is also known as “holomor-

phic”, “regular”, “monogenic”.

Entire Function

A function which is analytic everywhere (for all z in

the complex plane) is known as entire function (refer

Fig. 22.2).

Example: Polynomials, rational functions are

entire.

Example: |z|2 is differentiable only at z = 0. So it

is nowhere analytic.

Thus analyticity is a very stringent condition.

Fig. 22.2

22.5 CAUCHY-RIEMANN (C-R)

EQUATIONS:

IN CARTESIAN COORDINATES

Cauchy-Riemann equations (or conditions) are used

to determine whether a complex function is analytic

or not.

Theorem: If f (z) = u(x, y) + iv(x, y) is differ-
entiable at z then at this point the first order partial

derivatives of u and v exist and satisfy the Cauchy-

Riemann equations

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= − ∂v

∂x
(1)

Proof: By hypothesis, f is differentiable, so f  ex-

ists i.e.,

f  (z) = lim
 →0

f (z+ z) − f (z)

 z
(2)

Since the limit in (2) exists, the limit value along

any two paths must be equal, which results in the

Cauchy-Riemann Equations (1) (see Fig. 22.3).
Consider path I:  y → 0 and  x → 0

f  (z) = lim
 y→0
 x→0

u(x+ x,y+ y)+iv(x+ x,y+ y)−u(x,y)−iv(x,y)
 x+i y

= lim x→0
u(x+ x,y)−u(x,y)

 x
+

+i lim
 x→0

v(x+ x,y)−v(x,y)
 x

= ux + ivx (3)
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Fig. 22.3

Consider path II:  x → 0 and  y → 0

f  (z) = lim
 x→0
 y→0

u(x+ x,y+ y)+iv(x+ x,y+ y)−u(x,y)−iv(x,y)
 x+i y

= lim
 y→0

u(x,y+ y)−u(x,y)
i y

+

+ lim
 y→0

v(x,y+ y)−v(x,y)
 y

f  = 1
i
uy + vy = −iuy + vy ... 1

i
= −i (4)

Equating the limit values (3) and (4) of f  along
path I and II, we get

ux + ivx = f  = −iuy + vy
Thus ux = vy and uy = −vx .

Corollary 1: If f is analytic in a domain D, then

u, v satisfy C-R conditions at all points in D.

Corollary 2: Derivativef  can be calculated using

(3) or (4).

Corollary 3: C-R conditions are necessary but not

sufficient.

Corollary 4: C-R conditions are sufficient if the

partial derivatives are continuous i.e., if u(x, y),

v(x, y) have continuous first partial derivatives and

satisfy C-R conditions then f = u+ iv is analytic.

f analytic ⇒

analyticity ⇐

C-R conditions

+
Continuous P.D.

Properties of analytic functions

1. Iff (z) and g(z) are analytic, thenf ± g, fg, f/g
are analytic if g(z)  = 0.

2. Analytic function of an analytic function is ana-

lytic.

3. An entire function of an entire function is entire.

4. If f is analytic, then it is continuous (analyticity

⇒ differentiability ⇒ continuity.

5. Derivative of an analytic function is itself ana-

lytic. (f  = ux + ivx = U + iV .
f analytic, soux = vy, uy = −vx , differentiating

w.r.t x and y, uxx = vyx, uyy = −vxy
orUx = Vy andUy = −Vx i.e.,U,V satisfy C-R

conditions. Hence f  is analytic).

6. If f = u+ iv is analytic, then the family of

curves u(x, y) = c1 and v(x, y) = c2 are mutu-

ally orthogonal i.e., u = c1 are orthogonal trajec-

tories of v = c2 and vice versa.
(By implicit differentiation of u = c1, we get

∂u

∂x
+ ∂u

∂y
· dy
dx

= 0 or
dy

dx
= −ux
uy

Similarly vx + vy dydx = 0 or
dy

dx
= −vx

vy
.

Product of slopes = −ux
uy

·
�

−vx
vy

�
= −1 by

C-R conditions.)

22.6 HARMONIC AND CONJUGATE

HARMONIC FUNCTIONS

Harmonic Function

A function A(x, y) is said to be a harmonic function

if it satisfies the Laplace’s equation i.e., ∇2A = 0.

Theorem: The real and imaginary parts of an an-

alytic function are harmonic.

Proof: Let f (z) = u(x, y) + iv(x, y) be analytic.
So C-R conditions ux = vy, uy = −vx are satisfied.
Differentiating partially w.r.t., x and y, we get

uxx = vyx
uyy = −vxy

Adding ∇2u = uxx + uyy = vyx − vxy = 0

Thus u is a solution of Laplace’s equation. Hence

u is a harmonic function.
Similarly, differentiating w.r.t., y and x

uxy = vyy
−uyx = vxx
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Adding ∇2v = vxx + vyy = uxy − uyx = 0.

so v is harmonic.

Complex form of Laplace’s equation ∂2u

∂z∂z
= 0

Laplacian operator ∂2

∂x2 + ∂2

∂y2 = 4 ∂2

∂z∂z
.

Conjugate Harmonic Function

The real part u of an analytic function f = u+ iv is

known as the conjugate harmonic function of v and

vice versa (i.e., v is the conjugate harmonic of u).

Conjugate of a given harmonic function is uniquely

determined upto an arbitrarily real additive constant.

Note: Adjective conjugate here is not to be con-

fused with conjugate z = x − iy.

22.7 CAUCHY-RIEMANN EQUATIONS:

IN POLAR COORDINATES

Let x = r cos θ, y = r sin θ . Then

z= x + iy = r cos θ + ir sin θ = reiθ .
So u+ iv = f (z) = f (r eiθ )

Differentiating partially w.r.t., r and θ ,

∂u

∂r
+ i ∂u
∂r

= f  (r eiθ ) · eiθ

∂u

∂θ
+ i ∂v
∂θ

= f  (r eiθ ) · ireiθ

= ir
�
∂u

∂r
+ i ∂v
∂r

�

Equating the real and imaginary parts

∂u

∂r
= 1

r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ

The derivative f  can be calculated using

f  = e−iθ (ur + ivr )
or f  = −i

reiθ
(uθ + ivθ )

Milne Thompson Method

I. If u is given, take f  = ux − iuy
If v is given, take f  = vy + ivx

II. Replace x by z and y by 0 in f  .
III. Integrate f  w.r.t., z.

WORKED OUT EXAMPLES

Limit: Stringent Condition

Example 1: Show that lim
z→0

x2y

x4+y2 does not exist

even though this function approaches the same limit

along every straight line through the origin.

Solution:
Path I.

lim
x→0
y→0

x2y

x4 + y2
= lim
y→0

0 = 0

Path II.

lim
y→0
x→0

x2y

x4 + y2
= lim
x→0

0 = 0

Path III. along any straight line through origin.
Let y = mx.

lim
y=mx
x→0

x2y

x4 + y2
= lim
x→0

mx3

x4 +m2x2
= lim
x→0

mx

x2 +m2
= 0

choose path IV as y = mx2, then

lim
y=mx2
x→0

x2y

x4 + y2
= lim
x→0

m · x4

x4 +m2x4

= lim
x→0

m

1 +m2
= m

1 +m2
 = 0

and different for different values ofm. Therefore the

limit does not exist.

Continuity

Example 2: Determine where the given function

is continuous (a) 1

1+z2 (b) 1
z−1

inside a unit circle.

How about in the complex plane.

Solution: 1

1+z2 is continuous everywhere except

where 1 + z2 = 0 i.e., at z = ±i. When unit circle is

considered, |z| < 1, z = ±i are excluded. Thus 1

1+z2
is continuous inside |z| = 1.

Similarly, 1
z−1

is also continuous inside |z| = 1. If

the entire complex plane is considered, both 1

1+z2
and 1

z−1
are discontinuous, at z = ± i and z = 1

respectively.
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Example 3: Is f (z) = z/|z| continuous at origin

(defined for z  = 0 and f (0) = 0).

Solution: lim
z→0
f (z) = lim

z→0

x+iy√
x2+y2

Path I.

lim
x→0
y→0

x+iy√
x2+y2

= i

Path II.

lim
y→0
x→0

x+iy√
x2+y2

= 1

since limit does not exist, f is discontinuous at

z0 = 0.

Example 4: Determine where the function

f (z) =
�
z2+3iz−2
z+i , for z  = −i

5, for z = −i.

is continuous? Can the function be refined to make

it continuous at z = −i?
Solution: f (z) = g(z)

h(z)
is continuous when g(z) and

h(z) are continuous except at h(z) = 0. So f (z)
is continuous everywhere except at z = −i, since
g(z), h(z) are continuous.

lim
z→−i

f (z) = lim
x→0
y→−1

(x + iy)2 + 3i(x + iy)−2

x + iy + i

= lim
y→−1

−y2 − 3y − 2

i(y + 1)

= lim
y→−1

−2y − 3

i
= −1

i
= i

Also lim
z→−i

f (z) = lim
y→−1
x→0

= lim
x→0

2(x − i) + 3i

1
= i

Thus lim
z→−i

f (z) = i  = 5 = f (−i)

Hence f is not continuous at z = −i.
Suppose we redefine f (z) as follows:

i.e., f (−i) = i (instead of 5).

Then f (z) is continuous at z = i and is therefore

continuous everywhere. z = i is known as remov-

able discontinuity.

Differentiability/Derivative

Example 5: Show that f (z) = Re z = x is contin-

uous but not differentiable.

Solution: Continuity: For any point z,

lim
z→z0

f (z) = lim
z→z0

x = lim
x→x0
y→y0

x = x0 = f (z0)

Not differentiable: For any point z,

f  (z) = lim
 z→0

f (z+ z) − f (z)

 z

= lim
 z→0

x + x − x
 x + i y

= lim
 x→0
 y→0

 x

 x + i y = 0

while = lim
 y→0
 x→0

 x

 x + i y = 1.

So limit does not exist i.e., f is not differentiable.

Example 6: Find the derivative from (a) definition

(b) differentiation rules of f (z) = 3z2 + 4iz− 5 + i
at z = 2.

Solution:

a. From definition:

f  (z)= lim
 z→0

3(z+ z)2+4i(z+ z)−5+i−3z2−4iz+5−i
 z

= lim
 z→0

3 z2 + 6z z+ 4i z

 z

= lim
 z→0

(3 z+ 6z+ 4i)

= 6z+ 4i = 12 + 4i at z = 2.

b. From rules of differentiation:

df

dz
= d

dz
(3z2 + 4iz− 5 + i)

= 3 · 2z+ 4i · 1 + 0

����
at z=2

= 12 + 4i.

C-R Equation/condition: Cartesian coordinates

Example 7: Prove that d
dz

(z2z) does not exist any-

where.
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Solution:

a. From definition, for any z:

d

dz
(z2z)= lim

 z→0

(z+ z)2(z+ z) − z2z
 z

= lim
 z→0

z z2+2zz z+z2 z+ z2 z+2z z z

 z

= lim
 z→0

�
0 + 2zz+ z2 z

 z
+ 0 + 0

�

= lim
 x→0
 y→0

�
2zz+ z2 z

 z

�
= 2zz+ iz2

= lim
 y→0
 x→0

�
2zz+ z2 z

 z

�
= 2zz+ z2

So limit does not exist. Nowhere differentiable.

b. From Cauchy-Riemann conditions:

z2z= (x + iy)2(x − iy) =
�
x(x2 − y2) + 2xy2

�

+i
�
2x2y + y(y2 − x2)

�

So u= x(x2 − y2) + 2xy2, v = 2x2y + y(y2 − x2)

ux = 3x2 − y2 + 2y2, uy = −2xy + 4xy

vx = 4xy − 2xy, vy = 2x2 + 3y2 − x2

C-R conditions are not satisfied for any x, y

so f  = ux + ivx = vy − iuy does not exist for

any x, y i.e., for any z.

Example 8: Show that every differentiable func-

tion is continuous (converse is not true i.e., a function

may be continuous but not differentiable).

Solution: Let f (z) be differentiable at z0. Then

f  (z0) = lim
z→z0

f (z) − f (z0)

z− z0
exists.

Therefore f (z0) is well defined.
Consider

lim
z→z0

f (z) − f (z0) = lim
z→z0

f (z) − f (z0)

z− z0
· z− z0

= lim
z→z0

f (z) − f (z0)

z− z0
lim
z→z0

(z− z0)

= f  (z0) · lim
z→z0

(z− z0) = 0

Thus lim
z→z0

f (z) = lim
z→z0

f (z0) = f (z0).

Therefore f (z) is continuous at z0.

Counter Example: (a) f (z) = z, (b) f (z) = |z|2,
(c) f (z) = Im z are continuous but not differentiable

at (a) any point (b) at zero (c) any point.

Analyticity

Example 9: Determine where the Cauchy-

Riemann equations are satisfied for the given func-

tions. Determine the region of analyticity.

a. f (z) = ez = ex(cos y + i sin y)

Solution:

u(x, y) = ex cos y, v(x, y) = ex sin y

ux = ex cos y, uy = −ex sin y,

vx = ex sin y, vy = ex cos y.

So ux = vy and uy = −vx
i.e., C-R conditions are satisfied for all x and y.

Therefore given function ez is analytic everywhere.

Thus ez is an entire function.

b. f (z) = (x − y)2 + 2i(x + y)

Solution:

u= (x − y)2, v = 2(x + y)
ux = 2(x − y), uy = −2(x − y), vx = 2, vy = 2

So ux = 2(x − y) = vy = 2 if (x − y) = 1.

Also uy = −2(x − y) = −vx = −2 if (x − y) = 1.

Thus C-R equations are satisfied only along the
straight line x − y = 1. So

f  (z) = ux + ivx = 2(x − y) + i2 = 2.1 + i2 = 2 + 2i

exists only along the line x − y = 1, not through any

region (neighbourhood) R. Hence f (z) is nowhere

analytic.

c. f (z) = eiz = ey(cos x + i sin x).
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Solution:

u= ey cos x, v = ey sin x,

So ux = −ey sin x, uy = ey cos x,

vx = ey cos x, vy = ey sin x

Thus ux  = vy and uy  = −vx for any x and y. C-R

conditions are not satisfied for any z. Hence f (z) =
eiz is nowhere analytic.

d. f (z) = cos x(cosh y + a sinh y) + i sin x(cosh y

+b sinh y) where a and b are constants.

Solution:
u= cos x(cosh y + a sinh y)

v = sin x(cosh y + b sinh y)

ux = − sin x(cosh y + a sinh y)

vy = sin x(sinh y + b cosh y)

uy = cos x(sinh y + a cosh y)

vx = cos x(cosh y + b sinh y)

So ux = vy and uy = −vx if a = b = −1.

f is analytic when a = b = −1.

e. f (z) = (z+3i)5

(z2−2z+5)2
.

Solution: f (z) = g(z)

h(z)
where g(z) = (z+ 3i)5

(polynomial) is analytic everywhere and h(z) =
(z2 − 2z+ 5)2 (polynomial) is analytic everywhere.

The quotient f (z) = g(z)

h(z)
is analytic everywhere ex-

cept when h(z) = (z2 − 2z+ 5)2 = 0. Thus f (z) is

analytic everywhere except at z2 − 2z+ 5 = 0 i.e.,

at z = 1 ± 2i.

Example 10: If f (z) is analytic, show that�
∂

∂x
|f |
�2

+
�
∂

∂y
|f |
�2

= |f  |2

Solution: |f (z)| = |u(x, y) + iv(x, y)| =
√
u2 + v2

partially differentiating w.r.t., x and y

∂

∂x
|f | = 1

2
(u2 + v2)−

1
2 [2uux + 2vvx ] = uux + vvx

|f |
Similarly,

∂

∂y
|f | = uuy + vvy

|f | .

Squaring and adding, we get

�
∂

∂x
|f |
�2

+
�
∂

∂y
|f |
�2

= (uux + vvx )2 + (uuy + vvy )2
|f |2

=
�
(u2u2

x + v2v2
x + 2uv uxvx )

+(u2u2
y + v2v2

y + 2uv uyvy )

�
/|f |2

Since f is analytic, C-R conditions are satisfied. So
ux = vy, uy = −vx . Then 2uv ux vx = −2uvuyvy

= (u2 + v2)(u2
x + v2

x )

|f |2 = u2
x + v2

x = |f  |2

since f  = ux + ivx and |f  | =
�
u2
x + v2

x .

Example 11: Is the function u(x, y) = 2xy +
3xy2 − 2y3 harmonic (i.e., solution of Laplace’s

equation)?

Solution: ux = 2y+ 3y2, uxx = 0, uy = 2x+ 6xy

−6y2, uyy = 6x − 12y. So uxx + uyy  = 0. There-

fore u is not harmonic.

Harmonic and conjugate harmonic functions

Example 12: Show that v(x, y) = − sin x sinh y is

harmonic. Find the conjugate harmonic of v (or find

an analytic function f = u+ iv).

Solution: Differentiating v partially w.r.t., x and y,
we get

vx = − cos x sinh y, vxx = sin x sinh y

vy = − sin x · cosh y, vyy = − sin x · sinh y.

Then vxx + vyy = sin x sinh y + (− sin x sinh y) = 0.

Therefore v is harmonic.

To find conjugate harmonic u of v:

From C-R conditions ux = vy and uy = −vx .
So ux = vy = − sin x · cosh y (1)

Integrating (1) partially w.r.t. x, we get

u(x, y) = cos x · cosh y + c(y) (2)
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Differentiating (2) partiallyw.r.t., y and using second
C-R condition, (uy = −vx), we have

cos x · sinh y + dc

dy
= ∂u

∂y
= −vx = cos x · sinh y

So dc
dy

= 0 or c = constant.

Hence the conjugate harmonic u of v is

u(x, y) = cos x · cosh y + c
The required analytic function is

f (z) = cos x cosh y + c + i(− sin x · sinh y).

Milne-Thompson method

Example 13: Find the analytic function f (z) =
u+ iv where u = ex(x cos y − y sin y) +
2 sin x · sinh y + x3 − 3xy2 + y.
Solution: Differentiating partially w.r.t., x and y

ux = ex (x cos y − y sin y) + ex (cos y)

+2 cos x sinh y + 3x2 − 3y2

uy = ex (−x sin y − sin y − y cos y)

+2 sin x cosh y − 6xy + 1.

We know that f  (z) = ux + ivx = ux − iuy
Replace x by z and y = 0, then

f  (z) = ez(z · 1 − 0) + ez(1) + 0 + 3z2

−0 − 2i sin z− i
Integrating w.r.t. ‘z’, we get

f (z) =
�

(zez + ez + 3z2 − 2i sin z− i)dz

f (z) = zez − ez + ez + z3 + 2i cos z− iz+ c.

Example 14: Determine the analytic function f (z)

such that Re
�
f  (z)

�
= 3x2 − 4y − 3y2 and

f (1 + i) = 0.

Solution: f  (z) is analytic since f is analytic. Let

f  = U + iV .

Then U = Re
�
f  (z)

�
= 3x2 − 4y − 3y2.Ux = 6x,

Uy = −4 − 6y. Since U,V , satisfy C-R conditions,

Ux = 6x = Vy .
Integrating w.r.t. y, we get

V = 6xy + c1(x)

Differentiating V w.r.t. x and using second C-R con-
dition (Vx = −Uy), we have

6y + dc1

dx
= Vx = −Uy = 4 + 6y

c1(x) = 4x + c2
Thus V (x, y) = 6xy + 4x + c2

where c2 is an arbitrary constant. Then

f  (z) = U + iV
= (3x2 − 4y − 3y2) + i(6xy + 4x + c2)

Applying Milne-Thompson method, replace x by z
and y by 0, we have

f  (z) = 3z2 + 4iz+ c2
Integrating w.r.t. z, we get

f (z) = z3 + 2iz2 + c2z+ c3
where c3 is an arbitrary constant. Sincef (1 + i) = 0,
we get

0 = f (1 + i) = (1 + i)3 + 2i(1 + i)2 + c2(1 + i) + c3
c3 = −c2(1 + i) − 6 + 2i

Thus

f (z) = z3 + 2iz2 + c2z− c2(1 + i) − 6 + 2i.

C-R Equations not sufficient

Example 15: Show that for

f (z) = 2xy(x + iy)
x2 + y2

if z  = 0

= 0 if z = 0

The C-R are satisfied at origin but derivative of f (z)

at origin does not exist. (i.e., C-R conditions are not

sufficient conditions for analyticity).

Solution: C-R conditions at origin:

f (z) = 2xy(x + iy)
x2 + y2

, so u = 2x2y

x2 + y2
, v = 2xy2

x2 + y2

∂u

∂x
= lim
x→0

u(x, 0) − u(0, 0)

x
= lim
x→0

0 − 0

x
= 0

∂u

∂y
= lim
y→0

u(0, y) − u(0, 0)

y
= lim
y→0

0 − 0

y
= 0

∂v

∂x
= lim
x→0

v(x, 0) − v(0, 0)

x
= lim
x→0

0 − 0

x
= 0

∂v

∂y
= lim
y→0

v(0, y) − v(0, 0)

y
= lim
y→0

0 − 0

y
= 0.
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So C-R conditions are satisfied at z = 0.

Derivative at z = 0:

f  (0) = lim
z→0

f (z) − f (0)

z− 0
= lim
z→0

2xy(x+iy)
x2+y2 − 0

x + iy

= lim
z→0

2xy

x2 + y2
= 0 as

x → 0

y → 0,

y → 0

x → 0
and

= lim
y→mx
x→0

2xy

x2+y2
= lim
x→0

2mx2

x2+m2x2
= lim
x→0

2m

1+m2

= 2m

1 +m2
 = 0

Thus derivative of f (z) does not exist at z = 0.

Orthogonal trajectories

Example 16: Find the orthogonal trajectories of

the family of curves x3y − xy3 = c = constant.

Solution: Take u(x, y) = x3y − xy3. Then the v =
constant family of curveswill be the required orthog-
onal trajectories if f (z) = u+ iv is analytic. So

ux = 3x2y − y3, uy = x3 − 3xy2.

Then vy = ux = 3x2y − y3,

Integrating v = 3x2y2

2
− y4

4
+ c(x)

Differentiating

3xy2 − 0 + dc

dx
= vx = −uy = −x3 + 3xy2

c(x) = −x
4

4
+ c

where c is an arbitrary constant. Thus

v(x, y) = 3x2y2

2
− y4

4
− x4

4
+ c

The required orthogonal trajectories

v = constant

or x4 + y4 − 6x2y2 = constant.

C-R Equations: in polar coordinates

Example 17: Find the derivative of f (z) = 1
zn

for

n  = −1.

Solution: Introducing polar coordinates

f (z) = 1

(r cos θ + ir sin θ )n
= 1

rn
(cos nθ − i sin nθ )

so u= r−n cos nθ, v = −r−n sin nθ

f  (z) = e−iθ (ur + ivr )

= e−iθ
�

− nr−n−1 · cos nθ

+i(−1)(−n)r−n−1 · sin nθ

�

= −n
rn+1

· e−iθ (cos nθ − i sin nθ )

= −n
rn+1

· e−iθ · e−inθ = n

rn+1
e−i(n+1)θ

f  (z) = −n
rn+1 · ei(n+1)θ

= −n
zn+1

, n  = −1.

Example 18: If v(r, θ ) = �r − 1
r

�
sin θ, r  = 0,

then find an analytic function f (z) = u+ iv.

Solution: C-R conditions in polar coordinates are

ur = 1
r
vθ and uθ = −rvr .

Differentiating

uθ = −rvr = −r ·
�

1 + 1

r2

�
sin θ = −

�
r + 1

r

�
sin θ

Integrating w.r.t. θ , we get

u(r, θ ) =
�
r + 1

r

�
cos θ + c1(r)

Differentiating w.r.t. r and using ur = 1
r
vθ , we get�

1 − 1

r2

�
cos θ + dc1

dr
= ur = 1

r
vθ = 1

r

�
r − 1

r

�
cos θ

...
dc1

dr
= 0 or c1 = constant

Hence u(r, θ ) =
�
r + 1

r

�
cos θ + c1

Thus f (z) = u+ iv =
�
r + 1

r

�
cos θ

+i
�
r − 1

r

�
sin θ + c

Example 19: If f is analytic show that

f  = (cos θ − i sin θ )∂f
∂r
.



COMPLEX FUNCTION THEORY 22.11

Solution: x = r cos θ , y = r sin θ , r =
�
x2 + y2,

θ = tan−1 y

x
.

rx = 1

2

2x�
x2 + y2

= x

r
= cos θ, ry = sin θ,

θx = 1

1 + � y
x

�2 ·
�−y
x2

�
= −y
x2 + y2

= −y
r2

θx = − sin θ

r
, θy = cos θ

r
.

We know that f  = ux + ivx = ux − iuy
f  = (ur · rx + uθ · θx ) − i(urry + uθ θy ).

since u is function of r, θ which are functions of x, y.

f  =
�

cos θur − sin θ

r
uθ

�
− i
�
ur · sin θ + cos θ

r
· uθ
�

since f is analytic, C-R conditions are satisfied (in
polar coordinates) ur = vθ

r
, uθ = −rvr

f  =
�

cos θ · ur + sin θ

r
· rvr

�
−i(ur sin θ − vr cos θ )

= (cos θ − i sin θ )ur + i(cos θ − i sin θ )vr
= (cos θ − i sin θ )(ur + ivr )

f  = (cos θ − i sin θ )∂f
∂r

since
∂f

∂r
= ∂

∂r
(u+ iv) = ur + ivr .

Example 20: Find the orthogonal trajectories of

the family of curves r2 cos 2θ = c1.

Solution: Take u(r, θ ) = r2 cos 2θ ,
so ur = 2r cos 2θ, uθ = −2r2 sin 2θ .
From C-R conditions vθ = rur
vθ = 2r2 cos 2θ or v(r, θ ) = r2 sin 2θ + c(r).

Differentiating w.r.t. r ,

2r sin 2θ + dc

dr
= vr = −1

r
uθ

= −1

r
(−2r2) sin 2θ

...
dc

dr
= 0 ... c = constant.

Orthogonal trajectories : v = r2 sin 2θ.

EXERCISE

Complex function

1. Classify the following regions:

a. 0 < |z| < 1

b. 0 < |z| ≤ 1

c. 1 < |z| < 2

d. |z| < 1 and |z| > 2

e. |Re z| < 2

f. |z− 4| > 3

g. |z− 1 + 3i| ≤ 1

Ans. a. Open region.

b. Region.

c. Connected open region.

d. Unconnected.

e. Open unbounded region.

f. Open unbounded region.

g. Closed bounded region.

2. Determine the domains of definition of f (z).

a.
y

x
+ 1

1−y i

b. z4 + 3z2 + iz
c. 1

(z2+4)(z2−9)

d. y
�∞
0
e−xtdt + i

∞�
n=0

yn

Ans. a. Entire complex plane except x = 0, y = 1.

b. For all z.

c. For all z except z = ±2i,±3.

d. x > 0 and −1 < y < 1.

3. Find the real and imaginary parts u, v of

f = u+ iv where f (z) is

a. z+ 1
z

b. (1−z)
(1+z)

c. z
1
2

Ans. a. u = x + x

(x2+y2)
, v = y − y

(x2+y2)

b.
(1−x2−y2)

[(1+x)2+y2]
,

−2y

[(1+x)2+y2]

c. u = √
r cos θ

2
, v =

√
2 sin θ

2

where x = r cos θ, y = r sin θ .
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Continuity

Determine whether the function f (z) is continuous

at origin. Give reason.

4. f (z) = (x+y)2
(x2+y2)

, z  = 0

= 0, z = 0

Ans. Not continuous. lim f along y = mx has
(1+m)2

(1+m2)
different values.

5. f (z) = z·Re z
|z| , for z  = 0

= 2, for z = 0

Ans. Discontinuous at origin. But by redefining

f (0) = 0, the function can be made continu-

ous at origin.

6. Is the function f (z) = (x + y2) + ixy contin-

uous?

Ans. Continuous everywhere.

7. Determine whether f (z) is continuous. Rede-
fine if necessary to make it continuous

f (z) =
�
z2 + iz+ 2, z± i
i, z = i

Ans. f (z) is continuous everywhere except at

z = i, since lim
z→i
f = 0  = f (i) = i. By redefin-

ing f (i) = 0, f becomes continuous at z = i
also.

8. Show that f (z) = Pn(z) = a0 + a1z+ a2z
2 +

· · · + anzn is continuous everywhere.

9. Prove that

f (z) =
�
z3, z  = z0
2, z = z0 where z0  = 2

1
3

is discontinuous at z0.

10. Is the function

f (z) = 3z4 − 2z3 + 8z2 − 2z+ 5

z− i
continuous at z = i?

Ans. f (i) is undefined. Discontinuous at z = i.
Redefine f (i) = lim

z→i
f (z) = 4 + 4i. Then f

becomes continuous at z = i. It is known as

removable discontinuity.

11. Determine for what values of z the given func-

tions are continuous

a. f (z) = z

(z2+1)

b. cscz = 1
sin z

Ans. a. Continuous everywhere except where the

denominator z2 + 1 = 0 i.e., at z = ±i.
b. Continuous everywhere except where sin z

= 0 i.e., at z = ±nπ, n = 0, 1, 2, 3, . . .

Differentiability

12. Find derivative of f (z) = 1+z
1−z

a. From definition.

b. From differentiation rules at z = 2.

Ans. a. f  = lim
 z→0

�
1 + (z+ z)
1 − (z+ z) − 1 + z

1 − z

�
1

 z

= 2

(1−z)2
b. By Quotient rule at z = 2, f  = 2

13. Show that the following functions are contin-

uous but not differentiable:

(a) z (b) |z|2 (c) Imz (d) |z| (e) 1
z

Hint:

a. Not differentiable anywhere.

b. Differentiable only at origin.

c. Nowhere differentiable.

d. Nowhere differentiable.

e. Not differentiable at 0.

14. Find the derivative at indicated points:

a. 2z−i
z+zi at z = −i

b. 3z−2, z = 1 + i
Ans. a. −5i b. 3

2
(1 + i).

Analyticity

Determine where C-R conditions are satisfied for the

given function f (z):

15. f (z) = 1
2
ln(x2 + y2) + i tan−1 y

x

Ans. For all z, everywhere (entire)

16. f (z) = x + ay + i(bx + cy)
Ans. a = −b, c = 1

17. f (z) = xy + iy
Ans. Nowhere (analytic).
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18. f (z) = |x2 − y2| + 2i|xy|
Ans. a. For f (z) = z2, 0 < θ < π

4
, π < θ < 5π

4

b. For f (z) = −z2, π
2
< θ < 3π

4
, 3π

2
< θ <

7π
4

19. f (z) = zz
Ans. Only at origin.

20. f (z) = sin x cosh y + i cos x sinh y

Ans. Everywhere.

21. Show that f = x2 + iy3 is nowhere analytic.

Hint: C-R conditions satisfied only at origin.

22. If f (z) = xy2 + ix2y, determine where

a. C-R conditions satisfied

b. f  exist

c. f is analytic

Ans. a. C-R satisfied only at origin

b. f  exist only at origin

c. f is nowhere analytic.

Show that the given function satisfies C-R conditions

at origin but does not have a derivative at origin:

23. f (z) =
�

(z)2

z
, z  = 0

0, z = 0

24. f (z) = √|xy|

25. f (z) =
�

(x3−y3)+i(x3+y3)

x2+y2 , if z  = 0

0, if z = 0.

Harmonic and conjugate harmonic functions

Verify that the given function is harmonic and find

its conjugate harmonic function. Express u+ iv as

an analytic function f (z):

26. u = x2 − y2 − y
Ans. v = 2xy + x + c, f (z) = z2 + iz+ c
27. v = x2 − y2 + x

x2+y2

Ans. u = −2xy + y

x2+y2 + c,w = i �z2 + 1
z

�+ c
28. u = sin 2x

(cosh 2y−cos 2x)

Ans. v = − sinh 2y

(cosh 2y−cos 2x)
, f = cot z+ c

29. u = 3xy2 − x3

Ans. v = y3 − 3x2y + c, f = −z3 + ic
30. v = y2 − x2

Ans. u = 2xy + c, f = −iz2 + c
31. u = e−x(x sin y − y cos y)

Ans. v = e−x(y sin y + x cos y) + c
f (z) = ize−z

32. u = x2−y2

(x2+y2)2

Ans. v = −2xy

(x2+y2)2
, f (z) = 1

z2
+ c

33. u = 1
2
ln(x2 + y2)

Ans. v = arg z+ c, f = ln z+ c
34. u = 3x3y + 2x2 − y3 − 2y2

Ans. Not harmonic.

35. u = e−2xy sin(x2 − y2)

Ans. v = −e−2xy cos(x2 − y2) + c
f (z) = −ieiz2 + ci

36. If Im
�
f  (z)

�
= 6x(2y − 1) and

f (0) = 3 − 2i, f (1) = 6 − 5i find (1 + i).
Hint: f  is analytic. Determine Re{f  }. Use

Milne-Thompson method.

Ans. 6 + 3i

37. If u− v = cos x+sin x−e−y
2(cos x−cosh y)

and f
�
π
2

� = 0

determine the analytic function f (z) = u+ iv
Hint:Differentiating w.r.t., x, y, use C-R, find

ux, vx , use Milne-Thompson method.

38. Determine constant ‘b’ such that u =
ebx cos 5y is harmonic. Find its conjugate har-

monic.

Ans. b = ±5, v = ±e±5x sin 5y + c
39. If f (z) is analytic in a domainD and |f (z)| =

k = constant in D, then show that f (z) =
constant in D.

40. If f (z) is a regular function, show that

�
∂2

∂x2
+ ∂2

∂y2

�
|f (z)|2 = 4|f  (z)|2.
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41. If f  (z) = 0 then show that f (z) is constant.

42. If both f (z) and f (z) are analytic show that

f (z) is constant.

43. If f = u+ iv is analytic show that g = −v +
iu is also analytic. Also show that u and −v
are conjugate harmonic.

Hint:f analytic,ux = vy, uy = −vx , so g sat-

isfies C-R −vx = uy and −vy = −ux . g ana-

lytic, −v, u, C.H.F.

44. If f (z) is an analytic function, show that�
∂2

∂x2
+ ∂2

∂y2

�
|Res f (z)|2 = 2|f  (z)|2

Hint: For 40, 44,∇2 = ∂2

∂z∂z
, write |f (z)|2 =

f (z)f (z) and Res f (z) =

�
f (z)+f (z)

�
2

.

45. If f (z) is analytic, prove that�
∂2

∂x2
+ ∂2

∂y2

�
|f (z)|n = n2|f (z)|n−2 · |f  (z)|2

46. Show that (a) ∇2 ln |f (z)| = 0 (b)

∇2arg f (z) = 0 if f is analytic.

47. Show that U (x, y) = eu cos v, V (x, y) =
eu sin v are conjugate harmonic of each other

if f = u+ iv is analytic.

Orthogonal trajectories, polar coordinates

Find the orthogonal trajectories of the family of

curves:

48. e−x(x sin y − y cos y) = c1
Ans. e−x(y sin y + x cos y) = c2
49. e−x cos y + xy = c1
Ans. 2e−x sin y + x2 − y2 = c2
50. x4 − 6x2y2 + y4 = c1
Ans. x3y − xy3 = c2
51. x3 − 3xy2 = c1
Ans. 3x2y − y3 = c2
52. (r2 + 1) cos θ = c1r
Ans. (r2 − 1) sin θ = c2r

53. If f (z) is analytic, show that

f  = − sin θ + i cos θ

r
· ∂f
∂θ

54. Show that u(r, θ ) = e−θ cos(ln r) is harmonic.

Find its conjugate harmonic function.

Hint: u is harmonic if it satisfies the Laplace’s
equation in polar coordinates.

r2urr + rur + uθθ = 0

Ans. v(r, θ ) = e−θ sin(ln r) + c
55. Find the conjugate harmonic function of

v(r, θ ) = r2 cos 2θ − r cos θ + 2. Show that v

is harmonic.

Ans. u(r, θ ) = −r2 sin 2θ + r sin θ + c.
56. Find the conjugate harmonic function of

u(r, θ ) = −r3 sin 3θ . Show that u is harmonic.

Ans. v = r3 cos 3θ + c.

22.8 ELEMENTARY FUNCTIONS

Algebraic function of z is a functionw = f (z) which
is a solution of the polynomial equation

P0(z) · wn + P1(z)w
n−1 + · · · + Pn−1(z)w + Pn(z) = 0

where P0  = 0, P1(z), P2(z), . . . , Pn(z) are polyno-

mials in z and n is a positive integer.

Polynomials and rational functions are special

cases of algebraic functions. Transcendental func-

tions are those which cannot be expressed as an al-

gebraic function.

Logarithmic, trigonometric, hyperbolic and their

corresponding inverses are transcendental (non-

algebraic) functions. Elementary functions consist

of algebraic functions and transcendental functions

and functions derived from them by a finite num-

ber of algebraic operations of addition, subtraction,

multiplication, division and root taking.

Exponential Function: ez

For z = x + iy, exponential function ez also written
as exp z is defined as

ez = ex+iy = ex (cos y + i sin y)
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ez may also be defined by a power series as

ez =
∞�
n=0

zn

n!
= 1 + z+ z2

2!
+ z3

3!
+ · · ·

which converges for all z.

Properties

1. ez is an entire function

f (z) = u+ iv = ez = ex (cos y + i sin y)

so u = ex cos y, v = ex sin y.

Now ux = ex cos y, uy = −ex sin y,

vx = ex sin y, vy = ex cos y.

Thus C-R conditions are satisfied for all z.

2. d
dz
ez = ux + ivx = ex cos y + iex sin y

= ex(cos y + i sin y) = ex+iy = ez.
3. ez has no zeros i.e., ez  = 0 for any z.

ez = Reiφ so R = ex > 0, y = φ, |eiy | = 1

so |ez| = ex  = 0.

4. e2nπi = cos(2nπ ) + i sin(2nπ ) = 1

Thus e±2nπi = 1, e±πi = −1

e
πi
2 = i, e− iπ

2 = −i

5. Periodic function

ez±2nπi = ez · e±2nπi = ez

ez is a periodic function of imaginary period 2πi.

6. From definition

a. ez1 · ez2 = ez1+z2

b. e
z1

ez2
= ez1−z2

c. (ez)n = enz

7. ez = ez

ez = ex−iy = ex (cos y − i sin y)
= ex (cos y + i sin y) = ez.

8. Polar form of z in terms of exponential,

z = x + iy = r cos θ + ir sin θ = reiθ .

WORKED OUT EXAMPLES

Exponential function

Example 1: Separate into real and imaginary:

(a) e2±3πi (b) e5+ iπ
2 (c) e(5+3i)2 .

Solution:

a. e2±3πi = e2 · e±3πi = e2 · (−1) = −e2

b. e5+ iπ
2 = e5 · e iπ2 = e5 · i = ie5

c. e(5+3i)2 = e(25−9+30i) = e16 · e30i = e16 cis 30

Example 2: Show that d
dz

(eiz) = ieiz.

Solution:

eiz = ei(x+iy) = e−y+ix = e−y (cos x + i sin x)
d

dz
(eiz) = ∂

∂x
[e−y cos x] + i ∂

∂x
[e−y sin x]

since f  = ux + ivx
= −e−y · sin x + ie−y cos x

= i(e−y cos x + ie−y sin x) = ieiz

Example 3: Find all values of z such that ez = −2.

Solution: Express −2 in polar form: x = −2,
y = 0

r =
�

22 + 02 = 2, cos θ = −1, sin θ = 0, ... θ = ±π
ez = −2 = 2 · e±πi±2nπi = eln 2±(2n+1)πi

... z= ln 2 ± (2n+ 1)πi, n = 0, 1, 2, . . .

Example 4: Show that ez is nowhere analytic.

Solution: f (z) = u+ iv = ez = ex−iy

= ex(cos y − i sin y)
so u = ex cos y, v = −ex sin y.

Differentiating, ux = ex cos y, uy = −ex sin y,

vx = −ex sin y, vy = −ex cos y.

ez is nowhere analytic since C-R conditions are not

satisfied for any z.

Example 5: Show in two ways that ez
2

is entire.

Find its derivative in two ways.
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Solution:

a. z2 is entire, ew is entire, entire functionof an entire

function is entire. Therefore ez
2
is entire.

By chain rule differentiation

d

dz
ez

2 = ez2 · d
dz

(z2) = 2zez
2

b. f (z) = u+ iv = ez2 = ex2−y2+i2xy so

u= ex2−y2
cos 2xy, v = ex2−y2 · sin 2xy

ux = 2xex
2−y2 · cos 2xy − 2yex

2−y2 · sin 2xy

ux = 2xu− 2yv

Similarly, uy = −2yu− 2xv

vx = 2xv + 2yu, vy = −2yv + 2xu

Thus C-R conditions are satisfied for all x, y.

Hence ez
2
is an entire function.

f  = ux + ivx = (2xu− 2yv) + i(2xv + 2yu)

By Milne-Thompson method, replace x by z, y
by 0

f  (z) = (2zez
2 − 0) + i(0 + 0) = 2zez

2
.

EXERCISE

Exponential function

1. Find ez (in the form u+ iv) and |ez| if z equals

(a) 3 − 5πi (b) 4π (2 + i) (c) 6 − πi
2

(d) 1.4 − 0.6i.

Ans. (a) −e3, e3 (b) e8π , e8π (c) −ie6, e6
(d) 3.347 − 2.290i, 4.055

2. Represent each of the following in the expo-

nential form reiθ (a) 3 + 4i (b) −4i (c) −2.

Ans. (a) 5 · exp
�
i arc tan 4

3

�
(b) 4 · e− iπ

2

(c) 2e±2nπi, n = 0, 1, 2, . . .

Find all solutions:

3. exp(2z− 1) = 1

Ans. z = 1
2

± nπi, n = 0, 1, 2, . . .

4. ez = 3 + 4i

Hint: ln 5 = 1.609, sin y = 0.8, y = 0.927

Ans. z = 1.609 + 0.927i ± 2nπi, n = 0, 1, 2, . . .

5. e3z = 1

Ans. z = 2kπi
3
, k = 0,±1,±2

6. e4z = i
Ans. z = � 1

8
π + kπ

2

�
i, k = 0,±1,±2

7. e2z−1 = 1 + i
Ans. z = 1

2
+ 1

4
ln 2 + i �nπ + π

8

�
,

n = 0, ±1,±2,±3, . . .

8. Show that ez and ez are conjugate.

9. Prove that e
z1

ez2
= ez1−z2 .

Trigonometric Functions

Cos z and sin z are defined in terms of ez as

cos z= 1

2
(eiz + e−iz)

sin z= 1

2i
(eiz − e−iz)

From these definitions, it follows that

eiz = cos z+ i sin z

which shows that Euler’s formula is valid for com-

plex z.
The other trigonometric functions are defined

tan z= sin z

cos z
, cot z= cos z

sin z
, sec z= 1

cos z
, cosecz= 1

sin z
.

Properties

1. sin z, cos z are entire functions since ez is entire.

2. tan z, sec z and cot z, cosecz are analytic every-

where except where cos z is zero and sin z is zero

respectively.

3. Since d
dz
ez = ez and d

dz
eiz = ieiz, it follows that

d
dz

(sin z) = − cos z, d
dz

(cos z) = sin z, d
dz

(tan z)

= sec2 z etc.

4. Even and odd functions. sin z, tan z, cosecz are
odd functions, cos z, sec z are even functions.

sin(−z) = 1

2i
[ei(−z) − e−i(−z)] = − 1

2i
[−e−iz + eiz]

= − sin z



COMPLEX FUNCTION THEORY 22.17

5. Periodic functions cos z, sin z are periodic func-
tions with real period 2π while tan z, cot z have
period π

cos(z+ 2π ) = 1

2
[ei(z+2π ) + e−i(z+2π )]

= 1

2
[eiz + e−iz] = cos z,

since e±2πi = 1.

6. Real and imaginary parts

For cos z= 1

2
(eiz + e−iz)

= 1

2
[ei(x+iy) + e−i(x+iy)]

= 1

2
[eixe−y + e−ix · ey ]

= 1

2
e−y (cos x + i sin x)

+1

2
ey (cos x − i sin x)

= 1

2
(e−y + ey ) cos x − 1

2
i(ey − e−y ) · sin x

cos z= cosh y · cos x − i sinh y · sin x

Thus absolute value of cos z is

| cos z| =
�

cosh2 y cos2 x + sinh2 y sin2 x

| cos z|2 = (1 + sinh2 y) cos2 x + sinh2 y sin2 x

= cos2 x + sinh2 y.

Similarly,

sin z= sin x · cosh y + i cos x · sinh y

| sin z|2 = sin2 x + sinh2 y.

Similarly,

tan z = sin 2x + i sinh 2y

cos 2x + cosh 2y

(See WE 4,5 on pages 22.18, 22.19)

7. Zeros of sin z and cos z are given by z = ±2nπ ,

and z = ± 1
2
(2n+ 1)π, n = 0, 1, 2, . . . respec-

tively.

8. All the general formulas for the real trigonomet-
ric functions are valid for complex trigonometric

functions also.

cos2 z+ sin2 z

=
�

1

2
(eiz + e−iz)

�2

+
�

1

2

(eiz − e−iz)
i

�2

=
�
e2iz + 2 + e−2iz

4

�
−
�
e2iz − 2 + e−2iz

4

�

= 1.

Similarly,

sin(z1 ± z2) = sin z1 · cos z2 ± cos z1 · sin z2

cos(z1 ± z2) = cos z1 · cos z2 ∓ sin z1 · sin z2

9. Relations between trigonometric and hyperbolic:

cos(iz) = 1

2
[ei(iz) + ei(−iz)] = 1

2
[e−z + e−z]

a. cos(iz) = cosh z

Also sin(iz) = 1

2i
[ei(iz) − e−i(+iz)]

= 1

2i
(e−z − e−z)

b. sin(iz) = i sinh z
c. tan(iz) = i tanh z.

Hyperbolic Functions

Complex hyperbolic sine and cosine are defined as

sinh z= 1

2
(ez − e−z)

cosh z= 1

2
(ez + e−z).

Properties

1. Both sinh z and cosh z are entire functions since
ez is entire. Other functions are similarly defined

tanh z = sinh z

cosh z
, coth z = cosh z

sinh z
, sech z = 1

cosh z

and cosech z = 1
sinh z

2. Derivatives: d
dz

(sinh z) = d
dz

�
1
2
(ez − e−z)

�
= 1

2
[ez + e−z] = cosh z, etc.

3. Periodic: sinh z, cosh z are periodic functions of
imaginary period 2πi since

sinh(z+ 2πi) = 1

2

�
ez+2πi − e−(z+2πi)

�
= 1

2
(ez − e−z) = sinh z.
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4. Real and imaginary parts

sinh z= 1

2
(ez − e−z) = 1

2

�
ex+iy − e−(x+iy)

�

= 1

2
ex (cos y + i sin y) − 1

2
e−x (cos y − i sin y)

= cos y · 1

2
(ex − e−x ) + i sin y 1

2
(ex + e−x )

sinh z= cos y · sinh x + i sin y cosh x

Similarly,

cosh z = cosh x · cos y + i sinh x · sin y

5. Even and odd: cosh z is even, sinh z is odd func-

tion

6. Relation between hyperbolic and trigonometric

functions:

a. cosh iz = 1
2
(eiz + e−iz) = cos z

sinh iz = 1
2
(eiz − e−iz) = i

2i
(eiz − e−iz)

b. sinh iz = i sin z
c. tanh iz = i tan z

7. Zeros of sinh z are ±nπi and zeros of cosh z

are z = ±(n+ 1
2
)πi, n = 0, 1, 2 . . .

(see Worked Out Example 10 on Page 22.19)

8. General formulas true for real are valid for com-

plex functions also

a. cosh2 z− sinh2 z =
�
ez+e−z

2

�2

−
�
ez−e−z

2

�2

= 1

b. 1 − tanh2 z = sech2z

c. cosh(z1 + z2) =
cosh z1 · cosh z2 + sinh z1 · sinh z2

d. sinh(z1 + z2) =
sinh z1 · cosh z2 + sinh z2 · cosh z1.

WORKED OUT EXAMPLES

Trigonometric and hyperbolic functions

Example 1: Find all solutions of sin z = 3

Solution: sin z = eiz−e−iz
2i

= 3

(eiz)2 − 6ieiz − 1 = 0

eiz = 6i ± √−36 + 4

2
= (3 ±

√
8)i = (3 ±

√
8)ei

π
2

±2nπi

eiz = eln(3±
√

8)+i( π
2

±2nπ ), n = 0, 1, 2, 3 . . .

z= (−π
2

± 2nπ ) + i ln(3 ±
√

8), n = 0, 1, 2, 3 . . .

(3 +
√

8 = 5.828, 3 −
√

8 = 0.1715).

Example 2: Find all solutions of cosh z = −2.

Solution: cosh z = cosh x · cos y + i sinh x · sin y

= −2.

Since R.H.S. is real, sinh x · sin y = 0, which is pos-

sible when x = 0 or y = ±nπ , n = 0, 1, 2, 3, . . ..

Now cosh x · cos y = −2.

Since cosh x ≥ 1 for any x, we must take

y = ±nπ . So cosh x · cos(±nπ ) = −2, n odd.

Or cosh x = 2 or x = cosh−1 2.
So all solutions to the given equation are

z = x + iy = cosh−1 2 + (2m+ 1)πi,m = 0, 1, 2, 3, . . . .

Example 3: Find all roots of the equation:

tanh z+ 2 = 0.

Solution: tanh z+ 2 = sinh z
cosh z

+ 2 = 0

ez − e−z

ez + e−z + 2 = 0 or ez − e−z + 2(ez + e−z) = 0

3ez + e−z = 0 or 3(ez)2 = −1

so ez = �− 1
3

� 1
2 = 1√

3
i = 1√

3
ei(

π
2

±2nπ)

ez = e− 1
2

ln 3+i� π
2

±2nπ
�
, n = 0, 1, 2, . . .

... z= −1

2
ln 3 + iπ

�
2n+ 1

2

�
, n = 0,±1,±2, . . . .

Example 4: Find the real and imaginary parts of

cot z.

Solution: cot z = cos z
sin z

= cos(x+iy)
sin(x+iy)

= cos x·cosh y−i sin x·sinh y
sin x·cosh y+i cos x·sinh y

, rationalizing

= (cos x cosh y−i sin x sinh y)(sin x·cosh y−i cos x sinh y)

sin2 x·cosh2 ·y+cos2 x·sinh2 y

= cos x·sin x(cosh2 y−sinh2 y)−i sinh y·cosh y(sin2 x+cos2 x)�
1−cos 2x

2

��
1+cosh 2y

2

�
+
�

1+cos 2x
2

��
cosh 2y−1

2

�

=
1
2
(sin 2x−i sinh 2y)

1
2
(cosh 2y−cos 2x)

= sin 2x−i sinh 2y
cosh 2y−cos 2x
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Thus Re (cot z) = sin 2x

cosh 2y − cos 2x
and

Im (cot z) = − sinh 2y

cosh 2y − cos 2x
.

Example 5: Find the real and imaginary parts of

sech z.

Solution: sech z = 1
cosh z

= 1
cosh x·cos y+i sinh x sin y

rationalizing, we get

sech z= cosh x·cos y−i sinh x·sin y
cosh2 x·cos2 y+sinh2 x·sin2 y

= cosh x·cos y−i sinh x·sin y�
1+cosh 2x

2

��
1+cos 2y

2

�
+
�

cosh 2x−1
2

��
1−cos 2y

2

�
= cosh x·cos y−i sinh x·sin y

1
4
(2 cosh 2x+2 cos 2y)

Re(sechz) = 2 cosh x·cos y
cosh 2x+cos 2y

Im(sechz) = −2 sinh x·sin y
cosh 2x+cos 2y

.

Example 6: Prove that (a) sin z = sin z (b) cos z =
cos z (c) tan z = tan z.

Solution: (a) sin z = sin(x − iy)
= sin x · cos(−iy) + sin(−iy) cos x

= sin x · cos iy − sin(iy) cos x

sin z= sin x · cosh y − i sinh y · cos x (1)

since cos iy = cosh y, sin iy = i sinh y

By definition

sin z= sin x cosh y + i cos x · sinh y

so sin z= sin x cosh y − i sinh y cos x (2)

Hence from (1) and (2), sin z = sin z
(b) cos z =
cos(x − iy) = cos x cos(−iy) − sin x · sin(−iy)

= cos x · cos(iy) + sin x · sin iy

= cos x cosh y + i sinh y · sin x (3)

But cos z= cos x · cosh y − i sin x sinh y

so cos z= cos x cosh y + i sin x sinh y (4)

Hence from (3) and (4), cos z = cos z

(c) tan z = � sin z
cos z

� = sin z
cos z

= sin z

cos z
= tan z

Example 7: Find derivative of cos z.

Solution: d
dz

(cos z) = d
dz

�
eiz+e−iz

2

�
But since d

dz
eiz = ieiz, we have

d

dz
(cos z) = 1

2
i(eiz − e−iz) = i2(eiz − e−iz)

2i

= −
�
eiz − e−iz

2i

�
= − sin z.

Example 8: Find the derivative of tanh z.

Solution: d
dz

(tanh z) = d
dz

�
sinh z
cosh z

�
= cosh z · cosh z− sinh z · sinh z

cosh2 z
= 1

cosh2 z
= sec2 hz.

Example 9: Find all zeros of (a) sin z (b) cos z.

Solution:

a. sin z = sin x · cosh y + i cos x sinh y = 0 so,

sin x cosh y = 0 and cos x · sinh y = 0.

Since cosh y ≥ 1, sin x = 0 or x = ±nπ , n = 0,

1, 2, . . . Then cos x = cos(nπ ) = −1  = 0 so

sinh y = 0 or y = 0.

Thus the zeros of sin z are z = x + iy =
±nπ, n = 0, 1, 2

b. cos z = cos x · cosh y − i sin x · sinh y = 0 so,

cos x · cosh y = 0 and sin x · sinh y = 0.

Since cosh y ≥ 1, cos x = 0 or x = ±(2n−
11)π

2
, n = 1, 2, 3, . . .. Then sin x = sin(2n−

1)π
2

 = 0 so sinh y = 0 or y = 0.

Thus the zeros of cos z are z = x + iy =
±(2n− 1)π

2
, n = 1, 2, . . .

Example 10: Find all zeros of (a) sinh z (b) cosh z.

Solution:

a. sinh z = 1
2
(ez − e−z) = 0 or (ez)2 − 1 = 0

so ez = ±1 = e±2nπi , n = 0, 1, 2, . . . .

= e±nπi for n odd

Thus zeros of sinh z are

z= ± 2nπi, n = 0, 1, 2, 3 . . . .

= ± nπi, n odd

b. cosh z = ez+e−z
2

= 0 or (ez)2 + 1 = 0

so ez = ±i = 1 · e±i π
2

±2nπi, n = 0, 1, 2, . . .

zeros are z = ±(2n+ 1
2
)πi, n = 0, 1, 2, . . ..
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Example 11: If |z| = 1 prove that z
2−1

z2+1
= i tan θ

Solution: Since |z| = 1, z = eiθ .
Substituting

z2 − 1

z2 + 1
= ei2θ − 1

ei2θ + 1
= eiθ − e−iθ

eiθ + e−iθ = i

�
eiθ−e−iθ

2i

�
�
eiθ+e−iθ

2

�
= i sin θ

cos θ
= i tan θ.

Example 12: If tan(x + iy) = A+ iB show that

A2 + B2 + 2A cot 2x = 1.

Solution: We know that

A= Re (tan(x + iy)) = sin 2x

cos 2x + cosh 2y
and

B = Im (tan(x + iy)) = sinh 2y

cos 2x + cosh 2y

Now A2 + B2 + 2A cot 2x

= sin2 2x

(cos 2x + cosh 2y)2
+ sinh2 2y

(cos 2x + cosh 2y)2

+ 2 · sin 2x

(cos 2x + cosh 2y)
· cot 2x

= [sin2 2x + sinh2 2y + 2 cos 2x · (cos 2x + cosh 2y)]

(cos 2x + cosh 2y)2

= 1 + sinh2 2y + 2 cos 2x · cosh y + cos2 2x

(cos 2x + cosh 2y)2

= (cos 2x + cosh 2y)2

(cos 2x + cosh 2y)2
= 1.

EXERCISE

Trigonometric and hyperbolic functions

1. Find the real and imaginary parts of (a) tan z

(b) sec z (c) cosec z (d) tanh z

Ans. a.
sin 2x

cos 2x + cosh 2y
,

sinh 2y

cos 2x + cosh 2y

b.
2 cos x · cosh y

cos 2x + cosh 2y
,

2 sin x · sinh y

cos 2x + cosh 2y

c.
2 sin x · cosh y

cosh 2y − cos 2x
,

−2 cos x · sinh y

cosh 2y − cos 2x

d.
sinh 2x

cosh 2x + cos 2y
,

sin 2y

cosh 2x + cos 2y

2. Find all zeros of (a) tan z (b) cot z (c) tanh z

(d) coth z.

Ans. Zeros are the zeros of the numerator

a. z = ±nπ ,

b. z = ±(2n− 1)π
2

c. ±2nπi, n = 0, 1, 2, 3 and ±nπi, n odd

d. ± �2n+ 1
2

�
πi, n = 0, 1, 2, . . .

3. If cosh(x + iy) = A+ iB, show that
A2

cosh2 x
+ B2

sinh2 x
= 1 and A2

cos2 y
− B2

sin2 y
= 1

4. If tan(x + iy) = A+ iB show that

a. A2 + B2 − 2B cot h2y + 1 = 0

b. A sinh 2y = B sin 2x

Find all the solutions of the equation

5. cos z = 5

Ans. ±2nπ ± 2.292i, n = 0, 1, 2, . . .

6. cos(2iz+ 13) = 0

Ans. [(2n− 1)π + 26]i/4, n = 0,±1,±2, . . .

7. cosh z = 1
2

Ans.
�± 1

3
± 2n

�
πi, n = 0, 1, 2, . . .

8. sin z = 2

Ans. 2nπ + π
2

− i ln(2 +
√

3), n = 0, 1, 2, . . .

9. sinh z = i
Ans. i

�
2n+ 1

2

�
π, n = 0, 1, 2, . . .

10. sin z = cosh 4

Ans. nπ + (−1)n
�
π
2

− 4i
�
, n = 0, 1, 2, . . .

11. Show that tan z = z has only real roots.

Hint: From sin 2x
cos 2x+cosh 2y

= x,
sinh 2y

cos 2x+cosh 2y
= y,

we have sin 2x
x

= sinh 2y

y
, tan x = x has solu-

tions but tanh y = y has no solutions.

12. If cos(α + iβ) = reiθ , prove that

e2β = sin(α − θ )
sin(α + θ ) .

13. Show that cos z, cosh z are even functions

while sin z, tan z, sinh z, tanh z are odd func-

tions.

Hint: cos(−z) = e−z+e−(−z)
2

= e−z+ez
2

= cos z,

etc.
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Logarithm

For z = x + iy  = 0, the exponential function z =
ew  = 0 for any w. The natural logarithm of z, de-

noted by ln z is defined as the inverse of the expo-

nential function ew = z.
Let w = u+ iv and z = x + iy = reiθ .
Then ew = eu+iv = eueiv = z = reiθ so eu = r or

u = ln r, v = θ .
Thus ln z = w = u+ iv = ln r + i(θ + 2kπ )

where k = 0, 1, 2, 3, . . ..

Here θ = arg z can assume infinitely many values

which differ by 2π . Hence the complex natural

logarithm ln z is infinitely many valued (unlike the

real ln which is single valued).
Ln z: principal value of ln z is denoted by Ln z

is the value of ln z for the principal value of arg z,0
which lies in −π < 0 ≤ π . Thus

Ln z = ln r + i0, (r > 0,−π < 0 ≤ π ).

Ln z is single valued since0 is unique. In general,
ln z can be expressed in terms of Ln z as

ln z = Ln z± 2nπi, n = 1, 2, 3, . . . .

Ln z becomes the real natural logarithm when z is

positive real (... arg z = 0).

Analytic

Ln z is analytic everywhere except on the negative

real axis (x = −π ).

Derivative

In cartesian form

w = ln z = ln(x + iy) = ln r + iθ

ln z= ln

�
x2 + y2 + i tan−1

�y
x

�

so u= ln

�
x2 + y2, v = tan−1 y

x

Differentiating partially w.r.t. x

ux = 1�
x2 + y2

· 1

2

1�
x2 + y2

· 2x = x

x2 + y2

vx = 1

1 + � y
x

�2 ·
�−y
x2

�
= − y

x2 + y2

Then

d

dz
(ln z) = ux + ivx

= x

x2 + y2
+ i (−y)
x2 + y2

= x − iy
x2 + y2

= z

zz
= 1

z

Standard results

For any two complex numbers z1 and z2,

a. ln(z1z2) = ln z1 + ln z2 with z1 = r1eiθ1 ,
z2 = r2eiθ2

ln(z1z2) = ln(r1r2e
iθ1eiθ2 ) = ln(r1r2e

iθ1+θ2 )
= ln(r1r2) + i(θ1 + θ2)
= (ln r1 + ln r2) + iθ1 + iθ2 = ln z1 + ln z2

b. ln(z1/z2) = ln z1 − ln z2

c. ln zm/n = m
n

ln z.

WORKED OUT EXAMPLES

Example 1: Determine all values and the principal

value of (a) ln(−4) (b) ln(3i) (c) ln(
√

3 − i).
Solution:

a. z = x + iy = −4, x = −4, y = 0,

r = x2 + y2 =
�

(−4)2 + 0 = 4,

−4 = x = r cos θ = 4 cos θ,

cos θ = −1, sin θ = 0 ... θ = π .

ln z = ln(−4) = ln r + i(θ ± 2kπ ) =
ln 4 + i(π ± 2kπ )

principal value: Lnz = ln 4 + iπ
b. ln 3i = ln 3 + i(π

2
± 2kπ ), k = 0, 1, 2, . . .

principal value: ln 3 + iπ/2
c. ln(

√
3 − i); z =

√
3 − i, x =

√
3, y = −1;

r =
�

(
√

3)2 + (−1)2 =
√

4 = 2,
√

3 = x = r cos θ = 2 cos θ.

cos θ =
√

3
2

, sin θ = − 1
2

so θ = 2π − π
6

= 11π
6
.

ln(
√

3 − i) = ln 2 + i( 11π
6

± 2kπ ),

k = 0, 1, 2, . . .

principal value Ln (
√

3 − i) = ln 2 + i 11π
6

.
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Example 2: Find themodulus and argument of (i)
√
i

Solution: (i)
√
i = ei ln

√
i = e 1

2
i ln i

= e 1
2
i
�
ln 1 ±

�
i
π

2
± 2nπ

��

(i)
√
i = e− 1

2

�
2n+ 1

2

�
π

modulus is e
−
�
2n+ 1

2

�
π
, argument 0.

Example 3: Find the real and imaginary parts of

ln cos(x + iy).
Solution: Let ln(Reiφ) = ln(R cosφ + Ri sin φ)

= ln cos(x + iy)

= ln(cos x · cosh y − i sin x · sinh y).

Thus R cosφ = cos x · cosh y,

R sin φ = − sin x sinh y

Then squaring and adding

R2 = cos2 x cosh2 y + sin2 x · sinh2 y

=
�

1 + cos 2x

2

��
1 + cosh 2y

2

�

+
�

1 − cos 2x

2

��
cosh 2y − 1

2

�

= 1

2
(cos 2x + cosh 2y)

Now

R sin φ

R cosφ
= tan φ = − sin x sinh y

cos x cosh y
= − tan x · tanh y

Hence

ln cos(x + iy) = ln(Reiφ) = lnR + iφ

= ln

�
1√
2

�
cos 2x + cosh 2y

�
−

− i tan−1(tan x tan hy)

Example 4: If tan ln(x + iy) = a + ib such that
a2 + b2  = 1, show that

tan ln(x2 + y2) = 2a

1 − a2 − b2 .

Solution: Let tan ln(x + iy) = tan ln(reiθ )

= tan{ln r + iθ} = tan(A+ iB) = a + ib

We know that

a = Re tan(A+ iB) = sin 2A

cos 2A+ cosh 2B
and

b = Im · tan(A+ iB) = sinh 2B

cos 2A+ cosh 2B
Consider 1 − a2 − b2

= 1 − (sin2 2A+sinh2 2B)

(cos 2A+cosh 2B)2

= cos2 2A+cosh2 2B+2 cos 2A·cosh 2B−sin2 2A−sinh2 2B

(cos 2A+cosh 2B)2

= cos2 2A+1−sin2 2A+2 cos 2A·cosh 2B

(cos 2A+cosh 2B)2

= 2 cos2 2A+2 cos 2A·cosh 2B

(cos 2A+cosh 2B)2
= 2 cos 2A

(cos 2A+cosh 2B)

So

2a

1−a2−b2 = 2·sin 2A
cos 2A+cosh 2B

· cos 2A+cosh 2B
2 cos 2A

= tan 2A

= tan(2 ln r) = tan(2 ln

�
x2 + y2)

2a

1−a2−b2 = tan(ln(x2 + y2)).

EXERCISE

Find all values and the principal value of:

1. ln 1

Ans. 0,±2nπi, n = 0, 1, 2, . . . , ln 1 = 0

2. ln 4

Ans. 1.386294 ± 2nπi, ln 4 = 1.386294

3. ln(−1)

Ans. ±nπi, n odd, ln (−1) = πi
4. ln(−4)

Ans. 1.386294 ± (2n+ 1)π,

ln (−4) = 1.386 + πi
5. ln i

Ans. πi
2

, −3πi
2
, 5πi

2
, . . . , ln i = πi

2

6. ln(−4i)

Ans. 1.386 − π
2
i ± 2nπi, ln (−4i) = 1.386 − πi

2

7. ln(3 − 4i)

Ans. ln 5 + i arg (3 − 4i)
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= 1.609 − 0.927i ± ·2nπi
ln (3 − 4i) = 1.609 − 0.927i

8. ln ii

Ans. e−(4n+1) π
2

9. ln(1 − i)
Ans. ln

√
2 + 7πi

4
+ 2kπi

principal value: 1
2
ln 2 + 7πi

4

10. Find the modulus and argument of iln(1+i)

Ans. e−π2/8, π
4

ln e2

11. Determine the real and imaginary parts of

ln sin(x + iy).
Ans. 1

2
ln
�

1
2
(cosh 2y − cos 2x)

�
;

tan−1(cot x · tanh y)

12. Show that ln
�
a+ib
a−ib

� = i2 tan−1
�
b
a

�
.

Hence prove that cos
�
i ln
�
a+ib
a−ib

�� = a2−b2
a2+b2

General Powers: w= zc
The general power of a complex number z = x + iy
with respect to a complex exponent c is defined by

zc = ec ln z with z  = 0

zc is multivalued since ln z is infinitely many-valued.
The principal value of zc written as

principal value : of zc = ec Ln z

where Lnz is principal value of ln z.
For any complex number c

cz = ez ln c

Results

For c, d any complex numbers, z  = 0,

1. z−c = 1
zc

2. zczd = zc+d
3. zc/zd = zc−d
4. (zc)n = zcn for any integer n.

5. d
dz
zc = d

dz
ec ln z = ec ln z · c · 1

z
= c e

c ln z

eln z
=

ce(c−1) ln z = czc−1

6. Real and imaginary parts of (α + iβ)x+iy :

(α+iβ)x+iy=e(x+iy) ln(α+iβ)=e(x+iy){ln r+i(θ±2nπ )}:

where r = |α + iβ|, θ = arg (α + iβ).

(α + iβ)x+iy = eA+iB = eA(cosB + i sinB)

where B = y ln r + x(2nπ + θ ).

WORKED OUT EXAMPLES

Example 1: Determine all values of (1 + i)i .

Solution: (1 + i)i = ei ln(1+i)

Express 1 + i in polar form: x = 1, y = 1, r =
√

2,

cos θ = 1√
2
, sin θ = 1√

2
. Thus θ = π

4
± 2nπ ,

1 + i =
√

2ei(
π
4

±2nπ), n = 0, 1, 2, 3, . . ..
Thus

(1 + i)i = ei ln(1+i) = ei
�
ln

√
2+i� π

4
±2nπ

��

since

ln(z) = ln |z| + iarg z.
= ei ln

√
2e−� π

4
±2nπ

�
= e− π

4
±2kπ (cos ln

√
2 + i sin ln

√
2)

where k = 0, 1, 2, 3, . . ..

Example 2: Find the principal value of
√

2i.

Solution:
√

2i = (2i)
1
2 = e 1

2
ln 2i

Now 2i = 2 · i = 2 · ei π2 ±2nπi

ln 2i = ln 2 + i
�π

2
± 2nπ

�
, n = 0, 1, 2, 3, . . .

Ln 2i = ln 2 + i π
2

since − π < π
2

≤ π

Principal value of
√

2i = e 1
2

Ln 2i

= e 1
2

�
ln 2+i π

2

�
= e 1

2
ln 2 · ei π4 =

√
2 ·
�
cos

π

4
+ i sin π

4

�
=

√
2

�
1√
2

+ i
√

2

�
= 1 + i.

Example 3: Find the principal value of�
1
2
[e(−1 − i

√
3)]
�3πi

.

Solution:
�

1
2
[e(−1 − i

√
3)]
�3πi

= exp

�
3πi

�
ln

�
1

2
e(−1 − i

√
3)

���
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= exp

�
3πi

�
ln e + ln

�
−1

2
− i

√
3

2

���

Consider

−1

2
− i

√
3

2
= x + iy, so x = −1

2
, y = −

√
3

2

r =
�

1

4
+ 3

4
= 1, cos θ = −1

2
, sin θ = −

√
3

2
,

θ = π + π

3
,

Thus

−1

2
− i

√
3

2
= 1 · e i4π3

ln

�
−1

2
− i

√
3

2

�
= ln 1 + i

�
4π

3
± 2nπ

�
, n = 0, 1, 2.

Principal argument which lies in −π < θ ≤ π is
4π
3

− 2π = − 2π
3

. Then

Ln

�
−1

2
− i

√
3

2

�
= ln 1 − i 2π

3
= − i2π

3

principal value of

�
1

2
[e(−1 − i

√
3)]

�3πi

= exp

�
3πi

�
ln e − i2π

3

��

= exp

�
3πi

�
1 − 2πi

3

��
= e3πi · e2π2 = −e2π2

.

EXERCISE

1. Determine all values of 1
√

2.

Ans. cos 2
√

2kπ +
i sin 2

√
2kπ, k= 0, 1, 2, 3, . . . .

2. Find Re {(1 − i)1+i}
Ans. eln

√
2−7π/4−2kπ · cos(7π/4 + ln

√
2).

3. Determine the modulus of (−i)−i

Ans. e
3π
2

+2kπ , k = 0, 1, 2, 3, . . .

Find the prinicipal value of:

4. ii

Ans. e−π/2±2nπ ,

n = 0, principal value: e− π
2

5. (1 + i)2−i

Ans. 2eπ/4±2nπ [sin ln
√

2 + i cos ln
√

2]

n= 0, principal value : 2eπ/4[sin ln
√

2+i cos ln
√

2]

= 1.490 + 4.126i

6. 1i

Ans. e−2kπ , k = 0, principalvalue : 1

Find all values of:

7. i−2i

Ans. exp[(4n+ 1)π ], n = 0,±1,±2,±3, . . ..

principal value: eπ

8. (1 − i)1+i

Ans.
√

2(1 − i)e(2n+ 1
4
)πei ln

√
2

n = 0,±1,±2, . . . ,

principal value: (1 − i)eπ/4ei ln
√

2

9. ln ii

Ans. −(2n+ 1
2
π ), n = 0,±1,±2, . . . .

Find the real part of the principal value of:

10. i ln(1+i)

Ans. e−π2/8 · cos(π
4

ln 2)

11. 1
√

2

Ans. cos 2k
√

2π + i sin 2k
√

2π, k = 0, 1, 2, 3, . . .



Chapter23

Complex Integration

INTRODUCTION

The advantage of complex integration is that certain

complicated real integrals can be evaluated and prop-

erties of analytical functions can be established. In

this chapter we consider Cauchy’s integral theorem

which is one of the fundamental theorems of com-

plex function theory. It gives sufficient conditions

for a line integral around a simple closed curve to

be zero. An important consequence of this theorem

is the Cauchy’s integral formula in which the value

f (z0) of an analytic function at z0 is completely de-

termined by an integral of f (z) on any simple closed

curve enclosing z0. It is powerful tool in evaluating

certain integrals. The complex Taylor series is a di-

rect generalization of the Taylor series of real func-

tion. However Laurent series is different from any

series in real calculus and is useful in evaluation of

both real and complex integrals and in summation of

series.

23.1 LINE INTEGRAL IN COMPLEX PLANE

Introduction

Continuous arc: The set of points (x, y) defined by

x = φ(t), y = ψ(t), with parameter t in the interval

(a, b), define a continuous arc provided φ and ψ are

continuous functions.

Smooth arc If φ and ψ are differentiable, arc is

said to be smooth.

Simple curve is a curve having no self intersec-

tions i.e., no two distinct values of t correspond to

the same point (x, y).

Closed curve is one in which end points coincide

i.e., φ(a) = φ(b) and ψ(a) = ψ(b).
Simple closed curve is a curve having no self

intersections and with coincident end points.

Contour is a continuous chain of a finite number

of smooth arcs.

Closed contour is a piecewise smooth closed

curve without points of self intersection.

Examples: Boundaries of circle, ellipse, rectan-

gle, triangle.

Positive sense

of traversing a contour is the direction such that the

interior domain bounded by the given closed contour

remains on the left of the direction of motion.

Line Integral

Definite integral or complex line integral or simply
line integral of a complex function f (z) from z1 to
z2 along a curve c is defined as 

c

f (z)dz=
 
c

(u+ iv)(dx + idy)

=
 
c

(udx − vdy)+ i
 
c

(vdx + udy)

=
 z2
z1

(ux
. − vy. )dt + i

 z2
z1

(vx
. + uy. )dt

where dot (·) denotes differentiation w.r.t. ‘t’.

Here c is known as the path of integration. If it

is a closed curve, the line integral is denoted by
 
c

23.1



23.2 HIGHER ENGINEERING MATHEMATICS—VI

(with zero or circle on the integral sign). When the

direction is positive sense, it is indicated as
 
c+ or

simply
 
c
while negative direction by

 
c−. Contour

integral is an integral along a closed contour.

Basic Properties of Line Integrals

1. Linearity: 
c

 
k1f (z)+ k2g(z)

 
dz = k1

 
c

f (z)dz+ k2
 
c

g(z)dz

2. Sense reversal: B
A

f (z)dz = −
 A
B

f (z)dz

3. Partitioning of path: 
c

f (z)dz =
 
c1

f (z)dz+
 
c2

f (z)dz

where curve c consists of the curves c1 and c2

Fig. 23.1

4. ML-inequality:    
 
c

f (z)dz

    ≤ ML
where |f (z)| ≤ M everywhere on c and L is the

length of the curve c.

Note: Although real definite integrals are inter-

preted as area, no such interpretation is possible for

complex definite integrals.

Simply connected domain D is a domain such

that every simple closed path in D contains only

points of D.

Example 1: Interior of circle, rectangle, triangle,

ellipse.

Multiply connecteddomain is one that is not simply

connected (Fig. 23.2).

Example 2: Annulus region, regions with holes.

Fig. 23.2

Evaluation of Complex Line Integral

I. By indefinite integration (of analytic functions):
If f (z) is analytic in a simply connected domain
D then  z2

z1

f (z)dz = F (z2)− F (z1)

where F  (z) = dF
dz
= f (z) in D. (See "Indepen-

dence of path" on page 23.7.)

II. By use of the path:

If curve c is represented by z = z(t), a ≤ t ≤ b
Then  

c

f (z)dz =
 b
a

f (z(t))
dz

dt
dt

i.e., the line integral is converted to an ordinary

integral in t by making use of the property (na-

ture) of the curve c.

WORKED OUT EXAMPLES

Example 1: Evaluate
 
c
|z|2dz around the square

with vertices at (0, 0), (1, 0), (1, 1), (0, 1) (refer Fig.

23.3).

Fig. 23.3

Solution: Square c consists of four curves (lines)
c1 : AB, c2 : BC, c3 : CD, c4 : DA.

I =
 
c

|z|2dz=
 
c1+c2+c3+c4

(x2 + y2)(dx + idy)

=
 
c1

+
 
c2

+
 
c3

+
 
c4

= I1 + I2 + I3 + I4
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Along c1 : AB : y = 0, 0 ≤ x ≤ 1.

I1 =
 
c1

(x2 + y2)(dx + idy)

=
 1

0

(x2 + 0)dx = x
3

3

    1
0

= 1

3

Along c2 : BC : x = 1, 0 ≤ y ≤ 1

I2 =
 
c2

(x2 + y2)(dx + idy)

=
 1

0

(1+ y2)idy = i
 
y + y

3

3

     1
0

= 4

3
i

Along c3 : y = 1 and x varies from 1 to 0

I3 =
 
c3

(x2 + y2)(dx + idy)

=
 0

1

(x2 + 1)dx =
 
x3

3
+ x
     0

1

= −4

3

Along c4 : x = 0, y varies from 1 to 0

I4 =
 
c4

(x2 + y2)(dx + idy)

=
 0

1

y2idy = i y
3

3

    0
1

= i

3

I = I1 + I2 + I3 + I4

= 1

3
+ 4

3
i − 4

3
− i

3
= −1+ i

Example 2: Evaluate
 
c
(z− z2)dz where c is the

upper half of the circle |z− 2| = 3 (Fig. 23.4). What

is the value of the integral if c is the lower half of the

above circle?

Solution: Equation of the circle is z− 2 = 3eiθ or

z= 2+ 3eiθ , z2 = (2+ 3eiθ )2

z− z2 = (2+ 3eiθ )− (2+ 3eiθ )2 = −2− 9eiθ − 9ei2θ

dz= 3ieiθ dθ. 
c

(z− z2)dz=−
 π
0

(2+ 9eiθ + 9ei2θ )(i3eiθ )dθ

=−3i
 
2eiθ

i
+ 9ei2θ

2i
+ 9ei3θ

3i

 π
0

=−3[−4+ 0− 6] = 30

Fig. 23.4

For the lower semicircle 
c

(z− z2)dz=−
 2π

π

(2+ 9eiθ + 9ei2θ )(3ieiθ )dθ

=−3
 
2eiθ + 9ei2θ + 3ei3θ

 2π
π

= −30

Example 3: Evaluate
 
c
f (z)dz, where

f (z) =
 
4y when y > 0

1 when y < 0
and c is the arc

from z = −1− i to z = 1+ i of the cubical curve

y = x3 (see Fig. 23.5).
Solution: 

c

f (z)dz =
 
BOA

=
 
BO

+
 
OA

=
 
c1

+
 
c2

Fig. 23.5

Along BO : c2 : (y < 0), f (z) = 1, y = x3
dz = dx + idy = dx + i3x2dx

x: varies from −1 to 0 
c2

f (z)dz=
 0

−1
1 · (1+ 3x2i)dx
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= x + x3i
    0
−1
= 1+ i

Along c1 : (y > 0), f (z) = 4y, y = x3, x : varies
from 0 to 1 

c1

f (z)dz=
 1

0

4y(dx + idy)

=
 1

0

4y

 
1

3
y−

2
3 + i

 
dy

since x = y 1
3 , dx = 1

3
y−

2
3 dy.

= y 4
3 + 2y2i

    1
0

= 1+ 2i

Thus 
c

f (z)dz =
 
c1

+
 
c2

= (1+ i)+ (1+ 2i) = 2+ 3i.

Example 4: Find an upper bound for the absolute

value of the integral
 
c
(ez − z) dz where c denotes

the boundary of the trianglewith vertices at the points

z = 0,−4, 3i (refer Fig. 23.6).
Solution: From the ML-inequality    

 
c

f (z)dz

    ≤ML
    
 
c

(ez − z)dz
    =
    
 
c

ezdz−
 
c

zdz

    
≤
    
 
c

ezdz

    +
    
 
c

zdz

    
But
 
c
ezdz = 0 since ez is analytic everywhere, (see

Page 23.6) so

    c zdz   ≤ (Max · |z| on c)· (Length
of c).

Fig. 23.6

Length of c = AB + BC + CA = 4+ 3+ 5 = 12

For straight line maximum occurs at the end points.

|z| =
 
x2 + y2

Along AB : y = 0, |z| = 4

Along BC : x = 0, |z| = 3

Along CA : Max|z| = Max[C or A] = Max[4, 3]

= 4

Thus maximum value of z on c is 4.

Hence

    
 
c

(ez − z)dz
    ≤
    
 
c

zdz

    ≤ (4)(12) = 48

Example 5: Evaluate
 
c
Re z dz where c is (a)

shortest path from 1+ i to 3+ 2i (b) along the

straight line from (1, 1) to (3, 1) and then from (3, 1)

to (3, 2) (c) Are the two integrals in (a), (b) equal. If

not give reason (see Fig. 23.7).

Solution:

a. The shortest path from A to B is the straight line
y = x+1

2
. So 
c

Rez dz=
 
AB

x(dx + i dy)

=
 3

1

x

 
dx + i 1

2
dx

 

= x
2

2
+ x

2

4
i

    3
1

= 4+ 2i

Fig. 23.7

b.
 
c
Re z dz =  

AD+DB =
 
AD
+  

DB
= I1 + I2.

AlongAD : y = 1, x : varies from1 to 3,dy = 0

I1 =
 
AD

Re z dz =
 3

1

x dx = x
2

2

    3
1

= 4

AlongDB : x = 3, y : varies from1 to2,dx = 0

I2 =
 
DB

Re z dz =
 2

1

3 · idy = 3iy

    2
1

= 3i
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c

Re z dz = I1 + I2 = 4+ 3i

c. Integral values along path AB is not equal to

integral value along ADB since the integrand

f (z) = Re z = x is not analytic (see Page 609).
Example 6: Evaluate

a.
 1
i
(z+ 1)2dz =  1

i
(z+ 1)2d(z+ 1) = (z+1)3

3

   1
i

= 8
3
− (i+1)3

3
= 10−2i

3

b.
 i
0
zez

2
dz = 1

2

 
et dt where t = z2

= 1
2
et = 1

2
ez

2
   i
0
= 1

2
[e−1 − 1]

c.
 πi
0

cos z dz = sin z

   πi
0
= sin(iπ ) = i sinh π

d.
 πi
−πi sin

2 z dz=  πi−πi 1− cos 2z
2

dz= 1
2
z− sin 2z

4

   πi
−πi

= 1
2
(πi + πi)− 1

4
[sin(2πi)− sin(−2πi)]

= πi − 1
2
i sinh 2π

e.
 2i
0

sinh z dz= cosh z

   2i
0
= cosh 2i−1= cos 2−1.

EXERCISE

Integrate the given function along the given curve c:

1. z2,

a. c1: straight line segment z = 0 to z = 2+ i
b. c2: straight line from (0, 0) to (2, 0) and then

from (2, 0) to (2, 1)

Ans. (a) 2
3
+ 11

3
i (b) 2

3
+ 11

3
i

2. Re z,

a. c1: straight line segment from z = 0 to

z = 1+ 2i

b. c2: from (0, 0) to (1, 0) along real axis and

then from (1, 0) to (1, 2) vertically.

Ans. (a) 1
2
+ i (b) 1

2
+ 2i

3. (z)2 from 0 to 2+ i
a. along the line 2y = x
b. from (0, 0) to (2, 0) along real axis and then

from (2, 0) to (2, 1) vertically

Ans. (a) 5(2−i)
3

(b) (14+11i)
3

4. 12z2 − 4iz : c : y = x3 − 3x2 + 4x − 1 join-

ing (1, 1) and (2, 3)

5. z2, c : x = 4− y2 from y = 2 to −2,
Ans. 16i

3

6. |z|z, c : consisting of upper semicircle |z| = 1

and the line segment −1 ≤ x ≤ 1.

Ans. πi

7. z, c : (a) circle |z− 2| = 3, (b) Square with

vertices at z = 0, 2, 2i, 2+ 2i, (c) Ellipse

|z− 3| + |z+ 3| = 10.

Ans. (a) 18πi (b) 8i (c) 40πi

8. z+2
z
c :

a. Circle of radius 2, centre origin.

b. Upper semi-circle.

c. Lower semi-circle.

Hint: Take z = 2eiθ , θ varies from

(a) −π to π (b) 0 to π (c) 0 to −π .
Ans. (a) 4πi (b) −4+ 2πi (c) −4− 2πi

9. 8z+ 3z, c : x
2
3 + y 2

3 = a 2
3

Ans. 6πia2

10. πeπz, c : square with vertices 0, 1, 1+ i, i
Ans. 4(eπ − 1).

Indefinite integration

Evaluate:

1.
 1+i
0
z2dz Ans. − 2

3
+ 2

3
i

2.
 πi
−πi cos zdz Ans. 2i sinh π

3.
 8−πi
8+πi e

z
2 dz Ans. 0

4.
 i
−i

dz
z

Ans. iπ

5.
 1−i
3i

4z dz Ans. 18− 4i

6.
 1
0
ze2zdz Ans. 1

4
(e2 + 1)

7.
 2π
0
z2 sin 4zdz Ans. −π2

8.
 3
2i
sin zdz Ans. cosh 2− cos 3

9.
 −3
3
z
1
2 dz Ans. −2

√
3(1+ i)
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10.
 1
−1 z

idz Ans. 1+e−π
2

(1− i)
11.
 i
−i z cosh z

2dz Ans. 0

12.
 1+πi
1

ezdz Ans. −2e
13.
 1+iπ
0

(z2 + cosh 2z)dz

Ans. 1
3
− π2 + sinh 2

2
+ iπ

3
(3− π2).

ML-inequality

Find an upper bound for the absolute value of the

integral, without actually evaluating the integral

1.
 
c
z2dz, c: straight line from 0 to 1+ i

Ans. 2
√
2,M = 2, L =

√
2

2.
 
c
sin zdz, c: straight line from 3 to 2i.

Ans.
√
13
√
cosh 4,M =

 
cosh2 2+ sinh2 2,

L =
√
13

3.
 
c

dz

z(z−2)3 , c : |z| = 5.

Ans. 2π
27
, L = 2π5,M = 1

(5)(27)

4.
 
c

(z2+3)eiz ln z
z2−2 dz, c : z = 2eiθ , 0 ≤ θ ≤ π

3

Ans. ML =
 
7(3 ln 2+ π )π

9

  
2π
3

 
5.
 
c
dz

z2+1 , c : |z| = 2 in 1st quadrant.

Ans. ML =  1
3

 · (π )
6.
 
c
dz

z4
, c: Line segment from i to 1.

Hint: y= 1− x, |z4| =
 
2
 
x− 1

2

 2+ 1
2

 2
≥ 1

4

Ans. ML = 4 · (
√
2).

7. Show that

    c z2dz   ≤ 10, c: Line from i to

2+ i. Compare with exact value.

Ans. ML = (5)(2), Exact value =
 

148
9
= 4.055.

23.2 CAUCHY’S INTEGRAL THEOREM

If f (z) is analytic in a simply connected domain D
then  

c

f (z)dz = 0

for any simple closed curve c lying entirely within

D (Fig. 23.8).

Fig. 23.8

Proof: Consider 
c

f (z)dz=
 
c

 
u(x, y)+ iv(x, y)

 
[dx + idy]

=
 
c

(u dx − v dy)+ i
 
c

(u dy + v dx)

= I1 + I2
u and v have continuous partial derivative in D
because f (z) is analytic and f  is assumed to be con-
tinuous. Applying Green’s theorem in plane for I1,

I1 =
 
c

u dx − v dy =
  

R

 
− ∂v
∂x
− ∂u
∂y

 
dxdy = 0

since from Cauchy-Riemann equations uy = −vx .
Here R is the region bounded by c.
Similarly,

I2 =
 
c

udy − vdx =
  

R

 
∂u

∂x
− ∂v
∂y

 
dxdy = 0

since ux = vy . Thus 
f (z)dz = I1 + I2 = 0+ 0 = 0.

Thus Cauchy’s theorem establishes one of the basic

properties of an analytic function that the integral of

an analytic function around any simple closed curve

lying entirely in the simply connected domain of its

analycity is zero.

Note 1: Cauchy’s integral theorem is also known

as Cauchy’s theorem.

Note 2: Cauchy’s theorem without the assumption

that f  is continuous is known as Cauchy’s-Goursat

theorem.

Note 3: Simply connectedness is essential.

Example:
 
c
dz
z−1 , c : 1 < |z− 1| < 2. Although

1
(z−1) is analytic in the annulus, integral is not zero,

since annulus is not simply connected.
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Independence of Path

Let f (z) be analytic in a simply connected domain
D. Let c1 and c2 be any two paths in D joining any
two points Z1 and Z2 in D and having no further
points in common (Fig. 23.9). Then 

c1

f (z)dz =
 
c2

f (z)dz

Fig. 23.9

both c1 and c2 traversed in the same direction i.e., the

integral of f (z) from z1 to z2 is independent of the

path joining them (however it depends on the points

z1 and z2).

Proof: The twocurves c1, c2 together forma simple
closed curve c in D. By Cauchy’s theorem 

c

f (z)dz=
 
c1

f (z)dz+
 
c2

f (z)dz = 0

or

 
c1

f (z)dz=−
 
c2

f (z)dz =
 
c2

f (z)dz

where now c1 and c2 are both traversed in the same

direction.

Principal of Deformation of Path

From independence of path, it appears as if the path

c2 is obtained by continuous deformation of path c1.

Cauchy’s Theorem for Multiply Connected

Domains

Fig. 23.10

A multiply connected domain can be cut such

that the resulting domain is simply connected. For

example by one cut c∗ the doubly connected domain

spreads into a simply connected domain (without

any holes) (refer Fig. 23.10). Applying Cauchy’s

theorem along the oriented boundary B consisting

of c1, c
∗, c2, c∗, we have 

B

f (z)dz =
 
c1+c∗+c2+c∗

f (z)dz = 0

or

 
c1

+
 
c∗
+
 
c2

−
 
c∗
= 0.

Thus

 
c1

f (z)dz =
 
c2

f (z)dz

where c1 and c2 are both traversed in the same
direction. Similar result can be obtained for triply
connected domain by introducing two cuts c∗1 and
c∗2, resulting 

c1

f (z)dz =
 
c2

f (z)dz+
 
c3

f (z)dz

where c1, c2, c3 are all traversed in the same direction

(see Fig. 23.11).

Fig. 23.11

Evaluation of line integrals by indefinite inter-
gration: If f (z) is analytic in simply connected do-
mainD, there existsF (z) such thatF  (z) = f (z) and z2

z1

f (z)dz = f (z1)− F (z2)
along any path joining z1 to z2. (See WE 6 on page

23.5)

Integral of Integer Powers

Book Work: Prove that

I =
 
c

(z− a)ndz =



0 if n  = −1, a inside c

2πi if n = −1, a inside c

0 if n = −1, a outside c

Here n is any integer (positive, negative or zero)

a is a complex number. Curve c is oriented counter-

clockwise and is

a. Circle with centre at a and of radius R.

b. Any arbitrary simple closed (piecewise smooth)

curve (refer Fig. 23.12).
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Fig. 23.12

Proof:

a. c: circle z− a = Reiθ , i.e., a is inside c.

I =
 2π

0

(R eiθ )n · (iReiθ )dθ

I = iRn+1
 2π

0

ei(n+1)θ dθ

Suppose n  = −1,

I = iRn+1 · e
i(n+1)θ

i(n+ 1)

    2π
0

I = iRn+1

(n+ 1)
·
 
cos(n+ 1)2π − cos 0

 
= 0

Suppose n = −1, I = i  2π
0
dθ = 2πi

Suppose n = −1 and a is outside circle c.
I =  

c
dz
z−a = 0 by Cauchy’s theorem since 1

z−a
is analytic inside c.

b. c: any simple closed curve enclosing a circle c∗:
z− a = Reiθ i.e., c∗ is circle with centre at a and
of radius R (Fig. 23.13).

Fig. 23.13

Suppose a is inside c. Then (z− a)n for any n
is analytic on and between c and c∗. By Cauchy’s
theorem for multiply connected domains.

 
c

(z− a)ndz =
 
c∗
(z− a)ndz =

 
0, n  = −1
2πi, n = −1.

Suppose a is outside c. Then by Cauchy’s theorem 
c

(z− a)ndz = 0

Result:
 
c
dz
z
= 2πi, where c: unit circle |z| = 1.

Example: Evaluate I =  
c
dz
z−2 around

a. Circle |z− 2| = 4

b. Circle |z− 1| = 5

c. Rectangle with vertices at 3± 2i,−2± 2i

d. Triangle with vertices at (0, 0), (1, 0), (0, 1).

Solution:

a. 2 ∈ c, by above book work with n = −1,
I = 2πi (Fig. 23.14).

Fig. 23.14

b. 2 ∈ c : n = −1, I = 2πi (Fig. 23.15).

Fig. 23.15

c. 2 ∈ c, : n = −1, I = 2πi (Fig. 23.16)

Fig. 23.16
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d. 2 /∈ triangle. 1
z−2 is analytic in c. By Cauchy’s

theorem I = 0 (Fig. 23.17).

Fig. 23.17

Example: Evaluate
 
c

1

z3
dz, c : |z| = 1

Integral is zero by above book work. Thus f is

analytic is a sufficient condition but not necessary.

WORKED OUT EXAMPLES

Example 1: Evaluate
 
c
(5z4 − z3 + 2)dz around

a. Unit circle |z| = 1

b. Square with vertices at (0, 0), (1, 0), (1, 1), (1, 0)

c. Curve consisting of the parabola y = x2 from

(0, 0) to (1, 1) and y2 = x from (1, 1) to (0, 0).

Solution: f (z) = 5z4 − z3 + 2 is analytic every-
where. So by Cauchy’s integral theorem,

 
c
f (z)dz

equals to zero for any simple closed curve. The
curves in (a), (b) and (c) are all simple closed (piece-
wise smooth) curves. Therefore 

c

(5z4 − z3 + 2)dz = 0

for c in (a), (b) and (c) i.e., in all cases.

Example 2: Verify Cauchy’s integral theorem for

f (z) = z2 taken over the boundary of a square with

vertices at ±1± i in counter-clockwise direction

(Fig. 23.18).

Solution:

a. ByCauchy’s theorem,
 
c
z2dz = 0 since z2 is ana-

lytic everywhere and c the boundary of the square

is a closed piecewise-smooth simple curve

b. By direct evaluation,

Fig. 23.18

The boundary of square c consists of four curves
(lines) c1, c2, c3, c4. So

I =
 
c

z2dz =
 
c1

+
 
c2

+
 
c3

+
 
c4

= I1 + I2 + I3 + I4.

Along c1: EA : x = 1,−1 ≤ y ≤ 1, dz = idy

I1 =
 
c1

z2dz =
 1

−1
(1+ iy)2idy

=
 1

−1
(1− y2 + 2iy)idy = 4

3

Along c2: AB, y = 1,−1 ≤ x ≤ 1, dz = x

I2 =
 
c2

z2dz =
 −1
1

(x + i)2dx

=
 −1
1

(x2 − 1+ 2ix)dx = −4

3

Along c3: BD, x = −1,−1 ≤ y ≤ 1, dz = idy

I3 =
 
c3

z2dz =
 −1
1

(−1+ iy)2idy

=
 −1
1

(1− y2 − 2iy)idy = 4

3

Along c4: DE : y = −1,−1 ≤ x ≤ 1, dz = dx

I4 =
 
c4

z2dz =
 1

−1
(x − i)2dx

=
 −1
1

(x2 − 1− 2ix)dx = −4

3

So

 
c

z2dz= I1 + I2 + I3 + I4

= 4

3
− 4

3
+ 4

3
− 4

3
= 0.



23.10 HIGHER ENGINEERING MATHEMATICS—VI

Example 3: Evaluate
 
c
(z2 + 3z)dz along:

a. Circle |z| = 2 from (2, 0) to (0, 2) in counter-

clockwise direction.

b. The straight line from (2, 0) to (0, 2).

c. The straight lines from (2, 0) to (2, 2) and then

from (2, 2) to (0, 2). Is the integral independent

of path? Why?

Solution:

a. c1 : |z| = 2 or z = 2eiθ (Fig. 23.19). 
c1

(z2 + 3z)dz

=
 π

2

0

[4ei2θ + 6eiθ ]2ieiθ dθ = 4i

 
2ei3θ

3i
+ 3ei2θ

2i

 π
2

0

= −8

3
(i + 1)− 12 = −44

3
− 8

3
i

Fig. 23.19

b. c2 : x + y = 2; y = 2− x, dz = (1− i)dx,
(Fig. 23.19) 0

2

  
x + i(2− x)

 2
+ 3

 
x + i(2− x)

  
(1− i)dx

=
 0

2

 
x2 − (2− x)2 + 2ix(2− x)+ 3x

+3i(2− x)
 
(1− i)dx = −44

3
− 8

3
i

Fig. 23.20

c. c : c1 + c2 Along c1 : x = 2, 0 ≤ y ≤ 2,
dz = idy (Fig. 23.21) 

c1

=
 2

0

 
(2+ iy)2 + 3(2+ iy)

 
idy

=−14+ 52

3
i

Fig. 23.21

Along c2 : y = 2, 0 ≤ x ≤ 2, dz = dx 
c2

=
 0

2

 
(x + 2i)2 + 3(x + 2i)

 
dx = −

 
2

3
+ 20i

 
 
c

=
 
c1

+
 
c2

= −14+ 52

3
i − 2

3
− 20i = −44

3
− 8

3
i

Yes. The integral is independent of path because the

integrand f (z) = z2 + 3z is analytic, everywhere.

Example 4: Evaluate
 
c
2z3+z2+4
z4+4z2 dz where c is the

circle |z− 2| = 4, clockwise.

Solution: Integrand has 3 singular points at
z = 0,±2i, all of which lie inside the circle c.
By partial fractions (see Fig. 23.22).

2z3 + z2 + 4

z4 + 4z2
= Az+ B

z2
+ D

z+ 2i
+ E

z− 2i

Fig. 23.22

A = 0, B = D = E = 1.

I =
 
c

2z3 + z2 + 4

z4 + 4z2
dz

=
 
c

dz

z2
+
 
c

dz

z+ 2i
+
 
c

dz

z− 2i

By principle of deformation of path

=
 
c1

dz

(z− 0)2
+
 
c2

dz

z− (−2i) +
 
c3

dz

z− 2i
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where c1, c2, c3 are circles with centres at 0,−2i, 2i
and such that they are non-overlapping inside c.
By applying the book work

 
c

(z− a)ndz =
 
0, n  = −1
2πi, n = −1

I = 0− 2πi − 2πi = −4πi

The minus sign is because curve is traced in the

clockwise direction.

Example 5: If n is a positive integer, show that 2π

0

esin nθ cos(θ − cos nθ )dθ

=
 2π

0

esin nθ · sin(θ − cos nθ )dθ = 0

Solution: Consider
 
c
ez
n
dz where c : |z| = 1. So

z= x + iy = sin θ + i cos θ, zn = sin nθ + i cos nθ,
dz= (cos θ − i sin θ )dθ, θ : varies from 0 to 2π.

Thus 
c

ez
n
dz=

 2π

0

e(sin θ+i cos θ )
n · (cos θ − i sin θ )dθ

=
 2π

0

esin nθ+i cos nθ · (cos θ − i sin θ )dθ

=
 2π

0

esin nθ ·
 
cos(cos nθ )+ i sin(cos nθ )

 
×

[cos θ − i sin θ ]dθ

=
 2π

0

 
esin nθ · cos(θ − cos nθ )

−i sin(θ − cos nθ )

 
dθ

Since ez
n
is analytic, by Cauchy’s theorem

 
c
= 0.

Hence the results follows.

EXERCISE

Using Cauchy’s integral theorem evaluate the 
c
f (z)dz where f (z) and c are:

1. a. ez

b. sin z

c. cos z

d. zn, n = 0, 1, 2, 3, . . .

c is any simple clothed path.

Ans. (a), (b), (c) and (d) are all zero.

2. (a) sec z, (b) 1

z2+4 ; c : |z| = 1

Ans. a. 0 since all singularities z = ±π
2
,± 3π

2
,

. . . /∈ c
b. 0 since z = ± 2i /∈ c

3. (z2−z+1)
(z−2) , c : |z− 1| = 1

2

Ans. 0, since z = 2 singularity /∈ c.
4. f (z) = 1 

z2(z−2)(z−4)
 

Hint: By partial fractions 3
32

1
z
+ 1

8
1

z2
−

1
8

1
z−2 + 1

32
1
z−4 use book work and Cauchy’s

theorem.

Ans. −πi
16

5. 1 
z2(z2+9)

 , c : 1 < |z| < 2

Hint: Apply theorem for doubly connected

domain.

Ans. 0

6. Verify Cauchy’s theorem for

a. c is the square with vertices at ±1± i and
f (z)=3z2 + iz−4, 5 sin 2x, 3 cosh(z+ 2).

Ans. 0

b. f (z) = z3 − iz2 − 5z+ 2i.

i. c is the circle |z| = 1

ii. circle |z− 1| = 2

iii. ellipse |z− 3i| + |z+ 3i| = 20

Ans. 0

c. z3 taken over the boundary of the rectangle

with vertices at −1, 1, 1+ i,−1+ i.
Ans. 0

7. Show that
 2π
0
ecos θ · cos(θ + sin θ )dθ = 2π

0
ecos θ sin(θ + sin θ )dθ = 0.

Hint:
 
ezdz = 0 by theorem, c : |z| = 1,

z = cos θ + i sin θ .
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23.3 CAUCHY’S INTEGRAL FORMULA

Let f (z) be analytic in a simply connected domain
D. Let c be any simple closed curve in D enclosing
any point z0 in D. Then 

c

f (z)

z− z0
dz = 2πi f (z0)

where c is traversed in counter clockwise direction.

Proof: Consider

 
c

f (z)

z− z0
dz=

 
c

f (z0)+
 
f (z)− f (z0)

 
z− z0

dz

= f (z0)
 
c

dz

z− z0
+
 
c

f (z)− f (z0)
z− z0

dz

= I1 + I2
= 2πi · f (z0)+ I2

since the integral value in I1 is 2πi by book work.

Now by showing I2 is zero, the proof is complete.

Construct a circle c1 with z0 as centre and of radius

R1 such that c1 is non-overlapping with c and lies

completely inside c (Fig. 23.23).

Fig. 23.23

Then byCauchy’s theorem formultiply connected
domain

I2 =
 
c

f (z)− f (z0)
z− z0

dz =
 
c1

f (z)− f (z0)
z− z0

dz,

since
f (z)−f (z0)
z−z0 is analytic in between c and c1. Since

f is analytic, it is continuous. For ' > 0 there exists
δ > 0 such that    f (z)− f (z0)

    < ' whenever |z− z0| < δ

choose R1 < δ. Then    f (z)− f (z0)z− z0

    < '

R1

Using ML-inequality

|I2| =
    
 
c1

f (z)− f (z0)
z− z0

dz

    ≤ '

R1
· 2πR1 = 2π'

since length of the circle c1 is 2πR1.

As ' → 0, I2 → 0. Hence the result.

Note 1: The Cauchy’s integral formula is an impor-

tant consequence of Cauchy’s theorem which estab-

lishes relation between value of analytic function at

interior point z0 and boundary value of the function.

Note 2: Cauchy’s integral formula also known as

Cauchy’s formula is useful in evaluating integrals, in

obtaining Taylor series, etc.

WORKED OUT EXAMPLES

Example 1: Determine F (2), F (4), F (−3i),
F  (i), F   (−2i) if F (α) =  

c
5z2−4z+3
z−α dz where c is

the ellipse 16x2 + 9y2 = 144 (Fig. 23.24).

Solution: Curve c is x
3

 2
+
 y
4

 2
= 1

Fig. 23.24

use Cauchy’s integral formula, with

f (z) = 5z2 − 4z+ 3 and z0 = α.
a. z0 = 2 lies inside c. So by Cauchy’s integral for-

mula

F (2)=
 
c

5z2 − 4z+ 3

z− 2
dz = 2πif (z)

    
z=2

F (2)= 2πi · (5z2 − 4z+ 3)

    
at z=2

= 30πi

b. z0 = 4 lies outside c. So by Cauchy’s theorem

f (4) = 0 since (5z2−4z+3)
(z−4) is analytic inside c.
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c. z0 = −3i, lies inside c, by Cauchy’s integral for-
mula

F (−3i)= 2πi · (5z2 − 4z+ 3)

    
at z=−3i

=−π (6+ 90i)

d. For any α, by Cauchy’s integral formula

F (α)=
 
c

5z2 − 4z+ 3

z− α dz

= 2πi(5z2 − 4z+ 3)

    
at z=α

F (α)= 2πi(5α2 − 4α + 3)

So F  (α)= 2πi(10α − 4)

and F   (α)= 20πi.

Thus F  (i)= 2πi(10i − 4) = −4π (5+ 2i)

F   (−2i)= 20πi.

Example 2: Evaluate
 
c
dz

z2+9 where c is

(a) |z− 3i| = 4 (b) |z+ 3i| = 2 (c) |z| = 5

Solution: The integrand f (z) = 1

z2+9 has two sin-

gular points at z = ±3i

a. c1 : |z− 3i| = 4. The singular point

z0 = 3i lies inside c1 and the singular point

z = −3i lies outside c1 (Fig. 23.25).

Fig. 23.25

By Integral formula

I1 =
 
c1

dz

z2 + 9
=
 
c1

dz

(z+ 3i)(z− 3i)

=
 
c1

 
1

z+ 3i

 
· dz

z− 3i

where f (z) = 1
z+3i and z0 = 3i

I = 2πi · f (3i) = 2πi · 1

3i + 3i
= π

3
.

b. c2 : |z+ 3i| = 2 contains z = −3i but z = 3i

lies outside c2 (Fig. 23.26).
So by integral formula

I2 =
 
c2

 
1

z− 3i

 
· dz

z− (−3i) = 2πi
1

z− 3i

    
z=−3i

I2 = 2πi · 1

−3i − 3i
= −π

3

Fig. 23.26

c. c : |z| = 5, contains both the singular points z =
±3i. Construct two circles c1 and c2 with these

points as centres such that c1, c2 do not overlap

and lie completely inside c. Then f (z) = 1

z2+9
is analytic in the multiply connected domain in

between c, c1 and c2 (Fig. 23.27).

Fig. 23.27

So by Cauchy’s theorem 
c

1

z2 + 9
dz=

 
c1

dz

z2 + 9
+
 
c2

dz

z2 + 9

= π
3
− π

3
= 0

using (a) and (b) above.
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EXERCISE

Integrate the given function around the given

contour c:

1. ez

(z2+1) , (a) c : |z− i| = 1 (b) |z+ i| = 1

Ans. (a)π (cos 1+ i sin 1) (b)−π (cos 1− i sin 1)
2. (z3−6)

(2z−i) , c : |z| = 1

Ans. π
8
− 6πi

3. (z2+1)
(z2−1) , (a) c1 : |z− 1|=1, (b) c2 : |z+1| = 1,

(c) c3 : |z− i| = 1

Ans. (a) 2πi (b)−2πi (c) 0 (by Cauchy’s theo-

rem)

4. tan z

(z2−1) , c : |z| =
3
2
(counter clockwise)

Ans. 2πi tan 1, use partial fractions: 1

z2−1 =
1
z−1 −

1
z+1

5. (z2−z+1)
(z−1) , (a) c : |z| = 1, (b) |z| = 1

2

Ans. (a) 2πi (b) 0 (by Cauchy’s theorem)

6. e2z 
(z−1)(z−2)

 , c : |z| = 3

Ans. 2πi(e4 − e2)
7. cosπz

(z2−1) , c : rectangle with vertices ±2± i
Ans. 0 (use partial fractions 1

z2−1 =
1
z−1 − 1

z+1 )

8. cos(2πz) 
(2z−1)(z−3)

 , c : |z| = 1

Ans. 2πi
5

9. sin z

(z2−iz+2) (a) c1 : |z+ 2| = 2 (b) c2: rectangle

with vertices at (1, 0), (1, 3), (−1, 3), (−1, 0)
(c) c3: rectangle with vertices at (2, 0),

(2, 3)(−2, 3), (−2,−3).
Ans. (a) 0 (by Cauchy’s theorem)

(b) i 2π
3
· sinh 2 (c) i 2π

3
(sinh 2+ sinh 1)

10. (z+4)
(z2+2z+5) , c : |z+ 1− i| = 2

Ans. π
2
(3+ 2i)

11. (sin πz2+cosπz2)
(z−1)(z−2) , c : |z| = 3

Ans. 4πi

12. Determine F (4), F (+i), F  (−1), F   (−i) if

F (α) =
 
c

4z2 + z+ 5

z− α dz,

c : ellipse
 x
2

 2
+
 y
3

 2
= 1

Ans. 0, 2π (i − 1),−14πi, 16πi.

23.4 DERIVATIVE OF ANALYTIC

FUNCTIONS

Formally differentiating the Cauchy’s formula under
the integral sign w.r.t. z0 
c

(−1) · f (z)
(z− z0)2

· (−1)dz =
 
c

f (z)

(z− z0)2
dz = 2πif  (z0).

Similarly differentiating once more w.r.t., z0

2πif   (z0) =
 
c

f (z)

(z− z0)3
· 2! dz

In general, after n differentiations w.r.t., z0, we get
the generalized Cauchy’s integral formula 

c

f (z)

(z− z0)n+1
dz = 2πi

n!
f (n)(z0)

or

f (n)(z0) =
n!

2πi

 
c

f (z)

(z− z0)n+1
dz, n = 1, 2, . . .

Thus the values of the derivatives of an analytic func-

tion f (z) at a point z0 are given by the above formula.

Hence for an analytic function f (z) the derivatives of

all orders exist and are themselves analytic. In con-

tract, from the knowledge of the first derivative of a

real function, no information is obtained about the

second and higher order derivatives.

Note: In Cauchy’s integral formula for multiply

connected domains, c is replaced by the oriented

boundary B of the multiply connected domain.

WORKED OUT EXAMPLES

Example 1: Evaluate
 
c

e3zdz

(z−ln 2)4 where c is the

square with vertices at ±1± i (Fig. 23.28).
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Solution: Here z0 = ln 2 = 0.69315 lies inside the
square c. Using generalized Cauchy’s integral for-
mula

I =
 
c

e3z · dz

(z− ln 2)3+1
= 2πi

3!
· d

3

dz3
(e3z)

    
at z=ln 2

= πi
3
27e3z

    
z=ln 2

= 9πie3 ln 2 = 72πi

Fig. 23.28

Example 2: Evaluate
 
c

ezdz

z(1−z)3 where c is

(a) |z| = 1
2

(b) |z− 1| = 1
2

(c) |z| = 2

(Fig. 23.29).

Solution: z = 0, 1 are the singular points

a. c1 : |z| = 1
2
contains 0 but does not contain z = 1.

Fig. 23.29

Using integral formula

I1 =
 
c1

ez

(1− z)3 ·
dz

z− 0
= 2πi·

 
ez

(1− z)3
 
at z=0

= 2πi

since ez

(1−z)3 is analytic inside c1.

b. c2 : |z− 1| = 1
2
contains 1 but not 0.

Rewriting

I2 =
 
c2

ez

z
· dz

(1− z)2+1 .

Fig. 23.30

Since ez

z
is analytic inside c2 (Fig. 23.30),

applying generalized formula with n = 2,

I2 =
 
c2

−e
z

z

dz

(z− 1)2+1
= −2πi

2!

d2

dz2

 
ez

z

     
at z=1

I2 =−πi
 
zez − ez
z2

− z
2ez − 2zez

z4

 
at z=1

= −πei

c. c : |z| = 2 contains both the singular points
z = 0, 1. Construct two circles c1, and c2 with
centres at 0 and 1 such that they do not over-
lap and lie completely inside c (Fig. 23.31). Then

f (z) = ez 
z(1−z)3

 is analytic in the region between
c, c1, and c2. By Cauchy’s theorem for multiply
connected domain 
c

ez

z(1− z)3 dz=
 
c1

ez

z(1− z)3 dz+
 
c2

ez

z(1− z)3 dz

= 2πi − πei = πi(2− e)

where results (a) and (b) above are used.

Fig. 23.31

Example 3: Show that
 
c

f  (z)dz
z−z0 =

 
c

f (z)dz

(z−z0)2
if f

is analytic within and on a simple closed curve c and

z0 is not on c.

Solution:

i. If z0 is outside c then
f  

(z−z0) and
f

(z−z0)2
are both

analytic in c and by Cauchy’s theorem both the

integrals are zero.
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ii. If z0 is interior of c, then by generalized Cauchy’s
integral formula and Cauchy’s integral formula 
c

f (z)

(z− z0)2
dz = 2πi

1!
f  (z0) =

 
c

f  (z)
z− z0

dz

EXERCISE

Integrate the given function around the given curve

traversed in counter-clockwise direction:

1. cos z

(z−πi)2 , c : |z| = 5

Ans. 2π sinh π

2. (z4−3z2+6)
(z+i)3 , c : |z| = 2

Ans. −18πi
3. ez

(z−1)2(z2+4) , c : |z− 1| = 1
2

Ans. 6eπ
25

4. sin2 z

(z− π6 )
3 , c : |z| = 1

Ans. πi

5. e2z

(z+1)4 , c : |z| = 3

Ans. 8πie−2
3

6. ez

(z2+π2)2 , c : |z| = 4

Ans. i
π

7. (z3−z)
(z−2)3 , c1 : |z| = 3, c2 : |z− 2| = 1,

c3 : |z| = 1

Ans. 12πi, 12πi, 0

8. ez

z3
, c : |z| = 1

Ans. πi

9. sin 2z

(z+3)(z+1)2 , c : rectangle with vertices
at 3+ i,−2+ i,−2− i, 3− i

Ans.
πi(4 cos 2+sin 2)

2

10. z−2n−1 cos z, c : |z| = 1

Hint: 2nth derivative of cos z is (−1)n cos z
Ans. (−1)n 2πi

(2n)!

11. ezt

(z2+1)2 , c : |z| = 3, t > 0

Ans. πi(sin t − t cos t)

12.
tan( z

2
)

(z−1−i)2 , c : rectangle with vertices at± 2± 2i

Ans. πi sec2
 
(1+i)
2

 
13. cosh z

z4
, c : |z| = 1

2

Ans. 0

14. Show that
 π
0
ek cos θ · cos(k sin θ )dθ = π and π

0
ek cos θ · sin(k sin θ )dθ = 0.

Hint: By Cauchy’s integral formulae
 
c
ekz

z
dz

= 2πi, c : |z| = 1. Equate real and imaginary

parts.

23.5 COMPLEX SEQUENCE, SERIES AND

POWER SERIES

Sequence and Series

A sequence of complex numbers z1,z2,z3, . . . zn, . . .

is an assignment to each positive integer n a

complex number zn called the term of the sequence.

A sequence denoted by {zn} is said to be convergent
if lim
n→∞

zn = c = (finite quantity) otherwise it is said

to be divergent.
An infinite complex series or infinite series or

simply series is the sum of the terms of a given
sequence of complex numbers z1, z2, . . . zn, . . . de-
noted by

∞ 
n=1

zn = z1 + z2 + z3 + · · · + zn + · · · .

z1, z2, . . . zn . . . are known as 1st, 2nd, . . . , nth . . .
term of series. The nth partial sum of a series is the
sum of the first n terms of the series, denoted by

Sn = z1 + z2 + · · · + zn =
n 
m=1

zm

A series is said to be convergent to a sum S if

lim
n→∞

Sn = S i.e., if sequence of partial sums con-

verges. Otherwise the series is said to be divergent.

Power Series

A power series in powers of (z− z0) is a series of
the form

∞ 
n=0

an(z− z0)n = a0 + a1(z− z0)+ a2(z− z0)2 + · · ·
(1)
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Here a0, a1, a2 · · · are complex (or real) constants

known as coefficients of the series, (1) z is a com-

plex variable and z0 is called the centre of the series.

(1) is also known as power series about the point z0.

Power series in powers of z is

∞ 
n=0

anz
n = a0 + a1z+ a2z2 + · · · (2)

obtained as a particular case with z0 = 0 in (1).

Region of convergence

of a series is the set of all points z for which the series

converges.

Power series converges in a disk

Three distinct possibilities exist regarding the region

of convergence of a power series (1).

i. The series converges only at the point z = z0.
ii. The series converges for all z (i.e., in the whole

plane).

iii. The series converges everywhere inside a circu-

lar disk |z− z0| < R and diverges everywhere

outside the disk |z− z0| > R. Here R is known

as the radius of convergence and the circle

|z− z0| = R as the circle of convergence.

Note: Series may converge or diverge at the points

on the circle of convergence.

Examples:

1. Geometric series:
∞ 
m=0
zm = 1+ z+ z2 + · · ·

converges absolutely when |z| < 1 and diverges

when |z| > 1 i.e., R = 1.

2. Power series:
∞ 
n=0

zn

n!
converges for all z

i.e., R = ∞
3.

∞ 
n=0
nnzn diverges for all z except z0 = 0 i.e.,

R = 0.

Termwise integration of power series:

 
c

∞ 
n=0

cn(z− z0)ndz =
∞ 
n=0

cn

 
c

(z− a)ndz

Power series represent analytic functions. Con-

versely every analytic function can be represented

as a power series known as the Taylor series.

A function f (z) can be expanded about a singular

point z0 as a Laurent series containing both positive

and negative integer powers of (z− z0).

23.6 TAYLOR’S SERIES (THEOREM)

A function f (z) which is analytic at all points within

a circle c2 with centre at z0 and of radius R2 can be

represented uniquely as a convergent power series in

c2 known as the Taylor’s series given by

f (z) =
∞ 
n=0

an(z− z0)n (1)

where an = f (n)(z0)

n!
.

Proof: Let z be any arbitrary point inside a circle

c1 with centre at z0 and of radius R1 < R2. (see Fig.

23.32).

Fig. 23.32

By Cauchy’s integral formula, we have

f (z) = 1

2πi

 
c1

f (α)

α − zdα (2)

The integrand of (2) can be written using binomial
series as

1

α − z =
1

α − z0 + z0 − z
= 1

α − z0
· 1

1− z−z0
α−z0

= 1

α − z0

∞ 
n=0

 
z− z0
α − z0

 n
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=
∞ 
n=0

(z− z0)n
(α − z0)n+1

(3)

because

   z−z0α−z0

   < 1 (i.e., |z− z0| < |α − z0|)
Putting (3) in (2) and integrating termwise

f (z)= 1

2πi

 
c1

f (α)

 ∞ 
n=0

(z− z0)n
(α − z0)n+1

 
dα

=
∞ 
n=0

1

2πi

  
c1

f (α) · dα
(α − z0)n+1

 
(z− z0)n (4)

f (z)=
∞ 
n=0

an(z− z0)n (5)

where an =
1

2πi

 
c1

f (α)dα

(α − z0)n+1

= 1

2πi

 
c

f (α)dα

(α − z0)n+1
(6)

Sincef (z) is analyticwithin c2, byCauchy’s theorem

the circle c1 in (4) can be replaced by any closed

contour c completely lying inside c2. By Cauchy’s

integral formula for derivatives

an =
1

2πi

 
c

f (α)dα

(α − z0)n+1
= f

(n)(z0)

n!
(7)

Substituting (7) in (5), we get the Taylor’s series ex-

pansion of f (z) with centre at z0 (or about z0) as

f (z) =
∞ 
n=0

f (n)(z0)

n!
(z− z0)n (8)

Corollary: Maclaurin’s series is a Taylor’s series

about z0 = 0 (i.e., the centre is origin), given by

f (z) =
∞ 
n=0

f (n)(0)

n!
zn (9)

Standard Maclaurin’s Series

1. ez =
∞ 
n=0

zn

n!
for |z| <∞

since f (n)(z) = dn

dzn
ez = ez, f (n)(0) = e0 = 1,

for any n.

2. sin z =
∞ 
n=0

(−1)n z2n+1
(2n+1)! for |z| <∞.

3. cos z =
∞ 
n=0

(−1)n z2n
(2n)!

for |z| <∞.

4. sinh z =
∞ 
n=0

z2n+1
(2n+1)! for |z| <∞.

5. cosh z =
∞ 
n=0

z2n

(2n)!
for |z| <∞.

6. 1
1−z =

∞ 
n=0
zn for |z| < 1

(known as geometric series).

7. Ln(1+ z) = z− z2

2
+ z3

3!
+ · · · for |z| < 1

Hint: nth derivative= (−1)n−1 · (n−1)!(1+z)−n.
8. 1

(1−z)m =
∞ 
n=0

(m+n−1)!
(m−1)!n! z

n for |z| < 1

= 1+mz+ m(m+1)
2!

z2

+m(m+1)(m+2)
3!

z3 + · · ·
(known as binomial series for any positive

integer m).

9. 1
(1+z)m =

∞ 
n=0

 −m
n

 
zn = 1−mz+ m(m+1)

2!
z2

−m(m+1)(m+2)
3!

z3 + · · ·

WORKED OUT EXAMPLES

Find the Taylor’s series expansion of f (z) about

the indicated point. Determine the region of conver-

gence:

Example 1: ez about z = a

Solution: Direct method:
Taylor’s series of f (z) is

f (z) =
 f (n)(a)

n!
(z− a)n

Here f (z) = ez, f (n)(z) = ez, f (n)(a) = ea
So

ez =
 ea

n!
(z− a)n = ea

∞ 
n=0

(z− a)n
n!

Indirect method:

ez = ez−a+a = ea · ez−a

= ea ·
∞ 
n=0

(z− a)n
n!

, |z− a| <∞.
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Example 2: f (z) = a
bz+c about z0

Solution:

f (z)= a

bz+ c =
a

bz− bz0 + bz0 + c

= 1

(bz0 + c)


 a

1+ b(z−z0)
bz0+c




put bz0 + c = d,
b

d
= e

= a
d

 
1

1+ e(z− z0)

 

Expanding by binomial series

= a
d

 ∞ 
n=0

(−1)nen(z− z0)n
 

if |e(z− z0)| < 1

f (z)= a

bz0 + c
∞ 
n=0

(−1)n
 

b

bz0 + c

 n
(z− z0)n

if |z− z0| <
1

e
= d
b
.

Example 3: f (z) = 1
4−3z , z0 = 1+ i

Solution: In the previous problem

a = 1, b = −3, c = 4, z0 = 1+ i, d = b z0 + c

=−3(1+ i)+ 4 = 1− 3i

f (z)= 1

1− 3i

∞ 
n=0

(−1)n
 −3
1− 3i

 n  
z− (1+ i)

 n
.

Region of convergence

|z− (1+ i)| < bz0 + c
b

=
    1− 3i

−3

    
or

    z− (1+ i)
    <
√
10

3
.

Example 4: f (z) = 1

z2−z−6 about (a) z = −1,
(b) z = 1.

Solution: By partial fractions

f (z)= 1

z2 − z− 6
= 1

(z− 3)(z+ 2)

= 1

5

 
1

z− 3
− 1

z+ 2

 

a. About z = −1 i.e., in powers of (z+ 1)

f (z)= 1

5

 
1

z− 3
− 1

z+ 2

 

= 1

5

 
1

z+ 1− 4
− 1

1+ (z+ 1)

 

= 1

5

1

−4
 
1−
 
z+1
4

  − 1

5

1

1+ (z+ 1)

Expanding by binomial series

=− 1

20

∞ 
n=0

 
z+ 1

4

 n
− 1

5

 
(−1)n(z+ 1)n

= 1

20

∞ 
n=0

(−4)n+1 − 1

4n
(z+ 1)n

Valid for |z+ 1| < 1 i.e., region of convergence

is the interior of circle with centre at z = −1 and
radius 1.

b. About z = 1 i.e., in powers of (z− 1)

f (z)= 1

5

 
1

z− 3
− 1

z+ 2

 

= 1

5

 
1

z− 1− 2
− 1

z− 1+ 3

 

= 1

5


 1

−2
 
1−
 
z−1
2

  

− 1

5
· 1
3

1

1+
 
z−1
3

 
Expanding by binomial series

f (z)=− 1

10

∞ 
n=0

 
z− 1

2

 n
− 1

15

∞ 
n=0

(−1)n
 
z− 1

3

 n

valid when
  z−1

2

  < 1 and
  z−1

3

  < 1

Region of convergence is |z− 1| < 2

(common region).

Example 5: f (z) = 1

(2z+1)3 about (a) z = 0

(b) about z = 2.

Solution:

a. About z = 0

From binomial series
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1

(1− z)m =
∞ 
n=0

(m+ n− 1)!

(m− 1)!n!
, |z| < 1

with m = 3, we get

1

(1+ 2z)3
=
∞ 
n=0

(−1)n(3+ n− 1)!

2!n!
(2z)n if |2z|<1

=
 (−1)n

2
(n+ 2)(n+ 1) · 2n · zn

if |z| < 1

2

b. About z = 2

1

(1+ 2z)3
= 1

(1+ 2z− 4+ 4)3

= 1

53

1 
1+ 2

5
(z− 2)

 3

= 1

125

∞ 
n=0

(−1)n · (n+ 2)(n+ 1)

2
×

×
 
2

5

 n
(z− 2)n

with region of convergence
  2
5
(z− 2)

  < 1

i.e., |z− 2| < 5

2
.

Example 6: f (z) = cosh z (a) z0 (b) z0 = πi
Solution: a.

f (z)= cosh z = e
z + e−z

2

= e
z−z0+z0 + e−z+z0−z0

2

= 1

2
ez0 · ez−z0 + e

−z0

2
· e−(z−z0)

= 1

2
ez0 ·
 (z− z0)n

n!
+ e

−z0

2
·
 (−1)n(z− z0)n

n!

b. put z0 = πi

f (z)=−1

2

 (z− πi)n
n!

− 1

2

 (z− πi)n · (−1)n
n!

f (z)=−
∞ 
n=0

(z− πi)2n
(2n)!

if |z− πi| <∞.

Example 7: f (z) = ez sin z, about z = 0

Solution:

f (z)= ez · sin z =
 ∞ 
n=0

zn

n!

  ∞ 
n=0

(−1)nz2n+1
(2n+ 1)!

 

=
 
1+ z+ z

2

2!
+ z

3

3!
+ · · ·

  
z− z

3

3!
+ z

5

5!
+ · · ·

 

= z+ z2 + z
3

3
− 1

30
z5 + · · ·

Example 8: Find Maclaurin’s series by termwise

integrating the integrand: f (z) = ez2  z
0
et

2
dt .

Solution:

et
2 =

∞ 
n=0

(t2)n

n!
=
∞ 
n=0

t2n

n!

 z
0

et
2
dt =

 z
0

 
1+ t2 + t

4

2!
+ t

6

3!
+ t

8

4!
+ · · ·

 
dt

= z+ z
3

3
+ 1

2!

z5

5
+ 1

3!

z7

7
+ 1

4!

z9

9
+ · · ·

Then

ez
2
 z
0

et
2
dt =

 
1+ z2 + z

4

2!
+ z

6

3!
+ z

8

4!
+ · · ·

 
 
z+ z

3

3!
+ 1

2!

z5

5
+ 1

3!

z7

7
+ · · ·

 

= z+ 7

6
z3 + 23

30
z5 + · · ·

EXERCISE

Find the Taylor’s series expansion of f (z) about

the indicated point z0. Determine the region of

convergence:

1. 1

1+z2 , z0 = 0

Ans.
∞ 
0

(−1)nz2n, |z| < 1

2. tan−1, z0 = 0

Hint: (tan−1 z) = 1

1+z2 , integrate series in the
above Example 1.

Ans. z− z3

3
+ z5

5
−+ · · · , |z| < 1
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3. 1
α−z , z = z0

Ans. 1
α−z0

∞ 
n=0

 
z−z0
α−z0

 n
, |z− z0| < |α − z0|

4. 2z2+9z+5
z3+z2−8z−12 , z0 = 1

Hint: By partial fractions = 1

(z+2)2 +
2
z−3 , use

binomial series = 1

[3+(z−1)]2 −
2

2−(z−1) .

Ans.
∞ 
n=0

 
(−1)n(n+1)

3n+2 − 1
2n

 
(z− 1)n, |z− 1| < 2

5. 3

3z−z2 , z0 = 1

Ans. 3
2
− 3

4
(z− 1)+ 9

8
(z− 1)2 +

· · ·
 

1

2n+1 + (−1)n
 
(z− 1)n + · · ·

6. sinh z, z0 = −iπ

Ans. i
∞ 
n=0

(z+iπ )2n+1
(2n+1)!

7. 1

(3−z)2 , z0 = i

Ans. 1

(3−i)2
∞ 
n=0

(n+ 1)
 
z−i
3−i
 n
, |z− i| < |3− i|

8. ln
 
1+z
1−z
 
, z0 = 0

Ans.
∞ 
n=0

2z2n+1
2n+1 , |z| < 1

9. sin z, z0 = π
4

Ans. 1√
2

 
1+  z− π

4

 − (z− π4 )
2

2!
− (z− π4 )

3

3!
+

· · · , |z| <∞
 

10. 1

(z+1)2 , z0 = −i

Ans. i
2

 
1+

∞ 
n=1

(−1)n(n+1)(z+i)n
(1−i)n

 

11. 2z3+1
z2+z , z0 = i
Hint: Partial fractions: (2i − 2)+ 2(z− i)+
1
z
+ 1

z+1 .

Ans.
 
i
2
− 3

2

 +  3+ i
2

 
(z− i)+

∞ 
n=2

(−1)n
"

1

in+1 +
1

(1+i)n+1
#
(z− i)n

12. 1
(z−1)(z−2) , z0 = 0

Ans. 1
2
+ 3

4
z+ 7

8
z2 + 15

16
z3 + · · · , |z| < 1

13. ez

cos z
, z0 = 0

Hint:Method of undetermined coefficients:

Assume ez

cos z
= a0 + a1z+ a2z2 + a3z3 + · · ·

∞ 
n=0

zn

n!
=
 ∞ 
n=0

anz
n

  ∞ 
n=0

(−1)nz2n
(2n)!

 

Equate coefficients of like powers of z.

Ans. 1+ z+ z2 + 2
3
z3 + · · ·

14. z−1
z2
, z0 = 1

Ans.
∞ 
n=1

(−1)n+1 · n · (z− 1)n

15. ez · cosh z, z0 = 0

Hint: Multiply the series
  

zn

n!

 
·
  

z2n

2n!

 
.

Ans. 1+ z+ z2 + 5
6
z3 + · · ·

16. ez

z(z+1) , z0 = 2

Ans. 1
6
− 5

9
(z− 2)+ 19

27
(z− 2)2 + · · · , |z− 2|< 1

17. Evaluate the integral of the series
∞ 
n=0
zn along

a straight-line path from z = 0 to z = 1+i
2
.

Hint:
 
c

∞ 
0

zndz =  1+i
2

0
dz
1−z

= − ln(1− z)
   z=(1+i)2

z=0

Ans.
 
1+i
2

 + 1
2

 
1+i
2

 2 + 1
3

 
1+i
2

 3 + · · ·

23.7 LAURENT SERIES

Let f (z) be analytic on two concentric circles c1 and

c2 with centre z0 and radii R1 and R2 and in the an-

nulus region R1 < |z− z0| < R2 (Fig. 23.33). Then

f (z) is uniquely represented by a convergent Lau-

rent series given by

f (z) =
∞ 
n=0

an(z− z0)n +
∞ 
n=1

bn

(z− z0)n
(1)
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Fig. 23.33

Proof: For any arbitrary point z0 in the annulus
region, applying Cauchy’s integral formula for mul-
tiply connected domain, we have

f (z)= 1

2πi

 
c2

f (α)

α − zdα +

+ 1

2πi

 
c1

f (α)

α − zdα = I1 + I2 (2)

Since

   z−z0α−z0

   < 1 for any α on c2, the integrand
1
α−z

of the first integral I1 can be represented as

1

α − z =
1

α − z0 − (z− z0)
= 1

α − z0
1

1− z−z0
α−z0

= 1

α − z0
·
∞ 
n=0

 
z− z0
α − z0

 n
(3)

Using (3) in I1 and performing term by term integra-
tion, we get

I1 =
1

2πi

 
c2

f (α)

α − zdα

=
∞ 
n=0

 
1

2πi

 
c2

f (α)

(α − z0)n+1
dα

 
(z− z0)n

I1 =
∞ 
n=0

an(z− z0)n (4)

where an =
1

2πi

 
c

f (α)

(α − z0)n+1
dα (5)

Here c is any simple closed curve completely lying in

the annulus region and traversed in counterclockwise

direction.

For any α on c1,

   α−z0z−z0

   < 1. So the integrand of

I2 can be expressed as

1

α − z =
1

α − z0 − (z− z0)
= −1

(z− z0)
1

1−
 
α−z0
z−z0

 

= −1
(z− z0)

∞ 
n=0

 
α − z0
z− z0

 n
= −

∞ 
n=0

(α − z0)n
(z− z0)n+1

=−
∞ 
m=1

(α − z0)
(z− z0)m

(6)

Using (6) in I2 and performing integration

I2 =
−1
2πi

 
c1

f (α)

α − zdα

=+
∞ 
m=1

 
1

2πi

 
c1

f (α) · (α − z0)m−1dα
 

1

(z− z0)m

Here c1 is traversed in counterclockwise direction,
so minus sign is absorbed.

I2 =
∞ 
n=1

bn ·
1

(z− z0)n
(7)

where

bn =
1

2πi

 
c

f (α)

(α − z0)−n+1
dα (8)

with c traversed in the counterclockwise direction.

Thus using (4) and (7) in (2), we get the required

Laurent series (1) where an, bn are given by (5) and

(8).

Note: Laurent series (1) can also be written as

f (z)=
∞ 

n=−∞
cn(z− z0)n (9)

where cn =
1

2πi

 
c

f (α)

(α − z0)n+1
dα (10)

Note 1: If f (z) is analytic at all points inside c1
(i.e., no singular points inside c2) then by Cauchy’s

theorem bn = 0 for all n− 1 ≥ 0.

Hence the Laurent series reduces to Taylor se-

ries. Thus Laurent series expansion about an analytic

point z0 is Taylor series about z0.
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Note 2: The region of convergence (validity) of
Laurent series is the annulus region,

R1 < |z− z0| < R2

Note3: If z0 is the only singular point inside c1, then

series is convergent in the deleted neighbourhood

0 < |z− z0| < R1.

Note 4: In practice, the Laurent series is ob-

tained by rearrangement, manipulation and using

the standard series expansions (both Taylor’s and

Maclaurin’s) and not by formulae (5) and (8).

Note 5: If f (z) has more than one singular point,

then several (more than one) Laurent series expan-

sions can be obtained about the same singular point

by appropriately considering analytic regions about

(centered) at z0.

WORKED OUT EXAMPLES

Example 1: Find Laurent series of f (z) = sinh 3z

z3

for 0 < |z| <∞.

Solution:

sinh 3z

z3
= 1

z3
·
∞ 
n=0

(3z)2n+1

(2n+ 1)!

=
∞ 
n=0

32n+1 · z2n−2
(2n+ 1)!

= 3

z2
+ 9

2
+ 81

40
z2 + · · ·

Example 2: Find Laurent series of f (z) = 1

z2+1
about its singular points. Determine the region of

convergence.

Solution: f (z) has two singular points at z = ±i

a. Laurent series about z = i
f (z)= 1

z2+1 =
1

(z−i)(z+i) =
1

(z−i) ·
1

z−i+2i

= 1

(z− i)
1

2i

1

1+
 
z−i
2i

 provided

    z− i2i

    < 1

= 1

2i

1

z− i ·
∞ 
n=0

(−1)n
 
z− i
2i

 n

if |z− i| < |2i| = 2

f (z)=
∞ 
n=0

(−1)n (z− i)
n−1

(2i)n+1
if |z− i| < 2

Region of convergence is |z− i| < 2

b. Laurent series about z = −i

f (z)= 1

z2 + 1
= 1

(z+ i)
1

(z− i)

= 1

(z+ i) ·
1

z+ i − 2i

= 1

z+ i
1

(−2i)
 
1− z+i

2i

 

= 1

z+ i

 −1
2i

 
·
∞ 
n=0

 
z+ i
2i

 n
if

    z+ i2i

    < 1

=−
∞ 
n=0

(z+ i)n−1
(2i)n+1

Region of convergence is |z+ i| < 2.

Example 3: Find Laurent series of f (z) = ez

z(1−z)
about z = 1. Find region of convergence.

Solution:

f (z)= ez

z(1− z) =
1

e
· ez−1 · 1

(z− 1+ 1)
· 1

(1− z)

= 1

e

1

1− z · e
z−1 · 1

1+ (z− 1)

= −1
e(z− 1)

 ∞ 
n=0

(z− 1)n

n!

  ∞ 
n=0

(−1)n(z− 1)n

 

if |z− 1| < 1

=−1

e

1

(z− 1)

 
1+ (z− 1)+ (z− 1)2

2!

+ (z− 3)3

3!
+ · · ·

 
×

×
 
1− (z− 1)+ (z− 1)2 − (z− 1)3 + · · ·

 

=−1

e

 
1

z− 1

  
1+ 3

2
(z− 1)2 − 1

3
(z− 1)3 + · · ·

 

f (z)= 1

e

 
− 1

z− 1
− 3

2
(z− 1)+ 1

3
(z− 1)2 + · · ·

 



23.24 HIGHER ENGINEERING MATHEMATICS—VI

Region of convergence is |z− 1| < 1

Example 4: Find all possible Laurent series of

f (z) = 7z2+9z−18
z3−9z about its singular points.

Solution: f (z) has three singular points z = 0, −3
and 3. By partial fractions

f (z)= 7z2 + 9z− 18

z(z+ 3)(z− 3)
= A
z
+ B

z+ 3
+ C

z− 3

= 2

z
+ 1

z+ 3
+ 4

z− 3

Case 1: The two analytic regions about z = 0 are

(a) 0 < |z− 0| < 3 and (b) |z− 0| > 3. So we get

two Laurent series of f (z) about the singular point

z = 0 (Fig. 23.34).

Fig. 23.34

a. For 0 < |z| < 3

f (z)= 2

z
+ 1

z+ 3
+ 4

z− 3

= 2

z
+ 1

3

1

1+ z
3

− 4

3

1

1− z
3

= 2

z
+ 1

3

∞ 
n=0

(−1)n
 z
3

 n
− 4

3

  z
3

 n

Fig. 23.35

provided
  z
3

  < 1 or 0 < |z| < 3

f (z) = 2

z
+
∞ 
n=0

 
(−1)n − 4

 
zn

3n+1
,

b. For |z| > 3

f (z)= 2

z
+ 1

z+ 3
+ 4

z− 3

= 2

z
+ 1

z

1

1+ 3
z

+ 4

z

1

1− 3
z

= 2

z
+ 1

z

∞ 
n=0

(−1)n
 
3

z

 n
+ 4

z

∞ 
n=0

 
3

z

 n

f (z)= 2

z
+
∞ 
n=0

 
(−1)n + 4

 
3n

zn+1

Fig. 23.36

Case 2: (refer Fig. 23.37). The three analytic re-

gions of f (z) about z = 3 are

a. 0 < |z− 3| < 3, I

b. 3 < |z− 3| < 6, II

c. |z− 3| > 6, III

Fig. 23.37

So three Laurent series of f (z) about z = 3 can be

obtained as follows:

a. For 0 < |z− 3| < 3. (Region I in Fig. 23.37)

f (z)= 2

z
+ 1

z+ 3
+ 4

z− 3
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= 2

z− 3+ 3
+ 1

z− 3+ 6
+ 4

z− 3

= 2

3

1

1+
 
z−3
3

 + 1

6

1

1+
 
z−3
6

 + 4

z− 3

f (z)= 2

3

 
(−1)n

 
z−3
3

 n
+1

6

 
(−1)n

 
z−3
6

 n

+ 4

z− 3

if
  z−3

3

  < 1 and
  z−3

6

  < 1

i.e., |z− 3| < 3 and |z− 3| < 6,

the common region is 0 < |z− 3| < 3.

b. For 3 < |z− 3| < 6 (Region II in Fig. 23.37)

f (z)= 2

z− 3+ 3
+ 1

z− 3+ 6
+ 4

z− 3

= 1

z− 3
· 2

1+
 

3
z−3
 + 1

6

1

1+
 
z−3
6

 + 4

z− 3

= 1

z− 3
· 2
∞ 
n=0

(−1)n
 

3

z− 3

 n

+1

6

∞ 
n=0

(−1)n
 
z− 3

6

 n
+ 4

z− 3

if
  3
z−3
  < 1 and

  z−3
6

  < 1 i.e., 3 < |z− 3| < 6

c. For |z− 3| > 6 (Region III in Fig. 23.37)

f (z)= 2

z− 3+ 3
+ 1

z− 3+ 6
+ 4

z− 3

= 1

z− 3

2

1+
 

3
z−3
 + 1

z− 3

1

1+
 

6
z−3
 + 4

z− 3

= 2

z− 3
·
∞ 
n=0

(−1)n
 

3

z− 3

 n
+

+ 1

z− 3

 
(−1)n

 
6

z− 3

 n
+ 4

z− 3

if
  3
z−3
  < 1 and

  6
z−3
  < i.e., |z− 3| > 3

and |z− 3| > 6.

The common region is |z− 3| > 6.

Case 3: Three Laurent series of f (z) can be ob-

tained about z = −3 in the regions, I, II, III shown

in Fig. 23.38.

Fig. 23.38

a. For 0 < |z+ 3| < 3

f (z)= 2

z
+ 1

z+ 3
+ 4

z− 3

= 2

z+ 3− 3
+ 1

z+ 3
+ 4

z+ 3− 6

=−2

3

∞ 
n=0

 
z+ 3

3

 n
+ 1

z+ 3
− 4

6

∞ 
n=0

 
z+ 3

6

 n

b. For 3 < |z+ 3| < 6

f (z)= 2

z+ 3

∞ 
n=0

 
3

z+ 3

 n
+ 1

z+ 3

−4

6

∞ 
n=0

 
z+ 3

6

 n

c. For |z+ 3| > 6

f (z)= 2

z+ 3

∞ 
n=0

 
3

z+ 3

 n
+ 1

z+ 3

− 4

(z+ 3)

∞ 
n=0

 
6

z+ 3

 n

Example 5: Show that cosecz = 1
z
+ 1

3!
z+ 7

360
z3

+ · · ·

Solution: cscz = 1
sin z

has singular points at z =
0,±nπ, n integer. Expand in series in 0 < |z| < π .

cosecz = 1

sin z
= 1

z− z3

3!
+ z5

5!
− z7

7!
+ · · ·
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= 1

z

1 
1−
 
z2

3!
− z4

5!
+ z6

7!
+ · · ·

  

= 1

z

 
1+
 
z2

3!
− z

4

5!
+ z

6

7!
+ · · ·

 

+
 
z2

3!
− z

4

5!
+ z

6

7!
+ · · ·

 2
+ · · ·

 

= 1

z

 
1+ z

2

3!
− z

4

5!
+ z4

(3!)2
+ · · ·

 

= 1

z
+ 1

3!
z2 +

 
1

3!2
− 1

5!

 
z3 + · · ·

Example 6: Prove that for k real, k2 < 1

∞ 
n=0

kn sin(n+ 1)θ = sin θ

(1− 2k cos θ + k2)
∞ 
n=0

kn cos(n+ 1)θ = cos θ − k
(1− 2k cos θ + k2)

Solution: 1
z−k = 1

z
1

1− kz
= 1
z

∞ 
0

 
k
z

 n= ∞ 
0

kn

zn+1 ; |z|>k
Put z = eiθ = cos θ + i sin θ

1

z− k =
1

eiθ − k =
 
kn · e−(n+1)θi

=
 
kn cos(n+ 1)θ − i sin(n+ 1)θ (*)

But
1

eiθ−k =
1

cos θ+i sin θ−k =
(cos θ−k)−i sin θ
1−2k cos θ+k2

Comparing real and imaginary parts of (*), the result

is obtained.

EXERCISE

Find the Laurent series of f (z) about the indicated

point. State the region of convergence:

1. z−5 · sin z, z0 = 0

Ans.
∞ 
n=0

(−1)n
(2n+1)!z

2n−4, |z| > 0

2. z2e1/z, z0 = 0

Ans. z2 + z+ 1
2
+ 1

3!
1
z
+ 1

4!
1

z2
+, . . . , |z| > 0

3. 1
1−z , z0 = 0, 1

Ans.
∞ 
n=0
zn(Taylor’s)

|z|<1
,−

∞ 
n=0

1

zn+1 , |z| > 1(Laurent)

4. −2z+3
z3−3z+2 , z0 = 0

a. |z| < 1,
∞ 
0

 
1+ 1

2n+1

 
zn

b. For 1 < |z| < 2,
∞ 
0

1

2n+1 z
n

c. For |z| > 2,−
∞ 
0

(2n + 1) 1

zn+1

Ans. Three Laurent series

5. 7z−2
(z+1)(z)(z−2) , z0 = −1

Ans. Three Laurent series expansions

a. For 0 < |z+ 1| < 1, −3
z+1 − 5

3
− 11

9
(z+ 1)

− 29
27
(z+ 1)2 − 83

81
(z+ 1)3 + . . . .

b. For 1 < |z+ 1| < 3, . . .+ 1

(z+1)3 +
1

(z+1)2
− 2
z+1 − 2

3
− 2

9
(z+ 1)− 2

27
(z+ 1)2 −

− 2
81

(z+ 1)3 + · · · .
c. For |z+ 1| > 3,+ · · · + 19 1

(z+1)3 + 7 1

(z+1)2

6. 1
(1−z)(z−2) , z0 = 0, two Laurent series

a. For 1 < |z| < 2,
∞ 
0

1

zn+1 +
∞ 
0

zn

2n+1

b. For |z| > 2,
∞ 
0

1−2n
zn+1

7. Expand 1
(z+1)(z+3) in Laurent series valid for

a. 1 < |z| < 3

b. |z| > 3

c. 0 < |z+ 1| < 2

d. |z| < 1

Ans. a. − 1

2z4
+ 1

2z3
− 1

2z2
+ 1

2z
− 1

6
+ z

18
− z2

54
+

z3

162
+ · · ·

b. 1

z2
− 4

z3
+ 13

z4
− 40

z5
+ · · · .

c. 1
2(z+1) − 1

4
+ 1

8
(z+ 1)− 1

16
(z+ 1)2 + · · · .

d. 1
3
− 4

9
z+ 13

27
z2 − 40

81
z3 + · · · (Taylor’s se-

ries)

8. Find Laurent series about the indicated singu-
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larity:

a. e2z

(z−1)3 , z = 1

b. (z− 3) sin
 

1
z+2
 
, z = −2

c. z−sin z
z3
, z = 0

d. z
(z+1)(z+2) , z = −2

e. 1

z2(z−3)2 , z = 3

Ans. a. e2

(z−1)3 +
2e2

(z−1)2 +
2e2

(z−1) + 4e2

3
+ 2e2

3
(z− 1)

+ · · · .
b. 1− 5

z+2 − 1

6(z+2)2 +
5

6(z+2)3 +
1

120(z+2)4+ · · · .
c. 1

3!
− z2

5!
+ z4

7!
+ · · · .

d. 2
2+z + 1+ (z+ 2)+ (z+ 2)2 + · · · .

e. 1

9(z−3)2 −
2

27(z−3) + 1
27
− 4(z−3)

243
+ · · · .

9. 1
[(z−a)(z−b)] , 0 < |a| < |b|, around z = 0, a,∞
and annulus |a| < |z| < |b|.

a. 1
b−a ·

∞ 
n=0

bn+1 − an+1
an+1bn+1

· zn for |z| < a

b. 1
a−b

 
1
z−a +

∞ 
n=0

(z− a)n
(b − a)n+1

 
for 0 < |z− a| < |b − a|

c. 1
b−a

∞ 
2

bn−1 − an−1
zn

for |z| > b

d. 1
a−b

∞ 
0

 
zn

bn+1 +
an

zn+1

 
, |a| < |z| < |b|

23.8 ZEROS AND POLES

Zeros

A point z0 is called a zero of an analytic function

f (z) if f (z0) = 0.

Zero of kth order (multiplicity k)

z0 is called a zero of kth order if not only f but also

the derivatives f  , f   , . . . , f (k−1) are all zero at z0
and f (k)(z0)  = 0.

Simple zero is a zero of first order k = 1 (i.e.,

f (z0) = 0, and f  (z0)  = 0).
By expanding f (z) about z0 in power series

f (z) =
∞ 
n=0
an(z− z0)n

it follows that when z0 is a simple zero, a0 = 0. For a

kth order zero, a0, a1, a2, . . . , ak−1 are all zero while
ak  = 0.

Poles

A regular point of f (z) is a point where f (z) is ana-

lytic.

A singular point or singularity of f (z) is a point z0
at which f (z) is not analytic. However, every neigh-

bourhood of z0 contains points at which f (z) is an-

alytic.

Isolated singular point (ISP)

A singular point z0 is said to be an isolated singular

point if there exists a neighbourhood of z0 which

does not contain any other singular point of f (z).

Classification of Isolated Singular Point z0

Expand f (z) about the singular point z0 in Laurent
series in the annulus region 0 < |z− z0| < R, we
get

f (z) =
∞ 
n=0
an(z− z0)n +

∞ 
n=1

bn

(z− z0)n

Then, the series of negative integer powers of

(z−z0) namely
∞ 
n=1

bn
(z−z0)n is known as the “principal

part” of the Laurent series expansion of f (z)

about z0.

Removable singularity(ISP)

If all the coefficients bn’s are zero, i.e., Laurent series

does not contain negative integer powers of (z− z0)
then z0 is called a removable singularity i.e., f (z) can

be made analytic by redefining f (z0) suitably i.e., if

lim
z→z0

f (z) exists.

Pole of order m

If the principal part contains a finite number of terms

≤ m involving negative power of (z− z0), then z0
is called a pole of order m, of f (z) i.e., bm  = 0, but
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bn = 0 for n > m. Then |f | → ∞ as z→ z0.

Simple pole is a pole of order one.

Essential singularity

If the principal part contains infinite number of terms

containing negative powers of (z− z0) i.e., all bn’s
are non-zero. i.e., Lim f (z) as z→ z0 does not exist.

Analytic (or singular) at infinity: The behaviour

of f (z) at ∞ can be investigated by introducing

z = 1/w. Then f (z) is said to be analytic (or sin-

gular) at infinity if g(w) is analytic (or singular) at

w = 0.

WORKED OUT EXAMPLES

Zeros

Example 1: Find the orders of all zeros of the given

functions:

a. z2 + 9

Ans. z = ±3i are simple zeros

b. z2+8
z4

Ans. z = ±
√
8i are simple zeros. z = ∞ is a zero

of second order, put w = 1
z
.

1

w2 + 8

1

w4

= 1+ 8w2

w2
· w4 = w2(1+ 8w2)

w = 0 is a zero of second order, so z = ∞ is

a zero of second order

c. f = z sin z.
Ans. z = 0 is a zero of second order, since

f  (0) = sin z+ z cos z = 0, while

f   (0) = 2 cos z− sin z = 2  = 0.

Also z = ±kπ, k = 1, 2, 3, . . . are zeros of

first order.

d. f = (1− ez)(z2 − 4)3

Ans. z = ±2 are zeros of 3rd order. z = 2kπ,

k = 0,±1,±2,± · · · are zeros of first order
e. etan z

Ans. no zeros since ez  = 0 for any z

f. z4 sin2(1/z)

Ans. z = ± 1
nπ
, double zeros for n = 1, 2, 3, . . .

g. (z2−π2) sin z
z7

Ans. z = ±π are 3rd order zeros

z = kπ, k = 0,± 2,± 3, . . . are first order ze-

ros.

Poles

Example 2: Determine and classify all singulari-

ties of the given functions. (See more examples on

page 24.2)

1. 1

z−z3
Ans. z = 0,±1 are poles of first order

z = ∞ is a regular point (zero of 3rd order)

2. z4

1+z4

Ans. z = ±1±i√
2

are simple poles

z = ∞ is a regular point

3. z5

(z−2)2(z2+4)3(z−5)4

Ans. z = 2 double pole,

z = ±2i triple pole
z = 5 is pole of 4th order

z = ∞ is a regular point (zero of 7th order)

4. ez

1+z2
Ans. z = ±i are simple poles

z = ∞ is an essential singularity

(put z = 1
w
, ez

1+z2 =
w2e

1
w

w2+1 , w = 0 is an essen-

tial singularity)

5. cot 1
z
− 1

z

Ans. z = 1
kπ
, k = ±1,±2, . . . are poles of first or-

der, z = 0 is a limit point for poles: z = 0 is

a non-isolated singular point, z = ∞ is a pole

of first order.

6. 1−e2z
z4

Ans. z = 0 a pole of order 3 
since Laurent series

∞
− 
n=1

2n

n!
· zn−4
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7. 1−cos z
z

Ans. z = 0, removable singularity

8. ez/(z−2)

Ans. z = 2 is essential singularity

z = ∞ is removable (put z = 1
w
, e

1
1−2w ).

EXERCISE

Zeros

Determine the location and order of the zeros of the

given functions:

1. z2 + 1

Ans. z = ±i simple zeros

2. (1− z4)2
Ans. z = ±1,±i are double zeros
3. 1− cos z

Ans. z = 2kπ, (k = 0,±1,±2, . . .) are
zeros of 2nd order

4. (1− cos z)2

Ans. 4th order zeros at z = 2kπ ,

where k = 0,±1,±2, . . .
5. ez − e2z

Ans. ±2nπi, n = 0, 1, 2, . . . simple zeros

6. 1−cot z
z

Ans. z = π
4
+ kπ, k = 0,±1,±2, . . . simple

7. cos3 z

Ans. z = (2k + 1)π
2
, k = 0,±1,±2, . . ., 3rd order

8. cos z3

Ans. z = ((2k + 1)π
2
)
1
3 and

z = 1
2

 
(2k + 1)π

2
(1± i

√
3) with

k = 0,±1,±2, . . . simple zeros.

9. ez

Ans. no zeros

10. sin3 z
z

Ans. z = 0, 2nd order

z = kπ, k = ±1,±2, . . ., 3rd order.

Poles

Determine and classify all the singularities of the

given functions:

1. z8+z4+2
(z−1)3(3z+2)2

Ans. z = 1 pole of order 3

z = −2/3 pole of order 2
z = ∞ is pole of order 3

2. z+1
z3(z2+1)

Ans. z = 0, pole of order 3,

z = ±i simple poles

3. 1

z(z−2)5 +
3

(z−2)2

Ans. z = 0 simple pole,

z = 2 pole of order 5

4. 1

sin( πz )

Ans. z = ± 1
n
, n = 1, 2, 3 . . .. are simple poles

z = 0 is a non-isolated singular point

5. sinh z

z4

Ans. z = 0 pole of order 3

6. cosh 1
z

Ans. z = 0 is essential singularity

7. cot z

Ans. z = 0,±nπ (n = 1, 2, 3, . . .) simple

8. 1
z(ez−1)

Ans. z = 0 second order pole

9. z−sin z
z2

Ans. z = 0 is removable singularity

10. (z+ 1) sin 1
z−2

Ans. z = 2 is an essential singularity

11. 1
cos z−sin z

Ans. z = π
4
is simple pole

12. ze
1

z2

Ans. z = 0 essential singularity
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13. z2−1
(z−1)2

Ans. z = 1 is simple pole

14. 1
ez

Ans. no singular points

15. 1
1+1/(1+z)

Ans. z = −2 simple pole

16. 1

z2

Ans. analytic at z = ∞
2nd order zero at∞

17. ez, sin z, cos z

Ans. essential singularity at z = ∞.



Chapter24

Theory of Residues

INTRODUCTION

Residue theorem is a very powerful and elegant the-

orem in complex integration. Using the residue the-

orem many complicated real integrals can be evalu-

ated. It is also used to sum a real convergent series

and to find the inverse Laplace transform.

24.1 RESIDUE

Residue of an analytic function f (z) at an isolated
singular point z = z0 is the coefficient say b1 of
(z− a)−1 in the Laurent series expansion of f (z)
about z0. Residue of f (z) at z0 is denoted by
Res

at z=z0
f (z) or Res

z=z0
f (z). From Laurent series, we

know that the coefficient b1 is given by

b1 = 1

2πi

�
c

f (z)dz

Thus

Residue of
at z=z0

f (z) = Res
z=z0

f (z) = b1 = 1

2πi

�
c

f (z)dz

where c is any closed contour enclosing z0 (and such

that f is analytic on and within c).

Calculation of Residue at Simple Pole

Formula I. Res
z=z0

f (z) = b1 = lim
z→z0

�
(z− z0)f (z)

�
The Laurent series of f (z) about z0 is

f (z) = b1

z− z0
+

∞�
n=0

an(z− z0)
n

is multiplied by (z− z0) which gives

(z− z0)f (z) = b1 + (z− z0)

∞�
n=0

an(z− z0)
n

As z → z0, lim
z→z0

(z− z0)f (z) = b1 + 0 = b1.

Formula II. Suppose f (z) = P (z)

Q(z)
has a simple pole

at z0 such that P (z0)  = 0. Then

Res
z=z0

f (z) = Res
z=z0

P (z)

Q (z)
= P (z0)

Q (z0)
.

Calculation of Residue at a Multiple Pole

The Laurent series expansion of f (z) about a pole z0
of order m > 1 is

f (z) = bm

(z− z0)m
+ bm−1

(z− z0)m−1
+ · · ·

+ b1

(z− z0)
+

∞�
n=0

an(z− z0)
n

Multiply both sides by (z− z0)
m

(z− z0)
mf (z) = bm + bm−1(z− z0) · · ·

+b1(z− z0)
m−1 +

∞�
n=0

an(z− z0)
n+m

Differentiating both sides (n− 1) times and let
z → z0

lim
z→z0

dm−1

dzm−1
(z− z0)

mf (z) = (m− 1)! b1 + 0 + · · ·

24.1
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Thus residue of f (z) at z0 is

b1 = 1

(m− 1)!
lim
z→z0

�
dm−1

dzm−1

�
(z− z0)

m · f (z)�
�

For simple pole (m = 1)

b1 = Res
z=z0

f (z) = lim
z→z0

[(z− z0)f (z)]

Note: When z = z0 is an essential singularity of

f (z) then the above formulae fail. In such cases

the residue at an essential singularity is obtained by

expanding f (z) about z0 in Laurent series (and iden-

tify b1, the coefficient of (z− z0)
−1).

24.2 RESIDUE THEOREM

Residue theorem, which is very powerful (but whose

proof is very simple) is useful in evaluating contour

integrals where the closed contour contains several

singularities inside.

Theorem 1: Let f (z) be analytic within and on a
simple closed path c except at a finite number of
singular points z1, z2, . . . , zn inside c. Then

�
c

f (z) dz = 2πi

n�
i=1

Res
z=zi

f (z)

where the integral is taken counterclockwise around

c. (Fig. 24.1)

Fig. 24.1

Proof: Enclose each of the singular points zi in a
circle ci of small radius such that all these n circles
and curve c are all separated. Then f (z) is analytic
in the multiply connected domain D bounded by B
consisting of c and c1, c2, . . . , cn and on the entire
boundaryB ofD. NowbyCauchy’s integral theorem

(for multiply connected domain), we have�
B

=
�
c+c1+c2+···+cn

=
�
c

f (z) dz+
�
c1

f (z) dz+ · · ·

+
�
cn

f (z) dz = 0

where the integral along c taken in the counterclock-
wise direction and along c1, c2, . . . , cn in the clock-
wise direction. Thus�

c

f (z) dz =
�
c1

f (z) dz+ · · · +
�
cn

f (z) dz

Here c1, c2, . . . , cn are also taken along coun-

terclockwise direction (the minus sign reverses the

sense of integration from clockwise to counterclock-

wise).
By definition of residues�

ci

f (z) dz = 2πi · Res
z=zi

f (z),

for i = 1, 2, 3, . . . , n
Thus�

c

f (z) dz= 2πi

�
Res
z=z1

f (z) + · · · + Res
z=zn

f (z)

�
�
c

f (z) dz= 2πi

n�
i=1

Res
z=zi

f (z).

WORKED OUT EXAMPLES

Residues

Example 1: Expand each of the following function

in a Laurent series about z = 0, name the type of

singularity in each case. Find the residues at z = 0:

(a) z2e−z4 (b) (1−cos z)

z
(c) e

z2

z3
(d) z−1 cosh z−1.

Solution:

a. z2e−z4 = z2
∞�
n=0

(−z4)n
n!

=
∞�
n=0

(−1)nz4n+2

n!

= z2 − z6 + z10

2!
− z14

3!
+ · · ·

Laurent series contains only positive powers of z.

Thus z = 0 is an ordinary point. Residue at z = 0

is 0.
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b. 1−cos z
z

= 1
z

�
1 −

�
1 − z2

2!
+ z4

4!
− · · ·

(−1)n−1z2n−2

(2n−2)!
+ · · ·

��
= 1

z

�
z2

2!
− z4

4!
+ · · · + (−1)nz2n−2

(2n−2)!
+ · · ·

�
= z

2!
− z3

4!
+ z5

6!
+ · · ·

Although 1−cos z
z

is not defined at z = 0,

lim
z→0

1 − cos z

z
= 0

So z = 0 is a removable singularity. Residue is 0.

c. ez
2

z3
= 1

z3

∞�
n=0

(z2)n

n!
= 1

z3

�
1 + z2

1!
+ z4

2!

+z
6

3!
+ · · ·

�

= 1

z3
+ 1

z
+ z

2!
+ z3

3!
+ z5

4!
+ z7

5!
+ · · ·

So the principal part contains finite number of

terms with the highest power 1

z3
. Thus z = 0 is a

pole of order 3. Residue is 1.

d. z−1 cosh z−1 = 1
z

∞�
n=1

�
1

z

�2n−2

· 1

(2n− 2)!

=
∞�
n=1

�
1

z

�2n−1

· 1

(2n− 2)!

= 1

z
+ 1

2!

1

z3
+ 1

4!

1

z5
+ 1

6!

1

z7
+ · · ·

Since the principal part contains infinite number of

terms, so z = 0 is an essential singularity. Residue

is 1.

Example 2: Determine and classify the singular-

ities (a) z
(ez−1)

(b) 1

(2 sin z−1)2
.

Solution:

a. Singularities are the zeros of the denominator i.e.,

ez − 1 = 0 or ez = 1 or e±2nπi = 1.
Therefore the singular points are z =

2mπi,m = ±1,±2, . . . which are simple poles.
But z = 0 is removable singularity since

lim
z→0

z

ez − 1
= lim
z→0

z

1 + z+ z2

2!
+ z3

3!
+ · · · − 1

= lim
z→0

1

1 + z
2!

+ z2

3!
+ · · ·

= 1

z = ∞ is an essential singularity: put w = 1
z
,

z

ez − 1
= 1

w
· 1

e
1
w − 1

= 1

w
· 1�

1 + 1
w

+ 1

w2
1
2!

+ 1

w3
1
3!

+ · · · − 1
�

= 1

w
· 1

1
w

+ 1

w2
1
2!

+ 1

w2
1
3!

+ · · ·

= 1

w2

�
1 + 1

w

1

2!
+ 1

w2

1

w!
+ · · ·

�−1

= 1

w2

�
1 −

�
1

w

1

2!
+ 1

w2

1

3!
+ · · ·

�

+
�
1

w

1

2!
+ 1

w2

1

3!
· · ·
�2

+ · · ·
�

So w = 0 is an essential singularity. Therefore

z = ∞ is an essential singularity.

b. Zeros of 2 sin z− 1 are solutions of sin z = 1
2

eiz−e−iz
2i

= 1
2
, (eiz)2 − ieiz − 1 = 0,

eiz = i±
√
3

2
= ei

�
2mπ + π

6

�
eiz = e

(i+
√
3)

2 = ei(2m+ π
6 ),

eiz = e
i−

√
3

2 = ei((2m+1)π− π
6 )

Thus π
6

+ 2mπ, (2m+ 1)π − π
6
,m = 0,±1,

±2,±3, . . . are poles of order 2.

Example 3: Determine the residues at the poles:

(a) 2z+1

z2−z−2
(b)
�
z+1
z−1

�3
(c) z+1

(z2−16)(z+2)
(d) sin z

z2

(e) 1−e2z
z4

(f) (cscz·cschz)
z3

(g) z2

(z2+3z+2)2
.

Solution:

a. 2z+1

z2−z−2
= 2z+1

(z+1)(z−2)
so z = −1, 2 are poles of

order 1 (simple poles)

Res
z=a f (z) = lim

z→a
[(z− a)f (z)]

Res
at z=−1

2z+ 1

(z+ 1)(z− 2)
= lim
z→−1

�
(z+ 1) · 2z+ 1

(z+ 1)(z− 2)

�

= 1

3
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Res
at z=2

2z+ 1

(z+ 1)(z− 2)
= lim
z→2

�
(z− 2) · 2z+ 1

(z+ 1)(z− 2)

�

= 5

3
.

b.
�
z+1
z−1

�3
: z = 1 is pole of order 3

Rewriting
�
z+1
z−1

�3 = � z−1+2
z−1

�3 = �1 + 2
z−1

�3
= 1 + 3 · 1 · � 2

z−1

�2 + 3 · 1 · � 2
z−1

�+ � 2
z−1

�3
Residue of pole z = 1 is the coefficient of 1

z−1

i.e., 6.

c. z = ± 4,− 2 are simple poles:

Res
z=z0

f (z) = p(z0)

q  (z0)
Here

p(z) = z+ 1, q(z) = (z2 − 16)(z+ 2)

q  (z) = 2z(z+ 2) + (z2 − 16)

= 3z2 + 4z− 16

Res
at z=4

f (z) = p(4)

q  (4)
= 4 + 1

3 · 42 + 4 · 4 − 16
= 5

48

Res
at z=−4

= p(−4)

q  (−4)
= −4+1

3(−4)2 + 4(−4)−16
= −3

16

Res
at z=−2

f (z) = p(−2)

q  (−2)
= −2+1

3(−2)2 + 4(−2)−16
= 1

12
.

d. sin z

z2
has a pole of order two at z = 0:

Expanding

sin z

z2
= 1

z2

∞�
n=0

(−1)nz2n+1

(2n+ 1)!

= 1

z2

�
z− z3

3!
+ z5

5!
+ · · ·

�

= 1

z
− z

3!
+ z3

5!
+ · · ·

Residue is the coefficient of 1
z
i.e., 1.

e. 1−e2z
z4

has a pole of order 3 (not 4) at z = 0:

Expanding

1 − e2z

z4
=

1 −
�
1 + 2z+ (2z)2

2!
+ (2z)3

3!
+ · · ·

�
z4

= −
�
2

z3
+ 2

z2
+ 8

6

1

z
+ 16

24
+ · · ·

�

Residue is − 8
6
= − 4

3
which is the coefficient of 1

z
.

f. Expanding

cscz · cschz
z3

= 1

z3
· 1

sin z · sinh z

= 1

z3

1�
z− z3

3!
+ z5

5!
+ · · ·

� �
z+ z3

3!
+ z5

5!
+ · · ·

�

= 1

z3

1�
z2 + 0 +

�
2
5!

− 1

(3!)2

�
z6 + · · ·

�

= 1

z5

�
1 − 1

90
z4 + · · ·

�−1

= 1

z5

�
1 − 1

90
z4 + · · ·

�
= 1

z5
− 1

90

1

z
+ · · ·

Residue is
−1

90
.

g. z2

(z2+3z+2)2
has poles of order 2 at z = −1,−2.

(since z2 + 3z+ 2 = (z+ 1)(z+ 2).

Res
at z=a

f (z) = 1

(m− 1)!
lim
z→a

dm−1

dzm−1

�
(z− a)m · f (z)

�

Res
z=−1

f (z) = lim
z→−1

d

dz

�
(z+ 1)2 · z2

(z+ 1)2(z+ 2)2

�
= −4

Res
z=−2

f (z) = lim
z→−2

d

dz

�
(z+ 2)2 · z2

(z+ 1)2(z+ 2)2

�
= 4.

Residue theorem

Example 4: Evaluate I = �
c

z2+4

z3+2z2+2z
where c is

(a) |z| = 1 (b) |z+ 1 − i| = 1

(c) |z+ 1 + i| = 1 (d) |z− 1| = 5

(e) rectangle with vertices at 2 + i, 6 + i, 2 + 4i,

and 6 + 4i.

Solution: f (z) = z2+4

z3+2z2+2z
has simple poles at

z = 0,−1 + i,−1 − i which are the zeros of

z3 + 2z2 + 2z = z(z2 + 2z+ 2) = z(z− z1)(z− z2)

where z2 = −1 + i, z3 = −1 − i

k1 = Res
at z=0

f (z) = p(0)

q  (0)
= 0 + 4

0 + 0 + 2
= 2
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Here p(z) = z2 + 4, q(z) = z3 + 2z2 + 2z, q  (z) =
3z2 + 4z+ 2

k2 = Res
at z=z2=−1+i

f (z) = (−1 + i)2 + 4

3(−1 + i)2 + 4(−1 + i) + 2

k2 = 4 − 2i

−2(i + 1)
= (i − 2)

(i + 1)
= 3i − 1

2
= −1

2
(1 − 3i)

k3 = Res
at z=z3=−1−i

f (z) = (−1 − i)2 + 4

3(−1 − i)2 + 4(−1 − i) + 2

= −1

2
(1 + 3i).

a. c : |z| = 1 is unit circle enclosing only one sin-
gular point z = 0. By residue theorem

I = 2πi · Res
at z=0

f (z) = 2πi · k1 = 2πi · 2 = 4πi.

b. c : |z+ 1 − i| = 1 is a circle with centre at
−1 + i and radius 1. So c encloses only one pole
−1 + i

I = 2πi · Res
z=z2

f (z) = 2πi · k2 = 2πi

�
3i − 1

2

�
I = −π (3 + i).

c. c : |z+ 1 + i| = 1 is circle centered at −1 − i
and of radius 1. So c encloses only one pole
−1 − i

I = 2πi · Res
z=z3

f (z) = 2πi · k3 = 2πi
(1 + 3i)

−2

= π (3 − i).

d. c : |z− 1| = 5 is circle with centre at 1 and ra-
dius 5. So c enclosed all the three poles z = 0,
−1 + i,−1 − i. By residue theorem

I = 2πi[k1 + k2 + k3]

= 2πi

�
2 +

�
3i − 1

2

�
− (3i + 1)

2

�
I = 2πi.

e. c : Rectangle does not include any of the three

poles. f (z) is analytic within c. By Cauchy’s

theorem, I = 0.

Example 5: I = �
c

dz
sinh 2z

where c : |z| = 2.

Solution: Zeros of sinh 2z are z = ± nπi
2
. Thus out

of the infinite number of poles of f (z) = 1
sinh 2z

only

three poles z = 0,±πi
2
lies inside the circle |z| = 2.

Now

k1 = Res
z=0

f (z) = lim
z→0

z

sinh 2z
= 1

2

k2 = Res
z= πi

2

f (z) = lim
z→ πi

2

�
z− πi

2

�
sinh 2z

= lim
1

2 · cosh 2z is

�
0

0

�
form

= −1

2
(using L’ Hospital’s Rule)

k3 = Res
z=− πi

2

f (z) = lim
z→ −πi

2

�
z+ πi

2

�
sinh 2z

= lim
1

2 · cosh 2z = −1

2

By residue theorem,

I = 2πi

�
1

2
− 1

2
− 1

2

�
= −πi.

Example 6: Evaluate I = �
c
e− 1

z · sin � 1
z

�
dz

where c is the circle |z| = 1.

Solution: z = 0 is an essential singularity, which is

enclosed in the circle |z| = 1.
Expanding

e
− 1
z · sin

�
1

z

�
=
� ∞�
n=0

�
−1

z

�n 1

n!

�

×
� ∞�
n=1

(−1)n−1 ·
�
1

z

�2n−1 1

(2n− 1)!

�

=
�
1 − 1

z
+ 1

z2
· 1

2!
− 1

z3
· 1

3!
· · ·
�

×
�
1

z
− 1

z3
· 1

3!
+ 1

5!

1

z5
+ · · ·

�

=
�
1

z
− 1

z3

1

3!
+ 1

5!

1

z5
+ · · ·

− 1

z2
+ 1

z4

1

3!
+ · · ·

�

Residue at z = 0 is 1.
By residue theorem,

I = 2πi · 1 = 2πi.
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EXERCISE

Residue theorem

1. Find the nature of singularity and find the

residue:

a. e2z

(z−1)3

b. (z− 3) sin
�

1
z+2

�
c. (z−sin z)

z3

d. 1

(z2)(z−3)2

e. e
z

(z−2)

Ans. a. z = 1, pole of order 3, Res 2e2

b. z = −2 is essential singularity, Res −5

c. z = 0 is removable singularity, Res 0

d. z = 0, 3 are poles of order 2

Res at z = 0 is 2
27
, at z = 3 is − 2

27

e. z = 2 is essential singularity, Res at z = 2

is 2e

z = ∞ is removable singularity.

2. Determine the nature of singularities of f (z):

a. (z−sin z)

z2

b. (z+ 1) sin
�

1
z−2

�
c. 1

(cos z−sin z)

d. z

(e
1
z −1)

e. z4

(1+z4)
f. tanh z

Ans. a. z = 0 is removable singularity

b. z = 2 is essential singularity

c. z = π
4
is simple pole

d. z = i
2mπ

,m = ±1,±2, . . . simple poles,

z= 0 is essential, z= ∞ is pole of order 2

e. z = ±1±i√
2

are simple poles

f. z = nπi, n = 0,±1,±2, . . . simple poles.

3. Find the residues at all its poles in finite plane:

a. z2−2z

(z+1)2(z2+4)

b. ez · csc2z
c. cot z·coth z

z3

Hint. Expand, cot z, coth z in powers of z.

d. z2�
(z−1)2(z+2)

�

e. (9z+i)
(z(z2+1))

f. 50z�
(z+4)(z−1)2

�
g. (1+z)

(1−cos z)

Ans. a. z = −1, double pole, Res − 14
25

z = ±2i, simple, 7+i
25
, 7−i

25

b. z = mπ,m = 0,±1,±2, . . . double poles

Res emπ

c. z = 0, Res − 7
45

d. z = −2, Res 4
9

z = 1, double pole, Res 5
9

e. z = 0, Res i

z = ±i, Res −5i, 4i

f. z = −4, Res −8

z = 1, double, Res 8

g. z = 0, Res 2

Using residue theorem, evaluate:

4.
�
c

tan z

(z2−1)
dz, c : |z| = 3

2

Ans. I = 2πi tan 1, simple pole z = ±1, Res
tan 1
2
, tan 1

2

5.
�
c
4−3z

z2−z dz, c : any simple closed path such that

(a) 0, 1 ∈ c (b) 0 ∈ c, 1 /∈ c
(c) 1 ∈ c, 0 /∈ c (d) 0, 1 /∈ c

Ans. z = 0, 1 are simple poles, Res at z = 0, is −4,

Res at z = 1 is 1

(a) 2πi(−4 + 1) = −6πi (b) −8πi

(c) 2πi (d) 0

6. I = �
c

�
zeπz

z4−16
+ ze

π
z

�
dz,

c : ellipse 9x2 + y2 = 9

Ans. I = I1,+I2, For I1, z = ±2i,±2 are simple

poles z = ±2i ∈ c, z = ±2 /∈ c, Res at z =
2i,− 1

16
, at z = −2i,− 1

16

For I2, z = 0, essential singularity,

Res at z = 0 is π2

2

Ans. I = 2πi
�− 1

16
− 1

16

�+ 2πi
�
π2

2

�
= π

�
π2 − 1

4

�
i

7.
�
c

z−3

z2+2z+5
dz

a. c : |z| = 1
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b. |z+ 1 − i| = 2

c. |z+ 1 + i| = 2

Ans. z1,2 = −1 ± 2i simple poles

a. z1,2 /∈ c, I = 0

b. z1 = −1 + 2i ∈ c, z2 = −1 − 2i /∈ c,
I = 2πi

�
i + 1

2

� = π (i − 2)

c. z2 = −1 − 2i ∈ c, z1 = −1 + 2i /∈ c,
I = 2πi

�
1
2

− i
� = π (2 + i)

8.
�
c
tan z dz, c : |z| = 2

Ans. z = (2n+ 1)π
2
, n = 0, ±1, ±2, . . . simple

poles

z = ±π
2
only ∈ c, Res z = π

2
is −1, Res at

z = −π
2
is −1

I = 2πi(−1 − 1) = −4πi

9.
�
c
sin πz2+cosπz2

(z−1)2(z−2)
dz, c : |z| = 3

Ans. z = 1 double pole, Res 2π + 1, z = 2 is

simple pole, Res 1

I = 2πi [(2π + 1) + 1] = 4π (π + 1)i

10.
�
c

4−3z
z(z−1)(z−2)

dz, c : |z| = 3
2

Ans. z = 0, 1, 2 simple poles, Res 2,−1,

(z = 2 /∈ c)
I = 2πi

�
2 + (−1)

�
= 2πi

11.
�
c

dz

(z2+4)2
dz, c : |z− i| = 2

Ans. z = ±2i double poles, z = 2i ∈ c, Res is

− 2

64i3
, I = π

16

12.
�
c

5z−2
z(z−1)

dz, c : |z| = 2

Ans. z = 0, 1 simple poles,∈ c; Res 2, 3, I = 10πi

13.
�

(3z2+2)dz

(z−1)(z2+9)
, c : (a) |z− 2| = 2

(b) c : |z| = 4

Ans. z = 1,±3i simple poles,

a. z = 1 ∈ c,Res 1
2
, I = πi

b. all ∈ c,Res 1
2
, 2∓81i
6i(3i−1)

, I = 6πi

14.
�
c

ezt

z2(z2+2z+2)
dz, c : |z| = 3

Ans. z = 0, double pole, Res t−1
2
, z = −1 ± i

simple poles, Res e(−1±i)t
4

,

I = 2πi
�
t−1
2

+ 1
2
e−t cos t

�
.

24.3 EVALUATION OF REAL INTEGRALS

Real integrals of the following types can be evaluated

using the residue theorem.

Type I: Evaluation of Real Definite Integral of

Rational Function of cos θ and sin θ

By integration around a unit circle

Consider

I =
� 2π

0

F (sin θ, cos θ ) dθ (1)

where F is real rational function of cos θ
and sin θ and is finite in the interval (0, 2π ).
Put z = eiθ so dz = ieiθdθ = izdθ . Also

cos θ = eiθ + e−iθ

2
=
z+ 1

z

2
and

sin θ = eiθ − e−iθ

2i
=
z− 1

z

2i

Note that |z| = |eiθ | = 1 which represents a unit

circle c (with centre at origin). Substituting these val-

ues (1) takes the form

I =
�
c

f (z)
dz

iz
=
�
c

G(z)dz (2)

Here f (z) = F (sin θ, cos θ ). The complex integral

(2) is evaluated around the unit circle c (as θ varies

from 0 to 2π ).

Here G(z) is a rational function of z. Now by

residue theorem

I = 2πi
�

Res G(z) (3)

where the summation is taken for all poles of G(z)

which are within the unit circle c : |z| = 1.

Type II: Evaluation of Improper Real

Integral (of first kind) of Rational Function

By integration around a semi-circle

Consider

I =
� ∞

−∞
f (x) dx (4)
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where f (x) = p(x)

q(x)
. Here p(x) and q(x) are polyno-

mials. Integral (4) converges if

i. q(x) has no real zeros (i.e., q(x)  = 0, for any x)

and

ii. the degree of q is at least two greater than the

degree of p.

Assuming these conditions, (4) can be evaluated

by integrating around a semi-circle as follows:

Consider a simple closed curve c consisting of

the straight line L along the real axis from −R
to R and the semi-circle S of radius R and with

centre at origin (Fig. 24.2). By residue theorem�
c

f (z) dz = 2πi
�

Res f (z) (5)

Fig. 24.2

where the summation is for the residues of f (z)
at all the singular points (poles) within c. Since
c = L+ R, (5) is rewritten as�
c

=
�
L+S

=
�
L

+
�
S

=
� R

−R
f (x) dx +

�
S

f (z) dz

= 2πi
�

Resf (z) (6)

As R → ∞, the semi-circle S engulfs and becomes
the entire upper half plane (y > 0). Then (6) takes
the form

lim
R→∞

� R

−R
f (x) dx = lim

R→∞
2πi

�
Res f (z)

− lim
R→∞

�
S

f (z) dz

� ∞

−∞
f (x)dx = 2πi

�
Res f (z)

− lim
R→∞

�
S

f (z) dz (7)

In RHS of (7) the summation of residues is for all

poles of f (z) in the upper half plane.

By assumption |f (z)| < k

|z|2 . So����
�
S

f (z) dz

���� ≤ M · L = k

|z|2 · 2πR = k

R2
2πR = 2πk

R

which tends to zero as R → ∞. Thus (7) reduces to

� ∞

−∞
f (x) dx = 2πi × [sum of the residues of f (z) at all

the poles of f (z) in the upper half plane]

= 2πi
�

Res f (z) (8)

Type III: Fourier Integral: Improper

Integral Involving Trigonometric Functions

The integrals

� ∞

−∞
f (x) cos mxdx (9)

� ∞

−∞
f (x) sin mxdx (10)

can be evaluated by integrating

f (z)eimz

around the contour c discussed in II. By residue the-
orem and similar analysis as in II

� ∞

−∞
f (x)eimxdx = 2πi

�
Res

�
f (z)eimz

�
(11)

where the summation extends to all poles of
f (z)eimz in the upper half=plane (since |eimz| =
|eimx ||e−my | = e−my ≤ 1 for m > 0, y ≥ 0 and
|f (z)eimz| = |f (z)||eimz| ≤ |f (z)| it follows that�
S

→ 0 as R → ∞). Equating the real and imagi-
nary parts of (11), we get

� ∞

−∞
f (x) cos mx dx = −2π

�
Im.Res

�
f (z)eimz

�
(12)� ∞

−∞
f (x) sin mx dx = 2π

�
Re.Res

�
f (z)eimz

�
(13)
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Type IV: Evaluation of Improper Integral (of

the second kind) whose Integrand Becomes

Infinite

By indenting the contours having poles on

the real axis

Consider � B

A

f (x) dx

where the integrand f (x) become infinite at a point
b between A and B. i.e.,

lim
x→b

f (x) = ∞

Then the Cauchy’s principal value of the integral
is denoted by pr. v. and is defined as

pr.v.

� B

A

f (x) dx= lim
%→0

�� b−%

A

f (x) dx+
� B

b+%
f (x) dx

�

Simple poles on real axis

Delete the pole z = b on the real axis by indenting

the contour by drawing a semi-circle of radius r and

with centre at b.

Result 1: If f (z) has a simple pole at z = b on the

real axis, then

lim
r→0

�
c1

f (z) dz = πi Res
z=b

f (z) (14)

where c1 is circle of radius r andwith centre at z = b.

Poles in the upper half plane and simple poles on

real axis:

Result 2: If f (z) has several simple poles on the
real axis, then

pr. v.

� ∞

−∞
f (x) dx = 2πi

�
Res f (z)

+πi
�

Res f (z) (15)

In the R.H.S. of (15), the first summation extends

overall poles of f (z) in the upper half plane and the

second summation overall simple poles on the real

axis.

Theorems on limiting contours

These theorems are useful in evaluating
�
CR
f (z) dz

where CR is an arc of a circle whose radius R → ∞
or → 0.

Theorem 1: If z · f (z) → 0 uniformly as R → ∞
then

lim
R→∞

�
CR

f (z) dz → 0

whereCR is a circular arc of radiusR andwith centre

at the origin.

Theorem 2: (Jordan’s Lemma)

If f (z) → 0 uniformly as R → ∞ then

lim
R→∞

�
CR

eimzf (z) dz = 0, (m > 0)

where CR is a circular arc (with radiusR and centre

at origin) in the first and/or second quadrants.

Theorem 3: If (z− a)f (z) → 0 uniformly as
r → 0 then

lim
r→0

�
Cr

f (z) dz = 0

where Cr is a circular arc with radius r and with

centre at z = a.

Type V: Result

Let f (z) be analytic everywhere in the z-plane
except at a finite number of poles. Assume that
f (z) has no poles on the positive half of the real
axis. If zaf (z) → 0 as z → 0, then as z → ∞� ∞

0

xa−1f (x) dx = π

sin aπ
×

×
�

Residues of{(−z)a−1·f (z)}

at all its poles.

WORKED OUT EXAMPLES

Type I

Example 1: Evaluate I= � 2π

0
dθ

1−2p sin θ+p2 , |p|<1.
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Solution: Put z = eiθ , dz = ieiθdθ = iz dθ

sin θ = eiθ − e−iθ

2i
=
z− 1

z

2i
= z2 − 1

2iz

|z| =
��eiθ �� = 1. Thus the given integral reduces to

I=
�
c

1

1−2p
(z2−1)
2iz

+ p2

dz

iz
=− 1

p

�
c

dz

z2 − i(1+p2)
p

z−1

where c : |z| = 1.
The integrand has simple poles at

z = i(1 + p2) ± i(1 − p2)

2p
= i

p
, ip

z1 = i
p
lies outside while z1 = ip lies inside the unit

circle c since |z1| = |ip| = |i||p| = |p| < 1.

Res f (z)
at z=z2

= lim
z→z2

(z− z2) · 1

(z− z1)(z− z2)
= 1

z2 − z1

= 1

ip − i
p

= p

i(p2 − 1)
= ip

1 − p2

By residue theorem

I = − 1

p

�
c

dz

(z− z1)(z− z2)
= − 1

p
· 2πi Res f (z)

at z=z2

= − 1

p
· 2πi ·

�
ip

i − p2

�
= 2π

1 − p2
.

Example 2: Evaluate I = � π
0

cos2 3θ dθ
5−4 cos 2θ

.

Solution: I = 1
2

� π
−π

cos2 3θ dθ
5−4 cos 2θ

Put z = eiθ , cos θ = eiθ+e−iθ
2

= z+ 1
z

2
= z2+1

2z

Using cos2 3θ = 1+cos 6θ
2

, cos 6θ =
z6+ 1

z6

2
= z12+1

2z6

and cos 2θ =
z2+ 1

z2

2
= z4+1

2z2
.

The integral reduces to

I = 1

2

�
c

1

2

�
1 + z12 + 1

2z6

�
1�

5 − 4 ·
�
z4+1

2z2

�� · dz
iz

= − 1

16i

�
c

z12 + 2z6 + 1

z5
�
z4 − 5

2
z2 + 1

�dz = − 1

16i

�
c

f (z) dz

The singular points of the integrand are the zeros

of the denominator i.e., z5 = 0 and z4 − 5
2
z2 + 1 =

0, or z2 = 2, 1
2
. Thus z = 0 is pole of order 5 and

z = ± 1√
2
are two simple poles, which lie inside c,

while z = ±
√
2 lies outside c.

Residue by Laurent series:

Expanding
�
1 − � 5

2
z2 − z4

��
in series, we get

f (z) = z12 + 2z6 + 1

z5
·
�
1 −

�
5

2
z2 − z4

��−1

f (z) = z12 + 2z6 + 1

z5

�
1 + 5

2
z2 − z4

+25

4
z4 + z8 − 5z6 + · · ·

�

Residue of f (z) at z = 0 is the coefficient of z−1

in this Laurent series expansion, i.e.,

k1 = Res f (z)
at z=0

= −1 + 25

4
= 21

4

k2 = Res f (z)

at z=z1=+ 1√
2

= lim
z→z1

(z6 + 1)2(z− z1)

z5(z2 − 2)(z− z1)(z− z2)

= (z61 + 1)2

z51(z
2
1 − 2)(z1 − z2)

= 81

64
· 1

1

4
√
2

�
− 3

2

� �
2√
2

� = −27

8

k3 = Res f (z)

at z=z2=− 1√
2

= lim
z→z2

(z6 + 1)2

z5(z2 − 2)(z− z1)(z− z2)
· (z− z2) = −27

8

Thus by residue theorem,

I = − 1

16i
· {2πi(Sum of the residues)]

= − 1

16i
· 2πi

�
21

4
− 27

8
− 27

8

�
= − 1

16i
2πi

�
−6

4

�

I = 3π

16
.

Type II

Example 3: Evaluate
�∞
0

dx

(a2+x2)2 .

Solution: Consider a curve c consisting of semicir-

cle S and the lineL from −R toR along the real axis

(refer Fig. 24.3). Consider�
c

dz

(a2+z2)2 = �
c
f (z) dz where f (z) = (a2 + z2)−2
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Fig. 24.3

Rewriting�
c

f (z) dz =
�
L

+
�
S

=
� R

−R
f (x) dx +

�
S

f (z) dz (1)

Since |a2 + z2| > |z|2 − |a|2

on S : |a2 + z2| > R2 − a2

or

���� 1

(a2 + z2)2

���� < 1

(R2 − a2)2

So

����
�
S

f (z) dz

���� ≤ 1

(R2 − a2)2
· πR (2)

As R → ∞ �
S
f (z) dz → 0

As R → ∞ (1) becomes

lim
R→∞

�
c

f (z) dz= lim
R→∞

� R

−R
f (x) dx

+ lim
R→∞

�
S

f (z) dz

...

� ∞

−∞

dx

(a2 + x2)2
dx = lim

R→∞

�
c

f (z) dz, using (2)

As R → ∞, c engulfs the entire upper half plane.

Now evaluating the R.H.S. integral by residue

theorem, = 2πi · Res f (z) at singular points which
are in the upper half plane.
Forf (z) = 1

(z2+a2)2 has singular points at z = ±ai
which are poles of order 2. But only z = ai lies in
the upper half-plane.

Res f (z)
z=ai

= lim
z→ai

· d
dz

(z− ai)2 · 1

(z− ai)2(z+ ai)2

= lim
z→ai

− −2

(z+ ai)3
= − −2

8a3i3
= − −i

4a3

Hence

� ∞

0

dx

(a2 + x2)2
= 1

2

� ∞

−∞

dx

(a2 + x2)2

= 1

2
· 2πi ·

�
− i

4a3

�
= π

4a3
.

Example 4: Evaluate I = �∞
−∞

x dx

(x2+1)(x2+2x+2)

Solution: Let c be a simple closed curve consist-

ing of semicircle S and line L from −R to R (see

Fig. 24.4).

Fig. 24.4

Let f (z) = z

((z2+1)(z2+2z+2))

Consider�
c

f (z) dz =
�
c

z dz

(z2 + 1)(z2 + 2z+ 2)

This integral can be evaluated by residue theorem.
Rewriting�
c

f (z) dz=
�
L

+
�
S

=
� R

−R

x dx

(x2 + 1)(x2 + 2x + 2)
+
�
S

f (z) dz

AsR → ∞, the 2nd integral on the right becomes
0. So

lim
R→∞

�
c

f (z) dz =
� ∞

−∞

x dx

(x2 + 1)(x2 + 2x + 2)

AsR → ∞, c encloses the entire upper half plane.
Thus by applying residue theorem

I =
� ∞

−∞

x dx

(x2 + 1)(x2 + 2x + 2)
= 2πi ·

�
Res f (z)

The singular points of f (z) = z

(z2+1)(z2+2z+2)
are

z = ±i and z = −1 ± i. Out of these only z = i and
z = −1 + i lies in the upper half plane.

Res f (z)
z=i

= lim
z→i

(z− i) · z

(z− i)(z+ i)(z2 + 2z+ 2)

= i

2i(−1 + 2i + 2)
= 1

2(2i + 1)

Res f (z)
z=−1+i

= lim
z→−1+i

(z+1−i) · z

(z2+1)(z+1−i)(z+1+i)

= (−1 + i)�
(−1 + i)2 + 1

�
[−1 + i + 1 + i]

= −1+i
2i(1−2i)

Thus

I = 2πi

�
1

2(2i + 1)
+ (−1 + i)

2i(1 − 2i)

�
= −π

5
.
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Type III

Example 5: Evaluate
�∞

−∞
cosmx

(x2+a2)(x2+b2)dx.

Solution: We know that
�∞

−∞ cosmxQ(x)dx =
−2π ·� imaginary part of residues of eimzQ(z) at
its poles in the upper half plane. So consider

f (z) = eimzQ(z) = eimz

(z2 + a2)(z2 + b2)

f (z) has simple poles at z = ±ai, z = ±bi out of
which z = ai, bi lies in the upper half plane.

k1 = Res f (z)
at z=ai

= lim
z→ai

(z− ai) · eimz
(z− ai)(z+ ai)(z2 + b2)

= e−am

2ai(b2 − a2)
= −ie−am

2a(b2 − a2)

Similarly,

k2=Res f (z)
at z=bi

= e−bm

2bi(a2−b2)= −ie−bm

2b(a2−b2) ,� ∞

−∞

cosmx

(x2 + a2)(x2 + b2)
dx

= −2π

�
− e−am

2a(b2 − a2)
− e−bm

2b(a2 − b2)

�

= π

a2 − b2

�
e−bm

b
−e

−am

a

�
.

Example 6:
�∞

−∞
x sinmx

1+x4 dx.

Solution: We know that
�∞

−∞ sinmxQ(x)dx =
2π
�

real part of residues of eimzQ(z) at its poles in
the upper half plane. So consider f (z) = eimz. z

1+z4

which has singular points at z = (−1)4 = e
i
�
π+2kπ

4

�

for k = 0, 1, 2, 3. Out of these four, only z1 = e
iπ
4 =

1√
2
(1 + i) and z2 = e

i3π
4 = 1√

2
(−1 + i) lies in the

upper half plane.

k1 = Res f (z)
at z=z1

= lim
z→z1

(z− z1) · z · eimz
(1 + z4)

,

which is 0
0
form. Applying L’ Hostpital’s rule

= lim
z→z1

�
(z− z1)

�
eimz + z · im · eimz�+ zeimz

�
4z3

= z1e
imz1

4z31

= eimz1

4z21

= e
im 1√

2
(1+i)

4
�

1√
2
(1 + i)

�2

= e
im 1√

2
(1+i)

4
�

1√
2
(1 + i)

�2
�

1√
2
(1 − i)

�2
�

1√
2
(1 − i)

�2

k1 =
e

− m√
2 ·
�
cos m√

2
+ i sin m√

2

�
· 1
2
(−2i)

4 · 1
2
(1 + 1)

Real part of k1 = 1
4
e

− m√
2 · sin m√

2

Similarly,

k2 = Res f (z)
at z=z2

= e
im 1√

2
(−1+i)

4
�

1√
2
(−1 + i)

�2
�

1√
2
(−1 − i)

�2
�

1√
2
(−1 − i)

�2

k2 =
e

− m√
2 ·
�
cos m√

2
− i sin m√

2

�
· 1
2
(2i)

4 · 1
2
(1 + 1)

Real part of k2 = 1
4
e

− m√
2 · sin m√

2
.

Then� ∞

−∞

x sinmx

1 + x4
dx = 2π [Re(k1) + Re(k2)]

= 2π

�
e

− m√
2 · sin m√

2

�
1

4
+ 1

4

��

= πe
− m√

2 · sin m√
2
.

Integration around a rectangular contour

Example 7: Evaluate
�∞

−∞
cosmx
ex+e−x dx.

Solution: Consider
�
c

eimz

ez+e−z dz where c is the

rectangle having vertices at −R,R,R + πi,−R +
πi and consisting of the lines c1, c2, c3, c4 as shown

in Fig. 24.5.
The poles of eimz

ez+e−z are simple and occur when

ez + e−z = 0 i.e., e2z = −1 = e±(2n+1)πi i.e., z =�
n+ 1

2

�
πi with n = 0,±1,±2, . . . . Out of these

only z = �πi
2

�
lies inside the rectangle c.

By residue theorem

I =
�
c

eimz

ez + e−z dz = 1

2

�
c

eimz�
ez+e−z

2

� = 1

2

�
c

eimz

cosh z
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Fig. 24.5

= 1

2
2πi

�
Res

eimz

cosh z
at z = πi

2

�
(1)

Now

Res
at z= πi

2

eimz

cosh z
= lim
z→ πi

2

�
z−πi

2

�
· e

imz

cosh z
,

�
0

0
form

�

= lim
z→ πi

2

�
z−πi

2

�
· imeimz+1 · eimz

sin hz

= eim· πi
2

sinh
�
πi
2

�= e−mπ
2

i sin(π/2)
=−ie−mπ

2 (2)

Therefore substituting (2) in (1)

I =
�
c

eimz

ez + e−z dz = 1

2
· 2πi · (−ie − mπ

2
) = π

emπ
2

I =
�
c

eimzdz

2 · cosh z = π

emπ
2

...

�
c

eimz

cosh z
= 2π

emπ
2

(3)

Since c = c1 + c2 + c3 + c4, we have�
c

f (z) dz=
�
c1

+
�
c2

+
�
c3

+
�
c4

where f (z) = eimz

cosh z

=
� R

−R
f (x) dx +

� π

0

f (R + iy)idy

+
� −R

R

f (x + πi)dx +
� 0

π

f (−R + iy)idy

=
� R

−R

eimx

cosh x
dx +

� π

0

eim(R+iy)

cosh(R + iy)
idy

+
� −R

R

eim(x+πi)

cosh(x + πi)
dx

+
� 0

π

eim(−R+iy)

cosh(−R + iy)
idy (4)

= I1 + I2 + I3 + I4.

To show that I2 and I4 → 0 as R → ∞:

Note |eim(R+iy)| = |eimR| · |e−my | = |e−my | < 1

for y > 0
Since | cosh(R + iy)|

= eR+iy + e−R−iy

2
≥ 1

2

����eR+iy
���−
���e−R−iy

����

= 1

2
(eR − e−R) ≥ 1

4
eR

from triangle inequality |z1 + z2| ≥ |z1| − |z2|.

|I2| =
�����
� π

0

eim(R+iy)

cosh(R + iy)
idy

����� ≤
� π

0

1

eR

4

dy = 4e−R · π

As R → ∞, I2 → 0.

Similarly as R → ∞, I4 → 0.
Now (4) reduces to

lim
R→∞

�� R

−R

eimx

cosh x
+ e−mπ

� R

−R

eimx

cosh x
dx

�
=
�
c

eimz

cosh z
dz

since cosh(x+πi)= cosh x · cosπ − 0= − cosh x

(1 + e−mπ ) ·
� ∞

−∞

eimx

cosh x
dx =

�
c

eimz

cosh z
dz = 2π

emπ
2

from (3)� ∞

−∞

eimx

cosh x
dx = 2 · π

emπ
2
(1 + e−mπ )� ∞

−∞

eimxdx

(ex + e−x )
= π�

emπ
2

+ e−mπ
2

�
Type IV By Indentation

Example 8: Show that� ∞

0

cos x√
x
dx =

� ∞

0

sin x√
x
dx =

�
π

2
.

Solution: Consider the contour c consisting of

c1, c2, c3, c4 where c1 : AB: straight-line from r to

R along x-axis, c2 : BD: arc of the circle of radius

R in the first quadrant, c3 : DE: straight line from R

to r along y-axis, c4 : EA: arc of circle of radius r

lying in the first quadrant (Fig. 24.6).
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Fig. 24.6

The functionf (z) = eiz√
z
has a singular point at z =

0 which lies on both the x-axis and y-axis. To delete

this singular point from the region, indent the contour

by drawing a quadrant circle with this singular point

z = 0 as the centre.

Since the only singular point z = 0 of f (z) is

deleted f (z) has no singular point within c,
therefore by Cauchy’s theorem,�

c

f (z) dz = 0

Since c = c1 + c2 + c3 + c4, we have�
c

=
�
c1

+
�
c2

+
�
c3

+
�
c4

= I1 + I2 + I3 + I4 = 0

or

� R

r

f (x) dx+
�
c2

f (z) dz+
� r

R

f (iy)i dy +

+
�
c4

f (z) dz=0 (1)

As R → ∞, z → ∞ then f (z) → 0.

By Jordan’s Lemma (see page 24.9)

I2 =
�
c2

f (z) dz → 0 as R → ∞ (2)

(∗ lim
R→∞

�
cR
eimzf (z) dz = 0 when f (z) →

0 as R → ∞)

Also as r → 0, (z− 0) · eiz√
z

= √
zeiz → 0 then

I4 =
�
c4

f (z) dz → 0 as r → 0 (3)

(If (z− a)f (z) → 0 as ρ → 0 then

lim
ρ→0

�
cρ

f (z) dz = 0 where cρ is circular arc of

radius ρ, centre at z = a. (see theorem 3 on page

24.9)
Since I2, I4 are zero from (2) and (3), as r → 0

and R → ∞, (1) reduces to� ∞

0

eix√
x
dx +

� 0

∞

ei(iy)√
iy
idy = 0

� ∞

0

eix√
x
dx =

� ∞

0

e−y · y− 1
2 · i+ 1

2 dy

= (e
iπ
2 )

1
2

� ∞

0

e−yy
1
2

−1dy

since i = e
iπ
2 .� ∞

0

eix√
x
dx = e

iπ
4 +

�
1

2

�
=
�
cos

π

4
+ i sin

π

4

�√
π

=
�
π

2
(1 + i)

since

� ∞

0

e−yy
1
2

−1dy = +

�
1

2

�
= √

π

Equating the real and imaginary parts on both
sides, we get� ∞

0

cos x√
x
dx =

� ∞

0

sin x√
x
dx =

�
π

2
.

Example 9: Find the Cauchy principal value of

I =
� ∞

−∞

dx

x2 − ix
.

Solution: The function f (z) = 1

z2−iz = 1
z(z−i) has

simple poles at z = 0 and z = i. While z = i lies in

the upper half=plane, z = 0 lies on the real axis.
Then

pr. v.

� ∞

−∞
f (x) dx = 2πi

�
Resf (z) + πi

�
Resf (z)

where the first sum extends to poles in upper
half=plane, second sum to poles on real axis.

Res f (z)
z=0

= lim
z→0

z · 1

z(z− i)
= 1

−i = i

Res f (z)
z→i

= lim
z→i

(z− i) · 1

z(z− i)
= 1

i
= −i

pr. v.

� ∞

−∞

dx

x2 − ix
= 2πi(−i) + πi(i) = 2π − π = π.
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Type V

Example 10: Evaluate

I =
� ∞

0

xa−1

1 + x3
dx, 0 < a < 3.

Solution: We know that�∞
0
xa−1f (x) dx = π

sin aπ

�
Res of (−z)a−1f (z) at

all its poles.

f (z) = 1

1+z3 has simple poles at z1 = −1 and

z2 = 1+
√
3i

2
, z3 = 1−

√
3i

2
(where z2, z3 are roots of

z2 − z+ 1 = 0).

k1 = Res at z = z1 = lim
z→−1

(−z)a−1

1 + z3
· (z+ 1)

= 1a−1

1 + 1 + 1
= 1

3

k2 = Res at z=z2= lim
z→z2

(−z)a−1

(z+ 1)(z− z2)(z− z3)
(z−z2)

= (−z2)a−1

(z2 + 1)(z2 − z3)

= − 1

z2
· 1

(z2 + 1)(z2 − z3)
·
�

−1

2
−

√
3

2
i

�a

k2 = 1

3

�
e
i4π
3

�a
= 1

3
e
i4πa
3

since z2 · (z2 + 1)(z2 − z3)

=
�
1 +

√
3i

2

��
3 +

√
3i

2

�
(
√
3i) = 3,

Similarly,

k3 = Res at z=z3= lim
z→z3

(−z)a−1

(z+ 1)(z− z2)(z− z3)
(z−z3)

= (−z3)a−1

(z3 + 1)(z3 − z2)

= − 1

z3(z3 + 1)(z3 − z2)

�
−1

2
+

√
3

2
i

�a

= 1

3

�
e
i2π
3

�
a = 1

3
e
i2πa
3

Then I = π

sin aπ

�
1

3
+ 1

3
e
i4πa
3 + 1

3
e
i2πa
3

�

= π

3 sin aπ

�
1 + 2 cos

2πa

3

�
.

EXERCISE

Type I

Evaluate

1.
� 2π

0
dθ√

2−cos θ

Ans. 2π, z1 =
√
2 − 1, Res 1

2

2.
� 2π

0
cos 2θdθ

1−2p cos θ+p2

Ans.
2πp2

1−p2 , z = 0, p, Res
1+p2
2ip2

,
1+p4

2ip2(1−p2)

3.
� 2π

0
cos 3θdθ
5−4 cos θ

Ans. π
12
, z = 0, 1

2
, Res 21

8
,− 65

24

4.
� 2π

0
sin2 θdθ
a+b cos θ , a > b > 0

Ans. 2π

b2
[a −

√
a2 − b2], z = 0,− a

b
+

√
a2−b2
b

,

Res − 2a

b2
,
2
√
a2−b2
b2

5.
� 2π

0
dθ

5
4

+sin θ

Ans. 8π
3
, z = − 1

2
i, Res 4

3i

6.
� 2π

0
dθ

3−2 cos θ+sin θ

Ans. π, z = (2 − i)/5, Res 1
2i

7.
� 2π

0
dθ

(5−3 sin θ )2

Ans. 5π
32
, z = i

3
, Res − 5

256

8.
� 2π

0
dθ

a+b sin θ

Ans. 2π√
a2−b2

, if |a| > |b|; −a+
√
a2−b2
b

i,

Res 1√
a2−b2

i

9.
� π
0

dθ

(a+cos θ )2

Ans. πa(a2 − 1)−
3
2 ,

a > 1,−a +
√
a2 − 1, Res 2a

23(a2−1)
3
2

10.
� π
0
sin2n θdθ

Ans.
(2n)!π

22n(n!)2
, z = 0 of order 2n+ 1, Res (−1)n·2n!

(n!)2

11.
� π

−π
dθ

1+sin2 θ
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Ans. π
√
2, z = 3 − 2

√
2, Res −1/(4

√
2)

Type II

Evaluate

12.
�∞
0

dx

(x2+1)n
, n = natural number

Ans. For n = 1

π
2
, z = i, Res 1

2i

Ans. For n > 1, I = 1·3·5···(2n−3)

2·4·6···(2n−2)
· π
2

13.
�∞
0

dx

(x2+9)(x2+4)2

Ans. π
200
, z = 2i, 3i, Res − 13i

200
,− 3

50i

14.
�∞
0

dx

a4+x4

Ans. π

a32
√
2
, z = ae

iπ
4 , ae

i3π
4 , Res − e

iπ
4

4a3
, e

−iπ
4

4a3

15.
�∞

−∞
x2dx

(x2+1)2(x2+2x+2)

Ans. 7π
50
, z = i,−1 + i, Res 9i−12

100
, 3−4i

25

16.
�∞

−∞
x2dx

(x2+a2)(x2+b2)

Ans. π
a+b , z = ai, bi, Res a

2i(a2−b2) ,
b

2i(b2−a2)

17.
�∞
0

dx

x6+1

Ans. π
3
, z = e

πi
6 , e

3πi
6 , e

5πi
6 Res 1

6
e

−5πi
6 , 1

6
e

−5πi
2 ,

1
6
e− 25πi

6

18.
�∞

−∞
x2dx

(x2+1)(x2+4)

Ans. π
3
, z = i, 2i, Res i

6
,− i

3

19.
�∞

−∞
dx

(1+x2)3

Ans. 3π
8
, z = i, order 3, Res 3

16i

20.
�∞

−∞
xdx

(x2+4x+13)2

Ans. − π
27

21.
�∞
0

x2dx

(x2+a2)2

Ans. π
4a

Type III

22.
�∞

−∞
cosmx

k2+x2 (m > 0, k > 0)

Ans. π
k
e−km, z = ik, Res e−km

2ik

23.
�∞

−∞
sinmx

k2+x2
Ans. 0

24.
�∞

−∞
x·sin πx
x2+2x+5

Ans. −πe−2π , z = −1 + 2i, Res π
2

(1−2i)

e2π

25.
�∞
0

x sin x dx

(x2+1)(x2+4)

Ans.
π (e−1)

6e2
, z = i, 2i, Res + 1

(6e)
, −1

(6e2)

26.
�∞

−∞
cos x dx

(x+a)2+b2

Ans. cos a

beb
, z = −a + bi, e

−ia−b
2bi

27.
�∞
0

cosmx dx

(a2+x2)2

Ans. πe−am (am+1)

(4a3)

28.
�∞

−∞
sinmx dx

(x−a)2+b2

Ans.
(e−mb ·sinma)

b

29.
�∞

−∞
x cos x dx

x2−2x+10

Ans. π
(cos 1−3 sin 1)

(3e3)

Rectangle contour

30.
�∞

−∞
eaxdx
ex+1

Hint: c: rectangle with vertices at A(R, 0),

B(R, 2π), C(−R, 2π), D(−R, 0) and f (z) =
eaz/(ez + 1), z = πi only pole in C. Res

−eaπi . Prove integrals from A to B and C to

D as zero. Take R → ∞.

Ans. π
sin aπ

31.
�∞
0

cosh ax
cosh x

dx

Hint: Integrate eaz

cosh z
along a rectangle with

vertices at −R,R,R + πi,−R + πi, only

pole πi
2
, Res −ie aπi2 . Integrals from R to

R + πi,−R + πi to −R are zero as R → ∞.

Ans. π

2 cos(π a
2
)
where |a| < 1

32. Prove that
�∞
0

sin ax

e2πx−1
dx = 1

4
coth a

2
− 1

2a
.

Hint: Integrate eaiz

(e2πz−1)
around a rectanglewith

vertices at 0, R,R + i, i and take R→∞.

33. Prove that
�∞
0

sin x2dx = �∞
0

cos x2dx =
1
2

�
x
2
.



THEORY OF RESIDUES 24.17

Hint: Integrate eiz
2
around c : θ = 0, arc of

circle radius R, centre origin, θ = π
4
.

Type IV

34. Show that
�∞
0

sinmx
x
dx = π

2
with m > 0.

Hint: Integrate eiz

z
around c : c1 + c2 + c3

+ c4 (Fig. 24.7).

Fig. 24.7

35. Find principal value of
�∞

−∞
dx

(x2−3x+2)(x2+1)

Ans. π
10
, z = 1, 2, i,Res − 1

2
, 1
5
, 3−i

20

36. Show that pr. v.
�∞

−∞
sin x dx

(x2+4)(x−1)
=

π
5

�
cos 1 − 1

e2

�
.

37. Prove that pr. v.
�∞

−∞
x

8−x3 dx = −
√
3π
6

.

38. Prove that
�∞
0

ln(x2+1)

x2+1
dx = π ln 2

Hint: Integrate ln(z+i)
z2+1

around c: real axis −R
to R and semicircle of radius R.

39. Prove that
�∞

−∞
ekxdx
1+ex = π

sin kπ
, 0 < k < 1.

Hint: Integrate ekz

(1+ez) around the rectangle
y = 0, y = 2π, x = ±a as a → ∞.

Type V

40. Show that
�∞
0

xa−1dx

1+x2 = π

2 sin( aπ2 )
for 0 < a < 2.

41. Prove that
�∞
0

xa−1

1+x dx = π
sin aπ

, 0 < a < 1.

24.4 ARGUMENT PRINCIPLE

Argument principle determines the number (how

many) of zeros or poles of a function in a given re-

gion which is useful in the stability criteria of linear

systems.

Argument Theorem

Theorem: Let f (z) be analytic on and within a

simple closed curve c except for a pole z = a of order

(multiplicity) p inside c. Further suppose that f (z)

has only one zero z = b of order (multiplicity) n and

no other zeros on c.

Then

1

2πi

�
c

f  (z)
f (z)

dz = n− p (1)

Proof: Enclose z = a and z = b by non-

overlapping circles c1 and c2 respectively (Fig. 24.8).

Then

1

2πi

�
c

f  (z)
f (z)

dz = 1

2πi

�
c1

f  

f
dz+ 1

2πi

�
c2

f  

f
dz (2)

Since f (z) has a pole of order p at z = a, we have

f (z) = F (z)

(z− a)p
(3)

Fig. 24.8

where F (z) is analytic and non-vanishing on and
within c1. Taking log of (3) and differentiating w.r.t.,
z, we get

f  (z)
f (z)

= F  (z)
F (z)

− p

z− a
(4)

Thus
1

2πi

�
c1

f  

f
dz= 1

2πi

�
c1

F  

F
dz

− p

2πi

�
c1

dz

z− a
(5)

Since F is analytic, so is F  and therefore F  
F

is analytic in c1. Therefore by Cauchy’s theorem�
c1

F  
F
dz = 0. For a circle c1 with centre at z =

a,
�
c1

dz
z−a = 2πi. With these values, (5) reduces to

1

2πi

�
c1

f  (z)
f (z)

dz = 0 − p

2πi
· 2πi = −p (6)

Since f (z) has a zero of order n at z = b, we have

f (z) = (z− b)nG(z) (7)



24.18 HIGHER ENGINEERING MATHEMATICS—VI

where G(z) is analytic and non-vanishing on and

within c2. Taking log of (7) and differentiating, we

get

f  (z)
f (z)

= G (z)
G(z)

+ n

z− b
(8)

Thus

1

2πi

�
c2

f  

f
dz= 1

2πi

�
c2

G 

G
dz+ n

2πi

�
c2

dz

z− b

= 0 + n

2πi
· 2πi = n (9)

Substituting (6) and (9) in (2), we get

1

2πi

�
c

f  (z)
f (z)

dz = n− p

Generalization of Argument Theorem

Theorem: Let f (z) be analytic on and within a

simple closed curve c except at a finite number

of poles a1, a2, . . . aj with respective multiplicities

p1, p2, . . . pj inside c. Further f (z) has a finite num-

ber of zeros inside c at b1, b2, . . . bk with respective

multiplicities n1, n2, . . . nk . Also f (z)  = 0 on c.
Then

1

2πi

�
c

f  (z)
f (z)

dz = N − P

where N =
k�
r=1

nr = total number of zeros of f (z)

inside c, counting their multiplicities and P =
j�
r=1

pr = total number of poles of f (z) inside c,

counting multiplicities.

Fig. 24.9

Proof: Enclose a1, a2, . . . aj and b1, b2, . . . bk
by non-overlapping circles c1, c2, . . . cj and
+1, +2, . . . +k respectively and use the argument
theorem above (Fig. 24.9).

1

2πi

�
c

f  

f
dz=

k�
r=1

1

2πi

�
+r

f  

f
dz+

j�
r=1

1

2πi

�
cr

f  

f
dz

1

2πi

�
c

f  (z)
f (z)

dz=
k�
r=1

nr −
j�
r=1

·pr = N − P.

Argument Principle:

(or Principle of Argument (Angle))

From Argument theorem

N − P = 1

2πi

�
c

f  (z)
f (z)

dz = 1

2πi

�
c

d[ln f (z)]

= 1

2πi
[Variation of ln f (z) in going

completely (once) around (along) c]

= 1

2πi
var [ln |f (z)| + i arg f (z)]

Since ln |f | is same at the beginning and at the
end of one full circuit around c, therefore

N − P = i

2πi
var of arg f = 1

2π
var of arg f (z)

= 1

2π
[variation of argument of f (z)

(i.e., change in the angle f (z)) as curve c

is traversed completely once]

Corollary: Iff (z) is analytic everywhere (soP =
0) then

N = Number of zeros of f (z) inside c

= 1

2π
· net variation of argument of f (z)

as z traverses the closed curve c.

Geometrically the number of zeros of f (z) is the

number of times the locus c∗ of w = f (z) encircles

the origin.

Note: Ifw = 0, origin  ∈ c∗, thenN = net variation

of argument f (z) is zero.
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24.5 ROUCHE’S THEOREM

Introduction

The counting of the total number of zeros of an ana-

lytic function in a given domain can be appreciably

simplified by Rouche’s theorem.

Theorem: Let the functions f (z) and g(z) be ana-

lytic within and on a simple closed curve c bounding

a region R. Further |f (z)| > |g(z)| on c and f and

g are non-vanishing on c. Then the total number of

zeros inside c (in region R) of f (z) + g(z) is equal

to the total number of zeros of f (z).

Proof: Let F (z) = f (z) + g(z). Then on c
|F (z)| = |f (z) + g(z)| ≥ |f (z)| − |g(z)| > 0. Thus
both f (z) and F (z) are analytic in c and non-
vanishing on c. Therefore by argument principle,
number of zeros F (z) = 1

2π
variation of the argu-

ment of F (z) as z traverses along the closed curve c
completely once i.e.,

N [f (z) + g(z)] = 1

2π
var [arg (f + g)]c

Similarly,

N [f (z)] = 1

2π
var [arg f ]c

Taking the difference

N [f + g] −N [f ]

= 1

2π
var [arg (f + g) − arg f ]c

= 1

2π
var

�
arg

�
f + g

f

��
c

= 1

2π
var

�
arg

�
1 + g

f

��
c

= 1

2π
var [arg w]c

where

w = 1 + g(z)

f (z)
= w(z). Then |w − 1| =

���� gf
���� < 1.

As the point z traverses c completely in the z-plane

the corresponding point w describes a closed curve

c∗ in thew-plane. Since |w − 1| < 1, c∗ lies entirely
inside some circle |w − 1| = ρ0. So the pointw = 0

lies outside c∗. Consequently the var [arg w]c∗ = 0.

Hence the total number of zeros inside c of f + g

and f are same.

Fig. 24.10

Note: If w = 0 origin lies inside c∗, then the vari-

ation of argument ofw is not zero, but is determined

by the number of total circuits about the pointw = 0

performed by w in its complete motion along the

closed contour c∗ (Fig. 24.10).

WORKED OUT EXAMPLES

Argument principle

Evaluate
�
c

f  (z)
f (z)

dz where c is a simple closed curve:

Example 1: f (z) = z5 − 3iz2 + 2z− 1 + i

Solution: By fundamental theorem of algebra, f (z)

has 5 zeros. But f (z) has no poles.
By argument principle�

c

f  (z)
f (z)

dz = 2πi[N − P ] = 2πi[5 − 0] = 10πi.

Example 2: f (z) = (z2 + 1)2/(z2 + 2z+ 2)3,

c : |z| = 4

Solution: z = ±i are zeros of f (z) each of

order 2 (i.e., multiplicity 2). Poles of f (z) are ze-

ros of z2 + 2z+ 2 i.e., z = −1 ± i. Thus −1 ± i are

poles of f (z) each of order 3. By argument principle�
c

f  (z)
f (z)

dz = 2πi[2 × 2 − 2 × 3] = −4πi.

Example 3: f (z) = tan πz, c : |z| = π .

Solution: Since tan πz = sin πz
cosπz

, the zeros of
tan πz are zeros of sin πz which are z = ±n,
n = 0, 1, 2, 3, · · · of these only z = 0,±1,±2,±3
(seven of them) lies in c. Similarly, poles of tan πz
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are zeros of cosπz which are z = ± 1
2
,± 3

2
,± 5

2
, . . .,

etc. Of these 6 lie in c. Thus by argument principle�
c

f  (z)
f (z)

dz = 2πi[7 − 6] = 2πi.

Rouche’s theorem

Apply Rouche’s theorem to determine the number of

roots (zeros) ofp(z) that lie within the circle/annulus

region:

Example 4: p(z) = z9 − 2z6 + z2 − 8z− 2,

c : |z| = 1

Solution: Choose f (z) = −8z,
g(z) = z9 − 2z6 + z2 − 2

on c : |z| = 1, |f | = | − 8z| = |8||z| = 8

on c : |z| = 1, |g| = |z9 − 2z6 + z2 − 2|
≤ |z9| + |2|z6| + |z2| + |2|
= 1 + 2 + 1 + 2 = 6

Thus |f | = 8 > 6 = |g| on c, f, g are analytic on

and within c. So by Rouche’s theorem f and p =
f + g has same number of roots within c. But f has

only one zero in c. Hence p(z) has one zero inside

c : |z| = 1.

Example 5: p(z) = z4 − 5z+ 1, annulus region

1 < |z| < 2.

Solution: c1 : |z| = 1. Take f (z) = −5z,

g(z) = z4 + 1.

Then on c, |f | = 5 > 2 = |g|.
So by Rouche’s theorem p = f + g has one zero

inside c1 since f has one zero in c1.

Take f = z4, g = −5z+ 1. Then on c2, |z| = 2,

|f | = 24 = 16 > 11 = |g|.
So by Rouche’s theorem, p = f + g has 4 zeros

within c2 since f has 4 zeros within c2. Hence there

are 4 − 1 = 3 zeros of p in the annulus region 1 <

|z| < 2.

Example 6: p(z) = ez − 4zn + 1, c : |z| = 1

Solution: Take f = −4zn, g = ez + 1

on c : |z| = 1, |f | = 4|zn| = 4 > |g| = |ez| + 1 = e + 1

Therefore p = f + g has n zeros within c since f

has n zeros within c.

EXERCISE

Argument principle

Evaluate
�
c

f  (z)
f (z)

dzwhere c is a simple closed curve:

1. f (z) = (z2 − 1)/(z2 + z)2, c : |z| = 2

Ans. −4πi

2. f (z) = (z2 + 2)3/(z3 + 2z2 + 2z)4,

c : |z| = 10

Ans. −12πi

3. f (z) = sin πz, c : |z| = π

Ans. 14πi

4. f (z) = cosπz, c : |z| = π

Ans. 12πi.

Rouche’s theorem

UseRouche’s theorem to determine the number roots

(zeros) of f (z) within the circle c/annulus region

indicated:

5. f (z) = 2z5 − z3 + 3z2 − z+ 8, c : |z| = 1

Ans. No zeros

6. f (z) = z7 − 5z4 + z2 − 2, c : |z| = 1

Ans. 4 zeros

7. f (z) = z6 − 5z4 + z3 − 2z, c : |z| = 1

Ans. 4

8. f (z) = 2z4 − 2z3 + 2z2 − 2z+ 9, c : |z| = 1

Ans. 0

9. f (z) = z7 − 4z3 + z− 1, c : |z| = 1

Ans. 3

10. f (z) = z7 − z3 + 12, annulus region

1 < |z| < 2

Ans. 7

11. f (z) = z4 − 8z+ 10, 1 < |z| < 3

Ans. 4
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12. f (z) = 2z5 − 6z2 + z+ 1, 1 < |z| < 2

Ans. 3

13. f (z) = azn − ez, c : |z| = 1, |a| > e

Ans. n

14. f (z) = 2z5 + 8z− 1, c : |z| = 2

Ans. 5

15. f (z) = z5 + 15z+ 1, 3
2
< |z| < 2

Ans. 4.

24.6 FUNDAMENTAL THEOREM OF

ALGEBRA

Theorem 1: Every polynomial of degree n in the

complex plane has at least one zero.

Proof: (By Liouville’s theorem)
Let p(z) be a polynomial in z of degree n > 1

given by

p(z) = a0 + a1z+ a2z
2 + · · · + anz

n

where an  = 0

Suppose that p(z) has no zeros, then p(z)  = 0

for any value of z. Now f (z) = 1
p(z)

is ana-

lytic everywhere. Also |f (z)| → 0 as |z| → ∞
so that |f (z)| is bounded for all z. Liouville’s

theorem states that a function f (z) which is analytic

everywhere and bounded is constant. This is a con-

tradiction since p(z) is not constant. Hence p(z) is

zero for at least one value of z.

Aliter

Every polynomial of degree n in the complex plane

has n zeros, counting the multiplicities.

Proof: (By Rouche’s theorem)
Let p(z) = a0 + a1z+ a2z

2 + · · · + anz
n be the

polynomial with an  = 0. Choose f (z) = anz
n and

g(z) = a0 + a1z+ · · · + an−1z
n−1. Let c be a circle

with centre at origin of radius R(> 1). Then on c���� g(z)f (z)

����= |a0 + a1z+ · · · + an−1z
n−1|

|anzn|

≤ |a0| + |a1|R + |a2|R2 · · · + |an−1|Rn−1

|an|Rn

≤ |a0|Rn−1 + |a1|Rn−1 + · · · + |an−1|Rn−1

|an|Rn

= |a0| + |a1| + · · · + |an−1|
|an|R

For any specified values of the coefficients
a0, a1, · · · an we can choose R such that

0 <

���� g(z)f (z)

����
�����
on c

=
���� g(z)f (z)

����
|z|=R

< 1 i.e., |g(z)| < |f (z)|

By Rouche’s theorem, the total number of zeros of

the polynomial p(z) = f (z) + g(z) in the circle c is

same as the number of zeros of f (z) = anz
n in c. But

the function f (z) = anz
n has (n-fold zero) n zeros

all located at z = 0. Hence p(z) = f (z) + g(z) has

n zeros in c. Since R is arbitrary, this is true for the

entire complex plane.

24.7 LIOUVILLE∗ THEOREM

Theorem: If f (z) is entire and |f (z)| is bounded

for all z, then f (z) is constant.

Proof: Consider the generalized Cauchy’s integral

formula

f (n)(z0) = n!

2πi

�
c

f (z)

(z− z0)n+1
dz (1)

with C chosen as a circle with centre at z0 and of

radius r . Since |f (z)| is bounded, |f (z)| ≤ M .
Applying M-L inequality to (1)

|f (n)(z0)| = n!

2π

����
�
C

f (z)

(z− z0)n+1
dz

���� ≤ n!

2π

M

rn+1
2πr,

since C : |z−z0| = r and L=Length of C= 2πr

or |f (n)(z0)| ≤ n!M

rn
(2)

which is known as Cauchy’s inequality. From (2)

for n = 1, we have

|f  (z0)| ≤ M

r
(3)

Since f is entire (analytic everywhere) and |f | is
bounded for all z, (3) is true for any r . As r → ∞

|f  (z0)| → 0

Thus since z0 is arbitrary, f
 (z) = 0 for all z and

therefore f (z) is a constant.

∗Joseph Liouville (1809–1882) French mathematician.



24.22 HIGHER ENGINEERING MATHEMATICS—VI

24.8 DETERMINATION OF ZEROS OF A

COMPLEX POLYNOMIAL

WORKED OUT EXAMPLES

Example 1: Using argument principle prove that
the complex polynomial equation

2z4 − 3z3 + 3z2 − z+ 1 = 0

has no roots on the real and imaginary axes and has

one complex root in each quadrant.

Solution: Consider the complex polynomial func-
tion

f (z) = u+ i v = 2z4 − 3z3 + 3z2 − z+ 1

(i) To prove that f (z) has no real roots. For z =
x, (x > 0) we have

f (x) = 2x4 − 3x3 + 3x2 − x + 1.
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Conformal Mapping

INTRODUCTION

Suppose we are able to solve some problem for

a simple domain such as a disk or half plane D.

Further suppose we map this domain D confor-

mally to another domain D∗ in which the solu-

tion is sought. Then using such a mapping, from

solution of D, we get a solution for D∗. Confor-
mal mapping, which preserves angles in magnitude

and sense is useful in solving boundary value prob-

lems in two-dimensional potential theory by trans-

forming a complicated region to a simpler region.

i.e., conformal mapping preserves solutions of two-

dimensional Laplace equation. Bilinear transforma-

tion, mappings by zn, ez, sin z, cos z are often used.

Schwarz-Christoffel transformation maps polygons

to upper half-plane and consequently to a unit disk.

25.1 MAPPING (or TRANSFORMATION or

OPERATOR)

A real function y = f (x) involving two variables x

and y can be plotted as a plane graph in the xy-plane.
Since a complex function

w = f (z) = u(x, y) + iv(x, y)

of a complex variable z = x + iy involves four real

variables, x, y, u(x, y), v(x, y), two planes z-plane

and w-plane are needed for the geometrical repre-

sentation. The values of z are plotted in z-plane and

the corresponding function values w, known as im-

ages of z, are plotted in the w-plane. In general the

points on a curve c in the z-plane getmapped or trans-

formed to points on an image curve c∗ in thew-plane.
Thus the function w = f (z) is said to be a mapping

or transformation from z-plane into w-plane.

Critical point of a functionw = f (z) is a point z0
where f  (z0)  = 0.

25.2 CONFORMAL MAPPING

A mapping w = f (z) is said to be conformal if the

angle between any two smooth curves c1, c2 in the

z-plane intersecting at the point z0 is equal in mag-

nitude and sense to the angle between their images

c∗1, c
∗
2 in the w-plane at the point w0 = f (z0) (see

Fig. 25.1).

Fig. 25.1

Thus conformal mapping preserves angles both

in magnitude and sense [also known as confor-

mal mapping of the first kind. Conformal mapping

of the second kind (isogonal mappings) preserve

25.1
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angles only in magnitude but not in sense, which

is reversed, like w = z, where arg z = −arg z].

Conformal mapping is used to map complicated

regions conformally onto simpler, standard regions

such as circular disks, half planes and strips forwhich

the boundary value problems are easier.

Given two mutually orthogonal one-parameter

families of curves say φ(x, y) = c1 and ψ(x, y) =
c2, their image curves in the w- plane φ(u, v) = c3
and ψ(u, v) = c4 under a conformal mapping are

also mutually orthogonal. Thus conformal mapping

preserves the property of mutual orthogonality of

system of curves in the plane.

Condition for Conformality

A mapping w = f (z) is conformal at each point z0
where f (z) is analytic and f  (z0)  = 0 (Fig. 25.2).

Proof: Since f is analytic, f  exists and since
f   = 0, we have at a point z0

R0e
iθ0 = f  (z0) = lim

 z→0

f (z0 + z) − f (z)
 z

= lim
 z→0

 w

 z

= lim
 z→0

����� w z
���� + i arg  w z

�

Fig. 25.2

So θ0 = lim
 z→0

�
arg
 w

 z

�

Since  w =  w

 z
· z,

arg w = arg
 w

 z
+ arg  z

As  z→ 0

β = θ0 + α

Thus the directed tangent to curve c at z0 is rotated

through an angle θ0 = arg f  (z0), which is same for

all curves through z0. Let α1, α2 be angles of incli-

nation of two curves c1 and c2 and β1 and β2 be the

corresponding angles for their images S1 and S2,

Then β1 = α1 + θ0 and β2 = α2 + θ0
Thus β2 − β1 = α2 − α1 = γ.

Hence the angle γ between the curves c1 and c2 and

their images S1 and S2 is same both inmagnitude and

sense.

Result: An analytic function f (z) is conformal

everywhere except at its critical points where f  (z)
 = 0.

Note: Solutions of Laplace’s equation are invariant

under conformal transformation.

25.3 CONFORMAL MAPPING BY

ELEMENTARY FUNCTIONS

General Linear Transformation or simply

linear transformation defined by the

function

w = f (z) = az+ b (1)

(a  = 0, and b are arbitrary complex constants) maps

conformally the extended complex z-plane onto the

extendedw-plane, since this function is analytic and

f  (z) = a  = 0 for any z. If a = 0, (1) reduces to a

constant function.

Special cases of linear transformation are

i. Identity transformation

w = z (2)

for a = 1, b = 0, which maps a point z onto it-

self.

ii. Translation

w = z+ b (3)

for a = 1, which translates (shifts) z through a

distance |b| in the direction of b.
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iii. Rotation

w = eiθ0 · z (4)

for a = eiθ0 , b = 0 which rotates (the radius

vector of point) z through a scalar angle θ0
(counterclockwise if θ0 > 0, while clockwise if

θ0 < 0).

iv. Stretching (scaling)

w = az (5)

for ‘a’ real stretches if a > 1 (contracts if

0 < a < 1) the radius vector by a factor ‘a’.

Thus the linear transformation (1) consists of rotation

through angle arg a, scaling by factor |a|, followed
by translation through vector b. This transforma-

tion is used for constructing conformal mappings of

“similar” figures.

Result: Linear transformation preserves circles

i.e., a circle in the z-plane under linear transforma-

tion maps to a circle in the w-plane.

Consider any circle in the z-plane

A(x2 + y2) + Bx + Cy +D = 0 (6)

From (1)

u+ iv = w = az+ b = a(x + iy) + (b1 + ib2)
or u= ax + b1, v = ay + b2

or x = u− b1
a

, y = v − b2
a

, a  = 0 (7)

Substituting (7) in (6), we get

A∗(u2 + v2) + B∗u+ c∗v +D∗ = 0 (8)

which is a circle in the w-plane.
Here

A∗ = A

a2
, B∗ = B − 2Ab1

a
, C∗ = C − 2Ab2

a
,

D∗ = D + A
�
b21 + b22
a2

�
− Bb1

a
− Cb2

a
.

Thus circles are invariant under translation, rotation

and stretching.

Inversion and Reflection Transformation

w = 1

z
for z  = 0 (9)

In polar coordinates

Reiφ = 1

reiθ
= 1

r
e−iθ

so R = 1
r
, φ = −θ . Thus this transformation con-

sists of an inversion in the unit circle (Rr = 1)

followed by a mirror reflection about the real axis.

Also |w| = 1
|z| . So the unit circle |z| = 1 maps onto

the unit circle |w| = 1
1

= 1. Further the interior of the

unit circle |z| = 1 (points lying within |z| = 1) are

transformed to the exterior of the unit circle |w| = 1

(points lying outside |w| = 1) or vice versa (Fig.

25.3).

Fig. 25.3

By associating z = 0 to w = ∞ (also z = ∞ to

w = 0) (9) is valid for the extended complex plane.

Result: Circles are invariant under w = 1
z
.

In terms of cartesian coordinates

u(x, y) + iv(x, y) = w = 1

z
= 1

x + iy

= x − iy
(x + iy)(x − iy) = x − iy

x2 + y2

Thus u= x

x2 + y2 , v = − y

x2 + y2 .

Similarly, x = u

u2 + v2 , y = − v

u2 + v2 (10)

Substituting (10) in the equation of any circle in

z-plane given by (6), we get

D(u2 + v2) + Bu− Cv + A = 0 (11)

which is a circle in w-plane.

Observations: From (6) and (11), note that

i. A  = 0,D  = 0, circles not passing through
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origin in z-plane maps to circles not passing

through origin in w-plane.

ii. A = 0,D  = 0, straight lines (considered as the

limiting case of circles) in z-planemaps to circles

through origin in w-plane.

iii. A = 0,D = 0, straight lines in z-plane maps to

straight lines in w-plane and so on. Thus circles

under w = 1
z
are preserved.

WORKED OUT EXAMPLES

w= az+ b and w= 1
z

Example 1: Find and plot the image of triangular

region with vertices at (0, 0), (1, 0), (0, 1) under the

transformation w = (1 − i)z+ 3 (Fig. 25.4).
Solution: u+ iv = w = (1 − i)(x + iy) + 3

So u(x, y) = x + y + 3, v(x, y) = y − x

Fig. 25.4

AB: y = 0, u = x + 3, v = −x
or u= −v + 3 ... v = 3 − u : A∗B∗

AC: x = 0, u = y + 3, v = y,
or u= v + 3 ... v = u− 3 : A∗C∗

BC: x + y = 1, or substituting u = (x + y) + 3

= 1 + 3 = 4,

i.e., u= 4 : B∗C∗

So the image is the triangular region with vertices at

A∗(3, 0), B∗(4,−1), C∗(4, 1). Let D
�
1
4
, 1
4

�
be any

interior point of ABC. Its image isD∗(3.5, 0) which
is also an interior point of A∗B∗C∗.

Note 1: The angles π
2
, π
4
, π
4
at A,B,C are pre-

served as π
2
, π
4
, π
4
at vertices A∗, B∗, C∗ since given

function is conformal (everywhere).

Note 2: Since z1 = 1 − i, r =
√
2,

θ = −π
4

or 7π
4
.

Thus 1 − i =
√
2ei7π/4.

Rewriting

w = (1 − i)z+ 3 =
√
2e

i7π
4 · z+ 3

the above transformation first rotates the triangle

ABC in the z-plane clockwise by π
4
(or anticlockwise

7π
4
) and stretches the triangle by a scaling factor

√
2

and then finally translates the triangle to distance 3

units to the right, resulting in the triangle A∗B∗C∗

in thew-plane. (AB = 1, AC = 1, BC =
√
2 while

A∗B∗ =
√
2, A∗C∗ =

√
2, BC = 2).

Example 2: Find the graph the strip 1 < x < 2

under the mapping w = 1
z
(Fig. 25.5).

Solution: u+ iv = w = 1
z
= x−iy

x2+y2

so x = u

u2 + v2 , y = −v
u2 + v2

Since 1 < x < 2 so 1 < u

u2+v2 < 2

or u2 + v2 − u < 0 and 2(u2 + v2) − u > 0
Rewriting

�
u− 1

2

�2

+ v2 < 1

4
and

�
u− 1

4

�2

+ v2 > 1

16

or

����w − 1

2

���� < 1

2
and

����w − 1

4

���� > 1

4

i.e., interior of the circle with centre at
�
1
2
, 0

�
and

radius 1
2
and exterior of the circlewith centre at

�
1
4
, 0

�
and radius 1

4
.

Thus the infinite strip maps to the region shaded in

the w-plane.

Fig. 25.5
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EXERCISE

w= az+ b and w= 1
z

1. Show that w = iz is a rotation of the z-plane

through an angle π
2
in the counterclockwise

direction. Find and plot the image of the

regions:

(a) 0 < x < 1 (b) x > 2 (c) 2 < x < 3

(d) 1 < x < 2 and 2 < y < 3

Ans. w = iz = e iπ2 · reiθ = rei(θ+ π2 ),
so φ = θ + π

2
, u = −y, v = x,

(a) 0 < v < 1 (b) v > 2 (c) 2 < v < 3

(d) −2 > u > −3, 1 < v < 2.

2. Find and plot the rectangular region 0 ≤ x ≤ 2

0 ≤ y ≤ 1 under the transformations:

a. w = z+ (1 − 2i)

b. w =
√
2e

πi
4 z

c. w =
√
2e

πi
4 z+ (1 − 2i).

Ans. a. u = x + 1, v = y − 2, 1 ≤ u ≤ 3,

−1 ≥ v ≥ −2, translation

b. u = x − y, v = x + y, u = −v, u = v,
v + u = 4, v − u = 2 rotation through π

4

and stretching by
√
2

c. u = x − y + 1, v = x + y − 2, u+ v =
−1, u+ v = 3, u− v = 1, u− v = 3,

rotation, stretching followed by translation.

3. Find and plot the image of the circle |z| = c1
under the transformation w = (1+i)z+3+2i.

Ans. |w − (3 + 2i)| =
√
2c1, circle with centre at

3 + 2i and radius
√
2c1

4. Determine the imageof the regions underw= 1
z

a. x > 1, y > 0 b. 0 < y < 1
2c
.

Ans. (a)
��w − 1

2

�� < 1
2

(b) u2 + (v + c)2 > c2

5. Determine and sketch the image of |z− 3| = 5

under w = 1
z
.

Ans.
��w + 3

16

�� = 5
16
.

6. Prove that the image of the hyperbola

x2 − y2 = 1 under w = 1
z
is the lemniscate

r2 = cos 2θ .

Hint: R = 1
r
, φ = −θ, x = r cos θ,

y = r sin θ . Substitute in x2 − y2 = 1.

7. Find and draw the image of the infinite hori-

zontal strip 2 < y < 4 under w = 1
z
.

Ans.
��w + 1

4

�� < 1
4
and

��w + 1
8

�� > 1
8
region between

the two circles with centre at− 1
4
, radius 1

4
and

with centre at − 1
8
and radius 1

8

8. Find the critical points of the mappings:

(a) w = z4 (b) w = ez2 (c) w = ez (d)

w = sin z (e) w = z2 + az+ b (f) w =
z+ 1

z
(g) w = z4 − z2 (h) w = z2 + 1

z2
.

Ans. (a) z = 0 (b) z = 0 (c) none (d) z =
nπ
2
, nodd (e) z = − a

2
(f) z = ±1 (g) z =

0,± 1√
2

(h) w = ±1,± i
9. Find an analytic function w = u+ iv = f (z)

which maps the half plane x ≥ 0 onto the

region u ≥ 2 such that z = 0 corresponds to

w = 2 + i.
Hint: w1 = z,w2 = w1 + 2, w = w2 + i.

Ans. w = z+ 2 + i.

25.4 TRANSFORMATION: w= zn

where n is integer greater than 1

Rewriting, Reiφ = w = zn = (reiθ )n

or R = rn and φ = nθ (12)

Fig. 25.6

Thus angular region sector with central angle

α = π
n
, r > 0, 0 ≤ θ ≤ π

n
in the z-plane under w =

znmaps to the upper half plane (v ≥ 0) in thew-plane
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(since 0 ≤ nθ = φ ≤ π,R > 0 i.e., v ≥ 0) (see Fig.

25.6).

The transformation w = zn is conformal every

except at z = 0 and ∞ since zn is entire and since

f  (z) = nzn−1 is non-zero and bounded everywhere

except at z = 0 and∞. This transformationmaps the

sector θ0 < arg z = θ < θ0 + 2π
n

onto the w-plane

(cut along the ray arg w = φ = nθ0) since both the

boundaries I and II of the sector say 0 ≤ θ ≤ 2π
n

of the z-plane maps to the positive real axis of the

w-plane) (see Fig. 25.7).

Fig. 25.7

Note: The angles at the origin are multiplied by a

factor n in this mapping and the angular region is

spread onto a half plane.

25.5 MAPPING w= z 2

In polar coordinates

Reiφ = w = (reiθ )2 = r2ei2θ (13)

i.e., R = r2, φ = 2θ

thus the angles at the origin are doubled. For exam-

ple, the first quadrant in z-plane
�
0 ≤ θ ≤ π

2

�
maps

to the upper half plane in the w-plane (0 ≤ φ ≤ π )
(refer Fig. 25.8).

Fig. 25.8

The circle r = r0 maps to circle R = r20
The ray θ = θ0 maps to ray φ = 2θ0

In cartesian coordinates

u(x, y) + iv(x, y) = w = z2 = (x + iy)2

= (x2 − y2) + i2xy
So u(x, y) = x2 − y2, v(x, y) = 2xy (14)

Case 1: If u = u0 = constant and v = v0 =
constant then x2 − y2 = u0 and 2xy = v0 repre-

sent equilateral hyperbolas (with the lines y = ± x
and the coordinate axes x = 0, y = 0 as asymptotes

respectively) which are orthogonal trajectories of

each other (refer Fig. 25.9).

Fig. 25.9

Case 2: If x = c1 = constant and y = c2 =
constant then eliminating x and y from (14) for
x = c1,

u = c21 − y2, v = 2c1y so u = c21 − v2

4c21

which is a parabola with focus at origin, v = 0

as axis and open to the left. Similarly, y = c2,
u = x2 − c22, v = 2c2x, so u = v2

4c2
2

− c22 parabola

open to the right (Fig. 25.10).

Fig. 25.10

These parabolas are orthogonal to each other.

w = z2 is conformal everywhere except at z = 0

where w = 2z = 0.
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WORKED OUT EXAMPLES

w= zn and w= z2

Example 1: Describe the region onto which the

sector r < a, 0 ≤ θ ≤ π
4
is mapped by (a) w = z2

(b) w = z3 (c) w = z4 (d) w = iz2 (e) w = i

z2

Solution: Reiφ = w = z2 = r2ei2θ so R = r2,
φ = 2θ

a. R = r2 < a2, 0 ≤ φ ≤ π
2
(Fig. 25.11)

Fig. 25.11

b. w = z3, R = r3, φ = 3θ, R = r3 < a3,
0 ≤ φ ≤ 3π

4
(Fig. 25.12)

Fig. 25.12

c. w = z4, R = r4 < a4, 0 ≤ φ ≤ π
(refer Fig. 25.13)

Fig. 25.13

d. w = iz2, rotation of (Fig of a) by π
2
in counter-

clockwise (Fig. 25.14).

Fig. 25.14

e. Reiφ = w1 = 1

z2
= 1

r2ei2θ
= 1

r2
e−i2θ

so R = 1

r2
> 1

a2
and φ = −2θ i.e., 0 ≥ θ ≥ −π

2

(refer Fig. 25.15).

Fig. 25.15

Sector in z-plane is inverted inw1-plane and then

rotated through π
2
in counterclockwise direction.

Example 2: Find an analytic function w = u+
iv = f (z) such that the angular region 0 < arg z <
π
3
maps onto the region u ≤ 1 (refer Fig. 25.16).

Fig. 25.16
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Solution: z3 maps the given region onto upper half

plane in w1-plane, which rotated through π
2
in w2-

plane and translated to the right by 1 in the w-plane.

Example 3: Plot the image of the region

2 < |z| < 3 and |arg z| < π
4
under w = z2 (see

Fig. 25.17).

Fig. 25.17

Solution: R = r2 so for 2 < r < 3, 4 < R < 9

Since −π
4
< θ < π

4
therefore

−π
2
< φ <

π

2

Example 4: Determine and graph the image of

|z− a| = a under w = z2 (Fig. 25.18).

Fig. 25.18

Solution: The given region is a circle in the z-plane
with centre at (a, 0) and radius a. i.e.,

z− a = aeiθ or z = a + aeiθ = a(1 + eiθ )
So w = z2 = a2(1 + eiθ )2 = a2(1 + cos θ + i sin θ )2

= 2a2(cos2 θ + cos θ + i sin θ cos θ + i sin θ )
Reiφ = w = 2a2(1 + cos θ )(cos θ + i sin θ )

= 2a2(1 + cos θ )eiθ

Thus R = 2a2(1 + cos θ )

= 2a2(1 + cosφ) since φ = θ

EXERCISE

w= zn and w= z2

Determine and plot the images of the regions under

the transformation w = z2:
1. |z| > 2

Ans. |w| > 4

2. |arg z| ≤ π
2

Ans. |arg w| ≤ π
3. 1

2
< |z| < 2, Re z ≥ 0

Ans. 1
4
< |w| < 4,−π ≤ φ ≤ π

4. Show thatw = z4−i
z4+i maps 0 < arg z < π

4
onto

|w| = 1.

Hint: w1 = z4 onto upper half plane,

w = w1−i
w1+i onto unit circle |w| = 1.

5. Find a transformation which will map an infi-

nite sector of angle π
3
onto the interior of a unit

circle.

Hint: w1 = z3 spreads to upper half plane, bi-
linear transformation (B.T.) maps to unit cir-

cle.

Ans. w = (z3−i)
(z3+i)

6. Determine the regionof thew-plane intowhich

the region bounded by x = 1, y = 1, x + y =
1 is mapped by w = z2. Show that angles are

preserved (refer Fig. 25.19).

Fig. 25.19
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Ans. u = v2

4
− 1, u = 1 − v2

4
, v = 1

2
(1 − u2)

7. Find the region in z-plane whose image

under w = z2 is the rectangular domain in

w-plane bounded by the lines u = 1, u = 2,

v = 1, v = 2.

Ans. 1 < x2 − y2 < 2, 1
2
< xy < 1 rectangular

hyperbolas

8. Determine the image of the rectangle a ≤ x
≤ b, c ≤ y ≤ d under w = √

z.

Hint: Consider w2 = z and use above

problem 7.

Ans. a ≤ u2 − v2 ≤ b and c ≤ 2uv ≤ d rectangu-

lar hyperbolas

9. Show that the image of the unit circle |z| = 1

under w = 2z+ z2 is a cardioid
R = 2(1 + cosφ).

25.6 TRANSFORMATION w= ez

Rewriting

Reiφ = w = ez = ex+iy = ex · eiy

Therefore R = ex and φ = y (1)

i.e., modulus of w is ex and argument of w is y. The

line x = c = constant maps onto the circle R = ec
(refer Fig. 25.20).

Fig. 25.20

C*

The line y = c maps onto the ray φ = c. Thus

the rectangular region a ≤ x ≤ b, c ≤ y ≤ d in the

z-plane is mapped to the region A∗B∗C∗D∗ in the

w-plane bounded by the concentric circles R = eb
and R = ea and by the rays φ = c and φ = d.
Note 1: Since ez  = 0, w = 0 is not mapped. Thus

the origin in w-plane is excluded.

Note 2: This mapping is one to one if d − c < 2π .

Particular case: c = 0, d = π
Consider the rectangular region in z-plane

a ≤ x ≤ b, 0 ≤ y ≤ π (see Fig. 25.21). By (1),

Fig. 25.21

ea ≤ R = ex ≤ eb and 0 ≤ φ = y ≤ π.
Thus the rectangular region maps onto the up-

per half of the annulus ring ea < R < eb, 0 ≤ φ ≤ π
(refer Fig. 25.22).

Fig. 25.22
ea eb

Infinite Rectangular Strip

To find the image of the infinite rectangular strip

in the z-plane given by −∞ < x <∞, 0 ≤ y ≤ π
under the transformation w = ez:
Case 1: Consider the left semi-infinite strip

−∞ < x ≤ 0, 0 ≤ y ≤ π. By (1), x = 0, R = e0 = 1

and as x → −∞, R = ex → 0. Also 0 ≤ φ ≤ π
AB: − ∞ < x < 0, y = 0 then 0 < R < 1

and φ = 0

BCD: x = 0, 0 ≤ y ≤ π then R = 1
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and 0 ≤ φ ≤ π
DE: − ∞ < x < 0, y = φ then 0 < R < 1

and φ = π.
Thus the left semi-infinite strip ABCDE maps

onto the semi circle 0 < R ≤ 1, 0 ≤ φ ≤ π given

by A∗B∗C∗D∗E∗ in the w-plane (Fig. 25.23).

Fig. 25.23

Case 2: Right semi-infinite strip 0 ≤ x <∞,
0 ≤ y ≤ π . By (1), 1 ≤ R <∞ and 0 ≤ φ ≤ π .
Thus the right semi-infinite strip maps onto the ex-

terior of the semi-circle |w| = 1 in the upper half of

w-plane.

Fundamental region of ez

Since ez is periodic with period 2πi

ez+2πi = ez

The infinite strip −∞ < x <∞,−π < y ≤ π , is
known as a fundamental region of ez.

The transformation w = ez maps a fundamental

region bijectively onto the entire w-plane.

Conformality

w = ez is conformal everywhere since ez is analytic

everywhere and has no critical points (w = ez  = 0

for any z).

Mapping of Logarithmic Function

Since logarithm is the inverse of exponential func-

tion, the mapping logarithm can be easily obtained

from those of the exponential function by interchang-

ing the roles of z (z-plane) and w (w-plane).

WORKED OUT EXAMPLES

Example 1: Find and draw the image of the

rectangular region−1 ≤ x ≤ 3,−π ≤ y ≤ π in the

z-plane under the transformation w = ez.
Solution: By transformation R = ex, y = φ,
we get for −1 ≤ x ≤ 3, e−1 ≤ R ≤ e3 and for

−π ≤ y ≤ π,−π ≤ φ ≤ π . Thus the image is the

annulus region bounded by the circles of radii e−1

and e3 (Fig. 25.24).

Fig. 25.24

Example 2: Find an analytic function which maps

the region R bounded by the positive x and y-axes

and the hyperbola xy = π
2
in the first quadrant onto

the upper half plane.

Solution: The transformation w1 = z2 maps the

given region onto the semi-infinite strip−∞< u1 <

∞, 0 ≤ v1 ≤ π in thew1-plane. [u1 = x2 − y2, v1 =
2xy soOA: x = 0, v1 = 0,OB: y = 0, v1 = 0 so BOA

maps v1 = 0 i.e., to B∗O∗A∗, CDE: xy = π
2
so v1 =

2xy = 2 · π
2

= π , so CDE onto C∗D∗E∗ : v1 = π ]
(Fig. 25.25).

Fig. 25.25

w = ew1
v

D* (0, )p

F* (0, 2)
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Now the transformation w = ew1 = ez2 trans-

forms the semi-infinite strip onto the upper half plane

in the w-plane.

EXERCISE

Find and graph the images of the regions under the

mapping w = ez:
1. −1 < x < 1, −π

2
< y < π

2

Ans. e−1 < R < e, −π
2
< φ < π

2

Fig. 25.26

2. −2 ≤ x ≤ 2,−π ≤ y ≤ −π
2

Ans. e−2 ≤ R ≤ e2,−π ≤ φ ≤ −π
2

Fig. 25.27

3. Find the transformation which conformally

maps the horizontal strip 0 < y < π onto the

disk |w| < 1.

Ans. w = f (z) = (ez−i)
(ez+i) . Put Z = ez which trans-

forms horizontal strip onto upper half plane,

thenB.T.w = (z−i)
(z+i) maps upper half plane onto

disk |w| < 1.

4. Find the transformation which maps the

infinite strip 0 < y < a in the z-plane into the

upper half plane of w-plane.

Ans. w = e πza
5. Find the transformation which maps the

annulus region a < R < b in z-plane onto a

rectangle in the w-plane.

Hint: ew = z transforms rectangles inw-plane

onto annulus region in z-plane.

Ans. w = ln z

6. Show that the transformation w = tan z

transforms |x| < π
4
onto unit disk |w| < 1.

Hint: w = tan z = 1
i
eiz−e−iz
eiz+e−iz = −ie2iz+i

e2iz+1

Put Z = ei2z, w = −iZ+i
Z+1

.

Vertical strip to right half plane to unit circle.

25.7 TRANSFORMATION w= sin z

We know that

u+ iv = w = f (z) = sin z

= sin x · cosh y + i cos x sinh y (1)

so u(x, y) = sin x · cosh y (2)

v(x, y) = cos x sinh y (3)

If −π
2

≤ x ≤ π
2
, then the mapping in one-to-one. If

x = c = constant then from (2) and (3)

u= sin c cosh y, v = cosc sinh y,

so 1 = cosh2 y − sinh2 y =
� u

sin c

�2
−

� v

sin c

�2
Thus the images of the vertical lines x = constant

are hyperbolas given by

u2

sin2 x
− v2

cos2 x
= 1 (4)

If y = c then from (2) and (3)

u= sin x · cosh c, v = cos x · sinh c,

so 1 = sin2 x + cos2 x =
� u

cosh c

�2
+

� v

sinh c

�2
Thus the images of the horizontal lines y = c are

ellipses given by

u2

cosh2 y
+ v2

sinh2 y
= 1 (5)

The focii for the ellipses (5) and hyperbolas (4)

are same given by w = ±1 (independent of the

constant c) (Fig. 25.28).

Hence w = sin z transforms x = c and y = c
lines into confocal hyperbolas (4) and confocal

ellipses (5) respectively. The families of hyperbolas

and ellipses are orthogonal to each other.
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Fig. 25.28

w = sin z

Semi-infinite strip: −π
2

≤ x ≤ π
2
, y ≥ 0.

(see Fig. 25.29)

Fig. 25.29

From (2) and (3), u = sin x · cosh y,
v = cos x sinh y

AB: x = π

2
, y ≥ 0 so v = 0, u = cosh y ≥ 1

BC: y = 0, 0 ≤ x < π
2

so v = 0, u = sin x,

thus 0 ≤ u ≤ 1

CD: y = 0,
−π
2

≤ x ≤ 0, so v = 0, u = sin x,

thus − 1 ≤ u = 0

DE: x = −π
2
, y ≥ 0, so v = 0, u = − cosh y ≤ −1

CF: x = 0, y ≥ 0, so u = 0, v = sinh y ≥ 0.

Thus the upper semi-infinite strip in the z-plane under

w = sin z transforms to the upper half plane in the

w-plane.

Similarly, the lower semi-infinite strip−π
2

≤ x ≤
π
2
, y ≤ 0maps to the lower half plane of thew-plane.

Cut

To find the image of the rectangle in the z-plane

−π
2

≤ x ≤ π
2
,−1 ≤ y ≤ 1; under w = sin z

(see Fig. 25.30)

Fig. 25.30

Line by line correspondence:
CB: y = 1, −π

2
≤ x ≤ π

2
, upper portion of the ellipse

u2

cosh2 1
+ v2

sinh2 1
= 1

since v = cos x · sinh 1 ≥ 0 for −π
2

≤ x ≤ π
2

EF: y = −1, −π
2

≤ x ≤ π
2
, lower portion of the

above ellipse since v = − cos x · sinh 1 ≤ 0 for�−π
2
, π
2

�
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BA : x = π

2
, y > 0, so v = 0, u = cosh y ≥ 1

AF : x = π

2
, y < 0, so v = 0, u = cosh(−y)

= cosh y ≥ 1.

Thus BA and AF both get mapped onto the same
line segment v = 0, u ≥ 1 in the w-plane. B∗A∗F ∗

is known as cut along the real axis.

CD : x = −π
2
, y > 0, so v = 0, u = − cosh y ≤ −1

DE : x = −π
2
, y < 0, so v = 0, u = − cosh ≤ −1.

Thus CD and DE both map to the cut C∗D∗E∗.
Hence the upper and lower sides of the rectangle

are mapped onto semi-ellipses while the vertical

sides onto − cosh 1 ≤ u ≤ −1 and 1 ≤ u ≤ cosh 1

(v = 0).
Mapping w = sin z is conformal everywhere ex-

cept at z = ±1 where it is not one-to-one. In general,
w = sin z is conformal everywhere since w = sin z
is analytic everywhere except at the critical points
z = (2n− 1)π

2
where

w = cos z = 0 · (n = 0,±1,±2, . . .).

Successive Transformations

from one plane to another are equivalent to a single

transformation.

1. w = cos z = sin
�
z+ π

2

�
with z∗ = z+ π

2
, w = cos z = sin z∗.

Thus the cosine transformation is the same map-

ping as sine preceded by a translation to the right

through π
2
units.

2. w = sinh z = −i sin(iz)
with w1 = iz, w2 = sinw1, w = −iw2

Hyperbolic sine consists of counterclockwise

rotation through π
2
, followed by sine transforma-

tion followed by closewise rotation through π
2
.

3. w = cosh z = cos(iz)

with w1 = iz, w = cos(w1)

Hyperbolic cosine consists of counterclock-

wise rotation through π
2

followed by cosine

transformation.

WORKED OUT EXAMPLES

Example 1: Find and graph the image of the

region 0 < x < 2π, 1 < y < 2 in the z-plane under

the mapping w = sin z.

Solution: u = sin x cosh y; v = cos x · sinh y.
The line AGEKB in the z-plane given by y = 1 and

0 < x < 2π maps to the (inner) ellipse (Fig. 25.31).

v

X
O

Y

2

1
A G E K B

CLFHD

2
p p 2p

2
3p

C* D*

B* A*

K* G*

H*
u

E*

F*

L*

Fig. 25.31

V

u2

cosh2 1
+ v2

sinh2 1
= 1

Similarly, the line CLFHD in the z-plane given by
y = 2 and 0 < x < 2π maps to the (outer ellipse)

u2

cosh2 2
+ v2

sinh2 2
= 1

The shaded rectangular strip in the z-plane maps to

the elliptical annulus bounded the above two ellipses

with a cut along the positive imaginary axis.

Line AD : x = 0, 1 < y < 2 so u = 0,

v = sinh y > 0

For 1 < y < 2, sinh 1 < v < sinh 2

Line BC : x = 2π, 1 < y < 2 so u = 0,

v = sinh y > 0 for 1 < y < 2, sinh 1 < v < sinh 2.
Thus both the line segments AD and BC of
z-plane gets mapped onto the same line segment
u = 0, sinh 1 < v < sinh 2. Thus there exists a cut
along the positive imaginary axis.

GH : x = π

2
, 1 < y < 2, so v = 0, u = cosh y

thus cosh 1 < u < cosh 2
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EF : x = π, 1 < y < 2, so u = 0, v = − sinh y

thus − sinh 1 < v < sinh 2

KL : x = 3π

2
, 1 < y < 2 so v = 0, u = − cosh y

thus − cosh 1 < u < − cosh 2.

Example 2: Find and graph the image of the re-

gion 0 ≤ x ≤ π
2
in the z-plane under the mapping

w = tan2 z
2
(Fig. 25.32).

Solution: w = tan2 z
2

= sin2 z
2

cos2 z
2

= 1−cos z
1+cos z

Fig. 25.32

We know that cos z = cos x · cosh y − i sin x sinh y
ED : x = π

2
, y ≥ 0, cos z = −i sinh y

w = 1 − cos z

1 + cos z
= 1 + i sinh y

1 − i sinh y

|w| =
����1 + i sinh y
1 − i sinh y

���� =

�
1 + sinh2 y�
1 + sinh2 y

= 1 for any y.

Thus the line x = π
2
is mapped onto the unit circle

|w| = 1 in the w-plane.
The y-axis: x = 0 is mapped onto

w = 1 − cosh y

1 + cosh y

w is purely real.

At y = 0, w = u = 0, y > 0 asy → ∞u→ −1.

Similarly as y → −∞ also u→ −1.

Thus bothAB andBF mapsonto the same interval

(a cut) −1 ≤ u ≤ 0.

Any line x = α, where 0 < α < π
2

|w| =
����1 − cos(α + iy)
1 + cos(α + iy)

����

=
�
(1 − cosα cosh y)2 + (sin α sinh y)2

(1 + cosα cosh y)2 + (sin α sinh y)2
< 1

Since −2 cosα cosh y ≤ 2 cosα cosh y

or 4 cosα cosh y ≥ 1

which is true for cos λ with 0 < α < π
2
and y ≥ 0.

Hence any line x = α gets mapped to interior of

|w| = 1.

EXERCISE

Find and graph the images of the following regions

under w = sin z: (Fig. 25.33)

1. −π
2
< x < π

2
, 1 < y < 2

Fig. 25.33

Ans. y = c, u2

cosh2 c
+ v2

sinh2 c
= 1 where c = 1, 2

bounded by inner and outer ellipses in the

upper half plane.

2. Rectangular region −π
2

≤ x ≤ π
2
, 0 ≤ y ≤ θ0

(refer Fig. 25.34).

Ans.

Fig. 25.34

semi elliptic region in the upper half plane.

3. −π ≤ x ≤π, θ1 ≤ y ≤ θ2 (refer Fig. 25.35).

Fig. 25.35
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Region bounded by confocal ellipses with a

cut along the negative imaginary axis.

25.8 JOUKVOWSKI’S (ZHUKOVSKY’S)

TRANSFORMATION

w = z+ a2

z
(1)

is used in solutions of problems in hydro- and aerody-
namics. (1) is analytic everywhere except at a simple
pole z = 0. Since

dw

dz
= z2 − a2

z2
,

w is non-zero everywhere except at z = ±a.
Thus the Joukvowski’s transformation (function)

is conformal everywhere except at the points z =
±a which correspond to w = ±2a in the w-plane.
Solving (1) for z, we get

z = w ±
�
w2 − 4a2

2

so z is a double-valued function of w.
Rewriting (1) in polar coordinates

u+ iv = w = reiθ + a2

reiθ
= reiθ + a2

r
e−iθ

= r(cos θ + i sin θ ) + a2

r
(cos θ − i sin θ )

=
�
r + a2

r

�
cos θ + i

�
r − a2

r

�
sin θ

Thus u(r, θ ) =
�
r + a2

r

�
cos θ, v =

�
r − a2

r

�
sin θ

(2)

To find the image of circle |z| = r0, eliminate the
parameter θ from (2), then we have�

u

r + a2

r

�2

+
�

v

r − a2

r

�2

= cos2 θ + sin2 θ = 1 (3)

For r = r0 = constant, (3) represents an ellipse with
focii at��

r + a2

r

�2

−
�
r − a2

r

�2

=
�
4a2 = ±2a

which are independent of r .

Thus the Joukvowski’s function (1) maps the fam-

ily of concentric circles |z| = r0 of the z-plane onto
the family of confocal ellipses of the w-plane with

focii at w = ±2a.

Special Case 1: |z| = a, circle.
As r → a, v=0, u = 2a cos θ . Since | cos θ | ≤ 1,

−2a ≤ u ≤ 2a.

Thus the circle |z| = a in the z-plane maps to

the degenerated ellipse (3) which flattens to the line

segment v = 0,−2a ≤ u ≤ 2a on the real u-axis

traversed twice.

Case 2: As r → 0, the ellipse (3) is transformed

into a circle of infinitely large radius (Fig. 25.36).

Fig. 25.36

To find the image of the ray arg z = θ0, eliminate the
parameter r from (2), and arg z = θ = θ0 = const,
then we get

� u

cos θ

�2
−

� v

sin θ

�2
=

�
r + a2

r

�2

−
�
r − a2

r

�2

= 4a2

or
u2

4a2 cos2 θ0
− v2

4a2 sin2 θ0
= 1 (4)

which represent hyperbola with focii at w = ±2a.

Thus Joukvowski’s function defines a transforma-

tion of the orthogonal system of polar coordinates in

z-plane, into an orthogonal curvilinear system of

coordinates whose coordinate lines are the confocal

families of ellipses and hyperbolas in the w-plane.

25.9 BILINEAR TRANSFORMATION

Bilinear transformation is the function w of a com-

plex variable z of the form

w = f (z) = az+ b
cz+ d (1)
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where a, b, c, d are complex or real constants subject

to ad − bc  = 0.
If ad − bc = 0, f (z) would be identically

constant. When (1) is cleared of fractions, it takes
the form

Azw + Bz+ Cw +D = 0

which is linear in z, linear inw or bilinear in z andw.

Bilinear transformation (B.T.) (1) is also known as

linear fractional transformation or Möbius transfor-

mation.

Differentiating (1) w.r.t. z, we get

dw

dz
= ad − bc

(cz+ d)2 (2)

If ad − bc  = 0, then dw
dz

 = 0 for any z and therefore

Bilinear transformation is conformal for all z i.e., it

maps z-plane conformally onto the w-plane.

If ad − bc = 0, then dw
dz

= 0 for any z. Then every

point of z-plane is critical and the function is not

conformal.
For a choice of the constants a, b, c, d, we get

special cases of Bilinear transformation as

w = z+ b Translation

w = az Rotation

w = az+ b Linear transformation

w = 1

z
Inversion in the unit circle

Thus B.T. can be considered as combination of these

transformations.

Solving (1) for z, we find that inverse of the

Bilinear transformation is

z = dw − b
−cw + a (3)

which is again a Bilinear transformation.

From (1), observe that the point z = − d
c
corre-

sponds to w = ∞, point at infinity in the w-plane.

Similarly from (3), the point w = a
c
corresponds to

z = ∞, point at infinity in the z-plane.

Fixed (or Invariant) Points

Fixed (or invariant) points of function w = f (z)
are points which are mapped onto themselves.

i.e., w = f (z) = z.

Example:

w = z has every point a fixed point,

w = z, infinitely many

w = 1

z
has two

w = z+ b has no fixed point.

To obtain the fixed points of (1), solve

z = az+ b
cz+ d

which is a quadratic in z given by

cz2 − (a − d)z− b = 0 (4)

Thus the roots say α, β of (4) are the fixed points of

(1). If the two roots of (4) are equal then the Bilinear

transformation is said to be parabolic.
The quadratic with α, β as roots is

z2 − (α + β)z+ αβ = 0

For any complex constant γ ,

z2 − (α + β)z+ γ z− γ z+ αβ = 0

z

�
z− (α + β − γ )

�
= γ z− αβ

z = γ z− αβ
z− (α + β) + γ

Thus the bilinear transformations whose fixed points

α, β are given by

w = γ z− αβ
z− (α + β) + γ (5)

For various values γ , (5) gives B.T. with fixed points

α, β.

Theorem 1: Circles are transformed into circles

under Bilinear transformation.

Proof: By division,

w = az+ b
cz+ d =

a
�
z+ d

c

�
+ b −

�
ad
c

�
c
�
z+ d

c

�

or w = a

c
+ bc − ad

c2
· 1

z+ d
c

.

Put w1 = z+ d

c
, w2 = 1

w1
, w3 = bc − ad

c2
w2
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Then w = w3 + a

c
.

Here w1, w2, w3, w are translation, inversion,

rotation and translation respectively. All these

transformations preserve circles. Thus the bilinear

transformation can be considered as combination of

translation, rotation, stretching and inversion passing

from z-plane to w1-plane to w2-plane to w3-plane

to w-plane. Hence under B.T. circles transform into

circles.
The cross-ratio or anharmonic ratio of four num-

bers z1, z2, z3, z4 is the linear fraction given by

(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

.

Theorem 2: The cross-ratio of four points is in-

variant under a bilinear transformation.

Proof: Suppose w1, w2, w3, w4 are respectively
the images of z1, z2, z3, z4 under the bilinear trans-
formation

w = az+ b
cz+ d

Then wi − wj = azi + b
czi + d

− azj + b
czj + d

wi − wj = (ad − bc)(zi − zj )
(czi + d)(czj + d) (6)

Now consider the cross-ratio of w1, w2, w3, w4, and
use (6). Then

(w1 − w2)(w3 − w4)

(w1 − w4)(w3 − w2)
=

(ad−bc)(z1−z2)
(cz1+d)(cz2+d)

(ad−bc)(z3−z4)
(cz3+d)(cz4+d)

(ad−bc)(z1−z4)
(cz1+d)(cz4+d)

(ad−bc)(z3−z2)
(cz3+d)(cz2+d)

= (z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

Hence the cross-ratio is preserved under bilinear

transformation.

Determination of Bilinear Transformation

A bilinear transformation can be uniquely deter-

mined by three given conditions. Although four

constants a, b, c, d appear in (1), essentially they are

three ratios of three of these constants to the fourth

one.
To find the unique bilinear transformation which

maps three given distinct points z1, z2, z3 onto three

distinct images w1, w2, w3, consider w which is the
image of a general point z under this transforma-
tion. Now by Theorem 2, the cross-ratio of the four
pointsw1, w2, w3, wmust be equal to the cross-ratio
of z1, z2, z3, z. Hence the unique bilinear transforma-
tion that maps three given points z1, z2, z3 onto three
given images w1, w2, w3 is given by

(w1 − w2)(w3 − w)
(w1 − w)(w3 − w2)

= (z1 − z2)(z3 − z)
(z1 − z)(z3 − z2)

.

Note 1: If one of these points is∞ then the quotient

of the two differences containing this point must be

replaced by 1.

Note 2: The B.T. w = eiα
�
z−z0
z−z0

�
maps the half

plane y ≥ 0 onto the unit disk |w| ≤ 1 for any arbi-

trary real α and Im(z0) > 0.

WORKED OUT EXAMPLES

Example 1: Find the bilinear transformation that

maps the points 0, 1, i in z-plane onto the points

1 + i,−i, 2 − i in the w-plane.
Solution: The required bilinear transformation is

(w1 − w2)(w3 − w)
(w1 − w)(w3 − w2)

= (z1 − z2)(z3 − z)
(z1 − z)(z3 − z2)

(1 + i + i)(2 − i − w)
(1 + i − w)(2 − i + i) = (0 − 1)(i − z)

(0 − z)(i − 1)

(1 + 2i)

2

(2 − i − w)
(1 + i − w) = (i − 1)

�
i − z
z

�

2 − i − w
1 + i − w = 2(3i + 1)

5

�
i − z
z

�

Solving for w,

5z(2 − i − w) = 2(3i + 1)(1 + i − w)(i − z)

or w = (6i + 2)(1 + i)(i − z) − (2 − i)5z
−5z+ (6i + 2)(i − z)

w = z(6 + 3i) + (8 + 4i)

z(7 + 6i) + (6 − 2i)
.

Example 2:

a. Determine the linear fractional transformation

that sends the points z = 0,−i, 2i into the points
w = 5i,∞,− i

3
respectively.
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b. What are the invariant points of this transforma-

tion. Find the image of |z| < 1 (interior of a unit

circle) under this transformation.

Solution:

a. (0+i)(2i−z)
(0−z)(2i+i) = (5i−w2)

�
− i

3
−w

�
(5i−w)

�
− i

3
−w2

�
where w2 = ∞. So

z− 2i

3z
= lim
w2→∞

�
5i
w2

− 1
� �

+ i
3

+ w
�

(5i − w)
�
− i

3w2
+ 1

�
z− 2i

3z
=

i
3

+ w
w − 5i

.

Note: If one of points, in this casew2 = ∞, then the

quotient of the two differences which containw2 i.e.,�
5i−w2
− i

3
−w2

�
is replaced by 1 (which gives the above

result).
Solving for w, we get

2i

z
= 2w + 6i

5i − w

or w = −3iz− 5

z+ i = −3z+ 5i

−iz+ 1

b. Invariant points are given by

w = z = −3z+ 5i

−iz+ 1

z2 + 4iz+ 5 = 0 which has two roots.

z = −4i±6i
2

= i,−5i are the invariant points.

c. Rewriting the bilinear transformation
(Fig. 25.37)

z = w − 5i

iw − 3

Fig. 25.37

The image of |z| < 1 is given by

|z| =
����w − 5i

iw − 3

���� < 1

|w − 5i|< |iw − 3|
|u+ i(v − 5)|< | − (3 + v) + iu|

or u2 + (v − 5)2 < (3 + v)2 + u2

1< v

Thus the interior of the unit circle |z| = 1 in the

z-plane is mapped to the upper half plane above the

line v = 1 (Fig. 25.38).

Fig. 25.38

Example 3: Determine the Möbius transformation

having 1 and i as fixed (invariant) points and maps 0

to −1.

Solution: TheMöbius transformation having α and
β as fixed points is given by

w = γ z− αβ
z− α − β + γ

for various values of γ . For α = 1, β = i, we have
w = γ z− i

z− 1 − i + γ
Since z = 0 is mapped to w = −1,

−1 = 0 − i
0 − 1 − i + γ

or γ = 2i + 1

Thus the required transformation is

w = (2i + 1)z− i
z+ i

Example 4: Find a Bilinear transformation which

maps the upper half of the z-plane into the interior of

a unit circle in thew-plane. Verify the transformation

(Fig. 25.39).

Solution: Suppose any three points in the upper half

of z-plane say A : −1, B : 0, C = 1 gets mapped to

any three points in the interior of the circle |w| = 1
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Fig. 25.39

in the w-plane, say A∗ : −i, B∗ : 1, C∗ : i. Thus the

required bilinear transformation is the one which

maps−1, 0, 1 from z-plane to−i, 1, i in thew-plane.
This is

(−1 − 0)(1 − z)
(−1 − z)(1 − 0)

= (−i − 1)(i − w)
(−i − w)(i − 1)

or
1 − z
1 + z = 1 + iw

i + w

Solving w = i − z
i + z

Verification : |w| =
���� i − zi + z

���� ≤ 1

or |i − z| ≤ |i + z|�
x2 + (1 − y)2 ≤

�
x2 + (1 + y)2

4y ≥ 0

Thus the bilinear transformationw = i−z
i+z transforms

interior of unit circle in w-plane onto the upper half
plane in z-plane.

Also |w| =
���� i − zi + z

���� =
�
x2 + (1 − y)2
x2 + (1 + y)2

For y = 0, |w| = x2+1

x2+1
= 1. Thus the real axis

(y = 0) gets mapped to the unit circle |w| = 1.

EXERCISE

1. Represent w = z+i
iz+4

as a composite of map-

pings.

Ans. w = w4 − i, w4 = 5iw3, w3 = 1
w2
,

w2 = w1 + 4, w1 = iz, w4, w, are rotations,

w2 is translation, w3 is inversion.

2. Determine the cross-ratio (C.R.) of

a. the fourth roots of −1.

Ans. z1 = 1+i√
2
, z2 = 1−i√

2
, z3 = −1−i√

2
, z4 = −1+i√

2
,

CR = −1.

b. Four complex sixth roots of 1.

Ans. z1,2,3,4 = ± 1
2
±

√
3
2
i, CR = − 1

3
.

3. Find the invariant (fixed) points of the trans-

formation:

a. w = z−1
z+1

.

b. w = 6z−9
z

.

c. w = (z− i)2.
d. w = z2.
e. w = (2z−5)

(z+4)
.

Ans. a. z = ±i.
b. z = 3.

c. z = (1+2i)±√
1+4i

2
.

d. z = 0, 1.

e. z = −1 ± 2i.

4. Determine the bilinear transformations whose

fixed points are

a. 1,−1

b. i,−i.
c. 1, 1.

Ans. a. w = γ z+1

z+γ , for various γ .

i.e., γ = 0, w = 1
z
,

γ = 1, w = z+1
z+1
, γ = 2, w = 2z−1

z+2
.

b. w = γ z−1

z+γ .

c. w = γ z−1

z−2+γ .

Find the bilinear transformation that maps z1, z2, z3
onto w1, w2, w3 respectively:

5. z = −1, 0, 1 onto w = 0, i, 3i

Ans. w = −3i(z+1)

(z−3)

6. z = 0,−i,−1 onto w = i, 1, 0
Ans. w = −i � z+1

z−1

�
7. z = 1, i,−1 onto w = 2, i,−2

Ans. w = −6z+2i
iz−3

8. z = ∞, i, 0 onto w = 0, i,∞
Ans. w = − 1

z

9. z = 1, 0,−1 onto w = i, 1,∞
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Ans. w = (−1+2i)z+1

z+1

10. z = 0, 1,∞ onto w = −1,−i, 1
Ans. w = z−i

z+i

11. z = 0, i,∞ onto w = 0, 1
2
,∞

Ans. w = − iz
2

12. z = −1, i, 1 + i onto w = 0, 2i, 1 − i
Ans. w = −2i(z+1)

4z−1−5i

13. z = −1,∞, i onto w = ∞, i, 1
Ans. w = iz+2+i

z+1

Find the bilinear transformation

14. whose fixed points are 1
2
and 2 and maps (5+3i)

4

into ∞.

Ans. w = z(1−4i)−2(1−i)
2z(1−i)−(4−i)

15. having i as double fixed point and 1 goes

to ∞

Ans. w =

�
z(3−i)−(1+i)

�
�
(1+i)(1−z)

�
16. which maps −1, 0, 1 into 1, i,−1.

Determine the image of the upper half plane.

Ans. w = (z−i)
(iz−1)

, unit circle

17. which maps z = 1, i,−1 onto w = i, 0,−i.
Find the image of |z| < 1. Determine fixed

points.

Ans. w = (1+iz)
(1−iz) , u > 0, entire right half plane, fixed

points are −
�
1+i±

√
6i

�
2

.

25.10 SCHWARZ∗-CHRISTOFFEL∗∗

TRANSFORMATION

The determination of the specific function, which

transforms conformally one given region to another,

is a very difficult task.However, Schwarz-Christoffel

transformation determines functions which confor-

mally maps bounded (or unbounded) polygons to

∗H.A. Schwarz (1843-1921), German mathematician
∗∗E.B. Christoffel (1892-1900), Swiss mathematician

upper half plane and consequently to any region into

which the half-plane can be transformed such as a

unit disk. The main difficulty in this transformation

is the complexity of the Schwarz-Christoffel integral.

Let P denote a bounded (closed) polygon in

the w-plane with n vertices at the points A1, A2,

. . . , An. Let α1π , α2π , . . . , αnπ be the inte-

rior angles at these vertices respectively. Here α1,

α2, . . . , αn are positive constants. For a closed

polygon, the sum of the interior angles is (n−
2)π . Thus (α1π + α2π + . . .+ αnπ ) = (α1 + α2 +
. . .+ αn)π = (n− 2)π . So

n�
i=1

αi = n− 2 with

n > 2 and0 < αi < 2.Then theSchwarz-Christoffel

transformation is defined by the function

w = f (z) = c � z
0

n�
k=1

(z− ak)αk−1dz+ c1 (1)

transforms conformally the upper half plane in the

z-plane onto the interior of the polygon P (see Fig.

25.40). Here a1, a2, . . . , an are points on the x-axis

(in z-plane), corresponding to the vertices A1, A2,

. . ., An of the polygon P . The real numbers a1, a2,

. . . , an are arranged in increasing such that −∞ <

a1 < a2 < · · · < an <∞.

Also c and c1 are complex constants.

p
ap

–(
)

iAi+1

Ai–1

a p1

a
pi

A1

An

An–1

A2

Ai

p
a
p

–
1

a1 a2 a3 an
xo

w-plane

z-plane

Fig. 25.40

y
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The points ai lying on the real axis in the z-plane

are singularities of the function (1). Points ai’s are

transformed by the function (1) into points Ai’s of

the w-plane. In order to show that the line segments

ak < x < ak+1 of the real axis in the z-plane are

mapped by (1) onto straight line segments AkAk+1

of the polygon P of the w-plane, consider

dw

dz
= f  (z) = c(z− a1)α1−1(z− a2)α2−1×

· · · × (z− an)αn−1 (2)

we need the following two propositions.

Proposition I: Recall that a transformation

w − A1 = (z− a1)α1 with dw
dz

= α1(z− a1)α1−1

maps the straight line Ba1D on the real axis to

BxA1D
∗ with (α1)π angle at the vertex A1.

p

B Da1

x

y

A1

a p1

D*

B*

w-planez-plane
Fig. 25.41

v

u

Proposition II: Recall that if S atw0 is the image of

the curve c at z0 under the transformation w = f (z)
which is analytic and f  (z0)  = 0, then the tangent to

S at w0 is rotated through an angle arg f  (z0). Thus
the size of the angle through which tangent to S at

w0 to be rotated is determined by arg f  (z0).

w-planez-plane

a
zo

C

b
wo

S

Fig. 25.42

(i.e.,)β = α + arg f  (z0). If c is straight line along
x-axis, then α = 0 and if f  (z0) = constant, then S is

also a straight line in w-plane.

Now from (2) arg dw = arg c + (α1 − 1) arg(z−
a1) + (α2 − 1) arg(z− a2) + . . .+ (αn − 1) arg(z−
an) + arg dz (3)

To determine the size of the angles between adja-

cent segments say Ai−1Ai and AiAi+1 of the polyg-

onal line, consider the variation of the argument of

f  (z).
For z = x < a1, the numbers (z− a1), (z− a2),

. . ., (z− an) are all negative real numbers and hence

haveπ as their arguments.Generalizing this,we have

arg(z− ai) =
�
π if z < ai
0 if z > ai

Note that dz is positive and its argument is zero. Thus

when z < a1, all the terms in (3) are constants and

therefore arg dw remains constant. Thus the image

point w traces a straight line in the w-plane.

Now as soon as z passes through a1, a1 becomes

less than z, so (z− a1) changes abruptly from neg-

ative to positive and therefore arg (z− a1) changes
abruptly from π to 0. Thus straight line AnA1 bends

through an angle π − α1π since argument of dw

changes byπ − α1π . Thus the interior angle atA1 of

the polygon P is α1π . Now for a1 < z < a2, arg dw

remains constant, but when z passes through a2, then

a2 < z so (z− a2) is positive with argument zero.

Then arg dw changes by π − α2π and so on. Thus

when the point z traverses the entire real axis in the

positive direction, its imagewmakes a complete cir-

cuit of the boundary of a closed polygonwith interior

angles α1π, α2π , . . .αnπ . Hence (1) maps the real

axis of the z-plane onto some closed polygon line

A1A2 . . . An whose sides are the straight line seg-

mentsAkAk+1. Sincew is analytic, (1) is conformal.

Thus the Schwarz-Christoffel transformation which

maps the upper half plane in z-axis onto the interior

of a closed polygon in the w-plane is

w = f (z) = c
� z

0

(t − a1)α1−1(t − a2)α2−1 ×

. . .× (t − an)αn−1dt + c (5)

Here t is a dummy variable. The transformation

(5) may be written as

w = f (z) = c g(z) + c1
where g(z) maps upper half plane in z-plane to the

interior of some polygon in thew-plane. The second
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transformation c g(z) + c1 then translates and rotates
(contract c < 0 or magnify for c > 0) the polygon.

Note: To determine (5), three points of a1, a2, . . . ,

an may be chosen arbitrarily.

In the case of an unbounded (open) polygon, the

vertex An may be considered as a point at ∞. Then

(5) gets modified to

w = f (z) = c
� z

0

(t − a1)α1−1(t − a2)α2−1×

. . .× (t − an−1)
αn−1−1dt + c1 (6)

The integrand in the Schwarz-Christoffel integral (6)

does not contain the factor corresponding to the ver-

tex An at infinity.

Proposition III: Recall that the bilinear transforma-

tion w = eiθ z−z0
z−z0 , Imz0 > 0, θ ∈ R maps the upper

half plane onto the interior of a unit disc c : |w| = 1.

To show that an interior point of the polygon in

w-plane is mapped onto a interior point in the upper

half plane, because of the above Proposition III, it

is sufficient to prove that the interior point of the

polygon is mapped onto an interior point of the unit

disc c : |z| = 1. By Cauchy’s integral formula, for

any interior point b of the polygon P , we have

1

2πi

�
P

1

w − bdw = 1.

Since w − b = f (z) − b and dw = f  (z)dz, we

have

1 = 1

2πi

�
P

dw

w − b = 1

2πi

�
c

f  (z)dz
f (z) − b

From the argument principle, the number of zeros

of f (z) − b inside c is one. Thus there is an interior

point z0 of c such that f (z0) = b. Thus the interior
point b of the polygon is mapped onto an interior

point z0 of c and hence the interior point of the upper

half plane.

WORKED OUT EXAMPLES

Example 1: Determine the transformation that will

map the region in thew-plane shown in the Fig. 25.43

onto the upper half plane of the z-plane. Obtain the

transformation for (a) α = 0 (b) α = π

2
.

Solution: From the Fig. 25.43, the interior angles
of the polygon at the points A(0, 0) is α1π = π

2
= 1

2
and at the pointB(0, b) is α2π = (π + α). The point
A maps to A∗(0, 0) and B maps to B∗(1, 0) in the
z-plane. Therefore the Schwarz-Christoffel transfor-
mation takes the form

w(z) = c
�

(z− 0)k1 (z− 1)k2dz+ c1

Here k1 = α1 − 1 = 1
2
− 1 = − 1

2
, k2 = α2 − 1 =

π+α
π

− 1 = α
π

Thus w(z) = c � z
0
t−

1
2 (t − 1)

α
π dt where t is the new

dummy variable. Since B maps to B∗, w = ib when
z = 1. So

ib = c
� 1

0

t−
1
2 (t − 1)

α
π dt

or c = ib/I where I =
� 1

0

t−
1
2 (t − 1)

α
π dt

a

a1

a2

o

b

B

a

A u

w-plane

z-plane

y

o

A* B*

Fig. 25.43

x
1

Thus the required Schwarz-Christoffel transforma-

tion is

w = c
� z

0

t−
1
2 (t − 1)

α
π dt
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where c = ib
I
with I =

� 1

0

t−
1
2 (t − 1)

α
π dt .

Case i For α = 0, I = � 1

0
t−

1
2 dt = 2

√
t
��1
0
= 2 so

c = ib
2
. Then

w = ib

2

� z

0

t−
1
2 dt = ib

2
2
√
t

���z
0
= ib√z

Case ii For α = π
2
, I = � 1

0
t−

1
2 (t − 1)

1
2 dt

or I = i
� 1

0

t
1
2
−1(1 − t) 32−1dt = iβ

�
1

2
,
3

2

�
=

2
�
1
2

�
2

�
3
2

�
2

�
4
2

� .

I = i
√
π · 1

2

√
π

1
= i π

2
. Then c = ib

i π
2

= 2b
π

Now

� z

0

t−
1
2 (t − 1)

1
2 dt = i

� z

0

t−
1
2 (1 − t) 12 dt

put
√
t = x, 1

2

1√
t
dt = dx so

i

� z

0

(1 − t) 12 dt√
t

= 2i

� z

0

�
12 − x2dx

= 2i

�
1

2
sin−1 x + x

√
1 − x2
2

������
√
z

x=0

= 2i

�
1

2
sin−1

√
z+

√
z
√
1 − z
2

�

Thus the transformation is

w(z) = 2b

π

�
i
�
sin−1

√
z+

�
z(1 − z)

��
Example 2: Determine the integral whichmaps the

rectangle in thew-plane shown in Fig. 25.44 onto the

upper half of the z-plane.

w-plane

o
u

v

v0R Q

S u0

P

z-plane

Fig. 25.44

R* S* P* Q*O

1–1
1
K

1
K

–

y

x

Solution: Let the vertices of the rectangle PQRS

be P (u0, 0), Q(u0, v0), R(−u0, v0), S(−u0, 0). The
corresponding interior angles in the rectanglePQRS

are each π
2

i.e., α1π = α2π = α3π = α4π = π

2
.

Suppose the vertices P , Q, R, S maps to P ∗(1, 0),
Q∗ �

1
k
, 0

�
. S∗(−1, 0), R∗ �− 1

k
, 0

�
respectively. Then

ki = αi − 1 = 1
2
− 1 = − 1

2
, for i, 1, 2, 3, 4.

Then the required Schwarz-Christoffel transforma-

tion is

w(z)=c
� z

0

(z−1)−
1
2

�
z− 1

k

�− 1
2

(z+1)−
1
2

�
z+ 1

k

�− 1
2

dz

= c
� z

0

dt�
(t2 − 1)

�
t2 − 1

k2

�
where t is the dummy variable.

or w(z) = kc
� z

0

dt�
(1 − t2)(1 − k2t2)

.

Since P (u0, 0) maps to P ∗(1, 0), we have w =
u0 when z = 1. Then u0 = kc � 1

0
dt�

1−t2
√

1−k2t2
.

Then w(z) = u0

I

� z

0

dt�
(1 − t2)(1 − k2t2)

where

I =
� 1

0

dt�
(1 − t2)(1 − k2t2)

This integral w(z) is known as elliptic integral of

the first kind, which can not be expressed in terms of

elementary functions.
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EXERCISE

Find the Schwarz-Christoffel transformations which

conformally maps the region in the w-plane to the

upper half plane in the z-plane as shown in the fol-

lowing figures:

1.

Fig. 25.45

y

v

P

p

O

a1

a2

=

=

p
2

p
2

u
w-plane

z-plane
P* O*

x
–1 1

Semi-unifinte (right-open) strip 0 ≤ v ≤ π .
Ans. w = cosh−1 z (or z = coshw).

Hint: k1 = k2 = − 1
2
, w = k � z

0
dt√

(t−1)(t+1)
,

k = 1 since P (0, iπ) maps to P ∗(−1, 0) i.e.,

w = iπ when z = −1.

2.

w-plane

z-plane

Fig. 25.46

y

P* Q*
x

1

v

OP Q
1

u
a b

R

O

Ans. w(z) = 1
c1

� z
0
tk1 (1 − t)k2dt where k1 = α

π
−

1, k2 = β

π
− 1, c1 = β

�
α
π
,
β

π

�
.

Hint: For interior angles α, β; k1 = α
π

− 1,

k2 = β

π
− 1,w(z) = c � z

0
(t − 0)k1 (t − 1)k2dt .

Note: For an isosceles triangle with α =
β, the transformation reduces to w(z) =
1

c1

� z

0

{t(1 − t)}k1 dt where k1 = α
π

− 1, c1 =

β
�α
π
,
α

π

�
3.

p
2

p
2

p
2

p
2

v

– O

B A

u

y

B* A*
x

–1 1

w-plane

z-plane

Fig. 25.47

Ans. w = sin−1 z or z = sinw

Hint: Interior angles at A and B are π
2

each. So k1 = k2 = αi

π
− 1 = π

2
· 1

π
− 1 =

−1

2
. Thenw(z) = c � z

0
(z− 1)−

1
2 (z+ 1)−

1
2 dz

= c � z
0

dt√
(t2−1)

,w(z) = ci sin−1 z, c = 0 since

B maps to B∗, u = −π
2
i when x = −1.

4.
v

B
u

w-plane

A

i
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y

B* A*
x

–1 1

z-plane

Fig. 25.48

O

Open region above (and to the left the)

polygonal boundary in the w-plane.

Ans. w(z) = c
� z

0

�
t − 1

t + 1
dt

Hint: Here interior angles at B, α1 = π
2
, at

A, α2 = 3π
2
so k1 = α1

π
− 1 = π

2
1
π

− 1 = − 1
2
,

k2 = α2
π

− 1 = 3π
2

1
π

− 1 = 1
2
.

5.

y

A*
x

z-plane

w-plane

Fig. 25.49

O

A O
u

q

B w( = )¥

B* z( = )¥

v

Sector: 0 < argw = θ < απ, 0 < α < 2.

Ans. w(z) = c
α
zα

Hint: Sector is polygon with vertices

at A(w = 0) and B(w = ∞), mapped to

A∗(z = 0) and B∗(z = ∞). Then w(z) =
c
� z
0
(t − 0)k1dt where k1 = απ

π
− 1 = α − 1

so w(z) = c
� z

0

tα−1dt = c
tα

α

����
z

0

= c

α
zα .

Note: In the integrand of the Schwarz-

Christoffel integral, the factor corresponding

to the point B is omitted.

6.

y

Q* P*
x

–1 1

z-plane

Fig. 25.50

R*

Ans. w = ln z

Hint: Interior angles at P (0, 0) and Q(0, π)

are π each so k1 = α1
π

− 1 = π
π

− 1 = 0, k2 =
0. The interior angle for point R(w = ∞)

is 0 so k3 = α3
π

− 1 = 0
π

− 1 = −1. Then

w(z) = � z
0
(t − 1)0(t − 0)−1(t + 1)0dt , w =� z

0
dt
t

= ln z.

Note: The infinite strip may be considered as

the limiting form of a rhombus with two of its

opposite vertices moved to infinity.

7.

P
O 1Q

R

u

w-plane

v

R

Fig. 25.51

y

O
P* Q*

x
R*

z-plane

1
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Ans. w(z) = 2

π
[sin−1

√
z− (1 − 2z)

�
z− z2]

8.

1

Fig. 25.52

P O

R

v

h

Q

Q

u

R

y

O

P* Q* R*

w-plane

z-plane

Ans. w(z) = h

π

�
ln

�
1 + √

z

1 − √
z

�
− 2

√
z

�
=

2h

π

�
tanh−1

√
z− √

z
�
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Chapter26

Probability

INTRODUCTION

In random phenomena, past information no matter

how voluminous, will not allow to formulate a rule

to determine precisely (uniquely) what will happen

in future. The theory of probability is the study of

such random phenomena which are not determinis-

tic. In analyzing and interpreting data that involves

an element of “chance” or uncertainty, probability

theory plays a vital role in the theory and applica-

tion of statistics. Blaise Pascal in the middle of 17th

century was the first to use probability in problems

of gambling. Laplace, De Moivre, Gauss, Poisson

and Kolmogorov greatly contributed to the develop-

ment of probability theory which finds application in

engineering, biology, economics, computer science,

politics, traffic control, medicine, meteorology, psy-

chology, agriculture, geography and management of

natural resources. We consider the Baye’s theorem

(also known as theoremof inverse probability)which

determines the probability of “causes.”

26.1 REVIEW OF SET THEORY

Set

A Set is well-defined collection of objects. Sets are

denoted by capital lettersA,B,C, . . . and the objects

also known as elements or members of the set by

small letters x, y, . . .. If x is a member or element of

A, it is denoted by x ∈ A. If y is not an element of

B, then y /∈ B.

Example 1: V = set of all vowels in English alpha-

bet = {a, e, i, o, u}

2. N = set of natural numbers = {0, 1, 2, 3, . . .}

3. E = set of even numbers = {0, 2, 4, 6, 8, . . .} =

{2n|n ∈ N}

Null set

A Null set or empty set is the unique set containing

no elements. It is denoted by φ or {}.

Example 1: The set of women presidents of India

is an empty set.

2. {n ∈ N : 3 < n < 4} is an empty set

3. {x ∈ Real : x2 + 3 = 0} is an empty set.

Equality

Two sets are said to be equal if they contain the same

elements.

Note: The order of listing is irrelevant. There is

no advantage (or harm) in listing the elements more

than once.

Example: Sets A = {1, 3, 5, 6}, B = {6, 5, 3, 1},

and C = {3, 5, 3, 6, 1, 6, 1, 5, 5} are all equal. Nei-

ther order nor repetition is relevant.

Finite and Infinite Sets

If the number of elements in a setA is finite, then the

set is said to be a finite set. The number of distinct

26.1
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elements in a finite set A is known as the cardinality

or size of A and is denoted by |A|.

Example: |Set of vowels| = 5, Ex : |φ| = 0,

Ex : |A| = |B| = |C| = 4, Ex : D = {x2|x ∈ N ,

x2 < 30} = {1, 4, 9, 16, 25}, then |D| = 5 when the

number of elements is infinite, the set is said to be

an infinite set.

Example: Set of natural numbers, set of real num-

bers are infinite sets.

Universal Set

Universal Set denoted by U is set containing all ob-

jects under study (or consideration).

Subset

A is a subset of B and is written as A ⊆ B if every

element of A as an element of B.

Example: φ is subset of any set A, i.e., φ ⊆ A.

Example: Set of even numbers is a subset of set of

integers.

Example: A is subset of itself: A ⊆ A.

Proper Subset

If B contains elements not in A, then the subset A is

said to be proper subset of B, denoted by A ⊂ B.

Example: A = {4, 5, 6, }, B = {6, 7},

C = {4, 5, 6, 7} then

(a) A ⊆ C (b) A ⊂ C (c) B ⊆ C (d) B ⊂ C

(e) B  ⊆ A (f) A ⊆ A (g) A  ⊂ A (i.e., A is not a

proper subset of A itself) (h) φ ⊂ A (i) φ ⊂ B

(k) φ ⊂ C

Note: Only a set can be a subset of another set,

while only elements can be members of a set.

Power Set

Power Set of A, denoted by P (A), is the set (collec-

tion) of all subsets of A.

Example: A = {4, 5, 6, 7} then the power set ofA

is P (A) = {φ, {4}, {5}, {6}, {7}, {4, 5}, {4, 6}, {4, 7},

{5, 6}, {5, 7}, {6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7},

{5, 6, 7}, {4, 5, 6, 7}}.

Result 1: If |A| = n, then the power set of a set

A with n elements has 2n elements i.e., |P (A)| =

2|A| = 2n

Example: |A| = 4, P (A) = 24 = 16

P (φ) = {φ}

P ({φ}) = {φ, {φ}}

Result 2: For any 0 ≤ k ≤ n, there are nck subsets

of size k.

Example: A = {4, 5, 6, 7}, |A| = n = 4, let k =

2. Then there are nck = 4c2 = 6 subsets of each size

2 namely {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7}.

Ex: If a setAhas 63proper subsets then |A| = 6 since

A is not a proper subset of A, there are 64 subsets =

26 so |A| = 6.

Ex: If set B has 64 subsets of odd cardinality, i.e.,

B has 26(= 64) subsets of odd cardinality, so |B| =

6 + 1 = 7.

In general if B has 2n subsets of odd cardinality

then |B| = n+ 1.

Set Operations

Union of A and B

A ∪ B = {x|x ∈ A or x ∈ B or both}

Intersection of A and B

A ∩ B = {x|x ∈ A and x ∈ B}

Symmetric difference of A and B:

A B = {x|x ∈ A ∪ B and x /∈ A ∩ B}

Disjoint

A and B are disjoint or mutually disjoint when

A ∩ B = φ.

Example: A = {4, 5, 6, 7, 8}, B = {3, 4, 6, 7},

C = {7, 8, 9}, D = {9, 10, 11}

Then (a) A ∪ B = {3, 4, 5, 6, 7, 8} (b) A ∩ B =

{4, 6, 7} (c) A ∪ C = {4, 5, 6, 7, 8, 9}, (d) A ∩ C =

{7, 8}, (e) B ∩ C = {7} (f) A ∩D = φ (g) B ∩D =

φ (h) C ∩D = {9} (i) A B = {3, 5, 8} (j) A C =

{4, 5, 6, 9}.
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Relative Complement of A in B is

B − A = {x | x ∈ B and x /∈ A}

Example: (a) B − A = {3} (b) A− B = {5, 8}

(c) C −D = {7, 8} (d) D − C = {10, 11}

Complement

Complement of A (w.r.t. the universal set U ) is de-

noted by A of AC or (U − A) is given by

{x|x ∈ U and x /∈ A}.

Inverse Laws

(a) A ∪ AC = U (b) A ∩ AC = φ

Example: U = {1, 3, 7, 9, 11}, A = {1, 3, 9},

B = {9, 11}, C = {1} then

(a) AC = {7, 11} (b) BC = {1, 3, 7}

(c) CC = {3, 7, 9, 11} (d) A ∪ AC = {1, 3, 9} ∪

{7, 11} = {1, 3, 7, 9, 11} = U (e)A ∩ AC = {1, 3, 9}

∩ {7, 11} = φ.

Result: De Morgan’s Laws

(a) (A ∪ B)C = AC ∩ BC

(b) (A ∩ B)C = AC ∪ BC

Counting

Result: (a) |A ∪ B| = |A| + |B| − |A ∩ B|

(b) |A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| −

|B ∩ C| −|C ∩ A| + |A ∩ B ∩ C|.

Example: In a class, if 30 are studying mathemat-

ics, 25 are studying computer science and 15 are

studying both, how many students are in the class?

|A| = 30, B = 25

|A ∩ B| = 15

|A ∪ B| = |A| + |B| − |A ∩ B|

|A ∪ B| = 30 + 25 − 15 = 40 = No. of students in

the class.

Example: In a class of 57, if 23 students are study-
ing Mathematics, 26 Physics, 30 Chemistry, 7 study-
ing bothMaths and Physics, 8 bothMaths andChem-
istry, 10 both Physics and Chemistry, find how many
students are studying all three—Maths, Physics and
Chemistry.
|M ∪ P ∪ C| = 57

15 15 10

A
(M)

B
(CS)

Fig. 26.1

|M| = 23, |P | = 26,
|C| = 30, |M ∩ P | = 7
|M ∩ C| = 8, |P ∩ C| = 10
So

|M ∪ P ∪ C| = |M| + |P | + |C| − |M ∩ P | − |M ∩ C|

− |P ∩ C| + |M ∩ P ∩ C|

Then

57 = 23 + 26 + 30 − 7 − 8 − 10

+ |M ∩ P ∩ C|

|M ∩ P ∩ C| = 3 = no. students studying all

three—Maths, Physics and Chemistry.

11 4

3

12

M
P

5 7

15
C

Fig. 26.2

Cartesian Product

Cartesian Product of two sets A and B, denoted by

A× B is the set of all ordered pairs (a, b) where

a ∈ A and b ∈ B.

Example: A = {1, 2, 3}, B = {a, b} then A× B

= {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

Note: It |A| = m, |B| = n, then A× B has m · n

ordered pairs. Similarly we have cartesian product of
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three sets A, B, and C as

A× B × C = {(a, b, c)|a ∈ A, b ∈ B, c ∈ C}

Example: A = {3, 4, 5}, B = {d, e}, c = {0, 1}
then

A× B × C = (A× B) × C

= {(3, d),(3, e),(4, d),(4, e), (5, d), (5, e)} × C

= {(3, d, 0), (3, e, 0), (4, d, 0), (4, e, 0), (5, d, 0),

(5, e, 0), (3, d, 1), (3, e, 1), (4, d, 1), (4, e, 1),

(5, d, 1), (5, e, 1)}

26.2 REVIEW OF COUNTING

The Sum Rule

If a first task can be done in n1 ways and a second

task in n2 ways and if these two tasks cannot be per-

formed simultaneously, then there are n1 + n2 ways

of performing either task.

Example: Suppose a university representative is

to be chosen either from 200 teaching or 300 non-

teaching employees. Then there are 200 + 300 =

500 possible ways to pick this representative.

Extension of Sum Rule

If tasks T1, T2 . . . Tm can be done in n1, n2, . . . , nm
ways respectively and no two of these tasks can be

performed at the same time, then the number of ways

to do one of these tasks is n1 + n2 + · · · + nm.

Example: If a student can choose a project from

either 20 from Mathematics or 35 from computer

science or 15 from Engineering then the student can

choose a project in 20 + 35 + 15 = 70 ways.

Fundamental principle of counting:

The Product Rule

Suppose a procedure can be broken down into two

tasksT1 andT2. If the first taskT1 can be performed in

n1 ways and the second task T2 can be performed in

n2 ways after the first task T1 has been done, then the

total procedure can be carried out, in the designated

order, in n1 · n2 ways.

Example: A tourist can travel from Hyderabad to

Tirupati in 4 ways (by plane, train, bus or taxi). He

can travel from Tirupati to Tirumala hills in 5 ways

(by bus, taxi, walk, rope way or motor cycle). Then

the tourist can travel from Hyderabad to Tirumala

hills in 4 × 5 = 20 ways.

Extension of Product Rule

Suppose a procedure consists of performing tasks

T1, T2, . . ., Tm in that order. Suppose task Ti can be

performed in ni ways, after the tasks T1, T2, . . ., Ti−1

are perform then the number of ways the procedure

can be executed in the designated order is

n1 · n2 · n3 . . . nm.

Example 1: ‘Charmas’ brand shirt comes in 12

colors, has a male and female version, comes in 4

sizes for each sex comes in three makes economy,

standard and luxury. Then the number of different

types of shirts produced are 12 × 2 × 4 × 3 = 288

types.

Example 2: The number of elements (n-tuples)

in the cartesian product of finite sets A1, A2,

. . . , Am with n1, n2, . . . , nm elements respectively

is n1, n2 . . . nm i.e., |A1 × A2 × . . .× Am| = |A1| ·

|A2| · · · |Am| = n1 · n2 . . . nm.

Example 3: A hotel offers 12 kinds of sweets, 10

kinds of hot tiffins and 5 kinds of beverages (hot

tea, hot coffee, juice, coke, icecream). The breakfast

consists of a sweet and a hot beverage or a hot tiffin

and cold beverage. The number of ways in which the

above breakfast can be ordered is 12 × 2 + 10 × 3 =

24 + 30 = 54. Here we have applied both product

rule and sum rule.

Permutation

A Permutation of a set of n distinct objects is an

ordered arrangement of these n objects.

An r-permutation is an ordered arrangement of r

elements taken from the n objects.

Example: A = {a, b, c, d}. Arrangements dcba,

cdba are permutation ofA. Arrangements abc, abd ,

bcd , dbc, etc. are 3-permutations of A. Arrange-

ments ab, ba, cd , dc, etc. are 2-permutations of A.
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Result 1: The number of r-permutations of a set

with n distinct elements is denoted by P (n, r) and is

given by

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1)

P (n, r) =
n!

(n− r)!
, 0 ≤ r ≤ n

Result 2: When r = n,

P (n, n) = n!

Result 3: When r = 0, P (n, 0) = 1

Note thatP (n, r) counts the (linear) arrangements

in which the objects cannot be repeated.

Example: The number of “words” of three distinct

letters can be formed from the letters of the word

JNTU is P (4, 3) = 4P3 =
4!

(4−3)!
= 24.

Example: In how many ways can 8 men and 8

women be seated in a row if

(a) any person may sit next to any other

(b) men and women must occupy alternate seats

(c) Generalize this result for n men and n women.

Solution:

(a) Here men and women are indistinguishable, so

these are 16 objects. The number of permutations

from 16 objects with 16 chosen is P (16, 16) =

16! = 20922789890000

(b) Here men and women are distinct (different)

M W M W M W M W M W M W M WM W

8. 8. 7. 7. 6. 6. 5 5 4 4 3 3 2 2 1 1

The number of ways = 8!8!

Alternatively women sits first followed by man,

which gives another 8!8! ways.

Thus the number of ways men and women

occupy alternatively is 8!8! + 8!8! = 2(8!)2 =

3251404800.

(c) Any person may sit: (2n)!

Men and women sit alternatively 2(n!)2.

Combination

An r-combination is an unordered selection or com-

bination of r elements from a set with n distinct

elements.

The number of combinations of size r from a set

of size n is denoted by C(n, r) and is given by

C(n, r) =
P (n, r)

r!
=

n!

r!(n− r)!
, 0 ≤ r ≤ n

Example: A = {a, b, c, d, e}. The number of 3-

combinations are C(5, 3) = 5!
3!2!

= 10. They are

{a, b, c}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e},

{c, d, e}, {a, c, e}, {a, c, d} {b, d, e}, {d, e, a}. Ob-

serve that the order is irrelevant in combinations.

Thus {a, b, c}, {a, c, b}, {b, a, c} {b, c, a}, {c, a, b},

{c, b, a} are all one and the same 3-combination of

a, b, c.

Example: A committee of 12 is to be selected from

10 men and 10 women. In how many ways can the

selection be carried out if

(a) There are no restrictions

(b) There must be 6 men and 6 women

(c) There must be an even number of women

(d) There must be more women than men

(e) There must be at least 8 men.

Solution:

(a) No distinction between men and women. Prob-

lem is to choose 12 out of a set of 20 objects.

So the number of ways 12 chosen out of 20 is

C(20, 12) = 20!
12!8!

= 125970.

(b) First stage to choose 6 men out of 10, given by

C(10, 6). Second stage to choose 6 women out of

10 again C(10, 6). Using product rule, the num-

ber of ways in which the committee will con-

sist of 6 men and 6 women is C(10, 6) · C(10, 6)

= (210)(210) = 44100.

(c) If 2i even number of women are chosen,
then the remaining 12 − 2i members of the
committee should be men. By product rule
C(10, 2i)C(10, 12 − 2i) then the total number of
ways is

5�
i=1

�
10

12 − 2i

��
10

2i

�
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(d) Since the strength of the committee is 12, there
must be 7 ormorewomen in the committee so that
there aremorewomen thanmen in the committee.
Using product rule, the number of ways is

10�
i=7

�
10

i

��
10

12 − i

�
(e) By similar argument

10�
i=8

�
10

i

��
10

12 − i

�
Permutation with Repetition

The number of arrangements of r objects from n

objects with repetition is nr .

Example: String is an arrangement made up of

prescribed alphabet symbols.

By the rule of product there are 4n strings of length

n for the alphabet 0, 1, 2, 3. Thus the collection of

all strings of length 10 made up from the alphabet

0,1, 2, 3 is 410.

0 0 0 1 2 3 1 2 3 3 is one

such string.

Combination with Repetition

The number of combinations of n objects taken r at

a time, with repetition is C(n+ r − 1, r) = (n+r−1)!

r!(n−1)!

1. Permutation: P (n, r) = n!
(n−r)!

, 0 ≤ r ≤ n (order

important, no repetition)

2. Arrangement: nr , n, r ≥ 0 (order important, rep-

etition allowed)

3. Combination: C(n, r) = n!
r!(n−r)!

for 0 ≤ r ≤ n.

(order irrelevant, repetition not allowed)
4. Combination with repetition�

n+ r − 1

r

�
with n, r ≥ 0

(order irrelevant)

26.3 INTRODUCTION TO PROBABILITY

A deterministic experiment is an experiment whose

outcome or result is known with certainty or pre-

dictable, i.e., result is unique.

Example: Ohm’s law I = E
R

determines the cur-

rent uniquely (with certainty).

Trial is a single performance of an experiment.

A probablistic or non-deterministic or random

experiment is an experiment whose outcome or re-

sult is not unique and therefore cannot be predicted

with certainty.

Examples:

i. Tossing of a coin, head or tail may occur.

ii. Throwing a die, 1, 2, 3, 4, 5, or 6 may appear.

iii. Tensile strength of beam.

iv. Life-time of a computer system.

Probability is a measure of certainty.

Sample space S of a random experiment is the set

of all possible outcomes of the experiment.

Examples:

i. Tossing of coin: S = {H, T }

ii. Throwing a die: S = {1, 2, 3, 4, 5, 6}

iii. Tensile strength of beam: S = {r ≥ 0, r real}.

Sample or sample point is a particular (outcome)

element of S.

Event

Even is a subset of a sample space.

Example: Tossing of a die,

E1 = {odd number} = {1, 3, 5}

E2 = {even number} = {2, 4, 6}

E3 = {prime number} = {2, 3, 5}

E4 = {number greater than 2} = {3, 4, 5, 6}

Mutually exclusive events

Two events A and B are mutually exclusive if A

and B can not happen (occur) simultaneously, i.e.,

A ∩ B = φ, i.e., A and B are disjoint.

Collectively exhaustive events

A list of eventsA1, A2, . . . , An are said to be collec-

tively exhaustive if
n

∪
i=1
Ai = S.

Universal event

The entire sample space S is called a universal (or

certain or sure) event.

The null setφ is called the null or impossible event.
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Mathematical or classical or ‘a priori’ proba-

bility

If an event E can happen m ways out of possi-
ble nmutually exclusive, collectively exhaustive and
equally likely ways then probability of event E, de-
noted by, P (E) is defined as

P (E) = p =
m

n
=

Favourable cases forE

Total cases

The probability of non-occurrence of event E
(called its failure), denoted by P (not E) or

q = p(notE) = P (E) = P (Ec) = P (∼ E) =
n−m

n

= 1 −
m

n
= 1 − p = 1 − P (E)

Thus, p + q = 1 and 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1.

Probability of a certain (sure) event is n
n
= 1.

Probability of an impossible (null) event is 0
n
= 0.

Note: This definition fails when (i) The outcomes

are not equally likely and (ii) Number of outcomes

is infinite (not exhaustive).

Statistical or Empirical or Estimated (von

mises) Probability

p = P (E) = Lim
n→∞

m

n

where m is the number of times event E happens

(occurs) in n trials assuming that the trials are per-

formed under essentially homogeneous and identical

conditions.

Note: This definition fails when (i) limit does not

exist (ii) or is not unique.

A.N. Kolmogorov (in 1933) developed the ax-

iomatic probability theory which includes the above

two approaches as special cases (the classical theory

corresponding to equiprobable spaces).

Axioms of Probability

1. For any event A of S

0 ≤ P (A) ≤ 1

i.e., probability is a numerical value lying be-

tween 0 and 1.

2. P (S) = 1 (sure event).

3. For any two mutually exclusive events A and B
in S

P (A ∪ B) = P (A) + P (B)

i.e., probability of sum is the sum of the proba-

bilities (special addition rule).

Based on the above axioms (rules) the remaining

probability theory is developed. For example,

for any sequence of mutually exclusive events

A1, A2, A3, . . . of S, we have

3a. P (A1 ∪ A2 ∪ A3 · · ·) = P (A1) + P (A2) +

P (A3) + · · ·.

Elementary Theorems

Theorem 1: P (φ) = 0.

Proof:

S = S ∪ φ

P (S) = P (S ∪ φ) = P (S) + P (φ)

by axiom 3 since S and φ are mutually exclusive

or P (φ) = 0.

Theorem 2: P (Ac) = 1 − P (A) ≤ 1.

Proof: A and Ac are mutually exclusive and

S = A ∪ Ac

1 = P (S) = P (A ∪ Ac) = P (A) + P (Ac)

where we have used axiom (2) and (3). Hence

P (Ac) = 1 − P (A) ≤ 1

since P (A) ≥ 0.

Additive Theorem or Rule or General Addition

Rule of Probabilities

Theorem 3: If A and B are any two arbitrary events
of S then

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Proof:
A= (A ∩ Bc) ∪ (A ∩ B)

B = (A ∩ B) ∪ (Ac ∩ B)



26.8 HIGHER ENGINEERING MATHEMATICS—VII

Fig. 26.3

Note that A ∩ Bc,A ∩ B and Ac ∩ B are mutually

exclusive (i.e., they are mutually disjoint) (refer

Fig. 26.3).
Applying axiom (3)

P (A) = P (A ∩ Bc) + P (A ∩ B)

P (B) = P (A ∩ B) + P (Ac ∪ B)

Adding

P (A) + P (B) =
�
P (A ∩ Bc) + P (A ∩ B)

+P (Ac ∩ B)
�
+ P (A ∩ B)

Observe that

A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B)

so P (A) + P (B) = P (A ∪ B) + P (A ∩ B)

or P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Corollary 1: Since P (A ∩ B) ≥ 0 it follows that

P (A ∪ B) ≤ P (A) + P (B).

Corollary 2: General additive rule

Theorem 4: For any three arbitrary eventsA,B,C,

(Fig. 26.4)

Fig. 26.4

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B)

− P (B ∩ C)−P (C ∩ A)+P (A ∩ B ∩ C)

Proof: Applying additive theorem for A and
B ∪ C, we have

P (A ∪ (B ∪ C)) = P (A) + P (B ∪ C) − P

�
A ∩ (B ∪ C)

�
Again applying additive theorem for B ∪ C, we get

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (B ∩ C)

−P

�
(A ∩ B) ∪ (A ∩ C)

�
Now using additive theorem for (A ∩ B) ∪ (A ∩ C),
we have

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (B ∩ C)

−

�
P (A ∩ B) + P (A ∩ C)

−P

�
(A ∩ B) ∩ (A ∩ C)

��
= P (A) + P (B) + P (C) − P (A ∩ B)

−P (B ∩ C)−P (C ∩ A)+P (A ∩ B ∩ C)

since (A ∩ B) ∩ (A ∩ C) = A ∩ B ∩ C

Theorem 5: If B ⊂ A then P (B) ≤ P (A).

Proof: A = B ∪ (A ∩ Bc) and B,A ∩ Bc are
mutually exclusive

so P (A) = P (B ∪ (A ∩ Bc)) = P (B) + P (A ∩ Bc)

i.e., P (B) ≤ P (A).

Conditional Probability

Although probability of an eventE is with reference

to the sample space S, on many occasions one is

interested in finding the probability ofE with respect

to a reduced sample space. For example, consider the

following table:

Employed Unemployed Total

Male 160 140 300

Female 40 80 120

Total 200 220 420

Total sample space is 420 persons. If a person ismale,
what is the probability that he is unemployed? In this
case we should consider only the reduced sample
space of males (only) (since it is given or known that
the person is male). Thus the required probability is

140

300
=

unemployed and male

male

Conditional Probability

Conditional probability of an event A given that B
has happened, denoted by, P (A/B) is defined as

P (A/B) =
P (A ∩ B)

P (B)
if P (B) > 0.
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Also read as conditional probability ofA givenB.
Thus for the above example,

P (U/M) =
140

300
, P (E/M) =

160

300
,

P (M/E) =
160

200
, P (F/E) =

40

200
, P (E/F ) =

40

120
etc.

General multiplicative rule

P (A ∪ B) = P (B)P (A/B)

Similarly, P (B/A) = P (A∩B)

P (A)
if P (A) > 0

So P (A ∩ B) = P (A)P (B/A).

Corollary For any events A1, A2, . . . An
P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2/A1) ×

P (A3/A1 ∩ A2) · · ·P (An/A1 ∩ A2 · · · ∩ An−1)

Independent Events

Two events A and B are said to be independent if

P (B/A) = P (B)

or P (A/B) = P (A)

i.e., the occurrence (or non-occurrence) of event A

has no influence (or impact) on the occurrence (or

non-occurrence) of B. Otherwise they are said to be

dependent.

Special multiplication rule

If A and B are independent events then

P (A ∩ B) = P (A)P (B)

i.e., in a sense probability of the product is the prod-

uct of the probabilities.

Corollary For independent events

A1, A2, A3, . . .

P (A1 ∩ A2 ∩ A3 ∩ · · ·) = P (A1)P (A2)P (A3) · · ·

Partition

The family of sets A1, A2, . . . An is said to be a par-

tition of S if

i.
n

∪
i=1
Ai = S (collectively exhaustive)

ii. Ai ∩ Aj = φ for any i, j (mutually disjoint).

WORKED OUT EXAMPLES

Permutations

Example 1: (a) How many car number-plates can

be made if each plate contains two different let-

ters followed by three different digits? (b) Solve the

problem if the first digit cannot be 0. Solve (a) and

(b) with repetitions and without repetitions.

Solution: With repetitions:

a. 26 × 26 × 10 × 10 × 10 = 6, 76, 000

b. 26 × 26 × 9 × 10 × 10 = 6, 08, 400

without repetitions:

a. 26 × 25 × 10 × 9 × 8 = 4, 68, 000

b. 26 × 25 × 9 × 9 × 8 = 4, 21, 200.

Example 2: Determine the number of permuta-

tions that can be formed from all the letters of each

word (i) queue (ii) committee (iii) proposition (iv)

baseball.

Solution:

i. n = 5, n1 = 2, n2 = 2, 5!
2!2!1!

= 30

ii. n = 9, n1(m,m) = 2, n2(t, t) = 2, n3(ee) = 2,
9!

2!2!2!1!1!!
= 45360

iii. n = 11, n1 = (p, p) = 2, n2 = (0, 0, 0) = 3,

n2 = (i, i) = 2, 11!
2!3!2!

= 1, 66, 3200

iv. 8!
2!2!2!

= 5040

Combinations

Example 3: From five statisticians and six

economists a committee consisting of three statisti-

cians and two economists is to be formed. How many

different committees can be formed if

a. No restrictions are imposed?

b. Two particular statisticians must be on the com-

mittee?

c. One particular economist can not be on the com-

mittee?

Solution:

a. 5C3
· 6C2

= 5!
2!3!

6!
2!4!

= 150.
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b. Two particular statisticians are chosen. To choose

one statistician out of the remaining three statis-

ticians 3C1
· 6C2

= 45.

c. One particular economist is barred. So to

choose two economists from the remaining five

economists 5C3
5C2

= 100.

Probability

Example 4: Determine the probability for each of

the following events:

a. A non-defective bolt will be found if out of 600

bolts already examined, 12 were defective.

b. At least one head appears in a four tosses of a fair

coin.

c. The sum 8 appears in a single toss of pair of fair

dice.

d. The sum 7 or 8 or 12 appears in a single toss of a

pair of fair dice.

e. A king, ace, jack of clubs or queen of diamonds

appear indrawing inasinglecard fromawell shuf-

fled ordinary deck of cards ( i.e., without joker).

Solution:

a. P (defective)= 12
600

= 1
50

P (non-defective) = 1 − P (defective)

= 1 − 1
50

= 49
50

= 0.98.

b. P(TTTT ) = P(T)P(T)P(T)P(T) = 1
2

1
2

1
2

1
2
= 1

16

P(at least one head) = 1 − P (all tails)

= 1 − P(TTTT)

= 1 − 1
16

= 15
16

.

Note: Sample space = {H, T } × {H, T } ×

{H, T } × {H, T } = 24 = 16.

{HHHH, HHHT, HHTH, HTHH, HHTT, HTHT,
HTTH, HTTT

THHH, THHT, THTH, TTHH, THTT, TTHT,

TTTH, TTTT}

c. The sum 8 can appear in the following cases

(6, 2), (5, 3), (4, 4), (2, 6), (3, 5) i.e., 5 cases

Total number of cases = 6 × 6 = 36 ways.

P (sum 8) = Favourable cases
Total cases

= 5
36

d. Sum 7 appears 6 ways as

(6, 1), (1, 6), (5, 2), (2, 5), (4, 3), (3, 4)

Sum 12 appears in one way as (6, 6)

P (7 or 8 or 12)= P (7) + P (8) + P (12) =
6
36

+ 5
36

+ 1
36

= 12
36

= 1
3
.

e. P (king)= 4
52
, P (ace)= 4

52
,

P (jack of clubs) = 1
52
,

P (queen of diamonds) = 1
52

,

P (king or ace or jack of clubs or queen of

diamonds)

= P (K) + P (A) + P (jack of clubs)

+P (Queen of diamond)

= 4
52

+ 4
52

+ 1
52

+ 1
52

= 10
52

= 5
26
.

Example 5: Find the probability that at least two

9’s appear (as a sum) in four tosses of a pair of fair

dice.

Solution: The sum 9 appears in the following four

cases: (3, 6), (6, 3), (4, 5), (5, 4).

p = P (sum 9 occurring in a single throw of a pair

of fair dice) = 4
36

= 1
9
.

q =P (sum 9 not occurring)= 1−p= 1− 1
9
= 8

9
.

Sum 9 appears in all four tosses with probability

= P (9 and 9 and 9 and 9)= P (9)P (9)P (9)P (9)

= 1
9
· 1

9
· 1

9
· 1

9
.

Sum 9 appears in three tosses and fails in one toss.

Prob (9 and 9 and 9 and 9̃)= 1
9
· 1

9
· 1

9
· 8

9
.

This can happen in 4C1
, ways.

Sum 9 appears in two tosses and fails in two tosses

Prob (9 and 9 and 9̃ and 9̃)= 1
9

1
9

8
9

8
9
.

This can happen 4C2
ways.

Thus the probability of at least two 9’s in four tosses

= P (all 9’s)+P (Three 9’s and one 9̃)+P (Two 9’s

and two 9̃)

= 1
9

1
9

1
9

1
9
+ 4C1

�
1
9

1
9

1
9

8
9

�
+ 4C2

�
1
9

1
9

8
9

8
9

�
= 1

6561
[1 + 4 · 8 + 6 · 64] = 417

6561
.

Example 6: If 4 tickets are drawn from tickets

numbered 1 to 30 inclusive, determine the proba-

bility that the tickets marked 1 and 2 are among the

four of them.

Solution: Total cases: 30C4
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Since 1 and 2 must appear among the four, only two

other tickets are to be chosen from the remaining 28

tickets in 28C2
ways. Thus probability =

28C2
30C4

.

Example 7: Two marbles are drawn in succession

from a box containing 10 red, 30 white, 20 blue and

15 orange marbles, with replacement being made

after each drawing. Find the probability that (a) both

arewhite (b) first is red and second iswhite (c) neither

is orange. Solve this problem with no replacement

after each drawing.

Solution: Total number of marbles = 10 + 30 +

20 + 15 = 75. Let R = red, W = white, B = blue,

O = orange.

a. P (first marble drawn is white) = 30
75
.

After replacement, P (second is white) = 30
75
.

P (first is white and second is white)

P (W ) · P (W ) = 30
75

30
75

= 4
25

since the first and second drawings of marbles are

independent.

b. P (first is red) = 10
75
.

After replacement, P (second white) = 30
75
.

P (first is red and second iswhite)= 10
75

· 30
75

= 4
75

.

c. P (first is orange) = 15
78
, P (first is not orange) =

1 − 15
75

= 60
75
.

P (second is orange)= 15
75
.

P (second is not orange)= 1 − 15
75

= 60
75
.

P (neither is orange) = 60
75

· 60
75

= 16
25

.

When no replacement is made:

a. P (first is white) = 30
75
.

Since no replacement is made, the second draw-

ing (event) depends (or influenced by) on the first

drawing. Thus

P (second is white) = 29
74
.

P (both white) = 30
75

· 29
74

= 29
185

.

b. P (first is red) = 10
75
.

P (second is white) = 30
74

(similar argument as above).

P (first red and second white) = 10
75

· 30
74

= 2
37

.

c. P (first is orange) = 15
75
.

P (first is not orange) = 1 − 15
75

= 60
75
.

Since no replacement is made, there are 74 mar-

bles of which 15 are orange marbles because no

orange marble was drawn in the first drawing.

P (second is not orange) = 1 − 15
74

= 59
74

.

P (neither is orange) = 60
75

59
74

= 118
165

.

Finite probability spaces

Example 8: Three students A,B and C are in a

swimming race. A and B have the same probability

of winning and each is twice as likely to win as C.

Find the probability that B or C wins.

Solution: Given that P (A) = P (B) = 2P (C).

Since only three students A,B,C are in race, the

probability space is finite,

i.e., P (A) + P (B) + P (C) = 1

or (2 + 2 + 1)P (C) = 1 so P (C) = 1
5

and P (A) = 2
5
= P (B)

Now P (B ∪ C) = P (B) + P (C) = 2
5
+ 1

5
= 3

5

Finite equiprobable spaces

Example 9: Of 10 girls in a class, 3 have blue eyes.

If 2 of the girls are chosen at random, what is the

probability that (i) both have blue eyes? (ii) neither

has blue eyes? (iii) at least 1 has blue eyes?

Solution: All the girls are equally likely or

equiprobable (indistinguishable). The number of

ways 2 girls can be chosen from 10 girls is 10C2
.

i. Favourable cases for both girls to have blue

eyes: 3C2

Prob (both girls with blue eyes) = Favourable cases
Total cases

=
3C2
10C2

= 1
15
.

ii. Favourable cases for non-blue eyed girls are 7C2
.

P (neither has blue eyes) =
7C2
10C2

= 7
15
.

iii. P (at least one blue eye)

= 1 − P (neither) = 1 − 7
15

= 8
15
.

Example 10: A class consists of 6 girls and 10

boys. If a committee of 3 is chosen at random from
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the class, find the probability that (i) 3 boys are se-

lected (ii) exactly two boys are selected (iii) at least

one boy is selected (iv) exactly two girls are selected.

Solution:

i. P (3B) =
10C3

16C3

= 3
14

since favourable cases are 10C3
(3 out of 10 boys)

and total cases are 16C3
(3 out of total 16 stu-

dents).

ii. P (2B, 1G) =
10C2

·6C1
16C3

= 27
56
.

Boys selection is in 10C2
ways, while girls se-

lection is in 6C1
ways. By counting principle,

the number of ways these two can happen is

10C2
· 6C1

.

iii. P (3G) =
6C3

16C3

= 1
28
.

P (at least one boy) = 1 − P (3G) = 1 − 1
28

=
27
28
.

iv. P (2G) =
6C2

·10C1
16C3

= 15
56
.

Independence

Example 11: If A and B are independent, prove

that (a) A and Bc are independent (b) Ac and B are

independent.

Solution: Given that A and B are independent i.e.,

P (A ∩ B) = P (A)P (B) (see Fig. 26.5)

Fig. 26.5

a. P (A ∩ Bc) = P (A) − P (A ∩ B)

= P (A) − P (A)P (B)

= P (A)[1 − P (B)]

= P (A)P (Bc)

so A and Bc are independent.

b. P (B ∩ Ac) = P (B)−P (A ∩ B)=P (B)−P (A)P (B)

= P (B)[1 − P (A)] = P (B)P (Ac)

so A and Bc are independent.

Example 12: Two aeroplanes bomb a target in suc-

cession. The probability of each correctly scoring a

hit is 0.3 and 0.2 respectively. The score will bomb

only if the first misses the target. Find the probability

that

i. the target is hit

ii. the target is hit by the second plane

iii. both fail to score hits.

Solution: A1 : first aeroplane, A2 : second aero-

plane.

i. P (target is hit) = P (A1 hits) or (A1 fails and A2

hit) = P (A1 hits)+P (A1 fails and A2 hits),

by addition theorem.

SinceA1 fails andA2 hits are independent events,

applying multiplication rule, we have

P (target is hit)

= P (A1 hits)+P (A1 fails)·P (A2 hits)

= 0.3 + (1 − 0.3)(0.2) = 0.44.

ii. P (target hit by A2) = P (A1 fails and A2 hits)

= P (A1 fails)·P (A2 hits)= (0.7)(0.2) = 0.14

iii. P (both fails) = P (A1 fails and A2 fails)

= P (A1 fails)·P (A2 fails)

= (1 − 0.3)(1 − 0.2) = (0.7)(0.8) = 0.56.

Example 13: A man alternatively tosses a coin and

throws a die beginning with coin. What is the prob-

ability that he will get a head before he gets a 5 or 6

on the die?

Solution: P (Head)=P (H )= 1
2
=P (Tail)=P (T )

P (5 or 6 on die) = P (5) + P (6) = 1
6
+ 1

6
= 1

3

so P (not getting 5 or 6 on die) = P �(5 or 6) = 2
3

Now he will succeed if

H or (T and �5 or 6) or [(T and �5 or 6) and (T and �5 or 6)H ]

or · · ·

These events H, (T and �5 or 6), etc. are mutually

exclusive events.
By addition theorem,

P (success) = P (H or (T �5 or 6 H ) or (T �5 or 6 T �5 or 6 H )

or · · ·

= P (H ) + P (T and �5 or 6H )+
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+P (T and �5 or 6 and T and �5 or 6 and H )

+ · · ·

Since T , �5 or 6 are independent events, apply multi-
plication rule,

P (success) = P (H ) + P (T )P �(5 or 6) P (H )

+P (T )P ( �5 or 6)P (T )P ( �5 or 6)P (H ) + · · ·

=
1

2
+

1

2

2

3

1

2
+

1

2

2

3

1

2

2

3

1

2
+ · · ·

=
1

2

�
1 +

1

3
+

�
1

3

�2

+

�
1

3

�3

+ · · ·

�

=
1

2

�
1

1 − 1
3

�
=

3

4

since sum of geometric series is a
1−r
, a = 1 first

term, r = 1
3

common ratio.

Example 14: Box A contains 5 red and 3 white

marbles and box B contains 2 red and 6 white mar-

bles (a) If a marble is drawn from each box, what is

the probability that they are both of the same colour?

(b) If 2 marbles are drawn from each box, what is

the probability that all four marbles are of the same

colour?

Solution: RA: red marble from box A.

RB : red marble from box B, WA,WB denote white

marble from box A and B respectively.

a. Probability of both marbles same colour=

P ((RA and RB) or (WA andWB))=

P (RA ∩ RB orWA ∩WB)

= P (RA ∩ RB) + P (WA ∩WB)

SinceRA,RB andWA,WB areindependentevents,

= P (RA)P (RB) + P (WA)P (WB)

= 5
8
· 2

8
+ 3

8
· 6

8
= 7

16
.

b. Probability of each of the two marbles same colour

= [(first and second from A are red) and

(first and second from B are red)]

or [(first and second from A are white) and

(first and second from B are red)]

= P ((R1A∩R2A∩R1B∩R2B ) or (W1A∩W2A∩W1B∩W2B ))

= P (R1A∩R2A∩R1B∩R2B ) + P (W1A∩W2A ∩W1B ∩W2B )

= P (R1A )P (R2A/R1A ) · P (R1B ) · P (R2B /R1B )

+P (W1A )P (W2A/W1A ) · P (W1B )P (W2B /W1B ).

Note thatR1A, R2A are dependent eventsR1B , R2B

are dependent events but R1A ∩ R2A and R1B ∩ R2B

are independent events etc.

=

�
5

8
·
4

7

��
2

8
·
1

7

�
+

�
3

8
·
2

7

��
6

8
·
5

7

�
=

55

784
.

Conditional probability

Example 15: A die is tossed. If the number is odd,

what is the probability that it is prime?

Solution: 2, 4, 6, are even, 1, 3, 5 are three odd

numbers, of which two are prime numbers (namely

3 and 5) (refer Fig. 26.6).

Fig. 26.6

Conditional probability is w.r.t. the reduced sam-
ple space of odd numbers only. Thus

P (Prime given odd) = P (P/O) = Favourable cases
Total cases

= 2
3
.

Example 16: Two digits are selected at random

from the digits 1 through 9 (a) If the sum is odd,

what is the probability that 2 is one of the numbers

selected (b) If 2 is one of the digits selected, what is

the probability that the sum is odd?

Solution: We know that even + even = even,

odd + odd = even and

odd + even = odd.

a. odd = {1, 3, 5, 7, 9}, even = {2, 4, 6, 8}

Since the sum is odd it must be the sum of an odd

number and an evennumber i.e., odd=odd+ even

P (2 selected) = Favourable cases for 2
Total (even) cases

= 1
4
.

b. 2 is selected, so the other number must be odd

number

P (sum is odd/2 is selected)

= Favourable case for odd
Total cases

= 5
8
.
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Sample space is reduced to 8 since 2 is already

selected (removed from 9 digits).

Example 17: IfA and B be events with P (A)= 1
3
,

P (B) = 1
4

and P (A ∪ B) = 1
2
. Find (a) P (A/B)

(b) P (B/A) (c) P (A/Bc) (d) P (A/Bc).

Solution:

a. P (A/B) = P (A∩B)

P (B)
=

1
12
1
4

= 1
3

Since P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

1
2
= 1

3
− 1

4
− P (A ∩ B) or P (A ∩ B) = 1

12
.

b. P (B/A) = P (A∩B)

P (A)
=

1
12
1
3

= 1
4
.

c. P (A ∩ Bc) = P (A\B) = P (A) − P (A ∩ B) =
1
3
− 1

12
= 1

4
.

d. P (A/Bc) = P (A∩Bc)

P (Bc)
=

1
4
3
4

= 1
3

since P (Bc) = 1 − P (B) = 1 − 1
4
= 3

4
.

Example 18: In a certain town 40% have brown

hair, 25% have brown eyes and 15% have both brown

hair and brown eyes. A person is selected at random

from the town (Fig. 26.7).

a. If he has brown hair, what is the probability that

he has brown eyes also?

b. If he has brown eyes, determine the probability

that he does not have brown hair.

c. Determine the probability that he has neither

brown hair nor brown eyes.

Solution: Let BH : Brown hair, BE: Brown eyes.

a. Probability that person has brown eyes given that

he has brown hair is

P (BE/BH ) = P (BE∩BH )

P (BH )
= 15

40
= 3

8
.

b. P (BHc/BE) = P (BE∩BHc)

P (BE)
= 10

25
= 2

5
.

Fig. 26.7

c. P (neither BH nor BE)

= P (BHc ∩ BEc)

Using DeMorgan’s law Ac ∩ Bc = (A ∪ B)c,

we have

= P ((BH ∪ BE)c) = 1 − P (BH ∪ BE)

by complementation.

= 1 − 50
100

= 1 − 1
2
= 1

2
.

Example 19: A box contains 9 tickets numbered

1 to 9 inclusive. If 3 tickets are drawn from the box

one at a time, find the probability they are alterna-

tively either odd, even, odd or even, odd, even.

Solution: 4 even numbers = {2, 4, 6, 8},

5 odd numbers = {1, 3, 5, 7, 9}.

Let e denote even and o denote odd number

P (oeo or eoe) = P (oeo) + P (eoe)

since oeo and eoe are mutually exclusive. Now

Prob(oddandeven andodd)= P (odd)P (even/given

odd) P (odd/given odd and even)

i.e., P (oeo) = P (o)P (e/o)P (o/oe)

=
5

9
·
4

8
·
4

7
=

10

63

Similarly,

P (eoe) = P (e)P (o/e)P (e/eo)

P (eoe) =
4

9
·
5

8
·
3

7
=

5

42

So P (oeo or eoe) = 10
63

+ 5
42

= 5
18
.

Example 20: A class has 10 boys and 5 girls. Three

students are selected at random, one after the other

(see Fig. 23.8). Find probability that

a. first two are boys and third is girl.

b. first and third boys and second is girl.

c. first and third of same sex and the second is of

opposite sex.

Solution: B = Boy, G = Girl,

B1 = first is boy, B2 = second is boy, etc.
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Fig. 26.8

a. P (B1 and B2 and G3) = P (B1B2G3)

= P (B1)P (B2/B1)P (G/B1B2)

= 10
15

· 9
14

· 5
13

= 15
91
.

b. P (B1G2B3) = P (B1)P (G2/B1)P (B3/B1G2)

= 10
15

· 5
14

· 9
13

= 15
91
.

c. P (B1G2B3 orG1B2G3) =

P (B1G2B3) + P (G1B2G3)

since B1G2B3 and G1B2G3 are mutually exclu-

sive

= P (B1)P (G2/B1)P (B3/B1G2)

+P (G1)P (B2/G1)P (G3/G1B2)

= 10
15

· 5
14

· 9
13

+ 5
15

· 10
14

· 4
13

= 5
21

.

Example 21: Determine whether sex and blood

group are independent from the following table:

Blood Group Male Female Total

O 113 113 226

A 103 103 206

B 25 25 50

AB 10 10 20

Total 251 251 502

Solution:

P (O) =
226

502
=

113

251
= P (O/M)

P (M) =
251

502
=

1

2
= P (M/O) =

113

226

So the events of blood group O and Male are inde-

pendent events.
Similarly,

P (A) =
206

502
= P (A/M) =

103

251

P (M) =
251

502
=

1

2
= P (M/A) =

103

206

So group A and male sex are independent.
Similarly,

P (F ) =
251

502
=

1

2
= P (F/O) =

113

226

P (O) =
226

502
=

113

251
= P (O/F ) =

113

251
etc.

So O group and female sex are independent.

EXERCISE

Permutation

1. Let A = {a, b}, B = {4, 3, 5}, C = {0, 1}·

Construct the “tree diagram” of A× B × C

and then find A× B × C (refer Fig. 26.9).

Ans. “tree” is constructed from left to right.

A×B×C consists of the ordered triples listed

to the right of the “tree”.

Fig. 26.9

2. If repetitions are not permitted (i) How many

3-digit numbers can be formed from the six

digits 2, 3, 5, 6, 7 and 9? (ii) How many of

these are less than 400? (iii) How many are

even? (iv) How many are odd? (v) How many

are multiples of 5?

Ans. (i) 6 · 5 · 4 = 120 (ii) 2 · 5 · 4 = 40 (iii) 5 · 4 · 2

= 40 (iv) 5 · 4 · 4 = 80 (v) 5 · 4 · 1 = 20

3. (a) In how many ways can 3 boys and 2 girls

sit in a row? (b) In how many ways can they

sit in a row if the boys and girls are each to sit
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together? In how many ways can they sit in a

row if just girls sit together?

Ans. a. 5 · 4 · 3 · 2 · 1 = 5! = 120

b. BBBGG or GGBBB: 3! · 2! · 2 = 24

c. GGBBB, BGGBB, BBGGB, BBBGG ·

3! · 2! · 4 = 48.

Combinations

4. A student is to answer 8 out of 10 questions

in an exam. (i) How many choices has he? (ii)

How many if he must answer the first three

questions? (iii) How many if he must answer

at least four of the first five questions?

Ans. (i) 10C8
= 10C2

= 45 ways (ii) 7C5
= 7C2

=

21 (iii) All the first five, 5C3
= 10 ways, 4 out

of first five, 5C4
= five ways and choose the

other four out of last five, 5C1
= five ways.

Thus 5 · 5 = 25 ways. Hence

10 + 25 = 35 ways

5. Compute the number of orderedpartitions from

{A1, A2, A3} of the set (box) of 7 marbles into

cellsA1 containing 2 marbles,A3 containing 3

marbles and A3 containing 2 marbles.

Ans. 7!
2!5!

·
�
7C2

� �
5C3

� �
2C2

�
= 7!

2!5!
· 5!

3!2!
· 2!

2!10!

= 7!
2!3!2!

.

Finite equiprobable spaces

6. One card is selected at random from 50 cards

numbered 1 to 50. Find the probability that the

number on card is (i) divisible by 5 (ii) prime

(iii) ends in digit 2.

Ans. i. P (divisible by 5) = 10
50

= 1
5

ii. P (prime) = 15
50

iii. P (ends in digit 2) = 5
50

Hint:

i. 5, 10, 15, 20, 25, 30, 35, 40, 45, 50: 10

ii. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47: 15

iii. 2, 12, 22, 32, 42:5.

7. A pair of fair dice is tossed. Find probability

that maximum of the two numbers is greater

than 4.

Ans.
20C1
36C1

= 20
36

= 5
9

Hint: 20 favourable cases such as

(1, 5), (1, 6), (2, 5), (2, 6) · · · (6, 5), (6, 6).

8. Let A,B be events with P (A ∪ B) = 7
8
,

P (A ∩ B) = 1
4

and P (Ac) = 5
8
. Determine

(a) P (A) (b) P (B) (c) P (A ∩ Bc),

(d)P (Ac ∩ B) (e)P (Ac ∪ Bc) (f)P (Ac ∩ Bc).

Ans. a. P (A ∪ B)= 7
8
=P (A)+P (B)−P (A ∩ B),

b. P (A) + P (B) = 9
8
, P (A) = 1 − P (Ac) =

1 − 5
8
= 3

8
, P (B) = 6

8

c. P (A ∪ Bc)=P (A\B)=P (A)−P (A ∩ B)

= 3
8
− 1

4
= 1

8

d. P (Ac ∩ B) = 1
2

e. P (Ac ∪ Bc) = 3
4

f. 1
8
.

9. a. Two digits are drawn in succession from

tickets numbered 1 to 5.Determine the prob-

ability that an odd digit will be selected (i)

first time (ii) second time (iii) both times.

b. From 25 tickets marked 1 to 25 inclusive,

one is drawn at random. Find the probability

that

i. it is a multiple of 5 or 7

ii. it is a multiple of 3 or 7

Ans. a. (i) 12
20

= 3
5

(ii) 12
20

= 3
5

(iii) 6
20

= 3
10

b. (i) 8
25

(ii) 10
25

.

Probability

10. A lot contains 10 good articles, 4 with minor

defects and 2 with major defects. 2 articles are

chosen from the lot at random (without replace-

ment). Find the probability that (i) both are

good (ii) both have major defects (iii) at least

one is good (iv) at most one is good (v) exactly

one is good (vi) neither has major defects (vii)

neither is good.

Ans. i. P (both are good) =
10C2
16C2

= 3
8

ii. P (both have major defects) =
2C2
16C2

= 1
120

iii. P (at least one is good)=
10C1

×6C1
+10C2

16C2

= 7
8
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iv. P (at most one is good)=
10C0

×6C2
+10C1

×6C1

16C2

= 5
8

v. P (exactly one is good) =
10C1×6C1

16C2

= 1
2

vi. P (neither has major defects) =
14C2
16C2

= 91
120

vii. P (neither is good) = P (both are defected)
6C2
16C2

= 1
8

11. What is the probability that (a) non leap year

(b) leap year should have 53 sundays?

Ans. (a) 1
7

(b) 2
7

Hint:

a. 365
7

= 52 weeks +1 day:

b. 366
7

= 52 weeks +2 days:
∗

SM,MT, TW,WTh, ThF, FS, S
∗

S

12. A bag contains 40 tickets numbered 1, 2, 3,. . .

40 of which 4 are drawn at random and ar-

ranged in ascending order t1 < t2 < t3 < t4.

Find the probability of t3 being 25.

Ans.
24C2

×15C1
40C4

= 414
9139

Hint: t1, t2 can come in 24C2
ways

t4 in 15C1
ways.

13. A bag contains eight white and six red marbles.

Find the probability of drawing two marbles of

the same colour.

Ans.
8C2
14C2

+
6C2
14C2

= 28
91

+ 15
91

= 43
91

14. A box I contains four tickets numbered 1,

2, 3, 4 and another box II contains six tick-

ets numbered 2, 4, 6, 7, 8, 9. If one of the

two boxes is chosen at random and a ticket is

drawn at random from the chosen box, find the

probabilities that the ticket drawn is numbered

(i) 2 or 4 (ii) 3 (iii) 1 or 9.

Ans. i. 1
2
· 2

4
+ 1

2
· 2

6
= 5

12

ii. 1
2
· 1

4
+ 1

2
· 0 = 1

8

iii. 1
2
· 1

4
+ 1

2
· 1

6
= 5

24
.

Independent trials

15. A missile hits its target with probability 0.3.

Howmanymissiles should befired so that there

is at least an 80%probability of hitting a target?

Ans. At least five missiles should be fired.

Hint: 1−(no hit) = 1 − (1 − 0.3)n

= 1 − (0.7)n > 0.8

16. A cricket team wins (W ) with probability

0.6, loses (L) with probability 0.3 and draws

(D) with probability 0.1. The team plays 3

games.

(i) Determine the elements of the event A that

the team wins at least twice and does not lose,

and find P (A). (ii) Determine the elements of

the eventB that the team wins, loses and draws

and find P (B).

Ans. i. P(A) = P(WWW) + P(WWD) + P(WDW)

+ P(DWW) = (0.6)(0.6)(0.6)

+(0.6)(0.6)(0.1) + (0.6)(0.1)(0.6) + (0.1)

(0.6) (0.6) = 0.324

ii. P(B) = P(WLD) + P(WDL) + P(LDW)

+ P(DWL) + P(DLW)

= 6(0.6)(0.3)(0.1) = 0.108

17. A,B,C hit a target with probabilities 1
2
, 2

3
, 3

4

respectively. If all of them fire at the target, find

the probability P that (i) none of them hits the

target (ii) at least one of them hits the target.

Ans. i. P (A ∩ B ∩ C) = P (A)P (B)P (C) =
1
2

1
3

1
4
= 1

24

ii. P (at least one hits) = 1 − P (no hit) = 1 −
1
24

= 23
24

.

18. A and B alternately throw pair of dice. A wins

if he throws six before B throws seven and B

wins if he throws seven before A throws six.

If A begins, show that his chance of winning

is 30
61

.

Ans. P (6) = 5
36
, P (7) = 1

6
,

P (A) = P (A or ABA or ABABA or . . .)

P (A) = P (A)+P (ABA)+P (ABABA)+ · · ·

= P (A) + P (A) · P (B) · P (A) + · · ·

= 5
36

+ 31
36

· 5
6
· 5

36
+ · · ·

=
5/36

1−(155)/(216)
= 30

61
.
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19. A,B,C can hit a targetwith probability 3
5
, 2

5
, 3

4

respectively. Determine the probability that (i)

two shots hit (ii) at least two shots hit.

Ans. i. 3
5

2
5
(1− 3

4
)+ 2

5
3
4
(1− 3

5
)+ 3

4
3
5
(1− 2

5
)= 0.45

ii. 0.45 + P (all hit) = 0.45 + 3
5

2
5

3
4
= 0.63

Conditional probability

20. A pair of fair dice is thrown. Find the proba-

bility p that the sum is 10 or greater if (i) a 5

appears on the first die (ii) a 5 appears on at

least one of the dice.

Ans. i. p = 2
6

Hint: 5 appears on first die:

(5, 1)(5, 2)(5, 3)(5, 4)(5, 5)(5, 6): 6

Favourable cases for sum ≥ 10 is (5, 5),

(5, 6): 2

ii. p = 3
11
.

Hint: 5 appears on at least one of the dice (re-

duced sample space)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)(1, 5),

(2, 5), (3, 5), (4, 5), (6, 5) : 11

Favourable cases for sum ≥ 10 is (5, 5),

(5, 6), (6, 5): 3.

21. 2 digits are selected at random from the digits

1 through 9. If the sum is even, find the proba-

bility p that both the numbers are odd.

Ans. p = 10
16

Hint: e + e = e, o+ d = e, 4C2
= 6 ways of

two e, 5C2
= 10 ways of two o. 16 ways to

choose two for even sum.

22. A box contains 4 bad and 6 good tubes. 2 tubes

are drawn out from the box at a time. One of

them is found to be good. Determine the prob-

ability that the other one is also good.

Ans. P (B/A) = P (A∩B)

P (A)
=

1/3

6/10
= 5

9
where

A : first is good

B : second is good.

23. A bag contains 10 gold and 8 silver coins. Two

successive drawings of 4 coins are made such

that (i) coins are replaced before the second

trial (ii) coins are not replaced before the sec-

ond trial. Determine the probability that the

first drawing will give 4 gold and the second

four silver coins.

Ans. i. P (A ∩ B) = P (A)P (B) =
10C4
18C4

·
8C4
18C4

ii. P (A ∩ B) = P (A)P (B/A) =
10C4
18C4

·
8C4
14C4

24. Bag I contains 4 white, 3 black marbles and

bag II contains 3 white, 5 black marbles. One

marble is drawn from the bag I and placed un-

seen in the bag II. Determine the probability

that a marble now drawn from bag II is black.

Ans. P [(B1 ∩ B2) or (W1 ∩ B2)]

= P (B1 ∩ B2) + P (W1 ∩ B2)

= P (B1)P (B2/B1) + P (W1)P (B2/W1)

= 3
7
· 6

9
+ 4

7
· 5

9
= 38

63
.

26.4 THEOREM OF TOTAL PROBABILITY

(or THE RULE OF ELIMINATION)

Theorem: Let B1, B2, . . . , Bk constitute a par-
tition of the sample space S with P (Bi)  = 0 for
i = 1, 2, . . . , k. Then for any event A of S

P (A) =

k�
i=1

P (Bi ∩ A) =

k�
i=1

P (Bi )P (A/Bi )

Proof: Since B1, B2, . . . , Bk constitute a partition

S =
k
∪
i=1
Bi

Fig. 26.10

and Bi ∩ Bj = φ for any i and j , i.e., their union

is S and Bi’s are mutually disjoint sets. Now (refer

Fig. 26.10)

A= A ∩ S = A ∩

�
k
∪
i=1
Bi

�
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= A ∩ (B1 ∪ B2 ∪ · · · ∪ Bk)

= (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bk).

The sets A ∩ B1, A ∩ B2, . . . , A ∩ Bk are all mutu-

ally disjoint sets. Applying the additive rule for mu-

tually exclusive events, we have

P (A) = P [(A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bk)]

= P (B1 ∩ A) + P (B2 ∩ A) + · · · + P (Bk ∩ A)

Now applying multiplicative rule

P (A) =

k�
i=1

P (Bi ∩ A) =

k�
i=1

P (Bi )P (A/Bi ).

WORKED OUT EXAMPLES

Theorem on total probability

Example 1: Police plan to enforce speed limits by

using radar traps at 4 different locations within the

city limits. The radar traps at each of these locations

L1, L2, L3, L4 are operated for 40%, 30%, 20% and

30% of the time. If a person who is speeding on his

way to work has probabilities of 0.2, 0.1, 0.5 and

0.2 respectively of passing through these locations,

what is the probability that he will be fined (for over

speed)?

Solution: A: event of passing through locations

and caught by radar traps.
By theorem on total probability

P (A) = P (L1)P (A/L1) + P (L2)P (A/L2)

+ P (L3)P (A/L3) + P (L4)P (A/L4).

= (0.4)(0.2) + (0.3)(0.1) + (0.2)(0.5) + (0.3)(0.2)

= 0.27.

Example 2: Suppose colored balls are distributed

in three indistinguishable boxes as follows:

Box 1 Box 2 Box 3

Red 2 4 3

White 3 1 4

Blue 5 3 3

Total 10 8 10

A box is selected at random from which a ball is

selected at random. What is the probability that the

ball is colored (i) red (ii) white (iii) black?

Solution: A : colour of the ball (red, white or black)

Box 1 = B1,Box 2 = B2,Box 3 = B3

By theorem on total probability

P (red colour) = P (B1)P (A/B1) + P (B2)P (A/B2)

+P (B3)P (A/B3)

Since the three boxes are indistinguishable, proba-
bility of choosing them is 1

3
i.e., P (B1) = P (B2) =

P (B3) =
1
3
. Thus

P (R) =
1

3
·

2

10
+

1

3
·
4

8
+

1

3
·

3

10
=

1

3

since P (Red given box 1) = 2
10

, P (R/B2) = 4/8,

P (R/B3) = 3/10 etc.
Similarly,

P (W ) =
1

3
·

3

10
+

1

3
·
1

8
+

1

3
·

4

10
=

198

720

P (B) =
1

3
·

5

10
+

1

3
·
3

8
+

1

3
·

3

10
=

94

240
.

EXERCISE

Theorem on total probability

1. Three machines A,B and C produce respec-

tively 50%, 30% and 20% of the total number

of items of a factory. The percentage of defec-

tive output of these machines are 3%, 4% and

5%. If an item is selected at random, find the

probability that the item is defective.

Ans. P (defective)

= P (A)P (D/A) + P (B)P (D/B) + P (C)P (D/C)

= (0.5)(0.03) + (0.3)(.04) + (0.2)(0.05)

= 0.037
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2. The probability that X, Y,Z will be elected as

president of a club are 0.3, 0.5 and 0.2 respec-

tively. The probability that membership fees

of club are increased is 0.8 if X is elected

president, is 0.1 if Y is elected and is 0.4 if

Z is elected. What is the probability that there

will be an increase in membership fee?

Ans. P (fee increased) = (0.3)(0.8) + (0.5)(0.1)

+(0.2)(0.4) = 0.37

3. Box I contains 10 white and 3 black balls

while Box II contains 3 white and 5 black balls.

Two balls are drawn at random from Box I and

placed in Box II. Then 1 ball is drawn at ran-

dom from box II. What is the probability that

it is a white ball?

Ans. 59/130

Hint: B1: event of drawing 2 white balls, from

Box I

B2: 2B from Box I,B3: oneW and oneB from

Box I.

A: drawingW from box II (after transfer)

P (A) = P (B1)P (A/B1) + P (B2)P (A/B2)

+P (B3)P (A/B3)

=
10C2

13C2

·
5

10
+

3C2

13C2

·
3

10

10C1
3C1

13C2

·
4

10
·

26.5 BAYES’ THEOREM (or BAYES’ RULE)

Theorem 1: Let the sample space S be partitioned
into k subsets B1, B2, . . . , Bk with P (Bi)  = 0 for
i = 1, 2, . . . , k. For any arbitrary event A in S with
P (A)  = 0,

P (Br/A) =
P (Br ∩ A)

k�
i=1

P (Bi ∩ A)

=
P (Br )P (A/Br )

k�
i=1

P (Bi )P (A/Bi )

(1)

for r = 1, 2 · · · , k

Proof: From the definition of conditional proba-

bility

P (Br/A) =
P (Br ∩ A)

P (A)
(2)

From the theorem of total probability or the rule of

elimination

P (A) =

k�
i=1

P (Bi ∩ A) =

k�
i=1

P (Bi )P (A/Bi ) (3)

Also from the multiplication rule

P (Br ∩ A) = P (Br )P (A/Br ) (4)

Substituting (3), (4) in (2), we get (1).

Note: Bayes’ theorem is also known as formula

for the probability of “causes”, i.e., probability of a

particular (cause)Br given that eventA has happened

(already).

P (Bi) is ‘a priori probability’ known even before

the experiment,P (A/Bi) “likelihoods” andP (Bi/A)

‘posteriori probabilites’ determined after the result of

the experiment.

WORKED OUT EXAMPLES

Bayes’ theorem

Example 1: In a certain college 25% of boys and

10% of girls are studying mathematics. The girls

constitute 60% of the student body. (a) What is the

probability that mathematics is being studied? (b) If

a student is selected at random and is found to be

studying mathematics, find the probability that the

student is a girl? (c) a boy?

Solution: Given that P (Boy)= P (B) = 40
100

= 2
5
;

P (Girl) = P (G) = 60
100

= 3
5
,

probability that maths is studied given that the

student is a boy = P (M/B) = 25
100

= 1
4
.

Similarly, P (M/G) = 10
100

= 1
10

a. Probability that maths is studied

= P (M) = P (G)P (M/G) + P (B)P (M/B)

by theorem on total probability

P (M) =
3

5
·

1

10
+

2

5
·
1

4
=

4

25
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b. Bayes’ thorem:
Probability that a maths student is a girl

= P (G/M) =
P (G)P (M/G)

P (M)
=

3
5
· 1

10
4
25

=
3

8

c. Probability that a maths student is a boy

= P (B/M) =
P (B)P (M/B)

P (M)
=

2
5
· 1

4
4
25

=
5

8
.

Example 2: A businessman goes to hotelsX, Y,Z

20%, 50%, 30% of the time, respectively. It is known

that 5%, 4%, 8% of the rooms inX, Y,Z hotels have

faulty plumbing. (a) Determine the probability that

the businessman goes to hotel with faulty plumbing

(b) What is the probability that businessman’s room

having faulty plumbing is assigned to hotel Z?

Solution: A : event of faulty plumbing

B1 = X,B2 = Y,B3 = Z

a. By theorem on total probability

P (Faulty plumbing) = P (A) =

3�
i=1

P (Bi )P (A/Bi )

= P (X)P (A/X) + P (Y )P (A/Y ) + P (Z)P (A/Z)

It is known (given) that

P (B1) = P (X) =
20

100
= 0.2,

P (B2) = P (Y ) =
50

100
= 0.5,

P (B3) = P (Z) = 0.3

P (A/X) =
5

100
= 0.05,

P (A/Y ) =
4

100
= 0.04,

P (A/Z) =
8

100
= 0.08.

Thus

P (Faulty plumbing) = P (A) = (0.2)(0.05)

+(0.5)(0.04) + (0.3)(0.08)

= 0.054.

b. P(Assigned to hotel Z given that room has faulty

plumbing) = P (Z/A).

By Bayes’ theorem

P (Z/A) =
P (Z)P (A/Z)

P (A)
=

(0.3)(0.08)

0.054
=

4

9
.

EXERCISE

Bayes’ theorem

1. CompaniesB1, B2, B3 produce 30%, 45% and

25% of the cars respectively. It is known that

2%, 3% and 2% of the cars produced from

B1, B2 and B3 are defective. (a) What is the

probability that a car purchased is defective?

(b) If a car purchased is found to be defective

what is the probability that this car is produced

by company B3?

Ans: a. P (Defective) = (0.3)(0.02)+

(0.45)(0.03) + (0.25)(0.02) = 0.0245

b. P (B3/D) = (0.25)(0.02)

P (D)
= 10/49.

2. Of the three men, the chances that a politician,

a businessman and an academician will be ap-

pointed as a vice-chancellor of a university are

0.50, 0.30 and 0.20 respectively. Probability

that research is promoted by these people if

they are appointed as V.C. are 0.3, 0.7 and 0.8

respectively. (a) Determine the probability that

research is promoted in the university. (b) If re-

search is promoted in the university,what is the

probability that the V.C. is an academician? (c)

A businessman?

Ans: a. P (Research) = (0.5)(0.3) + (0.3)(0.7)+

(0.2)(0.8) = 0.52

b. P (Academician/Research) = (0.2)(0.8)

0.52

= 0.30769

c. P (Bussinessman/Research) = (0.3)(0.7)

0.52

= 0.4038.

3. Suppose three companies X, Y,Z produce

T.V’s. X produce twice as many as Y while Y

and Z produce the same number. It is known

that 2% of X, 2% of Y and 4% of Z are de-

fective. All the TV’s produced are put into one

shop and then one TV is chosen at random.

a.What is the probability that the TV is defec-

tive?
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b. Suppose a TV chosen is defective, what is

the probability that this TV is produced by

company X?

Ans: a. P (D) = P (X)P (D/X) +

P (Y )P (D/Y ) + P (Z)P (D/Z)

= 1
2
(0.02) + 1

4
(0.02) + 1

4
(0.04) = 0.025

b. P (X/D) =
(0.02)

�
1
2

�
0.025

= 0.40

4. Box I contains 1 white, 2 red, 3 green balls,

Box II contains 2 white, 3 red, 1 green balls,

Box III contains 3 white, 1 red, 2 green balls.

Two balls are drawn from a box chosen at

random. These are found to be one white and

one red. Determine the probability that the

balls so drawn came from box II.

Ans: 6
11

Hint: P (I ) = P (II ) = P (III ) = 1
3
,

A: event: 2 balls white and red drawn

P (A/I ) = (1C1
)(2C1

)/6C2
=

2

15
,

P (A/II ) = (2C1
)(3C1

)/6C2
=

2

5
,

P (A/III ) = (3C1
)(1C1

)/6C2
=

1

5
,

P (II/A) =

1
3
· 2

5
1
3
· 2

15
+ 1

3
· 2

5
+ 1

3
· 1

5

=
6

11
.

5. For a certain binary communication channel,

the probability that a transmitted ‘0’ is re-

ceived as a‘0’ is 0.95 and the probability that a

transmitted ‘1’ is received as ‘1’ is 0.90. If the

probability that a ‘0’ is transmitted is 0.4, find

the probability that (i) a‘1’ is received (ii) a ‘1’

was transmitted given that a ‘1’ was received.

Ans: i. 0.56 ii. 27/28

Hint: A = event of transmitting ‘1’,

A = event of transmitting ‘0’

B = event of receiving ‘1’, B = event of

receiving ‘0’.

i. P (B) = P (A)P (B/A) + P (A)(B/A) =

(0.6)(0.9) + (0.4)(.05) = 0.56

ii. P (A/B) =
P (A)P (B/A)

P (B)
=

(0.6)(0.9)

0.56
= 27

28
.

6. A student has to answer a multiple-choice

question with 5 alternatives. What is the

probability that the student knew the answer

given that he answered it correctly?

Ans: 5p/(4p + 1) where p = probability that he

knew the correct answer.

Hint: B1: knew right answer, B2: guesses
right answer, A: gets the right answer

P (B1/A) =
(p)(1)

(p)(1) + (1 − p)
�

1
5

�
since P (A/B2) =

1

5
.
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Probability Distributions

INTRODUCTION

Probability distribution is the theoretical counterpart

of frequency distribution, and plays an important role

in the theoretical study of populations. A probability

model can be developed, for a given idealized con-

ditions in a game of chance by incorporating all the

factors that have a bearing on this game. In building

suchmodel, the empirical data of frequency distribu-

tion, A.M., variance etc. are to be taken into account.

In the discrete case we consider discrete uniform dis-

tribution, Binomial, Hypergeometric, Poisson distri-

butions. The continuous probability distributions we

study are uniform distribution, normal distribution,

exponential, gamma,Weibull distributionswhich are

of great practical importance.

Recall that in a random experiment, the outcomes

(or results) are governed by chance mechanism and

the sample space S of such a random experiment

consists of all outcomes of the experiment. When

the elements (outcomes/events) of the sample space

are non-numeric, they can be quantified by assigning

a real number to every event of the sample space.

This assignment rule, known as the random variable

(R.V.), provides the power of abstraction and thus

discards unimportant finest-grain description of the

sample space.

A random variable X on a sample space S is a

functionX: S → R from S to the set of real numbers

R, which assigns a real numberX(s) to each sample

point s of S (refer Fig. 27.1).

Fig. 27.1

Range space RX: is the set of all possible values of

X is a subset of real numbers R.

AlthoughX is called a random“variable” note that

it is infact a “single-valued function”.

Notation: If R.V. is denoted by X, then x (corre-

sponding small letter) denotes one of its values.

Discrete

A R.V.X is said to be discrete R.V. if its set of possi-

ble outcomes, the sample space S, is countable (finite

or an unending sequence with as many elements as

there are whole numbers).

Continuous

A R.V. X is said to be continuous R.V. if S contains

infinite numbers equal to the number of points on a

line segment.

27.1 PROBABILITY DISTRIBUTIONS

Discrete Probability Distributions

Each event in a sample space has certain probability

(or chance) of occurrence (or happening). A formula

27.1
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representing all these probabilities which a discrete

R.V. assumes, is known as the discrete probability

distribution.

Example: Let X denote the discrete R.V. which

denotes theminimumof the two numbers that appear

in a single throw of a pair of fair dice. Then X is a

function from the sample space S consisting of 36

ordered pairs {(1, 1), (1, 2), . . . , (6, 6)} to a subset

of real numbers {1, 2, 3, 4, 5, 6}.
The event minimum 5 can appear in the following

cases (occurrences) (5, 5), (5, 6), (6, 5). Thus R.V.
X assigns to this event of the sample space a real
number 3. The probability of such an event happen-
ing is 3

36
since there are 36 exhaustive cases. This is

represented as

P (X = xi ) = pi = f (xi ) = P (X = 5) = f (5) = 3

36
.

Calculating in a similar way the other probabilities,

the distribution of probabilities of this discrete R.V.

is denoted by the discrete probability distribution as

follows:

X = xi 1 2 3 4 5 6

P (X = xi )
= f (xi )

= pi


 11

36

9

36

7

36

5

36

3

36

1

36

Discrete probability distribution, probability func-

tion or probability mass function of a discrete R.V.

X is the function f (x) satisfying the following con-

ditions:

i. f (x) ≥ 0

ii.
 
x

f (x) = 1

iii. P (X = x) = f (x).

Thus probability distribution is the set of ordered

pairs (x, f (x)), i.e., outcome x and its probability

(chance) f (x).
Cumulative distribution or simply distribution of a
discrete R.V. X is F (x) defined by

F (x) = P (X ≤ x) =
 
t≤x
f (t) for −∞ < x <∞.

It follows that

F (−∞) = 0, F (+∞) = 1,

p(xj ) = P (X = xj ) = F (xj )− F (xj−1).

Continuous Probability Distributions

For a continuous R.V. X, the function f (x) sat-

isfying the following, is known as the probability

density function (P.D.F.) or simply density function

(Fig. 27.2).

Fig. 27.2

i. f (x) ≥ 0

ii.
 ∞
−∞ f (x)dx = 1

iii. P (a < X < b) =  b
a
f (x)dx = area under f (x)

between ordinates x = a and x = b.
Note 1: P (a < X < b) = P (a ≤ X < b)
= P (a < X ≤ b) = P (a ≤ X ≤ b)
i.e., inclusion or non-inclusion of end points, does

not change the probability, which is not the case in

the discrete distributions.

Note 2: Probability at a point,

P (X = a) =  a+ x
a− x f (x)dx.

Cumulative Distribution

For a continuous R.V. X, with P.D.F. f (x), the cu-
mulative distribution F (x) is defined as

F (x) = P (X ≤ x) =
 x
−∞

f (t)dt, −∞ < x <∞

It follows that

F (−∞) = 0, F (+∞) = 1, 0 ≤ F (x) ≤ 1

for −∞ < x <∞.

f (x) = dF (x)

dx
= F  (x) ≥ 0 and

P (a < X < b) = F (b)− F (a).
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Expectation

The behaviour of a R.V. (either discrete or contin-

uous) is completely characterized by the distribu-

tion function F (x) or density f (x) [P (xi) in discrete

case]. Instead of a function, a more compact descrip-

tion can be made by a single numbers such as mean

(expectation), median and mode known as measures

of central tendency of the R.V. X.

Expectation or mean or expected value

Expectation or mean or expected value of a random

variable X, denoted by E(X) or µ, is defined as

E(X) =



 
i

xif (xi), ifX is discrete

 ∞
−∞ xf (x)dx, if X is continuous

Note 1: x is median if P (X < x) ≤ 1
2
and

P (X > x) ≤ 1
2
.

Note 2: x is mode for which f (x) or P (xi) attains

its maximum.

Variance

Variance characterizes the variability in the distribu-

tions, since two distributions with same mean can

still have different dispersion of data about their

means.
Variance of R.V. X is

σ 2 = E[(X − µ)2] =
 
x

(X − µ)2f (x), for X discrete

σ 2 = E[(X − µ)2] =
 ∞

−∞
(x − µ)2f (x)dx,

for X continuous.

Standard deviation (S.D.) denoted by σ , is the

positive square root of variance.

Result: σ 2 = E(X2)− µ2

Since σ 2 =
 
x

(x − µ)2f (x) =
 
x

(x2 − 2µx + µ2)f (x)

=
 
x2f (x)− 2µ

 
xf (x)+ µ2

 
f (x)

= E(X2)− 2µ · µ+ µ2 · 1 = E(X2)− µ2

Since µ=
 
xf (x),

 
f (x) = 1.

Similar result follows for continuous R.V. X, with 
replaced by integration from −∞ to∞.

Note 1: In a gambling game, expected value E of

the game is considered to be the value of the game to

the player. Game is favourable to the player ifE > 0,

unfavourable if E < 0, fair if E = 0.

Note 2: Mathematical expectation E = a1p1 +
a2p2 + · · · + akpk where the probabilities of obtain-

ing the amounts a1, a2, . . . or ak are p1, p2, . . . pk
respectively.

27.2 CHEBYSHEV’S THEOREM

Theorem: Let µ and σ be the mean and standard

deviation of a random variable X with probability

density f (X). Then the probability that X will

assume a value within k standard deviations of the

mean is at least 1− 1

k2
, for any positive constant k.

Symbolically

P (µ− kσ < X < µ+ kσ ) = P (|X − µ| < kσ ) ≥ 1− 1

k2

Proof: By definition

σ 2 = variance = E
 
(X − µ)2

 
=
 ∞

−∞
(x − µ)2f (x)dx

=
 µ−kσ
−∞

(x − µ)2f (x)dx +
 µ+kσ
µ−kσ

(x − µ)2f (x)dx

+
 ∞

µ+kσ
(x − µ)2f (x)dx

Since the second integral on the R.H.S. is non-
negative, we get an inequality of the form

σ 2 ≥
 µ−kσ
−∞

(x − µ)2f (x)dx +
 ∞

µ+kσ
(x − µ)2f (x)dx

For the first integral x ≤ µ− kσ and for the sec-
ond integral x ≥ µ+ kσ . In either case, we have

x − µ ≤ −kσ or x − µ ≥ kσ i.e., |x − µ| ≥ kσ
or (x − µ)2 ≥ k2σ 2.

Replacing (x − µ)2 by k2σ 2 in the two integrals,

σ 2 ≥
 µ−kσ
−∞

k2σ 2f (x)dx +
 ∞

µ+kσ
k2σ 2f (x)dx
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Rewriting

P (|X − µ| ≥ k2σ 2)=
 µ−kσ
−∞

f (x)dx +

+
 ∞

µ+kσ
f (x)dx ≤ 1

k2

By complimentation rule, µ+kσ
µ−kσ

f (x)dx = 1−
  µ−kσ

−∞
f (x)dx +

 ∞

µ+kσ
f (x)dx

 

Hence P (|X − µ| < kσ )= P (µ− kσ < X < µ+ kσ )

=
 µ+kσ
µ−kσ

f (x)dx ≥ 1− 1

k2

Note 1: Put kσ = C > 0 then

P

 
|X − µ| ≥ C

 
≤ σ 2

C2

i.e., P

 
|X − E(X)| ≥ C

 
≤ var (X)

C2

or P

 
|X − µ| < C

 
≥ 1− σ 2

C2

i.e., P

 
|X − E(X)| < C

 
≥ 1− var (X)

C2

Note 2: Chebyshev’s theorem(1853)is“distribution-

free” since it is applicable to any unknown distribution

and gives only the lower bound for the probability.

WORKED OUT EXAMPLES

Chebyshev’s theorem

Example 1: Determine the smallest value of k in

the Chebyshev’s theorem for which the probability

is (a) at least 0.95 (b) at least 0.99.

Solution: From Chebyshev’s theorem, we have the
probability as

P

 
|X − µ| < kσ

 
≥ 1− 1

k2

a. Probability = 0.95 ≥ 1− 1

k2
or k2 ≤ 1

0.05

... k =
√

20 = 4.472

b. Probability = 0.99 ≥ 1− 1

k2
or k2 ≤ 1

0.01

... k = 10

Example 2: Find the probability, using

Chebyshev’s theorem, that the number of driv-

ing licences X issued by Road Transport Authority

(R.T.A.) in a specific month is between 64 and

184 if the number of driving licences issued X is a

random variable with µ = 124 and σ = 7.5.

Solution: X = µ± kσ,
For 64, 64= 124− k(7.5) ... k = 8

For 184, 184= 124− k(7.5) ... k = 8

P (|X − µ| < σ ) ≥ 1− 1

k2
= 1− 1

82
= 0.984375

Example 3: Suppose the amount of thiamine

in a slice of ‘modern’ bread is a random variable

X with µ = 0.260mg and σ = 0.005mg. Using

Chebyshev’s theorem, between what values must be

the thiamine content of (a) at least 35
36

of all slices

of ‘modern’ bread (b) at least 143
144

of all slices of the

‘modern’ bread, lies.

Solution: By Chebyshev’s theorem

P

 
|X − µ| < kσ

 
≥ 1− 1

k2

a. Given 35
36
= 0.972 ≥ 1− 1

k2
... k ≤ 6,

µ = 0.26, σ = 0.005

For µ− kσ = 0.260− 6(0.005) = 0.230

For µ+ kσ = 0.260+ 6(0.005) = 0.290

Thus at least 35
36

of all slices of bread will contain

thiamine between 0.230 and 0.290.

b. Given 143
144

= 0.993 ≥ 1− 1

k2
... k ≤ 12

For µ− kσ = 0.260− 12(0.005) = 0.200

For µ+ kσ = 0.260+ 12(0.005) = 0.320

Thus at least 143
144

of all slices of bread will contain

thiamine between 0.200 and 0.320.

EXERCISE

Chebyshev’s theorem

1. Suppose X is a random variable such that

E(X) = 3 and E(X2) = 13. Calculate a lower

bound for the probability that X lies between

−2 and 8 using Chebyshev’s theorem.

Hint: E(X)=µ= 3, σ 2=E(X2)−
 
E(X)

 2
= 13− 9 = 4, σ = 2.
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P {3− 2k < X < 3+ 2k} ≥ 1− 1

k2
, choose

k = 5
2
.

Ans. P (−2 < X < 8) ≥ 1− 1 
5
2

 2 = 21
25
= 0.84

2. The number of patients requiring I.C.U. in a

hospital in a random variable with µ = 18 and

σ = 2.5. Determine the probability that there

will be between 8 and 28 patients.

Ans. k = 28−18
2.5

= 18−8
2.5

= 4, the probability is at

least 1− 1

42
= 15

16

3. Let X be a random variable with an unknown

probability distribution, with mean µ = 8 and

variance σ 2 = 9. Determine

(i) P (|X − 8| ≥ 6) (ii) P (−4 < X < 20)

Ans. i. P
 
|X − 8| ≥ 6

 
= 1− P

 
|X − 8| < 6

 
= 1− P (−6 < (X − 8) < 6)

= 1−P
 
8−(2)(3) < X < 8+ (2)(3)

 
≤ 1

4

ii. P (−4 < X < 20) =
P
 
8− (4)(3) < X < 8+ (4)(3)

 
≥ 15

16
.

4. LetX be the discrete random variable denoting

the number appearing in a single throw of a fair

die. Let E(X) = µ
Using Chebyshev’s theorem prove that

P

 
|X − µ| > 2.5

 
< 0.47

while the actual probability is zero.

Ans. E(X) = 1
6
(1+ 2+ 3+ 4+ 5+ 6) = 7

2
,

E(X2) = 91
6

var(X)=E(X2)−
 
E(X)

 2
= 91

6
− 49

4
=2.9167

Choose k = 2.5

P

 
|X − µ| > 2.5

 
<

2.9167

6.25
= 0.47

Actual probability=p=P {|X − 3.5| > 2.5}
= P {X lies outside the limits (3.5−2.5, 3.5+2.5)}

= P

 
X lies outside (1, 6)

 
= 0

since impossible event.

5. Apply Chebyshev’s theorem to calculate

(i) P (5 < X < 15) (ii) P (|X − 10| ≥ 3)

(iii) P (|X − 10| < 3)

for a randomvariableXwithmeanµ = 10 and

variance σ 2 = 4.

Hint:

i. µ− kσ = 10− k2 = 5

... k = 5
2
, µ+ kσ = 10+ k2 = 15

P (5 < X < 15) = P (10− 2k < X <

10+ 2k) ≥ 1− 1

k2
= 1− 4

25
= 21

25

ii. |X − 10| ≥ 3 or −3 < X − 10 < 3 or

10− 3 < x < 10+ 3

7 < x < 13 : µ+ kσ = 10+ 2k = 13 and

10− 2k = 7

Choose k = 3
2

P (|X − 10| ≥ 3) ≤ 1

k2
= 4

9

iii. P (|X − 10| < 3) ≤ 1− 4
9
= 5

9

Ans. (i) at least 21
25

(ii) at most 4
9

(iii) at least 5
9

Theoretical probability distributions

Generally, frequency distributions are formed from

the observed or experimental data. However, fre-

quency distributions of certain populations can be

deducedmathematically by fitting a theoretical prob-

ability distributions under certain assumptions.

Example: The shoes-industry should know the

‘sizes’ of foot of the population, the food industry

the ‘tastes’ (menu) of the population, etc.

Three such important theoretical probability dis-

tributions in order of their discovery are:

i. Binomial (due to James Bernoulli, 1700).

ii. Normal (due to De-Moivre 1733) also credited

to Laplace (1774), Gauss (1809).

iii. Poisson (due to S.D. Poisson 1837).

Discrete probability distributions: Binomial, Pois-

son, geometric, negative binomial, hypergeometric,

multinomial, multivariate hypergeometric distribu-

tions.

Continuous probability distributions: Uniform

(rectangular), normal, Gamma, exponential, χ2,

Beta, bivariate normal, ‘t’, ‘F ’, distributions.
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WORKED OUT EXAMPLES

Discrete probability distributions

Example 1: Prove that (a) E(kX) = kE(X) (b)

E(X+k) = E(X)+k (c) E(X+Y ) = E(X)+E(Y ).

Solution:

a. E(kX) =
 
kfixi 
fi

= k
 
fixi 
fi

= kE(X)

b. E(X+k) =
 
fi (xi+k) 
fi

=
 
fixi 
fi
+ k

 
fi 
fi

= E(X)+ k
c. E(X + Y ) =

 
fi (xi+yi ) 

fi
=
 
fixi 
fi
+
 
fiyi 
fi

= E(X)+ E(Y )

Note 1: Above results can be proved for continuous

case by ‘replacing’
 

by
 ∞
−∞ .

Note 2: Above results are rewritten in ‘µ’ notation

as (a)µkX = kµX (b) µX+k = µX + k (c)µX+y =
µX + µY .
Example 2: Prove that (a) Var (X + k) = Var (X)

(b) Var (kX) = k2 Var (X). Hence σX+k = σX and

σkX = |k|σX.
Solution:

a. Var (X + k) = (xi + k)2f (xi)− µ2
X+k by us-

ing the result Var (X) = E(X2)− µ2
X

=
 

(x2i + k2 + 2kxi )f (xi )− (µX + k)2

=
 
x2i fi+k2

 
fi+2k

 
xifi−(µ2

X+k2+2µXk)

=
 
x2i fi + k2 + 2kµX − µ2

X − 2kµX − k2

= (Var (X)+ µ2
X)− µ2

X = Var (X)

b. Var (kX) = (kxi)
2fi − µ2

kx

= k2
 
x2i fi − (kµX)2 = k2

  
x2i fi − µ2

X

 
= k2Var(X).

Example 3: Determine the discrete probability dis-

tribution, expectation, variance, S.D. of a discrete

random variable (D.R.V.) X which denotes the min-

imum of the two numbers that appear when a pair of

fair dice is thrown once.

Solution: The total number of cases are 6× 6= 36.
The minimum number could be 1, 2, 3, 4, 5, 6, i.e.,
X(s) = X(a, b) = min{a, b}. The number 6 will ap-
pear only in one case (6, 6), so

f (6) = P (X = 6) = P ({(6, 6)}) = 1

36
.

For minimum 5, favourable cases are (5, 5), (5, 6),
(6, 5) so

f (5) = P (X = 5) = 3

36
.

For minimum 4, favourable cases are (4, 4), (4, 5),
(4, 6), (5, 4) so

f (4) = P (X = 4) = 5

36
.

For minimum 3: (3, 3), (3, 4), (3, 5), (3, 6), (6, 3),
(5, 3), (4, 3) so

f (3) = P (X = 3) = 7

36
.

For minimum 2: (2, 2), (3, 3), (2, 4), (2, 5), (2, 6),
(6, 2), (5, 2), (4, 2), (3, 2) so

f (2) = P (X = 2) = 9

36
.

Similarly,

f (1) = P (X = 1) = 11

36
.

Thus the required discrete probability distribution

X = xi 1 2 3 4 5 6

P (X = xi )
= f (xi )

= fi
11
36

9
36

7
36

5
36

3
36

1
36

Mean = Expectation = E(X) = xifi
E(X)= 1 · 11

36
+ 2 · 9

36
+ 3.

7

36
+ 4 · 5

36
+ 5 · 3

36

+ 6 · 1

36
= 2.5

Var (X)=
 
x2fi − µ2

= 1 · 11
36

+ 4 · 9

36
+ 9 · 7

36
+ 16 · 5

36
+ 25 · 3

36

+ 36 · 1

36
− (2.5)2

σ 2 = 1.9745, so σ = S.D. = 1.4.
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Example 4: A player tosses 3 fair coins. He wins

Rs. 500 if 3 heads occur, Rs. 300 if 2 heads occur,

Rs. 100 if one head occurs. On the other hand, he

loses Rs. 1500 if 3 tails occur. Find the value of the

game to the player. Is it favourable?

Solution: Let X = D.R.V. = number of heads oc-
curring in 3 tosses of a fair coin. The sample space
S is

S = {H, T } × {H, T } × {H, T }
= {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

Probability of all 3 heads = P (X = 3) = 1
8

Probability of all 3 tails = P (X = 0) = 1
8

Probability of 2 heads = P (X = 2) = 3
8
,

P (X = 1) = 3
8

Discrete probability distribution is

X = xi 0 1 2 3

P (X = xi )
= f (xi )

1
8

3
8

3
8

1
8

Expected value of the game

= 500 · 1
8
+ 300 · 3

8
+ 100 · 3

8
− 1500 · 1

8

= 200

8
= 25 rupees.

Game is favourable to the player since E > 0.

Continuous probability distributions

Example 5: Suppose a continuous R.V. x has the
probability density

f (x) =
 
k(1− x2) for 0 < x < 1

0 elsewhere

(a) Find k (b) FindP (0.1 < x < 0.2) (c)P (x > 0.5)

Using distribution function, determine the probabili-

ties that (d) x is less than 0.3 (e) between 0.4 and 0.6

(f) Calculate mean and variance for the probability

density function.

Solution:

a. Since
 ∞
−∞ f (x)dx = 1 so

 ∞
−∞ f (x) =  1

0
k(1− x2)dx = k(x − x3

3
)

   1
0

= 2
3
k = 1 ... k = 3

2
.

b. P (0.1 < x < 0.2) =  0.2

0.1
k(1− x2)dx

= 3
2

 
x − x3

3

    0.2
0.1
= 0.1465.

c. P (x > 0.5) =  ∞
0.5
f (x)dx =  1

0.5
f (x)dx

= 3
2

 
x − x3

3

    1
0.5
= 0.3125.

d. Distribution function:

F (x) =  x−∞ f (t)dt so

F (x) =  x
0

3
2
(1− x2)dx = 3

2

 
x − x3

3

 

F (x < 0.3) =  0.3

−∞ f (t)dt = 3
2

 
x − x3

3

    0.3
0= 0.4365

e. F (0.4 < x < 0.6) = F (b)− F (a)

= F (0.6)− F (0.4)

= 3
2

 
x − x3

3

    0.6
0.4
= 0.224.

f. Mean =µ=  ∞−∞ xf (x)dx=  1

0
x{ 3

2
(1− x2)}dx

= 3
2

 
x2

2
− x4

4

    1
0
= 3

8

Variance =  ∞−∞(x − µ)2f (x)dx

=  1

0

 
x − 3

8

 2 3
2
(1− x)2dx = 19

320

or variance =  1

0
x2{k(1− x2)}dx − µ2

= k
 
x3

3
− x5

5

    1
0
− µ2 = 19

320
.

Example 6: The daily consumption of electric
power (in millions of kW-hours) is a R.V. having the

P.D.F. f (x) =
 

1
9
xe−x/3, x > 0

0, x ≤ 0

If the total production is 12 million kW-hours, deter-

mine the probability that there is power cut (shortage)

on any given day.
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Solution: Probability that the power consumed is
between 0 to 12 is

P (0 ≤ x ≤ 12)=
 12

0

f (x)dx =
 12

0

1

9
xe−x/3dx

=−x
3
e−x/3 − e−x/3

    12
0

= 1− 5e−4

Power supply is inadequate if daily consumption
exceeds 12 million kW, i.e.,

P (x > 12)= 1−P (0 ≤ x ≤ 12) = 1−[1−5e−4] = 5e−4

= 0.0 915781

Example 7: (a) Find the mean and variance of a

uniform (rectangular) distribution (b) Determine its

cumulative distribution function (Fig. 27.3).

Fig. 27.3

Solution: The uniform distribution is defined by

f (x) = k = constant in (a, b)
= 0 elsewhere

Since 1=
 ∞

−∞
f (x)dx =

 b
a

kdx = k(b − a),

so k = 1

b − a

Thus f (x) =
 

1
b−a , for a < x < b

0, elsewhere

Mean = µ=
 b
a

xf (x)dx =
 b
a

x · dx

b − a

= 1

b − a ·
x2

2

    b
a

= b2 − a2
2(b − a)

µ= b + a
2

Variance=
 b
a

x2f (x)dx − µ2 = 1

b − a ·
 b
a

x2dx − µ2

σ 2 = 1

b − a
x3

3

    b
a

− µ2 = b3 − a3
3(b − a) −

 
b + a

2

 2

= (b − a)2
12

Cumulative distribution F (x) :

i. When x ≤ a, F (x) =  x−∞ =  0 = 0

so F (x) = 0

ii. When a < x < b,

F (x) =  x−∞ =  a−∞ 0 · dx +  x
a

1
b−a dx

F (x) = x−a
b−a

iii. When x ≥ b, F (x) =  x−∞ =  a−∞ 0

+  b
a

1
b−a dx +

 x
b

0 = b−a
b−a = 1.

Thus

f (x) =




0, when x ≤ a
x−a
a−b , when a < x < b

1, when x ≥ b.

EXERCISE

Probability distributions

1. Calculate µ, σ 2, σ for

a. xi 2 3 8

fi
1
4

1
2

1
4

b. xi −1 0 1 2 3

fi .3 .1 .1 .3 .2

Ans. a. µ = 2 · 1
4
+ 3 · 1

2
+ 8 · 1

4
= 4,

σ 2= (2− 4)2 1
4
+ (3− 4)2 1

2
+ (8− 4)2 1

4

= 5.5

σ = 2.3 [or σ 2= 4 · 1
4
+ 9 · 1

2
+ 64 · 1

4
− 42

= 5.5]

b. µ = −1 · (.3)+ 0 · (.1)+ 1 · (0.1)
+ 2 · (0.3)+ 3 · (0.2) = 1.0

σ 2 = 4(.3)+ 0(.1)+ 1(.1)+ 4(.3)+ 9(.2)

= 2.4, σ = 1.5

2. Determine the expected number of families to

have (a) 2 boys and 2 girls (b) at least one boy

(c) no girls (d) at most two girls, out of 800

families with 4 children each. Assume equal

probabilities for boys and girls.

Ans. (a) 37.5% (b) 93.75% (c) 6.25% (d) 68.75%
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Hint: X: No boys in a family. P.D.F.

X 0 1 2 3 4

p(xi)
1
16

4
16

6
16

4
16

1
16

Percentage of families = 6
16
× 100 = 37.5%

for (a) etc.

3. A box contains 8 items of which 2 are defec-

tive. A person draws 3 items from the box.

Determine the expected number of defective

items he has drawn.

Ans. 0 · 20
56
+ 1 · 30

56
+ 2 · 6

56
= 3

4

Hint:
X 0 1 2

f (xi)
6c32c0
8c3

6c22c1
8c3

6c12c2
8c3

.

Here X is the number of defectives.

4. A stake ofRs. 44 is to bewonbetween2players

A and B, whoever gets 6 in a throw of die al-

ternatively. Determine their respective expec-

tations if A starts the game.

Ans. E(A) = 6
11
× 44 = Rs. 24,

E(B) = 5
11
× 44 = Rs. 20

Hint: P (A wins) = 1
6
+ 5

6
· 5

6
· 1

6
+

5
6
· 5

6
· 5

6
· 5

6
· 1

6
+ · · · = 1

6
1

1−( 5
6
)2
= 6

11

p = probability of 6 = 1
6
, prob no 6 = 5

6
.

5. A person wins Rs. 80 if 3 heads occur, Rs. 30

if 2 heads occur, Rs. 10 if only one head occurs

in a single toss of 3 fair coins. If the game is to

be fair, how much should he lose if no heads

occur?

Ans. Rs. 200

Hint: 0 = Expectation = 80 · 1
8
+ 30 · 3

8
+

10 · 3
8
− x · 1

8

6. Find the mean and variance of P.D.F.

f (x)=
 

1
4
e−x/4 for x > 0

0 elsewhere.

Ans. µ =  ∞
0

1
4
e−x/4dx = e−x/4

−1/4
= 4 · 1 = 4

σ 2 =  ∞
0

(x − 4)2 1
4
e−x/4dx = ∞

0
x2 1

4
e−x/4dx − µ2 = 96− 16 = 80

7. If P.D.F. f (x) = k(x + 3) in (2, 8), determine

(a) P (3 < x < 5) (b) P (x ≥ 4)

(c) P (|x − 5| < 0.5)

Ans. k = 1
48
, (a) 7

24
(b) 3

4

(c) P (4.5 < x < 5.5) = 1
6
.

8. Find the mean and variance of the “exponen-

tial” distribution f (x) = 1
b
e−x/b

for x > 0, b > 0.

Ans. µ = b, σ 2 = b2
Hint: µ =  ∞

0
x · 1

b
e−x/bdx = b&(2) = b,

σ 2 =  ∞
n
x2 1
b
e−x/bdx − µ2 = b2&(3)− b2

= 2b2 − b2 = b2

27.3 DISCRETE UNIFORM DISTRIBUTION

Discrete uniform distribution is the simplest of all

discrete probability distribution. The discrete ran-

dom variable assumes each of its values with the

same (equal) probability. In this equiprobable or uni-

form space each sample point is assigned equal prob-

abilities.

Example 1: In the tossing of a fair die, each sample

point in the sample space {1, 2, 3, 4, 5, 6} is assigned
with the same (uniform) probability 1

6
i.e. p(x) = 1

6

for x = 1, 2, 3, 4, 5, 6. In particular, if the sample

space S contains k points, then probability of each

point is 1
k
. Thus in the discrete uniform distribution,

the discrete random variable X assigns equal prob-

abilities to all possible values of X. Therefore the

probability mass function f (X) has the form

f (X) = 1

k
for X = x1, x2, . . . , xk (1)

or equivalently

X x1 x2 x3 . . . xk

f (X) 1
k

1
k

1
k

. . . 1
k

Here the constantK which is the parameter com-

pletely determines the discrete uniform distribution

(1). The mean and variance of (1) are given by

µ = E(X) =
k 
i=1

xif (xi) =
 
xi ·

1

k
=
 k
i=1 xi

k

and
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σ 2 = E((X − µ)2) =
k 
i=1

(xi − µ)2f (xi)

=
k 
i=1

(xi − µ)2
k

σ 2 = 1

k

k 
i=1

()xi − µ)2

The discrete uniform distribution is of particular im-

portance in lotteries.

WORKED OUT EXAMPLES

Example 2: If a ticket is drawn from a box contain-

ing 10 tickets numbered 1 to 10 inclusive. Find the

probability that the number x drawn is (a) less that 4

(b) even number (c) prime number (d) find the mean

and variance of the random variable X.

Solution: (a) since each ticket has the same prob-

ability for being drawn, the probability distribution

is discrete uniform distribution given by f (x) = 1

10
for x = 1, 2, 3, . . . , 10. Now

P (x<4)=
3 
x=0

P (x)=
3 
x=0

1

10
= 1

10
(1+1+1)= 3

10

(b) 2, 4, 6, 8, 10 are even numbers each

with probability 1
10

probability of even num-

ber = 5
10
= 1

2
(c) 2, 3, 5, 7 are prime prob.

of prime = 4
10
= 2

5
. (d) Mean = E(x) =

10 
x=1

xP (x) =
10 
x=1

x · 1
10
= 1

10
(1+ 2+ 3+ · · · + 10)

Mean = µ = 1
10
· 10(10+1)

2
= 11

2
= 5 · 5

Variance = σ 2 =
10 
x=1

(x − µ)2p(x)

= 1

10
[(1− 5 · 5)2 + (2− 5 · 5)2 + (3− 5 · 5)2

+ . . .+ (10− 5 · 5)2]
σ 2 = 8.25

(or σ 2=E(x2)−{E(x)}2=
 
x2 · P (x)− (5 · 5)2

= 1

10
· n(n+ 1)(2n+ 1)

6
= 1

10

10(10+ 1)(20+ 1)

6

−(5 · 5)2

38.5− 30.25 = 8.25)

EXERCISE

1. Deteremine the probability that an odd number

appears in the toss of a fair die.

Ans. 3
6

2. Find the probability that at least one head ap-

pears in the throw of three fair coins.

Ans. 7
8

3. If a card is selected at random from an ordinary

pack of 52 cards, find the probability that (a)

card is a spade (b) card is a face card i.e., Jack,

queen or king (c) card is a spade face card.

Ans. 13
52

(b) 12
52

(c) 3
52

Hint: (a) 13 spade cards available. So 
13

1

   
52

1

 

(b) 12 face cards so

 
12

1

   
52

1

 

(c) 3 spade face cards so

 
3

1

   
52

1

 
.

Note: Each card has the same probability 1
52

.

4. Find the probability that a card drawn at ran-

dom from 50 cards numbered 1 to 50 is (a)

prime, (b) ends in the digit 2, (c) divisible by

5.

Ans. (a) 3
10

(b) 1
10

(c) 1
5

5. Two marbles are drawn from a box containing

4 red and 8 black marbles. Find the probability

that (a) both are red (b) both are black (c) at

least one is red.

Ans. (a)

 
4

2

   
12

2

 
= 1

11
,

(b)

 
8

2

   
12

2

 
= 14

33
(c) 1− 14

33
= 19

33

6. If two cards are drawn from an ordinary pack

of 52 cards, determine the probability that

(a) both are spades (b) one is a spade and one

is a heart.

Ans. (a)

 
13

2

   
15

2

 
= 78

1326
= 1

17
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(b) (13.13)

  
15

2

 
= 13

102

27.4 BINOMIAL DISTRIBUTION

Binomial distribution (B.D.) due to James Bernoulli

(1700) is a discrete probability distribution. The

Bernoulli process has the following properties:

i. An experiment is repeated n number of times,

called n trials where n is a fixed integer.

ii. The outcome of each trial is classified into two

mutually exclusive (dichotomus) categories ar-

bitrarily called a “success” and a “failure”.

iii. Probability of success, denoted by p, remains

constant for all trials.

iv. The outcomes are independent (of the outcomes

of the previous trials).

Each trial in the Bernoulli process is known as

Bernoulli trial.

The binomial random variableX is the number of

successes in n Bernoulli trials. X is discrete since X

takes only integer values (we ‘count’ the number of

successes).

Binomial distribution is thus the probability dis-

tribution of this discrete random variable X, and is

given by

b(x; n, p) =
 
n

x

 
pxqn−x, x = 0, 1, 2, . . . , n (1)

wheren is the number of trials andp is the probability

of success in any trial. The probability of x successes

ispx and remaining failures is qn−x . This can happen

in nCx ways. By multiplication rule, the probability

of x successes in n trials is
 
n
x

 
pxqn−x .

Note that the (n+ 1) terms of the binomial expansion

(q + p)n =
 
n

0

 
qn +

 
n

1

 
pqn−1 +

 
n

2

 
p2qn−2

+ · · · +
 
n

n

 
pn

= b(0; n, p)+ b(1; n, p)+ b(2; n, p)
+ · · · + b(n; n, p)

=
n 
x=0

b(x; n, p)

correspond to various values of b(x; n, p) for x =
0, 1, 2, . . . , n.

Since p + q = 1, it follows that

n 
x=0

b(x; n, p) = 1.

B.D. is characterized by the parameter p and the

number of trials n.

The mean µ of B.D. is np and the variance σ 2 of

B.D. is npq. (see Worked Out Example 1 on page

27.11)
The binomial sums

B(r; n, p) =
r 
x=0

b(x; n, p)

are tabulated (see A2 to A7)
since

nCx+1

nCx
= n!

(x + 1)!(n− x − 1)!

x!(n− x)!
n!

=
 
n− x
x + 1

 

The recurrence relation for B.D. is

b(x + 1; n, p) =
 
n− x
x + 1

  
p

q

 
b(x; n, p).

WORKED OUT EXAMPLES

Binomial distribution

Example 1: Find the (a) mean and (b) variance

of B.D.

Solution:

a. mean = µ = expectation =
n 
x=0

xP (x)

=
n 
x=0

xb(x; n, p) =
n 
x=0

x
x!

x!(n− x)!p
xqn−x

= np
n 
x=1

(n−1)!

(n−x)!(x−1)!
px−1qn−x, put x − 1 = x∗

= np
n−1 
x∗=0

(n− 1)!

(n− x∗ − 1)x∗!
px

∗
qn−x

∗−1

= np(p + q)n−1 = np since p + q = 1.
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b. Variance σ 2 =
n 
x=0

(x − µ)2p(x)

=
n 
x=0

(x2 − 2µx + µ2)p(x)

=
n 
x=0

x2p(x)− 2µ

n 
x=0

xp(x)+ µ2
n 
x=0

p(x)

=
n 
x=0

x2p(x)− 2µ · np + µ2 · 1

...
 
xp(x)= µ,

 
p(x) = 1

=
n 
x=0

x2p(x)− n2p2 since µ = np

Consider
n 
x=0

x2p(x) =
n 
x=1

x2
n!

(n− x)!x!p
xqn−x

=
n 
x=1

[x(x − 1)+ x] n!

(n− x)!x!p
xqn−x

=
n 
x=2

x(x−1)n!

(n−x)!x! p
xqn−x +

N 
x=1

x
n!

(n−x)!x!p
xqn−x

=
n 
x=2

n!

(n− x)!(x − 2)!
pxqn−x + np

= n(n− 1)p2
n 
x=2

(n− 2)!

(n− x)!(x − 2)!
px−2qn−x + np

= n(n− 1)p2 · (q + p)n−2 + np
= n(n− 1)p2 + np since p + q = 1

Thus

σ 2 = n(n− 1)p2 + np − n2p2 = np − np2

σ 2 = np(1− p) = npq.

Example 2: Determine the probability of getting 9

exactly twice in 3 throws with a pair of fair dice.

Solution: In a single throw of a pair of fair dice, 9

can occur in 4 ways: (6, 3), (3, 6), (5, 4), (4, 5) out

of 6× 6 = 36 ways. Thus

p = probability of occurrence of 9 in one throw=
4
36
= 1

9
.

n = number of trials = 3.
Probability of getting 9 exactly twice in 3 throws

= b
 
2; 3,

1

9

 
=3C2

 
1

9

 2 8

9

 3−2

=3 · 1
9
· 1
9
· 8
9
= 8

243
.

Example 3: Out of 800 families with 5 children

each, how many would you expect to have (a) 3

boys (b) 5 girls (c) either 2 or 3 boys. Assume equal

probabilities for boys and girls.

Solution: Probability of boy = P (B) = p = 1
2
,

and probability of girl = P (G) = q = 1
2
.

n = number of trials= 5, X = no. of boys in a family

a. Probability of a family having 3 boys

= P (X = 3) = 5C3

 
1

2

 3  1

2

 5−2

= 5!

2!3!

 
1

2

 5

= 10

32
= 5

16

Expected number of families having 3 boys out

of 5 children= 800
 

5
16

 = 250, i.e., 250 families

have 3 boys out of 5 children.

b. P (X = 0) = P (all girls) =  1
2

 5 = 1
32

Expectation = 800× 1
32
= 25.

c. P (X = 2) = P (2 boys) = 5C2

 
1
2

 5 = 5
8

Expectation = 800× 5
8
= 500.

Example 4: Determine the probability distribution

of the number of bad eggs in a box of 6 chosen at

random if 10% of eggs are bad, in a large consign-

ment.

Solution: Probability of a bad egg = p = 10
100

=
0.1. Let X = number of bad eggs, n = 6. The

required B.D. = b(x; 6, 0.1) = 6Cx (.1)
x(.9)6−x, for

x = 0, 1, 2, 3, 4, 5, 6.

X : 0 1 2

P (X) : .5311 .35429 0.098

3 4 5 6

0.015 0.001215 0.000054 0

Example 5: Assume that 50% of all engineering

students are good in mathematics. Determine the

probabilities that among 18 engineering students (a)
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exactly 10 (b) at least 10 (c) at most 8 (d) at least

2 and at most 9, are good in maths.

Solution: LetX = number of engineering students

who are good in maths:

p = prob of good in maths = 50
100

= 1
2
, n = 18

b(x; n, p) = b(x; 18, 1
2
) = 18Cx

 
1
2

 x  1
2

 18−x
a. Exactly 10 students out of 18 are good in maths

P (X = 10) = 18C10

 
1

2

 10  1

2

 8

= .1670

From tables (A2 to A7)

P (X = 10)=
10 
x=0

b

 
x; 18,

1

2

 
−

9 
x=0

b

 
x; 18,

1

2

 

= .7597− .5927 = .1670

b. P (X ≥ 10) =
18 
x=10

18Cx

 
1

2

 x  1

2

 18−x

=
18 
x=0

b

 
x; 18,

1

2

 
−

9 
x=0

b

 
x; 18,

1

2

 

= 1− .5927 = .4073

c. P (X ≤ 8) =
8 
x=0

18Cx

 
1

2

 x  1

2

 18−x
=.4073

from table with n = 18, x = 8, p = 1
2
.

d. P (2 ≤ x ≤ 9)=
9 
x=2

18Cx

 
1

2

 x  1

2

 18−x

=
9 
x=0

b

 
x; 18,

1

2

 
−

1 
x=0

b

 
x; 18,

1

2

 
.

= .5927− .0007 = .5920.

Example 6: The probability of a man hitting a tar-

get is 1
3
. (a) If he fires 5 times, what is the probability

of his hitting the target at least twice ? (b) Howmany

timesmust he fire so that the probability of his hitting

the target at least once is more than 90%?

Solution: Probability of hitting = p = 1
3

probability of no hit (or failure) = q = 2
3

a. X = number of hits (successes), n = 5

P (X ≥ 2)=
5 
x=2

5Cx

 
1

3

 x  2

3

 5−x

= 1−
1 
x=0

5Cx

 
1

3

 x  2

3

 5−x

= 1−
 

2

3

 5

− 5C1

 
1

3

  
2

3

 4

= 131

243
.

b. The probability of not hitting the target is qn in n
trials (fires). Thus to find the smallest n for which
the probability of hitting at least once 1− qn is
more than 90%.

i.e., 1− qn > 0.9

or 1−
 

2

3

 n
> 0.9 i.e.,

 
2

3

 n
< 0.1

For n = 6, 26 = 64 < (0.1)36 = 72.9 this is true.

In other words, he must fire 6 times.

Example 7: If X be a binomially distributed ran-

dom variable with E(X) = 2 and Var (X) = 4
3
, find

the distribution of X.

Solution: We know that E(X) = mean = np = 2

and Var (X)=Variance= npq = 4
3
. or

npq

np
= 4

3
1
2
= 2

3

or q = 2
3
so p = 1

3
. Thus n 1

3
= 2 or n = 6.

Hence the B.D. is b(x; 6, 1
3
)

xi 0 1 2 3 4 5 6

f (xi )
64
729

192
729

240
729

160
729

60
729

12
729

1
729

Example 8: Fit a binomial distribution to the

following data:

X 0 1 2 3 4

f 30 62 46 10 2

Solution: Here n = no. of trials = 4 and

N = total frequency =
4 
i=0

fi = 30+ 62+ 46+
10+ 2 = 150.
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Mean of the binomial distribution is

µ = np =
 
fixi 
fi

= 0(30)+1(62)+2(46)+3(10)+4(12)

150

np = 4p = 192

150
... p = 192

600
= 0.32

Thus the binomial distribution that fits the given

data is b(x; 4, 0.32) = 4Cx (.32)
x(.68)4−x = p(x)

x : 0 1 2 3 4

P (x) : .2138 0.4 0.2866 0.0866 0.0133

Expected

frequency = 32 60 43 13 2

N × P (x)

= (150)P (x)

Hint: Use the recurrence relation

b(x + 1; n, p) =
 
n− x
x + 1

 
p

q
b(x; n, p)

EXERCISE

Binomial distribution

1. A fair coin is tossed 6 times. Find the prob-

ability of getting (a) exactly 2 heads (b) at

least four heads (c) no heads (d) at least one

head.

Ans. (a) 15
64

(b) 11
32

(c) 1
64

(d) 63
64

Hint:

a. b(2; 6, 1
2
) = 6C2

 
1
2

 2  1
2

 4
b.

6 
x=4

b
 
x; 6, 1

2

 = 15
64
+ 6

64
+ 1

64

c. 1− q6 = 1−  1
2

 6
2. A fair die is tossed 7 times. Determine the

probability that a 5 or a 6 appears (a) exactly

3 times (b) never occurs.

Ans. (a) 560
2187

(b) 2059
2187

Hint: (a) b
 
3; 7, 1

3

 
(b) 1− q7 = 1−  2

3

 7
3. Team A has probability 2

3
of winning when-

ever it plays. IfA plays 4 games, find the prob-

ability that A wins (i) exactly 2 games (ii) at

least 1 game (iii) more than half of the games.

Ans. (i) P (2) = b  2; 4, 2
3

 = 8
27

(ii) 1− q4 =
1−  1

3

 4= 80
81

(iii) P (3)+P (4)= 32
81
+ 16

81
= 16

27

4. How many dice must be thrown so that there

is a better than even chance of obtaining a six?

Ans. 4 dice

Hint: Find n such that
 
5
6

 n
< 1

2
.

5. A man hits a target with probability 1
4
.

(i) Determine the probability of hitting at least

twice when he fires 7 times (ii) How many

times must he fire so that the probability of his

hitting the target at least once is greater than 2
3
?

Ans. i. 1−P (0)−P (1)= 1− 2187
16384

− 5103
16384

= 4547
8192

ii. n = 4

Hint: Find n such that 1− qn > 2
3
.

6. The probability that a pen manufactured by a

company will be defective is 0.1. If 12 such

pens are examined, find the probability that

(a) exactly two (b) at least two (c) none, will

be defective.

Ans. (a) 0.2301 (b) 0.3412 (d) 0.2833

7. In sampling a large number of parts manu-

factured by a machine, the mean number of

defectives in a sample of 20 is 2. Out of 1000

such samples, how many would be expected

to contain at least 3 defective parts?

Ans. 323

Hint: Mean = 2 = np = 20p, p = 0.1,

P (X ≥ 3) = 1−
2 
x=0

b(x; 20, 0.1) = 0.323

Expected number = 1000× 0.323 = 323.

8. The probability that a patient recovers from

a disease is 0.4. If 15 persons have such

a disease, determine the probability that

(a) exactly 5 survive (b) at least 10 survive

(c) from 3 to 8 survive.

Ans. a. P (X=5)=b(5; 15, 0.4)=
5 
x=0

b(x, 15, 0.4)

−
4 
x=0

b(x; 15, 0.4) = 0.4032 − 0.2173
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= 0.1859.

b. P (X ≥ 10) = 1− P (X < 10)

= 1−
9 
x=0

b(x; 15, 0.4) = 1− 0.9662

= 0.0338.

c. P (3 ≤ X ≤ 8) =
∞ 
x=3

=
∞ 
x=0

−
2 
x=0

= 0.9050− 0.0271 = 0.8779.

9. A manufacturer of fax machine claims that

only 10% of his machines require repairs

within one year. If 5 of 20 of his machines

required repaires within 1 year, does this tend

to support or refute the claim?

Ans. Reject (refute) the claim since probability is

very small.

Hint:
20 
x=5

b(x; 20, 0.10)=1−
4 
x=0

b(x; 20, 0.10)

= 1− 0.9568 = 0.0432.

10. Two dice are thrown 120 times. Find the

average number of times in which the number

on first dice exceeds the number on the second

dice.

Ans. E(X) = np = 120
 

5
12

 = 50

Hint: Successful are (2, 1), (3, 1), (3, 2),

(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (5, 4),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5),p = 15
6.6
= 5

12
.

11. A communication system consists of n com-

ponents, each of which will independently

function with probability p. The total system

will be able to operate effectively if at least

one half of its components function. For

what values of p is a 5-component system

more likely to operate effectively than a

3-component system?

Ans. p ≥ 1
2

Hint: P (X ≥ 3)=
5 
x=3

b(x; 5, p) ≥ P (X ≥ 2)

=
3 
x=2

b(x; 3, p).

Fitting of binomial distribution

Fit a B.D. to the following data:

12.
x: 0 1 2 3 4 5 6

f : 5 18 28 12 7 6 4

Ans. 4 15 25 22 11 3 0

Hint: n = 6, p = 0.4, N = 80

13.
x: 0 1 2 3 4 5 6 7 8 9 10

f : 6 20 28 12 8 6 0 0 0 0 0

Ans. 6.9 19.1 24 17.8 8.6 2.9 .7 .1 0 0 0

Hint: n = 10, N = 80, p = 0.2175

14.
x: 0 1 2 3 4 5

f : 38 144 342 287 164 25

Ans. 33.2 161.9 316.2 308.7 150.7 29.4

Hint: n = 5, p = 0.494

15. Seven coins are tossed and number of heads

noted. The experiment is repeated 128 times

with the following data:

No. of heads 0 1 2 3 4 5 6 7

Frequencies 7 6 19 35 30 23 7 1

Fit a binomial distribution assuming

i. coin is unbiased

ii. nature of coin is not known.

Ans. i. 1, 7, 21, 35, 35, 21, 7, 1

Hint: p = 1
2
, N = 128.

ii. 1, 8, 23, 36, 34, 19, 6, 1

Hint: n = 7, N = 128,.

np = 433
128

= 3.3828, p = 0.48326

27.5 HYPERGEOMETRIC DISTRIBUTION

The binomial distribution quite frequently arises

from a random experiment in which sampling is

done with replacement. In contrast, the hypergeo-

metric distribution arises from random experiments

in which sampling is done without replacement. It

is very useful in quality control and analysis of the

opinion surveys. Consider a population of N units

in which each unit is classified into two dischotomus

classes (arbitrarily known as “success” and “failure”)

according to whether the unit does or does not posses
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a certain property under consideration. Let k be the

number of successes andN − k be the failures in the

population.

Draw a random sample of size n without replace-

ment from the population. Let X be the discrete

random variable which denotes the number of suc-

cesses in the sample. Then the probability distri-

bution of x is known as hypergeometric distribu-

tion and is given by h(x;N, n, k) =


k
x




N − k
n− x





N
n




,

x = 0, 1, 2, . . . , n (1)

The integer x should lie in the interval

max (0, n−N + k) ≤ x ≤ min (n, k).

Here

 
N

n

 
is the number of ways of choosing a

sample of size n from a population N ,

 
k

x

 
is the

number of ways in which x successes is chosen from

a total of k successes and finally

 
N − k
n− x

 
gives the

number of ways of getting (n− x) failures out of

the (remaining) N − k failures. The hypergeometric

distribution (1) has N , n, k as the three parameters.

Book work I Prove that mean of hypergeometric

distribution is
nk

N
.

Proof: Mean = E(x) =
n 
x=0

x


k
x




N − k
n− x





N
n




=

k
n 
x=1

(k−1)!

(x−1)!(k−x)!


N − k
n− x





N
n




=k
n 
x=1


k − 1

x − 1




N − k
n− x





N
n




Now

 
N

n

 
= N !

n!(N−n)! = N
n

 
N − 1

n− 1

 
so

E(x) = nk

N

n−1 
y=0

 
k − 1

y

  
N − 1− (k − 1)

n− 1− y
 

 
N − 1

n− 1

 

= nk

N
· 1 = nk

N

Here y = x − 1 and the summation represents the

sum of all probabilities in hypergeometric experi-

ment (n− 1) sample is drawn from a population of

(N − 1) containing (k − 1) successes.

Book work II Prove that the variance of hypergeo-

metric distribution is
nk(N − k)(N − n)
N2(N − 1)

.

Proof: Var (X) = E(X2)− {E(X)}2
Now E(X2) = E{X(X − 1)+X} =
E{X(X − 1)} + E(X)

Consider

E(X(X − 1)} =
n 
x=0

x(x − 1)


k
x




N − k
n− x





N
n




=
 n

x=0
x(x − 1) · k!

x!(k − x)!

 
N − k
n− x

 
 
N

n

 

= k(k − 1) 
N

n

 n 
x=2

(k − 2)!

(x − 2)!(k − 2− (x − 2))!
×

×
 
N − 2− (k − 2)

n− 2− (x − 2)

 

Now 
N

n

 
= N !

n!(N − n)! =
N (N − 1) · (N − 2)!

n(n− 1) · (n− 2)!(N − n)!
So,

E{X(X − 1)} = k(k − 1)n(n− 1)

N (N − 1)
×

×
n−2 
y=0

 
k − 2

y

  
N − 2− (k − 2)

n− 2− y
 

 
N − 2

n− 2

 

= k(k − 1)n(n− 1)

N (N − 1)
· 1
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Here y = x − 2 and the summation is one because

it is the sum of the probabilities for y = 0 to n− 2.

Thus

var (X) = E(X2)− {E(X)}2 = E{X(X − 1)}
+E(X)− {E(X)}2

= k(k − 1)n(n− 1)

N (N − 1)
+ nk
N
− n

2k2

N2
=

= nk

N2(N−1)
{N (N−1)+N (k−1)(n−1)−(N−1)nk}

= nk

N2(n− 1)
{N2 −Nn−Nk + nk}.

σ 2 = var(X) = nk(N − k)(N − n)
N2(N − 1)

= N − n
N − 1

· n · k
N

 
1− k

N

 

Introducing p = k
N

which is the proportion suc-

cesses in the population, the mean and variance of

the hypergeometric distribution are written as

µ = n · k
N
= np and

σ 2 =
 
N − n
N − 1

 
n · p(1− p) =

 
N − n
N − 1

 
npq.

Observe that the mean of the hypergeometric dis-

tribution and the mean of binomial distribution

are same, while the variances differ by the factor 
N − n
N − 1

 
, known as “finite population correction

factor”, which tends 1 as N →∞. Thus binomial

distribution may be viewed as a large population edi-

tion of the hypergeometric distribution, since sam-

pling from the finite population with replacement

amounts to sampling from the infinite population

(without replacement).

Approximation of the Hypergeometric Distri-

bution by the Binomial Distribution

Book work III Show that hypergeometric distribu-

tion tends to binomial distribution as N →∞ and
k
N
→ p.

Proof: Consider

h(x;N, n, k) =

 
k

x

  
N − k
n− x

 
 
N

n

 

= k!

x!(k − x)!
(N − k)!

(n− x)!(N − k − n+ x)!
n!(N − n)!

N !

= k(k − 1)(k − 2) . . . (k − (x − 1))

x!
×

× · (N − k)(N − k − 1) . . . (N − k − (n− k − 1))

(n− k − 1)!
×

× n!

N (N − 1)(N − 2) . . . (N − (n− 1))

= n!

x!(n− x)!×

  
k

N

  
k

N
− 1

N

  
k

N
− 2

N

 
. . .

 
k

N
− (x − 1)

N

  

×
 
1− k

N

  
1− k

N
− 1
N

 
. . .
 
1− (n−k−1)

N

 
 
1− 1

N

  
1− 2

N

 
. . .
 
1− n−1

N

 
Letting N →∞ and putting k

N
= p we get

lim
N→∞

h(x;N, n, k)=
 
n

x

 
p · (p−0)(p−0) . . . (p−

0) ×(1− p)(1− p − 0) . . . (1− p)

=
 
n

x

 
pk(1− p)k = b(x;p, 1− p)

WORKED OUT EXAMPLES

Example 1: Out of 60 applicants to a university 40

are from the south. If 20 applicants are selected at

random, find the probability that (a) 10 (b) not more

than 2, are from south.

Solution: The total number of ways in which 20

applicants are selected from 60 is

 
60

20

 
.

(a) The number of ways in which 10 applicants from

south are selected from 40 south applicants is

 
40

10

 
.
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Now out of the total 20 selected the remaining 10

non-south applicants will be selected from 20(60–

40 south) non-south applicants, which is

 
20

10

 
.

Thus the probability that 10 out of 20 applicants are

from south is

 
40

10

  
20

10

 
 
60

20

 =
 

40!
10!30!

  
20!

10!10!

 
 

60!
20!40!

 =

0.0373613

or population size N = 60,

sample size = n = 20

number of south applicants k = 40. Let x denote

the number of applicants from the south. Then

the hypergeometric distribution is h(x;N, n, k) = 
k

x

  
N − k
n− x

 
 
N

n

 for x = 0, 1, 2, . . . n.

Here h(10; 60, 20, 40) =


40
10




60− 40

20− 10





60
20




=

0.03736

(b) Probability that x ≤ 2 is

P (x ≤ 2) =
2 
x=0

h(x;N, n, k) =
2 
x=0

h(x; 60, 20, 40)

=h(0; 60,20,40)+h(1; 60,20,40)+h(2; 60,20,40)

=

 
40

0

  
60− 40

20− 0

 
 
60

20

 +

 
40

1

  
60− 40

20− 1

 
 
60

20

 

+

 
40

2

  
60− 40

20− 2

 
 
60

20

 

= (40c0)(20c20)+ (40c1)(20c19)+ (40c2)(20c18)

60c20

Example 2: Solve (a) of the above problem us-

ing Binomial approximation. Explain the accuracy

obtained. What is the finite population correlation

factor.

Solution: As N →∞, Binomial approximation is

P (X = x) =
 
n

x

 
pxqn−x .

Here the probability of (south) success is p = 40
60
=

2
3
and probability of (non-south) failure is q = 20

60
=

1
3
and n = 20 and x = 10.

Now using binomial approximation we have P (X =
x) = probability of 10 south applicants out of 20

applicants =

 
20

10

  
2

3

 10  
1

3

 10

= 0.0542591
From hypergeometric distribution the probability is

0.03736. The accuracy is less since N = 60 is not

very large more so compared with n = 20. Finite

population correction factor =
N − n
N − 1

= 60− 20

60− 1
=

0.6779
Example 3: Find the mean and variance and stan-

dard deviation of the random variable X in (a) of

above example.

Solution: Mean = nk

N
= 20(40)

(60)
= 1.3333

Variance =
N − n
N − 1

· n · k
N
·
 
1− k

N

 

=
 

60− 20

60− 1

 
· 20 (40)

(60)
·
 
1− 40

60

 
= 0.30131

Standard deviation = 0.5489

EXERCISE

1. Find the probability of selecting 5 cards of

which 3 are red and 2 are black from an or-

dinary deck of 52 playing cards.

Ans.

 
26

3

  
26

2

   
52

5

 
= 0.3251

2. Determine the probability that exactly one de-

fective is found in a sample of 5 from a lot of

40 components containing 3 defectives (in the

entire lot).

Ans.

 
3

1

  
37

4

   
40

5

 
= 0.3011

3. Find themean and variance of the randomvari-

able X in the above example 2.



PROBABILITY DISTRIBUTIONS 27.19

Ans. Mean = 5·3
40
= 0.375, σ 2 = 0.3113

4. (a) Determine the probability that exactly 3

computers are defective out of 10 computers

purchased from a lot of 5000 computers con-

taining 1000 defective computers. (b) Use bi-

nomial approximation and explain the accu-

racy. (c)what is the finite population correction

factor.

Ans. (a) h(3; 5000, 10, 1000) = 0.2015

(b) h(3; 5000, 10, 1000)  b(3; 10, 0.2)
=

3 
x=0

b(x; 10, 0.2) −
2 
x=0

b(x; 10, 0.2) =
0.8791− 0.6778 = 0.2015

since N = 5000 large compared to sam-

ple n = 10, the accuracy achieved is high.

(c)
N − n
N − 1

= 5000− 10

5000− 1
= 0.9982

5. TV’s are shipped in lots of 50. A shipment

is accepted if a sample of 5 TV’s inspected

from this lot, does not contain any defective

TV. If one or more are found defective, the

entire shipment is rejected . Suppose the lot of

50 contains 3 defective TV’s. Determine the

probability that 100% inspection is required?

Ans. P (X ≥ 1) = 1− P (X = 0)

= 1−
  

3

0

  
47

5

   
50

5

  
= 0.28 where

X is the number of defective TV’s.

6. Suppose a shipment of 100 cars contain 25 de-

fectives. Determine the probability that 2 cars

out of a sample of 10 cars drawn from the

lot are defective. Use binomial approximation

also.

Ans. h(2; 10, 25, 100) = 0.292

b(2; 10, 0.25) = 0.282

7. Find the probability of getting 3 bluemarbles if

5 marbles are drawn (one after the other with-

out replacement) from a box containing 6 blue

and 4 red marbles.

Ans.

 
6

3

  
4

2

   
10

5

 
= 10

21
= 0.4762

8. A committee of 2 is chosen from five faculty

members out of which 3 are doctorate and 2

are post-graduates. IfX denotes the number of

doctorates in the committee, obtain the proba-

bility distribution of X.

Ans.

X 0 1 2

P (x)
2

20

12

20

6

20

Hint: h(x; 5, 2, 3) for x = 0, 1, 2.

9. Let X be the number of defective motors in a

sample of 6 drawn from a lot of 12motors con-

taining four defectives.Compute (a)P (X = 1)

(b) P (X ≥ 4) (c) P (1 ≤ X ≤ 3).

Ans. (a) 0.242 (b) 0.030 (c) 0.939

10. A box contains 12 red and 8 black marbles.

If 5 marbles are drawn successively (without

replacement) from the box, find the probability

that (a) 3 are red and 2 are black (b) at least 3

are red (c) all the 5 are of the same colour.

Ans. (a)
385

969
(b)

682

969
(c)

53

969

Hint: (a)

 
12

3

  
8

2

   
20

35

 

(b)
5 
x=3

 
12

x

  
8

5− x
   

20

5

 

(c)

  
12

5

  
8

0

 
+
 
12

0

  
8

5

    
20

5

 

27.6 POISSON DISTRIBUTION

Poisson∗ distribution is the discrete probability dis-

tribution of a discrete random variable x, which has

no upper bound. It is defined for non-negative values

of x as follows:

f (x, λ) = P (X = x) = λxe−λ

x!
for x = 0, 1, 2, . . . (1)

Here λ > 0 is called the parameter of the distribu-

tion. Note that in binomial distribution the number

of successes (occurrence of an event) out of a total

definite number of n trials is determined, whereas

in Poisson distribution the number of successes at

a random point of time and space is determined.

∗ Simeon Denis Poisson (1781–1840) French mathematician.
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Poissondistribution (P.D.) is suitable for ‘rare’ events

for which the probability of occurrence p is very

small and the number of trials n is very large. Also

binomial distribution can be approximated by pois-

son distribution when n→∞ and p→ 0 such that

λ = np = constant.

Examples of rare events:

i. Number of printing mistakes per page.

ii. Number of accidents on a highway.

iii. Number of defectives in a production centre.

iv. Number of telephone calls during a particular

(odd) time.

v. Number of bad (dishonoured) cheques at a bank.

Result 1: Since
∞ 
x=0

f (x, λ) =
∞ 
x=0

p(X = x) =
∞ 
x=0

e−λλx
x!

= e−λ
∞ 
x=0

λx

x!
= e−λeλ = 1,Therefore (1) is

a probability function.

Result 2: Arithmetic mean of Poisson distribution

X = E(X)=
∞ 
x=0

xP (X = x) =
∞ 
x=0

x · e
−λλx

x!

= λe−λ
∞ 
x=1

λx−1

(x − 1)!
= λe−λ

∞ 
m=0

λm

m!

= λe−λ · eλ = λ

Thus the parameter λ is the A.M. of P.D.

Result 3: Variance of Poisson distribution

= E
 
(x −X)2

 
=

∞ 
x=0

(x −X)2P (X = x)

=
  

x2 +X2 − 2Xx
 
P =
 
x2P +X2

 
P

−2X
 
xP

=
 
x2P +X2 − 2XX =

 
x2P + λ2 − 2λ2

=
 
x2P − λ2.

But

 
x2P =

∞ 
x=0

[x(x − 1)+ x] e−λ λ
x

x!

= e−λ
∞ 
x=0

λx · x(x − 1)

x!
+ e−λ

∞ 
x=0

λx · x
x!

= λ2e−λ
∞ 
x=2

λx−2

(x − 2)!
+ λe−λ

∞ 
x=1

λx−1

(x − 1)!

= λ2e−λeλ + λe−λeλ = λ2 + λ
Thus

Variance =
 
x2p − λ2 = (λ2 + λ)− λ2 = λ

Hence the variance of P.D. = mean of P.D.

Result 4: Recurrence formula

P (x + 1)

P (x)
= e−λλx+1

(x + 1)!

x!

e−λλx
= λ

x + 1

Thus

P (x + 1) =
 

λ

x + 1

 
P (x).

Result 5: Poisson distribution function

F (x; λ) =
x 
k=0

e−λλk

k!

has been tabulated (see A8 to A11)

Then f (x; λ) = F (x; λ)− F (x − 1; λ).

Theorem: Prove that Poisson distribution is the

limiting case of binomial distribution for very large

trials with very small probability, i.e., f (x; λ) =
lim
n→∞
p→0

b(x; n, p) such that λ = np = constant.

Proof: Put p = λ
n
in binomial distribution

b(x; n, p)= n!

x!(n− x)! ·
 
λ

n

 x  
1− λ

n

 n−x

= n(n− 1)(n− 2) · · · (n− (x − 1))

x!
· λ
x

nx
×

×
 
1− λ

n

 n−x

=
nx ·1·

 
1− 1

n

  
1− 2

n

 
· · ·
 
1− (x−1)

n

 
x!

λx

nx
×

×
 
1− λ

n

 n−x
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Taking the limit as n→∞, we have

lim
n→∞ b(x; n, p) =

1

x!
λx · e−λ = λxe−λ

x!

since

lim
n→∞

 
1− 1

n

  
1− 2

n

 
· · ·
 
1−x − 1

n

 
= 1 · 1 · · · 1 = 1

and

lim
n→∞

 
1−λ
n

 n−x
=
! 

1−λ
n

 n/λ"λ
×
 
1−λ
n

 −x
= e−λ.

Note: lim
n→∞

 
1− x

n

 n
= e−x

Thus binomial probabilities for large n and small p

are often approximated by means of poisson distri-

bution with mean λ = np.

Example: Forn = 3000, p = 0.005, the probabil-

ity of 18 successes by binomial distribution is given

by b(18; 3000, .005) = 3000C18
(.005)18(.995)2982

which involves prohibitive amount of work. Instead

using Poisson distribution as an approximation, we

get λ= 3000× .005= 15. Probability of 18 success

= f (18, 15) = 0.8195 from table (A8 to A11).

General rule: Poisson approximation to B.D. is

used whenever n ≥ 20 and p ≤ 0.05. For n ≥ 100,

approximation is excellent provided λ = np ≤ 10.

WORKED OUT EXAMPLES

Poisson distribution

Example 1: Adistributor of bean seeds determines

from extensive tests that 5% of large batch of seeds

will not germinate. He sells the seeds in packets of

200 and guarantees 90% germination. Determine the

probability that a particular packet will violate the

guarantee.

Solution: The probability of a seed not germinating

= p = 5
100

= 0.05

λ= mean number of seeds, in a sample of 200,

which do not germinate

= np = 200× 0.05 = 10

Let X = R.V. = number of seeds that do not germinate

A packet will violate guarantee if it contains more

than 20 non-germinating seeds.

Probability that the guarantee is violated

= P (X > 20) = 1− P (X ≤ 20) = 1−
20 
x=0

e−1010x

x!

= 1− F (20, 10) = 1− .9984 = 0.0016

where cummulative distribution function F is read

for x=20 and λ=10 from the tables (A8 to A11).

Example 2: The average number of phone calls/

minute coming into a switch board between 2 and 4

PM is 2.5. Determine the probability that during one

particular minute there will be (a) 0 (b) 1 (c) 2

(d) 3 (e) 4 or fewer (f) more than 6 (g) at most 5

(h) at least 20 calls.

Solution: λ= 2.5, f (x; λ)= f (x; 2.5)= (2.5)x (e−2.5)

x!

LetX =R.V.=number of phone calls/minute during

that (odd) 2 and 4 PM.

a. f (0; 2.5) = e−2.5 = .08208
b. f (1; 2.5) = .2052
c. f (2; 2.5) = .2565
d. f (3; 2.5) = .2138

e. P (X ≤ 4)=
4 
x=0

f (x; 2.5) = F (4; 2.5) = .8912

(read from tables A8 to A11)

f. P (X > 6) = 1−P (X ≤ 6) = 1−
6 
x=0

f (x; 2.5)

=1−F (6; 2.5)= 1−.9858= 0.0142

g. P (X ≤ 5) =
5 
x=0

f (x; 2.5)=F (5; 2.5)= .9580

h. P (X≥2.0) = 1−P (X ≤ 19)=1−
19 
x=0

f (x; 2.5)

= 1− F (19; 2.5) = 1− 1 = 0.

Example 3: Suppose that on the average one per-

son in 1000 makes a numerical error in preparing

income tax return (ITR). If 10000 forms are selected

at random and examined, find the probability that 6,

7 or 8 of the forms will be in error.
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Solution: Let X = R.V. = number ITR forms

containing a numerical error. Essentially this is

a binomial experiment with 10000 trials and

probability (of success) p = 1
1000

= 0.001. So by

B.D. probability of 6, 7 or 8 error forms =
P (X = 6, 7 or 8)

= P (6)+ P (7)+ P (8) =
8 
x=6

b(x; 10000, 0.001)

=
8 
x=6

10000Cx (.001)
x (.999)10000−x

which involves cumbersome lengthy calculations.

Since n is large and p is small, approximate the

binomial probabilities by Poisson distribution with

λ = np = 10000× 1
1000

= 10.
Probability of 6, 7 or 8 error ITR forms =

P (X = 6, 7 or 8)

=
8 
x=6

f (x; 10) =
∞ 
x=6

e−10(10)x

x!

= e−10

!
106

6!
+ 107

7!
+ 108

8!

"
= .2657

Instead, using tables A8 to A11, we get the result in
a simpler way

= F (8; 10)− F (5; 10) = .3328− .0671 = .2657.
Example 4: Fit a Poisson distribution to the

following data:

Xi : 0 1 2 3 4

Observed

frequencies 30 62 46 10 2

fi

Solution: To fit a Poisson distribution, determine

the only parameter λ of the distribution from the

given data. Since λ is the arithmetic mean,

λ=

4 
i=0

fiXi 
fiXi

=0× 30+1× 62+2× 46+3× 10+4× 2

150

= 192

150
= 1.28

Thus the Poisson distribution that “fits” to the given

data is P (X) = e−1.28(1.28)X

X!
.

Here total frequency N =
4 
i=0

fi = 150

Expected frequency = (Total frequency)

× Probability

Xi : 0 1 2 3 4

P (Xi ): 0.27803 .35588 .22776 .09718 .031097

(N )(P (Xi ))

=Expected 41.7045 53.382 34.164 14.577 4.6646

frequency ≈ 42 ≈ 53 ≈ 34 ≈ 15 ≈ 5

EXERCISE

Poisson distribution

1. Determine the probability that 2 of 100 books

bound will be defective if it is known that 5%

of books bound at this bindery are defective.

(a) use B.D. (b) use Poisson approximation

to B.D.

Ans. a. b(2; 100, 0.5) =
 
100

2

 
(0.05)2(.95)98

= 0.081

b. f (2; 5) = 52e−5

2!
= 0.084 with

λ = np = 100(0.05) = 5

2. Find the probabilities that 0, 1, 2, 3, 4, . . .

of 3840 generators fail if the probability of

failure is 1
1200

.

Ans.

x: 0 1 2 3 4 5 6 7 8 9 10

f (x, 3.2): 0.041 .130 .209 .223 .178 .114 .06 .028 .011 .004 .002

Hint: λ = 3840× 1
1200

= 3.2. Use tables (A8

to A11) and the identity f (x; λ) = F (x; λ) −
F (x − 1; λ).

3. On an average, 1.3 gamma particles/

millisecond come out of a radioactive

substance, determine (a) mean (b) variance
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(c) probability of more than one gamma

particles emanate from the substance.

Ans. (a)(b): λ = σ 2 = 1.3 (c) 1− P (X = 0) =
1− e−1.3 = 0.727

4. Determine the probability p that there are 3

defective items in a sample of 100 items if 2%

of items made in this factory are defective.

Ans. p = f (3; 2) = 23e−2

3!
= 0.180 with

λ = np = 100(0.02) = 2

5. Suppose 300 misprints are distributed ran-

domly throughout a book of 500 pages. Find

the probability P that a given page contains

(i) exactly two misprints (ii) two or more

misprints.

Ans. i. f (2; 0.6) = (0.6)2e−0.6

2!
= 0.0988 ≈ 0.1

ii. P = 1− P (0 or 1 misprint)

= 1− (0.549+ 0.329) = 0.122

6. In a factory producing blades, the probability

of any blade being defective is 0.002. If blades

are supplied in packets of 10, determine the

number of packets containing (a) no defective

(b) one defective and (c) two defective

blades respectively in a consignment of 10000

packets.

Ans. a. 10000× P (0) = 10000× e−0.02

= 10000× .9802 = 9802

i.e., 9802 packets do not have any defective

blades.

b. 10000× (0.02)(.9802) = 196

c. 10000× (.02)2

2!
· 9802 = 2

Hint: λ = np = 10× 0.002 = 0.02.

7. A manufacturer of cotter pins knows that 5%

of his product is defective. Pins are sold in

boxes of 100. He guarantees that not more than

10 pins will be defective. Determine the proba-

bility that a box will fail to meet the guarantee.

Ans. P (X > 10) = 1− P (X ≤ 10)

= 1−
10 
x=0

e−55x

x!
= 1− F (10, 5)

= 1− .9863 = 0.0137

Hint: λ = np = 100× 0.05 = 5

8. On an average 20 red blood cells are found in

a fixed volume of blood for a normal person.

Determine the probability that the blood

sample of a normal person will contain less

than 15 red cells.

Ans. P (X < 15) =
14 
x=0

e−20(20)x

x!
= F (14, 20)

= 0.105

Hint: λ = 20.

9. Two shipments of computers are received.

The first shipment contains 1000 computers

with 10% defectives and the second shipment

contains 2000 computers with 5% defectives.

One shipment is selected at random. Two

computers are found good. Find the probabil-

ity that the two computers are drawn from the

first shipment.

Ans. 0.183

Hint: q1 = 0.1, p1 = 0.9, q2 = 0.05,

p2 = 0.95

λ1 = n1p1 = (1000)(0.9) = 900,

λ2 = n2 p2 = (2000)(.95) = 1900

C: two computers good, A: first shipment,

B: second shipment.

P (A/C) = P (A)P (C/A)

P (A)P (C/A)+ P (B) · P (C/B)

where

P (A)= P (B) = 1

2
, P (C/A) = e−900(900)2

2!
,

P (C/B)= e
−1900(1900)2

2!
.

10. Given that the probability of an accident in an

industry is 0.005 and assuming the accidents

are independent (a) determine the probability

that in any given period of 400 days, there

will be an accident one day? (b) What is the

probability that there are at most three days

with an accident?

Ans. (a) P (X = 1)=e−221=0.271
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(b) P (X ≤ 3) =
3 
x=0

e−22x

x!
= 0.857

Hint: λ = np = 400(0.005) = 2.

11. If one in every 1000 of computers produced

is defective, determine the probability that a

random sample of 8000 will yield fewer than

7 defective computers?

Ans. P (X < 7) =
6 
x=0

b(x; 8000, 0.001)

 
6 
x=0

f (x; 8) = 0.3134

Hint: B.D. calculation is very hard, ap-

proximate it by P.D. with λ = np =
(8000)(0.001) = 8.

12. Suppose the average number of telephone calls

coming into a telephone exchange between 10

AM to 11 AM is 2, while between 11 AM to 12

noon is 6, determine the probability that more

than five calls come in between 10 AM to 12

noon, assuming that calls are independent.

Ans. P (x > 5) = 1− P (x ≤ 5) = 1−
5 
x=0

e−88x

x!
=

1− 0.1912 = 0.8088

Hint: P.D. is additive: X = X1 +X2,

λ = λ1 + λ2 = 2+ 6 = 8.

Fitting of Poisson distribution

Fit a Poisson distribution to the following data:

1. x: 0 1 2 3 4 5 6 7 8

Observed 56 156 132 92 37 22 4 0 1

frequency

fi

Ans. 69.6 137.25 135.33 88.95 43.85 17.29

5.68 1.60 0.3942

Hint: λ =
 
fixi
N

= 986
500

= 1.972.

2.
x: 0 1 2 3 4

fi : 122 60 15 2 1

Ans. 121 61 15 2 0

Hint:

λ = fixi
N
= 60+36+6+4

200
= 0.5; e−.5 = 0.61

3.
x: 0 1 2 3 4 5

fi : 142 156 69 27 5 1

Ans. 147.15 147.15 73.58 24.53 6.13 1.23

Hint: λ =
 
fixi 
fi

= 400
400

= 1.

4. Determine the number of pages expected with

0, 1, 2, 3, and 4 errors in 1000 pages of a book

if on the average two errors are found in five

pages.

Ans. x: 0 1 2 3 4

P (x): .6703 .26812 .053624 .0071 .00071

Expected

number 670 268 54 7 1

of pages

Hint: λ = 2/5 = 0.4, e−0.4 = .6703,
Expected number of pages = 1000× P (x).

5.
x: 0 1 2 3 4

f : 109 65 22 3 1

Ans. 108.7 66.3 20.2 4.1 0.7

Hint: λ = 65+44+9+4
200

= 122
200

= 0.61.

27.7 POISSON PROCESS

Poisson process is a random process in which the

number of events (or successes) x occurring in a time

interval of length say T is counted. It is a continuous

parameter, discrete state process. By dividing T into

n equal parts of length  t , we have T = n · t .
Assume that

1. The probability of success (or occurrence of an

event) in a given time interval is proportional to

the length of the interval, i.e.,p ∝  t orp = α t
where α is the proportionality constant.

2. The occurrences of events are independent, i.e.,

probability of success in an interval of time (or

space) does not depend on the what happened

prior to that time or any other interval.

3. The probability of more than one success during

a small time interval  t is negligible.

As n→∞, the probability of x successes (or
occurrence of an event) during a time interval T
is governed by the Poisson distribution with the
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parameter

λ = n · p =
 
T

 t

 
(α t) = αT

Thusα is the average (mean) number of successes

(occurrences) per unit time.

WORKED OUT EXAMPLES

Poisson process

Example: Average rate of arrival of persons in a

queue is 1.5 per minute. Determine the probability

that (a) at most four persons will arrive in any given

minute (b) at least five will arrive during an interval

of 2 minutes (c) at most 20 will arrive during an

interval of 6 minutes.

Solution: α = arrival rate = 1.5.

Let X be number of persons arriving in queue

a. T = time interval = 1 minute

λ = αT = (1.5)(1) = 1.5

P (X ≤ 4)=
4 
x=0

f (x; 1.5) = F (4; 1.51) = .981.

b. T = time interval = 2 minutes

λ = αT = (1.5)(2) = 3.0

P (X ≥ 5)= 1− P (X < 5) = 1−
4 
x=0

f (x, 3)

= 1− F (4, 3) = 1− .815 = .185.
c. T = time interval = 6 minutes

λ = αT = (1.5)(6) = 9

P (X ≤ 20)=
20 
x=0

f (x; 9) = F (20, 9) = 1.0.

EXERCISE

Poisson process

1. The average rate of phone calls received is 0.6

calls per minute at an office. Determine the

probability that (a) there will be one or more

calls in a minute (b) there will be at least three

calls during 4 minutes.

Ans. a. f (x ≥ 1; 0.6) = 1− F (0, 0.6)

= 1− .549 = .451
b. f (x ≥ 3; 2.4) = 1− F (2, 2.4)

= 1− .570 = .430
2. On an average six bad cheques per day are re-

ceived by a bank. Find the probability that the

bank will receive (a) on any given day four

bad cheques (b) 10 bad cheques on any two

consecutive days.

Ans. a. f (4; 6) = e−664/4! = 0.135

b. f (10; 12) = F (10, 12)− F (9, 12)

= .347− .242 = 0.105

3. At an airport, the averagenumber of aeroplanes

arriving is 10. There are only 15 runways in the

airport. Determine the probability that an aero-

plane will be refused landing on any given day.

Ans. P (X ≥ 15)=1−
15 
x=0

f (x, 10)=1−F (15, 10)

= 1− .09513 = .0487
4. The number of e-mails received by a computer

is at the rate of two per 3 minutes. Determine

the probability that five or more e-mails are

received in a duration of 9 minutes.

Ans.
∞ 
x=5

f (x, 6) = 1− F (4; 6) = 1− 0.285

= 0.7149

Hint: By reproductive property of Poisson

process

λ = λ1 + λ2 + λ3 = 2+ 2+ 2 = 6 for

R.V. X1, X2, X3 in 3 minutes duration, so

X = X1 +X2 +X3.

5. On an average two emergency cases are re-

ceived in a week (7 days) period at a hospital.

Determine the probability that there are

a. three or less emergency cases in 2 weeks

period

b. exactly eight emergency cases in 3 weeks

period.

Ans. a. F (3; 4) =
3 
x=0

f (x; 4) = 0.4335
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b. f (8; 6) = F (8; 6)− F (7; 6)

= .8472− .7440 = 0.1032.

27.8 CONTINUOUS UNIFORM DISTRIBU-

TION

The probability density function f (X) of a continous
random variable X having uniform distribution over
the interval [a, b] is given by

U [a, b] = f (X) =
 
K, constant a ≤ x ≤ b

0, otherwise

Here X is uniformly distributed over the interval

[a, b]. Since
 ∞
−∞ f (x)dx = 1 we have

 b
a
Kdx =

1 or (b − a)K = 1 or K = 1
b−a . So the constant k

is the reciprocal of the length of the interval. Thus
the continuous uniform distribution takes the form

U [a, b] = f (X) =
 

1
b−a if a ≤ x ≤ b

0 otherwise
(1)

a b

K

f x( )

x

Fig. 27.4

The density (1) is uniform in value over the inter-
val [a, b]. The uniform distribution (1) is also known
as rectangular distribution since the graph of the dis-
tribution is rectangular. The constants a and b, which
are known as the parameters, completely determines
the distribution (1). Since

E(XK )=
 b
a

xKf (x)dx =
 b
a

xK
 

1

b − a

 
dx

= 1

b − a

#
bK+1 − aK+1

K + 1

$

we get the mean and variance of the uniform distri-
bution as

µ = E(X) = b2 − a2
(b − a)2 =

b + a

2

and

σ 2 = E(X2)− µ2 = b3 − a3
(b − a) · 3 −

 
b + a

2

 2

= (b − a)2
12

Solving a = µ−
√

3σ, b = µ+
√

3σ

The cumulative distribution function F (x):

(i) when x ≤ a, F (x) =
 x
−∞ 0 dx = 0

(ii) when a ≤ x ≤ b, F (x) =
 x
−∞ =  a−∞ 0+ x

a
1
b−a · dx = 0+ 1

b−a (x − a) = x−a
b−a

(iii) when x > b, F (x) =
 x
−∞ =  a−∞ 0+ b

a
1
b−a dx +

 x
b

0 = 1
b−a · (b − a) = 1

Thus

F (x) =




0 when x < a
x−a
b−a when a ≤ x ≤ b
1 when x > b

a b

1

f x( )

x

a

b

a–
–

0
x

Fig. 27.5

Nowfor any subinterval [c, d]wherea ≤ c < d ≤
b. The probability that x lies in the interval [c, d] is
given by

P (c ≤ X ≤ d)=
 d
c

f (x)dx

=
 d
c

1

b − a dx =
d − c
b − a .

Thus the probability depends only on the length of

the interval (d − c) but not on the location of that

interval in [a, b]. Therefore in continuous uniform

distribution, the probability is same (uniform) for all

subintervals having the same length.
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WORKED OUT EXAMPLES

Example 1: If X is uniformly distributed in −2 ≤
x ≤ 2, find (a) P (X < 1) (b) P |X − 1| ≥ 1/2).

Solution: (a) Since X < 1, it lies in the interval
[−2, 1], of length 3. Then

P (X < 1) = 1− (−2)

2− (−2)
= 3

4

–2 0 1 2

(b) If |X − 1| ≥ 1
2
then X ≥ 3

2
and x ≤ 1

2
i.e. x lies

in the two intervals [ 3
2
, 2] and [−2, 1

2
]. So

–2 0 1 21
2

3
2

P

 
|X − 1| ≥ 1

2

 
= P
 
−2 ≤ X ≤ 1

2

 

+ P
 

3

2
≤ X ≤ 2

 

=
1
2
− (−2)

2− (−2)
+ 2− 3

2

2− (−2)

=
5
2
+ 1

2

4
= 3

4

Example 2: If X is uniformly distributed in

[−α, α] with α > 0 then determine α such that

P (X > 1) = 1
3
.

Solution: If α < 1, then P (X > 1) should be zero

since X lies outside the given interval [−α, α].
Therefore α must be greater than 1. Now P (X >

1) = α−1
α−(−α) = α−1

2α
= 1

3
(given). So 1− 1

α
= 2

3
or

α = 3.

–a 0 1 a

Example 3: A bus travels between two cities A

and B which are 100 miles apart. If the bus has a

breakdown, the distanceX of the point of breakdown

from city A has a uniform distribution U [0, 100].

(a) There are service garages in the cityA, cityB and

midway between cities A and B. If a breakdown

occurs, a tow truck is sent from the garage closest

to the point of breakdown.What is the probability

that the tow truck has to travel more than 10 miles

to reach the bus.

(b) Would it be more “efficient” if the three service

garages were placed at 25, 50 and 75 miles from

city A? Explain.

Solution:

(a) If the bus breaksdown in the intervals [10, 40]

miles or [60, 90] miles, then the bus have to be

towed for more than 10 miles.

10 6040 90A 50 B

GarrageG G

So probability that the bus has to be towed for
more than 10miles = probability thatX lies in the
intervals [10, 40] or [60, 90]. Thus the required
probability is given by

P (10 < X < 40 or 60 < X < 90)

= P (10 < X < 40)+ P (60 < X < 90)

= 40− 10

100− 0
+ 90− 60

100− 0

= 3

10
+ 3

10
= 3

5

(b) Suppose three garages are placed at 25, 50 75

miles from city A.

10A

G

B

G

15 25

G

35 40 50

G

60 65 75

G

85 90

( ) ( ) ( ) ( )

In this case, the bus is to be towed for more
than 10 miles if the bus breaksdown in any one
of the four intervals (10, 15), (35, 40), (60, 65) or
(85, 90) miles. Probability is given by

P (10 < X < 15 or 35 < X < 40

or 60 < X < 65 or 85 < X < 90)
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= P (10 < X < 15)+ P (35 < X < 40)

+P (60 < X < 65)+ P (85 < x < 90)

= 15− 10

100− 0
+ 40− 35

100− 0
+ 65− 60

100− 0
+ 90− 85

100− 0

= 20

100
= 1

5
.

Since the probability is small
 
1
5

 
compared

to
 
3
5

 
in the case a, b is more “effective”.

EXERCISE

1. A point is chosen at random from the line seg-

ment [0, 2]. What is the probability that the cho-

sen point lies (a) 1 ≤ X ≤ 3
2
(b)X ≥ 3

2
(c)X ≤ 1

(d) x ≥ 3

Ans. (a)
 
3
2
− 1
 

1
2
= 1

4
(b)

 
2− 3

2

 
1
2
= 1

4
(c)

(1− 0) 1
2
= 1

2
d) 0.

Hint: f (x) = 1
2−0

= 1
2

2. IfX is uniformly distributed in [−α, α] with α >

0. Then find α such that P (X < 1
2
) = 0.7.

Ans. α = 5
4

3. If a conference room cannot be reserved for more

than 4 hours, find the probability that a given con-

ference lasts more than three hours.

Ans. 1
4

Hint:: f (x) = 1
4
, P (X ≥ 3) = (4− 3) 1

4
= 1

4
.

4. The daily amount X of coffee, in liters dis-

pensed by amachine is uniformly distributedwith

a = 7, b = 10. Determine the probability that the

amount of coffee dispensed by the machine will

be (a) at most 8.8 (b) more than 7.4 but less than

9.5 (c) at least 8.5 litres.

Ans. a) 0.6 b) 0.7 (c) 0.5

Hint: f (x) = 1
10−7

= 1
3

5. The driving time X from house to bus station is

uniformly distributedU [10, 50]. If it takes 2min-

utes to board the bus, determine the probability

that person catches the 6.00 pm bus if he starts at

5.43 pm at his house.

Ans. P (X ≤ 15) = 15−10
50−10

= 1
8
= 0.125

Hint: Maximum time to catch bus is 6.0−
5.43− 0.2 = 15 minutes.

6. Find the third and fourth moment about the mean

of a uniform distribution.

Ans. 0, (b − a)4/80
Hint: µr = E{(X − µ)r} = b
a

 
x − (b+a)

2

 r
1
b−a dx = 

0 if r is odd
1
r+1

 
b−a
2

 r
if r is even

7. A bus arrives every 10 minutes at a bus stop. As-

suming waiting time X for bus is uniformly dis-

tributed find the probability that a person has to

wait for the bus (a) for more than 7 minutes (b)

between 2 and 7 minutes

Ans. (a) 10−7
10−0

= 3
10
= 0.3 (b) 7−2

10−0
= 5

10
= 1

2
= 0.5

8. If X is uniformly distributed with mean 1 and

variance 4
3
find P (X < 0).

Ans. 1
4

Hint: Mean = b+a
2
= 1, variance = (b−a)2

12
= 4

3
,

a = −1, b = 3 f (x) = 1
3−(−1)

= 1
4
,P (X < 0) =

0−(−1)

1
1
4
= 1

4
.

27.9 NORMAL DISTRIBUTION

Normal probability distribution or simply normal

distribution is the probability distribution of a contin-

uous random variable X, known as normal random

variable or normal variate. It is given by

N (X, σ ) = f (X) = Y (X) = 1

σ
√

2π
e−

1
2
(X−X)2/σ 2

(1)

Here X = Arithmetic mean, σ = standard devi-

ation, are the two parameters of the continuous

distribution (1). Normal distribution (N.D.) is

also known as Gaussian distribution (due to Karl

Friedrich Gauss and also credited to de Moivre

and Laplace). This theoretical distribution (1) is

most important, simple, useful and is the corner

stone of modern statistics because (a) discrete

probability distributions such as Binomial, Poisson,
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Hypergeometric can be approximated by N.D.

(b) sampling distributions ‘t’, F, χ2 tend to be

normal for large samples and (c) it is applicable in

statistical quality control in industry.

Properties of Normal Distribution (N.D.)

1. The graph of the N.D. y = f (X) in theXY -plane

is known as normal curve (N.C.). N.C. is (a) sym-

metric about y-axis (b) it is bell shaped (c) the

mean, median and mode coincide and therefore

N.C. is unimodal (has only one maximum point).

(d) N.C. has inflection points at x ± σ. (e) N.C.

is asymptotic to both positive x-axis and negative

x-axis (see Fig. 27.6).

Fig. 27.6

2. Area under the normal curve is unity.

3. Probability that the continuous random variable

X lies between X1 and X2 is denoted by proba-

bility (X1 ≤ X ≤ X2) and is given by

P (X1 ≤ X ≤ X2) =
 X2

X1

1

σ
√

2π
e
− 1

2

 
x−x
σ

 2
dx

(2)

Since (2) depends on the two parameters x and σ ,
we get different normal curves for different values
of x and σ and it is an impractiable task to plot
all such normal curves. Instead, by introducing

Z = x − x
σ

the R.H.S. integral in (2) becomes independent

(dimensionless) of the two parameters x and σ.

Here Z is known standard (or standardized) vari-

able (variate).

4. Change of scale from x-axis to z-axis.

P (X1 ≤ X ≤ X2)=
 X2

X1

1

σ
√

2π
e
− 1

2

 
x−x
σ

 2
dx

P (Z1 ≤ Z ≤ Z2)=
 Z2

Z1

1

σ
√

2π
e−Z

2/2σdZ

=
 Z2

Z1

1√
2π
e−Z

2/2dZ (3)

where

Z1 =
X1 −X
σ

, Z2 =
X2 −X
σ

.

5. Error function or probability integral is defined

as

P (Z) = 1√
2π

 Z
0

e−Z
2/2dZ (4)

Now (3) can be written using (4) as

P (Z1≤Z≤Z2)=
 Z2

Z1

1√
2π
e−Z

2/2dZ

= P (Z2)−P (Z1) (5)

Normal distribution N (x, σ ) transformed by the
standard variable Z is given by

N (0, 1) = Y (Z) = 1√
2π
e−Z

2/2

with mean 0 and standard deviation 1. N (0, 1)

is known as “Standard Normal Distribution” and

its normal curve as standard normal curve (Fig.

27.7). The probability integral (4) is tabulated for

various values of Z varying from 0 to 3.9 and is

known as normal table (seeA12). Thus the entries

in the normal table gives (represents) the area un-

der the normal curve between the ordinatesZ = 0

to Z (shaded in the figure). Since normal curve is

symmetric about y-axis, the area from 0 to−Z is

same as the area from 0 toZ. For this reason, nor-

mal table is tabulated only for positive values of

Z. Hence the determination of normal probabili-

ties (3) reduce to the determination of areas under

Fig. 27.7
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the normal curve by (5) (see Fig. 27.7). Therefore

P (X1≤X≤X2)= P (Z1≤Z≤Z2) = P (Z2)− P (Z1)

= (Area under the N.C. from 0 toZ2)

− (Area under the N.C. from 0 toZ1)

6. Area under the N.C. is distributed as follows:

68.27% area lies between X − σ to X + σ
i.e., between −1 ≤ Z ≤ 1

94.45% area lies between X − 2σ to X + 2σ

i.e., between −2 ≤ Z ≤ 2

99.73% area lies between X − 3σ to X + 3σ

i.e., between −3 ≤ Z ≤ 3

Note: 50% area in the Z-interval (−.745,+.745)
99% area in the Z-interval (−2.58,+2.58)

Arithmetic Mean of Normal Distribution

By definition
theA.M. of a continuous distribution f (x) is given

by

A.M. =
 ∞
−∞ x f (x)dx ∞
−∞ f (x)dx

.

Consider the normal distribution with B,C
as the parameters, i.e., N (B,C) = f (x) =

1

c
√

2π
e
− 1

2

 
x−B
c

 2
. Then

A.M. = X =
 ∞

−∞
x · 1

c
√

2π
e
− 1

2

 
x−B
c

 2
dx

since
 ∞
−∞ f (x)dx = area under the normal curve

= 1

Put x−B
c
= z so x = B + cz, dx = cdz

So X =
 ∞

−∞
(B + cz) 1

c
√

2π
e−

1
2
z2cdz

= B
 ∞

−∞

1√
2π
e−

z2

2 dz+ c√
2π

 ∞

−∞
ze−

z2

2 dz

= B + c√
2π

 ∞

−∞
e−

z2

2 d

#
z2

2

$

since
 ∞
−∞ f (x)dx =  ∞−∞ 1√

2π
e−

z2

2 dz = 1.

= B + c√
2π

e−
z2

2

−1

    ∞
−∞

= B + 0

So X = B.

Variance for Normal Distribution

By definition

Variance=
 ∞

−∞
(x − x)2f (x)dx

=
 ∞

−∞
x2f (x)dx + x2

 ∞

−∞
f (x)dx

−2x

 ∞

−∞
x f (x)dx

=
 ∞

−∞
x2 f (x)dx + x2 − 2xx

since
 ∞
−∞ f (x)dx = 1 and

 ∞
−∞ x f (x)dx = x.

Consider the first integral in the R.H.S.

 ∞

−∞
x2f (x)dx =

 ∞

−∞
x2

1

c
√

2π
e
− 1

2

 
x−x
c

 2
dx

Put x−x
c
= z so x = x + cz, dx = cdz ∞

−∞
x2f (x)dx =

 ∞

−∞
(x + cz)2 1

c
√

2π
e−

z2

2 cdz

= 1√
2π

 
c2
 ∞

−∞
z2e−

1
2
z2dz

+x2
 ∞

−∞
e−

z2

2 dz+ 2cx

 ∞

−∞
ze−

z2

2 dz

 

= −c2√
2π

 ∞

−∞
zd

 
e−

z2

2

 
+ x2 · 1+ 2cx · 0

= −c2√
2π
ze−

z2

2

    ∞
−∞
+ c2√

2π

 ∞

−∞
e−

z2

2 dz+x2

= 0+ c2 · 1+ x2

Substituting this value

Variance =
 ∞

−∞
x2f (x)dx − x2 = [c2 + x2]− x2 = c2

Thus the standard deviation (s.d.), of N.D. is c.

Book Work: Show that the area under the normal

curve is unity.
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Proof: Normal probability distribution is given by

y = f (x) = 1

σ
√

2π
e−(x−x)2/2σ 2

Then the area A under the normal curve is

A =
 ∞

−∞

1

σ
√

2π
e−(x−x)2/2σ 2

dx

Put x−x
σ
= z, so dx = σdz

or A=
 ∞

−∞

1

σ
√

2π
e−z

2/2σdz =
%

2

π

 ∞

0

e−z
2/2dz

or A · A=
!%

2

π

 ∞

0

e−x
2/2dx

"!%
2

π

 ∞

0

e−y
2/2dy

"

Here x, y are dummy variables (Fig. 27.8).

A2 = 2

π

 ∞

0

 ∞

0

e−(x2+y2)/2dx dy

Put x = r cos θ, y = r sin θ, J = Jacobian = r
Limits for r : 0 to∞, θ = 0 to 2π (to cover the first
quadrant 0 < x <∞, 0 < y <∞)

Fig. 27.8

So A2 = 2

π

 π
2

0

 ∞

0

e−
r2

2 r dr dθ

=
 ∞

0

e−
r2

2 d

#
r2

2

$
= e−

r2

2

−1

    ∞
0

= 1

Thus A = area under the normal curve = 1.

Book Work: Prove that for normal distribution the

mean deviation from themean equals to 4
5
of standard

deviation approximately.

Proof: Let x and σ be the mean and standard devia-
tion of the normal distribution. Then bydefinitemean
deviations from the mean =  ∞∞ |x − x|f (x)dx

= 1

σ
√

2π

 ∞

−∞
|x − x|e−

(x−x)2
(2σ2) dx

= 1

σ
√

2π

 ∞

−∞
σ |z|e− 1

2
z2σdz

where z = x−x
σ

and dx = σdz.

= σ
%

2

π

 ∞

0

ze−
z2

2 dz = σ
%

2

π

 
− e− z

2

2

 ∞
0

=
%

2

π
σ

= 0.7979σ ≈ 0.8σ = 8

10
σ = 4

5
σ

Fitting of Normal Distribution

Given any frequency distribution, a normal distribu-

tion (i.e., a normal curve) can be fitted to it using

N (X, σ ) = 1

σ
√

2π
e
− 1

2

#
X−X
σ

$2
.

HereX = A.M. and σ = s.d. are calculated from

the given frequency distribution.

Procedure

Consider a frequency distribution (F.D.)

L1 − U1 f1

L2 − U2 f2
...

n− Un fn

and N = total frequency =
n 
i=1

fi

Let X and σ be the A.M. and S.D. of the F.D.

Here Li, Ui are the true lower and upper limits of

the ith class.

I. Compute standard variable zi = Xi−X
σ

for each

of the true lower limit Xi of the n classes (there

will be n+ 1 such quantities).

II. Compute area under N.C. (from normal table

A12) from 0 to zi .

III. Normal probability of a class is obtained by tak-

ing the difference between the successive areas

calculated in step II. (when zi’s are of opposite

sign, add the successive areas).

IV. Expected or theoretical frequencies are obtained

bymultiplying probabilities in III byN , the total

frequency of the F.D.
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WORKED OUT EXAMPLES

Normal distribution

Example 1: Find the area A under the normal

curve:

a. to the left of z = −1.78

b. to the left of z = 0.56

c. to the right of z = −1.45

d. corresponding to z ≥ 2.16

e. corresponding to −0.80 ≤ z ≤ 1.53

f. to the left of z = −2.52 and to right of z = 1.83

Solution: Refer to normal table (A12)

a. A = 0.5− Area (0 to − 1.78) (Fig. 27.9)

= 0.5− Area (0 to 1.78) due to symmetry

= 0.5− 0.4625 = 0.0375 (from table)

Fig. 27.9

b. A = 0.5+ Area from 0 to 0.56 (Fig. 27.10)

= 0.5+ 0.2123 (from table)

= 0.7123

Fig. 27.10

c. A = 0.5+ Area from 0 to − 1.45 (Fig. 27.11)

= 0.5+ Area from 0 to 1.45

= 0.5+ 0.4265 = 0.9265

Fig. 27.11

d. A = 0.5− A (0 to 2.16)

= 0.5− 0.4846 = 0.0154 (Fig. 27.12)

Fig. 27.12

e. A = Area from (0 to − 0.8)

+Area from (0 to 1.53)

= Area from (0 to 0.8)

+Area from (0 to 1.53)

= 0.4370+ 0.2881 = 0.7251 (Fig. 27.13)

Fig. 27.13

f. A = [0.5− A(0 to 2.52)]+ [0.5− A(0, 1.83)]

= (0.5− 0.4941)+ (0.5− 0.4664)

= 0.0059+ 0.0336

= 0.0395 (Fig. 27.14)

Fig. 27.14
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Example 2: If z is normally distributed with mean

0 and variance 1, find

a. P (z ≥ −1.64)

b. P (−1.96 ≤ z ≤ 1.96)

c. P (z ≤ 1)

d. P (z ≥ 1)

Solution:

a. P (z≥−1.64)= 0.5+A(0 to−1.64) (Fig. 27.15)

= 0.5+ A(0 to 1.64)

= 0.5+ 0.4495 = 0.9495

Fig. 27.15

b. P (−1.96 ≤ z ≤ 1.96)

= 2A(0 to 1.96) by symmetry

= 2(0.4750) = 0.9500 (Fig. 27.16)

Fig. 27.16

c. P (z ≤ 1) = 0.5+ A(0 to 1)

= 0.5+ 0.3413

= 0.8413 (Fig. 27.17)

Fig. 27.17

d. P (z ≥ 1) = 0.5−A(0 to 1)

= 0.5−0.3413= 0.1587 (Fig. 27.18).

Fig. 27.18

Example 3: Determine the value of z such that (a)

area to the right of z is 0.2266 (b) area to the left of

z is 0.0314.

Solution: Here the areas (entries of the normal

table) are given, the values of z (1st column) are

determined.

a. Since area 0.2266 < 1
2

is to the right of z, z

must be positive such that area from 0 to z is

0.5− 0.2266 = 0.2734. From normal table for

area 0.2734, the value of z is 0.75 (Fig. 27.19).

Fig. 27.19

b. Since area 0.134 < 1
2

is to the left of z, z must

be negative. So determine z such that area from

0 to z is 0.5− 0.134 = 0.4686. From table A12,

z = −1.86 (Fig. 27.20).

Fig. 27.20

Example 4: Find the (a) mean and (b) standard

deviation of an examination in which grades 70 and
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88 correspond to standard scores of −0.6 and 1.4

respectively.

Solution: Standard variable z = X−X
σ

.

Here − 0.6= 70−X
σ

so X − 0.6σ = 70

1.4= 88−X
σ

so X + 1.4σ = 88

SolvingX = 75.4, σ = 9 are the mean and standard

deviation.

Example 5: Determine the minimum mark a stu-

dent must get in order to receive an A grade if the

top 10% of the students are awarded A grades in an

examinationwhere themeanmark is 72 and standard

deviation is 9.

Solution: The 0.1 area to the right of z corresponds
to the top 10% of the students (see Fig. 27.21). From
table if area from 0 to z is 0.4, then z = 1.28. Given

X= 72, σ= 9, we have 1.28= z=X−X
σ
=X−72

9
,

X = 72+ 11.52 = 83.52  84

Fig. 27.21

So a student must get a minimum (or more) of 84

marks to get an A grade.

Example 6: Find the mean and standard deviation

of a normal distribution in which 7% of the items are

under 35 and 89% are under 63 (see Fig. 27.22).

Fig. 27.22

Solution: Let X be the continuous random vari-

able. Given that P (X < 35) = 0.07 < 1
2
. So z must

be negative such that area from 0 to z is 0.5− 0.07 =
0.43. From normal table z = −1.48.

Given that P (X < 63) = 0.89 > 1
2
. So z must be

positive such that area from 0 to z is 0.89− 0.5 =
0.39 (Fig. 27.23).

Fig. 27.23

From normal table z = 1.23.

Since z = X−X
σ

, we have

−1.48= 35−X
σ

or X − 1.48σ = 35

1.23= 63−X
σ

or X + 1.23σ = 63

Solving the arithmetic mean X = 50.3 and standard

deviation σ = 10.33.

Example 7: When themean ofmarkswas 50% and

S.D. 5% then 60% of the students failed in an exam-

ination. Determine the ‘grace’ marks to be awarded

in order to show that 70% of the students passed.

Assume that the marks are normally distributed.

Solution: LetX be the marks obtained in the exam.

Given X = 0.5, σ = s.d. = 0.05.

Before grace marks were awarded, 60% failed.

Since 60% failure corresponds 0.6 area, z1 must be

positive (Fig. 27.24). Determine z1 such that the area

to its left is 0.6. The value of z1 for which the area is

0.1 is 0.25.

Fig. 27.24
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0.25 = z1 =
X1 − 0.5

0.05
so X1 = 0.5125

After grace marks were awarded, 70% passed exam-
ination. The area 0.70

 
> 1

2

 
corresponds pass stu-

dents (Fig. 27.25). Determine z2 such that the area
to its right is 0.7. So z2 must be negative and from
table, z2 = −0.52. Then

z2 = −0.52 = X − 0.5

0.05
or X2 = 0.4740

Fig. 27.25

Thus the minimum pass mark for a student is 51.25

before grace while the minimum pass mark is 47.40

after grace. So grace marks awarded is 51.25−
47.40 = 3.85.

Example 8: Assume that the ‘reduction’ of a

person’s oxygen consumption during a period of

Transcendenta Meditation (T.M.) is a continuous

random variable X normally distributed with mean

37.6 cc/mt and s.d. 4.6 cc/mt. Determine the prob-

ability that during a period of T.M. a person’s

oxygen consumption will be reduced by (a) at least

44.5 cc/mt (b) at most 35.0 cc/mt (c) anywhere from

30.0 to 40.0 cc/mt.

Solution: z = X−X
σ

= X−37.6
4.6

a. For X= 44.5, z= 44.5− 37.6
4.6

= 1.5 (Fig. 27.26)

P (X ≥ 44.5) = P (z ≥ 1.5) = 0.5− 0.4332 = 0.068

Fig. 27.26

b. For X=35.0, z= 35.0−37.6
4.6

=− 0.5652 (Fig. 27.26)

P (X ≤ 35)= P (z ≤ −0.5652)

= 0.5− 0.2157

= 0.2843.

Fig. 27.27

c. For X1 = 30, z1 = 30−37.6
4.6

= −1.6521

For X2 = 40, z2 = 40−37.6
4.6

= 0.52173
(Fig. 27.26)

P (30 ≤ X ≤ 40)= P (−1.6521 ≤ z ≤ 0.52173)

= 0.4505+ 0.1985

= 0.6490.

Fig. 27.28

Example 9: ThemarksX obtained in mathematics

by 1000 students in normally distributed with mean

78% and s.d. 11% (Fig. 27.29). Determine (a) how

many students got marks above 90%? (b) what was

the highest mark obtained by the lowest 10% of stu-

dents? (c) semi-inter quartile range (d) within what

limits did the middle 90% of students lie?

Solution: Here z = X−X
σ

= X−0.78
0.11

a. For X = 0.9, z = 0.9−0.78
0.11

= 1.09.
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P (X > 0.9) = P (z > 1.09) = 0.5− 0.3621 = 0.1379

Fig. 27.29

Number of students with marks above 90%

= 1000× P (X > 0.9) = 1000× 0.1379 = 137.9≈ 138.

b. The lowest 10% students constitute 0.1 area 
< 1

2

 
of extreme left tail. So z1 must be nega-

tive. From table 0.4 = 0.5− 0.1 =
0.5− Area 0.1 from 0 to z1 so z1 = −1.28.

Thus − 1.28 = z1 =
X − 0.78

0.11
or X = 0.6392

(see Fig. 27.30)

Thus the highestmark obtainedby the lowest 10%

of students is 63.92 ≈ 64%.

Fig. 27.30

c. Quartiles Q1,Q2,Q3 divide the area into four

equal parts. The value of z1 corresponding

to the first quartile Q1 is such that the area

to its left is 0.25. From table z1 = −0.67.

Similarly, z3 = 0.67 corresponding to Q3.

Now −0.67 = z1 = X1−0.78

0.11
. So the quartile

mark is X1 = 0.7063 = 70.63%. Similarly,

X3 = 85.37%. Thus the semi-inter quartile range

= Q3−Q1

2
= 85.37−70.63

2
= 7.37 (Fig. 27.31).

d. Middle 90% correspond to 0.9 area, leaving 0.05

area on both sides. Then the corresponding z’s

are ±1.64 (refer Fig. 27.32).

Fig. 27.31

1.64= z2 =
X2 − 0.78

0.11
so X2 = 96.04

−1.64= z1 = X1 − 0.78 so X1 = 59.96

Fig. 27.32

Thus the middle 90% have marks in between 60

to 96.

Example 10: Fit a normal distribution to the

following data (frequency distribution):

S. No. Class Observed

frequency fi

1 5–9 1

2 10–14 10

3 15–19 37

4 20–24 36

5 25–29 13

6 30–34 2

7 35–39 1

Total frequency =
7 
i=1

fi = 100
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Solution:

1 2 3 4 5 6 7 8

S. No. Class Frequency True lower Standard variate Area from Area for class Expected or

fi class limit Xi zi = Xi−20
5

0 to zi (Probability P ) theoretical frequency

= NP = 100P

1 5–9 1 4.5 −3.1 0.4990 0.0169 1.69 ≈ 2

2 10–14 10 9.5 −2.1 0.4821 0.1178 11.78 ≈ 12

3 15–19 37 14.5 −1.1 0.3643 0.3245 32.45 ≈ 32

19.5 −0.1 0.0398

4 20–24 36 24.5 0.9 0.3159 0.3557 35.57 ≈ 36

5 25–29 13 29.5 1.9 0.4713 0.1554 15.54 ≈ 16

6 30–34 2 34.5 2.9 0.4981 0.0268 2.68 ≈ 3

7 35–39 1 39.5 3.9 0.5000 0.0019 0.19 ≈ 0

Total

Frequency

N = 100

Note: Entries in column 7 are obtained by subtracting

successive values in column 6 whenever they (in 6)

are of the same sign. Add the values in column 6

when they are of opposite sign.

EXERCISE

Normal distribution

1. Determine the area under the normal curve

a. between z = −1.2 and z = 2.4

b. between z = 1.23 and z = 1.87

c. between z = −2.35 and z = −0.5

d. to the left of z = −1.90

e. to the left of z = 1.0

f. to the right of z = −2.40

g. to the left of z = −3.0 and to the right of

z = 2.0.

Ans. (a) 0.8767 (b) 0.0786 (c) 0.2991 (d)

0.0287 (e) 0.8413 (f) 0.9918 (g) 0.0241

2. Find the value of z such that

a. area between −0.23 and z is 0.5722

b. area between 1.15 and z is 0.0730

c. area between −z and z is 0.9.

Ans. (a) z = 2.08 (b) z = 0.1625

(c) z = −1.65 to +1.65

3. a. Calculate the standard marks of two stu-

dents whose marks are 93 and 62 in an ex-

amination given that the mean mark is 78

and s.d. is 10.

b. If the standard marks of two students are

−0.6 and 1.2, determine their respective

marks.

Ans. (a) z = 1.5,−1.6 (b) X = 72, 90

4. Determine the probability that the amount of

cosmic radiation X a pilot of jet plane will

be exposed is more than 5.20 m rem if X is

normally distributed with mean 4.35 m rem

and s.d. 0.59 m rem.

Ans. P (X > 5.20) = P (z > 1.44)

= 0.5− 0.4251 = 0.0749.

5. Suppose the life span X of certain motors is

normally distributed with mean 10 years and

s.d. 2 years. If the manufacturer is ready to

replace only 3% of motors that fail, how many

years of guarantee can he offer (Fig. 27.33).

Ans. −1.88 = z = X−X
σ

= X−10
2
, X = 6.24 years

6. Determine the expected number of boyswhose

weight is

a. between 65 and 70 kg

b. greater than or equal to 72 kg
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Fig. 27.33

if the weight X of 800 boys follows normal

distribution with X = 66, σ = 5.

Ans. a. P (65 ≤ X ≤ 70) = P (−0.20 < z < 0.80)

= 0.0793+ 0.2881 = 0.3674

Number = 800(0.3674) = 294

b. P (X ≥ 72) = P (z ≥ 1.2) = 0.5− 0.3849

= 0.1151

Number of boys = 800(0.1151) = 92

7. Calculate the mean and s.d. of a normal distri-

bution in which 31% are under 45 and 8% are

over 64.

Ans. X = 50, σ = 10

8. Assume that the average life span of computers

produced by a company is 2040 hours with

s.d. of 60 hours. Find the expected number of

computers whose life span is

a. more than 2150 hours

b. less than 1950 hours

c. more than 1920 hours and less than 2160

hours

from a pool of 2000 computers assuming

that the life span X is normally distributed.

Ans. a. P (X > 2150) = P (z > 1.833) =
0.5− 0.4664 = 0.0336.

Expected number of computers whose

life span is more than 2150 hours =
2000(0.0336) = 67.

b. P (X < 1950) = P (z < −1.33)

= 0.5− 0.40821 = 0.0918

Expected number = 2000(0.0918) = 184

c. P (1920 ≤ X ≤ 2160) = P (−2 ≤ z ≤ 2)

= 2(0.4772) = 0.9544.

Expectednumber= 2000× 0.9544= 1909.

9. If the top 15% of the students receives A grade

and bottom 10% receives F grades in a math-

ematics examination, determine the

a. minimum mark to get an A grade

b. minimum mark to pass (not to get F grade).

Assume that the marks are normally dis-

tributed with mean 76 and s.d. 15.

Ans. (a) 92 (b) 57

10. A university awards distinction, first class, sec-

ond class, third class or pass class according as

the student gets 80%ormore; 60%ormore; be-

tween 45% and 60%; between 30% and 45%;

or 30% or more marks respectively. If 5% ob-

tained distinction and 10% failed, determine

the percentage of students getting second class.

Assume thatmarksX are normally distributed.

Ans. 34% second class.

Hint: P (X < 30) = 0.10 failed; P (X ≥ 80)

= 0.05 distinction, 30−X
σ

= −1.28, 80−X
σ

=
1.64, X = 52, σ = 17.12

P (45 < X < 60) = P (−0.41 < z < 0.47) ≤
0.1591+ 0.1808 = 0.3399.

11. The amount of pollutant X released by

an industry should lie between 30 and 35.

Assume that X is normally distributed with

mean X = 33 and s.d. σ = 3. The industry

gets a profit of Rs. 100 when 30 < X < 35;

Rs. 50 when 25 < X ≤ 30 or 35 ≤ X < 40

and incurs a fine of Rs. 60 otherwise. Deter-

mine the expected profit for the industry.

Ans. 100(0.5890)+ 50(0.396)− 60(0.0137)

=Rs. 79.

EXERCISE

Fitting of normal distribution

1. Fit a normal curve to the following data:

Class 60–62 63–65 66–68 69–71 72–74

Frequency 5 18 42 27 8

Ans. 4.13 ≈ 4 20.68 ≈ 21 38.92 ≈ 39



PROBABILITY DISTRIBUTIONS 27.39

27.71 ≈ 28 7.43 ≈ 7

Hint:X = 67.45, σ = 2.92, N = 100.

2. Fit a normal distribution to the following fre-

quency distribution
x: 2 4 6 8 10

f : 1 4 6 4 1

Ans. 0.97 ≈ 1 3.9 ≈ 4 6.1 ≈ 6 3.9 ≈ 4

0.97 ≈ 1.0

Hint:X = 6, σ = 2, N = 16, x is taken as the

mid value of the class, i.e., 2 is mid value of

the class (1, 3), etc.

3. Fit a normal curve to the following observed

data:

Class 9.3–9.7 9.8–10.2 10.3–10.7 10.8–11.2

f 2 5 12 17

Class 11.3–11.7 11.8–12.2 12.3–12.7 12.8–13.2

f 14 6 3 1

Ans. 1.704 ≈ 2 5.562 ≈ 6 11.7420 ≈ 12

15.624 ≈ 16 13.942 ≈ 14 7.62 ≈ 8

2.712 ≈ 3 0.168 ≈ 1

Hint: X = 11.09, s.d. = 0.733, N = 60.

4. Fit a normal distribution to the following data:

Class 150–158 159–167 168–176 177–185

f 9 24 51 66

Class 186–194 195–203 204–212 213–221 222–230

f 72 48 21 6 3

Ans. 9.0 25.4 51.5 71.2 67.8 44.6 20.2

6.3 1.4

Hint: X = 184.3, σ = 14.54, N = 300.

27.10 NORMAL APPROXIMATION TO

BINOMIAL DISTRIBUTION

For large n, the calculation of binomial probabilities

is very cumbersome. In such cases they are computed

by approximation procedures. For n→∞ and

p→ 0 B.D. can be approximated by Poisson dis-

tribution with λ = np.
For n→∞ and p  → 0, i.e., p not close to 0 or 1,

B.D. can be approximated by normal distribution.

Theorem: Let X be a binomial random variable

with mean X = np and s.d. = √
npq then the limit-

ing form of the distribution of

z = X − np√
npq

as n→∞ is standard normal distribution

N (z; 0, 1).

Normal approximation to B.D. will be fairly good

even when

a. n is small and p is close to 1
2

b. both np and nq are ≥ 5.

WORKED OUT EXAMPLES

Normal approximation to B.D.

Example 1: If 10% of the truck drivers on road

are drunk determine the probability that out of 400

drivers randomly checked

a. at most 32

b. more than 49

c. at least 35 but less than 47 drivers are drunk on

the road.

Solution: Here p = probability of a driver drunk

= 10
100

= 0.1 and n = 400 = no. of trials.

Let X = number of truck drivers drunk.

Here X is a binomial random variable

with B.D. = b(x; 400, 0.1). This B.D. can

be approximated by normal distribution

with A.M. = X = np = 400× 10
100

= 40 and

s.d. = σ = √
npq =

&
400× 10

100
× 90

100
= 6.

a. For X = 32, z = X−X
σ

= 31.5−40
6

= − 8.5
6
=

−1.416 sinceX is treated as continuous variable,
values upto and more that 31.5 will be rounded
up to 32 (Fig. 27.34).

P (X < 32)= P (z ≤ −1.416) = 0.5− 0.4222

= 0.0778
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Fig. 27.34

b. Since 49.5 and above are rounded to 50, for X >
49, z = 49.5−40

6
= 1.58 (Fig. 27.35)

P (X > 49)= P (z ≥ 1.58) = 0.5− 0.4429

= 0.0571

Fig. 27.35

c. X ≥ 35 includes values of X upto 34.5 and x <
47 includes values of X upto 46.5 (Fig. 27.36).

Fig. 27.36

z1 =
34.5− 40

6
= −0.916,

z2 =
46.5− 40

6
= 1.083

P (35 ≤ X < 47)= P (−0.916 ≤ z ≤ 1.083)

= 0.3212+ 0.3599 = 0.681.

Example 2: A pair of dice is rolled 180 times. De-

termine the probability that a total of 7 occurs

a. at least 25 times

b. between 33 and 41 times inclusive

c. exactly 30 times.

Solution: Sum 7 occurs in a single throw of a pair

of dice as follows: (1, 6), (6, 1), (2, 5), (5, 2), (3, 4),

(4, 3).

p = probability of 7 occurring = 6
36
= 1

6
, n = 180;

X = number of occurrences of a sum of 7 in a pair

of dice = a binomial random variable.

Treating X as a continuous R.V., B.D. =
b
 
x; 180, 1

6

 
can be approximated by normal

distribution with A.M. = X = np = 180× 1
6
=

30, σ = s.d. = √
npq =

&
180 · 1

6
· 5

6
= 5

a. For X ≥ 25, X includes up to 24.5. Thus

z= 24.5− 30

5
= −1.1

P (X ≥ 25)= P (z ≥ −1.1) = 0.5+ 0.3643

= 0.8643 (Fig. 27.37)

Fig. 27.37

b. P (33 ≤ X ≤ 41) = P (0.5 ≤ z ≤ 2.3)

= 0.4893− 0.1915 = 0.2978 (Fig. 27.38)

since z1 = 32.5−30
5

= 0.5, z2 = 41.5−30
5

= 2.3

Fig. 27.38

c. P (X = 30) = P (29.5 ≤ X ≤ 30.5)

= P (−0.1 ≤ z ≤ 0.1)

= 2(0.0398) = 0.0796 (Fig. 27.39)

since z1 = 29.5−30
5

= −0.1, z2 = 30.5−30
5

= 0.1.
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Fig. 27.39

EXERCISE

Normal approximation of B.D.

1. Determine the probability that by guess-work

a student can correctly answer 25 to 30 ques-

tions in a multiple-choice quiz consisting of 80

questions. Assume that in each question with

four choices, only one choice is correct and

student has no knowledge.

Ans. P (25 ≤ X ≤ 30) = P (1.16 ≤ z ≤ 2.71) =
0.9960− 0.8770 = 0.1196.

Hint: X = np = (80)
 
1
4

 = 20,

σ = √
npq =

&
80 · 1

4
· 3

4
= 3.873

z1 = 24.5−20
3.873

= 1.16, z2 = 30.5−20
3.573

= 2.71.

2. Find the probability that out of 100 patients

a. between 84 and 95 inclusive

b. fewer than 86,

will survive a heart-operation given that the

chances of survival is 0.9.

Ans. a. P (84≤X≤ 95) = P (−2.166≤ z≤ 1.833)

= 0.4850+ 0.4664 = 0.9514

Hint: X = np = (100)(0.9) = 90,

σ = √
npq = √

(100)(0.9)(0.1) = 3

z1 = 83.5−90
3

= −2.1666, z2 = 95.5−90
3

= 1.8333

b. P (X < 86) = P (z1 ≤ −1.5)

= 0.5 −0.4332 = 0.0668

Hint: z1 = 85.5−90
3

= −1.5.

3. Find the probability P that the number of

heads occurring, when a fair coin is tossed 12

times, is between 4 and 7 inclusive by (a) B.D.

(b) normal approximation to B.D.

Ans. a. P =
7 
x=4

b
 
x; 12, 1

2

 = 7 
x=4

xC4

 
1
2

 x  1
2

 12−x
= 495+4096+924+792

4096
= 0.7332

b. P = P (3.5 ≤ X ≤ 7.5) =
P (−1.45 ≤ z ≤ −0.87) =

= 0.4265+ 0.3078 = 0.7343

Hint: X = np = 12 · 1
2
= 6,

σ = √
npq =

&
121

2
· 1

2
= 1.73.

4. The probability that a patient needs an ICU is

0.05 in a hospital with 600 patients. Howmany

ICU’s should be available so that the probabil-

ity of none of the patients of the hospital are

turned away due to lack of ICU’s is more than

0.90.

Ans. P (x < x1) = P (0 < z < z1) > 0.90,

z1 = x1−30

5.3

so z1 = 1.28 or
x1−30

5.3
= z1 > 1.28 so x1 >

36.784 ≈ 37

Hint: X = np = (600)(0.05) = 30,

σ = √
npq = √

(600)(0.5)(0.95) = 5.3.

27.11 ERROR FUNCTION

Error function of x (also known as error integral),

denoted by erf x, is defined as

erf (x) = 2√
π

x 
0

e−t
2
dt (1)

1

–1

–1 1
x

erfx

Fig. 27.40
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It occurs in probability theory, thermodynamics,

heat conduction problems.Erf x is known as a ‘spe-

cial function’, since (1) can not be evaluated in terms

of ‘elementary functions’ by the usual methods of

calculus.

Properties

1. erf (0) = 0

2. erf (∞) = 2√
π

 ∞
0
e−t

2
dt = 2√

π

√
π

2
= 1

3. It is defined for all x, −∞ < x <∞, monoton-

ically increasing in the interval (0,∞); passes

through origin. Asymptotic to y = ±1.

4. It is an odd function since

erf (−x)= 2√
π

 −x

0

e−t
2
dt = 2√

π

 x
0

e−v
2
(−dv)

where v =−t

=− 2√
π

 x
0

e−v
2
dv = −erf (x)

5. erf (−∞) = −erf (∞) = −1

6. erf (x)+ erf (−x) = erf (x)− erf (x) = 0

7. Complementary error function of x, denoted by

erf c(x)= 1− erf (x) = erf (∞)− erf (x)

= 2√
π

 ∞

0

e−t
2
dt − 2√

π

 x
0

e−t
2
dt

erf c(x)= 2√
π

 ∞

x

e−t
2
dt

8. erf c(x)+ erf c(−x) = [1− erf (x)]+ [1−
erf (−x)] = 2− erf (x)+ erf (x) = 2

9. Probability integral (Normal distribution func-

tion) of mathematical statistics is defined as

φ(θ ) = 1√
2π

 θ
−∞ e

−ω2/2dω

put t = ω/
√

2 in the error function (1); then

erf (θ ) = 2√
2π

 √
2θ

0

e−ω
2/2dω

Thus the error function and probability integral

are related by

erf (θ ) = 2φ(
√

2θ )− 1 or

φ(x) = 1
2
+ 1

2
erf
 
x√
2

 
10. Approximate formula (due to C. Hastings Jr.)

erf (x) ≈ 1− (a1p + a2p2 + a3p3)e−x
2

where p = 1
1+0.47047x

, a1 = 0.3480242, a2 =
−0.0958798, a3 = 0.7478556, accurate upto

±0.000025.

NoteThe factor 2√
π
is included in the definition of

error function to normalize it so that erf (∞) = 1

since
 ∞
0
e−t

2
dt =

√
π

2
.

11. P (µ−Kσ ≤ X ≤ µ+Kσ ) = erf
 
K√
2

 
.

Let X denote the measured quantity in a certain
experiment. Then the measurement error is in-
dicated by the probability of an event such as
µ−Kσ ≤ X ≤ µ+Kσ . Thus

P (µ−Kσ ≤ X ≤ µ+Kσ )
= N (µ+Kσ )−N (µ−Kσ )
= ;(K)−;(−K)

= 2;(K)− 1

= erf
 
K√
2

 
using above result 9.

For example, for K = 3, we get

P (µ− 3σ ≤ X ≤ µ+ 3σ ) = 0.977.

Thus, on the average in only 0.3 per cent of the tri-

als, the Gaussian random variable deviates from

its mean by more than ±3 standard deviations.

WORKED OUT EXAMPLES

Example 1: Expand erf (x) in ascending powers

of x.

Solution: By definition

erf (x) = 2√
π

 x
0

e−t
2
dt = 2√

π

 x
0

∞ 
n=0

(−t2)n
n!

dt
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since et =
∞ 
n=0

tn

n!
. Now carrying term by term inte-

gration, we have

erf (x)= 2√
π

! x
0

#
1− t

2

1!
+ t

4

2!
− t

6

3!
+ t

8

4!
+ · · ·
$
dt

"

= 2√
π

!
t− t

3

3
+ t5

5 · 2!−
t7

7 · 3!+
t9

9 · 4!+· · ·
"     
x

t=0

erf (x)= 2√
π

!
x − x

3

3
+ x

5

10
− x

7

42
+ x9

216
− · · ·
"

Example 2: Find d
dx

[erf (ax)].

Solution: From the above result replacing x by ax
we have

erf (ax)= 2√
π

!
ax − a

3x3

3
+ a

5x5

10
− a

7x7

42

+ a
9x9

216
− · · ·
"

Differentiating both sides w.r.t. ‘x’ we get

d

dx
[erf (ax)]= 2√

π

!
a − a3 · x2 + a5 x

4

2!
− a7 x

6

3!

+ a9 x
8

4!
− · · ·
"

= 2a√
π

!
1− a2x2 + (a2x2)2

2!
− (a2x2)3

3!

+ (a2x2)4

4!
− · · ·
"

= 2a√
π
e−a

2x2

Example3: Compute erf (0.5) correct to three dec-

imal places.

Solution: Putting x = 0.5 in example 1, above, we
have

erf (0.5)= 2√
π

!
1

2
−
 

1

2

 3 1

3
+
 

1

2

 5 1

10

−
 

1

2

 7 1

42
+
 

1

2

 9 1

216
− · · ·
"

= 0.922544642

1.77245384
= 0.52049

Example 4: Show that ∞

0

e−x
2−2axdx =

√
π

2
ea

2
[1− erf (a)]

Solution:
 ∞
0
e−x

2−2axdx = ∞
0
e−(x2+2ax+a2) · ea2 dx = ea2  ∞

0
e−(x+a)2dx. Put

x + a = t , so t varies from a to∞ and dx = dt

= ea2
 ∞

a

e−t
2
dt = ea2 ·

√
π

2
erf c(a)

= ea2 ·
√
π

2
[1− erf (a)]

EXERCISE

1. Prove that d
dx

[erf c(ax)] = − 2a√
π
e−a

2x2 .

Hint: d
dx

[erf c(ax)] = d
dx

[1− erf (ax)] =
− d
dx
erf (ax) use W.E. 2., above

2. Compute erf (0.3) correct to three decimal

places.

Ans. 0.3248

Hint: Put x = 0.3248 in W.E. 1.

3. Prove that

(a)
 b
a
e−t

2
dt =

√
π

2
[erf (b)− erf (a)]

(b)
 b
−b e

−t2dt = √
πerf (b)

Hint: (a)
 b
a
=  0

a
+  b

0
=  b

0
−  a

0

(b)
 b
−b =

√
π

2
[erf (b)− erf (−b)] =√

π

2
[erf (b)+ erf (b)]

4. Show that t

0

erf c(ax)dx = t · erf c(at)− e
−a2t2

a
√
π
+ 1

a
√
π

Hint: Integrating by parts

x · erf c(ax)|t0 −
 t

0

x · d(erf c(ax))

Use result in exercise example 1, then

= t · erf (at)+ a√
π
· e−a

2x2

a2

    
0

t
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27.12 THE EXPONENTIAL DISTRIBUTION

Many scientific experiments involve the measure-
ment of the duration of time X between an ini-
tial point of time and the occurrence of some phe-
nomenon of interest. For example X is the life time
of a light bulbwhich is turned on and left until it burns
out. The continuous random variable X having the
probability density function

f (x) =
 
λe−λx if x � 0

0 if x < 0

l

f x( )

x

Exponential density function

Fig. 27.41

is said to have an exponential distribution. Here

the only parameter of the distribution is λ which is

greater than zero. This distribution, also known as the

negative exponential distribution, is a special case of

the gamma distribution (with r = 1). Examples of

random variables modeled as exponential are

a. (inter-arrival) time between two successive job

arrivals

b. duration of telephone calls

c. life time (or time to failure) of a component or a

product

d. service time at a server in a queue

e. time required for repair of a component

The exponential distribution occurs most often

in applications of Reliability Theory and Queuing

Theory because of the memoryless property and re-

lation to the (discrete) Poisson Disribution. Expo-

nential distribution can be obtained from the Pois-

son distribution by considering the inter-arrival times

rather than the number of arrivals.

Mean and Variance

For any r ≥ 0,

E(Xr ) =
 ∞

0

xrf (x)dx =
 ∞

0

xrλe−λxdx

put λx = t, x = t
λ
, dx = 1

λ
dt . Then

E(Xr ) =
 ∞

0

 
t

λ

 r
· λ · e−t · 1

λ
dt = 1

λr

 ∞

0

e−t t r dt

E(Xr ) = &(r + 1)

λr

In particular with r = 0, ∞

0

f (x)dx = &(1) = 1

(i.e., f (x) is a probability density function).

With r = 1, mean = µ = E(X) = &(2)

λ
= 1

λ

with r = 2, variance=σ 2=E(X2)− {E(X)}2= &(3)
λ2

− 1

λ2

σ 2 = 2

λ2
− 1

λ2
= 1

λ2

Note: Both the mean and standard deviation of the

exponential distribution are equal to 1
λ
.

Cumulative Distribution Function

F (x) =
 x
0

f (t)dt =
 x
0

λe−λt dt = λe−λt

−λ

    
x

t=0

F (x) = 1− e−λx for x � 0,

and F (x) = 0 when x < 0

F (x) gives the probability that the “system” will

“die” before x units of time have passed.

Probability Calculations

For any a � 0,

P (X ≥ a)= P (X > a) = 1− F (a) = e−λa

P (a ≤ X ≤ b)= P (a ≤ X < b) = P (a < X < b)

= P (a < X ≤ b) = F (b)− F (a)

= e−λa − e−λb

In table (A22) in appendix, the values of e−t are
tabulated for t = 0.00(0.01)7.99.
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Corollary 1: P
 
X > 1

λ

 = e−λ 1
λ = e−1 = 0.368

< 1
2

Survival Function

It gives the probability that the “system” survives
more than x units of time and is given by

P (X > x) = 1− F (x) =
 
1 if x < 0

e−λx if x ≥ 0

Memoryless or Markov Property

Among all distributions of non-negative continuous

variables, only the exponential distributions have “no

memory” (like the discrete geometric distribution)

which results in analytical tractibility.
For any s > 0, t > 0

P (X > s + t |X > s)= P ({X > s + t} ∩ {X > s})
P (X > s)

= P (X > s + t)
P (X > s)

(1)

When X > s + t then X is also greater than s

i.e., X > s. Since {X > s + t} ∩ {X > s} = {X >
s + t}

Thus the event X > s in the numerator is redun-

dant because both events can occur iff X > s + t .
Now

P (X > s + t |X > s) = e−λ(s+t)

e−λs
= e−λt

P (X > s + t |X > s) = P (X > t) (2)

This memoryless property asserts that the condi-

tional probability of additional waiting time is the

same as the unconditional probability of the original

waiting time. Thus the distribution of additional life-

time is exactly the same as the original distribution

of lifetime, so at each point of time the component

shows no effect of wear. In other words the distribu-

tion of “remaining” lifetime is independent of cur-

rent age. In this sense, the exponential distribution

has “no memory” of the past.
Combining (1) and (2) we have

P (X > s + t)= P (X > s) · P (X > s + t |X > s)
= P (X > s) · P (X > t)

which yields the famous functional equations known
as Cauchy equation.

h(s + t) = h(s)h(t), s > 0, t > 0

Here h(s) = P {X > s}, s > 0.

Example: Supposewhen a person arrives, one tele-

phone booth has just been occupied (engaged) while

another telephoneboothhas beenoccupied since (say

110 minutes) long. Then the probability distribution

of the length of waiting time (to use the phone) will

be the same for either phone booths. Therefore it does

�not matter which phone booth the person descides to

wait!

WORKED OUT EXAMPLES

Example 1: Let themileage (in thousands ofmiles)

of a particular tyre be a random variable X having

the probability density

f (x) =
 

1
20
e−x/20 for x > 0

0 for x ≤ 0

Find the probability that one of these tyres will last

(1) at most 10,000 miles (b) anywhere from 16,000

to 24,000 miles (c) at least 30,000 miles. (d) Find the

mean (e) Find the variance of the given probability

density function.

Solution: (a) Probability that a tyre will last almost
10,000 miles

= P (X ≤ 10) =
 10

0

f (x)dx

=
 10

0

1

20
e−x/20dx

= 1

20
· e−x/20 ·

 −20

1

     10
0

= 1− e− 1
2 = 0.3934

(b) P (16 ≤ X ≤ 24)=
 24

16

f (x)dx

=
 24

16

1

20
e−x/20dx
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= −e− x
20

   24
16
= e− 4

5 − e− 6
5

= 0.148

(c)P (X ≥ 30)=
 ∞

30

f (x)dx

=
 ∞

30

1

20
e−x/20dx = −ex/20

   ∞
30
= e− 3

2

= 0.2231

(d) Mean = µ =
 ∞

−∞
x · f (x)dx

=
 ∞

0

x · 1

20
e−

x
20 dx

=−
 ∞

0

x · d
 
e−

x
20

 
=−xe− x

20 − 20e−
x
20

   ∞
0
= 0− (−20)

µ= 20 = 1

λ

(e) Variance = σ 2 =
 ∞

−∞
(x − µ)2f (x)dx

=
 ∞

−∞
x2f (x)dx − µ2

Consider ∞

−∞
x2f (x)dx =

 ∞

0

x2
1

20
e−

x
20 dx

= −x2e− x
20

   ∞
0
+ 2 · 20 ·

 ∞

0

1

20
· xe−x/20dx

= 0+ 2 · 20 · µ = 2.20.20 = 2.202

Then σ 2 =
 ∞

0

x2f (x)dx − µ2 = 2.202 − 202

= 202 = 1

λ2

Example 2: The length of time for one person to be

served at a cafeteria is a random variable X having

an exponential distributionwith amean of 4minutes.

Find the probability that a person is served in less

than 3 minutes on at least 4 of the next 6 days.

Solution: The probability that a person is served at

a cafeteria in less than 3 minutes is

P (T < 3) = 1− P (T ≥ 3)

Since themeanµ = 1
λ
= 4 or λ = 1

4
, the exponential

distribution is 1
4
e−

x
4 . Now

P (T < 3) = 1− P (T ≥ 3) = 1−
 ∞

3

1

4
e−

t
4 dt

P (T < 3) = 1− 1

4
e−

t
4 ·
 −4

1

     
∞

3

= 1− e− 3
4

Let X represent the number of days on which a per-

son is served in less than 3 minutes. Then using the

binomial distribution, the probability that a person is

served in less than 3 minutes on at least 4 of the next

6 days is

P (X ≥ 4) =
6 
x=4

6Cx(1− e−3/4)x(e−3/4)6−x = 0.3968

EXERCISE

1. Let T be the time (in years) to failure of certain

components of a system. The random variable T

has exponential distribution with mean time to

failure β = 5. If 5 of these components are in

different systems, find the probability that at least

2 are still functioning at the end of 8 years.

Ans. 0.2627

Hint: P (T > 8) = 1
5

 ∞
8
e−t/5dt

= e−8/5  0.2, P (X ≥ 2) =
∞ 
x=2

b(x; 5, 0.2) =

1−
1 
x=0

b(x, 5, 0.2) = 1− 0.7373

2. If a random variableX has the exponential distri-

bution with mean µ = 1
λ
= 1

2
calculate the prob-

abilities that (a) X will lie between 1 and 3 (b) X

is greater than 0.5 (c) X is at most 4.

Ans. (a) 0.133 (b) 0.368 (c) 0.98168

Hint: PDF f (x) = 2e−2x (a)
 3

1
2e−2xdx =

e−2 − e−6

(b)
 ∞
0.5

2e−2xdx = e−1 (c)
 4

0
2e−2xdx = 1−

e−4

3. The life (in years) of a certain electrical switch has

an exponential distribution with an average life

of 1
λ
= 2. If 100 of these switches are installed in
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different systems, find the probability that at most

30 fail during the first year.

Hint: P (T > 1) =  ∞
1

1
2
e−

t
2 dt = +e− 1

2 =
0.606

Ans. P (X ≤ 30) =
30 
x=0

b(x, 2, 0.606) =
30 
x=0

100Cx(0.606)
x (0.39346)100−x

4. Suppose the life length X (in hours) of a fuse has

exponential distribution with mean 1
λ
. Fuses are

manufactured by two different processes. Process

I yields an expected life length of 100 hours and

process II yields an expected life length of 150

hours. Cost of production of a fuse by process I is

Rs. C while by the Process II it is Rs 2C. A fine of

Rs K is levied if a fuse lasts less than 200 hours.

Determine which process should be preferred?

Ans. Prefer Process I if C > 0.13K

Hint: c1 = c if X > 200

= c + k if X ≤ 200

E(c1) = c · P (X > 200)+ (c + k)P (X ≤ 200)

= c · e− 1
100

·200 + (c + k)(1− e− 1
100

·200)

= k(1− e−2)+ c

E(c2) = k(1− e−4/3)+ 2c, E(c2)− E(c1) =
c − 0.13k

5. Suppose Nt be a discrete random variable denot-

ing the number of arrivals in time interval (0, t].

Let X be the time of the next arrival, so X is

the elapsed time between the occurrences of two

successive events. Assuming that Nt is Poisson

distributed with parameter λt , show that X is ex-

ponentially distributed.

Here λ is the expected numbers of events oc-

curring in one unit of time.

Ans. P (X > t) = P (Nt = 0) = e−λt (λt)0

0
= e−λt

6. If the average rate of job submission is

λ = 0.1 jobs/second, find the probability that

an interval of 10 seconds elapses without job sub-

mission.

Ans. P (X ≥ 10) =  ∞
10

0.1e0.1t dt = e−1 = 0.368

Hint: Assume that the number of arrivals/unit

time is poisson distributed and the inter arrival

time X is exponentially distributed with parame-

ter λ.

7. Let themileage (in thousands ofmiles) of a certain

radial tyre is a random variable with exponential

distribution with mean 40,000 miles. Determine

the probability that the tyre will last (a) at least

20,000 km (b) at most 30,000 km.

Ans. (a) P (X ≥ 20, 000) = e−0.5 = 0.6065

(b) P (X ≤ 30, 0001 = 1− e−0.75 = 0.5270

8. The amount of time (in hours) required to repair

a T.V. is exponentially distributed with mean 1
2
.

Find the (a) probability that the repair time ex-

ceeds 2 hours (b) the conditional probability that

repair takes at least 10 hours given that already 9

hours have been spent repairing the TV.

Ans. (a) P (X > 2) = e−1 = 0.3679

(b) P (X ≥ 10|X > 9) = P (X > 1) = e−0.5 =
0.6065

(because of the memoryless property).

9. The duration of time X in seconds between

presses of the white rat on a bar, which are pe-

riodically conditioned, has an exponential distri-

bution with parameter λ = 0.20. Find the proba-

bility that the duration is more than one second

but less than 3 seconds (b) more than 3 seconds.

Ans. (a) P (1 ≤ X ≤ 3) = e−0.2(1) − e−(0.2)3 =
0.819− 0.549 = 0.270

(b) P (X > 3) = e−0.2(3) = 0.549

10. The time X (seconds) that it takes a certain on-

line computer terminal (the elapsed time between

the end of user’s inquiry and the beginning of

the system’s response to that inquiry) has an ex-

ponential distribution with expected time 20 sec-

onds. Compute the probabilities (a) P (X ≤ 30)

(b) P (X ≥ 20) (c) P (20 ≤ X ≤ 30) (d) For what

value of t is P (X ≤ t) = 0.5 (i.e., t is the fiftieth

percentile of the distribution)

Ans. (a) 0.777 (b) 0.368 (c) 0.145 (d) 13.863
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27.13 THE GAMMA DISTRIBUTION

Consider a system consisting of one original compo-

nent and (r − 1) spare components such that when

the original component fails, one of the (r − 1) spare

components is used. If this component fails, one of

the (r − 2) spare components is used. System fails

only when the original component and all the (r − 1)

spare components fail. Assume that the lifetimes

X1, X2, . . ., Xr of the r duplicates of the essential

components have infinite lifetimes (except for the

original component). Suppose each of the random

variablesX1, X2, . . . , Xr have the same exponential

distribution with parameter λ and are probabilisti-

cally independent. Then the lifetime (time until fail-

ure) of the entire system is the sumY =
r 
i=1

Xi having

the gamma distribution with density function

f (y) =
 
λryr−1e−λy

&(r)
, if y ≥ 0

0, if y < 0
(1)

(1) is a skewed distribution.

The two parameters of (1) are the positive numbers

λ and r (although r need not be an integer). If r

is a positive integer, then gamma distribution (1) is

known as Erlang distribution. Introducing V = λy,
(1) reduces to

f (v) = 1

λ
f
 v
λ

 
= 1

λ

 
λr
 v
λ

 r−1

· e
−v

&(r)

 

=
 
vr−1e−v
&(r)

if v ≥ 0

0 if v < 0
(2)

The probability density function of the random vari-

ableV given by (2) is known as the “standard gamma

function” with parameter r (and is independent of λ).

When r = 1, the density function (2) reduces to the

density function of exponential distribution with the

parameter λ = 1. For large r (say r ≥ 50) (2) resem-

bles a normal distribution with mean and variance

approximately equal to r . The gamma distribution

with parameter λ = 1
2
and r = ν

2
(where ν is a pos-

itive integer) reduces to the chi-squared distribution

with ν degrees of freedom credited to Karl Pearson

(1857–1936) and F.R. Helmert (1843–1917).

The incomplete gamma function defined by

FV (t) =
 t
0
vr−1e−v
&(r)

dv = Ir (t), t ≥ 0 (3)

is tabulated in the tables of the appendix A23 to A28

for r = 1(1)5, t = 0.2(0.2)8.0(0.5)15.0 and for

r = 6(1)10, t = 1.0(0.2)8.0(0.5)17.0.

Now

P (Y ≥ a) = P (Y > a) = 1− F (a) = 1− Ir (λa)
and

P (a ≤ Y ≤ b) = F (b)− F (a) = Ir (λb)− Ir (λa)

Moments of the Gamma Distribution

For any k ≥ 0,

E(Y k) = E
 
V k

λk

 
= 1

λk
E(V k)

= 1

λk

 ∞

0

vk ·
 
vr−1e−v

&(r)

 
dv

= 1

λk&(r)

 ∞

0

e−vvk+r−1dv

Then E(Y k) = &(r + k)
λk&(r)

(4)

For k = 0 in (4) we have
 ∞
0
f (y)dy = 1 so f (y) is

a probability density function.

For k = 1, in (4) we get the mean = µ = E(Y ) =
&(r + 1)

λ&(r)
= r&(r)

λ&(r)
.

So µ = r
λ
. (5)

With k = 2 in (4), we get

variance = σ 2 = E(Y 2)− {E(Y )}2

= &(r + 2)

λ2&(r)
− r

2

λ2

σ 2 = r(r + 1)&(r)

λ2&(r)
− r

2

λ2
= r

λ2
(6)

Thus the parameter r and λ are determined from (5)

and (6) as

λ = µ

σ 2
, r = µ2

σ 2
(7)
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Relation Between Exponential, Gamma and

Poisson Distributions

Suppose the lifetimes of a batch of components each

have exponential distribution with parameter λ. Sta-

tring at time t = 0, the first component is used until

its extinction (until it “dies” or “fails”). Replace the

component by another instantaneously and wait unit

this new component also fails. Continuing this Pro-

cess, stop at a given time t . Then the number of failed

components L is a random variable having the Pois-

son distribution with λ∗ = λt . Also the lifetime of

the entire process Y =
k 
i=1

Xi follows gamma distri-

bution with parameters λ and k.

Let X1, X2, . . . , Xk be the lifetimes of the first k

components that have failed. Assume that each life-

time Xi has an exponential distribution with param-

eter λ and are probabilistically independent. Recall

that, then Y =
k 
i=1

Xi has a gamma distribution with

parameters λ and k. If X1 +X2 + . . .+Xk (total

lifetime of the process) ≤ t then in this case at least

k components have all failed, (one after the other)

before the time is up.

Now probability of the event that at least k com-

ponents have failed at the time of termination of the

experiment is given by

P (L ≥ k) = P {Y ≤ t} = Ik(λt)

=
 λt

0

vk−1e−v

&(k)
dv

Integrating by parts, we have

= vk−1

&(k)
·
 
e−v

−1

     
λt

v=0

+
 λt

0

(k − 1)vk−2 · e−v
&(k)

dv

= − (λt)k−1e−λt

(k − 1)!
+
 λt

0

vk−2 · e−v
&(k − 1)

dv.

Integrating by parts (k − 1) more times,

P (L ≥ k) = −
k−1 
i=1

(λt)ie−λt

i!
+
 λt

0

e−v

&(1)
dv

But &(1) = 1 and
 λt
0
e−vdv = e−v

−1

   λt
0
= 1− e−λt .

Thus P (L ≥ k) = 1−
k−1 
i=0

(λt)ie−λt

i!

But

P (L = k) = P (L ≥ k)− P (L ≥ k + 1)

=
!
1−

k−1 
i=0

(λt)ie−λt

i!

"
−
!
1−

k 
i=0

(λt)ie−λt

i!

"

P (L = k) = (λt)ke−λt

k!
= λ∗k · e−λ∗

k!
, λ∗ = λt

Thus the probability distribution of the discrete

randomvariableL is a Poisson (discrete) distribution

with parameter λ∗ = λt .
The cumulative distribution of the gamma distri-

bution of Y can be calculated in terms of tabulated

cumulative distribution of the Poisson distribution

from

F (t) = P (L ≥ k) = P (Y ≤ t) = 1−
k−1 
i=0

(λt)ie−λt

i!

WORKED OUT EXAMPLES

Example 1: The daily consumption of electric

power (in millions if kW-hours) in a certain city is a

random variable X having the probability density

f (x) =
 

1
9
xe−x/3 if x > 0

0 if x ≤ 0

Find the probability that the power supply is inade-

quate on any given day if the daily capacity of the

power plant is 12 million kW hours.

Solution: Observe that this is gamma distribu-

tion with r = 2 and λ = 1
3
. The power supply

is inadequate when X > 12. Now P (X > 12) =
1− F (12) = 1− I2

 
1

3
12

 
= 1− I2(4). Using ta-

ble A23 to A28, we get

P (X > 12) = 1− 0.90892 = 0.09108

Example 2: The lifetime X (in months) of a com-

puter has a gamma distribution withmean 24months

and standard deviation 12 months. Find the proba-

bility that the computer will

(a) last between 12 and 24 months.
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(b) last at most 24 months.

(c) Determine the median lifetime of X.

(d) suppose that the testwill actually be terminated

after t months. Determine the value of t such that

only one-half of 1% of all computers would still be

functioning at termination.

Solution: Here µ = 24, σ = 12. Then from (7)

λ = 24

122
= 1

6
, r =

 µ
σ

 2
=
 

24

12

 2

= 4

(a) P (12 < X < 24) = F (24)− F (12)

= I4
 

1

6
· 24
 
− I4
 

1

6
· 12
 

= I4(4)− I4(2)
Using table A23 to A28 we get

P (12 < X < 24) = 0.56653− 0.14288 =
0.42365.

(b) P (X ≤ 24) = I4
 
1
6
· 24 = I4(4) = 0.56653

(c) median x̂ is such that P (X ≤ x̂) = 1
2

Then I4
 
x̂
6

 = 0.5. From table (see entry in the table

A23 to A28) we get x̂
6
= 4) or x̂ = 24 months

(d) At the termination time t , only one-half of 1%

computers are still functioning. So

P (X ≤ t) = 1− 1

2
(0.01) = 0.995

But P (X ≤ t) = I4
 
1
6
t̂
 = 0.995 (given). From

table A23 to A28, we have I4(11) = 0.995. There-

fore t̂
6
= 11 or t̂ = 66 months.

EXERCISE

1. Suppose the reaction time X has a standard

gamma distribution with r = 2. Find (a) P (3 ≤
X ≤ 5) (b) P (X > 4).

Ans. (a) I2(5)− I2(3) = 0.95957− 0.80085 =
0.15872 (b) P (X > 4) = 1− P (X ≤ 4) =
1− I2(4) = 1− 0.90842 = 0.09158

2. Suppose that the time (in hours) taken by a home-

owner to mow his lawns is a random variableX

having a gamma distribution with parameters r =
2 and λ = 2. Find the probability that it takes (a)

at most 1 hour (b) at least 2 hours (c) between 0.5

and 1.5 hours to mow the lawn.

Ans. (a) 0.594 (b) 0.092 (c) 0.537

3. The survival time X (in weeks) of a male mouse

exposed to radiation has a gamma distribution

with r = 8 and λ = 1
15

. Find the probability that

the mouse survives (a) between 60 and 120 weeks

(b) at least 30 week. Find (c) mean (d) variance

of X.

Ans. (a)P (60 ≤ X ≤ 120) = F  120
15
, 8
 − F  60

15
, 8
 

= I8(8)− I8(4) = 0.547− 0.051 = 0.496

(b) P (X ≥ 30) = 1− P (X < 30) =
1− F  30

15
, 8
 = 1− 0.00110 = 0.9989

4. If Y has gamma distribution with λ = 0.40 and

r = 5, find (a) P (Y > 30) (b) P (15 ≤ Y ≤ 20)

Ans. (a) 1− I5(12) = 1− 0.9924 = 0.0076

(b) I5(8)− I5(6) = 0.90037− 0.71494 =
0.18543

5. If a random variable X has the gamma distribu-

tion with r = 2 and λ = 1
2
find (a) the mean (b)

standard deviation (c) the probability that X will

take a value less than 4.

Ans. (a) 4 (b) 2.828 (c) 0.5940

6. The gross sales X in thousands of rupees is a

random variable having gamma distribution with

λ = 1
2
and r = 80000

√
n where n is the number

of employees in the company. If the sales cost

is Rs. 8000 per employee, how many employees

should the company employ to maximise the ex-

pected profit.

Ans. n = 100,

Hint:µ = r
λ
= 160000

√
n, y = profit = total ex-

pected sales − total cost = 160000
√
n− 8000n,

dy

dn
= 0 for n = 100.

d2y

dn2
= −40000

n3/2
< 0

27.14 THE WEIBULL DISTRIBUTION

Lifetimes, waiting times, learning times, travelling

times, duration of epidemics are some of the im-

portant examples of non-negative random variables

whose variability can be explained in many cases

by exponential and gamma distributions. However

in certain cases Weibull distribution provides good

probability model for describing “length of life” of

objects having the ‘weakest link’ property. An object,
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composed of a large number of separate parts, put

under stress is said to have the weakest link property

if the lifetime of the object is equal to the minimum

lifetime of any of its parts.

Example: A chain is as strong as its weakest link.

The Weibull distribution was introduced in 1939 by

the Swedish physicist Waloddi Weibull and is given

by probability density function

f (x) =
 
β
α

 
x−ν
α

 β−1
exp
 
−  x−ν

α

 β 
if x ≥ ν

0 if x < ν

(3)

The three constants β > 0, α > 0 and ν ≥ 0 are

the parameters of the distribution. The smallest pos-

sible value of X is given by ν. The constant β de-

termines the shape of the density function (1). When

β = 1 and ν = 0, theWeibull distribution (1) reduces

to the exponential distribution with the parameter

λ = 1
α
. If X has a Weibull distribution with param-

eters α, β, ν then Y =
 

(X−ν)
α

 β
has an exponential

distribution with the parameter λ = 1.

Since X = αY 1/β + ν so dX
dY
= α

β
Y

1
β
−1

and

f (X) = β

α
Y (β−1)/βe−Y . Then the probability density

function of Y is

f (y)= f (x)
dx

dy
= β

α
y
β−1
β · e−y · α

β
y

1
β
−1

=
 
e−y if y ≥ 0

0 if y < 0

which is an exponential distribution with parameter

λ = 1.

The cumulative distribution of X is

F (x) = P (X ≤ x) =
 

1− exp
 
−  x−ν

α

 β 
if x ≥ ν

0 if x < ν

(2)

Probabilites are calculated using F (x).

Mean and Variance

Mean = µ = E(X) = E(αY
1
β + ν) = αE(Y

1
β )+ ν

Since E(Xr ) = &(r+1)

λr
, with r = 1

β
and λ = 1,

Mean = µ =
α&
 

1
β
+ 1
 
+ ν

1
(3)

Consider

E(X2)=E
# 
αY

1
β + ν

 2
$
=E(α2Y 2/β+ν2+2ανY

1
β )

= α2E(Y 2/β )+ 2ναE(Y 1/β )+ ν2

Now with r = 2
β

and λ = 1, we get

Variance = σ 2 = E(X2)− {E(X)}2

=

α2

&
 

2
β
+ 1
 

12
+ 2να

&
 

1
β
+ 1
 

1
+ ν2

−

−
 
α&

 
1

β
· 1
 
+ ν
 2

σ 2 = α2

 
&

 
1+ 2

β

 
−
 
&

 
1+ 1

β

  2+
(4)

Median: P (X ≤ x) = F (x) = 1
2
or

1− exp
 
−  x−ν

α

 β = 1
2
. Solving x = α(.693) 1

β

+ν
Observe that variance depends upon α and β but

independent of ν.

The survival function is given by

1− F (x) =
 

1 if x < ν

exp
 
−  x−ν

α

 β 
if x ≥ ν (5)

Exponential distribution is a special case of both

the gamma and Weibull distributions.

Note that gamma distribution with λ and r = 1 is

an exponential distribution with parameter λ. Simi-

larly the Weibull distribution with α = 1
λ
, β = 1 and

ν = 0 is an exponential distribution with parameter

λ. Thus the gammaandWeibull distributions are gen-

eralization of the exponential distribution. However

gamma distribution with r  = 1 is not a Weibull dis-

tribution. Also Weibull distributions with β  = 1 or

ν  = 0 is not gamma distribution.
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With ν = 0 the above results takes the following

form:
The Weibull distribution is

f (x) =


 β

αβ
xβ−1e

− xβ
αβ , if x ≥ 0

0, if x < 0

put α∗ = α−β(or α = (α∗)−
1
β ) then

f (x) =
 
α∗βe−α

∗xβ · xβ−1, if x ≥ 0

0, if x < 0
(6)

The cumulative distribution is

F (x) =
 
1− e−α∗xβ , if x ≥ 0

0, if x < 0
(7)

Mean : µ = (α∗)−
1
β &

 
1

β
+ 1

 
(8)

Variance :σ 2= (α∗)
−2
β

 
&

 
1+ 2

β

 
−
 
&

 
1+ 1

β

  2+

Median : x̂ = α∗
− 1
β
(0.693)

1
β =
 

0.693

α∗

 1
β

(10)

The Weibull Failure Law

The (instantaneous) failure rate Z (also known as
“hazard function”) associated with the random vari-
able T is given by

Z(t) = f (t)

1− F (t)

where f (t) andF (t) are the probability density func-

tion and cumulative distribution. Z(t) is also known

asmortality curve, life characteristic or lambda char-

acteristic.
Suppose the life length T (or time to failure) of a

component has the Weibull distribution

f (t) = α∗βe−α∗tβ

with α∗ and β as parameters and consequently has

the cumulative distribution F (t) = 1− e−α∗tβ , then
the Weibull failure law is given by

Z(t)= f (t)

1− F (t)
= α∗βe−α

∗tβ · tβ−1

e−α∗tβ

Z(t)= α∗βtβ−1 (11)

Here the failure rate is proportional to t (unlike the

only exponential distributionwhose exponential fail-

ure law where Z(t), the failure rate is constant).

WORKED OUT EXAMPLES

Example: Suppose the life time X (in hours)

of a semiconductor is a random variable hav-

ing the Weibull distribution with parameters. α∗ =
(200)−2.5, β = 2.5, ν = 0. Determine the probabil-

ity that the lifetime of the semiconductor is (a) at

most 200, (b) less than 200, (c) more than 300, (d)

between 100 and 200 hours. Find (e) the mean (f)

variance (g) median of life time X.

Solution: Recall that the cumulative distribution
with α∗ = (200)−2.5, β = 2.5 is

F (x) = P (X ≤ x) = 1− e−α∗xβ = 1− e−
 
x

200

 2.5
(a) Probability that life timeX of the semiconductor
is at most 200 hours

= P (X ≤ 200) = F (200)

= 1− e−
 

200
200

 2.5
= 1− e−1 = 1− 0.36787 = 0.632

(b) P (X < 200) = P (X ≤ 200) = 0.632

(c) P (X > 300) = 1− F (300) = e−
 

200
200

 2.5
=

e
−
 

3
2

 2.5
= 0.0635

(d) P (100 < X < 200) = F (200)− F (100)

=
!
1− e−

 
200
200

 2.5"
−
!
1− e−

 
100
200

 2.5"

= e−
 

1
2

 2.5
− e−1 = 0.83796− 0.36789

= 0.4700

(e) Mean: µ = (α∗)−
1
β &
 

1
β
+ 1
 
= &

 
1

2.5
+1
 

200
=

200 · &  2
5
+ 1
 = 400

5
&
 
2
5

 = 80 · &(2/5)
(f) Variance = (α∗)−2/β

 
&
 
1+ 2

β

 
−
 
&
 
1+ 1

β

  2 
=

=  1
200

 −2
 
&
 
1+ 4

5

 − ,&  1+ 2
5

 -2 
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= 40000
 

4
5
· &  4

5

 − , 2
5
&
 
2
5

 -2 
(g) Median: x̂ middlemost value such that P (X ≤
x̂) = 1

2
. Then

F (x̂) = 1− e−α∗x̂β = 1

2

So

x̂ =median = (α∗)−
1
β (.693)

1
β

= 200(.693)
1

2.5 = 200(.693)
2
5

= 200(.86356) = 172.7123

EXERCISE

1. Suppose the service life, in years, of a system is

a random variable having a Weibull distribution

withα∗ = 1
2
,β = 2. Find the probability that such

a system will still be functioning after 2 years.

Ans. P (X ≥ 2) = 1− F (2) = e−α∗xβ = e− 1
2
(2)2 =

e−2

2. If the lifetime X of a hearing aid battery has

Weibull distribution with α∗ = 0.1 and β = 0.5

determine the probability that such a battery

(a) will function for more than 300 hours (b) will

not last 100 hours. Find (c) mean (d) variance (e)

median of X.

Ans. (a) P (X ≥ 300) = e−0.1(300)0.5 = 0.177

(b) P (X < 100) = 1− e−0.1(100)0.5 = 0.6321

(c)µ = mean = (0.1)−2&
 
1+ 1

0.5

 = 200 hours

(d) Variance = (0.1)−4[&(1+ 4)− &2(3)] =
20(.1)(−4) = 200000 hours

(e) median = (0.1)−2(.693)2 = 100(0.480) = 48

hours

3. Suppose the tensile strength X has Weibull dis-

tribution with α∗ = (100)−20, β = 20. Find (a)

P (X ≤ 105) (b) P (98 ≤ X ≤ 102)

Ans. (a) 1− e−(105/100)20 = 1− 0.070 = 0.930

(b) F (102)− F (98) = e−(.98)20 − e(1.02)20 =
.513− .226 = 0.287

4. Let X, the corrosion weight loss of an alloy

follows Weibull distribution with α = 4, β = 2,

ν = 3. Find (a) P (X > 3.5) (b) P (7 ≤ X ≤ 9).

Ans. (a) e−0.156 = 0.985 (b) e−1 − e−2.25 = 0.89−
0.632 = 0.263

Hint: Use (5): on page 27.51 F (x) = 1−
exp
 
x−3
4

 2
5. Suppose each of the 36 transistors in a system has

life length, in years, having the Weibull distribu-

tion with α = 25, β = 2. Find the probability that

no transistor will have to be replaced during the

first 2 months of use assuming that the transistors

are functionally independent.

Hint:

P

 
X >

2

12

 
= e−25

 
1
6

 2
= e−25/36

Ans. P (no transistor replaced) =
 
e−25/36

 36
= e−25 = (1.38879)× 10−11

6. If the probability that the life lengthX (in years) of

a computer exceeds 5 years is e−0.25, determine α

of the Weibull distribution ofX with β = 2. Find

the mean and variance of X.

Ans. α = 1
100

, µ = 5
√
π , σ 2 = 100

 
1− π

4

 
Hint: P (X > 5) = e−25α = e−0.25 (given)

7. Suppose the time to failure X in hours of a com-

ponent is modeled by a Weibull distribution with

parameter β = 2. If 15% of the components that

have lasted 90 hours fail before 100 hours, find

the parameter α.

Ans. α = 0.00008554 = (− ln 0.85/1900)

Hint:

F (x) = 1− e−αxβ = 1− e−αx2

P (X < 100|X > 90)= P (90 < X < 100)

P (X > 90)

= F (100)− F (90)

1− F (90)

= e
−α(90)2 − e−α(100)2

e−α(90)2

= 0.15 (given)
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Sampling Distribution

INTRODUCTION

Sampling distribution of a statistic is the theoretical

probability distribution of the statistic which is easy

to understand and is used in inferential or inductive

statistics. A statistic is a random variable since its

value depends on observed sample values which will

differ from sample to sample. Whereas its particular

value depends on a given set of sample values . Thus

determination of sampling distribution of a statistic

is essentially a mathematical problem.
Suppose we wish to compare the mean I.Q of stu-

dents of one university with another university or to

compare proportion of alcoholics among men with

that among women or compare the variances of life-

times of T.V. produced by one company with the

variance of another company. In such statistical in-

vestigation of the study of two (or more) populations

we compare their respective parameters.

The nearness of two quantities can be measured

as follows. If the difference of the two quantities is

close to zero, then the two quantities are very close

to each other. Alternatively when the ratio of the two

quantities is nearly equal to zero, then the two quan-

tities are near to each other, otherwise they are far

apart. By taking two random samples one from each

population, we compare the corresponding sample

analogues.
Statistical methods are used to study a process by

analyzing the data, discrete or continuous, recorded

as either numerical value or a descriptive represen-

tation to improve the “quality” of the process. Thus

statistician is mainly concerned with the analysis of

data about the characteristics of persons or objects

or observations.

28.1 POPULATION AND SAMPLE

Population is the set or collection or totality of ob-

jects, animate or inanimate, actual or hypothetical,

under study. Thus mainly population consists of sets

of numbers,measurements or observationswhich are

of interest.

Size

Size of the population N is the number of objects or

observations in the population.

Population is said to be finite or infinite depending

on the size N being finite or infinite.

Since it is impracticable or uneconomical or time

consuming to study the entire population, a finite

subset of the population known as sample is studied.

Size of the sample is denoted by n. Sampling is the

process of drawing samples from a given population.

Examples: (i) Population of India, Population of

A.P. Estate (sample) (ii) Engineering colleges recog-

nised by AICTE, Engineering colleges affiliated to

JNTU (sample) (iii) Cars produced in India, Matiz

cars (sample) (iv) Healthcare expenditure by Central

Govt., Expenditure of A.P. Govt. (sample), Expendi-

ture by district (sub sample), Expenditure in a district

hospital (sub-sample) etc. (v) Number of software

specialists by 2020.

Large sampling

If n ≥ 30, the sampling is said to be large sampling.

28.1
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Small sampling

If n < 30, the sampling is said to be small sam-

pling or exact sampling.

Statistical Inference

Statistical inference or inductive statistics deals with

the methods of drawing (arriving at) valid or logical

generalizations and predictions about the population

using the information contained in the sample alone,

with an indication of the accuracy of such inferences.

Parameters

Statistical measures or constants obtained from the

population are known as population parameters or

simply parameters.

Example: Population mean, population variance.

Similarly, statistical quantities computed from sam-

ple observations are known as sample statistics or

briefly “statistics”.

Thus parameters refer to population while statis-

tics refer to sample.

Examples: sample mean, sample variance etc.

Notation

µ, σ, p represent the population mean, population

standard deviation, population proportion. Similarly,

X, s, P denote sample mean, sample s.d., sample

proportion.

Population f(x)

Population f (x) is a population whose probability

distribution is f (x).

Example: If f (x) is binomial, Poisson or normal,

then the corresponding population is known as

binomial population, Poisson population or normal

population.

Since the samples must be representative of the

population, sampling should be random.

Random sampling is one in which each member

of the population has equal chances or probability of

being included in the sample.

In sampling with replacement, each member

of the population may be chosen more than once,

since the member is replaced in the population.

Thus sampling from finite population with

replacement can be considered theoretically as sam-

pling from infinite population.Whereas, in sampling

without replacement, an element of the popula-

tion can not be chosen more than once, as it is not

replaced.

Statistic

Statistic is a real valued function of the random sam-

ple. So statistic is a function of one or more ran-

dom variables not involving any unknown parame-

ter. Thus statistic is a function of samples observa-

tions only and is itself a random variable. Therefore

a statistic must have a probability distribution.
Sample mean and sample variance are two impor-

tant statisticswhich aremeasures of a randomsample
X1, X2, . . . Xn of size n.

Sample mean = X =

n�
i=1

Xi

n

(measure of central tendency)

Sample Variance

= S2 =

n�
i=1

(Xi −X
2
)

n− 1
= n

�
X2
i − (

�
Xi )

2

n(n− 1)

(measure of variability of data about the mean).

Sample standard deviation is the positive square

root of the sample variance.

Degrees of Freedom (dof) of a statistic is a positive

integer, denoted by ν, equals to n− k where n is the

number of independent observations of the random

sample and k is the number of population parameters

which are calculated using the sample data. Thus dof

ν = n− k is the difference betweenn the sample size

and k the number of independent constraints imposed

on the observations in the sample.

28.2 SAMPLING DISTRIBUTION

Draw all possible samples of size n, from a given
finite population of size N. Then the total number
of all possible samples each of the same size n,
which can be drawn from the population is given
by NCn = N !

n!(N−n)! = k. Compute a statistic S (such

as the mean, s.d., median, mode etc.) for each of
these sample using the sample data x1, x2, . . . , xn by
S = S(x1, x2, x3, . . . , xn)
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Sample number 1 2 3 . . . k

Statistic S S1 S2 S3 . . . Sk

Sampling distribution (S.D.) of the statistic is

the set of values {S1, S2, . . . , Sk} of the statistic S

obtained one for each sample. Thus sampling distri-

bution describes how a statistic S will vary from one

sample to the other of the same size. Although all the

k samples are drawn from the given population, the

members included in different samples are different.

The difference in the value of the statistics, attributed

to chance, is known as sampling fluctuations.

When the number of samples (each of the same

size n) is infinitely large (i.e., sampling without

replacement) then the probability distribution of the

statistic is the sampling distribution of the statistic.

If the statistic S is mean, then the corresponding

distribution of the statistics is known as sampling dis-

tribution of means. Thus if S is variance, proportion

or medians etc., the associated distribution is known

as sampling distribution of variances, sampling dis-

tribution of proportions etc. Now for each of these

sampling distributions, the statistics mean, variance

etc., can be computed as follows:

Mean of the sampling distribution of S = S =
1
k

k�
i=1

Si variance of S = 1
k

k�
i=1

(Si − S)2

Thus we can have mean of the sampling distribu-

tion of means, variance of the sampling distribution

of means, variance of the sampling distribution of

variances etc.

Standard Error (S.E.)

Standard Error (S.E.) is the standard deviation of the

sampling distribution of a statistic S. It gives an index

of the precision of the estimate of the parameters. As

the sample size n increases, S.E. decreases. Standard

error plays an important role in large sample theory

and forms the basis in tests of hypothesis.

Sampling distribution of statistics helps to learn

information about the corresponding population

parameters.

28.3 SAMPLING DISTRIBUTION OF

MEANS: (σ KNOWN)

Sampling distribution of means (S.D.M.) X is the

probability distribution of X.

Finite Population

Consider a finite population of size N with mean µ
and standard deviation σ . Draw all possible samples
of sizewithout replacement from this population. Let
µ

X
and σ

X
denote the mean and standard deviation

of the sampling distribution of means. SupposeN >
n. Then

µ
X
= µ and

σ
X
= σ√

N

�
N − n

N − 1

Here N−n
N−1 is known as finite population correction

factor.

Infinite Population

Suppose the samples are drawn from an infinite pop-
ulation or sampling is done with replacement then

µ
X
= µ and

σ
X
= σ√

n
.

Standard error of mean, σ
X
= σ√

n
, measure the reli-

ability of the mean as an estimate of the population
mean µ.

Standardized sample mean, Z = X − µ

σ/
√
n

Non-normal Population (Large Sample)

Consider a population with unknown (non-normal)

distribution. Let the population mean µ and popu-

lation variance σ be both finite. Let the population

be finite or infinite. In case the population is finite

assume that the population sizeN is at least twice the

sample size n. Draw all possible samples of size n.

Then the sampling distribution ofX is approximately

normally distributed with mean µ
X
= µ and vari-

ance σ 2

X
= σ 2/n provided the sample size is large

(i.e., n ≥ 30).

Central Limit Theorem

Whenever n is large, the sampling distribution of X

is approximately (nearly) normal with mean µ and

variance σ 2/n regardless of the form of the popula-

tion distribution. This is established by central limit

theorem stated below (without proof).

Theorem: If X is the mean of a sample of size
n drawn from a population with mean µ and finite
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variance σ 2 then the standardized sample mean

Z = X − µ

σ/
√
n

is a random variable whose distribution function

approaches that of the standard normal distribution

N (Z; 0, 1) as n→∞.

Normal Population (Small Sample)

Sampling distribution of X is normally distributed

even for small samples of size n < 30 provided sam-

pling is from normal population.

WORKED OUT EXAMPLES

Sampling distribution of means

Example 1: A population consists of four num-

bers 2, 3, 4, 5. Consider all possible distinct samples

of size two with replacment. Find (a) the popula-

tionmean (b) the population standard deviation (s.d.)

(c) the sampling distribution of means (d) the mean

of the S.D. of means (e) s.d. of S.D. of means. Verify

(c) and (e) directly from (a) and (b) by use of suitable

formulae.

Solution:

a. Mean of population

µ = 2+ 3+ 4+ 5

4
= 14

4
= 3.5

b. s.d. of population

σ =
�
(2− 3.5)2 + (3− 3.5)2 + (4− 3.5)2 + (5− 3.5)2

4

σ =
�
(1.5)2 + (0.5)2 + (0.5)2 + (1.5)2

4

=
�
5

4
=
√
1.25 = 1.118033

c. Sampling with replacement (infinite population):
The total number of samples with replacement
is Nn = 42 = 16. Here N = population size and
n = sample size. Listing all possible samples of
size 2 frompopulation 2, 3, 4, 5with replacement,
we get 16 samples:

(2, 2) (2, 3) (2, 4) (2, 5)

(3, 2) (3, 3) (3, 4) (3, 5)

(4, 2) (4, 3) (4, 4) (4, 5)

(5, 2) (5, 3) (5, 4) (5, 5)

Now compute the statistic the arithmeticmean for

each of these 16 samples.

The set of 16 means X of these 16 samples,
gives rise to the distribution of means of the sam-
ples known as sampling distribution of means
(S.D.M.):

2 2.5 3 3.5

2.5 3 3.5 4

3 3.5 4 4.5

3.5 4 4.5 5

This S.D.M. can also be arranged in the form of
frequency distribution

Sample mean: Xi 2 2.5 3 3.5 4 4.5 5

Frequency: fi 1 2 3 4 3 2 1

d. The mean of these 16 means is known as mean of
the sampling distribution of means

µ
X
= 2+ 2(2.5)+ 3(3)+ 4(3.5)+ 3(4)+ 2(4.5)+ 5

16

µ
X
= 56

16
= 3.5

e. The variance of S.D.M. is

σ 2

X
=

�
fi (Xi − µ

X
)2

n

= 1

16

�
1(2− 3.5)2 + 2(2.5− 3.5)2 +

· · · + 1(5− 3.5)2
�

= (1.5)2+ 2(1)2+ 3(.5)2+ 0+3(.5)2+ 2(1)2+ (1.5)2

16

= 10

16
= 0.625

s.d. of S.D.M. σ
X
= 0.7905694

Verification:

i. µ = 3.5 = µ
X

ii. σ
X
= 0.79056 = σ√

n
= 1.118033√

2
= 1.118033

1.4142
=

0.79057

Example 2: Solve the above Example 1 without

replacement:

Solution:

a. µ = 3.5
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b. σ = 1.118083

c. Sampling without replacement (finite popu-
lation). The total number of samples without
replacement is NCn = 4!

2!2!
= 6. The six samples

are

(2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

compute the statistic A.M. for each of these

samples:

Xi : 2.5 3 3.5 3.5 4 4.5

The S.D.M. is

Xi : 2.5 3 3.5 4 4.5

fi : 1 1 2 1 1

d. µ
X
= mean of S.D.M.

= 2.5+ 3.0+ 2(3.5)+ 4+ 4.5

6
= 21

6

µ
X
= 3.5

e. σ 2

X
= (2.5−3.5)2+(3−3.5)2+2(3.5−3.5)2+(4−3.5)2+(4.5−3.5)2

6
=

= 2.5
6
= 0.4166.

so σ
X
= 0.645497

Verification:

i. µ
X
= 3.5 = µ.

ii. σ
X
= 0.4166 = σ√

n

�
N−n
N−1 = 1.11803√

2

�
4−2
4−1

= 0.4166

Sampling distribution of variances

Example 3: Find the mean and s.d. of sampling

distribution of variances (S.D.V.) for the population

2, 3, 4, 5 by drawing samples of size two (a) with

replacement (b) without replacement.

Solution:

a. with replacement: 16 samples with their corre-

sponding means are

(2, 2) (2, 3) (2, 4) (2, 5)

2 2.5 3 3.5

(3, 2) (3, 3) (3, 4) (3, 5)

2.5 3 3.5 4

(4, 2) (4, 3) (4, 4) (4, 5)

3 3.5 4 4.5

(5, 2) (5, 3) (5, 4) (5, 5)

3.5 4 4.5 5

compute the statistic variance for each of these 16

samples:
variance for sample (2, 2) with mean 2 is

= (2− 2)2 + (2− 2)2

2
= 0

Similarly, variance for sample (2, 3) with mean

= (2− 2.5)2 + (3− 2.5)2

2
= 0.25

Thus the variance for each of the 16 samples

0 0.25 1 2.25

0.25 0 0.25 1

1 0.25 0 0.25

2.25 1 0.25 0

Thus the S.D. of variances (with replacement) is

S2: 0 0.25 1 2.25

Frequency: 4 6 4 2

Mean of S.D. of variance = 4(0)+6(0.25)+4(1)+2(2.25)
16

µS2 =
10

16
= 0.625

variance of S.D. of variance

= 4(0−0.625)2+6(0.25−0.625)2+4(1−0.625)2+2(2.25−0.625)2
16

= 8.25

16
= 0.515625

s.d. of S.D. of variance =
√
0.515625 = 0.7180
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b. without replacement:

Samples: (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

Means: 2.5 3 3.5 3.5 4 4.5

Variances: 0.25 1 2.25 0.25 1 0.25

Thus the S.D. of variances (without replacement)

σS2 : 0.25 1 2.25

Frequency: 3 2 1

mean of S.D. of variances = 3(0.25)+2(1)+1(2.25)
6

µS2 =
5

6
= 0.8333

variance of S.D. of variances is

σ 2
S2
= 3(0.25−0.8333)2+2(1−0.8333)2+1(2.25−0.8333)2

6

= 3.08333

6
= 0.51388

s.d. of S.D. of variance =
√
0.51388 = 0.71686.

EXERCISE

Sampling distribution

1. Construct S.D. of means for the population 3,

7, 11, 15 by drawing samples of size two with

replacement.

Determine (a) µ (b) σ (c) S.D.M. (d) µ
X
(e)

σ
X
. Verify the results.

Hint: 42 = 16 samples (3, 3), (3, 7), (3, 11),

· · · · · · , (15, 11), (15, 15)
Ans. a. µ = 36

4
= 9

b. σ 2 = 80
4
= 20, σ = 4.4721

c. Means: 3 5 7 9 11 13 15

Frequency: 1 2 3 4 3 2 1

d. µ
X
= 144

16
= 9

e. σ 2

X
= 160

16
= 10, σ

X
= 3.16227.

Verification:

i. µ
X
= 9 = µ

ii. σ
X
= 3.162 = σ√

n
= 4.4721√

2
= 3.162

2. Solve the above problem if sampling is without

replacement.

Hint: NCn = 4C2
= 6 samples are (3, 7), (3,

11), (3, 15), (7, 11), (7, 15), (11, 15).

Ans. S.D.M.: 5, 7, 9, 9, 11, 13

µ
X
= 54

6
= 9, σ

X
=
�
40

6
= 2.58198

3. Find standard error of sample means of size

2 drawn from a population 2, 3, 6, 8, 11 with

replacement.

Hint: Nn = 52 = 25 samples (2, 2), (2, 3), (2,
6), · · · · · ·, (11, 8), (11, 11).

With means: 2 2.5 3 4 4.5 5 5.5 6 6.5 7 8 8.5 9.5 11

Frequency: 1 2 1 2 2 2 2 1 2 4 1 3 1 1

µ
X
= 150

25
= 6.0, µ = 30

5
= 6,

σ =
√
10.8 = 3.29, σ 2

X
=
�
135

25
= 2.32

Ans. S.E. = σ
X
= 3.29

Verification:

µ
X
= 6 = µ, σ 2

X
= 5.40 = σ 2

n
= 10.8

2
= 5.40

4. Solve the above problem without replacement.

Ans. NCn = 5C2
= 10 samples (2,3), (2, 6), (2,8),

· · · · · ·, (6, 11), (8, 11).
means: 2.5, 4, 5, 6.5, 4.5, 5.5, 7, 7, 8.5, 9.5

µ
X
= 6 = µ, σ 2

X
= 4.05

= σ 2

n

�
N − n

N − 1

�
= 10.8

2

�
5− 2

5− 1

�
= 4.05

5. Construct S.D.M. for the infinite population

with distribution given by

x: 1 2 3 4

f (x): 0.25 0.25 0.25 0.25

with n = 2, verify

Hint: Nn = 42 = 16 samples (1, 1), (1, 2), (1,

3) · · · · · · (4, 3), (4, 4).
Ans. µ = 10

4
= 2.5, σ 2 = 5

4
= 1.25

Means: 1 1.5 2 2.5 3 3.5 4

Frequency: 1 2 3 4 3 2 1

µ
X
= 40

16
= 2.5, σ 2

X
= 10

16
= 0.625 = σ 2

n
= 1.25

2
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6. Determine the mean and s.d. of S.D. of vari-

ances for the population 3, 7, 11, 15 with

n = 2 and with sampling (a) with replacement

(b) without replacement

Hint: Nn = 42 = 16 samples (3, 3), (3, 7),

· · · · · ·, (15, 11), (15, 15)
With means: 3 5 7 9 11 13 15

Frequency: 1 2 3 4 3 2 1

Variances: 0 4 16 36

Ans. (a) µS2 = 10, (b) σ 2

S2
=
�

2112
16

= 11.489

7. Calculate the s.d. of S.D. of means for the

population 16, 4, 12, 8, 24, 20 by drawing sam-

ples of size 2 without replacement. Verify the

results.

Hint: S.D.M.:

Means: 6 8 10 12 14 16 18 20 22

Frequency: 1 1 2 2 3 2 2 1 1

NCn = 6C2
= 15 samples.

Ans. µ = 84
6
= 14, µ

X
= 210

15
= 14;

σ = 6.8313, σ
X
= 4.32.

8. Find mean and s.d. of S.D.M. for population 1,

2, 3 with n = 2 and sampling (a) with replace-

ment (b) without replacement. Verify results.

Ans. µ = 2, σ 2 = 2
3

a. µ
X
= 18

9
= 2, σ 2

X
= 1

3
= σ 2

2

b. µ
X
= 2, σ 2

X
= 1

6
= σ 2

n

�
N−n
N−1

� =
= 2

3
· 1
2
· � 3−2

3−1
� = 1

6
with N = 3, n = 2

WORKED OUT EXAMPLES

Sampling distribution of means (σ known)

Example 1: Determine the mean and s.d. of the

sampling distribution of means of 300 random sam-

ples each of size n = 36 are drawn from a popula-

tion ofN = 1500 which is normally distributed with

meanµ=22.4and s.d.σ of0.048, if sampling is done

(a) with replacement and (b) without replacement.

Solution:

a. with replacement

µ
X
= µ = 22.40

σ
X
= σ√

n
= 0.048√

36
= 0.008

b. without replacement

µ
X
= µ = 22.40

σ
X
= σ√

n

�
N − n

N − 1
= 0.048√

36

�
1500− 36

1500− 1
= 0.00790605

σ
X
≈ 0.008

Example 2: Determine the expected number of

random samples having their means (a) between

22.39 and 22.41 (b) greater than 22.42 (c) less than

22.37 (d) less than 22.38 or more than 22.41, for the

above Example 1.

Solution: N = size of population = 1500

n = sample size = 36

NS = number of samples = 300

µ = population mean = 22.4,

σ = population s.d. = 0.48

use the standardized variable

Z = X − µ

σ/
√
n
= X − 22.4

0.008

a. For X = 22.39, Z = 22.39−22.4
0.0079

= −1.26 etc.

Fig. 28.1

P (22.39 < X < 22.41)= P (−1.26 < Z < 1.26)

= 2(0.3962) = 0.7888

Expected number of samples= (Total number of

samples) × (probability) = (NS)P (X)

Expected number of samples who have mean

lying between 22.39 to 22.41 is (300)(0.7924) =
236.6 ≈ 237

b. P (X > 22.42) = P (Z > 2.50) =
= 0.5− 0.4933 = 0.0062
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Expected number of samples = (0.00057) (300)

= 1.86 ≈ 2

Fig. 28.2

c. P (X < 22.37) = P (Z < −3.8) =
= 0.5− 0.4999 = 0.0001

Fig. 28.3

Expected number of samples = (300) (0.0001)

= 0.03 ≈ 0

d. P (X < 22.38) and X > 22.41)

= P (Z < −2.53 and Z > 1.26)

= 0.0057+ 0.1038 = 0.1095

Fig. 28.4

Expected number= (300) (0.1095)= 32.85≈33.

EXERCISE

1. Determine the probability that the samplemean

area covered by a sample of 40 of 1 litre paint

boxes will be between 510 to 520 square feet

given that a 1 litre of such paint box covers

on the average 513.3 square feet with s.d. of

31.5 s.ft.

Hint: Z1= 510−513.3
31.5/

√
40
= −0.66, Z2 = 520−513.3

31.5/
√
40

= 1.34

Ans. P (510 < X < 520) = P (−0.66 < Z< 1.34)

= 0.6553

2. Calculate the probability that a random sample

of 16 computers will have an average life of

less than 775 hours assuming that length of life

of computers is approximately normally dis-

tributedwithmean 800 hours and s.d. 40 hours.

Ans. P (X < 775) = P
�
Z < 775−800

10
= −2.5�

= 0.0062

3. Determine the probability that X will be

between 75 and 78 if a random sample of size

100 is taken from an infinite population having

the mean µ = 76 and the variance σ 2 = 256.

Hint: Z1 = 75−76
16/

√
100

= −0.625, Z2 = 78−76
16/

√
100

= 1.25

Ans. P (75 < X < 78) = P (−0.625 < Z < 1.25)

= 0.3944+ 0.2324 = 0.6268

4. Find P (X > 66.75) if a random sample of

size 36 is drawn from an infinite population

with mean µ = 63 and s.d. σ = 9.

Hint: Z = 66.75−63
9/
√
36

= 2.5

Ans. P (X > 66.75) = P (Z > 2.5)

= 0.5− 0.4938 = 0.0062

5. Calculate the mean and s.d. of the sampling

distribution of means of 80 samples each of

size 25 by sampling (a) with replacement

(b) without replacement from a normal

population of 3000 with mean 68 and s.d. 3.

Ans. a. µX = 68 = µ, σ
X
= σ√

n
= 3√

25
= 0.6

b. µ
X
= 68 = µ, σ

X
= σ√

n

�
N−n
N−1

= 3√
25

�
3000−25
3000−1 = 0.59759 ≈ 0.6

6. Determine the expected number of samples

whose mean (a) lies between 66.8 and 68.3

(b) is less than 66.4 for the above Example 5

Hint: z1 = (66.8−68.0)
0.6

= −2.0, z2 = 68.3−68
0.6

= 0.5

Ans. a. P (66.8 < X < 68.3) = P (−2.0 < Z <

0.5) = 0.4772+ 0.1915 = 0.6687
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Expected number of samples with mean

between 66.8 and 68.3 is = (number of

samples) (probability) = (80)(0.6680) =
53.504 ≈ 54

Hint: z = 66.4−68
0.6

= −2.67.
b. P (X < 66.4) = P (z < −2.67)
= 0.5− 0.4962 = 0.0038

Expected number of samples = (80)(0.0038)

= 0.304 ≈ 0.

28.4 SAMPLING DISTRIBUTION

OF PROPORTIONS

Let p be the probability of occurrence of an event
(called its success) and q = 1− p is the probability
of non-occurrence (failure). Draw all possible sam-
ples of size n from an infinite population. Compute
the proportion P of successes for each of these sam-
ples. Then the mean µP and variance σ 2

P of the sam-
pling distribution of proportions are given by

µP = P and

σ 2
P =

pq

n
= p(1− p)

n

while population is binomially distributed, the sam-
pling distribution of proportion is normally dis-
tributed whenever n is large. For finite population
(with replaement) of size N ,

µP = p and

σ 2
P =

pq

n

�
N − n

N − 1

�
.

28.5 SAMPLING DISTRIBUTION OF

DIFFERENCES AND SUMS

Let µS1 and σS1 be the mean and standard devia-
tion of a sampling distribution of statistic S1 obtained
by computing S1 for all possible samples of size n1
drawn from population A. Similarly µS2 and σS2 be
the mean and standard deviation of sampling distri-
bution of statistic S2 obtained by computing S2 for
all possible samples of size n2 drawn from another
different population B. Now compute the statistic
S1 − S2, the difference of the statistic from all pos-
sible combinations of these samples from the two
populations A and B. Then the mean µS1−S2 and the

standard deviation σS1−S2 of the sampling distribu-
tion of differences are given by

µS1−S2 = µS1 − µS2 and

σS1−S2 =
�
σ 2
S1
+ σ 2

S2

assuming that the samples are independent.
Sampling distribution of sum of statistics has mean
µS1+S2 and standard deviation σS1+S2 given by

µS1+S2 = µS1 + µS2 and

σS1+S2 =
�
σ 2
S1
+ σ 2

S2

For example, for infinite population the sampling dis-
tribution of sums of means has mean µ

X1+X2
and

σ
X1+X2

given by

µ
X1+X2

= µ
X1
+ µ

X2
= µ1 + µ2 and

σ
X1+X2

=
�
σ 2

X1

+ σ 2

X2

=
�
σ 2

1
n1

+ σ 2
2
n2

For sampling distribution of differences of propor-
tions we have

µP1−P2 = µP1 − µP2 = p1 − p2 and

σP1−P2 =
�
σ 2
P1
+ σ 2

P2
=
�
p1q1

n1
+ p2q2

n2

WORKED OUT EXAMPLES

Sampling distribution of differences

and sums

Example 1: Let U1 = {2, 7, 9}, U2 = {3, 8}. Find
(a) µU1

(b) µU2
(c) µU1+U2

(d) µU1−U2
(e) σU1

(f) σU2
(g) σU1+U2

(h) σU1−U2
. Verify that

(i) µU1+U2
= µU1

+ µU2
(j) µU1−U2

= µU1
− µU2

(k) σU1±U2
=
�
σ 2
U1
+ σ 2

U2
.

Solution:

a. µU1
= 2+7+9

3
= 18

3
= 6

b. µU2
= 3+8

2
= 11

2
= 5.5

c. Population consisting of the sums of any member
of U1 and any member of U2 is

2+ 3= 5, 7+ 3 = 10, 9+ 3 = 12

2+ 8= 10, 7+ 8 = 15, 9+ 8 = 17
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i.e.,= U1 + U2 = {5, 10, 12, 10, 15, 17}

µU1+U2
= 5+ 10+ 12+ 10+ 15+ 17

6
= 69

6
= 11.5

= 11.5 = 6+ 5.5 = µU1
+ µU2

d. Population consisting of differences of any mem-
ber of U1 and any member of U2 is

2− 3=−1, 7− 3 = 4, 9− 3 = 6

2− 8=−6, 7− 8 = −1, 9− 8 = 1

i.e., U1 − U2 = {−1, 4, 6,−6.− 1, 1}
µU1−U2

= −1+ 4+ 6− 6− 1+ 1

6
= 3

6

= 0.5 = 6− 5.5 = µU1
− µU2

e. σ 2
U1
= Variance of population U1 (with mean 6)

= (2− 6)2 + (7− 6)2 + (9− 6)2

3
= 26

3
= 8.66

so σU1
=
√
8.66 = 2.9439

f. σ 2
U2
=Variance of populationU2 (with mean 5.5)

= (3− 5.5)2 + (8− 5.5)2

2
= 6.25

so σU2
=
√
6.25 = 2.5

g. σ 2
U1+U2

= Variance of population U1 + U2 (with

mean 11.5)

= (5−11.5)2+2(10−11.5)2+(12−11.5)2+(15−11.5)2+(17−11.5)2
6

= 14.9166

so σU1+U2
=
√
14.9166 = 3.86220

=
�
σU2

1
+ σU2

2
= √8.66+ 6.25 =

√
14.91

= 3.86220

h. σ 2
U1−U2

= Variance of population U1 − U2 (with

mean 0.5)

= 89.50

6
= 14.9166

so σU1−U2
=
√
14.9166 = 3.8622

=
�
σU2

1
+ σU2

2
= √8.66+ 6.25 =

√
14.91

= 3.86220.

Example 2: The mean voltage of a battery is 15

and s.d. is 0.2. Find the probability that four such

batteries connected in series will have a combined

voltage of 60.8 or more volts.

Solution: Let mean voltage of batteriesA, B, C,D
be XA,XB,XC,XD . Then mean of the series of the
four batteries connected is

µ
XA+XB+XC+XD

= µ
XA

+ µ
XB

+ µ
XC

+ µ
XD

= 15+ 15+ 15+ 15 = 60

σA+B+C+D =
�
σ 2
A + σ 2

B + σ 2
C + σ 2

D

=
�
4(0.2)2 = 0.4.

Let X be the combined voltage of the series.

Fig. 28.5

60.8 in standard units is
X − µ

σ
= 60.8− 60

0.4
= 2

so probability that combined voltage is more than
60.8

= P (X ≥ 60.8) = P (Z > 2) = 0.5− 0.4772 = 0.0228.

Example 3: Suppose the diameter of motor shafts

in a lot have a mean of 0.249 inches and s.d. if 0.003

inches. The inner dia of bearings in another lot have

a mean of 0.255 inches and s.d. of 0.002 inches.

a. Find the mean and s.d. of clearances between

shafts and bearings selected from these lots.

b. If a shaft and bearing are selected at random, find

the probability that the shaft will not fit inside the

bearing. Assume that both dimensions are nor-

mally distributed.

Solution: Let XB = mean diameter of bearing

XS = mean diameter of shaft.

It is given XB = 0.255, XS = 0.249, σB = 0.002,

σS = 0.003.

a. Then mean diameter of the difference in diame-
ters of the bearing and the shaft is Xd given by

Xd =XB−S = XB −XS = µB − µS
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= 0.255− 0.249 = 0.006

σd = σ
XB−XS

=
�
σ 2

XB

+ σ 2

XS

=
�
(0.003)2 + (0.002)2 = 0.00360

b. Shaft will not fit inside bearing if d < 0.

0 in standard units is z = 0−0.006
0.0036055

= −1.664.
Probability that shaft will not fit inside bearing

Fig. 28.6

= P (d < 0) = P (Z < −1.6641)
= 0.5− 0.4515 = 0.0485.

EXERCISE

Sampling distribution of differences and sums

1. Let U1 = {3, 7, 8} and U2 = {2, 4}. Calculate
(a) µU1

(b) µU2
(c) µU1−U2

(d) σU1
(e) σU2

(f) σU1−U2

Hint: U1 − U2 : {1, 5, 6,−1, 3, 4}
Ans. a. µU1

= 18
3
= 6,

b. µU2
= 6

2
= 3,

c. µU1−U2
= 3 = µU1

− µU2
= 6− 3,

d. σU1
=
�

14
3
,

e. σU2
= .1,

f. σU1−U2
=
�

17
3
=
�
σ 2
U1
+ σ 2

U2

2. Three masses are measured as 62.34, 20.48,

35.97 kgs with s.d. 0.54, 0.21, 0.46 kgs. Find

the mean and s.d. of the sum of the masses.

Ans. µA+B+C = µA + µB + µC = 62.34+
20.48+ 35.97 = 118.79

σA+B+C =
�
σ 2
A + σ 2

B + σ 2
C

=
�
(0.54)2 + (0.21)2 + (0.46)2 = 0.74

3. The mean life time of light bulbs produced by

a company is 1500 hours and s.d. of 150 hours.

Find the probability that lightingwill take place

for (a) at least 5000 h (b) at most 4200 h if three

bulbs are connected such that when one bulb

burns out, another bulbwill go on. Assume that

life times are normally distributed.

Ans. µL1+L2+L3
= µL1

+ µL2
+ µL3

= 1500

+1500+ 1500 = 4500

σL1+L2+L3
=
�
σ 2
L1
+ σ 2

L2
+ σ 2

L3
=
�
3(150)2

= 260

a. P (X > 5000) = P
�
Z > 5000−4500

260

�
= P (Z > 1.92) = 0.5− 0.4726 = 0.0274

b. P (X < 4200) = P
�
Z < 4200−4500

260

� =
P (Z < −1.15) = 0.5− 0.3749 = 0.1251

4. Determine the probability that the mean break-

ing strength of cables produced by company B

will be (a) at least 600 N more than (b) at least

450 N more than the cables produced by com-

panyA, if 100 cables of brandA and 50 cables

of brand B are tested.

Company Mean breaking s.d. Sample

strength size

A 4000 N 300 N 100

B 4500 N 200 N 50

Ans. µ
XB−XA

= µ
XB
− µ

XA
= 4500− 4000

= 500N

σ
XB−XA

=
�
σ 2
B

NB
+ σ 2

A

NA
=
�
(200)2

50
+ (300)2

100

=
√
1700 = 41.23

Fig. 28.7

a. P (XB −XA > 600)

= P
�
Z > 600−500

41.23

�
= P (Z > 2.4254) = 0.5 = 0.4922 =
0.0078

b. P (XB −XA > 450) = P
�
Z > 450−500

41.23

�
= P (Z > −1.2127) = 0.5+ 0.3869

= 0.8869

5. Let XA and XB be the average drying times of

two types of paints A andB, for samples of size
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nA = nB = 18. Suppose σA = σB = 1. Find

P (XA −XB > 1.0) assuming that the mean

drying time is equal for the two types of paints.

Hint: σ 2

XAXB

= σ 2
A

nA
+ σ 2

B

nB
= 1

18
+ 1

18
= 1

9

Ans. P (XA −XB > 1) = P
�
Z >

1−(µA−µB )
σXA−XB /

√
n

�
=

P
�

1−0√
1/9

�
=P (Z > 3)=1− 0.9987= 0.0013

28.6 SAMPLING DISTRIBUTION OF MEAN

(σ UNKNOWN): t-DISTRIBUTION

Earlier in problems of inference on a population

mean or the difference between two population

means it was assumed that the population standard

deviation σ is known. When σ is unknown, for large

n(≥ 30), σ can be replaced by the sample standard

deviation s, calculated using the sample mean x by

the formula s2 =
n�
i=1

(xi−x)2
n−1 . For small sample of size

n(< 30), the unknown σ can be substituted by s,

provided we make an assumption that the sample

is drawn from a normal population.

Result: Let x be the mean of a random sample of
size n drawn from a normal population with mean µ
and variance σ 2 then

t = x − µ

s/
√
n

is a random variable having the t-distribution with
ν = n− 1 degrees of freedom with probability den-
sity function.

f (t) = 1

β
�
1
2
, ν
2

� 1√
ν

1�
1+ t2

ν

�(ν+1)/2 ,−∞ < t <∞

W.S. Gosset∗ first published in 1908, the proba-

bility distribution of t under the pseudonym “stu-

dent”. So the t-distribution is also known as “student

t-distribution”. 1925, R.A. Fisher used t-distribution

to test the regression coefficient.

∗William Sealy Gosset (1876–1937) English statistician.

Here sample variance s is given by

s2 = 1

n− 1

n�
i=1

(xi − x)2.

Thus for small samples (n < 30) and with
σ unknown, a natural statistic for infernce on popu-
lation mean µ is

t = x − µ

s/
√
n

with the underlying assumption of sampling from

normal population. So the above result is more

general than the central limit theorem since σ is

not needed and less general than the central limit

theorem since population is assumed to be normal.

Fig. 28.8

The t-distribution curve is symmetric about the

mean 0, unimodal, bell shaped and asymptotic on

both sides of t-axis. Thus the t-distribution curve

is similar to normal curve. While the variance for

normal distribution is 1, the variance for the t-

distribution is more than one since it depends on the

parameter ν. So the t-distribution is more variable.

As n→∞, variance of t-distribution approaches 1.

Thus as ν = (n− 1)→∞, t-distribution

approaches the standard normal distribution. Infact

for n ≥ 30, standard normal distribution provides a

good approximation to the t-distribution.
Critical values of t-distribution (see A13 to A14)

is denoted by tα which is such that the area under
the curve to the right of tα equals to α. Since the
t-distribution is symmetric, it follows that

t1−α = −tα
i.e., the t-value leaving an area of 1− α to the right

and therefore an area α to its left, is equal to the

negative t-value which leaves an area α in the right
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tail of the distribution.

Fig. 28.9

Symmetry property of t-distribution.

The critical values tα are tabulated in tables (A13

toA14) for various values of the parameter ν. In these

tables, the left-hand column contains values of ν the

column headings are areas α in the right-hand tail of

the t-distribution, the entries are values of tα .

Note 1: In the tables (A13 to A14), the areas are

now the column heading and the entries are the t-

values (which is the opposite in the normal tables

where the entries are areas and column headings are

z-values).

Note 2: Exactly 95% of the values of a t-distri-

bution with ν = n− 1 dof lies between t−0.02 and

t0.025.

The t-distribution is extensively used in tests of

hypothesis about one mean, or about equality of two

means when σ is unknown.

WORKED OUT EXAMPLES

Example 1: Find (a) t0.025 when ν = 14 (b) −t0.01
when ν = 10 (c) t0.995 when ν = 7.

Solution: From tables (A13 to A14)

a. t0.025 = 2.145

b. −t0.01 = −2.764
c. t0.995 = t1−0.005 = −t0.005 = −3.499

Example 2: Find (a) P (t < 2.365) when ν = 7

(b) P (t > 1.318) when ν = 24 (c) P (−1.356 <
t < 2.179) with ν = 12 (d) P (t > −2.567) when

ν = 17.

Solution:

a. When t < 2.365, P (t < 2.365) is given by the

area to the left of t = 2.365.

Fig. 28.10

From table, tα = 2.365 for ν = 7 dof then
α = 0.025

... P (t < 2.365) = 1− 0.025 = 0.975

b. When tα = 1.318 with ν = 24 then α = 0.10

Fig. 28.11

... P (t > 1.318) is area to the right of 1.318 is 0.1

c. When t < 2.179 with ν = 12

Fig. 28.12

Area to the right of 2.179 is 0.025 when t >

−13.36 with ν = 12, area to the left is 0.10

...When −1.356 < t < 2.179 the area is

1− 0.10− 0.025= 0.875

... P (−1.356 < t < 2.179)= 0.875

d. P (t > −2.567) = 1− 0.01 = 0.99

Fig. 28.13
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Example 3: Find k for a random sample of size 24

from a normal distribution such that

a. P (−2.069 < t < k) = 0.965

b. P (k < t < 2.807) = 0.095

c. P (−k < t < k) = 0.90

Solution:

a. From table and symmetry, tα = 2.069 with ν =
24− 1 = 23,

α = 0.025

Fig. 28.14

For tα = 2.069, area to the right is 0.025

For −tα = −2.069 area to the left is 0.025
The area to the right of k is 1− 0.965− 0.025 =
0.01

... t0.01 = 2.50 with ν = 23 dof

... k = 2.500

b. tα = 2.807 with ν = 23 dof

...α = 0.005

Fig. 28.15

Area to the left of k is

1− 0.005− 0.095 = 0.9

i.e., area to the right of k is 0.1.

... t0.1 = 1.319 with ν = 23

Hence k = 1.319

c. Since 1− 2α = area given = 0.9

... α = 0.1

2
= 0.05

Fig. 28.16

So t0.05 = 1.714 with ν = 23 dof

Hence k = 1.714

Example 4: Aprocess formaking certain ball bear-

ings is under control if the diameters of the bearings

have a mean of 0.5000 cm. If a random sample of 10

of these bearings has a mean diameter of 0.5060 cm

and s.d. of 0.0040 cm, is the process under control?

Solution:

x = 0.5060 = sample mean,

µ= 0.5000 = population mean,

n= sample size = 10

S = sample s.d. = 0.0040

Then t = x−µ
s/
√
n
= 0.5060−0.5000

0.0040/
√
10

= 4.7434.

Here ν = n− 1 = 10− 1 = 9 dof

Fig. 28.17

Since tcal = 4.7334 > 3.250 = tα with α = 0.005

and ν = 9 dof, the process is not under control.

EXERCISE

1. Find the t-value with ν = 14 dof that leaves an

area 0.025 to the left.

Ans. t0.975 = −t0.025 = −2.145
2. Find P (−t0.025 < t < t0.05)

Hint: t0.05 leaves an area 0.05 to the right,

−t0.025 leaves an area of 0.025 to the left. Total
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area = 1− 0.05− 0.025 = 0.925.

Ans. 0.925

3. Find k such that P (k < t < −1.761) = 0.045

for a random sample of size 15 selected from

a normal distribution.

Hint: 1.761 corresponds to t0.05 with ν = 14,

so −t0.05 = −1.761 since k is to left, −t0.05 =
−1.761 so 0.045 = 0.05− α or α = 0.005,

hence k = −t0.005 = −2.977.
Ans. k = −t0.005 = −2.977

4. Determine (a) t0.01 with ν = 18 (b) t0.05 with

ν = 12 (c) t−0.10 with ν = 15

Ans. (a) 2.878 (b) 2.179 (c) 1.753

5. Find the 90th percentile of t-distribution with

10 dof.

Ans. 1.372

6. Find P (t ≥ 2.086) with 20 dof

Ans. 0.05

7. Find P (−2.583 ≤ t ≤ 2.583) with 16 dof

Ans. 1− 2(0.01) = 0.98

8. Fuses produced by a company will blow in

12.40minutes on the averagewhenoverloaded.

Suppose the mean blow time of 20 fuses sub-

jected to overload is 10.63 minutes and s.d.

2.48mts. Does this information tend to support

or refute the claim that the population mean

blow time is 12.40 mts?

Ans. t = 10.63−12.4
2.48/

√
20
= −3.19, ν = 20− 1 = 19 dof

Data refutes the producer’s claim since

t = −3.19 < −2.861

with probability α = 0.005

9. A company claims that the mean life time of

tube lights is 500 hours. Is the claim of the

company tenable if a random sample of 25 tube

lights produced by the company has mean 518

hours and s.d. 40 hours. Company is satisfied

if t falls between −t0.01 and t0.01.
Ans. t = x−µ

s/
√
n
= 518−500

40/
√
25
= 2.25 < tα = 2.492

Accept the claim of the company, ν = 24 dof.

10. A random sample of size 25 from a normal

population has the mean x = 47.5 and s.d. =
8.4. Does this information tend to support or

refute the claim that themean of the population

is 42.1.

Ans. Does not support the claim.

Ans. t = x−µ
s/
√
n
= 47.5−42.1

8.4/
√
25
, ν = 24 dof.

28.7 CHI-SQUARED DISTRIBUTION

Chi-squared distribution plays a very important role
in estimation and hypothesis testing. It is a continu-
ous probability distribution of a continuous random
variable X, with density function given by

f (x) = 1

2ν/2!(ν/2)
x
ν
2
−1e−x/2 for x > 0

which is a special case of gamma distribution with

α = ν/2 and β = 2. Here ν is a positive integer is

the only single parameter of the distribution. ν is

known as “degrees of freedom” (dof). Chi-squared

distribution is extensively used in sampling distri-

butions, analysis of variance (ANOVA) and non-

parametric tests. It was first discovered by Helmert

in 1876 and later independently by Karl Pearson in

1900.

It was mainly used as a measure of goodness of

fit and to test the independence of attributes. Chi-

squared distribution is denoted as χ 2-distribution.

Properties of χ2-distribution

1. χ2-distribution curve is not a normal curve and

lies completely in the first quadrant since χ2

varies from 0 to ∞. i.e., χ2-distribution is not

symmetrical.

2. It depends only on ν, the dof.

3. It is unimodal curve with mode at χ2 = (k − 1).

4. It is additive i.e., ifχ2
1 andχ

2
2 are two independent

distributions with ν1 and ν2 dof then χ
2
1 + χ2

2 will

be chi-squared distribution with (ν1 + ν2) dof.

Hereα denotes the area under the chi-square distri-

bution to the right of χ2
α . Thus α denotes the prob-
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Fig. 28.18

ability that a random sample produces a χ2-value

> χ2
α . So χ2

α represents the χ2-value such that the

area under the chi-square curve to its (χ2
α ’s) right is

equal to α.

For various values of α and ν, the values of χ2
α are

presented in the tables (A15 to A16)

In χ2 table, the left-hand column contains values

of ν, dof, the column headings are areas α in the right

hand tail of χ2-distribution curve, the table entries

are values of χ2.

28.8 SAMPLING DISTRIBUTION OF

VARIANCE s 2

The theoretical sampling distribution of the sam-

ple variance for random samples from normal pop-

ulation is related to the chi-squared distribution as

follows:
Let s2 be the variance of a randomsample of sizen,

taken from a normal population having the variance
σ 2. Then

χ2 = (n− 1)s2

σ 2
=

n�
i=1

(Xi −X)2

σ 2

is a value of a random variable having the

χ2-distribution with ν = n− 1 dof.

Exactly 95%ofχ2-distribution lies betweenχ2
0.975

and χ2
0.025. When σ 2 is too small, χ2-value falls to

the right of χ2
0.025 and when σ 2 is too large, χ2

falls to the left of χ2
0.975. Thus when σ 2 is correct,

χ2-values falls to the left of χ2
0.975 or to the right

of χ2
0.025.

28.9 F-DISTRIBUTION

Let s21 be the sample variance of an independent
sample of size n1 drawn from a normal population
N (µ1, σ

2
1 ). Similarly, let s22 be the sample variance

in an independent sample of size n2 drawn from
another normal population N (µ2, σ

2
2 ). Thus s

2
1 and

s22 are two variances of two random samples of sizes
n1 and n2 respectively drawn from two normal popu-
lation. In order to determinewhether the two samples
come from two populations having equal variances,
consider the sampling distribution of the ratio of the
variances of the two independent random sample
defined by

F = s21/σ1

s22/σ
2
2

= σ 2
2 s

2
1

σ 2
1 s

2
2

which is an F-distribution with ν1 = n1 − 1 and
ν2 = n2 − 1 degrees of freedom. Here F is used as
mark of respect for Sir R.A. Fisher. F-distribution
was worked out by G.W. Snedecor. Under the hy-
pothesis that two normal populations have the same
variance i.e., σ 2

1 = σ 2
2 , we have

Fν1,ν2 =
s21

s22

F determineswhether the ratio of two sample vari-

ances s1 and s2 is too small or too large.

When F is close to 1, the two sample variances

s1 and s2 are nearly same. It is customary, to take

the larger sample variance as the numerator. F -

distribution is related to the Beta distribution and the

twoparameters ν1 and ν2 are knownas numerator and

denominator degrees of freedom. The curve of the

F -distribution depends not only on the two param-

eters ν1 ande ν2 but also on the order in which they

are stated. F -distribution is also known as variance

ratio distribution.F is always a positive number. The

F -distribution curve lies entirely in first quadrant and

is unimodal.
Fα(ν1, ν2) is the value of F with ν1 and ν2 dof

such that the area under the F -distribution curve to
the right of Fα is α. In tables (A17 to A20) Fα is
tabulated (prepared by Snedecor) for α = 0.05 and
α = 0.01 for various combinations of the dof ν1 and
ν2. The values of F0.95 and F0.99 can be calculated
from the above tables (A17 to A20) by using the
following result.
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Fig. 28.19

F1−α(ν1, ν2) =
1

Fα(ν2, ν1)

F -distribution is extremely useful in testing the

equality of several population means, comparing

sample variances, and forms the backbone of analy-

sis of variance (ANOVA).

WORKED OUT EXAMPLES

F-distribution

Example 1: For an F -distribution find

a. F0.05 with ν1 = 7 and ν2 = 15

b. F0.01 with ν1 = 24 and ν2 = 19

c. F0.95 with ν1 = 19 and ν2 = 24

d. F0.99 with ν1 = 28 and ν2 = 12

Solution:

a. From table F0.05 with ν1 = 7 and ν2 = 15 is 2.71

b. F0.01 with ν1 = 24, ν2 = 19 is 2.92

c. F0.95(19, 24) = 1
F0.05(24,19)

= 1
2.11

= 0.473933

d. F0.99(28, 12) = 1
F0.01(12,28)

= 1
2.90

= 0.34482

Example 2: Determine the probability that the

variance of the first sample of size n1 = 9 will be

at least 4 times as large as the variance of the second

sample of size n2 = 16 if the two samples are inde-

pendent random samples from a normal population.

Solution: From table (A17 to A20) F0.01 = 4.0 for

ν1 = n1 − 1 = 9− 1, ν2 = n2 − 1 = 16− 1 = 15,

the desired probability is 0.01.

Example 3: The household net expenditure on

health care in south and north India, in two sam-

ples of households, expressed as percentage of total

income is shown the following table

South 15.0, 8.0, 3.8, 6.4, 27.4, 19.0, 35.3, 13.6

North 18.8, 23.1, 10.3, 8.0, 18.0, 10.2, 15.2, 19.0, 20.2

Test the equality of variances of households net

expenditure on health care in south and north India.

Solution: Let the net expenditure of the south and

north be considered as N (µ1, σ
2
1 ) and N (µ2, σ

2
2 )

respectively.

1. Null Hypothesis: H0 : σ
2
1 = σ 2

2 , i.e., equality of

variances

2. Alternate Hypothesis: H1 : σ
2
1  = σ 2

2 , i.e., differ-

ence in variances

3. Computations: n1 = 8, n2 = 9,

8�
i=1

x1i = 15+ 8+ 3.8+ 6.4+ 27.4+ 19

+35.3+ 13.6 = 128.5

8�
i=1

x21i = (15)2 + 82 + (3.8)2 + (6.4)2 + · · ·

+(13.6)2 = 2887.21

9�
i=1

x2i = 142.8,

9�
i=1

x22i = 2485.26.

so s21 =
1

n1 − 1

�
8�

i=1
x21i −

(
�

x1i )
2

n1

�

= 1

7

�
2887.21− (128.5)2

8

�
= 117.59696

also s22 =
1

8

�
2485.26− (142.8)2

9

�
= 27.4375

4. Test statistic: F = s2
1

s2
2

= 117.59696
27.4375

= 4.28599.

Variances are significantly different.
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EXERCISE

F-distribution

1. Find the value of

a. F0.05 for ν1 = 15 and ν2 = 7

b. F0.95 for 12 and 15 dof

c. F0.99 for 6 and 20 dof

d. F0.95 for ν1 = 10, ν2 = 20

Ans. a. 3.51

b. F0.95(12, 15)= 1
F0.05

(15, 12)= 1
2.62

= 0.38

c. F.99(6, 20)= 1
F0.01

(20, 6)= 1
7.4
= 0.135135

d. F0.95(10, 20)= 1
F0.05

(20, 10)= 1
2.77

= 0.36

2. Find the probability that the variance of the first

samplewill be at least 3 times as large as that of

the second sample if two independent random

samples of size n1 = 7 and n1 = 13 are taken

from a normal population.

Hint: From table F0.05 = 3.00 for ν1 = 7− 1

= 6 and ν2 = 13− 1 = 12

Ans. 0.05

3. If independent random samples of size n1 =
n2 = 8 come from normal populations having

the same variance, what is the probability that

either sample variance will be at least seven

times as large as the other.

Hint: From table F0.01 = 6.99 ≈ 7 for ν1
= 8− 1 = 7, ν2 = 8− 1 = 7

Ans. 0.01

4. Can we conclude that the two population vari-

ances are equal for the following data of

post graduates passed out from a ‘state’ and

‘private’ university.

State: 8350 8260 8130 8340 8070

Private: 7890 8140 7900 7950 7840 7920

Hint: n1 = 5, n2 = 6,
�

x1i = 41150,�
x21i = 338727500

s21 =
63000

4
= 15750,

�
x2i = 47640,

�
x22i = 378316200

s22 =
54600

5
= 10920, F = 15750

10920
= 1.442

Ans. F-ratio is 1.44. The variances are not signifi-

cantly different

5. Is there reason to believe that the life expected

in south and north India is same or not from

the following data.

South: 34.0, 39.2, 46.1, 48.7, 49.4, 45.9,

55.3, 42.7, 43.7

North: 49.7, 55.4, 57.0, 54.2, 50.4, 44.2,

53.4, 57.5, 61.9, 56.6, 58.2

Hint: s21 = 1
8

�
18527.78− (405)2

9

�
= 37.848

s22 = 1
10

�
32799.91− (598.5)2

11

�
= 23.607

Ans. Yes, variances of life expectancy is same for

the south and north since F = s2
1

s2
2

= 37.843
23.607

=
1.603
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Estimation and Test of Hypothesis

INTRODUCTION

By “estimate”wemean “judgement or opinion of the

approximate size or amount”. For a trip from kaki-

nada to Hyderabad by car we estimate the distance

as 550 km, mileage/litre as 12 km, price/litre petrol

as Rs 50 from which eventually estimate the entire

cost of the trip. Also we might estimate the distance

being between 500 to 600 km, mileage/litre as be-

tween 10 to 15 km, cost of petrol between Rs 45

to 55. In the first case, we are estimating distance,

mileage, price as specific values or points. So this

method of estimate is known as “point estimation”

where as the second method is known as “interval

estimation” since we are estimating the parameters

enclosed in an interval.

Hypothesis testing main aim is to provide rules

that lead to decision resulting in acceptance or rejec-

tion of statements about the population parameters.

Aman going to office on a cloudy day is in a dilemma

whether to carry his umbrella or not. When the day

begins he has to take the decision although he is not

aware whether it rains or not. In any case, one of the

following is going to happen.

(i) He takes his umbrella and it rains (wise deci-

sion)

(ii) He does not take his umbrella and it does not

rain (wise decision again)

(iii) He takes umbrella and does not rain (wrong

decision)

(iv) He does not take his umbrella and it rains

(wrong decision).

The situations (iii) and (iv) are undesirable.

Test of goodness of fit is a statistical test which de-

termines whether the sample data are in conformity

with the hypothesized distribution. In fact this test

literally tests how good the fit is. It is based on how

close are the observed numbers and the numbers that

we expect from the hypothesized distribution.

29.1 POINT ESTIMATION

Statistical Estimation

It is a part of statistical inference where a popula-

tion parameter is estimated from the corresponding

sample statistics. An estimate of the unknown true or

exact value of the parameter or an interval in which

the parameter is to be determined on the basis of

sample data from the population.

Unbiased estimator

A statistic θ̂ is known as an unbiased estimator of the
corresponding parameter θ if

E(θ̂ ) = E(statistic) = parameter = θ

i.e., the mean of the sampling distribution of estima-

tor equals to θ . Unbiasedness property is desirable,

although not essential.

Point estimation

Point estimation of a parameter is a statistical esti-

mation where the parameter is estimated by a single

number (or value) from sample data.

29.1
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Maximum Error of Estimate E

Since the sample mean estimate very rarely equals
to the mean of population µ, a point estimate is gen-
erally accompanied with a statement of error which
gives difference between estimate and the quantity to
be estimated, the estimator. Thus error= x − µ. For

large n, the random variable x−µ
σ/
√
n
is normal variate

approximately. Then the inequality

−Zα/2 ≤
x − µ

σ/
√
n
≤ Zα/2

is satisfied with probability (1− α)

i.e., |x − µ| ≤ Zα/2 · σ/
√
n

Confidence interval for µ

A (1− α) 100% confidence interval for µ is given
by

x − Zα/2
σ√
n
< µ < x + Zα/2

σ√
n

So the maximum error of estimate E with (1− α)
probability is given by

E = Zα/2 ·
σ√
n

Thus in the point estimation of population mean

µ with sample mean x for a large random sample

(n ≥ 30), one can assert with probability (1− α) that

the error |x − µ| will not exceed Zα/2σ/
√
n.

Sample Size

When α,E, σ are known, the sample size n is given
by

n =
 
Zα/2 σ

E

 2

when σ is unknown (or n < 30 small sample):

In this case, σ is replaced by s, the standard deviation

of sample to determine E.
Thus the maximum error estimate

E = tα/2
s√
n

with (1− α) probability.

Here t-distribution is with n− 1 degrees of freedom.

WORKED OUT EXAMPLES

Example 1: The efficiency expert of a computer
company tested 40 engineers to estimate the average

time it takes to assemble a certain computer compo-

nent, getting amean of 12.73minutes and s.d. of 2.06

minutes. (a) If x = 12.73 is used as a point estimate

of the actual average time required to perform the

task, determine the maximum error with 99% con-

fidence (b) construct 98% confidence intervals for

the true average time it takes to do the job (c) with

what confidence can we assert that the sample mean

does not differ from the true mean by more than 30

seconds.

Solution: Here x = 12.73, s = 2.06, For 99%,

Zα/2 = 2.575

a. Maximum error of estimate E = Zα/2
σ√
n

= (2.575)
(2.06)

(
√
40)

= 0.8387

b. For 98% confidence, E = (2.33) (2.06)√
40
=

0.758915, 98% confidence interval limits are
x ± Zα/2

σ√
n

= x ± E = 12.73± 0.7589

i.e., confidence interval is (11.97, 13.4889)

c. 30
60

mts = 1
2
minute = E = Zα/2

σ√
n
= Zα/2

2.06√
40

... Zα/2 = 1.5350

From normal table (A850), the area corresponding

to Zα/2 = 1.5350 is 0.4370. Then the area between

Z−α/2 to Zα/2 is 2(0.4370) = 0.8740.

Thus we can ascertain with 87.4% confidence.

Example 2: To estimate the average amount of

time visitors take to move from one building to an-

other in an office complex, the mean of a random

sample of size n is used. Given σ = 1.40 minutes,

determine how large should be the sample size if it

is ascertained with 99% confidence that the error E

is at most 0.25.

Solution:

n =
 
Zα/2 σ

E

 2

=
 
(2.575)(1.40)

0.25

 2
= 207.98 ≈ 208.

Example 3: Find the degree of confidence to assert

that the average salary of school teachers is between

Rs. 272 and Rs. 302 if a random sample of 100 such
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teachers revealed a mean salary of Rs. 287 with s.d.

of Rs. 48.

Solution: Standard variable corresponding to
Rs. 272 is

Z1 =
272− 289

48/
√
100

= −3.125

For Rs. 302 is Z2 = 302−287
48/
√
100
= 3.125

Let X be the mean salary of teacher, then

P (272 < X < 302)= P (−3.125 < Z < 3.125)

= 2(.499) = 0.9982

Thus we can ascertain with 99.82% confidence.

EXERCISE

1. Using themean of a random sample of size 150

to estimate the mean mechanical aptitude of

mechanics of a large workshop and assuming

σ = 6.2, what can we assert with 0.99 proba-

bility about the maximum size of the error.

Hint: n = 150, σ = 6.2, Z0.005 = 2.575,

E = 2.575
 

6.2√
150

 
= 1.30.

Ans: Can assert with 0.99 probability that the error

will be at most 1.30.

2. Assuming that the population standard devia-

tion is 0.3, calculate the (a) 95% and (b) 99%

confidence intervals for the mean lead concen-

tration in a river if the mean lead concentration

recovered from a sample of leadmeasurements

in 36 different locations is 2.6 gms/ml.

Hint: x ± Zα/2
σ√
η
, x = 2.6, n = 36, σ = 0.3,

Z0.025 = 1.96, Z0.005=2.575 from normal tables

A11.

Ans: (a) 2.50 < µ < 2.70 (b) 2.47 < µ < 2.73

3. For the above Example 2, if we want to be

99% confident that our estimate of µ is off by

less than 0.01, how large a sample should be

chosen?

Ans: n =
 
(2.575)(2.3)

0.01

 2
= 5967. 5625 ≈ 5968

i.e., we can be 99% confident that a random

sample of size 5968 will provide an estimate

of x differing from µ by an amount less than

0.01.

4. (σ unknown) Determine 99% confidence in-

terval for the mean of contents of soft drink

bottles if contents of 7 such soft drink bottles

are 10.2, 10.4, 9.8, 10.0, 9.8, 10.2, 9.6 ml.

Hint: x = 10.0, s = 0.283 are the mean and

s.d. for given data. t0.005 = 3.707 with 6 dof

Ans: 10± (3.707)
 
0.283√

7

 
i.e., 10± 2.64575 or

(7.354, 12.6458)

5. The pulse rate of 50 yoga practitioners de-

creased on the average by 20.2 beats/minute

with s.d. of 3.5. (a) If x = 20.2 is used as a

point estimate of the true average decrease in

the pulse rate, what can we assert with 95%

confidence about the maximum error E. (b)

Construct 99%confidence intervals for the true

average decrease in pulse rate.

Ans: a. E = Zα/2
σ√
n
= Z0.025

3.5√
50
= 1.96 (3.5)√

50

= 0.97015

b. C.I.: x ± Zα/2
σ√
n
= 20.2± 2.575 3.5√

50
;

19.229 < µ < 21.17015)

6. For the above Example 5, how large a sample

should we take in order to assert with 95%

confidence that the mean of the sample is off

by at most 0.50?

Ans: n =
 
(1.96)(3.5)

0.50

 2
= (13.72)2

= 188.23 ≈ 188.

29.2 INTERVAL ESTIMATION

Point estimates rarely coincide with quantities they

are intended to estimate. So instead of point esti-

mation where the quantity to be estimated is re-

placed by a sigle value a better way of estimation is

interval estimation, which determines an interval in

which the parameter lies. For a given sample of val-

ues of a population, interval estimation consists of

determining an interval whose two end points are

computed from the sample data. The interval esti-
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mate thus constructed is such that the probability of

the parameter lying in the interval can be determined.

Accuracy of the estimate is indicated by the length

of the interval. Thus interval estimates are intervals

for which one can be (1− α) 100% confident that

the parameter under investigation lies in this inter-

val. Such an interval is known as confidence inter-

val for the parameter with (having) 1− α or (1− α)

100%degree of confidence. The two endpoints of the

confidence interval are known as confidence limits

or fiducial limits or critical values or confidence

coefficients. Confidence level denoted by α is the

percentage of confidence.
Consider a large random sample of size n(≥ 30)

from a population with unknown mean µ and known
variance σ 2. Then the large-sample confidence in-
terval for µ:

x − Zα/2
σ√
n
< µ < x + Zα/2

σ√
n

Note 1: Confidence interval is exact for random

samples from normal populations.

Note 2: Confidence interval provides good approx-

imation for large samples (n ≥ 30) from non-normal

populations also.
Small-sample confidence interval for µ: (when
n < 30, assuming sampling fromnormal population)

x − tα/2
s√
n
< µ < x + tα/2

s

n
.

Confidence level α 99.73% 99% 98% 96% 95.5% 95% 90% 80% 68.27% 50%

Zα/2 3.00 2.58 2.33 2.05 2.00 1.96 1.645 1.28 1.00 0.675

WORKED OUT EXAMPLES

Example: A random sample of 10 ball bearings

produced by a company have a mean diameter of

0.5060 cm with s.d 0.004 cm. Find the maximum

error estimateE and 95% confidence interval for the

actualmeandia ofballbearings produced by this com-

pany assuming sampling from normal population.

Solution: Sample size = n = 10 < 30, so use

t-distribution (small sampling).
Maximum error estimate at 95% confidence is

E = tα/2
σ√
n
= (2.262)

(0.004)√
10

= 0.00286

since t0.025 with n− 1 = 10− 1 = 9 dof is 2.262.

95% confidence interval limits are x ± tα/2
σ√
n

= 0.5060± (2.262) (0.004)√
10

.

95% confidence interval is (0.5031, 0.5089).

EXERCISE

1. If on the average, the test strips painted across

heavily travelled roads in 15 different loca-

tions, disappeared after they had been crossed

by 146692 cars with s.d. 14380 cars, calculate

99% confidence intervals for the true average

number of cars it takes to wear off the paint,

assuming normal population.

Hint: n = 15 < 30, t0.005 with 14 dof is 2.977,

x = 146692, σ = 14380,

C.I. (146692± (2.977)(14380)√
15

).

Ans: 135639 < µ < 157745

2. A random sample of 20 fuses subjected to

overload has mean time for blow of 10.63

minutes with s.d. of 2.48 mt. What can we as-

sert with 95% confidence about the maximum

error if we use x = 10.63 mts as a point es-

timate of true average it takes such fuses for

blow when subjected to overload.

Ans: E = tα/2
σ√
n
= 2.093 (2.48)√

20
= 1.16mt

3. Construct a 99% confidence interval for the

true mean weight loss if 16 persons on diet

control after onemonth had ameanweight loss

of 3.42 kgs with s.d. of 0.68 kgs.

Hint: n = 16, x = 3.42, s = 0.68,

t0.005 = 2.947 for 15 dof

3.42± 2.947 (0.68)√
16

.
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Ans: 2.92 < µ < 3.92

29.3 BAYESIAN ESTIMATION

Personal or subjective probability is the new concept

introduced in Bayesian methods. Also, parameters

are viewed as randomvariables inBayesianmethods.

To estimate the mean of a population, µ is treated

as a random variable whose distribution is indica-

tive of the “strong feelings” or assumption of a per-

son about the possible value of µ. Let µ0 and σ0 be

the mean and standard deviation of such a subjective

“prior distribution”.

Bayesian Estimation

Combining the prior feelings about the possible val-

ues ofµwith direct sample evidence, the “posterior”

distribution of µ in Bayesian estimation is approxi-

mated by normal distribution with

µ1 =
nxσ 2

0 + µ0σ
2

nσ 2
0 + σ 2

and

σ1 =

    σ 2σ 2
0

nσ 2
0 + σ 2

Here µ1 and σ1 are known as the mean and standard

deviation of the posterior distribution. In the com-

putation of µ1 and σ1, σ
2 is assumed to be known.

When σ 2 is unknown, which is generally the case, σ 2

is replaced by sample variance s2 provided n ≥ 30

(large sample).

Bayesian interval for µ:

A (1− α)100% Bayesian interval for µ is given by

µ1 − Zα/2σ1 < µ < µ1 + Zα/2σ1.

WORKED OUT EXAMPLES

Example: A professor’s feelings about the mean

mark in the final examination in “probability” of a

large group of students is expressed subjectively by

normal distribution with µ0 = 67.2 and σ0 = 1.5.

(a) If the mean mark lies in the interval (65.0, 70.0),

determine the prior probability the professor should

assign to the mean mark. (b) Find the posterior mean

µ1 and posterior s.d. σ1 if the examination is con-

ducted on a random sample of 40 students yielding

mean 74.9 and s.d. 7.4. Use s = 7.4 as an estimate

of σ . (c) Determine the posterior probability which

he will thus assign to the mean mark being in the in-

terval (65.0, 70.0), using results obtained in (b)· (d)
construct a 95% Bayesian interval for µ.

Solution:

a. Here µ0 = 67.2, σ0 = 1.5, n = 40

standard variable corresponding to 65.0 is

Z1 =
65.0− 67.2

1.5
= −1.466,

Similarly, Z2 =
70− 67.2

1.5
= 1.866

Let X be the mean mark obtained in the final
examination.

Prior probability= P (65 < X < 70)

= P (−1.47 < Z < 1.87)

= 0.4292+ 0.4693 = 0.8985

Fig. 29.1

b. Here x = 74.9, σ = s = 7.4

posterior mean µ1 =
nxσ 2

0 + µ0σ
2

nσ 2
0 + σ 2

= 40(74.9)(1.5)2 + (67.2)(7.4)2

40(1.5)2 + (7.4)2
= 71.987 ≈ 72

posterior s.d.

σ1=

    σ 2σ 2
0

nσ 2
0 + σ 2

=
 
(7.4)2(1.5)2

40(1.5)2
=0.922568≈0.923

c. Here µ1 = 72, σ1 = 0.923.
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Standard variable corresponding to 650 is

Z1 =
65− 72

0.923
= −7.5839,

similarly, corresponding to 70.0 is

Z2 =
70− 72

0.923
= −2.16684

Posterior probability = P (65 < X < 70)

= P (−7.584 < Z < −2.167)
= 0.5− 0.4850 = 0.0150

Fig. 29.2

d. 95% Bayesian interval limits are

µ1 ± Zα/2σ1 = 71.987± (1.96)(0.922568)

Thus the Bayesian interval is

(70.17876, 72.909568).

EXERCISE

1. Calculateµ1, σ1 for the posterior distribution if

the random sample size is 80, x = 18.85, s =
5.55 using s for s.d. of population σ .

Ans: µ1 = 18.77, σ1 = 0.60

2. An insurence agent feelings about the aver-

age monthly commission of insurance policies

may be described by means of normal distri-

bution with µ0 = Rs. 3800 and σ0 = Rs. 260.

(a) What probability is the agent thus assign-

ing to the true average monthly commission

being in the interval of Rs. 3,500 to Rs. 4000.

(b) How does the probability in part (a) is af-

fected if themean commission is Rs. 3702with

s.d. Rs. 390 for 9 months? Use s = 390 as an

estimate of σ .

Hint: P (3500 < X < 4000) =
P (−1.154 < Z < 0.77) = 0.3749+ 0.2794.

Ans: a. 0.6543

Hint: x = 3702, s = σ = 390, n = 9,

µ0 = 3800, σ0 = 260

µ1 = nxσ 2
0
+µ0σ 2

nσ 2
0
+σ 2 = 3721.6 ≈ 3722,

σ1 =
 

σ 2σ 2
0

nσ 2
0
+σ 2 = 116.3 ≈ 116

P (3500 < X < 4000) =
P (−1.91 < Z < 2.40) = 0.4719+
0.4918 = 0.9637

Ans: b. 0.9637

3. The mean mark in mathematics in common

entrance test will vary from year to year. If this

variation of the mean mark is expressed sub-

jectively by a normal distribution with mean

µ0 = 72 and variance σ 2
0 = 5.76. (a) What

probability can we assign to the actual mean

mark being somewhere between 71.8 and 73.4

for the next year’s test. (b) construct a 95%

Bayesian interval for µ if the test is conducted

for a random sample of 100 students from the

next incoming class yielding a mean mark of

70with s.d. of 8. (c)What posterior probability

should we assign to the event of part (a).

Hint: P (71.8 < X < 73.4) =
P (−0.083 < Z < 0.583)

= 0.0319+ 0.2190 = 0.2509

Ans: a. 0.2509

Hint: n = 100, x = 70, σ0 = 2.4, µ0 = 72,

σ = 8, so

µ1 = 70.2, σ1 = 0.7589

C.I.: µ1 ± Zα/2(σ1) = 70.2± 1.96(0.7589)

Ans: b. 68.71 < µ < 71.69

Hint: P (71.8 < X < 73.4) =
P (2.105 < Z < 4.21) = 0.5− 0.4821 =
0.0179

since Z1 = 71.8−70.2
0.76

= 2.105,

Z2 = 73.4−70.2
0.76

= 4.2105

Ans: c. 0.0179
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4. A producer of TV’s believes from past experi-

ence that the mean length of life of TV’s µ is a

normal random variable with mean µ0 = 800

hours and standard deviation σ0 = 10 hours.

It is known that TV’s have mean length of life

that is approximately normally distributedwith

a standard deviation of 100 hours. Construct a

95% Bayesian interval for µ if a random sam-

ple of 25 TV’s has an average life of 780 hours.

Hint: µ1 = (25)(780)(10)2+(800)(100)2
25(10)2+(100)2 = 796

σ1 =
 

(10)2(100)2

25(10)2+(100)2 =
√
80,

B.I.: 780± 1.96
 

100√
25

 
Here Zα/2 = 1.96, n = 25, σ = 100,

σ0 = 10, x = 780.

Ans: 740.8 < µ < 819.2

29.4 TEST OF HYPOTHESIS

The principal objective of statistical inference is to

draw inferences (or generalize) about the population

on the basis of data collected by sampling from

the population. Statistical inference consists of two

major areas, estimation and tests of hypothesis.

Estimation was discussed in Sections 29.1, 29.2 and

29.3. In tests of hypothesis, a postulate or conjecture

or statement about a parameter of the population is

tested for its validity or truthfulness.

Statistical decisions

Statistical decisions are decisions or conclusions

about the population parameters on the basis of a

random sample from the population.

Statistical Hypothesis

It is an assumption or conjecture or guess about the

parameter(s) of population distribution(s). The sta-

tistical hypothesis is establishedbefore hand andmay

or may not be true. When more than one population

is considered, statistical hypothesis consists of rela-

tionship between the parameters of the populations.

Null Hypothesis

It is (N.H.) denoted by H0 is the statistical hypoth-

esis which is to be actually tested for acceptance or

rejection. N.H. is the hypothesis which is tested for

possible rejection under the assumption that it is true

(R.A. Fisher).

Alternative Hypothesis

(A.H.) denoted by H1, is any hypothesis other than

the null hypothesis. Neyman originated the concept

of alternative hypothesis.

Test of Hypothesis

Test of hypothesis or test of significance or rules of

decision is a procedure to decide whether to accept

or reject the (null) hypothesis. This test determines

whether observed samples differ significantly from

expected results. Acceptance of hypothesis merely

indicates that the data do not give sufficient evidence

to refute the hypothesis. Whereas, rejection is a firm

conclusion where the sample evidence refutes it.

When N.H. is accepted, result is said to be

non-significant i.e., observed differences are due to

‘chance’ caused by the process of sampling. When

N.H. is rejected (i.e., A.H. is accepted) the result is

said to be significant. Thus test of hypothesis decides

whether a statement concerning a parameter is true

or false instead of estimating the value of the param-

eter. Since the test is based on sample observations,

the decision of acceptance or rejection of the null hy-

pothesis is always subjected to some error i.e., some

amount of risk.

Types of errors in test of hypothesis:

Accept H0 Reject H0

H0 is true correct decision Type I error

H0 is false Type II error correct decision

Type I error involves rejection of null hypoth-

esis when it should be accepted (as true).

Type II error involves acceptance of the null hy-

pothesis when it is false and should be rejected.
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Level of significance

(L.O.S.) of a test denoted by α is the probability of

committing type I error. Thus L.O.S. measures the

amount of risk or error associated in taking decisions.

It is costomary to fix α before sample information is

collected and to choose (take) generally α as 0.05

or 0.01. L.O.S. α = 0.01 is used for high precision

and α = 0.05 for moderate precision. L.O.S. is also

expressed as percentage. ThusL.O.S.α = 5%means

there are 5 chances in 100 that N.H. is rejected when

it is true or one is 95% confident that a right decision

is made. L.O.S. is also known as the size of the test.

Thusα = probability of committing type I error= P

(rejectH0/H0) = α and β = prob (type II error)= P

(accept H0/H1) = β.

Power of the test is computed as 1− β.

Note 1: When the size of the sample is increased,

the probability of committing both types of errors

I and II i.e., α and β can be reduced simultaneously.

Note 2: α and β are known as producer’s risk and

consumer’s risk respectively.

Note 3: When both α and β are small, the test pro-

cedure is good one giving good chance of making

the correct decision.

Simple Hypothesis

It is a statistical hypothesis which completely spec-

ifies an exact parameter. Null hypothesis is always

a simple hypothesis stated as an equality specifying

an exact value of the parameter (includes any value

not stated by A.H.).

Examples:

1. N.H. = H0 : µ = µ0

i.e., population mean equals to a specified con-

stant µ0.

2. N.H. = H0 : µ1 − µ2 = δ

i.e., the difference between the sample means

equals to a constant δ.

Composite Hypothesis

It is stated in terms of several possible values i.e., by

an inequality.

Alternative Hypothesis

It is a composite hypothesis involving statements ex-

pressed as inequalities such as <,> or  =.
Examples:

1. A.H.: H1;µ > µ0

2. A.H.: H1 : µ < µ0

3. A.H.: H1 : µ  = µ0

Critical Region (C.R.)

In any test of hypothesis, a test statistic S∗, calcu-
lated from the sample data, is used to accept or reject

the null hypothesis of the test. Consider the area un-

der the probability curve of the sampling distribution

of the test statistic S∗ which follows some known

(given) distribution. This area under the probability

curve is divided into to dichotomous regions, namely

the region of rejection (significant region or critical

region) where N.H. is rejected, and the region of ac-

ceptance (non-significant region or non-critical re-

gion) where N.H. is accepted. Thus critical region

is the region of rejection of N.H. The area of the crit-

ical region equals to the level of significance α. Note

that C.R. always lies on the tail (s) of the distribu-

tion. Depending on the nature of A.H., C.R. may lie

on one side or both sides of the tails (s).

Critical value(s) or significant value(s)

It is (area) the value of the test statistic S∗α (for given
level of significance α) which divides (or separates)

the area under the probability curve into critical (or

rejection) region and non-critical (or acceptance) re-

gion.

One tailed test (O.T.T.) and two tailed test

(T.T.T.)

Right one tailed test (R.O.T.T.): When the alter-

native hypothesis (A.H.): H1 is of the greater than

type i.e.,H1 : µ > µ0 orH1 : σ
2
1 > σ 2

2 etc., then the

entire criticial region of area α lies on the right side

tail of the probability density curve as shown shaded

in the Fig. 29.3. In such case, the test of hypothesis

(T.O.H.) is known as right one tailed test.
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Fig. 29.3

C.R. of area a

Left one tailed test (L.O.T.T.)

When the A.H.: H1 is of the less than type i.e., H1

µ1 < µ0 orH1 : σ
2
1 < σ 2

2 etc. then the entire C.R. of

area α lies on the left side tail of the curve as shown

in Fig. 29.4.

Fig. 29.4

C.R. of area a

Two tailed test (T.T.T.)

If A.H. is of the not equals type i.e.,H1 : µ1  = µ2 or

H1 : σ1  = σ2 etc. then the C.R. lies on both sides of

the right and left tails of the curve such that the C.R.

of area α
2
lies on the right tail and C.R. of area α

2
lies

on the left tail, as shown in Fig. 29.5.

Fig. 29.5

C.R. of

area a/2

Thus the test of hypothesis or test of significance or

rule of decision consists of the following six steps.

1. Formulate N.H.: H0.

2. Formulate A.H.: H1.

3. Choose L.O.S.: α.

4. C.R.: is determinedby the critical valueS∗α and the
kind of A.H. (based on which the test is R.O.T.T.

or L.O.T.T. or T.T.T.).

5. Compute the test statisticS∗ using thesampledata.

6. Decision: Accept or reject N.H. depending on the

relation between S∗ and S∗α .

P-Value

In tests of hypothesis, preselection of a significance

level α does not account for values of test statis-

tics that are “close” to the critical region. Thus a test

statistic value that is non-significant say forα = 0.05

may become significant for α = 0.01. In applied

statistics, P-value approach is designed to give the

user an alternative (in terms of probability) to a mere

“reject” or “do not reject” conclusion.

P-Value is the lowest level (of significance) at

which the observed value of the test statistic is sig-

nificant.

In the significance testing by P-Value approch, α

is not pre-determined but the conclusion is based on

the size of the P-Value which is computed using the

value of test statistic.

29.5 TESTOF HYPOTHESIS CONCERNING

SINGLE POPULATION MEAN µ:

(WITH KNOWN VARIANCE σ 2:

LARGE SAMPLE)

Let µ and σ 2 be the mean and variance of a pop-

ulation from which a random sample of size n is

drawn. Let x be the mean of the sample. Then for

large samples (n ≥ 30), from central theorem it fol-

lows that the sampling distribution of x is approxi-

mately normally distributed with mean µ x = µ and

σ 2

x
= σ 2

n
.

The test statistic for single mean with known vari-

ance is Z = x−µ0
σ/
√
n
.

To test whether the population mean µ equals to a

specified constant µ0 or not, formulate the test of

hypothesis as follows:

1. N.H.: µ = µ0.

2. A.H.: µ  = µ0.

3. L.O.S.: α.

4. C.R.: Since the A.H. is a not equal to type, a

T.T.T. is considered. For given α, critical values
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−Zα/2 and +Zα/2 are determined from normal

table since normal distribution is assumed. For

example, for α = 5% or 0.05 from normal table

−Z0.025 = −1.96 and Z0.025 = 1.96. Thus the

critical region consists of the two shaded regions

in Fig. 29.6 i.e., reject N.H.:H0 if Z < −Zα/2 or

Z > Zα/2.

Fig. 29.6

5. Compute the test statistic Z, denoted by Zcal or
simply Z by

Z = x − µ0

σ/
√
n

Here x, the mean of the sample of size n, is cal-

culated from the sample data.

6. Conclusion: Reject H0 if Zcal or Z falls in

the critical region i.e., observed sample statis-

tic is probably significant or highly significant

at α level. Otherwise accept H0 (if −Zα/2 < Z

< Zα/2).

Note 1: Suppose the A.H. is H1 : µ > µ0. Then

the critical region is given by Z > Zα since we

consider a right one tail test is this case, i.e.,

reject H0 if Z > Zα otherwise accept H0 (if

Z < Zα) (see Fig. 29.7).

Note 2: If A.H. isH1 : µ < µ0 then consider a left

one tail test with C.R. given by Z < −Zα as shown

in Fig. 29.8, i.e., reject H0 is Z < −Zα otherwise

accept H0 (if Z > −Zα).

Note 3: Reference table of critical values for a

given L.O.S. α for T.T.T., R.O.T.T. and L.O.T.T.

Fig. 29.7

N

Fig. 29.8

α% 15% 10% 5% 4% 1% .5% .2%

α 0.15 0.1 0.05 0.04 0.01 0.005 0.002

−Zα/2 and −1.44 −1.645 −1.96 −2.06 −2.58 −2.81 −3.08
+Zα/2 and and and and and and and

for T.T.T. 1.44 1.645 1.96 2.06 2.58 2.81 3.08

−Zα for

L.O.T.T. −1.04 −1.28 −1.645 −2.6 −2.33 −2.58 −2.88

Zα for

R.O.T.T. 1.04 1.28 1.645 2.6 2.33 2.58 2.88

Note 4: For large sample n ≥ 30, even if σ is

unknown, σ can be replaced by sample variances

(which can be computed from sample information).

WORKED OUT EXAMPLES

Test of hypothesis: For one mean

Example 1: The length of lifeX of certain comput-

ers is approximately normally distributed with mean
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800 hours and standard deviation 40 hours. If a ran-

dom sample of 30 computers has an average life of

788 hourse, test the null hypothesis that µ = 800

hours against the alternative that µ  = 800 hours at

(a) 0.5% (b) 1% (c) 4% (d) 5% (e) 10% (f) 15% level

of significance.

Solution:

Case a:

1. Null hypothesis: µ = 800 hours

2. Alternate hypothesis : µ  = 800 hours

3. α level of significance = .5% = .005 (case (a))

4. Critical region: since alternate hypothesis is  =
type, the test is two tailed and the critical region is

−2.81 < Z < 2.81

Fig. 29.9

5. Calculation of statistic:

Here x = mean of the sample = 788

n = sample size = 30

standard deviation σ = 40,

so Z = x−µ0
σ/
√
n
= 788−800

40/
√
30
= −1.643

6. Decision: Accept the null hypothesis H0 since

Z = −1.643 > −2.81 = Zα/2 = Z0.0025

Case b: α = level of significance = 1% = 0.01
critical region

−2.58 < Z < 2.58

Desision: Accept H0 since

Z = −1.643 > −2.58 = Zα/2 = Z0.005 (Fig. 29.10)

Case c: α= 4%= 0.04,C.R.:−2.06 < Z < 2.06.

AcceptH0 since Z = −1.643 > −2.06 (Fig. 29.11)

Case d: α= 5%= 0.05, C.R.:−1.96 < Z < 1.96.

AcceptH0 since Z = −1.643 > −1.96 (Fig. 29.12)

Fig. 29.10

Fig. 29.11

Fig. 29.12

Case e: α=10%=0.10, C.R.: −1.645<Z<1.645.

Accept H0 since Z = −1.643 > −1.645

Fig. 29.13

Case f: α=15%=0.15, C.R.: −1.44 < Z < 1.44.

Reject H0 since Z = −1.643 < −1.44

Fig. 29.14

Test is significant.

Example 2: Mice with an average lifespan of 32

monthswill live upto40monthswhen fedby a certain
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nutrious food. If 64 mice fed on this diet have an

average lifespan of 38months and standard deviation

of 5.8 months, is there any reason to believe that

average lifespan is less than 40 months.

Solution: Letµ = average lifespan ofmice fedwith

nutritious food. Use 0.01 level of significance

1. N.H.: H0 : µ = 40 months

2. A.H.: H1 : µ < 40

3. L.O.S.: α = 0.01

(Left one-tail test)

Fig. 29.15

4. C.R.: Z < −Zα = −Z0.01 = −2.33
5. Computation: Here x = 38, σ = 5.8, n = 64

Z = 38− 40

5.8/
√
64
= −2.76

6. Decision: Reject H0,

since Z = −2.76 < −2.33 = −Zα = −Z0.01

i.e., yes, there is reason to believe that the average

lifespan of mice with nutritious food is less than

40 months.

Example 3: A machine runs on an average of 125

hours/year. A random sample of 49 machines has an

annual averageuse of 126.9 hourswith standarddevi-

ation 8.4 hours. Does this suggest to believe that ma-

chines are used on the average more than 125 hours

annually at 0.05 level of significance?

Solution: µ = average number of hours a machine

runs in an year.

1. H0 · µ = 125 hours/year

2. H1 · µ > 125

3. L.O.S.: α = 0.05

4. C.R.: Z > Zα = Z0.05 = 1.64

5. Calculation: Z = x−µ
σ/
√
n
= 126.9−125

8.4/
√
49
= 1.58

Fig. 29.16

6. Decision: Accept H0 since Z = 1.58 < 1.64 =
Z0.05 i.e., can not believe that machine works

more than 125 hours in an year.

EXERCISE

Test of hypothesis: For one mean

1. A company claims that the mean thermal ef-

ficiency of diesel engines produced by them

is 32.3%. To test this claim, a random sample

of 40 engines were examined which showed

the mean thermal efficiency of 31.4% and s.d

of 1.6%. Can the claim be accepted or not, at

0.01 L.O.S.?

Hint: Z = x−µ0
σ/
√
n
= 31.4−32.3

1.6/
√
40
= −3.56 <

−2.81 = Zα = Z0.01

Ans: Reject N.H.: H0 · µ0 = 32.3 from a T.T.T.

against A.H.: H1 : µ0  = 32.3

2. It has previously been recorded that the average

depth of ocean at a particular region is 67.4

fathoms. Is there reason to believe this at 0.01

L.O.S. if the readings at 40 random locations

in that particular region showed amean of 69.3

with s.d. of 5.4 fathoms?

Hint: Z = 69.3−67.4
5.4/

√
40
= 2.23 < 2.58= Zα/2 =

Z0.005

Ans: Accept H0 : µ0 = 67.4 against A.H.:

H1;µ0  = 67.4 by a T.T.T.

3. To determine whether the mean breaking

strength of synthetic fibre produced by a cer-

tain company is 8 kg or not, a random sample

of 50 fibres were tested yielding a mean break-

ing strength of 7.8 kg. If s.d. is 0.5 kg, test at

0.01 L.O.S.

Hint: Z = 78−8
0.5/

√
50
= −2.83 > −2.575 =

Zα/2 = Z0.005
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Ans: Reject H0 : µ = 8, accept A.H.: H1 : µ  = 8

by a T.T.T.

4. Can it be concluded that the average lifespan

of Indian is more than 70 years if a random

sample of 100 Indians has an average lifespan

of 71.8 years with a s.d. of 8.9 years.

Hint: Z = 71.8−70
8.9/

√
100
= 2.02 > 1.645 =

Zα = Z0.05 by right O.T.T.

Ans: Yes, average lifespan is more than 70 years.

5. A company producing computers states that

the mean lifetime of its computers is 1600

hours. Test this claim at 0.01 L.O.S. against

the A.H.: µ < 1600 hours if 100 computers

produced by this company has mean lifetime

of 1570 hours with s.d. of 120 h.

Hint: Z = (1570−1600)
120/

√
100

= −2.50 < −2.33 =
Z0.01 by left O.T.T.

Ans: Reject H0 i.e., claim is not tenable

6. Amanufacturer of tyres guarantees that the av-

erage lifetime of its tyres is more than 28000

miles. If 40 tyres of this company tested, yields

a mean lifetime of 27463 miles with s.d. of

1348 miles, can the guarantee be accepted at

0.01 L.O.S.?

Hint: Z = 27463−28000
1348/

√
40

= −2.52 < −2.33 =
Z0.01 by left O.T.T.

Ans: No, tyres run for < 28000 miles.

29.6 TESTOF HYPOTHESIS CONCERNING

TWO MEANS

Whenvariances σ 1 and σ 2 are knownor large

samples

Let x1 be the mean of a random sample of size n1
drawn from a population with mean µ1 and variance
σ 2
1 . Let x2 be the mean of an independent random

sample of size n2 drawn from another population
with meanµ2 and variance σ

2
2 . To test the hypothesis

for difference of means, consider the null hypothe-
sis µ1 − µ2 = δ = given constant. So when δ = 0,
there is no difference between the means i.e., the
two populations have the same means. If δ  = 0, the
means of the two populations are different. In these
cases, the test statistic will depend on the difference
between the sample means x1 − x2 and is given by

Z = (x1 − x2)− δ

σx1−x2

Here it is assumed that both samples are drawn from

normal populations with known variances.
HereZ follows standard normal distribution. If the

two populations are infinite then the variance of
the sampling distribution of the difference between
the sample means is

σ 2
x1−x2 =

σ 2
1

n1
+ σ 2

2

n2

Substituting we have the statistic for test concerning
difference between two means as

Z = (x1 − x2)− δ 
σ 2
1
n1
+ σ 2

2
n2

Note: When the two variances σ 2
1 and σ 2

2 are un-

known, they can be replaced by sample variances s21
and s22 provided both the samples are large (n1, n2 ≥
30). In this case the test statistic is

Z = (x1 − x2)− δ 
s21

n1
+ s22

n2

The critical regions for testing µ1 − µ2 = δ are:

1. A.H.: µ1 − µ2  = δ, Reject H0 if Z < −Zα/2 or

Z > Zα/2

2. A.H.: µ1 − µ2 > δ, Reject H0 if Z > Zα

3. A.H.: µ1 − µ2 < δ, Reject H0 if Z < −Zα.

The A.H. 2 and 3 are used to determine whether one

product (population) is better than (superior to) the

other product.

WORKED OUT EXAMPLES

Example 1: In a random sample of 100 tube lights

produced by company A, the mean lifetime (mlt) of

tube light is 1190 hours with standard deviation of

90 hours. Also in a random sample of 75 tube lights

from company B the mean lifetime is 1230 hours

with standard deviation of 120 hours. Is there a differ-

ence between themean lifetimes of the two brands of

tube lights at a significance level of (a) 0.05 (b) 0.01?
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Solution: LetXA,XB denote the lifetime (in hours)

of tube lights produced by company A and B re-

spectively. It is given that the mean lifetime of tube

lights of company A is XA = 1190, standard de-

viation for tube lights of A is sA = 90. Similarly

XB = 1230, sB = 120, nA = sample size of tube

lights fromA = 100, nB = sample size fromB = 75

1. Null hypothesis: H0 : µ1 − µ2 = δ = 0 i.e., no

difference.

2. Alternate hypothesis: H1 : µ1 − µ2  = 0 i.e.,

there is difference.

3. L.O.S.: α : (a) 0.05 (b) 0.01.

4. Critical region: two tailed test.

If

a. −1.96 < Z < 1.96 Accept N.H.

Fig. 29.17

b. −2.57 < Z < 2.57 Accept N.H.

Fig. 29.18

5. Computation: µ
XA−XB

= µ
XA
− µ

XB
=

µA − µB = 0

σ
XA−XB

=
 
σ 2

XA

+ σ 2

XB

=
 
s2A

nA
+ s2B

nB

=
 
(90)2

100
+ (120)2

75
= 16.5227

Test statistic:

Z= (XA−XB )− (µA−µB )
σ
XA −XB

= 1190− 1230

16.5227
=− 2.421

6. Decision:

a. For α = 0.05

Reject N.H. since Z = −2.421 < −1.96 =
Zα/2 = Z0.025 i.e., yes, there is difference be-

tween themean lifetimes of the tube lights pro-

duced by A and B.

b. For α = 0.01

Accept N.H. since Z = −2.421 lies in the ac-
ceptable region −2.57 < Z < 2.57 i.e., no,

there is no difference between XA and XB .

Example 2: To test the effects a new pesticide on

rice production, a farm landwas divided into 60 units

of equal areas, all portions having identical qual-

ities as to soil, exposure to sunlight etc. The new

pesticide is applied to 30 units while old pesticide

to the remaining 30. Is there reason to believe that

the new pesticide is better than the old pesticide if

the mean number of kgs of rice harvested / unit us-

ing new pesticide (N.P.) is 496.31 with s.d. of 17.18

kgs while for old pesticide (O.P.) is 485.41 kgs and

14.73 kgs. Test at a level of significance (a) α = 0.05

(b) 0.01.

Solution: Let the subscripts N and O denote re-

spectively the quantities related the new pesticide

and old pesticide.

1. N.H.: H0 : µN − µ0 = δ = 0 i.e., no difference.

2. A.H.: H1 : µN − µ0 = δ > 0 i.e., new pesticide

is superior to (better than) old pesticide.

3. L.O.S.: (a) α = 0.05 (b) 0.01.

4. Critical region: Right one tailed test.

Case a: α = 0.05

Fig. 29.19

Accept N.H. if Z < Zα = Z0.05 = 1.64

Case b: α = 0.01

Accept N.H. if Z < Zα = Z0.01 = 2.33
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Fig. 29.20

5. Computation: Given data is

XN = 496.31, X0 = 485.41, sN = 17.18, s0 =
14.73, nN = 30, n0 = 30

Test statistic is

Z = (XN −X0)− (µN − µ0)

σ
XN−X0

= (XN −X0)− 0 
(sN )

2

nN
+ (s0)

2

n0

= (496.31− 485.41)− 0 
(17.18)2

30
+ (14.73)2

30

= 2.63814

6. Decision

Case a: α = 0.05

Reject N.H. since Z = 2.638 > Zα = Z0.05 =
1.64 i.e., accept A.H. or new pesticide is supe-

rior to old pesticide.
Case b: α = 0.01

Reject N.H. since Z = 2.638 > Zα = Z0.01 =
2.33 i.e., Accept A.H. or new pesticide is better

than the old pesticide.

EXERCISE

1. A random sample of 40 ‘geyers’ produced by

company A have a mean lifetime (mlt) of 647

hours of continuous use with a s.d. of 27 hours,

while a sample 40 produced by another com-

pany B have mlt of 638 hours with s.d. 31

hours. Does this substantiate the claim of com-

panyA that their ‘geyers’ are superior to those

produced by company B at (a) 0.05 (b) 0.01

L.O.S.

Hint:N.H.:µA = µB = 0,A.H.:µA − µB >

0, reject N.H. if Z > 1.645.

Zcal =
(647− 638)− 0 
(27)2

40
+ (31)2

40

= 1.38, accept N.H.

Ans: a. No, there is no difference between ‘geyers’

produced by the two companies A and B.

b. Accept N.H. since 1.38 < Zα = 2.33

2. Test at 0.05 L.O.S. a manufacturer’s claim that

the mean tensile strength (mts) of a thread A

exceeds the mts of thread B by at least 12 kgs.

if 50 pieces of each type of thread are tested

under similar conditions yielding the following

data:

sample size mts s.d.

(kgs) (kgs)

Type A 50 86.7 6.28

Type B 50 77.8 5.61

Hint: H0 · µA − µB ≥ 12, H1 · µA − µB <

12, reject H0 if Z < Zα = −1.64
Z = (86.7−77.8)−12 

(6.28)2

50
+ (5.61)2

50

= −2.60, reject H0,

Accept µ1 − µ2 < 12.

Ans: Claim not tenable.

3. Test the N.H.: µA − µB = 0 against the A.H.:

µA − µB  = 0 at 0.01 L.O.S. for the following

data:

sample size mts s.d.

(kgs) (kgs)

Type A 40 247.3 15.2

Type B 30 254.1 18.7

Hint: Z = (247.3−254.1)−0 
(15.2)2

40
+ (18.7)2

30

= −1.62866,

Acceptable region: −2.58 < Z < 2.58,

Accept N.H.

Ans: Accept N.H. i.e., no difference between type

A and B

4. If random sample data show that 42 men earn

on the average x1 = 744.85 with s.d. s1 =
397.7 while 32 women earn on the average

x2 = 516.78 with s.d. s2 = 162.523, test at

0.05 level of significance whether the average
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income for men and women is same or not.

Hint: H0 : µ1 = µ2, H1 : µ1  = µ2,

Z = (744.85−516.78)−0 
158165.43

42
+ 26413.61

32

= 3.36

Since Z = 3.36 > 1.96 = Zα = Z0.05, Reject

N.H. H0.

Ans: Not same.

5. A company claims that alloying reduces resis-

tance of electric wire by more than 0.050 ohm.

To test this claim samples of standard wire and

alloyed wire are tested yielding the following

results:

Type of sample mean resistance s.d.

wire size (ohms) (ohms)

Standard 32 0.136 0.004

Alloyed 32 0.083 0.005

Can the claim be substantiated at 0.05 L.O.S.

Hint: H0 : µ1 − µ2 = 0.05, H1 : µ1 − µ2 >
0.05, Zα = Z0.05 = 1.645

Z = (0.136− 0.083)− (0.05) 
(0.004)2

32
+ (0.005)2

32

= 2.65,

Reject N.H. since Z = 2.65 > 1.645 = Z0.05

Ans: Data substantiate the claim.

6. To test the claim that men are taller than

women, a survey was conducted resulting in

the following data:

Gender sample size mean height s.d.

(cm) (cm)

Men 1600 172 6.3

Women 6400 170 6.4

Is the claim tenable at 0.01 L.O.S.

Hint: H0 : µ1 = µ2, H1 : µ1 > µ2,

Z = 172−170 
(6.3)2

1600
+ (6.4)2

6400

= 11.32

Reject H0 since Z = 11.32 > 2.33 = Zα =
Z0.01.

Ans: Yes, men are taller than women.

7. Test the claim that teen-age boys are heavier

than teen-age girls given the following infor-

mation:

Gender sample size mean weight s.d.

(kgs) (kgs)

Boys 50 68.2 2.5

Girls 50 67.5 2.8

Use L.O.S. (a) 0.05 (b) 0.01

Hint: Z = X1−X2
σ
X1−X2

= 68.2−67.5
0.53

= 1.32,

σ
X1−X2

=
 

(2.5)2

50
+ (2.8)2

50
= 0.53

Ans: a. Accept N.H. i.e., no difference between

mean weights.

b. Reject N.H. i.e., boys are heavier than girls.

29.7 TEST FOR ONE MEAN (SMALL

SAMPLE: t-DISTRIBUTION)

For “expensive” populations such as satelites, aero-
planes, nuclear reactors, super computers, etc. the in-
vestigation of characteristics of large samples (n ≥
30) is uneconomical, impractiable and time con-
suming. In all such cases, the size of the sam-
ple, drawn is small (i.e., n < 30). For σ un-
known and for small sample size, the test statis-
tic cannot be used. Then the decision criterion
is based on the t-distribution with ν = n− 1 de-
grees of freedom. Thus the test statistic for small
sample test (with σ unknown) concerning one
mean is

t = x − µ0

s/
√
n

This is also known as “one-sample t-test”. So the test

procedure for small samples is similar to the proce-

dure for large samples except that ‘t’ values are used

in place ofZ values and σ is replaced by s. For exam-

ple, when A.H. is µ  = µ0 then the C.R. is t < −tα/2
or t > tα/2 etc.

WORKED OUT EXAMPLES

Examples: An ambulance service company claims

that on an average it takes 20 minutes between a

call for an ambulance and the patient’s arrival at the
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hospital. If in 6 calls the time taken (between a call

and arrival at hospital) are 27, 18, 26, 15, 20, 32. Can

the company’s claim be accepted?

Solution: Here n = 6. Let X be the time taken be-
tween a call and patient’s arrival at hospital. From
given data X = average time taken

X = 27+ 18+ 26+ 15+ 20+ 32

6
= 138

6
= 23

standard deviation: s =
  

(Xi−X)2

n−1

s2 = (27−23)2+(18−23)2+(26−23)2+(15−23)2+(20−23)2+(32−23)2
6−1

s2 = 40.8, s = 6.38748

1. N.H.: X = 20 minutes

2. A.H.: X > 20

3. L.O.S.: α = 0.10

4. Critical region:

Reject N.H. if t > tα = 1.476 where t0.10 with

ν = n− 1 = 6− 1 = 5 degrees of freedom.

5. Calculation: t = X−µ
s/
√
n
= 23−20

6.39/
√
6
= 1.15

Fig. 29.21

6. Decision: Accept H0 since t = 1.15 < 1.476 =
t0.1 with 5 dof i.e., accept the claim of the com-

pany.

EXERCISE

1. Mean lifetime (mlt) of computers manufac-

tured by a company is 1120 hours with

standard deviation of 125 hours. (a) Test the

hypothesis thatmean lifetime of computers has

not changed if a sample of 8 computers has a

mlt of 1070 hours (b) Is there decrease in mlt?

Use (i) 0.05 (ii) 0.01 L.O.S.

Hint: N.H.: µ = 1120, A.H.: µ  = 1120,

t = 1070−1120
125/

√
8
= −1.1313, t0.005 with 7 dof is

±3.499, t0.025 with 7 dof is ±2.365:
Accept H0 in both cases.

Ans: a. Two-tailed test indicates that there is no rea-

son at either level to belive that mlt has

changed.

Hint: A.H.: µ < 1120 (i) t0.05 with 7 dof is

−1.895 (ii) t0.01 with 7 dof is −2.998.
b. One-tail test indicates no decrease in mlt at

either of the L.O.S.

2. Producer of ‘gutkha’, claims that the nico-

tine content in his ‘gutkha’ on the average is

1.83mg. Can this claim be accepted if a ran-

dom sample of 8 ‘gutkhas’ of this type have

the nicotine contents of 2.0, 1.7, 2.1, 1.9, 2.2,

2.1, 2.0, 1.6 mg?

Hint: x = 15.6
8
= 1.95, s =

√
0.3
7
= 0.20702,

t = 1.95−1.83
.207/

√
8
= 1.6395, tα = t0.05 with 7 dof is

1.895.

N.H.: µ = 1.83, A.H.: µ > 1.83

Ans: Yes, the producer’s claim can be accepted with

95% confidence.

3. In 1950 in India the mean life expectancy was

50 years. If the life expectancies froma random

sample of 11 persons are 58.2, 56.6, 54.2, 50.4,

44.2, 61.9, 57.5, 53.4, 49.7, 55.4, 57.0, does it

confirm the expected view.

Hint: H0: µ = 50, H1 : µ  = 50, x = 598.5
11
=

54.41, s = 4.859, t = 3.01, reject H0 since

t = 3.01 > 2.228 = t0.0025 with 10 dof.

Ans: No, the life expectancy is more than 50 years.

4. An auditor claims that he takes on an average

10.5 days to file income tax returns (I.T. re-

turns). Can this claim be accepted if a random

sample shows that he took 13, 19, 15, 10, 12,

11, 14, 18 days to file I.T. returns? Use (a) 0.01

(b) 0.05 L.O.S.

Hint: N.H.: µ = 10.5, A.H.: µ > 10.5,

x = 112
8
= 14, s =

 
72
7
= 3.207,
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t = 14−10.5
3.207/

√
8
= 3.0869, (a) t0.01 with 7 dof is

2.998 (b) t0.05 with 7 dof is 1.895.

Ans: Reject the claim, i.e., it takes more than 10.5

days to file I.T. returns.

5. If 5 pieces of certain ribbon selected at random

have mean breaking strength of 169.5 pounds

with s.d. of 5.7, do they confirm to the specifi-

cation mean breaking strength of 180 pounds.

Hint: H0: µ = 180, H1 : µ < 180,

L.O.S.: α = 0.01, t = −4.12,
tα = t0.01 with 4 dof is −3747, so reject N.H.

Ans: They do not confirm to specification i.e., mbs

is below.

6. In a random sample of 10 bolts produced by

a machine the mean length of bolt is 0.53 mm

and standard deviation 0.03mm. Canwe claim

from this that themachine is in proper working

order if in the past it produced bolts of length

0.50 mm? Use (a) 0.05 (b) 0.01 L.O.S.

Hint: H0 : µ = 0.50, H1 : µ  = 0.50,

t = x−µ
s

√
n− 1 = 0.53−0.50

0.03

√
10− 1 = 3.0

Acceptable region −2.26 < t < 2.26

Ans: a. At 0.05 L.O.S., by a T.T.T., reject H0.

b. At 0.01 L.O.S., by T.T.T., accept H0

Acceptable region −3.25 < t < 3.25.

29.8 SMALL-SAMPLE TEST CONCERNING

DIFFERENCEBETWEENTWOMEANS

Suppose the two sample sizesn1, n2 or both are small
(n < 30) and two samples are drawn from two nor-
mal populations with population variances σ 2

1 and

σ 2
2 unknown but equal (i.e., σ1 = σ2 = σ ). Then the

pooling varience σ 2 is given by

σ 2 =
 

(xi1 − x1)
2 + 

(x2i − x2)
2

n1 + n2 − 2

= (n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

where x, s21 and x2, s
2
2 are the mean and variance

of two samples of size n1 and n2 respectively. In a

test concerning the difference between the means for
small samples, the t-test statistic is

t = (x1 − x2)− δ

σx1−x2
with n1 + n2 − 2 degrees of freedom. This test is
also known as two-sample pooled t-test. Rewriting

t = (x1 − x2)− δ 
(n1 − 1)s21 + (n2 − 1)s22

 
n1n2(n1 + n2 − 2)

n1 + n2

with n1 + n2 − 2 dof.
The critical regions with this t-distribution can be

obtained in a similar way. For example when A.H. is
µ1 − µ2  = δ, then the critical region (Reject H0) is

t < −tα/2, n1 + n2 − 2 or t > tα/2, n1 + n2 − 2.

Note 1: The critical values are given when n1 +
n2 − 2 ≥ 30 (although n1 and n2 are small).

Note 2: The two-sample t-test can not be used if

σ1  = σ2.

Note 3: The two-sample t-test can not be used for

“before and after” kind of data, where the data is

naturally paired. In other words the samples must be

“independent” for two sample t-test.

WORKED OUT EXAMPLES

Example 1: In a mathematics examination 9 stu-

dents of class A and 6 students of class B obtained

the followingmarks. Test at 0.01 level of significance

whether the performance in mathematics is same or

not for the two classes A and B. Assume that the

samples are drawn from normal populations having

same variance.

A 44 71 63 59 68 46 69 54 48

B 52 70 41 62 36 50

Solution: Let XA and XB be the marks obtained
in mathematics of class A and class B. Then from
the given data XA =

 
xi

n1
= 522

9
= 58, XB = 311

6
=

51.83

s2A =
 

(Xi −X)2

n1 − 1
= 872

8
= 109, sA = 10.44,
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s2B =
804.8334

5
, sB = 12.687

Here nA = sample size from (population) class A = 9

nB = sample size from (population) class B = 6

1. N.H.: µ1 − µ2 = 0 i.e., no difference in perfor-

mance.

2. A.H.: µ1 − µ2  = 0 i.e., there is difference.

3. L.O.S.: α = 0.01.

4. Critical region: Two-tailed test. Reject N.H. if

t < −tα/2 or t > tα/2 where tα/2 = t0.005 with

n1 + n2 − 2 = 9+ 6− 2 = 13 degrees of free-

dom. From table, t0.005 is 3.012.

5. Computation: Test statistic

t = (XA −XB )− (µ1 − µ2) 
(nA − 1)s2A + (nB − 1)s2B

 
nAnB (nA + nB − 2)

nA + nB

t = (58−51.83)−0√
(9−1)(109)+(6−1)(160.96)

 
(9)(6)(13)

9+6 = 1.030.

6. Decision: Accept N.H. since

t = 1.03 < 3.012 = tα/2 = t0.005

i.e., there is no difference between the two classes

A and B in performance in mathematics exami-

nation.

Example 2: Under quality improvement pro-

gramme some teachers are trained by instruction

methodology A and some by methodology B. In a

random sample of size 10, taken from a large group

of teachers exposed to each of these two methods,

the following marks are obtained in an appropriate

achievement test

Method A 65 69 73 71 75 66 71 68 68 74

Method B 78 69 72 77 84 70 73 77 75 65

Assuming that populations sampled are approxi-

mately normally distributed having same variance,

test the claim that methodB is more effective at 0.05

level of significance.

Solution: Let subscripts A and B denote data per-

taining to methodology A and B respectively. Then

from the given data, nA = nB = 10,

XA = average marks obtained in appropriate
achievement test by teachers trained under method-
ology A is 700

10
= 70. Similarly, XB = 740

10
= 74

s2A =
102

9
= 11.33, sA = 3.366,

s2B =
262

9
= 29.11, sB = 5.3954

1. N.H.: H0 : µ1 − µ2 = 0 i.e., no difference in

teaching methodologies

2. A.H.: H1 : µ1 − µ2 < 0 i.e., method B is more

effective (superior) than method A

3. L.O.S.: α = 0.05

4. Critical region (left one tailed test)

Reject H0 if t < −tα = −t0.05 with nA + nB −
2 = 10+ 10− 2 = 18 degrees of freedom. From

table t0.05 = −1.734
5. Computation

t = (XA −XB )− (µ1 − µ2) 
(nA − 1)s2A + (nB−1)s2B

 
nAnB (nA + nB − 2)

nA + nB

= (70− 74)− 0√
9(11.33)+ 9(29.11)

 
(10)(10)(18)

10+ 10
= −1.989

6. Decision: Reject N.H. since t = −1.989 <
−1.734 = t0.05 i.e., accept the claim that method

B is more effective (better) than the method A.

Example 3: Out of a random sample of 9 mice,

suffering with a disease, 5 mice were treated with

a new serum while the remaining were not treated.

From the time of commencement of experiment, the

following are the survival times:

Treatment 2.1 5.3 1.4 4.6 0.9

No treatment 1.9 0.5 2.8 3.1

Test whether the serum treatment is effective in

curing the disease at 0.05 L.O.S., assuming that the

two distributions are normally distributed with equal

variances.

Solution: Let µT and µNT be the mean survival

times of the mice treated and not treated with serum

respectively.

1. N.H.: H0 : µT − µNT = 0 i.e., not effective
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2. A.H.: H1 : µT − µNT > 0 i.e., serum is effec-

tive

3. L.O.S.: α = 0.05

4. Critical region: Reject N.H. if z > t0.95,7 = 1.90

since the dof is ν = nT + nNT − 2 = 5+ 4−
2 = 7.

5. Computation: nT = 5, XT = 14.3
5
= 2.86

s2T =
15.532

4
= 3.883, sT = 1.9705,

nNT = 4, XNT =
8.3

4
= 2.075,

s2NT =
4.0875

3
= 1.3625,

sNT = 1.16726,

S2p =
(nT − 1)s2T + (nNT − 1)s2NT

nT + nNT − 2
=

S2p =
(5− 1)(1.9705)2 + (4− 1)(1.16726)2

5+ 4− 2

= 2.802, Sp = 1.674

t = (2.86− 2.075)− 0

1.674
 
1
5
+ 1

4

 = 0.6990 ≈ 0.7

6. Decision: Accept N.H. since t = 0.7 < 1.9 =
t0.95,7 i.e., serum treatment is not effective.

EXERCISE

1. Random samples of specimens of coal from

two mines A and B are drawn and their heat-

producing capacity (inmillions of calories/ton)

were measured yielding the following results:

Mine A: 8350, 8070, 8340, 8130, 8260

Mine B: 7900, 8140, 7920, 7840, 7890, 7950

Is there significant difference between the

means of these two samples at 0.01 L.O.S.

Hint:N.H.:µ1 − µ2 = 0, A.H.:µ1 − µ2  = 0,

t0.005 with 5+ 6− 2 = 9 dof is 3.250

Accept if −3.250 < t < 3.250, x1 = 41150
5
=

8230, x2 = 47640
6
= 7940

s21 = 63000
4
= 15750, s22 = 54600

5
= 10920,

t = 8230−7940√
63000+54600

 
5.6.9
11
= 4.19

Reject N.H. since t = 4.19 > t0.005 = 3.250.

Ans. Yes, there is significant difference.

2. To test the claim that substrate concentration

(S.C.) causes an increase in the mean velocity

(M.V.) of a chemical reaction by more than 0.5

m/l/30 minutes a study is conducted resulting

in the following data:

Reaction with No. of Mean Sample

S.C. of runs velocity s.d.

1.5 moles/litre 15 7.5 1.5

2.0 moles/litre 12 8.8 1.2

Is the claim tenable at 0.01 L.O.S. assuming

that the populations are normally distributed

with equal variances.

Hint: H0 : µ1 − µ2 = δ = 0.5, H1 : µ1 − µ2

> δ = 0.5, t0.01,25 = 2.485

S2p =
14(1.5)2 + 11(1.2)2

15+ 2− 2
= 1.8936,

t = (8.8− 7.5)− (0.5)

1.376

 
1
15
+ 1

12

= 1.50

Reject N.H. since t = 1.50 < 2.48 (Right

O.T.T.)

Ans. No, claim not tenable.

3. A study is conducted to determine whether the

wear of material A exceeds that of B by more

than 2 units. If test of 12 pieces of material A

yielded a mean wear of 85 units and s.d. of 4

while test of 10 pieces of material B yielded

a mean of 81 and s.d. 5, what conclusion can

be drawn at 0.05 L.O.S. Assume that popula-

tions are approximately normally distributed

with equal variances.

Hint: H0 : µ1 − µ2 = 2, H1 : µ1 − µ2 > 2,
t0.05 with 20 dof is 1.725

S2p =
11(16)+ 9(25)

12+ 10− 2
= 20.052,

t = (85− 81)− 2

4.478

 
1
12
+ 1

10

= 1.04
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Accept H0 since t = 1.04 < 1.725 = t0.05,20.

Ans. Wear of A does not exceed that of B by 2 units.

4. To determine whether vegetarian and non-

vegetarian diets effects significantly on in-

crease in weight a study was conducted yield-

ing the following data of gain in weight.

Vegetarian: 34, 24, 14, 32, 25, 32, 30, 24,

30, 31, 35, 25

Non- 22, 10, 47, 31, 44, 34, 22, 40,

vegetarian: 30, 32, 35, 18, 21, 35, 29

Can we claim that the two diets differ per-

taining to weight gain, assuming that samples

are drawn from normal populations with same

variance.

Hint: XV = 336
12
= 28, nV = 12, XNV = 450

15

= 30, nNV = 15

S2 = 71.6, t = XV−XNV 
S2

 
1
nV
+ 1
nNV

 = 28−30 
71.6

 
1
12
+ 1

15

 
= −0.609
Accept N.H.: µV = µNV against A.H.: µV  =
µNV at 0.05 L.O.S.

Since −0.609 > −2.06 and t0.05 at
12+ 15− 2 = 25 dof is 2.06

Ans. Vegetarian and non-vegetarian diets do not dif-

fer significantly as far as their effect on increase

in weight.

5. In a study on the influence of habitation, the

intelligent quotients (IQs) of 16 students from

urban areawas found to have amean of 107 and

s.d. of 10, while the IQs of 14 students from a

rural area showed a mean of 112 and s.d. 8.

Determine whether the IQs differ significantly

at (a) 0.01 (b) 0.05 levels.

Hint:

S2p =
n1s

2
1 + n2s

2
2

n1 + n2 − 2
= 16(10)2 + 14(8)2

16+ 14− 2
= 89.1136

t = 112− 107

9.44

 
1
16
+ 1

14

= 1.45

a. Accept H0 : µU = µR , Acceptable region

(−2.76, 2.76)

b. AcceptH0, since 1.45 lies in the acceptable

region (−2.05, 2.05)
Ans. No, habitation has influence on IQs.

6. To test the claim that application of pesticide

increases production of rice, a study was con-

ducted as follows. Out of 24 plots of equal ar-

eas, equal soil conditions, same exposure to

sunlight, 12 plots were treated with pesticides

while the remaining 12 plots were left un-

treated. The mean increase in rice production

was 4.8 kgs and s.d. of 0.40 kgs for treated plots

and 5.1 kgs mean and 0.36 s.d. for untreated

plots. Is there significant increase in rice pro-

duction due to pesticide application at (a) 0.01

(b) 0.05 L.O.S.

Hint:

S2 = 12(0.40)2 + 12(0.36)2

12+ 12− 2
= 0.157609

t = 5.1− 4.8

0.397

 
1
12
+ 1

12

= 1.85

t0.99 at 22 dof, right O.T.T. is 2.51

t0.95 at 22 dof, right O.T.T. is 1.72

Ans. (a) AcceptH0 : µ1 = µ2 (b) RejectH0, signif-

icant.

29.9 PAIRED-SAMPLE t-TEST

Paired observations arise in a very special experi-

mental situation where each homogeneous exper-

imental unit receives both population conditions.

As a result, each experimental unit has a pair of

observations, one for each population. Thus the

paired observations are on the same unit or matching

units.

Examples: To test the effectiveness of “insulin”

some 10 diabetic patients sugar level in blood is

measured “before” and “after” the insulin is injected.

Here the individual diabetic patient is the experimen-

tal unit and the two populations are blood sugar level

“before” and “after” the insulin is injected.
So for each observation is one sample, there is a

corresponding observation in the other sample per-
taining to the same character. Thus the two samples
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are not independent. Paired t-test is applied for n
paired observations (which are dependent) by taking
the (signed) differences d1, d2, . . . , dn of the paired
data. To test whether the differences d form a ran-
dom sample from a population with µD = dO use
large sample test (on Page 766) or one-sample t-test
(on Page 773) when sample is small (the one sam-
ple t-test in this case is known as the paired-sample
t-test). The test statistic is

d − µd

Sd/
√
n

with ν = n− 1 dof and d and S2
d are the mean and

variance of the differences d1, d2, . . . , dn.

WORKED OUT EXAMPLES

Examples: In a study of usefulness of yoga in

weight reduction, a random sample of 16 persons un-

dergoing yoga were examined of their weight before

(without) and after (with) yoga with the following

results:

Weight before 209 178 169 212 180 192 158 180 170 153 183 165 201 179 243 144

Weight after 196 171 170 207 177 190 159 180 164 152 179 162 199 173 231 140

Test whether yoga is useful in weight reduction at

0.01 level of significance.

Solution: Let µ be the mean of population of dif-

ferences,

1. N.H.: µ = 0 i.e., not useful.

2. A.H.: µ > 0 i.e., yoga is useful in weight reduc-

tion.

3. L.O.S.: α = 0.01.

4. Critical region: Right one tailed test.

Reject N.H. if t > t0.01 with 16− 1 = 15 degrees

of freedom. From table t0.01 = 2.602.

5. Calculation: differences di’s are

13, 7, −1, 5, 3, 2, −1, 0, 6, 1, 4, 3, 2, 6, 12, 4

x =mean of differences of sampled data=66

16
= 4.125

s2 = 247.73

15
= 16.516, s = 4.064

t = x − µ0

s/
√
n
= 4.125− 0

4.064/
√
16
= 4.06

6. Decision: Reject N.H. since t = 4.06 > 2.602 =
t0.01 i.e., yoga is useful in weight reduction.

EXERCISE

1. Use paired sample test at 0.05 level of signif-

icance to test from the following data whether

Weight Scale I 11.23 14.36 8.33 10.50 23.42 9.15 13.47 6.47 12.40 19.38

in gms Scale II 11.27 14.41 8.35 10.52 23.41 9.17 13.52 6.46 12.45 19.35

the differences of the means of the weights ob-

tained by two different scales (weighting ma-

chines) is significant.

Hint: x = − 0.2
10
= −0.02, s = 0.028674,

n = 10, t = −0.02−0
0.028/

√
10
= −2.21, tα = t0.05

with 9 dof is 1.833.

Ans. No significant difference in the two scales.

2. The average weekly losses of man-hours due

to strikes in an institute before and after a

disciplinary program was implemented are as

follows:

Before 45 73 46 124 33 57 83 34 26 17

After 36 60 44 119 35 51 77 29 24 11

Is there reason to believe that the disciplinary

program is effective at 0.05 level of signifi-

cance?

Hint: x = 5.2, s = 4.08, n = 10, t = 4.03,

t0.05 with 9 dof is 1.833.

Ans. Yes, program is effective.
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3. The pulsality index (P.I.) of 11 patients before

and after contracting a disease are given below.

Test at 0.05 level of significance whether there

is a significant increase of the mean of P.I.

values.

Before 0.4 0.45 0.44 0.54 0.48 0.62 0.48 0.60 0.45 0.46 0.35

After 0.5 0.60 0.57 0.65 0.63 0.78 0.63 0.80 0.69 0.62 0.68

Hint: x = 188
11
= 0.171, s = 0.065, n = 11,

t = 8.72, t0.05 with 10 dof is 1.812.

Ans. Yes, there is significant increase in P.I. values.

4. The following data gives the amount of andro-

gen present in blood of 15 deers before and

30 minutes after a certain drug in injected to

them.

Before 2.76 5.18 2.68 3.05 4.10 7.05 6.60 4.79 7.39 7.30 11.78 3.9 26 67.48 17.04

After 7.02 3.1 5.44 3.99 5.21 10.26 13.91 18.53 7.91 4.85 11.1 3.74 94.03 94.03 41.7

Test at 0.05 L.O.S. whether there is significant

change in the concentration levels of androgen

in blood.

Hint: x= 9.848, s= 18.474, t = 2.06, critical

region: t<−2.145 and t > 2.145 (with 14 dof).

Ans. Yes, there is difference inmean circulating lev-

els of androgen in the blood of deer.

5. The blood pressure (B.P.) of 5 women before

andafterintakeofacertaindrugaregivenbelow:

Before 110 120 125 132 125

After 120 118 125 136 121

Test at 0.01 L.O.S. whether there is significant

change in B.P.

Hint: x = 10
5
= 2, s = 5.477, t = 0.817,

t0.01 with 4 dof is 3.747.

Ans. No significant change in B.P.

6. Marks obtained in mathematics by 11 students

before and after intensive coaching are given

below:

Before 24 17 18 20 19 23 16 18 21 20 19

After 24 20 22 20 17 24 20 20 18 19 22

Test at 0.05 L.O.S. whether the intensive

coaching is useful?

Hint: x = −1, s = 2.296, t = −1.38,
t0.05 with 10 dof is 1.812.

Ans. Not useful.

29.10 TEST OF HYPOTHESIS: ONE

PROPORTION: SMALL SAMPLES

The quality control engineer wants to know the pro-

portion of defective products (items) in his industry,

a university the percentage of first classes and a

electronic component manufacturer the probability

that a componentworks for a certain period and soon.

In these cases, the observations on various items or

objects are classified into twomutually exclusive (di-

chotomus) classes (forming a binomial population).

LetX, the number of successes be a binomial ran-

dom variable. Let p be the parameter of the binomial

distribution. Then the test of hypothesis concerning

one proportion for small samples is as follows:

1. N.H.: H0 : p = p0 i.e., a proportion (percentage

or probability) equals some given constant p0.

2. A.H.: H1 : p  = p0 (or p < p0 or p > p0).

3. L.O.S.: α

4. Test statistic: Binomial variable X with p = p0.

5. Computation: Let x be the number of successes

in a sample of size n.

Compute p-value:

a. A.H.: p  = p0 :

P = 2P (X ≤ x when p = p0) if x < np0.

P = 2P (X ≥ x when p = p0) if x > np0

b. A.H.: p < p0 : P = P (X ≤ x when p = p0)

c. A.H.: p > p0 : P = P (X ≥ x when p = p0)

6. Decision: Reject N.H.: H0 if P ≤ α.
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WORKED OUT EXAMPLES

Example 1: If 6 out of 20 cigarette smokers ran-

domly chosen preferred ‘charminar’ cigarettes, test

the claim at 0.05 L.O.S., that 20% of the smokers

prefer ‘charminar’.

Solution:

1. N.H.: H0: Proportion of smokers preferring

‘charminar’ brand = p = 0.2.

2. A.H.: H1 : p  = 0.2.

3. L.O.S.: α = 0.05.

4. Test statistic: Let X be the discrete binomial ran-

dom variable which is the number of ‘charminar’

smokers with p = 0.2 and n = 20.

5. Computations: X = 6, np0 = (20)(0.2) = 4.
Since X = 6 > np0 = 4

P = 2 [probability that X ≥ 6 when p = 0.2]

= 2P (x ≥ 6 with p = 0.2)

= 2

 
1−

5 
X=0

b(X; 20, 0.2)

 

= 2[1− 0.8042] = 2(0.1958) = 0.3916.

Since P = 0.3916 > 0.05, accept H0 i.e., p = 0.2.

Example 2: Past experience shows that 40% of

Indian youth favored ‘cricket’. If in a random sample

of 15 Indian youth, 8 favoured cricket, is there reason

to believe that the proportionof Indianyouth favoring

cricket today has increased. Use 0.05 L.O.S.

Solution: Let X be discrete random variable: num-

ber of Indian youth favouring cricket.

1. H0 : p = 0.4

2. H1 : p > 0.4

3. α : 0.05

4. Binomial variable X with p = 0.4, n = 15.

5. Computation: X = 8, np0 = 15(0.4) = 16
... 8 = X > np0 = 6.

P = P (X ≥ 8 when p = 0.4) = 1− P (X ≤ 7)

= 1−
7 

X=0
b(X; 15, 0.4)

P = 1− 0.7869 = 0.2131 > 0.05.

6. Conclusion: Accept N.H.: p = 0.4 i.e., no, there

is no increase in the proportion of Indian youth

favouring cricket.

EXERCISE

1. To test the claim of a flat builder that mosquito

netswere installed in 70%of the flats, a random

survay was conducted and found that 8 out of

15 flats had mosquito nets. Is the claim valid at

0.10 L.O.S.

Hint:

P = 2P (X ≤ 8 when p = 0.7) = 2

8 
x=0

b(x; 15, 0.7)

= 2(0.1311) = 0.2622, x = 8 < 10.5 = np0

= (15)(0.7)

Ans. Accept H0, claim of the builder is valid since

P = 0.2622 > 0.10 by a T.T.T.

2. Test the N.H.: that a coin is fair at 0.03 L.O.S.

against an A.H. that heads occur less than 50%

of the time if 5 heads occur when it is tossed

20 times.

Ans. Reject N.H., i.e., coin is unpair (un-

balanced) since P = P (X ≤ 5, p = 0.5) =
5 

x=0
b(x; 20, 0.5) = 0.0207 < 0.03.

3. If 9 out 20 ‘pizza’ eaters like the native vari-

ety over the Italian, can the claim that 40% of

‘pizza’ eaters like native variety is tenable?

Hint: P = 0.4044 (use O.T.T.)

Ans. Accept the claim (i.e., claim is not refuted).

29.11 TEST OF HYPOTHESIS: ONE

PROPORTION: LARGE SAMPLE

Assume that sample size n is large. Then the binomial
distribution can be approximated by normal distribu-
tion with the parameters meanµ = np0 and variance
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σ 2 = np0q0. The test statistic for testing p = p0 is
given by

z = x − np0√
np0q0

where x is the number of successes in a sample of size
n and q0 = 1− p0. This statistic can also be written
as

z = P − p√
pq/n

where P = x
n
= proportion of successes in the sam-

ple, p = actual population proportion of successes.

As usual, the critical regions are

a. z < −zα/2 or z > zα/2 for A.H.: p  = p0

b. z > zα for A.H.: p > p0

c. z < −zα for A.H.: p < p0

WORKED OUT EXAMPLES

Example 1: If in a random sample of 600 cars

making a right turn at a certain trafic junction 157

drove into the wrong lane, test whether actually 30%

of all drivers make this mistake or not at this given

junction. Use (a) 0.05 (b) 0.01 L.O.S.

Solution: Let X be discrete random variable denot-

ing the number of cars driving into the wrong lane at

a junction.

1. N.H.: H0 : p = 0.3

2. A.H.: H1 : p  = 0.3

3. L.O.S.: (a) α = 0.05

(b) α = 0.01

4. Acceptable region:

 
a)−1.96 < Z < 1.96

b)−2.57 < Z < 2.57

 
5. Computation: µ = np = (600)(0.3) = 180,

σ =√npq =
 
600(0.3)(0.7)=

√
126= 11.225

157 in standard variable is 157−180
11.225

= −2.0489
6. Conclusion:

a. since −2.0489 < −1.96, reject N.H.
b. since −2.0489 > −2.57, accept N.H.

Example 2: Test the claim of a manufacturer that

95% of his ‘stabilizers’ confirm to ISI specifications

if out of a random sample of 200 stabilizers produced

by this manufacturer 18 were faulty. Use (a) 0.01

(b) 0.05 L.O.S.

Solution: Let p = probability that the stabilizers

are of ISI standard i.e., good

1. N.H.: H0 : p = 0.95

2. A.H.: H1 : p < 0.95

3. L.O.S. (a) α = 0.01 (b) 0.05

critical region (a) z < −2.33 (b) z < −1.645
4. If H0 is true, µ = np = (200)

 
95
100

 = 190,

σ = √npq =
 
200 · 95

100
· 5
100
= 3.082

5. Computation: 200− 18 = 182 in standard unit is
182−190
3.082

= −2.5957
6. Conclusion:

a. since z = −2.5957 < −2.33, reject N.H.
b. since z = −2.5957 < −1.645, reject N.H.
i.e., reject the claim of the manufacturer at both

levels using left O.T.T.

EXERCISE

1. If in a random sample of 200 persons suffer-

ing with ‘headache’ 160 persons got cured by a

drug, can we accept the claim of the manufac-

turer that his drug cures 90% of the sufferers.

Use 0.01 L.O.S.

Hint: µ = np = (200)(0.9) = 180,

σ = √npq = √200(.9)(.1) = 4.23

Ans. Reject N.H., claim is not tenable since z =
160−180

4.23
= −4.73 < −2.33 = zα = z0.01 by a

left O.T.T.

2. A student answers by guess 32 questions cor-

rectly in an examination with 50 true or false

questions. Are the results significant at (a) 0.05

L.O.S. (b) 0.01 L.O.S.

Hint: µ = np = (50)(0.5) = 25,

σ = √50(0.5)10.5 =
√
12.5 = 3.54
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N.H.: p = 0.5, student is guessing i.e., results

are due to chance, A.H.: p > 0.5

Ans. a. Reject N.H. since z = 32−25
3.54

= 1.98 >

1.645 = z0.05 by a right O.T.T.

b. Accept N.H. since z = 32−25
3.54

= 1.98 <

2.33 = zα = z0.01, by a right O.T.T.

3. If a random sample of 120 tractors produced

by a company 47 are defective, is the claim, by

the company that at most 30% of the tractors

are defective, tenable. Use 0.05 L.O.S.

Hint: N.H.: p = 0.3, A.H.: p > 0.3

Ans. RejectN.H., claimnot tenable (valid) since z =
47−120(0.3)√
12(0.3)(0.7)

= 2.191 > 1.645 = z0.05 by a right

O.T.T.

4. In a sample of 90 university professors 28 own

a computer. Can we conclude at 0.05 L.O.S.

that at most 1
4
of the professors own a com-

puter?

Ans. Accept N.H.: p = 1
4
against H1 : p > 1

4
since

z = 28−(90)(0.25)√
90(0.25)(0.75)

= 1.3388 < 1.645 = z0.05

by right O.T.T.

5. It is observed that 174 out of a random sample

of 200 truck drivers on highway during night

are drunk. Is it valid to state that at least 90%

of the truck drivers are drunk. Use 0.05 L.O.S.

Ans. Accept N.H.: p = 0.9 against A.H.: p < 0.9

since z = 174−(200)(0.9)√
200(.9)(.1)

= −1.41 > −1.645 =
z0.05 by a left O.T.T.

6. A hospital claims that at least 40% of the

patients admitted are for ‘emergency’ ward. Is

there reason to believe this claim if the records

shows that only 49 of 150 patients are for

‘emergency’ ward. Use 0.01 L.O.S.

Ans. Accept N.H.: p = 0.4 against p < 0.4 since

z = 49−(150)(0.4)√
150(.4)(.6)

= −1.833 > −2.33 = z0.01

by a left O.T.T.

29.12 TEST OF HYPOTHESIS:

TWO PROPORTIONS

Suppose there are two distinct populations A and B.

Let each item (member) of these two populations

belongs to two mutually exclusive classes depend-

ing on whether the item has (possess) an attribute c

(success) or not (failure).

Classes having

attribute c without c

(success) (failures) Total

Sample from

population A x1 n1 − x1 n1
Sample from

population B x2 n2 − x2 n2
Total x1 + x2 n1 + n2 − x1 − x2

Let x1 and x2 be the number of items having (pos-

sessing) attribute c (successes), in random samples

of sizes n1 and n2 drawn from the two populationsA

and B respectively. Then p1 = x1
n1

and p2 = x2
n2

are

the sample proportions. Let P1 and P2 be population

proportions of populations A and B respectively. To

determine whether the proportion of items having

attribute c (success) is same in the both the popula-

tions, test the null hypothesis.

H0 : P1 = P2

or H0 : P1 − P2 = 0

i.e., there is “no difference” between the two popula-

tion proportions, against the A.H.: P1  = P2 or A.H.:

P1 > P2 or A.H.: P1 < P2. For large samples (when

both n1, n2 ≥ 30), p1 and p2 are asymptotically

normally distributed and therefore the sampling dis-

tribution of differences in proportions (p1 − p2) will

be approximately normally distributed with mean

µp1−p2 = 0 and σp1−p2 =
 
p̂(1− p̂)

 
1
n1
+ 1

n2

 
.

Here an unbiased pooled estimate of the population
proportion p̂ is

p̂ = n1p1 + n2p2

n1 + n2
= x1 + x2

n1 + n2

obtained by pooling the data from both the samples.
Thus the z-value for testing p1 = p2 is

z = p1 − p2

σp1−p2
=

x1
n1
− x2

n2 
p̂(1− p̂)

 
1
n1
+ 1

n2

 
Using the critical points of the standard normal

curve, the critical regions are determined as before

depending on the appropriate alternative hypothesis.
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Test of Hypothesis: Difference

Between Proportions

Suppose the difference between two population pro-

portions equals to some constant δ. Then the test of

hypothesis consists of

N.H.: H0: P1 − P2 = δ

A.H.: H1: P1 − P2  = δ or P1 − P2 > δ or

P1 − P2 < δ and the test statistic

z =

 
x1

n1
− x2

n2

 
− δ    x1

n1

 
1− x1

n1

 
n1

+
x2
n2

 
1− x2

n2

 
n2

which for large samples is a random variable having

the standard normal distribution.

WORKED OUT EXAMPLES

Test of hypothesis: Two proportions

Example 1: Out of two vending machines at a ‘su-

per bazar’, the first machine fails to work 13 times in

250 trials and second machine fails to work 7 times

in 250 trials. Test at 0.05 L.O.S. whether the differ-

ence between the corresponding sample proportions

is significant.

Solution:

1. N.H.: H0 : p1 = p2 i.e., no difference

2. A.H.: H1 : p1  = p2 i.e., there is difference

3. L.O.S.: α = 0.05

4. Critical region: Reject H0 if

z < −zα/2 = −1.96 or if z > zα/2 = 1.96

5. Computations: x1 = 237, x2 = 243,
n1 = 250, n2 = 250

p̂ = x1 + x2

n1 + n2
= 237+ 243

250+ 250
= 24

25

z=
x1

n1
− x2

n2 
p̂(1− p̂)

 
1

n1
+ 1

n2

 

=
237

250
− 243

250 
24

25

 
1− 24

25

  
1

250
+ 1

250

 = −1.3698

6. Decision: Since z = −1.3698 lies between−1.96
and 1.96 accept H0 i.e., there is no significant

difference between the two vending machines.

Example 2: If 57 out of 150 patients suffering with

certain disease are cured by allopathy and 33 out of

100 patients with same disease are cured by home-

opathy, is there reason to believe that allopathy is

better than homeopathy at 0.05 L.O.S.

Solution: Let p1 and p2 be proportion of patients

cured by allopathy and homeopathy respectively.

1. N.H.: H0 : p1 = p2 i.e., no difference

2. A.H.: H1 : p1 > p2 i.e., allopathy is superior to

homeopathy

3. L.O.S.: α = 0.05

4. Criterion: Reject N.H. if z > 1.645 by a right

O.T.T.

5. Calculations: n1 = 150, x1 = 57, n2 = 100,
x2 = 33

p̂ = x1 + x2

n1 + n2
= 57+ 33

150+ 100
= 9

25
= 0.36

z=
x1

n1
− x2

n2 
p̂(1− p̂)

 
1

n1
+ 1

n2

 

=
57

150
− 33

100 
(0.36)(0.64)

 
1

150
+ 1

100

 = 0.807  0.81

6. Decision: N.H. can not be rejected or accept N.H.
since

z = 0.81 < 1.645 = zα = Z0.05

i.e., there do not appear to be any significant dif-

ference at 0.05 level between the two treatments

of allopathy and homeopathy.
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Test of hypothesis: Difference

between proportions

Example 3: A question in a true-false quiz is con-

sidered to be smart if it discriminates between intel-

ligent person (IP) and average person (AP). Suppose

205 of 250 IP’s and 137 of 250 AP’s answer a quiz

question correctly. Test at 0.01 L.O.S. whether for

the given question, the proportion of correct answers

can be expected to be at least 15% higher among IP’s

than among the AP’s.

Solution: Letp1 andp2 be the proportion of correct

answers by IP’s and AP’s respectively. Then

1. N.H.: p1 − p2 = δ

2. A.H.: p1 − p2 > δ = 15
100
= 0.15

3. L.O.S.: α = 0.01

4. CR: Reject H0 if z > zα = 2.33

5. Calculation:

z=

 
x1

n1
− x2

n2

 
− δ    x1

n1

 
1− x1

n1

 
n1

+
x2
n2

 
1− x2

n2

 
n2

=

 
205

250
− 137

250

 
− 15

100 
(.82)(.18)

250
+ (.548)(.452)

250

= 3.068

6. Decision: Reject H0 since z = 3.068 > 2.33 =
zα i.e., yes, the proportion of correct answers by

IP is 15% more than those by AP’s.

EXERCISE

Test of hypothesis: Two proportions

1. A study of TV viewers was conducted to find

the opinion about the mega serial ‘Ramayana’.

If 56% of a sample of 300 viewers from south

and 48% of 200 viewers from north preferred

the serial, test the claim at 0.05 L.O.S. that (a)

there is a difference of opinion between south

and north (b) ‘Ramayana’ is preferred in the

south.

Hint: z = 0.560−0.480
0.0456

= 1.75,

p̂ = n1p1+n2p2
n1+n2 = (300)(0.56)+(200)(.48)

300+200 ,

p̂ = 0.528, q = 1− p̂ = 1− .528 = .472,

σp1−p2 =
 
pq

 
1
n1
+ 1

n2

 
= 0.0456

Ans. a. Accept N.H. i.e., no significant difference

between north and south viewers since by a

T.T.T., z = 1.75 lies in (−1.96, 1.96).
b. Reject N.H. i.e., ‘Ramayana’ is preferred

in the south since z = 1.75 > 1.645 by right

O.T.T.

2. In a survey of A.C. machines produced by

company A it was found that 19 machines

were defective in a randomsample of 200while

for company B 5 were defective out of 100. At

0.05 L.O.S. is there reason to believe that (a)

there is significant difference in performance

of A.C. machines between the two companies

A and B (b) products of B are superior to prod-

ucts of A.

Hint: p̂ = n1p1+n2p2
n1+n2 = 200(.905)+100(.95)

200+100 =
0.92, q = 1− p̂ = 1− .92 = 0.08,

σp1−p2 =
 
pq

 
1
n1
+ 1

n2

 
= 0.033,

z = p1−p2
σp1−p2

= .905−.95
0.033

= −1.363636.
Ans. a. Accept N.H. i.e., no difference between

performance of A.C. machines since z =
−1.363636 lies in acceptable region (−1.90,
1.90).

b. Accept N.H. i.e., B is not superior (better)

in an A, by a left O.T.T. zα = z0.05 = −1.645.
3. In a random sample of 200 parents from urban

areas 120, while 240 of 500 parents from rural

areas preferred ‘private’ professional colleges,

can we conclude that parents from urban areas

prefer ‘private’ colleges at 0.025 L.O.S.

Hint: p̂1 = 120
200
= 0.6, p̂2 = 240

500
= 0.48,

p̂ = x1+x2
n1+n2 =

120+240
200+500 = 0.51,

z = 0.6−0.48 
(0.51)(0.49)

 
1

200
+ 1

500

 = 2.9.

Ans. Reject N.H. i.e., urban parents prefer ‘private’

colleges since z = 2.97 > zα = z0.025 = 1.96.
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4. If 48 out of 400 persons in rural area possessed

‘cell’ phones while 120 out 500 in urban area

can it be accepted that the proportion of ‘cell’

phones in the rural and urban area is same or

not. Use 5% L.O.S.

Hint:p1 = 48
300
= 3

25
,p2 = 120

500
= 6

25
, p̂ = 168

900

= 14
75
, z =

   3
25
− 6

25

    
14
75
· 61
75
·
 

1
400
+ 1

500

 = 4.8

Ans. Reject H0 since z = 4.8 > 1.96 = zα by a

T.T.T. with α = 0.05.

Test of hypothesis: Difference

between proportions

5. In a study of the effect of drugs on ‘cancer’,

two groups of 80 such patients were consid-

ered. One group was treated with allopathic

drug while the other group with homeopathic

drug. It was observed that 23 in the first group

and 41 in the second group were cured. At

0.05 L.O.S. test whether the true percentage

of patients cured is at least 8% less for those

who were treated by homeopathic drug?

Hint: p1 = Allopathy, p2 = Homeopathy,

N.H.: p1 − p2 = δ = 0.08 A.H.: p1 − p2 >

0.08, z =
 
57
80
− 39

80

 
− 8

100 
(.57)(.43)

80
+ (.39)(.61)

80

= 1.92358.

RejectH0 since z = 1.92358 > 1.645 = zα =
z0.05 by right O.T.T.

Ans. RejectH0 i.e., allopathy drug is more effective

or proportion of patients cured by homeopathy

is at least 8% less than those treated by allopa-

thy drug.

29.13 TEST OF HYPOTHESIS FOR

SEVERAL PROPORTIONS

Consider k binomial populations with parameters

p1, p2, . . . pk . To testwhether the population propor-

tions of these k populations are all equal, consider the

N.H.: p1 = p2 = . . . = pk , against A.H.: these pro-

portions are not all equal. Now draw k independent

random samples of sizes n1, n2, . . . , nk one from

each of the k populations. Let x1, x2, . . . xk denote

the number of items possessing the attribute (i.e.,

success)

Sample 1 Sample 2 . . . Sample k Total

Success x1 x2 . . . xk x

Failure n1 − x1 n2 − x2 . . . nk − xk n− x

Total n1 n2 . . . nk n

Here x and n denote the total number of successes
and total number of trials for all samples combined.
The expected cell frequencies eij are calculated by

e1j =
nj · x
n

e2j =
nj (n− x)

n

Test statistic concerning difference among propor-

tions is given by χ2 =
2 
i=1

k 
j=1

(oij−eij )2
eij

.

Reject N.H. if χ2 > χ2
α with (k − 1) dof.

WORKED OUT EXAMPLES

Example: Test whether there is significant differ-

ence at 0.05 level in the quality of teaching among

four engineering collegesA,B,C,D of a technolog-

ical university if the number of failures are 26, 23,

15, 32 respectively. Assume that each college has a

strength of 200 students.

Solution: Let p1, p2, p3, p4 be the proportion of

students who passed (successful) from the A, B, C,

D engineering colleges respectively.

1. N.H.: H0 : p1 = p2 = p3 = p4, i.e., no differ-

ence

2. A.H.: H1 : p1, p2, p3, p4 are not all equal

i.e., there is difference in quality of teaching.

3. L.O.S.: α = 0.05

4. Criterion: Reject N.H. ifχ2 > χ2
0.05 with k − 1 =

4− 1 = 3 dof. From table, χ2
0.05 with 3 dof is

7.815.
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5. Computation:

Engineering Colleges

A B C D Total

Success 174 177 185 168 704

Failure 26 23 15 12 76

Total 200 200 200 200 800
Grand

Total

eij = nj
x
n
, e2j = nj

(n−x)
n

so

e11 = 704
 
200
800

 = 176 = e12 = e13 = e14

e21 = 200− 176 = 24 = e22 = e23 = e24

χ2 =
2 
i=1

4 
j=1

(oij − eij )
2/eij

= (176− 174)2

176
+ (177− 176)2

176
+ · · ·+ (32− 24)2

24

= 4

176
+ 1

176
+ 81

176
+ 64

176
+ 4

24
+ 1

24
+81

24
+64

24

= 7.10

6. Decision:

Accept H0 since χ
2 = 7.10 < χ2

0.05 = 7.815

EXERCISE

1. A study was conducted to estimate the propor-

tion of wives who regularly watch TV ‘serials’

yielding the following data:

PG Graduate Illiterate

wives wives wives Total

Watch 52 31 37 120

Do not watch 148 119 113 380

Total 200 150 150 500

Is there reason to believe at 0.05 L.O.S. that

there is no difference among the true propor-

tions of wives with different educational back-

ground who watch TV ‘serials’.

Hint: e11 = 48, e12 = 36, e13 = 36, e21 =
152, e22 = 114, e23 = 114, χ2 = 1.3888 <

5.991 = χ2
0.05 with 3− 1 = 2 dof.

Ans. Accept N.H. i.e., no difference or wives watch

TV serials irrespective of their level of literacy.

2. Three cough syrups A, B, C were used on pa-

tients with cough with the following results:

Cough syrup

A B C Total

Cured 41 27 22 90

Not cured 79 53 78 210

Totals 120 80 100 300

Can we conclude whether there is significant

(at 0.05 level) difference among the proportion

of patients cured by the three brands A, B, C?

Hint: e11 = 36, e12 = 24, e13 = 30, e21 = 84,

e22 = 56, e23 = 70

Ans. There is no difference among the three brand

A,B,C in curing cough i.e., their effect is same,

or accept N.H. since χ2 = 4.575 < 5.991 =
χ2
0.05 with 3− 1 = 2 dof.

3. A survey was conducted to determine whether

three categories of employees prefer pension

scheme or not resulting the table given below

Non- Adminis-

Teaching teaching trative Totals

For pension 67 84 109 260

Against

pension 33 66 41 140

Totals 100 150 150 400

At 0.01 L.O.S. test whether the proportions

of employees favouring pension scheme are

same.

Hint: e11 = 65, e12 = 67.5, e13 = 97.5, e21 =
35, e22 = 52.5, e23 = 52.5.

Ans. Reject N.H., i.e., not same sinceχ2 = 9.392 >

9.21 = χ2
0.01 with 3− 1 = 2 dof.

4. If a can containing 500 dry fruits is selected at

random from each of three different companies

A, B, C of mixed dry fruits and there are 345,

313 and 359 cashew nuts respectively in each

of the cans, canwe conclude at 0.01 L.O.S. that

themixed dry fruits of three companies contain

equal proportions of cashew nuts.
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Hint: e11 = 339, e12 = 339, e13 = 339, e21 =
161 = e22 = e23.

Ans. Reject N.H. i.e., proportions of cashew nuts

are different since χ2 = 10.187 > χ2
0.01 with

3− 1 = 2 dof = 9.392.

29.14 ANALYSIS OF r ×c TABLES

(CONTINGENCY TABLES)

Amanifold classification is a classification inwhich

attributes are divided intomore than two classes (cat-

egories). Suppose attribute A is divided into r classes

A1, A2, . . . , Ar and another attribute B is divided

into c classes B1, B2, . . . , Bc. Then the various cell

frequencies can be expressed in the form of a table

known as r × c manifold contingency table where

Ai is the number of items possessing the attribute

Ai with i = 1, 2, . . . , r and Bj is the number of

items having attribute Bj with j = 1, 2, . . . , c and

oij known as observed frequencies denotes the num-

ber of items possessing both the attributesAi and Bj
(with i = 1, 2, . . . , r , and j = 1, 2, . . . , c). Here the

total frequency N =
r 
i=1

Ai =
c 

j=1
Bj .

B

A B1 B2 . . . Bj . . . Bc Row Total

A1 O11 O12 O1j O1c RT 1

A2 O21 O22 O2j O2c RT 2

...

Ai Oi1 Oi2 Oij Oic RT i

...

Ar Or1 Or2 Orj Orc RT r

Column

total CT1 CT2 CTj CTc N=
r 
i=1

Ai=
c 

j=1
Bj

HereRT andCTdenotes row totals and column totals

respectively also known as marginal frequencies.

Thus r × c table is expressed in matrix form with

r rows and and c columns containing mn cells with

cell frequenciesOij . These tables arise in essentially

two kinds of problems.

Test for independence (TFI)

In this problem ‘c’ samples fromone populationwith
each item are classified with respect to two (usually
qualitative) attributes. The row totals and column to-
tals are not fixed, but random. Only the grand to-
tal N is fixed. The null hypothesis consist of testing
whether the two attributes are independent. Then

pij = (prob of getting value belonging to ith row)×
(prob of getting a value belonging to jth column)

The alternative hypothesis is that the two attributes

are not independent (i.e., dependent).

Test for homogenity (TFH)

In this problem samples from several (c) populations
are considered with each trial permitting more than
two possible outcomes. Here both the marginal fre-
quencies i.e., row totals and column totals are fixed
beforehand. To test whether an attribute is common
to all the populations i.e., to determine whether the
c populations are “homogeneous” with respect to an
attribute, consider the null hypothesis

N.H.: pi1 = pi2 = · · · = pic

for i = 1, 2, . . . r i.e., probability of obtaining an ob-

servation in the rth row is the same for each column

i.e.,
r 
i=1

pij = 1 for each column.

The alternate hypothesis is p’s are not all equal for

at least one row (i.e., non homogeneous).
In either of the problems the expected cell fre-

quencies denoted by eij are calculated by

eij =



(total observed frequencies in the jth column)×
(total observed frequencies in the rth row)÷
(total of all cell frequencies)

i.e., eij =
(column total)× (row total)

grand total

Statistic for analysis of r × c tables is

χ2 =
r 
i=1

c 
j=1

(Oij − eij )
2

eij

with (r − 1)(c − 1) dof.

Reject N.H. if the calculated value of test statistic

χ2
cal or simplyχ2 exceedsχ2

α with (r − 1)(c − 1) dof.
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i.e.,

Reject N.H. if χ2 > χ2
α

WORKED OUT EXAMPLES

Test for independence (categorical data)

Examples: Test the hypothesis at 0.05 L.O.S. that

the presence or absence of hypertension (HT) is

independent of smoking habits from the following

experimental data on 180 persons

Non Moderate Heavy

smokers smokers smokers

HT 21 36 30

No HT 48 26 19

Solution:

1. N.H.: H0: Hypertension and smoking habits are

independent.

2. A.H.: H1: Hypertension and smoking habits are

not independent.

3. L.O.S.: α = 0.05.

4. Criterion: Reject N.H. if χ2 > χ2
0.05 with

ν = (r − 1)(c − 1) = (2− 1)(3− 1) = 2 dof.

From table χ2
0.05 = 5.991

5. Computations:

e11 = 69
 
87
180

 = 33.35, e12 = 62
 

87
180

 =
29.97, e21 = 35.65, e22 = 32.03 etc.

χ2 = (21−33.35)2
33.35

+ (36−29.97)2
29.97

+ · · · +
(19−25.32)2

25.32
= 14.4644

6. Conclusion: Reject N.H. since χ2 = 14.46 >

5.99 = χ2
0.05 i.e., Hypertension and smoking

habits are dependent (i.e., not independent).

EXERCISE

Test for independence

1. A study was conducted to determine whether

physical handicapness (P.H.) affects the per-

formance of worker’s in an industry with the

following results:

Performance

Not

Good Satisfactory satisfactory Total

Blind 21 64 17 102

Deaf 16 49 14 79

No handicap 29 93 28 150

Total 66 206 59 331

Test the claim that handicaps have no effect on

performance at 0.05 L.O.S.

Hint: e11 = 20.34, e12 = 63.5, e13 = 18.18,

e21 = 15.75, e22 = 49.17, e23 = 14.08, e31 =
29.90, e32 = 93.35, e33 = 26.74

χ2 = .19472 ≈ .195 < 9.488 = χ2
0.05 with

(3− 1)(3− 1) = 4 dof.

Ans. Accept N.H. i.e., Handicaps have no effect on

performance or performance and handicaps are

independent.

2. The following ‘police’ records shows the type

of crime in four regions of a country.

Type of crime

Physical

Region assault Murder Rape Homicide Total

East 162 118 451 18 749

West 310 196 996 25 1527

North 258 193 458 10 919

South 280 175 390 19 864

Total 1010 682 2295 72 4059

Determine whether the incidence of crime

depended on the region. Use 0.01 L.O.S.

Hint: e11 = 186.37, e12 = 125.85,
e13 = 423.49, e14 = 13.29, e21 = 379.96,

e22 = 256.57, e23 = 863.38, e24 = 27.09,
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e31 = 228.68, e32 = 154.41, e33 = 519.6,

e34 = 16.30, e41 = 215, e42 = 145.17,

e43 = 488.51, e44 = 15.33

Ans. Reject N.H. i.e., incidence of crime depends on

the region since χ2 = 124.5 > 21.666 = χ2
0.00

with (4− 1)(4− 1) = 9 dof

3. In order to determine whether ‘efficiency’ in

job depends on the ‘academic performance’,

400 persons were examined yielding the fol-

lowing data:

Hint: e11 = 16.8, e12 = 52.6, e13 = 42.6,

e21 = 25.0, e22 = 78.5, e23 = 63.5, e31 =
18.2, e32 = 56.9, e33 = 45.9

Ans. Yes, there is dependence between ‘effi-

ciency’ in job and academic performance

since χ2 = 20.34 > 13.277 = χ2
0.01 with

(3− 1)(3− 1) = 4 dof (Reject N.H.)

WORKED OUT EXAMPLES

Test for homogeneity

Examples: A study was conducted with parents

200 from north, 150 from south, 100 from east and

100 from west regions of India to determine the cur-

rent attitudes about prayers in public schools. Test

at 0.01 L.O.S. for homogenity of attitudes of par-

ents among the four regions concerning prayers in

the public schools.

Solution:

1. N.H.: p1 = p2 = p3 = p4

2. A.H.: Not all Pi’s are equal

3. L.O.S.: 0.01.

4. Critical region: Reject N.H.H0 ifχ
2 > χ2

0.01 with

ν = (3− 1)(4− 1) = 6 dof i.e., if χ2 > 16.812

5. Computation:

Region

Attitude

of parents North South East West Total

Favour 65 (74.55) 66 (55.90) 40 (37.27) 34 (37.27) 205

Oppose 42 (53.45) 30 (40.09) 33 (26.72) 42 (26.72) 147

No opinion 93 (72) 54 (54) 27 (36) 24 (36) 198

Total 200 150 100 100 550

χ2 =
3 
i=1

4 
j=1

(Oij − eij )
2

eij

= (65− 74.55)2

74.55
+ · · · + (24− 36)2

36

= 31.11636 ≈ 31.17

6. Decision: Reject N.H. H0 since χ2 = 31.17 >

16.812 = χ2
0.01 with 6 dof i.e., attitudes of parents

about prayer are not homogeneous (not same).

EXERCISE

Test for homogenity

1. In order to find out the opinion about “ragging”

in professional colleges, a campus study was

conducted with the following results.

Adminis-

Ragging Faculty Students tration Total

For 82 70 62 214

Against 93 62 67 222

Undecided 25 18 21 64

Total 200 150 150 500

Determine whether the three categories of per-

sons are homogeneousw.r.t. their opinions per-

taining to “ragging”.

Hint: e11 = 85.6, e12 = 64.2, e13 = 64.2,

e21 = 88.8, e22 = 66.6, e23 = 66.6, e31 =
25.6, e32 = 19.2, e33 = 19.2

Ans. Accept N.H.: homogeneous opinion since
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χ2 = 1.53 < 9.488 where χ2
0.05 with

ν = (3− 1)(3− 1) = 4 dof is 9.488.

2. To determine the effectiveness of drugs against

“aids”, three types of medicines, allopathic,

homeopathic and ayurvedic were tested on 50

persons with the following results.

Hint: e11 = 11, e12 = 11, e13 = 11, e21 = 29,

e22 = 29, e23 = 29, e31 = 10, e32 = 10, e33 =
10.

Ans. Accept N.H. since χ2 = 3.8100313 <

9.488 = χ2
0.05 with ν = (3− 1)(3− 1) = 4

dof i.e., three drugs are equally effective or

the drugs are homogeneous.

3. The following table shows the opinions of vot-

ers before and after a presidential election.

Before After Total

For ruling party 79 91 170

For opposition 84 66 150

Undecided 37 43 80

Total 200 200 400

Test the claim at 0.05 L.O.S. whether there has

been a change of opinion of voters.

Hint: e11 = e12 = 85, e21 = e22 = 75, e31 =
e32 = 40

Ans. No, there is no change in opinionof voters since

χ2 = 3.46 < 5.991 = χ2
0.05 at

(3− 1) (2− 1) = 2 dof (i.e., accept N.H.)

29.15 GOODNESS OF FIT TEST

To determine if a population follows a speci-

fied known theoretical distribution such as normal

distribution, binomial distribution or Poisson distri-

bution, the χ2 (chi-square) test is used to assertion

how closely the actual distribution approximate the

assumed theoretical distributions. This test, which

is based on how good a fit is there between the

observed frequencies (oi from the sample) and the

expected frequencies (ei from the theoretical distri-

bution) is known as “goodness-of-fit-test”. This test

judges whether the sample is drawn from a certain

hypothetical distribution i.e., whether the observed

frequencies follow a postulated distribution or not.

The statistic χ2 is a measure of the discrepancy

existing between the observed and expected (or the-

oretical) frequencies.

Statistic for test of

“goodness of fit”

 
χ2 =

k 
i=1

(oi − ei )
2

ei
(1)

Here Oi and ei are the observed and expected fre-

quencies of the ith cell (or class interval), such that 
Oi =

 
ei = N = Total frequency.

k is the number of cells or class intervals, in the

given frequency distribution.

Here χ2 is a random variable which is very closely

approximated with ν degrees of freedom.

Degrees of Freedom (dof) for

χ2-Distribution

Let k be the number of terms in the formula (1) for

χ2. Then the dof for χ2 is:

a. ν = k − 1 if ei can be calculated without having

to estimate population parameters from sample

statistics.

b. ν = k − 1−m if ei can be calculated only by

estimating m number of population parameters

from sample statistics.

Examples:

i. B.D.: p is the parameter, m = 1,

ν = k − 1−m = k − 1− 1 = k − 2

ii. P.D.: λ is the parameter, m = 1, ν = k − 2

iii. N.D.: µ, σ are two parameters, m = 2,

ν = k − 1− 2 = k − 3
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Test for Goodness-of-Fit

1. N.H.: good-fit exists between the theoretical dis-

tributionandgivendata (ofobserved frequencies).

2. N.H.: no good fit.

3. L.O.S.: α (prescribed).

4. Critical region: Reject N.H. if χ2 > χ2
α with ν

dof, i.e., theoretical distribution is a poor fit.

5. Compute χ2 from (1).

6. Decision: Accept N.H. if χ2 < χ2
α . i.e., the theo-

retical distribution is a good fit to the data.

Note 1: If χ2 = 0 then Oi and ei agree exactly.

Note 2: when χ2 > 0.

a. χ2 small:Oi are close to ei , indicating “good” fit.

b. χ2 large: Oi differ considerably from ei indicat-

ing “poor” fit.

Conditions for Validity of χ2-Test

1. Sample size n should be large (i.e., n ≥ 50).

2. If individual frequencies Oi (or ei) are small say

Oi < 10 then combine neighbouring frequencies

so that combined frequency Oi (or ei) is ≥ 10.

3. The number of classes k should be neither too

small nor too large. In general 4 ≤ k ≤ 16.

WORKED OUT EXAMPLES

Example 1: Test for goodness of fit of a poisson

distribution at 0.05 L.O.S. to the following frequency

distribution:

Number of patients

arriving/hour: (x) 0 1 2 3 4 5 6 7 8

Frequency 52 151 130 102 45 12 5 1 2

Solution: Mean of the given frequency distribution
is

λ= 0×52+1×151+2×130+3×102+4×45+5×12+6×5+7×1+8×2
52+151+130+102+45+12+5+1+2

λ= 1010
500

= 2.02

The Poisson distribution that fits to the data with this
parameter λ = 2.02 is

P (x, λ) = e−λλx

x!
= e−2.02(2.02)x

x!
x = 0, 1, 2, . . . , 8

x: 0 1 2 3 4 5 6 7 8

P (x) 0.1326 0.26796 0.2706 0.1822 0.092 0.037 0.0125 0.0036 0.00091

Expected 66.32 133.94 135.32 91.116 46.01 18.5896 6.25 1.806 0.456

frequency ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
=500×P (x) 66 134 135 91 46 19 6 2 0

1. N.H.: H0: R.V. x has Poisson distribution with

λ = 2.02

2. A.H.: H1: R.V. does not have P.D.

3. L.O.S. α = 0.05

4. Critical region: Reject N.H. if χ2 > 14.067

where χ2
0.05 with k − 1−m = 9− 1− 1 = 9−

2 = 7 dof is 14.067 (since only one parameter λ

is needed to calculate expected frequencies)

5. Calculation:

χ2 =
 
i

(Oi − ei )
2

ei

= (52− 66)2

66
+ (151− 134)2

134
+ (130− 135)2

135

+ (102− 91)2

91
+ (45− 46)2

46
+ (12− 9)2

19

+ [(5+ 1+ 2)− (6+ 2+ 0)]2

8

χ2 = 9.2419

6. Decision: Accept N.H. i.e., Poisson distribu-

tion with λ = 2.02 is a good fit to the given

frequency distribution since χ2 = 9.2419 <

14.067 = χ2
0.05 with 7 dof.
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Example 2: Use 0.05 L.O.S. to test that the follow-

ing given data may be treated as a random sample

from a normal population

Class Frequency

5.0–8.9 3

9.0–12.9 10

13.0–16.9 14

17.0–20.9 25

21.0–24.9 17

25.0–28.9 9

29.0–32.9 2

Total 80

Solution: A.M. = x = 18.85, σ = s.d. = 5.5.

The normal distribution with these two parameters is

given below:

X Area Probability Expected

Class z = X−X
σ

under of frequency

Mark = X−18.85
5.5

N.C. a class = probx 80

4.95 −2.52 .4941 0.03 2.4

8.95 −1.8 .4641 .1064 8.512

12.95 −1.072 .3577 .221 17.67

16.95 −0.345 .1368 .285 22.8

20.95 0.3818 .1480 .216 17.304

24.95 1.109 .3643 .105 8.4

28.95 1.836 .4693

32.95 2.563 .4948 .0255 2.04

χ2 = (3− 2.4)2

2.4
+ (10− 8.5)2

8.5
+ (14− 17.7)2

17.7

+ (25− 22.8)2

22.8
+ (17− 17.3)2

17.3
+ (9− 8.4)2

8.4

+ (2− 2.04)2

2.04
= 1.4524

Cannot reject H0 i.e., accept H0 since χ2 =
1.4524 < 9.488 = χ2

0.05 with k − 1− 2 = 7− 3 =
4 dof (since 2 parameters X, σ are needed).

EXERCISE

1. Test for goodness of fit of a Poisson distribution

at 0.01 L.O.S. to the following observed data

of e-mails received:

No. of e-mails 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Observed

frequency 3 15 47 76 68 74 46 39 15 9 5 2 0 1

Hint: λ = 1814
400

= 4.535 ≈ 4.6

e0 = 4.0, e1 = 18.4, e2 = 42.8, e3 = 65.2,
e4 = 74.8, e5 = 69.2, e6 = 52.8, e7 = 34.8,
e8 = 20, e9 = 10, e10 = 4.8, e11 = 2.0, e12 =
0.8, e13 = 0.4

χ2 = (18− 22.4)2

22.4
+ (47− 42.8)2

42.8
+ · · ·

+ (8− 8.0)2

8.0
= 6.749.

Ans. P.D. with λ = 4.6 provides a good fit since

χ2 = 6.749 < 16.919 = χ2
0.01 with 9 dof.

2. Test for goodness of fit of a uniform distribu-

tion to the following data obtained when a die

is tossed 120 times.

Face 1 2 3 4 5 6

Observed 20 22 17 18 19 24

Expected 20 20 20 20 20 20

Use 0.05 L.O.S.

Hint: χ2 = (20−20)2
20

+ (22−20)2
20

+ (17−20)2
20

+
(18−20)2

20
+ (19−20)2

20
+ (24−20)2

20
= 1.7.

Ans. Uniform distribution is a good fit to the data.

Accept N.H. that die is balanced since χ2 =
1.7 < 11.070 = χ2

0.05 with 6− 1 = 5 dof.

3. Test for goodness of fit of normal distribution

to the following frequency table:

Class 1.45– 1.95– 2.45– 2.95– 3.45– 3.95– 4.45–

1.95 2.45 2.95 3.45 3.95 4.45 4.95

Frequency

Oi 2 1 4 15 10 5 3

Hint: e1 = 0.5+ 2.1+ 5.9 = 8.5, e2 = 10.3,
e4 = 7.0+ 3.5 = 10.5, e3 = 10.7

χ2 = (7− 8.5)2

8.5
+ (15− 10.3)2

10.3
+ (10− 10.7)2

10.7

+ (8− 10.5)2

10.5
= 3.05.
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Ans. Normal distribution with x = 3.5 and σ = 0.7

is a good fit since χ2 = 3.05 < 7.815 = χ2
0.05

for 3 dof (Here first three classes are clubbed to

have 7 frequency and last two classes to have

8 frequency, so k = 4 classes− 1 = 3.

4. Test for goodness of fit of a binomial distribu-

tion to the data given below:

Xi 0 1 2 3 4 5 6

Oi 5 18 28 12 7 6 4

Hint: µ = 2.4 = 6p, p = 2.4

ei : 4 15 25 22 11 3 0

Clubbing: ei 19 25 22 14

Ans. Reject N.H. i.e., B.D. is not a good fit since

χ2 = 6.39 > 5.99 = χ2
0.05 with 4− 2 = 2dof.

5. Test for goodness of fit of a Poisson distribution

to the following data:

X 0 1 2 3 4 5

Oi 275 138 75 7 4 1

Hint: λ = 330
500
= 0.66, e1 = 258, e2 = 171,

e3 = 56, e4 = 12.4, e5 = 2.05, e6 = 0.25,

χ2 = (275− 258)2

258
+ (138− 171)2

171
+ (75− 56)2

56

+ (12− 15)2

15
= 14.534.

Ans. P.D. is not a good fit since χ2 = 14.534 >

5.991 = χ2
0.05 with 2 dof.

6. Test for goodness of fit of normal distribution

to the following data:

Class 0– 100– 250– 500– 750– 1000– 1250–

100 250 500 750 1000 1250 1500

Frequency 7 9 19 12 8 5 4

Hint: e1 = 7.62, e2 = 6.32, e3 = 15.26, e4 =
16.17, e5 = 11.52, e6 = 5.24, e7 = 1.88, club

the last two classes.

Ans. Normal distribution with X = 541.8 and σ =
375.46 is a good fit to the given data sinceχ2 =
4.751 < 7.81 = χ2

0.05 with 6− 2− 1 = 3 dof.

29.16 ESTIMATION OF PROPORTIONS

Engineering problems dealing with proportions,

percentages or probabilities are one and the same

because a proportion multiplied by 100 is percent-

age and proportion with number of trials very large

is interpreted as probability.

Examples: Percentage of engineering students get-

ting first class, proportion of students gaining useful

employment or the probability that a first class grad-

uate is employed.

Sample proportion = X
n
whereX is the number of

times an event occurs in n trials.

Sample proportion is an unbiased estimator of the

of true proportion, the binomial parameter p.

Large Sample Confidence Interval for p

When n is large, normal approximation is used for
binomial distribution to construct confidence interval
for p from the inequality

−zα/2 <
X − np√
np(1− p)

< zα/2

by replacing x
n
by p. Thus the confidence interval for

p, when n is large, is

x

n
− zα/2

 
x
n

 
1− x

n

 
n

< p <
x

n
+ zα/2

 
x
n

 
1− x

n

 
n

.

Maximum Error of Estimate

The magnitude of error committed in using sample
proportion X

n
for true proportion p is given by the

maximum error of estimate E, where

E = zα/2

 
p(1− p)

n

Sample size:

a. when p is known, the sample size n is given by

n = p(1− p)
 zα/2
E

 2
b. when p is unknown, then

n = 1

4

 zα/2
E

 2
.
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One-sided Confidence Interval

For p→ 0 and n→∞, binomial distribution is
approximated with Poisson distribution with λ = np
and instead of the usual confidence interval, one-
sided confidence interval of the form

p <
1

2n
χ2
α

is used. Hereχ2
α is with 2(x + 1) degrees of freedom.

WORKED OUT EXAMPLES

Example 1: For an ABC insurance company, 84

insurance claims for “accident” cars out of a random

sample of 200 such claims, claim amount exceeded

Rs. 100000. Construct 95% confidence interval for

the true proportion of insurance claims filed against

the ABC company which exceeded Rs. 100000.

Solution: Heren= 200,x= 84, zα/2= z0.025= 1.96
(1− α)100% confidence interval for the true pro-
portion p of insurance claims for accident cars
exceeding Rs. 100000 amount is

x

n
− zα/2

 
x
n

 
1− x

n

 
n

< p <
x

n
+ zα/2

 
x
n

 
1− x

n

 
n

i.e.,
84

200
± 1.96

    84
200

 
1− 84

200

 
200

or Confidence interval: 0.352 < p < 0.488.

Example 2: Using the sample proportion as an esti-

mate of the true proportion of insurance claims in the

above example, find the maximum error of estimate

with 99% confidence.

Solution:

Maximum error= E = zα/2

 
x
n

 
1− x

n

 
n

= 2.575

    84
200

 
1− 84

200

 
200

= 0.0898671.

Example 3: To estimate the percentage of all

“lorry” drivers exceeding 60 kmph speed on NH 5,

determine the size of the smallest sample required to

be at least 99% confidence that the error of estimate

(sample percentage) is at most 3.5%.

Solution: Here E = 0.035, zα/2 = z0.005 = 2.575

when p is unknown, sample size n = 1
4

 zα/2
E

 2
n = 1

4

 
2.575

0.035

 2
= 1353.1887 ≈ 1353.

Example 4: If the percentage (of all drivers) p to

be estimated in the above example is known and is

at most 40%, how large a sample is required?

Solution: when p is known,

sample size n = p(1− p)
 zα/2
E

 2
Here p = 0.4, E = 0.035, zα/2 = 2.575 so

n = (0.4)(1− 0.4)

 
2.575

0.035

 2
= 1299.06 ≈ 1299.

Example 5: Construct an upper 95% confidence

limit for the probability that a rocket will explode

upon ignition, if it is found that in a random sample of

4000 such rocket firings, 10 exploded upon ignition.

Solution: Here: n = 4000, χ2
α = χ0.05 with

2(10+ 1) = 22 dof is 33.294. So

p <
1

2n
χ2
α =

1

2(4000)
· (33.294) = 0.00416175.

EXERCISE

1. Construct 95% confidence interval for the true

proportion of computer literates if 36 out of 100

persons from rural areas are computer literates.

Ans. 0.266 < p < 0.454

2. Find maximum error estimate with 99% confi-

dences using the sample proportion as an esti-

mate of the true proportion of parents if 136 of

400 parents for “privatization” of education.

Ans. E = 2.575

 
(.34)(.66)

400
= 0.061

3. Construct 99% confidence interval for the true

proportion of road accidents, if in a random

sample of 400 road accidents, 231 were due to

lack of traffic ‘sense’.
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Ans. C.I.: 231
400
± 2.575

 
(.5775)(.4225)

400
=

(.5139, .64109)

4. Find maximum error with 95% confidence

for the above Example 3 using the sample

proportion to estimate the corresponding true

proportion

Ans. M.E. = 1.96

 
(.5775)(.4225)

400
= 0.04840

5. Construct 98% confidence interval for the

probability that buyers are lured by ‘discount

sales’ if it is found that 204 buyers out of

random sample of 300 were lured by such

‘discount sales’

Ans. C.I.= 204
300
± 2.33

 
204
300

96
300

300
= (.61725, .74275)

6. Find the maximum error with sample pro-

portion as an estimate of true proportion of

ragging incidents if 69 out of a random sample

of 120 professional colleges reported cases of

ragging.

Ans. E = 1.96

 
(.575)(.425)

120
= 0.0884491

7. Determine the size of smallest sample required

to estimate an unknown proportion of blind

students to within a maximum error of 0.06

with at least 95% confidence.

Ans. n = 1
4

 zα/2
E

 2 = 1
4

 
1.96
.06

 2 = 266.77 ≈ 267

8. Given that the proportion of blind students to

be estimated in the above Example 7 is at least

0.75 what should be the required sample size.

Ans. n = p(1− p)
 
2α/2

E

 2
=

(0.75)(0.25)
 
1.96
.06

 2 = 200.08 ≈ 200

9. To estimate the true proportion of ‘substan-

dard’ computers from a large consignment

and to be at least 95% confident that the error

is at most 0.04, what should be the size of the

smallest sample required if (a) true proportion

does not exceed 0.12 (b) if true proportion is

not known

a. p = 0.12, n = (0.12)(0.88)
 
1.96
.04

 2 =
253.55 ≈ 254

b. n = 1
4

 
1.96
0.04

 2 = 600.25 ≈ 601

10. In a study conducted for 500 days, only on

4 days it was recorded that ‘lead’ content

in a famous river exceeded 200mg/cm.

Construct an upper 99% confidence limit for

the probability that the ‘lead’ content in the

river will exceed 200mg/cm on any one day.

Ans. p < 1
2n
χ2
α = 1

2(500)
χ2
0.01 with 2(4+ 1) dof

= 1
1000

34.805 = 0.034805.



Chapter30

Curve Fitting, Regression and
Correlation Analysis

INTRODUCTION

Approximating curve is the graph of data obtained

through measurement or observation. Curve fitting

is the process of finding the "best fit" curve since

different approximating curves can be obtained for

the same data. Least squares method is the best curve

fitting method and is easily implemented on comput-

ers than the other methods like method of moments,

method of group averages, graphicalmethod.We also

consider curve fitting by a sum of exponentials, lin-

ear weighted and non-linear weighted least squares

approximation.

In the unvariate case, a single variable say the

height of an Indian, is analyzed. Whereas in the bi-

variate case, two "numerical" variables are measured

resulting in a pair of measurements for each mem-

ber, say the height and weight of an Indian; the age

and the blood pressure of a person; amount spent

on advertising and volume of sales; intake of nutri-

ous food and I.Q of a student etc. In the correlation

analysis, one wish to find whether a (mathematical)

relationship exists and measure the strength of such

relationship. In the regression analysis, the exact na-

ture and form of mathematical equation (of the re-

lation) is obtaned. While the correlation coefficient

measures the "closeness", the "regression equation"

is used for prediction (or estimation).

30.1 CURVE FITTING

It is the method of finding equation of a curve that

approximates a given set of data. On the basis of this

mathematical equation, predictions can be made in

many statistical investigations.

Relationship

Relationship (or association) between two (or more)

variables may exist.

Examples: Blood pressure and age, rainfall and

crop yield, volume of a cube and length of its side,

consumption of food and weight gain, intake of drug

and heart rate, height and weight, income and medi-

cal care, nutrition and I.Q.

Scatter Diagram

To find a mathematical relationship (equation) be-

tween say two variables X and Y , plot the set

of given N paired observations of X and Y i.e.,

(X1, Y1), (X2, Y2), . . . , (XN, YN ) in the XY -plane.

The resulting set of points is known as a scatter dia-

gram.

Approximating Curve

It is a smooth curve that approximates the given set

of N data points plotted in the scatter diagram.
Collocational polynomial For unequally spaced
Xi’s N coefficients a0, a1, a2, . . . , aN−1 in the col-
locational polynomial

Y (X) = a0 + a1X + a2X
2 + · · · + aN−1XN−1

can be determined so that the given set of N data

points (X1, Y1), . . . (XN, YN ) lies (collocates) on the

curve (satisfies the above equation)

30.1
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Lagrange’s interpolation formula is used when

Xi’s are equally spaced. Collocation becomes labo-

rious when the number of data points N is large and

the empirical or observed data contains errors (i.e.,

when X or Y or both are random variables). In such

cases data may be approximated by some function

Y = f (x) containing few unknown parameters.

Best fitting curve bymethod of least squares Let
(X1, Y1), (X2, Y2), . . . (XN, YN ) be a given set of N

data points. Let di = Yi − Ŷi denotes the difference
between Yi and the corresponding value

Yi estimate = Yi est = Ŷi = f (Xi )

determined from the curve c: y = f (X) (Fig.

30.1). The di’s known as deviations, errors or resid-

uals which may be positive or negative or zero. Then

the Legendre’s principle of least squares (L.S.) or

least squares criteria states that, of all the curves ap-

proximating a given set of data points, the curve hav-

ing the least or minimum sum of the squares of the

deviations is the “best fitting” curve, i.e.,
N 
i=1

d2i the

residuals or error sum of squares, is minimum.

Such a curve is known as a least squares (L.S.)

curve. Thus the least squares criteria is the measure

“goodness of fit”. If the curve is a straight line fitted

according to least squares sense then it is known as

least squares straight line; if it is a parabola, it is

known as least squares parabola, etc.

Some standard approximating curves

1. Y = a0 + a1X straight line

2. Y = a0 + a1X + a2X
2

Fig. 30.1

parabola or quadratic curve

3. Y = a0 + a1X + · · · + aNXn

nth degree (polynomial) curve

4. Y = ABX exponential curve

5. Y = AXB geometric curve

6. Y = 1
a0+a1X

hyperbola.

Curve Fitting by Least Squares

(i) Least squares straight line

For a given set of N data points (X1, Y1),

(X2, Y2),. . . , (XN, YN ), assume that the straight line

Y = a0 + a1X = f (X) (1)

fits to the data in the least squares sense.
To determine the two unknowns a0 and a1 in (1),

use the L.S. criteria that
 

d2i is minimum, i.e.,

N 
i=1

d2i =
N 
i=1
(Yi − f (Xi ))

2=
N 
i=1
(Yi − a0 − a1Xi )

2 (2)

isminimum.Differentiating (2) partiallyw.r.t. a0 and

a1 and equating to zero, we get

∂
 

d2i

∂a0
= ∂

∂a0

  
(Yi − a0 − a1Xi )

2
 

= 2
 
(Yi − a0 − a1Xi )

2−1 · (−1) = 0

or
 
(Yi − a0 − a1Xi ) = 0

i.e.,

N 
i=1

Yi = Na0 + a1

N 
i=1

Xi (3)

Similarly,

∂

∂a1

  
d2i

 
= ∂

∂a1

  
(Yi − a0 − a1Xi )

2
 

= 2
 
(Yi − a0 − a1Xi )

2−1 · (−Xi ) = 0

or
 

YiXi = a0
 

Xi + a1
 

X2i (4)

Thus the two unknown parameters a0, a1 of (1) are

determined from the two equations 
Yi = Na0 + a1

 
Xi (3) 

XiYi = a0
 

Xi + a1
 

X2i (4)
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known as “normal equations”. In such a case Equa-

tion (1) represents a least squares straight line.

Note: Here and in the following normal equations,

the summation is for i = 1 to n.

(ii) Least squares quadratic curve (parabola)

Assume that

Y = a0 + a1X + a2X
2 (5)

approximates the data according to L.S. principle.

Then the unknown three parameters a0, a1, a2 are

determined from the following three normal equa-

tions obtained in a similar way as above. 
Yi = Na0 + a1

 
Xi + a2

 
X2i 

XiYi = a0
 

Xi + a1
 

X2i + a2
 

X3i 
X2i Yi = a0

 
X2i + a1

 
X3i + a2

 
X4i .

(iii) Nonlinear curves

Nonlinear curves (4), (5), (6) can be transformed to
a linear curve straight line. For the exponential curve
(4)

Y = ABX

taking logarithm on both sides, we get

ln Y = lnA + X lnB

or put Y ∗ = ln Y, lnA = A∗, lnB = B∗, then

Y ∗ = A∗ + BX

which is a straight line.

In a similar way by putting Y = 1
Y ∗ in (6), we get

Y ∗ = a0 + a1X which is linear and can be solved as

in i.

Note: Normal equations of the nth degree Equa-

tion (3) can be obtained formally by multiplying (3)

on both sides by 1, X,X2, . . . , XN and summing

upto N terms. This results in (N + 1) normal equa-
tions to determine the (N + 1) unknown parameters
a0, a1, a2, . . . , aN of (3).

Linear interpolation (Extrapolation) is to find Y cor-

responding to a value ofX included between two (or

outside or exterior to the) given values of X.

Result 1: Show that least squares line always

passes through the point (X, Y ).

Solution: Let

Y = a0 + a1X (1)

be the least square line (L.S.L.) of Y onX. Its normal
equation is  

Y = Na0 + a1
 

X

dividing by N,

 
Y

N
= a0 + a1

 
X

N

or Y = a0 + a1X (2)

i.e., L.S.L. passes through (X, Y ).

Similarly, for

X = b0 + b1Y (3)

dividing by N its normal equation, we get 
X

N
= b0 + b1

 
Y

N
or X = b0 + b1Y (4)

So L.S.L passes through (X, Y ).

Result 2: Prove that L.S.L. Y on X can be ex-

pressed as

y =
  

xy 
x2

 
x (5)

where x = X − X, y = Y − Y .

Solution: Let L.S.L. be Y = a0 + a1X. Since it

passes through (X, Y ), Y = a0 + a1X.
Subtracting

Y − Y = a1(X − X)

or y = a1x

So it is enough to show that a1 =
 

xy 
x2

Solving the normal equations 
Y = Na0 + a1

 
X 

XY = a0
 

X + a1
 

X2,

we get a1 = N
 

XY − X
 

Y

N
 

X2 − ( X)2
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Substituting X = x + X, Y = y + Y

a1 = N
 
(x+X)(y+Y )− (x+X)

 
(y+Y )

N
 
(x+X)2−

  
(x+X)

 2

= N
 
(xy+xY+yX+XY )− (xy+xY+yX+XY )

N
 
(x2+X

2
+2xX)−

  
x+NX

 2

=
N
 

xy+NY
 

x+NX
 

y+N2XY−
  

x+NX

   
y+NY

 

N
 

x2+2NX
 

x+N2X
2
−
  

x+ X

 2

Since
 

x =
 
(X − X) = 0, 

y =
 
(Y − Y ) = 0

a1 = N
 

xy + N2XY − N2XY

N
 

x2 + N2X
2 − N2X

2
=
 

xy 
x2

(6)

Result 3: Similarly, L.S.L. of X on Y can be ex-
pressed as

x =
  

xy 
y2

 
y

Result 4: Solving the normal equations

a0 =
 

X2
 

Y − X
 

YX

N
 

X2 − ( X)2
(7)

Introducing

SXX = N
 

X2 −
  

X
 2

SYY = N
 

Y 2 −
  

Y
 2

SXY = N
 

XY −
  

X
   

Y
 

we have

a1 = N
 

XY − X
 

Y

N
 

X2 − ( X)2
= SXY

SXX

a0 =
 

X2
 

Y − X
 

XY

SXX

or from Y = a0 + a1X, we get

a0 = Y − a1X where a1 = SXY

SXX
.

30.2 REGRESSION ANALYSIS

In regression analysis, the nature (or form) of actual

relationship if it exists, between two (or more vari-

ables) is studied by determining the mathematical

equation between the variables. It is mainly used

to predict or estimate one (the dependent) variable

(response) in terms of the other (independent)

variable(s), (regressor(s)). It is also used in opti-

mization, to determine the values of independent

variable(s) for which the dependent variable attains

maximum or minimum. Sir Francis Galton (1822–

1911) used regression analysis to study, whether

the offspring having either short or tall parents,

revert (regress) back to average height of the general

population.

Simple Regression

It establishes the relationship between two variables

(one dependent variable and one independent vari-

able). Inmultiple regression the number of variables

is more than two (with one dependent variable and

two or more independent variables).

Linear Regression

In linear regression, the relationship between the

variables, is linear and is represented by a straight

line, known as a regression line or the line of aver-

age relationship or prediction equation.

Regression Line of Y on X

Suppose in the study of relationship between two
variables X and Y if Y is dependent on X then the
simple linear relation

Y = a0 + a1X

is known as regression line of Y on X. Similarly, if
X depends on Y, then

X = b0 + b1Y

is known as regression line of X on Y.
In multiple regression the equation is

Y = f (X1, X2, X3, . . . , Xk)

In multiple linear regression, f is linear

i.e., Y = b0 + b1X1 + b2X2 + · · · + bkXk

In multiple nonlinear regression, f is nonlinear, for
example,

i.e., Y = b0+ b1X1+ b2X2+ b3X1X2+ b4X
2
1 + b5X

2
2 .
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30.3 INFERENCES BASED ON THE

LEAST SQUARES ESTIMATION

Simple linear regression model consists of

Y = α + βx +  

where α and β are unknown intercept and slope

parameters respectively. Here  , known as, random

error or random disturbance is assumed to be

normally distributed with mean E( ) = 0 and
variance σ 2. The quantity σ 2 is known as residual

variance or error variance. To estimate the regression

coefficients α and β, a regression line Ŷ = a0 + a1x

is fitted according to the principle of least squares.

Here Ŷ is the predicted or fitted or estimated value.

The least square estimates of α and β, are a0 and a1
given by (6) and (7) in 27.1. The slope of regression

line β is the change in mean of Y ’s corresponding

to a unit increase in x.

Result: Gauss-Markov theorem: The least

squares estimates a0 and a1 for the actual regression

coefficients α and β have the smallest variance and

hence most reliable among all unbiased estimators.

Confidence Intervals

A(1− α)100%confidence interval for the parameter
β is

a1 − tα/2s 
√
n√

Sxx

< β < a1 + tα/2s 
√
n√

Sxx

where tα/2 is the value of the t-distributionwithn − 2
degrees of freedom.

A (1− α)100% confidence interval for α is

a0 − tα/2s 

 
Sxx + (nx)2

nSxx
< α

< a0 + tα/2s 

 
Sxx + (nx)2

nSxx

Here s2 = (unbiased) estimate of σ 2

= Sxx · Syy − (Sxy )
2

n(n − 2)Sxx

Testing of hypothesis Statistics for inferences

about α and β.

For slope β:

t = a1 − β

s 

 
Sxx

n

For intercept α:

t = a0 − α

s 

 
nSxx

Sxx + (nx)2

Here t distribution is of n − 2 degrees of freedom.

WORKED OUT EXAMPLES

Curve fitting: Least square straight line

Example 1: Find a least squares straight line for

the following data:

X: 1 2 3 4 5 6

Y : 6 4 3 5 4 2

and estimate (predict) Y at X = 4 and X at Y = 4.

X Y X2 Y 2 XY

1 6 1 36 6

2 4 4 16 8

3 3 9 9 9

4 5 16 25 20

5 4 25 16 20

6 2 36 4 12

Total 21 24 91 106 75

so
 

X = 21 
Y = 24 

X2 = 91 
Y 2 = 106 
XY = 75
N = 6

Assume that the least squares straight line of Y onX

is Y = a0 + a1X.
Its normal equations are 

Y = Na0 + a1
 

X 
XY = a0

 
X + a1

 
X2

Substituting the values

24= 6a0 + 21a1
75= 21a0 + 91a1

Solving a0 = 5.7999, a1 = −0.51428571
Thus the least square straight line Y on X is

Y = 5.7999− 0.514X
Yestimate = Y (at X = 4) = 5.7999− 0.514(4) = 3.743
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Similarly, L.S.S.L. of X on Y is assumed to be

X = b0 + b1Y

where b0, b1 are obtained as solutions of the normal
equations  

X = Nb0 + b1
 

Y 
XY = b0

 
Y + b1

 
Y 2

or 21= 6b0 + 24b1
75= 24b0 + 106b1

Solving b0 = 7.1, b1 = −0.9 so

X = 7.1− 0.94 Y

Xestimate = X (at Y = 4) = 7.1− 0.9(4) = 3.5.

Least squares parabola

Example 2: Fit a least squares quadratic curve to

the following data

X 1 2 3 4

Y 1.7 1.8 2.3 3.2

Estimate Y (2.4)

Solution: Assume the L.S. quadratic curve
(parabola) as

Y = a0 + a1X + a2X
2

The normal equations are 
Y = Na0 + a1

 
X + a2

 
X2 

XY = a0
 

X + a1
 

X2 + a2
 

X3 
X2Y = a0

 
X2 + a1

 
X3 + a2

 
X4

Here N = 4

X Y X2 XY X3 X4 X2Y

1 1.7 1 1.7 1 1 1.7

2 1.8 4 3.6 8 16 7.2

3 2.3 9 6.9 27 81 20.7

4 3.2 16 12.8 64 256 51.2

Total 10 9.0 30 25.0 100 354 80.8

Substituting these sums into normal equations, we
have

9.0= 4a0 + 10a1 + 30a2
25= 10a0 + 30a1 + 100a2
80.8= 30a0 + 100a1 + 354a2

Solving a0 = 2, a1 = −0.5, a2 = 0.2
Thus the required L.S. quadratic curve (parabola) is

Y (X)= 2− 0.5X + 0.2X2

Estimate: Y (2.4)= 2− 0.5(2.4)+ 0.2(2.4)2 = 1.952

Inferences based on least square estimates

Example 3: Fit a least squares straight line

(L.S.S.L.) to the following data:

X: 2 7 9 1 5 12

Y : 13 21 23 14 15 21

Solution: Here n = 6,  X = 36,  Y = 107, 
X2 = 304,  

Y 2 = 2001,  
XY = 721,

X = 36
6

= 6, Y = 107
6

= 17.833

Sxx = n

n 
i=1

x2i −
  

xi

 2
= 6(304)− (36)2 = 528

Syy = n
 

y2i −
  

yi

 2
= 6(2001)−(107)2= 557

Sxy = n
 

xiyi −
  

xi

   
yi

 
= 6(721)− (36)(107) = 474

Regression coefficient b = Sxy

Sxx
= 474
528

= 0.8977
Intercept a = Y − bX = (17.8333)− (0.8977)6
= 12.447
L.S.S.L: Y = a + bX = 12.45+ 0.8977X.
Example 4: (a) For the above Example 3, find

the standard error of estimate s2 . (b) Test for null

hypothesis β = 1.2 against β < 1.2 at 0.05 level of

significance.

Solution: a. The standard error of estimate

s2 =Sxx · Syy − (Sxy )
2

n(n − 2)Sxx
= (528)(557)− (474)

2

6(6− 4)(528) = 5.47822

so s = 2.3405596 ≈ 2.341

b. 1. Null hypothesis: β = 1.2
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2. Alternate hypothesis: β < 1.2

3. Level of significance: α = 0.05
4. Critical region: Left One-tailed test.

Reject N.H. if t < −tα = −t0.05 with n − 2
degrees of freedom. From t-table t0.05 with 4

D.O.F. is 2.132.

Thus reject N.H. if t < −2.132
where t = b−β

s 

 
Sxx
n
.

5. Computation: n = 6, b = 0.8977, β = 1.2,
s = 2.341, Sxx = 528 so

t = 0.8977− 1.2
2.341

  
528

6

 
= −1.21137.

6. Decision: Accept N.H. (i.e., can not reject

N.H.) since t = −1.21137 > tα with 4 D.O.F.

= −2.132.

Example 5: Construct a 95% confidence interval

for (a) α and (b) β, for the above Example 3.

Solution:
a. 95% confidence limits for α are

a ± tα/2s 

 
Sxx + (nx)2

nSxx

= 12.45± (2.776)(2.34)
 
528+ ((6)(6))2
6(528)

= 12.45± 4.93
Thus the 95% confidence interval for α is

(7.52, 17.379)

Here for α = 0.05, tα/2 = t0.025 = 2.776 from table.
b. 95% confidence limits for β are

b ± tα/2s 

 
n

Sxx

= 0.8977± (2.776)(2.34)
 
6

528

= 0.8977± 0.6925
Thus the 95% confidence interval for β is

(0.205, 1.59).

EXERCISE

Inference based on the least squares

estimators

1. a. Predict Y atX = 5 by fitting a least squares
straight line to the following data:

X 2 4 6 8 10 12

Y 1.8 1.5 1.4 1.1 1.1 0.9

b. Construct a 95% confidence interval for α.

c. Test null hypothesis β = −0.12 against
β > −0.12 at 0.01 level of significance.

Hint: N = 6, X = 42, Y = 7.8, X2

= 364, XY = 48.6, Y 2 = 10.68
SXX = 420, SYY = 3.24, SXY = −36, s =
0.08017.

Ans. a. Y (X) = 1.9− 0.086X, Y (5) = 1.47
b. confidence interval for α (1.6933, 2.1067)

c. t = 3.58, reject null hypothesis
2. a. Estimate Y at X = 25 given that N = 33, 

Xi = 1104,  Yi = 1124,  XiYi =
41355,

 
X2i = 41086.

b. Determine a 95% confidence interval for

α, β.

c. Test the hypothesis β = 1.0 against β < 1.0.

d. Test the hypothesis thatα = 0 againstα  = 0
at 0.05 level of significance.

Ans. a. Y = 3.8296+ 0.9036X, Y (25) = 26.4196
b. 0.8012 < β < 1.0061,

0.2132 < α < 7.4461

c. reject N.H. β = 1.0; t = −1.92.
d. reject N.H. α = 0; t = 2.17.
Hint: SXX = 4152.18, SXY = 3752.09,
s = 3.2295.

3. a. Predict Y when X = 210 by fitting a
L.S.S.L. to the given data:

X 20 60 100 140 180 220 260 300 340 380

Y 0.18 .37 .35 .78 .56 .75 1.18 1.36 1.17 1.65

b. Determine 95% confidence interval for α

and β.
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c. Test N.H. β = 0 against β  = 0 at 0.05 level
of significance.

Hint:N = 10, X = 2000, X2= 532000, 
Y = 8.35, XY = 21754

SXX = 1320000, SYY = 21.3745,
SXY = 5054, S = 0.0253.

Ans. a. Y = 0.069+ 0.0038X, Y (210) = 0.867
b. −0.164 < α < 0.302,

0.00348 < β < 0.004119

c. reject N.H.: β = 0, (t = 8.36 > 2.306)

30.4 CURVILINEAR (OR NONLINEAR)

REGRESSION

In simple curvilinear (or nonlinear) regression, the

regression equation y = f (x) is non linear. Poly-

nomial, exponential, power, reciprocal functions are

some examples of nonlinear functions.

Polynomial Regression

Let Y = a0 + a1X + a2X
2 + · · · + aNXN

represent a polynomial in X of degree N .
For a given set of N pair of observations (Xi, Yi)

the unknowns a0, a1, a2, . . . , aN are estimated by
least square method by minimizing

d2i =
N 
i=1

 
Yi − (a0 + a1Xi + · · · + aNXN

i )

 2

This results in the following (N + 1) normal equa-
tions for the determination of (N + 1) unknowns
a0, a1, a2, . . . , aN .

Normal equations

 
Yi = Na0 + a1

 
Xi + a2

 
X2i +

· · · + aN
 

XN
i 

XiYi = a0
 

Xi + a1
 

X2i + a2
 

X3i +

· · · + aN
 

XN+1
i

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 

XN
i Yi = a0

 
XN

i + a1
 

XN+1
i + a2

 
XN+2

i

+ · · · + aN
 

X2Ni

Some special cases of polynomial curve are:

a. N = 2, parabola or quadratic curve
Y = a0 + a1X + a2X

2

(generally used for relationship between the pro-

duction of a crop and the quantity of fertilizer

applied/unit area).

b. N = 3, cubic curve
Y = a0 + a1X + a2X

2 + a3X
3

c. N = 4, quartic curve
Y = a0 + a1X + a2X

2 + a3X
3.

Note: When the exact functional form f (x) of the

regression equation is not known, polynomial curve

fitting is used.

The following simple curvilinear regression equa-

tions such as

a. Exponential growth curve: Y = ABX

b. Exponential decay curve: Y = AB−X

c. Power (geometric) curve: Y = AXB

d. Reciprocal curve: Y = 1
A+BX

can be transformed to simple linear regression equa-

tions by taking logarithms (or by substitutionY = 1
Y ∗

in case of (d)).
For example, taking logarithm Y = AXB , we get

ln Y = lnA + B lnX

putting Y ∗ = ln Y,X∗ = lnX, lnA = A∗, we have

Y ∗ = A∗ + BX∗

which is linear X∗ and Y ∗.

WORKED OUT EXAMPLES

Curvilinear regression

Exponential curve

Example 1: Estimate the chlorine residual in a

swimming pool 5 hours after it has been treated with
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chemicals by fitting an exponential curve of the form

Y = ABX to the following data:

No. of hours X 2 4 6 8 10 12

Chlorine residual

parts/million Y 1.8 1.5 1.4 1.1 1.1 0.9

Solution: Taking logarithm of the non-linear curve

Y = ABX,

we get ln Y = lnA + X lnB

Put Y ∗ = ln Y, lnA = A∗, lnB = B∗

Then Y ∗ = A∗ + B∗X
which is a linear equation inX. Its normal equations
are  

Y ∗ = NA∗ + B∗ X 
XY ∗ = A∗ X + B∗ X2

X Y Y ∗ = ln Y X2 XY ∗

2 1.8 0.5878 4 0.1756

4 1.5 0.4055 16 1.622

6 1.4 0.3365 36 2.019

8 1.1 0.0953 64 0.7264

10 1.1 0.0953 100 0.953

12 0.9 -0.10536 144 −1.26432

Total 42 1.415 364 5.26752

From the above table, N = 6, X = 42, Y ∗ =
1.415,

 
X2 = 364, XY ∗ = 5.2675. Thus

the normal equation are

1.415= 6A∗ + 42B∗

5.268= 42A∗ + 364B∗

Solving A∗ = 0.3038, B∗ = −0.02877
or A = 2.013, B = 0.936.
The required least squares exponential curve is

Y = 2.013(0.936)X

Prediction: chlorine content after 5 hours:

Y (X = 5) = 2.013(0.936)5 = 1.4462 parts/million

Geometric curve (power function)

Example 2: Fit a power function (geometric curve)

of the form Y = aXb to the following data and esti-

mate Y at X = 12:

Price X 20 16 10 11 14

Demand Y 22 41 120 89 56

Solution: Taking logarithm of the equation Y =
aXb, we get

ln Y = ln a + b lnX

put Y ∗ = ln Y,A∗ = ln a,X∗ = lnX, then
Y ∗ = A∗ + bX∗

X Y X∗ = Y ∗ = X∗2 X∗Y ∗
lnX ln Y

20 22 2.996 3.091 8.9760 9.2606

16 41 2.77 3.7135 7.6729 10.2864

10 120 2.30 4.7875 5.29 11.011

11 89 2.398 4.4886 5.7504 10.763

14 56 2.64 4.02535 6.9696 10.627

Total 13.107 20.106 34.66 51.95

So 20.106= 5A∗ + 13.107 b
51.95= 13.107A∗ + 34.66 b

SolvingA∗=10.254, a=28491.416, b= − 2.37948
Thus the least squares geometric curve is

Y = 28491X−2.38

Estimate:Y (X=12)=28491(12)−2.38=76.956≈77.

Reciprocal function

Example 3: Estimate Y at X = 5 by fitting a least
squares curve of the form Y = b

X(X−a)
to the follow-

ing data:

X: 3.6 4.8 6.0 7.2 8.4 9.6 10.8

Y : 0.83 0.31 0.17 0.10 0.07 0.05 0.04

Solution: Rewriting the given equation

1

Y
= −a

b
X + 1

b
X2
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Put Y ∗ = 1

Y
, B∗ = 1

b
, A∗ = −a

b

so Y ∗ = A∗X + B∗X2 = a2X + a3X
2

where a2 = A∗, a3 = B∗.

The corresponding normal equations are 
Y ∗ = a2

 
X + a3

 
X2 

XY ∗ = a2
 

X2 + a3
 

X3 
X2Y ∗ = a2

 
X3 + a3

 
X4

Here N = 7,
 

X = 50.4,
 

Y ∗ = 80 
X2 = 403,

 
X3 = 3484,

 
X4 = 31758 

XY ∗ = 709,
 

X2Y ∗ = 7893

So 709= 403a2 + 3484a3
7893= 3484a2 + 31758a3

Solving a2 = −7.5472, a3 = 1.0765 or
a = 2.00562, b = 3.77396
Required equation is

Y = 3.774

X(X − 2)
Now Y (5) = 0.2516.

EXERCISE

Parabola (quadratic curve)

1. Fit a least squares parabola to the following

data:

X: 0.0 0.2 0.4 0.7 0.9 1.0

Y : 1.016 0.768 0.648 0.401 0.272 0.193

Hint: n = 6, X = 3.2, X2 = 2.5, 
X3 = 2.144, X4 = 1.9234, 
Y = 3.298, XY = 1.1313, 
X2Y = 0.74421.

Ans. Y = 0.999− 1.006X + 0.210X2
2. Find the quadratic equation that fits the foll-

wing data by least squares method:

X: 1 2 3 4 5 6

Y : 13235 11528 11600 12747 14940 18400

Hint: n = 6, X = 21, X2 = 91, 
Y = 82450, XY = 307179, 
X3 = 441, X4 = 2275, 
X2Y = 1403599.

Ans. Y = 11953+ 531.5X + 153.3X2
3. Fit a least squares curve of the form Y = a0 +

a2X
2 for the following data:

X: 1 2.5 3.5 4.0

Y : 3.8 15.0 26.0 33.0

Hint: n = 4, X = 11, Y = 77.8, 
X2 = 35.5, X4 = 446.125, 
X2Y = 944.05.

Ans. Y = 2.27+ 1.93X2
4. Using least squaresmethod, fit a second degree

polynomial. Estimate Y at X = 6.5
X: 0 1 2 3 4 5 6 7 8

Y : 12.0 10.5 10.0 8.0 7.0 8.0 7.5 8.5 9.0

Hint: n = 9, X = 36, X2 = 204, 
X3 = 1296, X4 = 8772, Y = 80.5, 
XY = 299, X2Y = 1697.

Ans. y = 12.2− 1.85X + 0.183X3, Y (6.5) = 7.9

Exponential curve

5. Fit an exponential curve of the formY = AeBX

for the following data:

X: 1 2 3 4

Y : 7 11 17 27

Ans. Y = 4.48e0.45X
6. Predict the mean radiation dose at an altitude

of 3000 feet by fitting an exponential curve to

the given data:

Altitude x 50 450 780 1200 4400 4800 5300

Dose of

radiation y 28 30 32 36 51 58 69

Ans. Y = 4.26737e1.000067X
(or ln Y = 1.4512+ 0.000067X)
Y (at X = 3000) = 44.9
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7. Estimate Y at X = 7 by fitting Y = ABX to

the data below:

Number of

hours X 0 1 2 3 4 5 6

No. of bacteria/

unit volume Y 32 47 65 92 132 190 275

Ans. Y = 32.14(1.427)X, Y (7) = 387.3
8. Fit an exponential curve by least squares

X: 1 2 5 10 20 30 40 50

Y : 98.2 91.7 81.3 64.0 36.4 32.6 17.1 11.3

Estimate Y when X = 25.
Ans. Y = 100(0.96)X, Y (25) = 33.9

Geometric curve: Y = AXB

9. Estimate γ by fitting the ideal gas law

PV γ = c to the following data:

Pressure P

(lb/in2) (Y ) 16.6 39.7 78.5 115.5 195.3 546.1

Volume V

(in3) (X) 50 30 20 15 10 5

Hint: n = 6, X = 7.352, Y = 11.805, 
X2 = 9.63, XY = 13.53.

Ans. γ = 1.504, c = 6476.33
10. Fit a power function Y = aXb to the following

data pertaining to demand for a product and its

price charged at five different cities. Predict the

demandwhen the price of the product is Rs. 12.

Price (Rs.) X 20 16 10 11 14

Demand

(1000 units ) Y 22 41 120 89 56

Ans. a = 28491, b = −2.38, Y (12) = 76.9560
11. Fit a geometric curve to the following data:

X: 1 2 4 6

Y : 6 4 2 2

Estimate Y (2.5).

Hint: n = 4, X∗ = lnX = 3.87, 
X∗2 = 5.6, Y ∗ = ln Y = 4.56, 
X∗Y ∗ = 3.16.

Ans. Y = 5.965X−0.672, Y (2.5) = 3.2225
12. Predict Y atX = 3.75 by fitting a power curve
to the given data:

X: 1 2 3 4 5 6

Y : 2.98 4.26 5.21 6.10 6.80 7.50

Hint: n = 6, X∗ =  lnX = 2.8574, 
Y ∗ =  ln Y = 4.3133, X∗2 = 1.7749, 
X∗Y ∗ = 2.2671.

Ans. Y = 2.978X0.5143, Y (3.75) = 5.8769
Reciprocal function

13. Estimate Y at X = 2.25 by fitting an indiffer-
ence curve of the form XY = AX + B to the

following data:

X: 1 2 3 4

Y : 3 1.5 6 7.5

Hint: Y = A + B
X
, put X∗ = 1

X
, then

Y = A + BX∗.

Ans. XY = 1.3X + 1.7, Y (2.25) = 4.625.

30.5 CURVE FITTING BY A SUM OF EXPO-

NENTIALS

For a given set of data points

(x1, y1), (x2, y2), . . . (xn, yn),

consider

f (x)=
n 

i=1
Aie

λix

= A1e
λ1x + A2e

λ2x + · · · + Ane
λnx (1)

be a sum of exponentials. The unknowns Ai and λi

are determined since f in (1) satisfies the nth order
differential equation

dny

dxn
+ a1

dn−1y
dxn−1 + a2

dn−2y
dxn−2 + · · · + any = 0 (2)
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Here the coefficients a1, a2 . . . an are unknown con-
stants. Froberg (1965) suggested the derivatives y(n),
y(n−1) . . . at n data points are evaluated numerically
and then substituted in (2) thus obtaining a system of
n linear equation for the n unknowns a1, a2, . . . an.
The unknown constants λ1, λ2, . . . λn are obtained as
the roots of the algebraic equation

λn + a1λ
n−1 + a2λ

n−2 + · · · + an = 0

Using the averaging technique, the unknown con-

stants A1, A2 . . . An are calculated from (1) or using

least squares method. However the disadvantage in

this method is the calculation of higher order deriva-

tives, involving round off errors, resulting in unreli-

able values.
The following procedure is a modification of an

earlier method due to prony [see Clenshaw (1970)].
Let us assume that f (x) is the sum of two exponen-
tials i.e.,

y = f (x) = A1e
−λ1x + A2e

−λ2x (3)

The data points yi are given at x = 0, h, 2h, 3h i.e.,
x = ih, for i = 0, 1, 2, 3 where h = spacing con-
stant.
Substituting the set of four data points (x0, y0),

(x1, y1), (x2, y2), (x3, y3) in (3), we get

yi = f (xi ) = A1e
−λ1(ih) + A2e

−λ2(ih) (4)

Introducing ηj = e−λih for j = 1, 2, (5)
we rewrite (4) as

yi = A1(e
−λ1h)i + A2(e

−λ2h)i

yi = A1n
i
1 + A2n

i
2 for i = 0, 1, 2, 3 (6)

Here n1 and n2 are real positive roots of the quadratic

1+ p1η + p2η
2 = 0 (7)

From (6)

yi+1 = A1η
i+1
1 + A2η

i+1
2

or

yi+1 = A1η1η
i
1 + A2η2η

i
2 (8)

From (6)

yi+2 = A1η
i+2
1 + A2η

i+2
2

or

yi+2 = A1η
2
1η

i
1 + A2η

2
2η

i
2 (9)

Adding (6), (8), (9) we get

yi + yi+1 · p1 + p2yi+2 = (A1ni
1 + A2n

i
2)

+p1(A1.n1n
i
1 + A2n2n

i
2)

+p2(A1n
2
1n

i
1 + A2n

2
2n

i
2)

= A1n
i
1(1+ p1n1 + p2n

2
1)

+A2(n
i
2)(1+ n2p1 + n22p2)

since n1 and n2 are roots of (7), the R.H.S. above
reduces to zero yielding

yi + yi+1 · p1 + p2yi+2 = 0
(10)

For i = 0, 1, from (10), we have
y0 + p1y1 + p2y2 = 0 (11)

y1 + p2y2 + p2y3 = 0 (12)

Substituting the given data y0, y1, y2, y3 in (11) and
(12) and solving we get p1 and p2. With these values
of p1 and p2, the quadratic equation (7) yields the
two roots n1 and n2. From (5) we determine λj as

λj = − 1
h
ln (nj ) for j = 1, 2 (13)

Now todetermineA1 amdA2 we substitute the values

of yi and n1 and y2 in (6).
For i = 0, 1, 2, 3, we have

A1 + A2 = y0

A1n1 + A2n2 = y1

A1n
2
1 + A2n

2
2 = y2

A1n
3
1 + A2n

3
2 = y3

Introducing

P =



1 1

n1 n2

n21 n22

n31 n32



4×2

, B =



y0
y1
y2
y3



4×1

and

A =
 
A1
A2

 
2×1

the above system of 4 linear equations in 2 unknowns
can be written as

PA = B. (14)
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Nowpremultiplying (14) byPT , this overdetermined
system can be solved.

PT PA = PT B

or CA = D

where C2×2 = PT
2×4P4×2

and
D2×1 = PT

2×4B4×1

Now

A2×1 =
 
A1
A2

 
= C−1

2×2D2×1 (15)

Putting the values of A1, A2 from (15) and λ1, λ2
from (13) in (3), we get the required fit by sum of

exponentials.
Another computational technique, due to Moore

(1974, Int. J. Num. meth. in Engg., Vol. 8, p. 271) is
presented here. It gives reliable results but involves
more (numerical integration) computation. Consider
a function

y(x) = A1e
λ1x + A2e

λ2x (16)

which is the sum of two exponentials. Function (16)
satisfies the second order differential equation

d2y

dx2
= a1

dy

dx
+ a2y (17)

Here a1, a2 are unknown constants to be determined.
Assuming ‘a’ as the initial value of x, integrate (17)
from ‘a’ to x. Then

dy

dx
− dy(a)

dx
= a1y(x)− a1y(a)+ a2

 x

a

y(x)dx

Integrating the above equation again from ‘a’ to x
we get

y(x)− y(a)− y (a) · (x − a)= a1

 x

a

y(x)dx

−a1(x − a)y(a)

+a2

 x

a

 x

a

y(x)dx dx

(18)

Since x

a

 x

a

· · ·
 x

a

f (x)dx · · · dx= 1

(n − 1)!

 x

a

(x − t)n−1f (t)dt

equation (18) reduces to

y(x)− y(a)− (x − a)y (a)= a1

 x

a

y(x)dx

−a1(x − a)y(a)

+a2

 x

a

(x − t)y(t)dt

(19)

Choosing two data points x1 and x2 such that
a − x1 = x2 − a, we obtain from (19)

y(x1)− y(a)− (x1 − a)y (a)= a1

 x1

a

y(x)dx

−a1(x1 − a)y(a)

+a2

 x1

a

(x1 − t)y(t)dt

and

y(x2)− y(a)− (x2 − a)y (a)= a1

 x2

a

y(x)dx

−a1(x2 − a)y(a)

+a2

 x2

a

(x2 − t)y(t)dt

Eliminating y  (a) from the above two equations we
get

y(x1)+ y(x2)− 2y(a)= a1

  x1

a

y(x)dx +
 x2

a

y(x)dx

 

+a2

  x1

a

(x1 − t)y(t)dt

+
 x2

a

(x2 − t)y(t)dt

 
(20)

For a choice of two pairs of (x1, x2), equation (20)

yields two linear equations in a1, and a2, which are

solved for a1, and a2. The values of λ1 and λ2 are ob-

tained from λ2 = a1λ + a2. Finally the values of A1
and A2 are obtained by the method of least squares.

WORKED OUT EXAMPLES

Example 1: Fit a curve by a sum of exponentials

to the following data
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x: 0 0.1 0.2 0.3

y: 1.175 1.336 1.510 1.693

Solution: Assume that

y = f (x) = A1e
−λ1x + A2e

−λ2x (1)

be a sum of two exponentials. We should deter-

mine the four unknown constants A1, A2, λ1, λ2
by fitting the given data to (1). Here the data xi is

evenly spaced. xi = x0 + ih = 0+ ih = 0+ i(0.1)

for i = 0, 1, 2, 3.
Here h = 0.1
Substituting the set of data points

(x0 = 0, y0 = 1.175), (x1 = 0.1, y1 = 1.336),

(x2 = 0.2, y2 = 1.510), (x3 = 0.3, y3 = 1.698),
in the equation (1), we get

yi = f (xi )= A1e
−λ1xi + A2e

−λ2xi

yi = A1e
−λ1ih + A2e

−λ2ih

for i = 0, 1, 2, 3.
Put ns = e−λsh for s = 1, 2
Then

yi = A1n
i
1 + A2n

i
2 for i = 0, 1, 2, 3.

Using

yi + p1yi+1 + p2yi+2 = 0 for i = 0, 1
we get

y0 + p1y1 + p2y2 = 0
and

y1 + p1y2 + p2y3 = 0
For the given data

1.175+ 1.336p1 + 1.510p2 = 0
and

1.336+ 1.510p1 + 1.698p2 = 0

solving p1 = −1.9193, p2 = 0.91998
substituting p1, p2 in

1+ np1 + n2p2 = 0
we get

1− 1.9193n + 0.92n2 = 0

with roots n1 = 1.0762, n2 = 1.01. To determineA1
and A2, use

yi = A1n
i
1 + A2n

i
2, i = 0, 1, 2, 3

thus
y0 = A1 + A2

y1 = A1n1 + A2n2

y2 = A1n
2
1 + A2n

2
2

y3 = A1n
3
1 + A2n

3
2

yielding A1 + A2 = 1.75
1.076A1 + 1.01A2 = 1.336
1.1578A1 + 1.02A2 = 1.510
1.246A1 + 1.03A2 = 1.698
or PA = B

where 


1 1

1.076 1.01

1.1578 1.02

1.246 1.03



 
A1
A2

 
=



1.75

1.336

1.510

1.698




PA = B

This overdetermined system can be solved by pre-
multiplying both sides by PT .

PT PA = PT B

Here

C = PT P =
 
1 1.076 1.578 1.246

1 1.01 1.02 1.03

 
1 1

1.076 1.01

1.1578 1.02

1.246 1.03




C =
 
6.2 4.98

4.98 4.12

 

PT B =
 
1 1.076 1.578 1.246

1 1.01 1.02 1.03

 
1.75

1.336

1.510

1.698




=
 
7.111

5.8135

 

From
CA = PT B

A = C−1PT B

Now

C−1 = (1.345)
 
4.12 −4.98

−4.98 6.2
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Then

A =
 
A1
A2

 
= C−1(PT B)

= (1.345)
 
4.12 −4.98

−4.98 6.2

  
7.111

5.8135

 
 
A1
A2

 
=
 
0.4655

0.8486

 

Thus, A1 = 0.4655, A2 = 0.8486. Now

1.0762 = n1 = e−λ1(0.1) or λ1 = −0.3189

1.01 = n2 = e−λ2(0.1) or λ2 = −0.0995

Thus the required curve, which is a sum of exponen-
tials, is

y = 0.4655e0.3189x + 0.8486e0.0995

Example 2: Fit a function y = f (x) = A1e
λ1x +

A2e
λ2x , a sum of exponentials to the following data

using the Moore technique.

x: 2 2.2 2.4 2.6 2.8

y: 3.63 4.46 5.47 6.70 8.19

x: 3.0 3.2 3.4 3.6

y: 10.02 12.25 14.97 18.29

Solution: Choose x1 = 2.0, x2 = 2.8 such that
a − x1 = x2 − a i.e., a − 2.0 = 2.8− a ... a =
2.4.
Using equation (20), we get

y(2)+y(2.8)−2y(2.4)= a1

  2
2.4

y(x)dx+
 2.8
2.4

y(x)dx

 

+a2

  2
2.4

(2− t)y(t)dt

 

+
  2.8
2.4

(2.8− t)y(t)dt

 

The integrals on the RHS are evaluated using Simp-
son’s 1

3
rule, on two intervals with three points. For

example:

I1 = −
 2.4
2

y(x)dx = −0.2
3
[3.63+ 4(4.46)+ 5.47]

I2 =
 2.8
2.4

y(x)dx = 0.2
3
[5.47+ 4(6.70)+ 8.19]

I3 = −
 2.4
2

(2− t)y(t)dt

I3 = −0.2
3
[(2− 2)3.63+4(2− 2.2)4.46+(2− 2.4)5.47]

I4 = 0.2
3
[(2.8− 2.4)5.47+ 4(2.8− 2.6)6.70

+(2.8− 2.8)8.19]
etc.

After simplification this yields one equation for a1
and a2 as

0.88 = 0.90a1 + 0.887a2 (1)

Similarly choosing x1 = 2.8, x2 = 3.6, we get
from a − x1 = x2 − a, a − 2.8 = 3.6− a as a =
3.2. Substituting this data in (20), we get

y(2.8)+y(3.6)−2y(3.2)= a1

  2.8
3.2

y(x)dx+
 3.6
3.2

y(x)dx

 

+a2

  2.8
3.2

(2.8− t)y(t)dt

+
 3.6
3.2

(3.6− t)y(t)dt

 

After evaluation of R.H.S. integrals using Simpson’s
1
3
rule we get second equation for a1 and a2 as

1.98 = 0.6733a1 + 1.986133a2 (2)

solving (1) and (2), we get

a1 − 0.0071115, a2 = 0.999324
substituting a1, a2 in λ

2 − a1λ − a2 = 0, we get
λ2 + 0.007λ − 0.9993 = 0

whose roots are λ1 = −1.0031 and λ2 = 0.99615.
The equation takes the form

y = A1e
−1.0031x + A2e

0.99615x

= A1e
−x + A2e

0.99x

The values of A1 and A2 are determined by method
of least squares by solving the two normal equations.
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A1

9 
k=1

e−2xk + A2
 
k

e−0.01xk =
 
k

yk · e−xk

and

A1

9 
k=1

e−0.01xk + A2
 
k

e1.98xk =
 
k

yk · e0.99xk

The values of A1 = −0.51, A2 = 0.4999, thus the
required function is

y = f (x) = −0.51e−x + 0.499ex

Note that the given data is obtained by taking the

exact function y = sin hx whose values are rounded
off to two decimal places.

EXERCISE

1. Fit a curve by a sum of exponentials,

y = A1e
−λ1x + A2e

−λ2x

x: 0 0.2 0.4 0.6

y: 2.513 1.123 0.534 0.272

Ans. p1 = −4.1307, p2 = 3.9809,
n1 = 0.6529, n2 = 0.3848,
A1 = 0.5810, A2 = 1.9322, λ1 = 2.1316,
λ2 = −4.7712
y = 0.5810e−2.1316x + 1.9322e4.7712x
Exact function:

f (x) = 0.0951e−x − 0.8607e−3x + 1.5576e−5x

P =




1 1

0.6529 0.3848

0.4263 0.1481

0.2783 0.0570


 , P T P =

 
1.6855 1.3302

1.3302 1.1732

 

2. Fit y = f (x) = A1e
λ1x + A2e

λ2x + A3e
λ3x to

the following data.

x: 1.0 1.1 1.2 1.3 1.4 1.5

y:−1.543−1.668−1.811−1.971−2.151−2.352
x: 1.6 1.7 1.8 1.9 2.0

y:−2.578−2.828−3.108−3.418−3.762
Ans. A1 = 1

2
, A2 = − 1

2
, A3 = − 1

2
, λ1 = 1, λ2 =

−1, λ3 = −1

3. Fit a function of the form y = A1e
λ1x +

A2e
λ2x to the following data:

x: 1.0 1.1 1.2 1.3 1.4

y: 1.54 1.67 1.81 1.97 2.15

x: 1.5 1.6 1.7 1.8

y: 2.35 2.58 2.83 3.11

Ans. A1 = 0.499, A2 = 0.491, λ1 = 0.988, λ2 =
−0.96 y = 0.499e0.988x +0.491e−0.96x

Exact function: y = cos hx; with A1 =
A2 = 1

2
and λ1 = 1.0 and λ2 = −1.0

Hint. Solve 1.81a1 +2.180a2 = 2.10 and
2.88a1 +3.104a2 = 3.00 to get a1 = 0.03204,
a2 = 0.9364. Solving λ2 = a1λ +a2 gives λ1
and λ2.

30.6 LINEARWEIGHTEDLEASTSQUARES

APPROXIMATION

Data are generally not exact. They are subject tomea-

surement erros (knownas noise in signal processing).

Modeling of data aims at condensing and summariz-

ing a given set of observations (data) by fitting it to a

model, a “merit function” that depends on adjustable

parameters. The parameters of themodel are then ad-

justed to achieve a minimum in the merit function,

yielding “best-fit” parameters. Least squares fitting

is a maximum likelihood estimation of the fitted pa-

rameters if the measurement errors are independent

and normally distributed with constant standard de-

viation. The least squares principle is to minimize

the sum of the squares of the errors. For a given set

of data, it gives a unique solution.

For discrete data (x0, y0), (x1y1) . . . , (xNyN ),

weights wi are positive numbers prescribed accord-

ing to the relative accuracy of the data points.When a

discrete data point (x∗, y∗) is more reliable (or accu-
rate) than the other data, a larger weight is assigned

to (x∗, y∗). If all the data points have the same accu-
racy then equal weights are assigned i.e., wi = 1 for
i = 1 to N .
For continuous (data) function, an integrable func-

tion w(x) is called a weight function on [a, b] of

w(x) ≥ 0 for x ∈ [a, b]. The purpose of a weight
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function is to assign varying degrees of importance

to approximations on certain portions of the interval.

Example 1: Weight function w(x) = (1− x2)−
1
2

assigns more emphasis when |x| is near one and less
emphasis near the center of the interval (−1, 1).

General weighted least squares approximation:

Suppose the function y = f (x) is known

only at (N + 1) tabulated points (x0, y0),

(x1, y1) . . . , (xN, yN ) in the form a discrete

data, with weights w1, w2, . . . wN ; respectively.

x: x0 x1 x2 . . . xN

y y0 y1 y2 . . . yN

w: w0 w1 w2 . . . wN

Then the function f (x) can be approximated by a

function of the form

p(x) = a0φ0(x)+ a1φ1(x)+ . . . + amφm(x) (1)

where the set of functions {φ0, φ1 . . . φm} are liner-
aly independent. These functions φi(x) are known as

“basis” or “coordinate” functions, can bewildly non-

linear functions of x, usually chosen as φi(x) = xi

for i = 0, 2, . . . m. The functionp(x) is said to be the
weighted least squares approximation of f (x) if the

(m + 1) unknown coefficients a0, a1, . . . , am in (1)

are determined such that the error of approximation

E(a0, a1, · · · am) =
N 

k=0
wk

 
f (xk)−

m 
i=0

aiφi(xk)

 2
(2)

is minimum. The necessary conditions for the num-

bers a0, a1, a2, . . . , am to minimize E are

∂E

∂aj

= 0 forj = 0, 1, 2, . . . m

Differentiating (2) partially wrt aj , we get (m + 1)
linear equations in (m + 1) unknown a0, a1, . . ., am,

known as normal equations given by

N 
k=0

wk

 
f (xk)−

m 
i=0

aiφi(xk)

 2
φj (xk) (3)

for j = 0, 1, 2, . . . m. When the function f (x) is

known continuous function on [a, b] then the nor-

mal equations take the form

 b

a

w(x)

 
f (x)−

m 
i=0

aiφi(x)

 
φj (x)dx = 0

for j = 0, 1, . . . m (4)

Discrete (Data) Case

Suppose

P1(x) = a0 + a1x (5)

be the linear weighted least squares straighted line

fitted to the following discrete data

x : x0 x1 x2 . . . xN

y : y0 y1 y2 . . . yN

w :w0 w1 w2 . . . wN

In (1) we have taken m = 1 and φ1(x) = x. Then

normal equations (3) reduce to

a0

N 
i=0

wi + a1

N 
i=0

wixi =
N 
i=0

wiyi (6)

a0
 

wixi + a1
 

wix
2
i =  wixiyi (7)

Solving (6) and (7) we get a0 and a1 which when

substituted in (5) gives the required linear weighted

least squares approximation.

Continuous Function (Case)

Suppose f (x) is a known continuous function de-

fined on the interval [a, b], then the normal equations

(4) reduce to

a0
 b

a
w(x)dx + a1

 b

a
x · w(x)dx

=  b

a
w(x)y(x)dx (8)

a0
 b

a
xw(x)dx + a1

 b

a
x2w(x)dx

=  b

a
xw(x)y(x)dx (9)

Solving (8) and (9), we get a0 and a1. Substitut-

ing these values in y = a0 + a1x we get the linear

weighted least squares approximation in the contin-

uous case.
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WORKED OUT EXAMPLES

Linear Weighted Least Squares Approximation

Example 1: (Discrete Data) Fit a linear weighted

least squares straight line to the following data

x: −2 0 2 4 6

y: 1 3 6 8 13

w: 2 5 10 1 4

Solution: Let y = a0 + a1x be the LS line. Then the

normal equations are

a0

5 
i=1

wi + ai.wixi = .wiyi

and

a0.wixi + a1
 

wix
2
i =

 
wixiyi

x y w wx wx2 wy wxy

−2 1 2 −4 8 2 −4
0 3 5 0 0 15 0

2 6 10 20 40 60 120

4 8 1 4 16 8 32

6 13 4 24 144 52 312

22 44 208 137 460
 
Thus N = 5,

5 
i=1

wi = 22,  
wixi = 44, 

wix
2
i = 208, wiyi = 137, wixiyi = 460.

The two normal equations are

22a0 + 44a1 = 137
44a0 + 208a1 = 460

Solving a1 = 1.55, a0 = 3.127. Thus the linear
weighted least squares straight line fit to the given

data is

y = 3.127+ 1.55x
At x = 1, y(1) = 4.677

Note: Linear (non-weighted) least squares line

for the above data (with weights w1 = w2 = w3 =
w4 = w5 = 1) is

y = 3.30+ 1.45x
and y(1) = 4.75.

Example 2: (Continous function) Fit a linear

weighted least squares straight line to the function:

f (x) = 1
x
on [1, 3] with w(x) = 1.

Solution: Let y = a0 + a1x be theL.S. straight line.

The normal equations are

a0

 3
1

dx + a1

 3
1

x dx =
 3
1

1

x
dx

a0

 3
1

x dx + a1

 3
1

x2 dx =
 3
1

x · 1
x
dx

or

2a0 + 4a1 = ln 3

4a0 + 26
3

a1 = 2

Solving a1 = −0.2959, a0 = 1.140. The required
linear LS line is

y = 1.140− 0.2958x
At x = 2, y(2) = 0.5484. At x = 2, f (x) = 1

x
,

f ( 1
2
) = 0.50.

EXERCISE

Linear Weighted Least Squares Approximation

(Discrete Data)

Fit a linear weighted least squares straight line y =
a + bx for the following data with the appropriate

given weights.

1. x : −2 −1 0 1 2

y : 1 2 3 3 4

w : 1 2 3 4 5

Ans. y = 2.63+ 0.657x, y
 
1
2

 = 2.9585. Without
weights i.e., w1 = w2 = w3 = w4 = w5 = 1,
y = y 1

2

Hint:
 

wi = 15, wixi = 10, wix
2
i = 30, 

wiyi = 46, wixiyi = 46
2. x : −4 −2 0 2 4

y : 1.2 2.8 6.2 7.8 13.2

w : 2 3 5 3 2
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Ans. y = 6.1+ 1.43x, y(1) = 7.53. Without weights
i.e., w1 = w2 = w3 = w4 = w5 = 1, y = y(1)

Hint:
 

wi = 15, wixi = 0, wiyi = 91.6, 
wix

2
i = 88, wixiyi = 126

3. x : 0 1 3 6 8

y : 1 3 2 5 4

w : 1 2 10 2 1

Ans. y = 1.2+ 0.42x
Hint:

 
wi = 16, wixi = 52, wiyi = 41, 

wix
2
i = 228, wixiyi = 158

4. x : 0 2 5 7

y : −1 5 12 20

w : 1 1 10 1

Ans. y = −1.349345+ 2.73799x, y(5) = 12.34061
Hint:

 
wi = 13,  wixi = 59,  wix

2
i =

303,
 

wiyi = 144,  wixiyi = 750. Without
weights i.e., w1 = w2 = w3 = w4 = 1,

y = −1.0334+ 2.6222x
y(5)= 13.3449

5. x : 0 2 5 7

y : −1 5 12 20

w : 1 1 100 1

Ans. y = −1.41258+ 2.6905x, y(5) = 12.0402
Hint:

 
wi = 103,  wixi = 509,  wixiyi

= 6150, wix
2
i = 2553, wiyi = 1224.With-

out weights y = −1.0334 +2.622x, y(5) =
13.3449.

Linear Weighted Least Squares Approximation

(Continuous Function)

Fit a least squares approximation of degree one to

f (x) in [a, b]

1. f (x) = x2 − 2x + 3, [0, 1]
Ans. −x + 2.8333
2. f (x) = x3 − 1, [0, 2]

Ans. 3.6x − 2.6
3. f (x) = e−x , [0, 1]

Ans. e−1[6(e − 3)x + 2(4− e)]

4. f (x) = cosπx, [0, 1]

Ans. −2.4317x + 1.2159
5. f (x) = ln x, [1, 2]

Ans. 0.68223x − 0.63706

30.7 NON-LINEAR WEIGHTED LEAST

SQUARES APPROXIMATION

Given a set of (N + 1) data points, we can fit a non
linear mth degree polynomial of the form.

y = a0 + a1x + a2x
2 + . . . + amx

m (10)

by minimizing the error function.
E(a0, a1, . . . am)=

 
wi [yi − (a0 + a1xi + . . .

+amxm
i )]
2 (11)

The necessary conditions for minimization of (11)
gives the following (m + 1) normal equations.

a0

N 
i=0

wi + a1
 
i

xiwi+ · · · + am
 
i

xm
i wi

=
 
i

yiwi .

a0
 

xiwi + a1
 

x2i wi + · · ·

+am
 

xm+1
i wi =

 
xiyiwi (12)

− − − − − − − − − − − − − − − − −−
a0
 

xm
i wi + a1

 
xm+1
i wi + · · ·

+am
 

x2mi wi =
 

xm
i yiwi .

If xi are distinct data points and whenm < (N + 1),
then the above set of (m + 1) equations for the (m +
1) unknowns a0, a1, . . . , am has unique solution.

Discret case

Suppose y = a0 + a1x + a2x
2 is the non linear

weighted least squares approximation to a given dis-

crete set of (N + 1) data points. Then normal equa-
tions (12) take the form.

a0
 
i

wi + a1
 

xiwi + a2
 

x2i wi =  yiwi(13)

a0
 

xiwi + a1
 

x2i wi + a2
 

x3i wi

=  xiyiwi (14)

a0
 

x2i wi + a1
 

x3i wi + a2
 

x4i wi

=  x2i yiwi (15)
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The best fit parameters a0, a1, a2 are obtained by

solving the above three equations (13), (14) and (15).

Continuous function (case)

When f (x) is a continuous function defined on the
interval [a, b] with a weight function w(x), then the
non-linear weighted least squares approximation is
to minimize

E(a0, a1, · · · am)=
 b

a

w(x)[y(x)− (a0 + a1x + · · ·

+amxm)]2dx (16)

Differentiating (16) partially w.r.t. the parameters
a0, a1, . . . , am we get the following (m + 1) normal
equations

a0

 b

a

w(x)dx + a1

 b

a

xw(x)dx + · · · ·

+am

 b

a

xmw(x)dx =
 b

a

y(x)w(x)dx.

a0

 b

a

xw(x)dx + a1

 b

a

x2w(x)dx + · · ·

+am

 b

a

xm+1w(x)dx =
 b

a

xy(x)w(x)dx.

a0

 b

a

xmw(x)dx + a1

 b

a

xm+1w(x)dx + · · · +

+
 b

a

x2mw(x)dx =
 b

a

xmy(x)w(x)dx.

When we consider a second degree polynomial of

the form
y = a0 + a1x + a2x

2

then the above normal equations take the form:

a0

 b

a

w(x)dx + a1

 b

a

xw(x)dx +

+ a2

 b

a

x2w(x)dx =
 b

a

w(x) · y(x)dx (17)

a0

 b

a

xw(x)dx + a1

 b

a

x2w(x)dx+

+a2

 b

a

x3w(x)dx =
 b

a

xy(x)w(x)dx.(18)

a0

 b

a

x2w(x)dx + a1

 b

a

x3w(x)dx+.

+a2

 b

a

x4w(x)dx =
 b

a

x2y(x)w(x)dx.(19)

Solving (17), (18) and (19) for a0, a1, a2 gives the

required non-linear weighted least squares approxi-

mation.

WORKED OUT EXAMPLES

Discrete (function) data

Example 1: Fit a non-linear weighted least

squares (parabola) second degree polynomial y =
a0 + a1x + a2x

2 to the following data.

x: −3 −1 1 3

y: 15 5 1 5

w: 2 5 10 20

Solution: The normal equations are

a0

4 
i=1

wi + a1
 

wixi + a2
 

wix
2
i =

 
wiyi

a0
 

wixi + a1
 

wix
2
i + a2

 
wix

3
i =

 
wixiyi

a0
 

wix
2
i + a1

 
wix

3
i + a2

 
wix

4
i =

 
wix

2
i yi

The data is shown in the following table

N = 4,
 

wi = 37,
 

wixi = 59, 
x2i wi = 78,

 
wix

3
i = 491,

 
wix

4
i = 1797, 

wiyi = 165,
 

wixiyi = 195,
 

wix
2
i yi = 1205

x y w wx wx2 wx3 wx4 wy wxy wx2y

−3 15 2 −6 18 −54 162 30 −90 270

−1 5 5 −5 5 −5 5 25 −25 25

1 1 10 10 10 10 10 10 10 10

3 5 20 60 45 540 1620 100 300 900

0 26 37 59 78 491 1797 165 195 1205
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Thus the three normal equations are

37a0 + 59a1 + 78a2 = 165
59a0 + 78a1 + 491a2 = 195

78a0 + 491a1 + 1797a2 = 1205
solving a0 = 0.38, a1 = 2.65, a2 = −0.07
Thus the non-linear weighted least squares quadratic
fit is

y = 0.38+ 2.65x − 0.07x2
with y(1) = 2.96.
The corresponding least squares parapola fit (without
weights i.e., w1 = w2 = w3 = w4 = 1) is

y = 2.125− 1.70x + 0.875x2

with y(1) = 1.3.

Note: See example II in exercise with different

weights.

EXERCISE

Discrete (function) data

1. Fit a non-linear weighted least squares

(parabola) second degree polynomial

y = a0 + a1x + a2x
2 to the following data.

I. x: −2 −1 0 1 2

y: 15 1 1 3 19

w: 1 3 10 3 1

Ans. y = 0.1166+ x + 3.85x2, y(0.5) = 1.5791
Hint: N = 5, wi = 18,  

wixi = 0, 
wix

2
i = 14,  wix

3
i = 0,  wix

4
i = 38, 

wiyi = 56, wixiyi = 14, 
wix

2
i yi = 148

Note: (Non-weighted) corresponding LS
parabola for the above data (with weights
w1 = w2 = w3 = w4 = w5 = 1) is

y = −1.057+ x + 4.43x2

y(0.5) = 1.0505

II. x: −3 −1 1 3

y: 15 5 1 5

w: 1 2 10 5

Ans. y = 1.91− 1.72x + 0.91x2, y(1) = 1.1
Hint: N = 4, wi = 18, wixi = 20, 

wix
2
i = 66, wix

3
i = 116, 

wix
4
i = 498, wiyi = 60, 

wixiyi = 30, wix
2
i yi = 380

WORKED OUT EXAMPLES

Continuous function

Examples: Fit a non-linear weighted least squares

(parabola) second degree polynomial y = a0 +
a1x + a2x

2 to the function y(x) = ex on the interval

[0, 1] with respect to the weight function w(x) = x.

Solution: The three normal equations are

a0

 b

a

w(x)dx + a1

 b

a

xw(x)dx +

+a2

 b

a

x2w(x)dx =
 b

a

w(x)y(x)dx. (1)

a0

 b

a

xw(x)dx + a1

 b

a

x2w(x)dx +

+a2

 b

a

x3w(x)dx =
 b

a

xw(x)y(x)dx. (2)

a0

 b

a

x2w(x)dx + a1

 b

a

x3w(x)dx +

+a2

 b

a

x4w(x)dx =
 b

a

x2w(x)y(x)dx. (3)

Here a = 0, b = 1, w(x) = x, y(x) = ex .
So the normal equations are

a0

 1
0

xdx + a1

 1
0

x2dx + a2

 1
0

x3dx =
 1
0

xexdx

a0

 1
0

x2dx + a1

 1
0

x3dx + a2

 1
0

x4dx =
 1
0

x2exdx

a0

 1
0

x3dx + a1

 1
0

x4dx + a2

 1
0

x5dx =
 1
0

x3exdx

After integration, we get

a0

2
+ a1

3
+ a2

4
= 1

a0

3
+ a1

4
+ a2

5
= e − 2
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a0

4
+ a1

5
+ a2

6
= 6− 2e

or

6a0 + 4a1 + 3a2 = 12
20a0 + 15a1 + 12a2 = 60(e − 2)
15a0 + 12a1 + 10a2 = 60(6− 2e).

Solving a0 = (1632− 600e), a1 = 2340e − 6360,
a2 = 5220− 1920e.
Thus the required non-linear weighted least squares
parabola fit to ex with wieght function x on [0, 1] is

y(x)= (1632−600e)+(2340e−6360)x+(5220−1920e)x2

At x = 1
2
, xy(x) = 1

2
y
 
1
2

 = 1.6452
2

= 0.8226
At x = 1

2
, xex = 1

2
e
1
2 = 0.82436.

EXERCISE

Fit a non-linear weighted least squares (parabola)

second degree polynomial y = a0 + a1x + a2x
2 to

the function f (x) on the interval [a, b] w.r.t. the

weight function w(x).

1. f (x), ex , [0, 1], w(x) = 1.
Ans. y = (39e − 105)+ (588− 216e)+

+(210e − 570)x2
y
 
1
2

 = 1.64838, e 12 = 1.64872
Hint: Normal equations are

6a0 + 3a1 + 2a2 = 6(e − 1)
6a0 + 4a1 + 3a2 = 12

20a0 + 15a1 + 12a2 = 60(e − 2)
2. f (x) = cos x,  0, π

2

 
, w(x) = 1

Ans. cos x =
 
6

π
+ 144

π2
− 480

π3

 

+
 

− 96
π2

+ 5760
π4

− 1536
π3

 
x

+
 

−11520
π5

+ 2880
π4

+ 240
π3

 
x2

At x = π
4
, cos

 
π
4

 = − 3
π

− 60

π2
+ 240

π3
=

0.70616

Hint: Normal equations are

12a0 + 3a1π + a2π
2 = 24

π

8a0 + 8
3
a1π + a2π

2 = 32(π − 2)
π2

20

3
a0 + 5

2
a1π + a2π = 40(π

2 − 8)
π3

3. f (x) = sin(x),  0, π
2

 
, w(x) = 1,

Ans. sin x =
 
18
π

+ 96

π2
− 480

π3

 
+
 

−144
π2

− 1344
π3

+ 5760
π4

 
x

+
 
240

π3
+ 2880

π4
− 11520

π5

 
x2

At x = π
4
; sin

 
π
4

 = − 3
π

− 60

π2
+ 240

π3
=

0.70616

Hint: Normal equations are

12a0π + 3a1π2 + a2π
3 = 24

8a0π
2 + 8
3
a1π

3 + a2π
4 = 64

20

3
a0π

3 + 5
2
a1π

4 + a2π
5 = 320

 π
2

− 1
 

4. f (x) = sin πx, [0, 1], w(x) = 1
Ans. P2(x) = −0.050465+ 4.12251x −

4.12251x2

Hint: Normal equations

a0 + a1

2
+ a2

3
= 2

π
,
a0

2
+ a1

3
+ a2

4
= 1

π

a0

3
+ a1

4
+ a2

5
=
 
π2 − 4 
π3

a0 = (12π2 − 120)/π3, a1 = −a2

= (720− 60π2)/π3.

30.8 MULTIPLE REGRESSION

It is known in agriculture that, the crop yield (Y ) not

only depends on the amount of rainfall (X1) but also

on the amount of fertilizer (X2) applied, pesticides
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(X3) used, quality of seeds (X4), quality of soil (X5),

etc. Thus in multiple regression, the dependent vari-

able Y is a function of more than one independent

variables, i.e.,

Y = f (X1, X2, X3, . . . , Xk).

Inmultiple nonlinear regression, f is nonlinear.

In multiple linear regression f is linear i.e.,

Y = β0 + β1X1 + β2X2 + · · · + βkXk . Response

surface analysis deals with statistical methods of

prediction and optimization.

Linear Multiple Regression

Suppose Y depends on two independent variablesX1
and X2, i.e.,

Y = β0 + β1X1 + β2X2 (1)

Fig. 30.2

Then the linear multiple regression problem is to

fit the regression plane given by Equation (1) to a

given set of N triples (X1i , X2i , Yi) (Fig. 30.2). To

estimate the coefficient β0, β1, β2, apply the least

squares method to minimize

N 
i=1

 
Yi − (b0 + b1X1i + b2X2i )

 2
.

This results in three normal equations given by

N 
i=1

Yi = Nb0 + b1

N 
i=1

X1i + b2

N 
i=1

X2i

N 
i=1

X1iYi = b0
 

X1i + b1
 

X21i + b2
 

X1iX2i

 
X2iYi = b0

 
X2i + b1

 
X1iX2i + b2

 
X22i

Here b0, b1, b2 are the least squares estimates of

β0, β1, β2.

Note: By introducing X1 =  X1i
N
, X2 =

 
X2i
N
,

Y =
 

Yi
N
, Yi = Yi − Y , X1i = X1i − X1, X2i =

X2i − X2, the above three normal equations reduces
to 2 normal equations

 
X1iY i = b1

 
(X1i )

2 + b2
 

X1iX2i 
X2iY i = b1

 
X1iX2i + b2

 
(X2i )

2.

Linearmultiple regression in k-independent vari-
ables: The above analysis can be generalized to
fit N (k + 1) tuples (X1i , X2i , X3i , . . . , Xki) (with i
varying from 1 to N ) to the equation

Y = β0 + β1X1 + β2X2 + · · · + βkXk.

The (k + 1) normal equations are

N 
i=1

Yi = Nb0 + b1

N 
i=1

X1i + b2
 

X2i

+ · · · + bk

N 
i=1

Xki

 
X1iYi = b0

 
X1i + b1

 
X21i + b2

 
X1iX2i

+ · · · + bk
 

X1iXki

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 
XkiYi = b0

 
XkiX1i + b1

 
XkiX2i

+ · · · + bk
 

X2ki .

WORKED OUT EXAMPLES

Examples: Fit a regression plane to estimate

β0, β1, β2 to the following data of a transport com-

pany on the weights of 6 shipments, the distances

they were moved and the damage of the goods that

was incurred. Estimate the damage when a shipment

of 3700 kg is moved to a distance of 260 km.
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Weight x1
(1000 kg) 4.0 3.0 1.6 1.2 3.4 4.8

Distance x2
(100 km) 1.5 2.2 1.0 2.0 0.8 1.6

Damage y

(Rs.) 160 112 69 90 123 186

Solution: Let the dependent variable damage be y,
the two independent variables be weight x1 and dis-
tance x2. Thus assume the equation of the regression
plane as

y = b0 + b1x1 + b2x2

where b0, b1, b2 are the estimates of β0, β1, β2. The
three normal equations are

6 
i=1

yi = nb0 + b1

6 
i=1

x1i + b2

6 
i=1

x2i

 
x1iyi = b0

 
x1i + b1

 
x21i + b2

 
x1ix2i 

x2iyi = b0
 

x2i + b1
 

x1ix2i + b2
 

x22i .

Here n = 6. Substitute the data from the following
table, in the normal equations:

x1 weight x2 distance y damage x21 x22 x1x2 x1y x2y

(1,000 kg) (100 km) (Rs.)

4.0 1.5 160 16 2.25 6.0 640 240

3.0 2.2 112 9 4.84 6.6 336 246.4

1.6 1.0 69 2.56 1.0 1.6 110.4 69

1.2 2.0 90 1.44 4.0 2.4 108 180

3.4 0.8 123 11.56 0.64 2.72 418.2 98.4

4.8 1.6 186 23.04 2.56 7.68 892.8 297.6

Total 18 9.1 740 63.6 15.29 27 250.54 1131.4

n = 6, x1i = 18, x2i = 9.1, yi = 740, 
x21i = 63.6, x22i = 15.29, x1ix2i = 27, 
x1iyi = 250.54, x2iyi = 1131.4.

So 740= 6b0 + 18b1 + 9.1b2
250.54= 18b0 + 63.6b1 + 27b2
1131.4= 9.1b0 + 27b1 + 15.29b2

Solving we get b0 = 14.56, b1 = 30.109,
b2 = 12.16. Thus the required regression plane is

y = 14.56+ 30.109x1 + 12.16x2
Estimate: For a weight of 3700 kg (x1 = 3.7) and
for a distance of 260 km (x2 = 2.6), the damage
incurred in rupees is

y(x1 = 3.7, x2 = 2.6)= 14.56+30.109(3.7)+12.16(2.6)
= Rs. 714.5798 ≈ Rs. 715.

EXERCISE

1. Estimate Y for given X1 = 12 and X2 = 10
by fitting a regression plane to the following

data:

Y 412 226 292 323 233 368 239 382 218 222 214

X1 28.7 13.4 14.6 18.0 12.1 23.4 12.6 30.2 11.6 12.0 12.4

X2 21.5 11.7 12.9 14.8 11.0 19.2 11.4 22.6 10.8 10.2 10.1

Hint: n = 11, Yi = 3129,
11 
i=1

X1i=189.0,

 
X2i = 156.2, X21i = 3737.50, X22i =

2437.64,
 

X1iX2i = 3010.03, 
X1iYi = 58754.7, X2iYi = 47816.

Ans. Y = 40.96− 6.30X1 + 24.77X2,
Y (12, 10) = 213.06

2. Find Y when X1 = 10 and X2 = 6 from the
least squares regression equation of Y on X1
and X2 for the following data:
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Y 90 72 54 42 30 12

X1 3 5 6 8 12 14

X2 16 10 7 4 3 2

Hint: n = 6, Yi = 300, X1i = 48, 
X2i = 42, X1iX2i = 236, X21i = 474, 
X22i = 434, X1iYi = 1818, 
X2iYi = 2820.

Ans. Y = 61.40− 3.65X1 + 2.54X2,
Y (10, 6) = 40.14 ≈ 40

3. Determine the equation of the regression

plane connecting x1, x2 and y. Estimate y at

x1 = 1.8, x2 = 112.

Diffusion time 1.5 2.5 0.5 1.2 2.6 0.3 2.4 2.0 0.7 1.6

(hours) x1

Sheet-resistance 66 87 69 141 93 105 111 78 66 123

Ohms-cm x2

Current gain y 5.3 7.8 7.4 9.8 10.8 9.1 8.1 7.2 6.5 12.6

Hint: n = 10, x1i = 15.3, x2i = 939, 
yi = 84.6, x21i = 29.85, x22i = 94131, 
x1ix2i = 1458.9, x1iyi = 132.27, 
x2iyi = 8320.2.

Ans. y = 2.27+ 0.22x1 + 0.062x2,
y(1.8, 112) = 9.61

4. Fit a regression plane of y on x1 and x2 given 
(x1i)

2 = 38.4,  (x2i)2 = 3.4,  x1iyi =
29.76,

 
x2iyi = 8.94, x1ix2i = 9.6where

yi = yi − y, x1i = x1i − x1, x2i = x2i − x2
are the deviation of the data from their respec-

tive means, y = 55.2, x1 = 20.1, x2 = 6.4
Hint: Solve only two normal equations (see

Page 808).

Ans. y = 37.56+ 0.4x1 + 1.5x2
5. Fit a multiple linear regression equation to the

following data and predict wear (y) when oil

viscosity (x1) is 30 and load (x2) is 1400.

Wear y 193 230 172 91 113 125

Oil

viscosity x1 1.6 15.5 22.0 43.0 33.0 40.0

Load x2 851 816 1058 1201 1357 1115

Hint: n = 6, yi = 924, x1i=155.1, 
x2i = 6398, x1ix2i = 178309.6, 
x21i = 5264.81, x22i = 7036496, 
x1iyi = 20299.8, x2iyi = 935906.

Ans. y = 350.9943− 1.2702x1 − 0.1539x2,
y(x1 = 30, x2 = 1400) = 97.4283.

30.9 CORRELATION ANALYSIS

In correlation analysis, the degree (or strength) of

relationship between two variables, say X and Y , is

measured by a single number r called a correlation

coefficient formed by Karl Pearson in 1896. Here

both X and Y are assumed to be random variables

unlike the regression analysis where the dependent

variableY is assumed to be a randomvariable and the

regressor (independent) variable x to be a physical or

scientific or mathematical variable but not a random

variable. Besides Pearsonian correlation, the other

types of correlation include rank correlation, biserial

correlation, intraclass correlation.

Examples:

a. Volume of a cube V = L3, perfectly correlated.

b. Rainfall and crop yield, correlated.

c. Two coins being tossed simultaneously, uncorre-

lated.
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Types of Correlation

By ploting a given set of n pairs of random variables

(Xi, Yi), for i = 1, 2, 3, . . . , n, as a scatter diagram,
the correlation is said to be

Positve or direct if Y increases as X increases.

Negative or inverse if Y decreases as X increases.

Linear if all the n points lie near a straight line.

Non-linear if the points lie on some non-linear

curve.

Examples:

a. Income and expenditure: positively correlated.

b. Age and IQ: negatively correlated.

Simple

The correlation between two variables is said to be

simple correlation.

Multiple

The correlation between more than two variables is

known as multiple correlation. If r = ±1, there is
a perfect positive (or negative) correlation. If r = 0
there is no (linear) correlation; but a nonlinear cor-

relation may exist. Similarly, a high correlation due

to a third (lurking) variables is known as a spurious

correlation (refer Fig. 30.3).

Example: Poverty and crime are highly correlated

but the spurious correlation is due to the lurking vari-

able illiteracy.

Standard error of estimate

Y on X is denoted by SY,X is defined as

SY,X =
  

(Y − Yest)2

N

where Yest is the estimated or predicted value of Y
from the least squares regression line Y = a0 + a1X.
Similarly, the standard error of estimate X on Y is

SX,Y =
  

(X − Xest)2

N

In general, SY,X  = SX,Y .

Result:
 
(Y−Y )2= (Y−Yest)

2+ (Yest−Y )2,

i.e., Total variation = unexplained variation +
explained variation.

Coefficient of determination

= r2 = Explained variation

Unexplained variation

Coefficient of correlation

= r = ±
 
Explained variation

Unexplained variation

i.e., r = ±
  

(Yest − Y )2 
(Y − Y )2

.

The +ve and −ve signs correspond to positive and
negative correlation respectively.

Properties of r

i. r lies in the interval [−1, 1], i.e., −1 ≤ r ≤ 1.
ii. r is independent of origin.

iii. r is independent of (scale ofmeasurements) unit.

Karl Pearson product-moment formula or simply

sample correlation coefficient for the linear correla-

tion coefficient r:



CURVE FITTING, REGRESSION AND CORRELATION ANALYSIS 30.27

From the least squares regression line of Y on X

Ŷ = Yest = a0 + a1X

Put yest = Yest − Y , x = X − X, y = Y − Y then

yest = a1x =
 

xy 
x2

x.

We know that

r2 =
 

y2est 
y2

=
 

a21x
2 

y2
= a21

 
x2 
y2

=
  

xy 
x2

 2  
x2 
y2

= (
 

xy)2 
x2
 

y2
.

Therefore

r = ±
 

xy  
x2
 

y2
.

The ± sign can be omitted without any loss of gen-
erality since yest increases (decreases) as x increases

(decreases).
Thus the coefficient of linear correlation is

r =
 

xy  
x2
 

y2

Introducing covariance SXY of X and Y by

SXY =
 

xy

N

and s.d. of X and Y by

SX =
  

x2

N
, SY =

 
y2

N
.

we can write

r = SXY

SXSY
.

Computational Formula

r = N
 

XY − X
 

Y  
N
 

X2 −
  

X

 2  
N
 

Y 2 −
  

Y

 2 

Regression lines and the linear correlation coeffi-

cient:
The least squares regression line Y on X

Y = a0 + a1X

can be written as

y =
  

xy 
x2

 
x

where y = Y − Y , x = X − X.

Since r =
 

xy  
x2
 

y2

so

 
xy 
x2

= r
  

x2
 

y2 
x2

= r

  
y2 
x2

= r
SY

SX
.

Thus y = a1x =
  

xy 
x2

 
x = r

SY

SX
x.

In a similar way, we get

x = r
SX

SY
y.

Result: Show that the coefficient of correlation r

is the geometric mean between the regression coef-

ficients.

Solution: Let Y = a0 + a1X andX = b0 + b1Y be
the least squares regression lines, with a1 and b1 as

regression coefficients. We know that a1 = rSY
SX
and

b1 = r
SX
SY
.

So a1b1 =
 
r
SY

SX

  
r
SX

SY

 
= r2

or r =
 
a1b1.

Test of Hypothesis for Correlation

Coefficient

Let ρ = ±
 
1− σ 2

σ 2z
denote the population correla-

tion coefficientwhere σ 2z = 1
n−3 ,n is number of pairs

of observations. The Fisher Z transformation is de-

fined by

Z = 1
2
ln
1+ r

1− r
= 1.1513 log10

 
1+ r

1− r

 
.

Here the statistic Z is a value of random variable

approximately normally distributedwithmeanµZ =
1
2
ln 1+ρ

1−ρ
and variance σ 2Z = 1

n−3 .
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Statistic for inference about ρ(  = 0)

z = Z − µZ 
1√
n−3

 =
√
n − 3
2

ln

 
(1+ r)(1− ρ)

(1− r)(1+ ρ)

 

Test of hypothesis for no correlation: ρ = 0

z =
√
n − 3 Z =

√
n − 3
2

ln

 
1+ r

1− r

 

values of Z are tabulated (A21) for various values of

r = 0 to 0.99.

Note: When r is negative, read Z corresponding to

−r and then take −Z.

WORKED OUT EXAMPLES

Correlation:

Example 1: (a) Estimate (predict) the blood pres-

sure (B.P.) of a woman of age 45 years from the

following data which shows the ages X and systolic

B.P. Y of 12 women. (b) Are the two variables ages

X and B.P. Y correlated?

Age (X) 56 42 72 36 63 47 55 49 38 42 68 60

B.P. (Y ) 147 125 160 118 149 128 150 145 115 140 152 155

Solution: a. To estimate B.P., determine the pre-
diction equationwhich is the least squares regression
equation of Y on X. Assume it to be Y = a0 + a1X.
Its normal equations are 

Y = Na0 + a1
 

X 
XY = a0

 
X + a1

 
X2

From the given data,
 

X = 628;  Y = 1684; 
X2 = 34416; Y 2 = 238822; 
XY = 89894; N = 12.

Substituting

1684= 12a0 + 628a1
89894= 628a0 + 34416a1

Solving a0 = 80.77738, a1 = 1.138005.

so the prediction equation is Y = 80.777+ 1.138X.
The B.P. of a woman with ageX = 45 is obtained as

Y (45) = 80.777+ 1.138(45) = 131.987225 ≈ 132.

b. To find the association between age and B.P., de-

termine the correlation coefficient r by

r = N
 

XY − X
 

Y  
N
 

X2 − ( X)2
  

N
 

Y 2 − ( Y )2
 

= 12(89894)− (628)(1684)  
(12)(34416)− (628)2  (12)(238822)− (1684)2 

= 0.8961
Age X and B.P. Y are strongly positively correlated.

Example 2: Test the hypothesis that there is no

linear association among two variables x, air velocity

cm/sec, and y, evaporation coefficient mm2/sec of

a burning fuel droplets in an impulse engine, with

n = 10 and r = 0.9515.
Solution:

1. Null hypothesis ρ = 0
2. Alternate hypothesis ρ  = 0

3. Level of significance: α = 0.05
4. Critical region: (two tailed test)

Reject null hypothesis if

Z > Zα/2 = 1.96 or Z < −Zα/2 = −1.96
5. Calculation: For r = 0.95 from table

Z∗ = 1
2
ln

 
1+ r

1− r

 
= 1.832

so Z =
√
n − 3 Z∗ =

√
10− 3(1.832) = 4.847

6. Decision: Reject N.H. since Z = 4.847 >
Zα/2 = 1.96, i.e., there is linear relation between
x and y.

Example 3: In a certain paired data n = 18 and
r = 0.44, test the N.H. ρ = 0.30 against ρ > 0.30

at 0.01 level of significance.
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Solution:

1. Null hypothesis: ρ = 0.30
2. Alternate hypothesis: ρ > 0.30

3. Level of significance: α = 0.01
4. Critical region: (Right one tailed test)

Reject null hypothesis of Z > 2.33

5. Calculation: For r = 0.44, from table A21

Z∗ = 1
2
ln

 
r + 1
r − 1

 
= 0.472

so Z =
√
n − 3 Z∗ =

√
18− 3(0.472) = 1.828

6. Decision: Accept the null hypothesis since

Z = 1.828 < Zα = 2.33

Example 4: Determine 95% confidence limits and

the confidence intervals for a correlation coefficient

which is computed to be 0.60 from a sample of 28.

Solution: r = 0.60, n = 28, α = 0.05
Confidence limits (C.L.) for µZ are Z ± 1.96σZ

whereZ = 0.693 from table A21 (for r = 0.60) and

σZ = 1√
n − 3 = 1√

28− 3 = 1
5

= 0.2. Thus

µZ has class limits as

0.693− 1.96 (0.2), 0.693+ 1.96 (0.2)

i.e., confidence interval for µZ is:

(0.3011516, 1.0851516).

If 0.30115 = µZ = 1.1513 ln
 
1+ρ

1−ρ

 
then

ρ = .826
2.826

= 0.29236
If 1.0851 = µZ = 1.1513 ln

 
1+ρ

1−ρ

 
then

ρ = 7.7608
9.7608

= 0.7951.
Thus the confidence limits for ρ are 0.29236, 0.7951

and the confidence interval is (0.29236, 0.7951).

Least squares regression lines,

standard error estimate

Example 5: For the following data determine

(a) least squares regression line of y on x (b) y (3)

(c) least squares regression line of x on y (d) x(4)

(e) Syx (f) Sxy (g) total variation in y (h) unex-

plained variation in y (i) explained variation in y.

x 6 5 8 8 7 6 10 4 9 7

y 8 7 7 10 5 8 10 6 8 6

Solution:

x y x2 y2 xy

6 8 36 64 48

5 7 25 49 35

8 7 64 49 56

8 10 64 100 80

7 5 49 25 35

6 8 36 64 48

10 10 100 100 100

4 6 16 36 24

9 8 81 64 72

7 6 49 36 42

Total 70 75 520 587 540

so
 

x = 70 
y = 75 
x2 = 520 
y2 = 587 
xy = 540
N = 10

a. Assume that the required L.S.R.L. of y on x is

y = a0 + a1x

whose normal equations are 
y = Na0 + a1

 
x 

xy = a0
 

x + a2
 

x2

Substituting

75= 10 a0 + 70 a1
540= 70 a1 + 520 a1

Solving a1 = 0.5, a0 = 4.
So L.S.R.L. of y on x is

y = 4+ 0.5x (1)

b. y(3) = 4+ 0.5(13) = 4+ 1.5 = 5.5
c. Assume that L.S.R.L. of x on y is

x = b0 + b1y

with normal equations 
x = Nb0 + b1

 
y 

xy = b0
 

y + b1
 

y2
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or 70= 10b0 + 75b1
540= 75b0 + 587b1

Solving

b1 = 0.612, b0 = 2.41
So L.S.R.L. of x on y is

x = 2.41+ 0.612y (2)

d. x(4) = 2.41+ 0.612(4) = 4.858
e. From (1), estimated value of y = yest = 4+ 0.5x
x y yest y − yest (y − yest)

2

6 8 7 1 1

5 7 6.5 0.5 0.25

8 7 8 −1 1

8 10 8 2 4

7 5 7.5 −2.5 6.25

6 8 7 1 1

10 10 9 1 1

4 6 6 0 0

9 8 8.5 −0.5 0.25

7 6 7.5 −1.5 2.25

Total 17.0

Now Syx =
  

(y−yest )2

N
=
 
17.0
10

= 1.30384
f. From (2) xest = 2.41+ 0.612y

y x xest x − xest (x − xest)
2

8 6 7.306 −1.306 1.705636

7 5 6.694 −1.694 2.869636

7 8 6.694 1.306 1.705636

10 8 8.53 −0.53 0.2809

5 7 5.47 1.53 2.3409

8 6 7.306 −1.306 1.705636

10 10 8.53 1.47 2.1609

6 4 6.082 −2.082 4.334724

8 9 7.306 1.694 2.869636

6 7 6.082 0.918 0.842724

Total 20.816328

Now

Sxy =
  

(x − xest)3

N
= 1.44278647 ≈ 1.443

g, h, i. y =
 

y

N
= 75
10

= 7.5.

Total variation= unexplained variation+ explained
variation. 

(y − y)2 =
 
(y − yest)

2 +
 
(yest − y)2 (3)

(yest − y) 0.5 −1 0.5 0.5 0 −0.5 1.5 −1.5 1 0 Total

(yest − y)2 0.25 1 0.25 0.25 0 0.25 2.25 2.25 1 0 7.50

(y − y) 0.5 −0.5 −0.5 2.5 −2.5 0.5 2.5 −1.5 0.5 −1.5
(y − y)2 0.25 0.25 0.25 6.25 6.25 0.25 6.25 2.25 0.25 2.25 24.50

Total variation =  (y − y)2 = 24.50.
Explained variation =  (yest − y)2 = 7.50.
From (3) unexplained variation =  (y − yest)

2 =
24.50− 7.50 = 17.

Example 6: Calculate the coefficient of correlation

r for the above data in 4 ways.

Solution:

a. r = ±
 
explained variation

total variation

= ±
 
7.50

24.50
= 0.55328335.

b. Correlation coefficient is the geometric mean
between the regression coefficients, i.e.,

r =
 
bxy · byx

From Equation (1) the regression coefficient of
y on x is bxy = 0.5. Similarly, regression coeffi-
cient of x on y is bxy = 0.612
Now r =

 
(0.5)(0.612) = 0.553172667.

c. By product-moment formula

r = N
 

xy =  x
 

y  
N
 

x2 − ( x)2
  

N
 

y2 − ( y)2
 

r = 10(540)−(70)(75)  
10(520)−(70)2  10(587)−(75)2 = 150√

73500

= 0.55328
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d. By formula

r =
σ 2x + σ 2y − σ 2x−y

2σxσy

where σ 2x , σ
2
y , σ

2
x−y are variances of x, y, x − y

respectively.

We know that

variance =
 

d2

N
−
  

d

N

 2

Where d is the deviation of data from an assumed

(class mark) origin.

x y X = Y = X2 Y 2 y−x (x−y)2

x−10 y−10
6 8 −4 −2 16 4 2 4

5 7 −5 −3 25 9 2 4

8 7 −2 −3 4 9 −1 1

8 10 −2 0 4 0 2 4

7 5 −3 −5 9 25 −2 4

6 8 −4 −2 16 4 2 4

10 10 0 0 0 0 0 0

4 6 −6 −4 36 16 2 4

9 8 −1 −2 1 4 −1 1

7 6 −3 −4 9 16 −1 1

Total 70 75 −30 −25 120 87 5 27

Now

σ 2x =
 

X2

N
−
  

X

N

 2
= 120
10

−
 −30
10

 2
= 12− 9 = 3

σ 2y =
 

Y 2

N
−
  

Y

N

 2
= 87
10

−
 −25
10

 2
= 2.45

σ 2x−y =
 
(x − y)2

N
−
  
(x − y)

N

 2
= 27
10

−
 
5

10

 2
= 2.45

By formula

r =
σ 2x + σ 2y − σ 2x−y

2σxσy
= 3+ 2.45− 2.45

2
√
3
√
2.45

= 0.55328335.

Example 7: Calculate (a) the standard error esti-

mate of y (b) the standard error estimate of x for the

above data in Example 6.

Solution: a. Standard error estimate of y

= Sy = σy

 
(1− r2) =

√
2.45

 
1− (0.55328335)2

Sy = 1.086089.
Similarly, standard error estimate of x

Sx = σx

 
(1− r2) = 3

 
1− (0.55328335)2

= 2.081630.

Example 8: From 10 pairs of observations for x

and y the following data is obtained: n = 10, x =
66,
 

y = 69, x2 = 476, y2 = 521, xy =
485. It was later found that two pairs of (correct)

values

x y

4 6

9 8

were (erroneously) copied down as

x y

2 3

7 5

.

Calculate the correct value of the coefficient of cor-

relation.

Solution: In order to get the correct data, subtract
the incorrect values and add the corresponding cor-
rect values.

Thus
 

x = 66− 2− 7+ 4+ 9 = 70, 
y = 69− 3− 5+ 6+ 8 = 75, 

x2 = 476− 4− 49+ 16+ 81 = 520, 
y2 = 521− 9− 25+ 36+ 64 = 587, 
xy = 485− 6− 35+ 24+ 72 = 540.

Hence

r = N
 

xy −   x
   

y
 

 !
N
 

x2 −   x
 2" !

N
 

y2 −   y
 2"

= 10(540)− (70)(75)  
10(520)− (70)2  10(587)− (75)2 = 0.55328.

EXERCISE

1. Calculate correlation coefficient r for the fol-
lowing data:

X: 63, 50, 55, 65, 55, 70, 64, 70, 58, 68, 52, 60
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Y : 87, 74, 76, 90, 85, 87, 92, 98, 82, 91, 77, 78

Hint: N = 12, X = 730, Y = 1017, 
X2 = 44932, Y 2 = 86801, 
XY = 62352.

Ans. r = 0.86
2. Compute r for the data given below:

X: 1 2 3 4 5 6

Y : 6 4 3 5 4 2

Hint: N = 6, X = 21, Y = 24, 
X2 = 91, Y 2 = 106, XY = 75.

Ans. r = −0.68
3. Determine r for the following data:

X: 50 60 70 90 100

Y : 65 51 40 26 8

Ans. r = −0.99
4. Determine the least squares regression line of

(a) y on x and (b) x on y (c) Find r using the

regression coefficients. (d) Find y(8) (e) Find

x(16).

x: 12 10 14 11 12 9

y: 18 17 23 19 20 15

Ans. a. y = 1.913+ 1.478x
b. x = 0.60714y
c. r = √

(1.478)(0.60714) = 0.947287
≈ 0.95

d. y(8) = 13.737
e. x(16) = 9.71424

5. Use r = σ 2x +σ 2y −σ 2x−y

2σxσy
to find r for the following

data:

x: 21 23 30 54 57 58 72 78 87 90

y: 60 71 72 83 110 84 100 92 113 135

Hint: σ 2x = 584.6, σ 2y = 468.8,
σ 2x−y = 134.6.

Ans. r = 0.876
6. In a paired data for x, y with N = 25, x =
127,

 
y = 100,  x2 = 760,  y2 = 449, 

xy = 500, it was found later that two pairs

of correct values

x y

8 12

6 8

were (erroneously) copied down as
x y

8 14.

8 6

Determine the correlation coefficient for the

correct data.

Hint:
 

x = 127+ 8+ 6− 8− 8 = 125, 
y = 100+ 12+ 8− 14− 6 = 100 
x2 = 760+ 64+ 36− 64− 64 = 732, 
y2 = 449+ 144+ 64− 39− 196 = 425 
xy = 500+ 96+ 48− 48− 112 = 484.

Ans. −0.30984
7. For n = 10 and r = 0.732 test the null hypoth-
esis ρ = 0 against alternate hypothesis ρ  = 0
at the 0.05 level of significance.

Ans. Z = √
10− 3(0.933) = 2.47 > 1.96, Reject

N.H.

8. Construct a 95% confidence interval for the

population correlation coefficient ρ given

r = 0.70 and n = 30.
Ans. 0.867± 1.96√

30−3 i.e., (0.490 < µZ < 1.244) so

(0.45 < ρ < 0.85)

9. At 0.05 level of significance, test the null

hypothesis ρ = 0.9 against the alternative
ρ > 0.9, for n = 29, r = 0.9435.

Ans. Z =
√
26
2
ln
!
(1+0.9435)(0.1)
(1−0.9435)(1.9)

"
= 1.51 < 1.645,

accept N.H.

30.10 RANK CORRELATION or

SPEARMAN’S CORRELATION

Although data is measured numeric (quantitative) in

several cases the data turns out to be non-numeric

(qualitative).

Examples:

a. Appearance: beautiful, ugly.

b. Efficiency: excellent, good, average, bad.

c. Temperament: wild, composed, dosile.

In such cases, the data is ranked according to that par-



CURVE FITTING, REGRESSION AND CORRELATION ANALYSIS 30.33

ticular character instead of taking numeric measure-

ments on them, and therefore the usual Pearsonian

correlation coefficient can not be calculated. Instead

Charles Edward Spearman (1906) a psychologist de-

veloped a nonparametric counterpart of the conven-

tional correlation coefficient as follows:
For a given set of n paired observations (Xi, Yi),

for i = 1 to n; ranks 1, 2, . . . , n are assigned to theX
observations in order of magnitude and similarly to
the Y observations. Then these ranks are substituted
for the actual numerical values. The correlation co-
efficient calculated in this manner is called the “rank
correlation coefficient or Spearman’s correlation
coefficient” and is given by

rrank = rs = 1−
6

n 
i=1

d2i

n(n2 − 1)
Here di = difference between ranks assigned to Xi

and Yi ; n = number of pairs of data.

Note 1: If there are ties among eitherX or Y obser-

vations, substitute for each of the tied observations,

the mean of the ranks that they jointly occupy.

Note 2: rs lies between −1 and 1.

WORKED OUT EXAMPLES

Example: Determine rank correlation for the fol-

lowing data which shows the marks obtained in two

quizes in mathematics:

Marks in 1st quiz (X) 6 5 8 8 7 6 10 4 9 7

Marks in 2nd quiz (Y ) 8 7 7 10 5 8 10 6 8 6

Solution: Assigning ranks to the data of X, we get

X: 4, 5, 6, 6, 7, 7, 8, 8, 9, 10

Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

or: 1, 2, 3.5, 3.5, 5.5, 5.5, 7.5, 7.5, 9, 10

Similarly, Y : 5, 6, 6, 7, 7, 8, 8, 8, 10, 10

Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

or: 1, 2.5, 2.5, 4.5, 4.5, 7, 7, 7, 9.5, 9.5

Data assigned with ranks is

X 3.5 2 7.5 7.5 5.5 3.5 10 1 9 5.5

Y 7 4.5 4.5 9.5 1 7 9.5 2.5 7 2.5

D −3.5 −2.5 3 −2 4.5 −3.5 0.5 −1.5 2 3

D2 12.25 6.25 9 4 20.25 12.25 0.25 2.25 4 9

Rank correlation = 1− 6
 

D2

N (N2 − 1) = 1− 6(79.5)
10(99)

= 1− .4818181 = 0.5181818.

EXERCISE

Rank correlation

Find the rank correlation for the following data:

1.
X: 56 42 72 36 63 47 55 49 38 42 68 60

Y : 147 125 160 118 149 128 150 145 115 140 152 155

Ans. rrank = 1−6(19.5)
12(143)

= 0.931818

2.
X: 2 4 5 6 8 11

Y : 18 12 10 8 7 5

Ans. rrank = 1− 6(70)

6(35)
= −1

3.
X: 14 17 28 17 16 13 24 25 18 31

Y : 0.9 1.1 1.6 1.3 1.0 0.8 1.5 1.4 1.2 2.0

Ans. rrank = 1− 6(5.50)

(10)(99)
= 0.967

4.
X: 11.1 10.3 12.0 15.1 13.7 18.5 17.3 14.2 14.8 15.3

Y : 10.9 14.2 13.8 21.5 13.2 21.1 16.4 19.3 17.4 19.0

Ans. rs = 0.697
5. Two judges gave the following ranks to 11 girls

in a beauty contest:

Girl 1 2 3 4 5 6 7 8 9 10 11

Judge A 3 4 1 2 5 10 11 7 9 8 6

Judge B 2 4 3 1 7 9 6 11 10 5 8

Ans. rs = 1− 6(66)

11(120)
= 0.70

6. Rank by Judge

A: 1 6 5 10 3 2 4 9 7 8

B: 3 5 8 4 7 10 2 1 6 9

C: 6 4 9 8 1 2 3 10 5 7

Hint:
 

d21 = 200, d22 = 60, 
d23 = 214, n = 10.
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Ans. r(A,B)=− 7
33
, r(A,C)= 7

11
, r(B,C)= − 49

65
,

Judges A and C have nearest common app-

roach (judgement) since r(A,C) is maximum.

30.8 CORRELATION FOR BIVARIATE

FREQUENCY DISTRIBUTION

When the data is very large, it is arranged into a

bivariate frequency table (or bivariate frequency dis-

tribution) as follows:

Assume that

X is grouped into k classes

Y is grouped into m classes

fij or simply f is the cell frequency of the ith

X-class interval and j th Y -class interval.

XL1 , XU1 denotes the lower and upper limits of
the 1st class, YLm, YUm denotes the lower and upper
limits of the mth class etc. Blank cell denotes zero

cell frequency.

N = Total frequency =
k 

j=1

m 
i=1

fij

Let

Xi be the mid value (class mark) of the ithX class

Yj be the mid value of the j th Y class.

Put UX = X − A

C1
, UY = Y − B

C2
where C1 = class size of X intervals

C2 = class size of Y intervals
A = Assumed class mark for X-classes
B = Assumed class mark for Y -classes.

fX:marginal frequencies ofX (column sumsoffij ’s)

fY : marginal frequencies of Y (row sums of fij ’s).

Note that
 

fX =  fY = N .

fUXUY is denoted by a number in corner of each

cell as .

The bivariate frequency table is rewritten as (see

Page 30.36)
Now the correlation coefficient takes the form as

r = N
 

fUXUY −(
 

fXUX)(
 

fY UY ) !
N
 

fXU2
X

−(
 

fXUX)
2
"!

N
 

fY U2
Y

−(
 

fY UY )
2
"

Note:

1. UX,UY turns out to be 0, ±1,±2,±3, . . .
2. In general, C1 = C2.

3. Check: total frequency N =  fX =  fY .
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4. Check:
 

fUXUY =  fUYUX obtained from

row sums and column sums.

WORKED OUT EXAMPLES

Correlation for bivariate frequency

distribution

Example 1: The following table shows the bivari-

ate frequency distribution of marks obtained by 25

students in mathematics X and computer science Y .

Determine the coefficient of correlation r . Test the

null hypothesis ρ = 0 against the alternative hypoth-
esis ρ  = 0 at 0.05 level of significance. Determine
whether there is a relationship between marks in the

two subjects.

Solution: Here N = total frequency = 25.
From the bivariate correlation table (overleaf on
Page 821), we get

 
fXUX = 6,  fYUY = 11, 

fXU
2
X = 26,  fYU

2
Y = 39,  fUXUY = 25.

We know that the correlation coefficient for a bi-
variate frequency distribution is given by

r = N
 

fUXUY −(
 

fXUX)(
 

fY UY ) !
N
 

fXU2
X

−(
 

fXUX)
2
"!

N
 

fY U2
Y

−(
 

fY UY )
2
"

= (25)(25)− (6)(11)  
(25)(26)− (6)2  (25)(39)− (11)2 = 0.7719669.

Test of hypothesis:

1. H0: ρ = 0 Null hypothesis

2. H1: ρ  = 0 Alternative hypothesis

3. α = 0.05 Level of significance

4. Critical region: Reject the null hypothesis
if Z < −1.96 or Z > 1.96, where

Z =
√
n − 3Z∗.

5. Computation: The value of Z∗ corresponding to
r = 0.772 is Z∗ = 1

2
ln 1+r
1−r

= 1
2
ln 1+0.772
1−0.772

= 1.020
so Z = √

n − 3Z∗ = √
25− 3(1.020)

= 4.80889 ≈ 4.81
6. Decision: Reject the null hypothesis of “no lin-

ear association” because Z = 4.81 > 1.96. So
conclude that there is a relationship between the

marks obtained in the subjects mathematics and

computer science.

Example 2: Test the null hypothesis ρ = 0.9
against the alternative that ρ > 0.9 at 0.05 level of

signification for the above data with r = 0.772.
Solution:

1. H0: ρ = 0.9
2. H1: ρ > 0.9

3. α: 0.05

4. Critical region: Z > 1.645

5. Calculation:

Z =
√
n − 3
2

ln

 
(1+ r)(1− ρ0)

(1− r)(1+ ρ0)

 

Z =
√
25− 3
2

ln

 
(1+ 0.772)(0.1)
(1− 0.772)(1.9)

 
= −2.14

6. Decision: Since Z= − 2.14 < Zα=1.645 accept
null hypothesis i.e., there is some evidence that

correlation coefficient does not exceed 0.9.

EXERCISE

Find the correlation coefficient for the following

bivariate frequency distribution:

1. X

Y

59–62 63–66 67–70 71–74 75–78

90–109 2 1

110–129 7 8 4 2

130–149 5 15 22 7 1

150–169 2 12 63 19 5

170–189 7 28 32 12

190–209 2 10 20 7

210–229 1 4 2
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Hint: N = 300, fUXUY = 208, 
fX UX = 61, fYUY = 77, 
fXU

2
X = 301, fYU

2
Y = 459.

Ans. 0.54075

2. X

Y

150– 155– 160– 165– 170– 175–

154 159 164 169 174 179

51–53 1 1

54–56 1 2 1

57–59 2 2 5

60–62 1 15 23 1

63–65 6 18 1

66–68 1 3 7 1

69–71 1 3 4

Hint: N = 100, fUXUY = 131, 
fX UX = 79, fYUY = 50, 
fXU

2
X = 157, fYU

2
Y = 188.

Ans. 0.7367

3. X

Y

20–24 25–29 30–34 35–39

20–24 20 10 3 2

25–29 4 28 6 4

30–34 5 11

35–39 2

40–44 5

Hint: N = 100, fUXUY = 138, 
fX UX = −80, fYUY = −100, 
fXU

2
X = 150, fYU

2
Y = 204.

Ans. r = 0.613
4. X

Y

18 19 20 21

10–20 4 2 2

20–30 5 4 6 4

30–40 6 8 10 11

40–50 4 4 6 8

50–60 2 4 4

60–70 2 3 1

Hint: N = 100, fXUX = 68, 
fYUY = 25, fXU

2
X = 162, 

fYU
2
Y = 167, fUXUY = 52.

Ans. r = 0.25
5. X

Y

15–25 25–35 35–45 45–55 55–65 65–75

15–25 1 1

25–35 2 12 1

35–45 4 10 1

45–55 3 6 1

55–65 2 4 2

65–75 1 2

Hint:
 

fUXUY = 86, fXUX = 10, 
fYUY = 16, fXU

2
X = 98, 

fYU
2
Y = 92, n = 53.

Ans. r = 0.91

6. X

Y

1–3 3–5 5–7 7–9 9–11 11–13

20–30 2 8 14 1

30–40 5 9 6 3

40–50 6 7 5 1

50–60 2 6 3 1

60–70 1

Hint: N = 80, fUXUY = 23, 
fXUX = −59, fYUY = −53, 
fXU

2
X = 139, fYU

2
Y = 111.

Ans. r = −0.19
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Joint Probability Distribution and
Markov Chains

INTRODUCTION

So far in the univariate case, we restricted our atten-

tion to probability distribution of a single random

variable. However, in problems in economics,

biology or social sciences wewill be interested in the

study of statistical methods analyzing two or more

(bivariate ormultivariate) variables. In such cases the

concept of joint probability distribution is required.

Markov* chains, involving calculation of high power

of matrices, are powerful tool for forecasting future

events.

31.1 JOINT PROBABILITY DISTRIBUTION

Let S be a sample space associated with a random
experiment ε. Let X = X(s) and Y = Y (s) be two
random variables on the same sample space S. The
two real valued functions X(s) and Y (s) each assign
a real number to each outcome s of the sample space
S, with respective image sets given by

X(s)= {X(s1), X(s2), . . . , X(sn)}={X1, X2, . . . , Xn}

and Y (s)= {Y (s1), Y (s2), . . . , Y (sm)}={Y1, Y2, . . . , Ym}

Here the two random variables X and Y are

discrete since the possible values of X and Y are

finite (or countably infinite).

Example:

a. X: Age, Y : Blood pressure of a person.

*Andrei AndrejevtichMarkov (1856-1922), Russianmathemati-
cian

b. X: Crop yield, Y : Rain fall in an area.

c. X: I.Q., Y : Nutrition of an individual.
Consider the product set

X(S)× Y (S) = {(x1, y1), (x1, y2), . . . , (xn, ym)} .

Fig. 31.1

The joint probability distribution or joint distri-

bution or probability mass function or joint

probability function of twodiscrete randomvariables

X and Y is a function h(x, y) difined on the product

set X(s)× Y (s) assigning probability to each of the

ordered pairs (xi, yi).

Thus h(xi, yi) = P(X = xi, Y = yj ) gives the

probability for the simultaneous occurrences of

the outcomes xi and yi . Further h(x, y) satisfies

the following:

1. h(xi, yj ) ≥ 0

2.
m 

j=1

n 
i=1

h(xi, yj ) = 1

The set of triplets (xi, yj , h(xi, yj )) for i = 1 to n,

j = 1 to m, known as the probability distribution of

31.1
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the two random variables X, Y is in general repre-

sented in the form of a rectangular table as follows:

Joint Probability distribution

Marginal Distributions

Marginal distribution f (x) of X is the probability
distribution ofX alone; obtained by summingh(x, y)
over the values of Y . i.e.,

f (xi ) =

m 
j=1

h(xi, yj )

or f (xi) is the row sum of the ith row entries. Simi-
larly, marginal distribution g(y) of Y is the proba-
bility distribution of Y alone, obtained by summing
h(x, y) over the values of X. i.e.,

g(yj ) =

n 
i=1

h(xi, yj )

or g(yj ) is the column sum of the j th column entries.

Conditional Probability Distributions

Conditional distribution of random variable Y given
that X = x is

h(y|x) =
h(x, y)

f (x)
, provided f (x) > 0.

Similarly, the conditional distribution of X given
that Y = y is

h(x|y) =
h(x, y)

g(y)
, provided g(y) > 0.

Thus

P(a < X < b|Y = y) =
 

x

h(x|y)

where the summation is for all values of X between

a and b.

Statistical Independence

The random variables X and Y are said to be statis-
tically independent or simply independent if

h(x, y) = f (x) · g(y)

for all (x, y) i.e.,

h(xi, yj )= P(X = xi, Y = yj ) = P(X = xi ) · P(Y = yj )

= f (xi ) · g(yj )

for all i = 1 to n and j = 1 to m. In other words,

when X and Y are independent, each entry h(xi, yj )

is obtained as the product of its marginal entries. The

joint distribution ofX and Y can be determined from

theirmarginal distribution functions.However, in the

case of dependent variables, the joint distribution can

not be determined in this simple fashion.

Covariance

The covariance of X and Y , denoted by Cov (x, y)
is given by

Cov (X, Y )=
 

j

 
i

(xi − µX)(yj − µY )h(xi, yj )

= E ((X − µX)(Y − µY ))

=
 

j

 
i

xi · yj · h(xi, yj )− µX · µY

Cov (X, Y )= E(XY )− µXµY

Correlation

The correlation of X and Y is

ρ(X, Y ) =
Cov (X, Y )

σXσY

The dimensionless number ρ satisfy the following

properties:

i. ρ(X, Y ) = ρ(Y, X) symmetry

ii. ρ(X, X) = 1 perfectly correlated

ρ(X,−X) = −1 negatively correlated

iii. −1 ≤ ρ ≤ 1



−1 if X = −aY, (a > 0)

0 if X and Y are uncorrelated

1 if X = aY, (a > 0)

iv. ρ(aX + b, cY + d) = ρ(X, Y ) if a, c  = 0.

Result: If X and Y are independent, then

a. E(XY ) = E(X)E(Y )

b. Var (X + Y ) = Var (X)+ Var (Y )

c. Cov (X, Y ) = 0
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Proof:

a. E(XY )=
 
i,j

xiyj h(xi, yj ) =
 

xiyj f (xi )g(yj )

=
 

i

xif (xi )
 

j

yj g(xj ) = E(X) · E(Y )

b. Var (X + Y )

=
 
i,j

(xi + yj )
2h(xi, yj )− µ2

X+Y

=
 

x2
i h(xi, yj )+ 2

 
xiyj h(xi, xj )

+
 
i,j

y2
j h(xi, yj )− (µX + µY )

2

=
 

i

x2
i f (xi )+ 2

 
i

xif (xi ) ·
 

j

yj g(xj )+

+
 

j

y2
j g(yj )− µ2

X − 2µXµY − µ2
Y

=

  
i

x2
i f (xi )− µ2

X

 
+


 

j

y2
j g(yj )− µ2

Y




= Var (X)+ Var(Y )

c. Cov (X, Y )= E(XY ) = µXµY

= E(X)E(Y )− µXµY

since E(XY )= E(X)E(Y )

Cov (X, Y )= µXµY − µXµY = 0.

WORKED OUT EXAMPLES

Example 1: Find (a) marginal distributions f (x)

and g(y), (b) E(X) and E(Y ), (c) Cov (X, Y ), (d)

σX, σY and (e) ρ(X, Y ) for the following joint

distribution, (f) Are X and Y independent random

variables?

Solution: (a) The marginal distribution f (x) is

obtained by row sums and g(y) by column sums.

The marginal distribution f (x):

xi : 1 5

f (xi):
1
2

1
2

The marginal distribution g(y):

yi : −4 2 7

g(yi):
3
8

3
8

1
4

(b) E(X)= µX =

2 
i=1

xi f (xi ) = 1 ·
1

2
+ 5 ·

1

2
=

6

2
= 3

E(Y )= µY =

3 
j=1

yj g(yj )

E(Y )=−4 ·
3

8
+ 2 ·

3

8
+ 7 ·

1

4
= 1.

(c) We know that Cov (X, Y ) = E(XY )− µX · µY .

Now

E(XY )=

3 
j=1

·

2 
i=1

xi yj h (xi, yj )

= 1 · (−4) ·
1

8
+ 1 · 2 ·

1

4
+ 1 · 7 ·

1

8
+

+5 · (−4) ·
1

4
+ 5 · 2 ·

1

8
+ 5 · 7 ·

1

8

E(XY )=
3

2
= 1.5.

So Cov (X, Y )=E(XY )−µX · µY = 1.5− 3 · 1

= − 1.5.

(d) σ 2
X=Var (X) = E(X2)−µ2

X=13−3
2=4, σX=2 

... E(X2) = 1 ·
1

2
+ 25 ·

1

2
=13

 

σ 2
Y=Var (Y ) = E(Y 2)−µ2

Y=19.75−1=18.75, σy=4330 
... E(Y 2) = 16 ·

3

8
+ 4 ·

3

8
+ 49 ·

1

4
=
158

8
=19.75
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ρ(X, Y ) =
Cov (X, Y )

σX · σY
=
−1.5

2(4.33)
=−0.1732.

(e) Note that P(X = 1, Y = −4) = 1
8
from table.

P (X = 1) = 1
2
, P(Y = −4) = 3

8
from marginal

distributions. Thus

P(X = 1, Y = −4)=
1

8
 = P(X = 1) · P(Y = −4)

=
1

2
·
3

8
=

3

16

... X and Y are not independent.

Example 2: Find the joint distribution of X and

Y , which are independent random variables with the

following respective distributions:

xi : 1 2

f (xi): .7 .3
and

yj : −2 5 8

g(yj ): .3 .5 .2

Show that Cov (X, Y ) = 0.

Solution: Since X and Y are independent random
variables,

h (xi, yj ) = f (xi ) g(yj ).

Thus the entries of the joint distribution are the prod-

ucts of the marginal entries

Now E(XY )= 1 · (−2)(.21)+1 · 5(.35)+1 · 8(.14)+

+2·(−2)(.09)+2·5(.15)+2·8(.06) = 4.55

µX = 1(.7)+ 2(.3) = 1.3,

µY = −2(.31)+ 5(.5)+ 8(.2) = 3.5

So Cov (X, Y )= E(XY )− µX · µY

= 4.55− (1.3)(3.5) = 0.

Example 3: Two cards are selected at a random

from a box which contains five cards numbered 1,

1, 2, 2 and 3. Find the joint distribution of X and Y

where X denotes the sum and Y , the maximum of

the two numbers drawn. Also determine Cov (X, Y )

and ρ(X, Y ).

Solution: The possible pair of numbers are (1,1),

(1,1), (1,2), (2,1), (1,2), (2,1), (1,3), (3,1), (2,2), (2,3),

(3,2). Sum of two numbers are 2, 3, 4, 5 while

maximum numbers are 1, 2, 3. Thus

Distribution of X is

xi : 2 3 4 5

f (xi):
1
10
= 0.1 4

10
= 0.4 3

10
= 0.3 2

10
= 0.2

Distribution of Y is

yj : 1 2 3

g(yj ):
1
10
= 0.1 5

10
= 0.5 4

10
= 0.4

Joint distribution

Cov (X, Y )= E(XY )− µX · µY = 8.8− (3.6)(2.3)

= 0.52  = 0.

Therefore X, Y are not independent.

σ 2
X = Var (X) = E(X2)− µX = 13.8− (3.6)2 = 0.84

(... E(X2) = .4+ 3.6+ 4.8+ 5 = 13.8)

σ 2
Y = Var (Y ) = E(Y 2)− µY = 5.7− (2.3)2 = 0.41

(... E(Y 2) = .1+ 2+ 3.6 = 5.7)

Thus σX = 0.9165, σY = 0.6403

... ρ(X, Y )=
Cov(XY )

σXσY
=

0.52

(0.9165)(0.6403)
= 0.886 0.9

Example 4: Evaluate the conditional distributions

h(x|1) for the following joint distribution. Show that

X and Y are not independent



JOINT PROBABILITY DISTRIBUTION AND MARKOV CHAINS 31.5

Solution: Adding rowwise and columnwise rewrite

the joint distribution with the marginal distributions.

Note that the entries of the above joint distribution are

not obtained as the products of the marginal entries

because it is not known whether X and Y are inde-

pendent (In fact, it will be proved below that X and

Y are dependent).

Explanation for the rowwise entries The
number of pairs having the sum 2 and maximum
number 1 is (1, 1) only. Thus h(2, 1) = 1

10
= 0.1.

Also, there is no pair where the sum is 2 and
maximum number is also 2. So this is an impossible
event, therefore h(2, 2) = 0. The number of pairs
whose sum is 3 and maximum number is 2 are (1, 2),
(2, 1), (1, 2), (2, 1): four: h(3, 2) = 4

10
= 0.4, simi-

larly, h(4, 2) = 1
10

(only (2, 2)), h(4, 3) = 2
10

(only
{(1, 3) and (3,1)}). Similarly, h(5, 1)= 0, h(5, 2)= 0,
h(5, 3)= 2

10
= 0.2 {(2, 3) and (3, 2) are the two pairs}.

µX = 2(.1)+ 3(.4)+ 4(.3)+ 5(.2) = 3.6

µY = 1(.1)+ 2(.5)+ 3(.4) = 2.3

E(XY )= 2 · 1 · (.1)+3 · 2 · (.4)+4 · 2 · (.1)+4 · 3 · (.2)+

+5 · 3 · (.2) = 8.8

Conditional distribution h(x|y) =
h(x,y)

g(y)

Now h(x|1) = h(x,1)

g(1)
= 4h(x, 1)

since from the table g(1) = 1
4
. So

h(1|1)=
h(1, 1)

g(1)
= 4 h(1, 1) = 4

 
1

12

 
=

1

3

h(2|1)= 4 h(2, 1) = 4 ·
1

6
=

2

3

h(3|1)= 4 h(3, 1) = 4 · 0 = 0

Conditional distribution h(x|1):

xi : 1 2 3

h(x|1): 1
3

2
3

0

Dependence: From table

h(2, 3) = P(X = 2, Y = 3) =
1

4
.

From marginal distributions

P(X = 2) = f (2) =
19

36
and

P(Y = 3) = g(3) =
201

540
. But

h(2, 3)= P(X = 2, Y = 3) =
1

4
 =

19

36
·
201

540
= f (2)g(3)

= P(X = 2) · P(Y = 3)

... X and Y are not independent.

EXERCISE

1. Determine (a) marginal distributions of X and

Y (b) Cov (X, Y ) (c) ρ(X, Y ), for the following

joint distribution. (d)DeterminewhetherX and

Y are independent.

Hint: µX = 2, µY = 0.6,E(XY ) = 0,E(X2)

= 5, σ 2
X = 1,E(Y 2) = 9.6, σ 2

Y = 9.24, σY =

3.0 (d)h(1,−3) = .1  = .2 = f (1), g(−3) =

(.5)(.4).

Ans. (a) xi 1 3

f (xi) .5 .5
,

yj −3 2 4

g(yj ) .4 .3 .3
;

(b) Cov (X, Y ) = −1.2, (c) ρ(X, Y ) = −4,

(d) not independent

2. If X and Y are independent random variables,

find the joint distribution of X and Y with the
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following marginal distribution of X and Y .

xi 1 2

f (xi) .6 .4
,

yj 5 10 15

g(yj ) .2 .5 .3

Hint: h(xi, yj ) = f (xi)g(yj ).

Ans.

3. A fair coin is tossed three times. Let X denote

0 or 1 according as a head or a tail occurs on

the first toss. Let Y denote the number of heads

whichoccur. (a) Find themarginal distributions

ofX and Y , (b) Determine the joint distribution

of X and Y and (c) Cov (X, Y ).

Hint:

S = {H, T } × {H, T } × {H, T } : 23 = 8 points

= {HHH, HHT, HT H, HT T , T HH, T HT,

T T H, T T T }, X(HHH ) = 0, X(T HH )

= 1 etc., Y (HHH ) = 3, Y (T T T ) = 0 etc.

(c) µX =
1
2
, µ = 3

2
,E(XY ) = 1

2

Ans. (a)
xi 0 1

f (xi)
1
2

1
2

yj 0 1 2 3

g(yj )
1
8

3
8

3
8

1
8

(b)

(c) Cov (X, Y ) = − 1
4

4. The joint distributions of two pairs of

random variables X, Y and X∗, Y ∗ are

given below. Find the marginal distribu-

tions of X, Y and X∗, Y ∗, Cov (X, Y ), Cov

(X∗, Y ∗), ρ(X, Y ), ρ(X∗, Y ∗). Comment.

Ans. Marginal distributions of X and X∗ are same.

Also, marginal distributions of Y and Y ∗ are

same.

xi 1 3

f (xi)
1
2

1
2

,
yj 4 10

g(xj )
1
2

1
2

µX = µX∗ = 2, µY = µY ∗ = 7, Cov (X, Y )

= 0, Cov (X∗, Y ∗) = −3, ρ(X, Y ) = 0,

ρ(X∗, Y ∗) = − 3
2·7
= − 3

14
= −0.21428.

Comment: Althouth the marginal distribu-

tions are identical, covariances and correla-

tions coefficients are different.

5. Given the joint distribution

(a) Determine the marginal distributions of X

and Y , (b) Find the conditional probability

distribution h(x|y = 1), (c) Are X and Y inde-

pendent?

Ans. (a) xi 0 1 2

f (xi) .3 .6 .1
,

yj 0 1

g(yj ) .6 .4
;

(b) h(0|1) = h(0,1)

g(1)
= .2

.4
= 0.5, h(1|1) = .5,

h(2|1) = 0;

(c) Dependent, since f (0, 1) = 0.2  =

(.3)(.4) = f (0)g(1).

6. Find the marginal distributions of X and Y and

find P(Y = 3|X = 2) if the joint distribution is

Ans. xi : 1 2 3

f (xi): 0.1 0.35 0.55
,

yj : 1 2 3

g(yj ): 0.2 0.5 0.3

P(Y = 3|X = 2) =
0.2

0.35
= 0.5714.

7. Twomarbles are selected at random from a box

containing 3 blue, 2 red and 3 green marbles.

If X is the number of blue marbles and Y is the

number of red marbles selected, find (a) joint
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probability functionh(x, y), (b) P[(X, Y ) ∈ A]

where A is the region {(x, y)|x + y ≤ 1}, (c)

the marginal distributions of X and Y .

Hint: (a)h(x, y)=
 
3Cx

  
2Cy

  
3

2−x−y

   
8C2

 
(b) x = 0, 1, 2; y = 0, 1, 2; 0 ≤ x + y ≤ 2

P[(x, y) ∈ A]= P(X + Y ≤ 1)

= h(0, 0)+ h(0, 1)+ h(1, 0)

=
3

28
+

3

14
+

9

28
=

9

14
.

(c)
xi : 0 1 2

f (xi):
5
14

15
28

3
28

,
yj : 0 1 2

g(yj ):
15
28

3
7

1
28

Ans.

8. For the joint distribution in problem 7 (above).

(a) Find the conditional distribution ofX, given

that Y = 1, (b) Determine P(X = 0|Y = 1),

(c) Show that the random variables X and Y

are not statistically independent.

Hint:

g(1)=

2 
x=0

h(x, 1) =
3

14
+

3

14
+ 0 =

3

7

h(x|1)=
h(x, 1)

g(1)
=

7

3
· h(x, 1) for x = 0, 1, 2

Ans. xi 0 1 2

(a) h(xi |1)
1
2

1
2

0

(b) p(X = 0|Y = 1) = h(0, 1) = 1
2

(c) h(0, 1) = 3
14
 = 5

14
· 3
7
= f (0)g(1).

31.2 MARKOV CHAINS

Suppose a box A contains 5 red, 3 white and 8 black

marbles while box B contains 3 red and 5 white

marbles. A fair die is tossed and if 2 or 5 occurs a

marble is chosen from B otherwise from A. Further

in box A, two red, one white and 4 black marbles

are defective while in box B one red and 2 white

marbles are defective. To determine the probability

that a marble drawn at random is say a defective red

marble, we have to conduct a sequence of experi-

ments in which each experiment has a finite number

of outcomes with given probabilities as shown in the

tree diagram below (Fig. 31.2).

Fig. 31.2

The four experiments are: toss a die, choose a

box, draw a marble and decide whether it is defec-

tive. Here probability of a defective red marble is
2
3
· 5
16
· 2
5
+ 1

3
· 3
8
· 1
3
.

Stochastic Process (or Chance or Random

Process)

It is a family of random variables {X(t)|t ∈ T }

defined on a common sample space S and indexed

by the parameter t , which varies on an index set T .

The values assumed by the random variables X(t)

are called states, and the set of all possible values
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from the state space of the process is denoted by I .

If the state space is discrete, the stochastic process

is known as a chain. In this case the state space

is assumed to be I = {0, 1, 2, . . .}. Thus a (finite)

stochastic process consists of a sequence of experi-

ments in which each experiment has a finite number

of outcomes with given probabilities.

Example: Jobs arrive at random points in time,

queue for service and depart after service comple-

tion. If Nk denotes the number of jobs at the time

of departure of the kth job (customer) then {Nk|k =

1, 2, . . .} is a stochastic process.

A Markov (memoryless) process is a stochastic

process whose entire past history is summarized in

its current (present) state. i.e., the “future” is inde-

pendent of its “past”.

Markov chain

It is a Markov process in which the state space I is

discrete (finite or countably infinite). Thus a (finite)

Markov chain is a finite stochastic process consisting

of a sequence of trialswhose outcomes say x1, x2, . . .

satisfy the following two conditions:

(a) Each outcome belongs to the state space I =

{a1, a2, . . . , am}, which is the finite set of

outcomes.

(b) The outcome of any trial depends at most upon
the outcome of the immediately preceding trial
and not upon any other previous outcomes. This
Markov property can be stated as

P

 
Xn = in

    X0 = io, X1 = i1, . . . , Xn−1 = in−1

 

= P

 
Xn = in

    Xn−1 = in−1

 
.

Now the system is said to be in state ‘ai’ at time n

or at the nth step if ai is the outcome on the nth

trial. Associated with each ordered pair of states

(ai, aj ), the number pij gives the probability that

system changes from ith state to jth state. In other

words, pij is the probability that aj occurs immedi-

ately after ai occurs. The numbers pij are known as

transition probabilities.

Transition matrix

P is square matrix of the transition probabilities pij :

The ith row of P namely (pi1, pi2, . . . , pim) repre-

sents the probabilities of that system will change

from ai to a1, a2, a3, . . . , am.

Probability vector

It is a vector v = (v1, v2, . . . , vn), if vi ≥ 0 for every

i and

n 
i=1

vi = 1.

Note: A vector whose components are non-

negative, but their sum is not one, can be converted

into a probability vector by dividing each component

by the sum of the components.

Stochastic matrix

P is a square matrix with each row being a proba-

bility vector. In other words, all the entries of P are

non-negative and the sum of the entries of any row

is one.

A vector v is said to be a fixed vector or a fixed

point of a matrix A if vA = v and v  = 0.

Obviously if v is a fixed vector of A, so is kv since

(kv)A = k(vA) = k(v) = kv.

Theorem 1: If v = (v1v2v3) is a probability vector

of a stochastic matrix P =


a1 b1 c1

a2 b2 c2
a3 b3 c3


 then vP

is also a probability vector.

Proof:
vP = (v1v2v3)1×3


a1 b1 c1

a2 b2 c2
a3 b3 c3




3×3

= (v1a1 + v2a2 + v3a3, v1b1 + v2b2

+v3b3, v1c1 + v2c2 + v3c3).

Since ai, bi, ci, vi are all non-negative for any i, the
components of vP are all non-negative. Now the sum
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of the components of vP is

(v1a1 + v2a2 + v3a3)+ (v1b1 + v2b2 + v3b3)

+(v1c1 + v2c2 + v3c3)

=v1(a1+b1+c1)+v2(a2+b2+c2)+v3(a3+b3+c3)

= v1 · 1+ v2 · 1+ v3 · 1 = v1 + v2 + v3 = 1, since

P is a stochastic matrix and v is given probability

vector.

General result: If v = (v1v2v3 . . . vn) is a proba-

bility vector of a n square stochastic matrix P then

vP is also a probability vector.

Theorem 2: If P and Q are stochastic matrices

then their product P Q is also stochastic matrix.

Thus P n is stochastic matrix for all positive integer

values of n.

Proof: The ith row of P Q is the product of ith row

of P with matrix Q. Since P and Q are stochastic

matrices, ith row of P is a probability vector and by

previous Theorem 1, ith row of P with matrix Q is

also a probability vector andhenceP Q is a stochastic

matrix. If P = Q, then P Q = P 2 is stochastic and

in general P n is stochastic for n positive integer.

Theorem3: Let t = (t1t2 . . . tm) be a vector and T be

a squarematrix whose rows are each the same vector

t . ThenpT = t , ifp = (p1p2 . . . pm) is a probability

vector.

Proof:

pT = (p1p2 . . . pm)1×m




t1 t2 t3 . . . tm
t1 t2 t3 . . . tm
−−−−−−−−−−−

t1 t2 t3 . . . tm




m×m

= (t1(p1 + p2 + · · · + pm), t2(p1 + p2 + · · · + pm),

. . . , tm(p1 + p2 + · · · + pm))

= (t1 · 1, t2 · 1, . . . , tm · 1) = (t1t2 . . . tm) = t

since p is a probability vector (then

m 
i=1

pi = 1).

Theorem 4: The transition matrix P of a Markov

chain is a stochastic matrix.

Proof: All the entries of a transition matrix P are

non negative because pij are probabilities. The sum

of the elements (pi1, pi2,...,pim
) of any ith row is one,

because they represent the probabilities of all the

possible outcomes of transition from state ai to the

states a1, a2, . . . , ai, . . . , am. Thus each row of P

is a probability vector. Therefore P is a stochastic

matrix.

A Stochastic matrix P is said to be regular if all

the entries of some power P m are positive.

Theorem 5: Let P be a regular stochastic matrix.

Then

(a) P has a unique fixed probability vector t and the

components of t are all positive.

(b) The sequence P, P 2, P 3 . . . of powers of P

approaches the matrix T whose rows are each

the fixed point t .

(c) If p is any probability vector, then the sequence

of vectors pP, pP 2, pP 3, . . . approaches the

fixed point t .

Note: Here matrix A approaches matrix B, means

every entry of A approaches the corresponding entry

of B.

Higher Transition Probabilities

One-step transition probabilities

The entry pij in the transition probability matrix P
is the probability that the system moves from the
state ai to the state aj in one step i.e., ai → aj .
The one-step transition probabilities in P can also
be described by a directed graph known as state-
transition diagram or simply transition diagram of
the Markov chain. A node labelled i of the transi-
tion diagram represents state i of the Markov chain.
A branch labeled pij from node i to j represents
the conditional probability (or the one-step transi-
tion probabilities) defined by

pij = P

 
Xn = j

    Xn−1 = i

 

n-step Transition Probabilities

The probability that a Markov chain will move from
state i to state j in exactly n steps, is denoted by

pij (n) or p
(n)
ij and is given by

p
(n)
ij = pij (n) = P

 
Xm+n = j

    Xm = i
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i.e., ai → ak1 → ak2 → · · · → akn−1
→ aj .

Evaluation of n-step Transition Probability

Matrix P (n) or P (n)

using Chapman-Kolmogorov equation

pij (m+ n) =
 

k

pik(m)pkj (n).

Let P (n) or P (n) represent a matrix whose (i, j )th

entry is p
(n)
ij or pij (n). Putting m = 1 and n = n− 1

in the above C-K equation, P (n) or P (n) the n-step
transition probabilities matrix can be written as

P (n) = P (n) = P · P (n− 1) = P P P (n− 2) = P n.

Thus thematrix of n-step transition probabilitiesP (n)

is obtained by multiplying the matrix of one step

transition probabilities P by itself n− 1 times.

Theorem 6: IfP is the transition matrix of aMarkov

chain, then the n-step transition matrix P (n) is equal

to the nth power of P , i.e., P (n) = P n.

In other words, the problem of finding the n-step

transition probabilities is reduced to one of forming

powers of a given matrix.
Probability distribution of the systemat somearbi-

trary time is denoted by the probability vector.

p = (p1, p2, pi, . . . , pm)

where pi denotes the probability that the system is in
state ai . At time t = 0, when the process begins, the
corresponding probability vector

p(0) = (p
(0)
1 , p

(0)
2 , . . . , p

(0)
i , . . . , p(0)

m )

denotes the initial probability distribution. Similarly,
the nth step probability distribution i.e., the distribu-
tion after the first n-steps is denoted by

p(n) = (p
(n)
1 , p

(n)
2 , . . . , p(n)

m ).

Now the (marginal) pmf of the random variable
Xn can be obtained from the n-step transition prob-
abilities and the initial distribution as follows

p(n) = p(0)P (n) = p(0)P n

Thus the probability distributions of a homogeneous

Markov chain are completely determined from the

one-step transition probability matrix P and the

initial probability distribution p(0).

Theorem 7: The probability distribution of the
system n-steps later is given by

p(n) = p(0)P n

i.e., p(1) = p(0)P, p(2) = p(1)P = p(0)P P = p(0)P 2

p(3) = p(2)P = p(0)P 2P = p(0)P 3 etc.

Stationary Distribution of Regular

Markov Chains

Theorem 7: LetP be a regular transition matrix of a

Markov chain. Then in the long run, the probability

that any state aj occurs is approximately equal to the

component tj of the unique fixed probability vector t

of P .

Proof: Suppose the Markov chain is regular, i.e.,

P is regular, then by Theorem 5, the sequence of

n-step transition matrices P n approaches the matrix

T , whose rows are each the unique fixed probability

vector t of P . Hence the probability pij (n) that aj

occurs for sufficiently large n is independent of the

original state ai and it approaches the component tj
of t .

Stationary distribution

Stationary distribution of a Markov chain is the

unique fixed probability vector t of the regular tran-

sition matrix P of the Markov chain because every

sequence of probability distributions approaches t .

Absorbing States

Astate ai of aMarkov chain is said to be an absorbing

state if the system remains in the stateai once it enters

there, i.e., a state ai is absorbing ifpii = 1. Thus once

a Markov chain enters such an absorbing state, it is

destined there to remain forever. In other words the

ith row in P has 1 at the main diagonal (i, i) position

and zeros everywhere else.

Theorem 8: A stochastic matrix P is not regular if

a 1 occurs in the principal main diagonal.

Proof: Suppose ai is the absorbing state of the

given Markov chain whose transition matrix is P .

Then 1 occurs in the (i, i) position and the ith row
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of P is of the form (0, 0, . . . , 0, 1, 0, . . . , 0). When

powers of P are calculated the ith row of P n persists

to contain (0 0 0 . . . , 1, 0 . . . 0). Thus for i  = j (non

diagonal elements), the n-step transition probability

p
(n)
ij = 0 for any n. Thus every power of P contains

some zero elements. Therefore P is not regular.

WORKED OUT EXAMPLES

Probability vector and stochastic matrix

Example 1: Which vectors are probability vectors

(i)
 
1
4
, 3
2
,− 1

4
, 1
2

 
(ii)

 
5
2
, 0, 8

3
, 1
6
, 1
6

 
(iii)

 
1
12

, 1
2
, 1
6
, 0, 1

4

 
(iv) (3, 0, 2, 5, 3)

Solution:

(i) is not a probability vector because negative

entry
 
− 1

4

 
(ii) is not because the sum of the components do

not add up to 1

(iii) is a probability vector because all the entries are

non-negative and sum 1
12
+ 1

2
+ 1

6
+ 1

4
= 12

12
=1.

(iv) Dividing by 3+ 0+ 2+ 5+ 3 = 13, we get

the probability vector
 
3
13

, 0, 2
13

, 5
13

, 3
13

 
.

Example 2: Which matrices are stochastic

(i)

 
0 1 0
1
2

1
4

1
4

 
(ii)

 
1 0

0 1

 
(iii)

 
0 1
1
2

1
4

 

(iv)

 
1
2

1
2

1
2

1
2

 
(v)

 
0 1

− 1
2

3
2

 
.

Solution: (i), (iii), (v) are not stochastic because (i)

is not square (iii) last row sum is not 1 (v) negative

entry (ii) & (iv) are stochastic matrices: each row

sum is one, entries non-negative.

Example 3: Which of the stochastic matrices are

regular

(i) A =



1

2

1

4

1

4

0 1 0

1

2
0

1

2


 (ii) B =




1

2

1

2
0

1

2

1

2
0

1

4

1

4

1

2




(iii) C =



0 0 1

1

2
0

1

2

0 1 0




Solution:

(i) not regular since 1 lies on the main diagonal.

(ii) B2 = B · B =




1

2

1

2
0

1

2

1

2
0

3

8

3

8

1

4




,

B3 = B2B =




1

2

1

2
0

1

2

1

2
0

7

16

7

16

1

8




since entries b13, b23 are zero, B is not regular

(iii) C2 = C · C =



0 1 0

0
1

2

1

2
1

2
0

1

2


,

C3 = C · C2 =




1

2
0

1

2
1

4

1

2

1

4

0
1

2

1

2




C4 = C3 · C =




0
1

2

1

2
1

4

1

4

1

2
1

4

1

2

1

4



,
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C5 =




1

4

1

2

1

4
1

8

1

2

3

8
1

4

1

4

1

2



.

Since all the entries of some power of C are

positive, C is regular stochastic matrix.

Fixed probability vectors

Example 4: Show that v = (b a) is fixed point of

the stochastic matrix P =

 
1− a a

b 1− b

 
.

Solution: vP = (b a)

 
1− a a

b 1− b

 
=

(b − ab + ab ba + a − ab) = (b a) = v.

Example 5:

(a) Find the unique fixed probability vector t of

P =



0 3

4
1
4

1
2

1
2

0

0 1 0




(b) What matrix does P n approach?

(c) What vector does
 
1
4
, 1
4
, 1
2

 
P n approach?

Solution:

(a) Let t = (x, y, z) be the fixed probability vector.
By definition x + y + z = 1. So t = (x, y,
1− x − y), t is said to be fixed vector, if tP = t

(x y 1− x − y)



0

3

4

1

4

1

2

1

2
0

0 1 0


 = (x y 1− x − y)

Solving
1

2
y = x

3

4
x +

1

2
y + 1− x − y = y

1

4
x = 1− x − y

Solving y = 2x, x =
4

13
, y =

8

13
, z =

1

13

Required fixed probability vector is

t = (x, y, z) =

 
4

13
,
8

13
,
1

13

 
= (0.3077, 0.6154, 0.077)

(b)

P 2 = P · P =




3

8

5

8
0

1

4

5

8

1

8

1

2

1

2
0




P 3 = P 2P =




5

16

19

32

3

32

5

16

5

8

1

16

1

4

5

8

1

8




P 4 = P 3P =




19

64

40

64

5

64

20

64

39

64

5

64

20

64

40

64

4

64




P 5 = P 4 · P =
1

64



20

196

4

19

4

39

2

79

2
5

20 39 5




=
1

256



80 196 19

78 158 20

80 156 20


 =



0.3125 0.7656 0.0742

0.304 0.61718 0.078

0.3125 0.61718 0.078




Thus P n → T =


 t

t

t


, where t = (0.3077,

0.6154, 0.077)

(c)

 
1

4

1

4

1

2

 
P n =

 
1

4

1

4

1

2

 
0.3125 0.7656 0.0742

0.304 0.61718 0.078

0.3125 0.61718 0.078




= (0.310375, 0.654285, 0.07705) ≈ t

Finite stochastic process

Example 6: An urn A contains 5 red, 3 white and

8 green marbles while urn B contains 3 red and 5

white marbles (Fig. 31.3). A fair die is tossed; if 3
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or 6 appears a marble is chosen from B otherwise

from A. Find the probability that (a) a red marble

is chosen (b) a white marble is chosen (c) a green

marble is chosen.

Solution: p = probability that 3 or 6 appears in the
toss of a die

p =
1

6
+

1

6
=

2

6
=

1

3

q = 1− p =
2

3

Fig. 31.3

probability of a red marble chosen from urn A =

P (R/A) = 5
16
, P (white from A) = P (W/A) =

3
16

, P (G/A) = 8
16
, probability of a red marble

chosen from urn B = P (R/B) = 3
8
, P (W/B) = 5

8
.

Fig. 31.4

Here we perform a sequence of two experiments.

First, toss a die and choose the box. Second, choose

a marble from the (chosen) box.

(a) Probability that a red marble is chosen

= P (R)= P (A) · P (R/A)+ P (B) · P (R/B)

=
2

3
·
5

16
+

1

3
·
3

8
=

16

48
=

1

3

(b) P (W )= P (A) · P (W/A)+ P (B) · P (W/B)

=
2

3
·
3

16
+

1

3
·
5

8
=

16

48
=

1

3

(c) P (G) = P (A)P (G/A) =
2

3
·
8

16
=

1

3
.

Transition matrix and transition diagram

Example 7: Figure 31.5 shows four compartments

with door leading from one to another. A mouse in

any compartment is equally likely to pass through

each of the doors of the compartment. Find the transi-

tion matrix of the Markov chain. Draw the transition

diagram.

Fig. 31.5

Solution: The 4 rooms are considered as four states
say 1, 2, 3, 4. Since mouse is moving, it does not stay
in the same room. From room 1 it can go to 4 or 2
with probability 1

3
or 2

3
. It can not go from 1 to 3.

Then the first row consists of 0, 2
3
, 0, 1

3
. Thus the

transition matrix is

1 2 3 4

1

2

3

4




0
2

3
0

1

3

2

3
0

1

3
0

0
1

2
0

1

2

1

2
0

1

2
0




Figure 31.6 gives the transition diagram:
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Fig. 31.6

Markov chain

Example 8: Every year, a man trades his car for

a new car. If he has a Maruti, he trades it for an

Ambassador. If he has an Ambassador, he trades it

for a Santro. However, if he has a Santro, he is just

as likely to trade it for a new Santro as to trade it for

a Maruti or an Ambassador. In 2000 he bought his

first car, which was a Santro.

(i) Find the probability that he has

(a) 2002 Santro

(b) 2002 Maruti

(c) 2003 Ambassador

(d) 2003 Santro

(ii) In the long run, how often will he have a Santro.

Solution: (i)Define 3 states a1, a2, a3 as follows a1:
state of having Maruti car, a2: having Ambassador,
a3: having Santro. Then the transition matrix is

a1 a2 a3

P =

a1

a2

a3



0 1 0

0 0 1

1

3

1

3

1

3




2000: Initial state = P (0) = (0, 0, 1) since he has

Santro car in 2000 (his first purchase).

(a) To reach 2002 year, (2-steps later) compute the

Fig. 31.7

2-step transition matrix P 2

P 2 =



0 1 0

0 0 1

1

3

1

3

1

3





0 1 0

0 0 1

1

3

1

3

1

3


 =



0 0 1

1

3

1

3

1

3

1

9

4

9

4

9




Then

p(2) = p(0)P 2 = (0 0 1)



0 0 1

1

3

1

3

1

3

1

9

4

9

4

9




p(2) =

 
1

9

4

9

4

9

 

The probability that he has a Santro in the year

2002 is p
(2)
3 = 4

9
.

(b) Probability that he has a Maruti in 2002 is

p
(2)
1 =

1
9
.

(c) To reach 2003: 3 steps later

p(3) = p(2)P =

 
1

9

4

9

4

9

 
0 1 0

0 0 1

1

3

1

3

1

3




(or equivalently p(3) = p(0)P 3).

p(3) =

 
4

27

7

27

16

27

 

Probability that he has an Ambassador in 2003

is p
(3)
2 = 7

27
.



JOINT PROBABILITY DISTRIBUTION AND MARKOV CHAINS 31.15

(d) Probability that has a Santro in 2003 is

p
(3)
3 =

16

27
.

(ii) To discover what happens in the long run, we

must find a fixed probability vector t of P . Let t =

(x, y, 1− x − y).
Then tP = t

(x y 1− x − y)



0 1 0

0 0 1

1

3

1

3

1

3


 = (x y 1− x − y)

or 1− x − y = 3x

3x + (1− x − y) = 3y

3y + (1− x − y) = 3(1− x − y)

Solving y =
1

3
, x =

1

6
, z =

3

6
=

1

2

Thus t =

 
1

6
,
1

3
,
1

2

 

In the long run, he has a Santro 50%
 
1
2

 
of the time.

Example 9: Suppose an urn A contains 2 white

marbles and urn B contains 4 red marbles. At each

step of the process, a marble is selected at random

from each urn and the twomarbles selected are inter-

changed. Let Xn denote the number of red marbles

in urn A after n interchanges.

(i) Find the transition matrix P .

(ii) What is the probability that there are 2 red

marbles in urn A after 3 steps.

(iii) In the long run, what is the probability that there

are 2 red marbles in urn A.

(iv) What is the stationary distribution of the

system.

Solution: There are three states a0, a1 and a2 as

shown in Fig. 31.8 below:

Fig. 31.8

(i) Transition matrix

If the system is in the state a0, then a white marble

fromA and a red fromB must be selected, so that the

system will now move to state a1. Accordingly the

first row of the transition matrix (T.M.) is (0, 1, 0).

Now suppose the system is in a1. It can move to state

a0, iff red from A and white from B with probability
1
2
· 1
4
= 1

8
. Thusp10 =

1
8
. The system canmove from

a1 to a2, iff white fromA and red fromB with proba-

bility 1
2
· 3
4
= 3

8
i.e.,p12 =

3
8
, probability that system

will remain in a1 itself is 1− 1
8
− 3

8
= 1

2
. (Note:

white from A and white from B with probability
1
2
· 1
4
= 1

8
or red from A and red from B with prob-

ability 1
2
· 3
4
= 3

8
. Thus the probability that system

will remain in state a1 itself is
1
8
+ 3

8
= 1

2
). Thus the

2nd row of T.M. is
 
1
8
, 1
2
, 3
8

 
.

Finally, suppose the system is in state a2. Note

that the system can never move from state a2 to a0.

However, it may remain in a2 itself, if a red from

A and red from B is chosen. In this case the proba-

bility is 1
1
· 2
4
= 1

2
. Lastly, if a red from A and white

from B is chosen, then system moves from a2 to

a1 with probability 2
4
= 1

2
. Thus third row of the

T.M. is
 
0, 1

2
, 1
2

 
. The Transition Matrix and tran-

sition diagram are shown in Fig. 31.9

Fig. 31.9

a0 a1 a2

a0

a1

a2



0 1 0

1

8

1

2

3

8

0
1

2

1

2
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(ii) The system starts in state a0, so that p(0) =
(1, 0, 0) is the initial state. Now

p(1) = p(0)P = (1 0 0)



0 1 0

1

8

1

2

3

8

0
1

2

1

2


 = (0 1 0)

p(2) = p(1)P = (0 1 0)



0 1 0

1

8

1

2

3

8

0
1

2

1

2


 =

 
1

8

1

2

3

8

 

p(3) = p(2)P =

 
1

8

1

2

3

8

 


0 1 0

1

8

1

2

3

8

0
1

2

1

2


 =

 
1

16

9

16

6

16

 

Probability that there are two red in A i.e., in state a2
after three steps is 6

16
= 3

8
.

(iii) To study the system in the long run, we should
find a unique fixed probability vector t of the transi-
tion matrix P . Let t be (x, y, z) or (x, y, 1− x − y).

Then tT = t

(x y z)



0 1 0

1

8

1

2

3

8

0
1

2

1

2


= (x y z)

Solving
1

8
y = x or y = 8x

x +
1

2
y +

1

2
z= y or 2x − y + z = 0

3

8
y +

1

2
z= z or 3y = 4z

Now 3y = 4z = 4(1− x − y)

7y = 4− 4x or 56x + 4x = 4

... x =
4

60
, y =

8

15
, z =

6

15

Therefore, the fixed vector

t =

 
1

15

8

15

6

15

 

Hence the system in the long run stays in the state

a2, 40% of the time
 
6
15
= 2

5

 
(i.e., there will be 2 red

in A, 40% of the time).

(iv) The fixed unique probability vector t = 
1
15

, 8
15

, 6
15

 
is the stationary distribution, since P n

approaches t , in the long run.

Markov chain with absorbing states:

Example 10: A player has Rs. 300. At each play

of a game, he losses Rs. 100 with probability 3
4
but

wins Rs. 200 with probability 1
4
. He stops playing if

he has lost his Rs. 300 or he haswon at least Rs. 300.

(a) Determine the transition probability matrix of

the Markov chain.

(b) Find the probability that there are at least 4 plays

to the game.

Solution: (a) This is random walk with absorbing

barriers at states 0 and 6. The transition probability

matrix P is

P =

a0 a1 a2 a3 a4 a5 a6

a0

a1

a2

a3

a4

a5

a6




1 0 0 0 0 0 0
3

4
0 0

1

4
0 0 0

0
3

4
0 0

1

4
0 0

0 0
3

4
0 0

1

4
0

0 0 0
3

4
0 0

1

4

0 0 0 0
3

4
0

1

4
0 0 0 0 0 0 1




Explanation for the probability matrix P : There are

seven states a0, a1, a2, a3, a4, a5, a6 where ai indi-

cates the state that he has Rs. i hundreds (i.e., a3
indicate he has Rs. 300, a5 he has 500 etc.).

First row: If he is in state a0 he has zero money (lost

his initial amount of Rs. 300) and therefore he stops

the game. Then he remains in that state forever. He

does not play again. Thus the state a0 is an absorbing

state, no money (and he does not transit from this

state to any other state).

Last row: Similarly if he has Rs. 600 (i.e., his original

Rs. 300 and winning amount of Rs. 300) he stops the
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gameand remains in the state (hedoes not play).Thus

the state a6 is also an absorbing state, all money.

Second row: Suppose he hasRs. 100 i.e., he is in state

a1. Then the probability that he will lose Rs. 100 is
3
4
and therefore transfers to a0 state (no money). But

he can not transfer to states a2, a3, a5, a6. But by

winning Rs. 200 with probability 1
4
he can have Rs.

300 (Rs. 100 original + Rs. 200 winning). Thus the

probability of going from state a1 to a3 is
1
4
, and from

a1 to a0 is
3
4
. Thus the probability vector (second row)

is
 
3
4
0 0 1

4
0 0 0

 
.

Third row: Starting with Rs. 200 (a2 state) he can

lose Rs. 100 with probability 3
4
thereby go to state

a1 or win Rs. 200 with probability 1
4
, thereby go to

state a4. Thus third row
 
0 3

4
0 0 1

4
0 0
 
.

Similarly, other rows of P are obtained.
(b) The initial probability distribution is

p(0) = (0 0 0 1 0 0 0)

because he has started the game with an initial
amount of Rs. 300 and is therefore in state a3. To find
the probability that the game has at least 4 plays, we
compute p(4), which gives the probability distribu-
tion of the system after 4 steps (i.e., 4 games). Now

p(1) = p(0)P =

= (0 0 0 1 0 0 0)




1 0 0 0 0 0 0
3

4
0 0

1

4
0 0 0

0
3

4
0 0

1

4
0 0

0 0
3

4
0 0

1

4
0

0 0 0
3

4
0 0

1

4

0 0 0 0
3

4
0

1

4
0 0 0 0 0 0 1




p(1) = (0, 0,
3

4
, 0, 0,

1

4
, 0)

p(2) = p(1)P =

 
0,

9

16
, 0, 0,

6

16
, 0,

1

16

 

p(3) = p(2)P =

 
27

64
, 0, 0,

27

64
, 0, 0,

10

64

 

p(4) = p(3)P =

 
27

64
, 0,

81

256
, 0, 0,

27

256
,
10

64

 
He plays 4 or more games, if after 4 steps he is not

in any one of the absorbing states a0 or a6. Thus the
probability that there at least 4 plays in the game is

0+
81

256
+ 0+ 0+

27

256
=

108

256
=

27

64
.

EXERCISE

1. Which vectors are probability vectors (i) 
1
2
, 1
3
, 0,− 1

5

 
; (ii) (3 4 5 0); (ii)

 
1
4
, 1
2
, 0, 1

4

 
.

Ans. (i) not (since negative component); (ii) not

(since do not add upto 1); (iii) yes

2. Find a scalar multiple of each vector, which is

a probability vector.

(i)
 
2, 1

2
, 0, 1

4
, 3
4
, 0, 1

 
; (ii)

 
1
3
, 2, 1

2
, 0, 1

4
, 2
3

 
;

(iii) (1 2 3 4 5 6); (iv)
 
1
2
, 2
3
, 0, 2, 5

6

 
.

Ans. (i) 4
18
; (ii) 12

45
; (iii) 1

21
. Then required prob-

ability vectors are 4
18

 
2, 1

2
, 0, 1

4
, 3
4
, 0, 1

 
= 

8
18

, 2
18

, 0, 1
18

, 3
18

, 0, 4
18

 
;

(iv) multiply 6 : (3, 4, 0, 12, 5). Divide by 3+

4+ 0+ 12+ 5 = 24. Then probability vector 
3
24
= 1

8
, 1
6
, 0, 1

2
, 5
54

 
.

3. Which matrices are stochastic

(a)

 
1
3

2
3

4
3

1
2

1 1
2

 
(b)

 
15
16

1
16

2
3

4
3

 

(c)

 
1 0

1
2

1
2

 
(d)

 
1
2
− 1

2
1
4

3
4

 

Ans. (a) not (square); (b) not adding to 1; (c) yes;

(d) No (negative entry)

4. Which of the following matrices are regular

(a) A =

 
1
2

1
2

0 1

 
(b) B =

 
0 1

1 0

 
;

(c) C=




1
2

1
4

1
4

0 1 0

1
2

1
2

0


 (d) D=



0 0 1

1
2

1
4

1
4

0 1 0




Ans. (a) Not regular, since 1 appears in the main

diagonal.

(b) B2 = I, B3 = B, B is not regular, since 1

appears in the main diagonal
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(c) c not regular, 1 appears on diagonal

(d)D2=



0 1 0

1
8

5
16

9
16

1
2

1
4

1
4


, D3=




1
2

1
4

1
4

5
32

41
64

13
64

1
8

5
16

9
16




D is regular since all the entries of D3 are

positive.

5. Find the unique fixed probability vector of each

matrix

(a) A =

 
2
3

1
3

2
5

3
5

 
(b) B =

 
1
4

3
4

5
6

1
6

 

(c) C =

 
0.2 0.8

0.5 0.5

 
Ans. (a)

 
6
11

, 5
11

 
; (b)

 
10
19

, 9
19

 
; (c)

 
5
13

, 8
13

 
.

6. Find the unique fixed probability vector of

(a)A =



0 1

2
1
2

1
3

2
3

0

0 1 0


, (b)B =



0 1 0

1
2

0 1
2

1
2

1
4

1
4




Ans. (a)
 
2
9
, 6
9
, 1
9

 
(b)

 
5
15

, 6
15

, 4
15

 
7. Given P =

 
0 1

1
2

1
2

 
(a) find a unique fixed

probability vector; (b) what matrix does P n

approach; (c) what vector does
 
1
4

3
4

 
P n

approach.

Ans. (a)
 
1
3
, 2
3

 
; (b) P 5 =

 
0.31 0.69

0.34 0.66

 
→

(0.33, 0.66); (c)
 
43
128

85
128

 
≈
 
1
3

2
3

 
8. (a) Find the unique fixed probability vector t

of

P =




0
1

2

1

2
0

1

2

1

4
0

1

4

0 0 0 1

0
1

2
0

1

2




(b)What matrix does P n approach

(c)What vector does
 
1
4
0 1

2
1
4

 
P n approach

(d)What vector does
 
1
2
0 0 1

2

 
P n approach.

Hint: t = (x, y, z, 1− x − y − z), y = 2x,

x = 2z, y = 4z

Ans. (a) t =
 
2
11

, 4
11

, 1
11

, 4
11

 
= (0.1818, 0.3636,

0.0909, 0.3636)

(b) P 5 =
1

1024



196 546 136 540

306 569 100 766

240 440 96 592

200 436 80 552


 ∼ t

(c) ∼ t

(d) ∼ t

9. Find the transition matrix

Fig. 31.10

Fig. 31.11

Ans. (i)

a1 a2

a1

a2

 1
2

1
2

1
3

2
3

 

(ii) a1 a2 a3

a1

a2

a3




1
2

1
2

0

0 1
2

1
2

1
2

1
4

1
4






JOINT PROBABILITY DISTRIBUTION AND MARKOV CHAINS 31.19

10. For a Markov chain, the transition matrix

P =

 
1
2

1
2

3
4

1
4

 
with initial distribution p(0) = 

1
4

3
4

 
. Find

(a) p
(2)
21 (b) p

(2)
12

(c) p(2) (d) p
(2)
1

(e) the vector p(0)P n approaches

(f) P n approaches

Ans. P 2 =

 
5
8

3
8

9
16

7
16

 
(a) p

(2)
21 =

9
16

(b) p
(2)
12 =

3
8

(c) p(2) = p(0)P 2 =
 
37
64

27
64

 
(d) p

(2)
1 = 37

64

(e)p(0)P n approaches fixed vector t =
 
3
5

2
5

 
(f) P n → T =

 
t

t

 
=

 
3
5

2
5

3
5

2
5

 

11. A man’s smoking habits are as follows. If

he smokes filter cigarettes one week, he

switches to nonfilter cigarettes the next week

with probability 0.2. On the other hand if he

smokes nonfilter cigarettes one week, there

is a probability of 0.7 that he will smoke

nonfilter cigarettes the next week as well. In

the long run how often does he smoke filter

cigarettes.

Ans. P :
F NF

F

NF

 
0.8 0.2

0.3 0.7

 
, t = fixed = (x, 1− x)

x =
3

5
, y =

2

5
, t =

 
3

5
,
2

5

 

Man smokes filter cigarettes 60%
 
3
5

 
time in

the long run.

12. A saleman’s territory consists of 3 cities A, B

and C. He never sells in the same city on

successive days. If he sells in city A, then the

next day he sells in city B. However if he

sells in either B or C, then the next day he is

twice as likely to sell in city A as in other city.

In the long run, how often does he sell in

each of the cities.

Ans. P =

A B C

A

B

C



0 1 0
2
3

0 1
3

2
3

1
3

0


 ,

2
3
y + 2

3
z = z

x + 1
3
z = y

1
3
y = z

t =
 
2
5
, 9
20

, 3
20

 
. In the long run he sells 40% of

time in city A, 45% in B, 15% of time in C.

13. There are 2 white marbles in box A and 3 red

marbles in box B. At each step of the process

a marble is selected from each box and the two

marbles selected are interchanged. Let the state

ai of the system be the number i of red marbles

in box A.

(a) Find the transition matrix P .

(b)What is the probability that there are 2 red

marbles in box A after 3 steps

(c) In the long run, what is the probability that

there are 2 red marbles in box A.

Hint: 1W 1W 2W
2W 3R 2R

1R 2R 1R

A B A B A B

a0 a1 a2

(a) P =

a0 a1 a2

a0

a1

a2



0 1 0

1

6

1

2

1

3

0
2

3

1

3




Initial distribution: p(0) = (1, 0, 0)

p(1) = p(0)P = (0, 1, 0), p(2) = p(1)P =

 
1

6

1

2

1

3

 
,

p(3) = p(2)P =

 
1

12

23

36

5

18

 
.

(b) Probability that there are 2 red marbles in

box A after 3 steps is 5
18
.

(c) Fixed probability vector: t =

(0.1, 0.6, 0.3).

Ans. (c) In the long run, 30% of the time, there will

be 2 red marbles in box A.
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Finite stochastic process

14. BoxA contains 3 red and 5 white marbles, Box

B contains 2 red and 1 white marbles, Box C

contains 2 red and 3 white marbles. One box

is selected at random and a marble is drawn

from the box. If the marble is red, what is the

probability that it came from box A.

Hint: P (A/R) = P (A∩R)

P (R)
=

1
8
173
360

Ans. 45
173

15. Box A contains cards numbered 1 to 9. Box

B contains cards numbered 1 to 5. One box is

chosen at random and a card is drawn. If the

card is even, another card from the same box is

drawn, if odd the card is drawn from the other

box. Find

(a) the probability that both cards are even.

(b) if both cards are even, find the probability

that they came from box A.

(c) what is the probability that both cards are

odd?

Ans. (a) 1
2
· 4
9
· 3
8
+ 1

2
· 2
5
· 1
4
= 1

12
+ 1

20
= 2

15

(b)
1
12
2
15

= 5
8

(c) 1
2
· 5
9
· 3
5
+ 1

2
· 3
5
· 5
9
= 1

6
+ 1

6
= 1

3
.

16. A box contains 3 coins, two of them fair and

one two-headed. A coin is selected at random

and tossed twice. If head appears both times,

what is the probability that the coin is two

headed.

Ans.
1
3
·1·1

1
3
· 1
2
· 1
2
+ 1

3
· 1
2
· 1
2
+ 1

3
·1·1
= 2

3

Absorbing states

17. A player has Rs. 200. He bets Rs. 100 at a time

and wins Rs. 100 with probability 1
2
. He stops

playing if he loses the Rs. 200 or wins Rs. 400.

(a) Find the probability that he has lost his

money at the end of at most 5 days.

(b) Determine the probability that the game

lasts more than 7 plays.

Hint:

a0 a1 a2 a3 a4 a5 a6

a0

a1

a2

a3

a4

a5

a6




1 0 0 0 0 0 0
1

2
0

1

2
0 0 0 0

0
1

2
0

1

2
0 0 0

0 0
1

2
0

1

2
0 0

0 0 0
1

2
0

1

2
0

0 0 0 0
1

2
0

1

8
0 0 0 0 0 0 1




p(0) = (0, 0, 1, 0, 0, 0, 0),

p(1) = p(0)P =

 
0,

1

2
, 0,

1

2
, 0, 0, 0

 

p(2) = p(1)P=

 
1

4
0

1

2
0

1

4
0 0

 
, p(5)=p(4)P

p(5) =

 
3

8
,
5

32
, 0,

9

32
, 0,

1

8
,
1

16

 
.

p(5): probability that he has no money after 5

plays is 3
8
, p(7) =

 
29
64

, 7
64

, 0, 27
128

, 0, 13
128

, 1
8

 
Ans. (a) 3

8
(b) 7

64
+ 27

128
+ 13

128
= 27

64
.
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Chapter32

Numerical Analysis

INTRODUCTION

Using Mathematical Modeling, most of the problems

in Engineering and Physical and Economical sci-

ences can be formulated in terms of systems of linear

or non-linear equations, ordinay or partial differen-

tial equations or integral equations. In majority of the

cases, the solutions to these problems in analytical

form are non-existent or difficult or not amenable for

direct interpretation. In all such problems, Numerical

Analysis provides approximate solutions, practical

and amenable for analysis. Numerical analysis does

not strive for exactness. Instead, it yields approxi-

mations with specified degree of accuracy. The early

disadvantage of the several number of computations

involved has been removed through high speed com-

putation using computers, giving results which are

accurate, reliable and fast. Numerical analysis is not

only a science but also an ‘art’ because the choice of

‘appropriate’ procedure which ‘best’ suits to a given

problem yields ‘good’ solutions.

In this chapter we consider the bisection, reg-

ula falsi and Newton-Raphson’s methods of obtain-

ing solutions of transcendental equations. For an

unknown function f (x) given at a set of tabulated

values, interpolation is the process of obtaining a

simpler function φ(x). We study Newton-Gregory

finite differences formulae. Sterling and Bessel’s

central differences for equally spaced value of x.

Lagrange’s interpolation and inverse interpolation

is used for arbitrarily spaced x. For tabulated func-

tions, the derivatives can be calculated using numer-

ical differentiation. Numerical integration is useful

even for integrals such as

 
sin x

x
dx,

  
1+ x4dx, 3

2
e−x

2
dx which can not be expressed in terms of

elementary functions. We study trapezoidal, Simp-

son’s
1

3
,

3

8
rule, Weddle’s and Boole’s rules of inte-

gration. Quadratic and cubic splines which are pow-

erful tools in piecewise-polynomial approximation

are also considerd.

32.1 ROOTS OF TRANSCENDENTAL

EQUATIONS

An algebraic equation of degree n is

P (x) ≡ a0x
n + a1x

n−1 + · · · + an = 0 (1)

where the coefficients a0, a1, . . . , an are real num-

bers and a0  = 0. Here n ≥ 1. Transcendental equa-

tions are non-algebraic equations involving transcen-

dental functions such as exponential, logarithmic,

trigonometric or hyperbolic functions. A general

form of an algebraic or transcendental equation is

f (x) = 0 (2)

where the function f (x) is defined and continuous

on an interval a < x < b.

32.1
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Root

Any value ξ for which f (ξ ) = 0 is known as the

root or solution of the equation (2) or ξ is called the

zero of the function f (x). In the case of the alge-

braic Equation (1), the roots can be determined in

analytical (literal) form when n = 1, 2, 3, 4 (i.e., for

linear, quadratic, cubic and biquadratic equations).

For n ≥ 5 no such results exists for the roots of (1).

Also from the fundamental theorem of algebra, (1)

has exactlyn roots, real or complex whereas the num-

ber and analytical form of roots of a transcendental

equation are not known at all.

Example: sin x = 2 has no real roots, sin x = 1
2

has infinite number of roots, while sin x = x
2

has

three real roots (see Fig. 32.9 on page 32.6).

Therefore only approximate solutions (roots) of

an algebraic or transcendental Equation (2) are to be

found by numerical methods consisting of (a) isolat-

ing the roots (b) and then improving the value of the

approximate roots. Here it is assumed that the roots

of (2) are isolated i.e., for any root ξ of (2) there

exists an interval containing no other root except ξ .

Geometrically, the root of Equation (2) is the point

where the graph (or curve) of y = f (x) crosses the

x-axis (i.e., y = f (x) = 0). Although the roots can

be isolated by drawing the graphs of the curve, these

graphical methods are cumbersome. The following

theorem is very useful in isolating the roots of (2).

Theorem 1: If a continuous function f (x)

assumes values of opposite sign at the end points

of an interval [α, β] i.e., f (α)f (β) < 0, then the

interval will contain at least one root of the equa-

tion f (x) = 0 i.e., there exists ξ ∈ (α, β) such that

f (ξ ) = 0.

Note 1: Root ξ will be unique (only one) in the

interval (α, β) if f  (x) has the same sign in the inter-

val (α, β) (i.e., f  > 0 or f  < 0 in α < x < β).

Note 2: For an nth degree algebraic Equation (1),

we get (n+ 1) sign changes.

Note 3: Descarte’s rule of sign: The number of pos-

itive roots of f (x) = 0 can not exceed the number of

Fig. 32.1

Fig. 32.2 Fig. 32.3

changes of sign in f (x). Also the number of negative

roots of f (x) can not exceed the number of changes

of sign in f (−x).

Example: f (x) = x5 − 6x2 − 4x + 5 = 0.

f (x) : +−−+ : 2 changes of sign; no more than 2

positive roots.

f (−x) : −−++: one change of sign; no more than

one negative root.

Bisection Method (or Halving Method or

Bolzano Method)

Consider the equation

f (x) = 0 (2)

in [a, b]. Assume that f (a)f (b) < 0. The bisection
method isolates the root in [a, b] by halving process,
approximately dividing the given interval [a, b] into
two, four, eight etc. equal parts. Thus in order to
find a root of (2) lying in the interval [a, b], divide
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the interval in half. If f
 
a+b

2

 = 0, then ξ = a+b
2

is

the required root. If f
 
a+b

2

  = 0, then choose that

half
 
a, a+b

2

 
or

 
a+b

2
, b

 
, at the end points of which

f (x) has opposite signs. The newly reduced inter-
val [a, b] is again bisected and the above process is
repeated. Thus we get a sequence of nested intervals
[a1, b1], [a2, b2], . . . , [an, bn] such that

f (an)f (bn) < 0 for n = 1, 2, . . .

and

bn − an =
1

2n
(b − a).

The required root ξ = 1
2
(an + bn).

Rugula-Falsi Method (or Method of False

Position or Linear Interpolation or Method of

Chords or Method of Proportional Parts)

This method is probably the oldest, faster method

more generally applicable.

Fig. 32.4

To find root ξ of the equation f (x) = 0 in the

interval [a, b] assume that f (a) < 0 and f (b) > 0

so that f (a) · f (b) < 0.
Geometrically, this method is equivalent to replac-

ing the curvey = f (x) by a chord that passes through
the points A(a, f (a)) and B(b, f (b)). The equation
of the chord AB is

x − a
b − a =

y − f (a)

f (b)− f (a)

Fig. 32.5

A

B

If chord AB meets x-axis at x = x1, then y = 0.

x1 − a
b − a =

0− f (a)

f (b)− f (a)
or

x1 = a −
f (a)

f (b)− f (a)
(b − a)

If f (a) < 0, then the end point b is fixed and the
successive approximations

x0 = a

xn+1 = xn −
f (xn)

f (b)− f (xn)
(b − xn),

(for n = 0, 1, 2, 3, . . .) form a bounded increasing
monotonic sequence and

x0 < x1 < x2 · · · < xn < xn+1 < · · · < ξ < b.
If f (a) > 0, end point a is fixed and successive
approximations are

x0 = b

xn+1 = xn −
f (xn)

f (xn)− f (a)
(xn − a)

and

a < ξ < · · · < xn+1 < xn < · · · < x1 < x0.

Note 1: Fix the end point for which sign of f and

f   is same.

Note 2: Successive approximations xn lie on the

side of root ξ where sign of f is opposite to the sign

of f   .
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Newton-Raphson Method

(or Method of Tangents)

Newton’s method is used to obtain a better (refined)

approximation of a root using the earlier approxima-

tions obtained by bisection method or Regula-Falsi

method. Geometrically, Newton’s method is equiv-

alent to replacing a small arc of the curve y = f (x)

by a tangent line drawn at a point of the curve. Draw

a tangent to the curve atB0 which meets x-axis at x1.

Then draw a tangent at B1 which meets x-axis at x2.

Continuing this process, the root ξ is obtained.

Fig. 32.6

Suppose ξ = x + h where h is a small quantity.
Then applying Taylor’s formula

0= f (x + h) ≈ f (x)+ hf  (x)

or h= − f (x)

f  (x)

Thus ξ = x + h = x − f (x)

f  (x)
.

In general,

xn+1 = xn − f (xn)
f  (xn)

, n = 0, 1, 2, . . . .

Note 1: A root ξ of equation f (x) = 0 can be com-
puted to any degree of accuracy if a ‘good’ initial
approximation x0 is chosen for which

f (x0)f   (x0) > 0

i.e., choose the end point of the interval at which f

and f   have the same sign.

Note 2: Newton’s method converge slow if f  is

small (fails when f  = 0 because tangent in this case

is parallel to x-axis and will never meet it).

WORKED OUT EXAMPLES

Example 1: Isolate the roots of the equation

x3 − 4x + 1 = 0

Find all the roots using bisection method.

Solution: Here f (x) = x3 − 4x + 1.

x: −∞ −3 −2 −1 0 1 2 3 4 ∞
sign of

f (x): − −14 1 4 1 −2 1 16 49 ∞
Since equation is cubic (degree three) and since there

are 3 changes of signs, a unique (one) root lies in the

three intervals (−3,−2), (0, 1), (1, 2). Now consider

the interval (0, 1) and apply bisection method.

xi f (xi )

new interval

(with signs)

x1 = 1+0
2
= 1

2
f (x1) = −8.75

+ −
(0, 0.5)

x2 = 0+0.5
2

= 1
4

f (x2) = f (0.25)

= 0.015625

+ −
(0.25, 0.5)

x3 = .25+.5
2

= .35 f (.35) =
−0.357

+ −
(0.25, 0.35)

x4 = .25+.35
2

= .3 f (.3) = −0.173
+ −

(.25, .3)

x5 = .25+.3
2

= .55
2

f (.275) =
−0.0792

+ −
(.25, .275)

x6 = .25+.275
2

= .2625

f (.2625) =
−0.0319

+ −
(.25, .2625)

x7 = .25+.2625
2

= 0.25625

f (.25625) =
−0.00817

+ −
(0.25, .25625)

x8 = .25+.25625
2

= 0.253125

f (.253125) =
0.0100

+ −
(0.253125, .25625)

x9 =
.253125+.25625

2

= 0.2546875

f (.2546875) =
−0.00222

+ −
(.253125, .2546875)

x10 =
0.253125+0.2546875

2

= 0.25390625

f (0.25390625)

= 0.000743

+ −
(.25390625, .2546875)
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The approximate root is

ξ = 0.25390625+ 0.2546875

2
= 0.254296875 ≈ 0.2540

f (0.254296875) = −0.00074290925

By synthetic division

0.254 1 0 −4 1

0.254 0.064516 −0.99612

1 0.254 −3.93546 0.000387

remainder

Roots of the quadratic equation

x2 + 0.254x − 3.93546 = 0

are x=− 2.11475≈− 2.115, x=1.86075≈1.8608.

Example 2: Using Regula-Falsi method, compute

the real root of the equation x3 − 4x − 9 = 0.

Solution: Here f (x) = x3 − 4x − 9.

x: 0 1 2 3

f (x) : −9 −12 −9 6

By bisection method, f
 

2+3
2

 = f (2.5) = −3.375
so a root of f (x) lies in the interval (2.5, 3).
Here f  = 3x2 − 4, f   = 6x, f   (3) = 18 >
0, f   (2.5) = 15 > 0. Since sign of f and f   

is same at x = 3, fix the point b = 3 and since
f (a) = f (2.5) = −3.375 < 0, use

xn+1 = xn −
f (xn)

f (b)− f (xn)
(b − xn)

xn+1 = xn −
f (xn)

6− f (xn)
(3− xn)

Then x0 = 2.5, f (x0) = −3.375, n = 0, then

x1 = x0 −
f (x0)(3− x0)

6− f (x0)
= 2.5+ 3.375

6+ 3.375
(3− 2.5)

x1 = 2.5+ 0.18 = 2.68

At x1 = 2.68, f (2.68) = −0.471168.

x2 = 2.68+ 0.471168

6+ 0.471168
(3− 2.68)

= 2.68+ 0.0232993

x2 = 2.7033

At x2, f (x2) = f (2.7033) = −0.05794

x3 = 2.7033+ 0.05794

6+ 0.05794
(3− 2.7033)

x3 = 2.7033+ 0.0028377 = 2.706

f (2.706)=−0.009488

x4 = 2.706+ 0.009488

6.009488
(3− 2.706) = 2.70646

x4 = 2.70650.

Example 3: Determine the root of xex − 2 = 0 by

method of false position.

Solution: Here f (x) = xex − 2.

x: 0 0.5 0.8 0.9 1.0

f (x): −2 −1.1756 −0.2196 0.2136 0.718

A root lies between 0.8 and 0.9. Now

f  (x)= ex + xex, f   (x) = 2ex + xex

f   (0.8)= 6.2315, f   (0.9) = 7.1328.

Since f and f   have the same (positive) sign at x =
0.9, fix this point b = 0.9. Note that f (0.8) < 0.

xn+1 = xn −
f (xn)

f (0.9)− f (xn)
(0.9− xn)

Take n = 0, x0 = 0.8, f (x0) = f (0.8) = −0.2196

x1 = 0.8+ 0.2196

0.2136+ 0.2196
(0.9− 0.8)

x1 = 0.8+ 0.05069252 = 0.851

f (x1)= f (0.851) = −0.00697

x2 = 0.851+ 0.00697

0.2136+ 0.00697
(0.9− 0.851)

x2 = 0.851+ 0.0015484 = 0.85256

f (x2)=−0.0001977

x3 = 0.85256+ 0.0001977

0.2136+ 0.0001977
(0.9− 0.85256)

x3 = 0.85256+ 0.000043868 = 0.8526

f (x3)=−0.0000239

x4 = 0.8526+ 0.0000239

0.2136+ 0.0000239
(0.9− 0.8526)

x4 = 0.8526+ 0.0000053 = 0.8526

... Approximate root is 0.8526.
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Example 4: Find the approximate value of the

real root of the equation 2x − logx10−7 = 0 by using

Newton-Raphson method.

Solution: Here f (x) = 2x − logx10−7. Since log

function is involved, x must be positive

x: 1 2 3 4

f (x): −5 −3.301 −1.4771 0.3979

Roots lies in between 3 and 4. Now

x: 3.5 3.7 3.8

f (x): −0.5441 −0.1682 0.0202

Here f  (x) = 2− loge
10

x
and f   (x) = loge

10

x2 = 0.4343

x2 .

Sincef andf   have the same sign atx = 3.8, choose
x0 = 3.8. Then f (x0) = 0.0202

xn+1 = xn −
f (xn)

f  xn
= xn −

(2xn − log10 xn − 7) 
2− loge

10
xn

 
Take n = 0, x1 = 3.8− 0.0202

1.88571
= 3.8− 0.010712

x1 = 3.7893, f (x1) = 0.000041, then

x2 = 3.7893− 0.000041

1.88538
= 3.7893− 0.00002175

x2 = 3.789278 ≈ 3.7893 is the required root.

Example 5: Find a positive root of x4 − x = 10

using Newton-Raphson’s method.

Solution: Here f (x) = x4 − x − 10.

x : 0 1 2

f (x) : −10 −10 4

A root lies between 1 and 2

x : 1 1.5 1.75 1.8 1.9 2

f (x) : −10 −6.4375 −2.3711 −1.3024 1.1321 4

Root lies between 1.8 and 1.9. Now

f  (x)= 4x3 − 1. So

xn+1 = xn −
x4
n − xn − 10

4x3
n − 1

.

Since both f and f   have the same sign at x = 1.9,
choose x0 = 1.9 as the starting point. Now

x1 = x0 −
x4

0 − x0 − 10

4x3
0 − 1

= 1.9− f (1.9)

f  (1.9)
= 1.9− 1.1321

26.436

x1 = 1.9− 0.042824 = 1.8572

f (x1)= 0.03972

x2 = 1.8572− 0.03972

24.623
= 1.8572− 0.0016131

x2 = 1.855586897

f (x2)=+0.000058169.

So x2 = 1.855587 is the required root.

EXERCISE

1. Using graphical method find an approximate

roots of the transcendental equations:

(a) 3x − cos x − 1 = 0; (b) ex − 3x = 0; (c)

sin x = 2; (d) sin x = 1
2
; (e) sin x = 1

2
x.

Hint:

Fig. 32.7 Fig. 32.8

3x

Fig. 32.9

sin x

Ans. (a) 0.6; (b) 0.619; (c) no root; (d) infinite num-

ber of roots; (e) x = 30◦

2. Obtain an approximate root using bisection

method, for the following equations:

(a) x4 − x − 10 = 0; (b) x3 − x − 1 = 0; (c)

x4 − 4x − 9 = 0; (d) x4 + 2x3 − x − 1 = 0.
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Ans. (a) (1.85546875, 1.857421855) at 9th itera-

tion; (b) x5 = 1.38125; (c) x4 = 2.6875; (d)

x6: 0.867

3. Isolate the roots of the equations:

(a) x3 − 6x + 2 = 0; (b) x + ex = 0.

Ans. a. (−3,−1), (0, 1), (1, 3)

b. (−∞, 1), (1,+∞)

4. Using Regula-Falsi method find an approxi-

mate root of the following equations:

(a) x3 − 4x + 1 = 0; (b) x3 − 0.2x2 − 0.2x −
1.2 = 0; (c) x3 − 2x − 5 = 0; (d) xex − 3 =
0; (e) x logx10−2 = 0; (f) xex − cos x = 0.

Ans. (a) 0.2541; (b) 1.198; (c) 2.094548; (d) 1.050;

(e) 2.74065; (f) 0.5177

5. Using Newton-Raphson method, find an

approximate root of the following equations:

(a) (x − 1) sin x − x = 1; (b) e−x = sin x; (c)

x3 − 25= 0; (d) x4 − x − 1= 0; (e) x + ex =
0; (f) 3x3 + 5x − 40= 0; (g) x − e−x = 0; (h)

2 sin x = x; (i) x2 + 4 sin x = 0; (j) x3 − 3x −
5 = 0; (k) x4 − 3x2 + 75x − 10, 000= 0.

Ans. (a) −0.42036; (b) 0.5885; (c) 2.924; (d)

1.22138; (e)−0.567; (f) 0.5635; (g) 0.5671; (h)

1.895494; (i)−1.9338; (j) 2.7984; (k)−10.261

6. Use Newton’s method to find the smallest pos-

itive root of the equation tan x = x.

Hint: Roots lies in
 
π, 3π

2

 
.

Ans. 4.49343

7. Find the real root of x logx10 = 1.2 using

Newton’s iterative method.

Hint: Root lies in (2, 3).

Ans. 2.74065

8. Apply Newton-Raphson method to evaluate

approximately
√

12.

Hint: Solve x2 − 12 = 0, root lies in (3, 4).

Ans. 3.4641.

32.2 FINITE DIFFERENCES

Let y = f (x) be a function and  x = h denote the
increment in the independent variable x. Assume that

 x, increment in the argument x (also known as
interval or spacing) is fixed. i.e., h = constant. Then
the first finite difference of the function y is defined

 y ≡  f (x) = f (x + x)− f (x).

Similarly, finite differences of higher orders are
defined as follows

 2y = ( y) =  (f (x + x)− f (x))

= (f (x + x))− f (x)

=
 
f (x + 2 x)− f (x + x)

 

−
 
f (x + x)− f (x)

 
 2y = f (x + 2 x)− 2f (x + x)+ f (x).

In general,

 ny =  ( n−1y) , for n = 2, 3, 4, . . .

Now consider the function y = f (x) spec-

ified by tabular values yi = f (xi) for a set

of equidistant points xi where i = 0, 1, 2, . . .

and  xi = xi+1 − xi = h = constant. Thus the

tabulated function consists of ordered pairs

(x0, y0), (x1, y1), (x2, y2), . . . , (xk, yk), . . .. Here

yk’s are known as entries.

Forward differences

The first forward difference is denoted by  yk and

defined as

 yk = yk+1 − yk (1)

Here the symbol  is the forward differences oper-

ator, having the following properties:

(i)  c = 0 (differences of a constant function are

zero)

(ii)  (cyk) = c( yk) where c is a constant

(iii)  (uk + vk) =  uk + vk
(iv)  (ukvk) = vk+1 uk + uk vk
(v)  m( nyk) =  m+nyk

wherem and n are non-negative integers and 0yk =
yk (by definition). Note that because of (ii) and (iii)

 is a linear operator.
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The higher order forward differences are similarly
defined: The second order forward difference of yk
is

 2yk =  ( yk) =  yk+1 − yk
−−−−−−−−−−−−−−

In general,

 nyk =  ( n−1yk) =  n−1yk+1 − n−1yk (2)

defines the nth order forward differences. For exam-
ple, 3yk = 2yk+1 − 2yk = ( yk+2 − yk+1)−
( yk+1 −  yk) = yk+3 − 3yk+2 + 3yk+1 − yk .
From (1) yk+1 = yk + yk = (1+ )yk

Similarly, yk+2 = yk+1 + yk+1 = (1+ )yk+1

or yk+2 = (1+ )(1+ )yk = (1+ )2yk

Thus yk+3 = (1+ )3yk

−−− −−−−−−−−−−−−−−
yk+n = (1+ )nyk.

Expanding (1+ )n by binomial theorem

yk+n = yk + nc1 yk + nc2 2yk + · · · + nyk.

Conversely, we have

 nyk =
 
(1+ )− 1

 n
yk

= (1+ )nyk − nc1 (1+ )n−1yk +

+nc2 (1+ )n−2yk − · · · + · · · + (−1)nyi

or  nyk = yn+k − nc1yn+k−1

+nc2yn+k−2 + · · · + (−1)nyk (3)

Thus any higher order forward differences can be
expressed in terms of the successive values yk’s of
the function. For example,

 2yk = yk+2 − 2yk+1 + yk
 3yk = yk+3 − 3yk+2 + 3yk+1 − yk etc.

Finite differences of various orders are conveniently

arranged in the form of a forward (diagonal) differ-

ences table (Table 32.1).

In general, y0, the first entry is known as the

leading terms, and  y0,  2y0,  3y0,  4y0,  5y0,

 6y0, 
7y0 are known as the leading differences.

Table 32.1: Forward differences table

Differences of a Polynomial

Book Work: If Pn(x) = a0x
n + a1x

n−1 + · · · +
an is an nth degree polynomial, then prove that

 nPn(x) = n!a0h
n = constant (4)

where  x = h.

Proof: Consider  Pn(x) = Pn(x + h)− Pn(x)

= [a0(x + h)n + a1(x + h)n−1 + · · · + an]−
−[a0x

n + a1x
n−1 + · · · + an]

= a0[(x + h)n − xn]+ a1[(x + h)n−1 − xn−1]+
+ · · · + an−1[x + h− x].

Expanding by binomial theorem

(x + h)n − xn = xn + nhxn−1 + nc2h2xn−2 + · · · − xn

Similar terms in the other brackets. Thus

Qn−1(x) =  Pn(x) = b0x
n−1 + b1x

n−2 + · · · + bn−1

which is a polynomial of (n− 1)th degree. Here b0 =
nha0. Now

 2Pn(x) =  ( Pn(x)) = Qn−1(x + h)−Qn−1(x).
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Expanding by binomial theorem, observe that
 2Pn(x) is a polynomial of degree n− 2:

 2Pn(x)= c0xn−2 + c1xn−3 + · · · + cn−2 where

c0 = (n− 1)hb0 = n(n− 1)h2a0.

Continuing in this manner successively, we get

 nPn(x) = n!a0h
n = constant

Thus the nth order differences of a polynomial of nth

degree are constant.

Corollary:

 SPn(x) = 0 for s > n (5)

i.e., (n+ 1)th order differences of a polynomial of

nth degree are zero.

Converse: If the nth differences of a tabulated func-

tion are constant when the values of the independent

variable (argument) are taken in arithmetic progres-

sion (i.e., at equal intervals apart), then the function

is a polynomial of degree n.

Backward Differences

The first (order) backward difference is denoted by

∇ and defined as

∇yk = yk − yk−1 (6)

Second (order) backward difference

∇2yk = ∇(∇yk) = ∇yk −∇yk−1

In general,

∇nyk = ∇(∇n−1yk) = ∇n−1yk −∇n−1yk−1.

Now ∇3yk = ∇2yk −∇2yk−1

= ∇yk −∇yk−1 −∇yk−1 +∇yk−2

= yk − yk−1− 2yk−1+ 2yk−2+ yk−2−yk−3

= yk − 3yk−1 + 3yk−2 − yk−3

In general,

∇nyk =
n 
i=0

(−1)inci yk−i (7)

Here y4, the last entry, is the leading term and

∇y4,∇2y4,∇3y4,∇4y4 are known as leading back-

ward differences.

Table 32.2: Backward differences table

Generalized Power or Factorial

The generalized nth power of a number x, denoted
by x[n] or [x]n, is defined as the product of n consec-
utive factors, the first of which is equal to x and each
subsequent factor is h less than the preceding:

x[n]= [x]n= x · (x−h) · (x− 2h) · · · (x− (n− 1)h) (8)

Here h is some fixed constant [x]n is also known as

a “factorial function”. Here [x]0 = x[0] = 1.

Corollary 1: For h = 0, the generalized power

coincides with the ordinary power i.e., x[n] = [x]n

= xn.

Corollary 2: For h = 1, [x]n = x(x − 1)(x −
2) · · · (x − n+ 1).

Differences of a Generalized Power

The first difference of the factorial function is

 [x]n = [x + h]n − [x]n

=
 

(x + h)(x)(x − h) · · · (x − (n− 2)h)

 
−

−
 
x(x − h) · · · (x − (n− 1)h)

 

=
 
x(x − h) · · · (x − (n− 2)h)

 
×

×
 
x + h− (x − (n− 1)h)

 

=
 
x(x − h) · · · (x − (n− 2)h)

 
nh = nh[x]n−1.

Thus  [x]n = nh[x]n−1.
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Now the second difference

 2[x]n = ( [x]n) =  (nh[x]n−1)

= nh [x]n−1 = nh · (n− 1) · h · [x]n−2

 2[x]n = n(n− 1)h2[x]n−2.

By mathematical induction

 k[x]n = n(n− 1) · · · (n− (k − 1))hk[x]n−k (9)

where k = 1, 2, 3, . . . , n.

Corollary 1: For k = n, from (9), we have
 n[x]n = n(n− 1)(n− 2) · · · 2 · 1 · hn[x]0

 n[x]n = n!hn = constant (10)

since [x]0 = 1.

Corollary 2: For k = n+ 1, from (9),

 n+1[x]n =  ( n[x]n) = n!hn − n!hn = 0.

Thus

 s [x]n = 0 when s > n (11)

Corollary 3: When h = 1, from (10), we have

 n[x]n = n! (12)

i.e., the result of differencing [x]n is analogous to that

of differentiating xn. In other words, the operator  

is equivalent the differential operator D = d
dx

i.e.,

 ≡ D.

Corollary 4: Every polynomial of degree n can

be expressed as a factorial polynomial of the same

degree and vice versa.

WORKED OUT EXAMPLES

Example 1: Show that

 (ukvk) = vk+1 uk + uk vk.

Solution:  (ukvk) = uk+1vk+1 − ukvk . We know
that  uk = uk+1 − uk, vk = vk+1 − vk
... uk+1 · vk+1 = (uk + uk)(vk + vk)

= ukvk + uk vk + vk uk + uk vk.

Thus

 (ukvk)= uk+1 · vk+1 − ukvk
= uk vk + uk{vk + vk+1 − vk}
= uk vk + vk+1 uk.

Note:  (ukvk) = vk uk + uk+1 vk is true.

Example 2: Evaluate  n(e3x+5).

Solution:  (e3x+5) = e3(x+1)+5 − e3x+5

= e3x+5 (e3 − 1). Now

 2(e3x+5)= ( e3x+5) =  
 

(e3 − 1)(e3x+5)

 

= (e3 − 1) (e3x+5), using the first result

= (e3 − 1)(e3 − 1)e3x+5 = (e3 − 1)2e3x+5.

By induction  n(e3x+5) = (e3 − 1)ne3x+5.

Example 3: Evaluate  2
 

4x2−25x+31
(x−1)(x−2)(x−3)

 
.

Solution: Resolving into partial fractions

 2

 
4x2 − 25x + 31

(x − 1)(x − 2)(x − 3)

 

=  2

 
5

x − 1
+ 3

x − 2
− 4

x − 3

 

=  
 
 

 
5

x − 1

 
+ 

 
3

x − 2

 
+ 

 −4

x − 3

  

=  
 
5

 
1

x
− 1

x − 1

 
+ 3

 
1

x − 1
− 1

x − 2

 

−4

 
1

x − 2
− 1

x − 3

  

= 5

  
1

x + 1
− 1

x

 
−

 
1

x
− 1

x − 1

  

+3

  
1

x
− 1

x − 1

 
−

 
1

x − 1
− 1

x − 2

  

−4

  
1

x − 1
− 1

x − 2

 
−

 
1

x − 2
− 1

x − 3

  

= 5

x + 1
− 7

x
− 5

x − 1
+ 11

x − 2
− 4

x − 3
.

Example 4: If f (x) = x3 + 5x − 7, then form

the table of backward differences for x =
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−1, 0, 1, 2, 3, 4, 5. Continue the table to obtainf (6).

Solution: For x = −1, 0, 1, 2, 3, 4, 5, the values of

f (x) are respectively−13,−7,−1, 11, 35, 77, 143.

The backward differences table is

Table 32.3:

Values obtained by continuation at f (6) are squared

boxes.

Example 5: Construct the missing values in the

following table

x : 0 5 10 15 20 25

y : 6 10 — 17 — 31

Solution: Name the missing values as y2 and y4.

Then the differences table is Table 32.4
Since only four entries y0, y1, y3, y5 are given, y can
be represented by third degree polynomial. Conse-
quently its fourth order differences are zero. Thus

 4y0 = y4 + 6y2 − 102 = 0 and

 4y1 = 143− 4y4 − 4y2 = 0

Solving y2 = 13.25, y4 = 22.5.

Generalized power (factorial function)

Example 6: Express x3 − 2x2 + x − 1 in gener-

alized powers (or into factorial polynomial). Hence

Table 32.4:

x y  y  2y  3y  4y

0 6

4

5 10 y2−14

y2−10 41−3y2 y4+6y2−102

10 y2 27−2y2

17−y2 y4+3y2−61

15 17 y4−34+ y2 143−4y4−4y2

y4−17 82−3y4−y2

20 y4 48−2y4

31−y4

25 31

show that  4f (x) = 0.

Solution: Assume that

f (x)= x3 − 2x2 + x − 1 = [x]3 + B[x]2 + C[x]+D
= x(x − 1)(x − 2)+ Bx(x − 1)+ cx +D.

Put x = 0, then −1 = D
Put x = 1, then C +D = −1 ... C = 0

Put x = 2, then 2B + C +D = 1 ... B = 1

Thus f (x) = [x]3 + [x]2 − 1

Since differencing of power function [x]r amounts
differentiation of xr , we have

 f (x)= [x]3 + [x]2 − [x]0

= d

dx
x3 + d

dx
x2 − d

dx
1 = 3[x]2 + 2[x]

 2f = 6[x]+ 2

 3f = 6 and  4f (x) = 0.

Example 7: Obtain the function whose first differ-

ence is 2x3 + 3x2 − 5x + 4.

Solution: Let  f (x) = 2x3 + 3x2 − 5x + 4.
Now like the above problem

2x3 + 3x2 − 5x + 4 = 2[x]3 + B[x]2 + C[x]+D

Solving D = 4, C = 0, B = 9. Thus

 f (x) = 2[x]3 + 9[x]2 + 0+ 4
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Integrating, f (x) = 2[x]4

4
+ 9 [x]3

3
+ 4[x]+ C

f (x)= 1

2
x(x − 1)(x − 2)(x − 3)+

+3(x)(x − 1)(x − 2)+ 4x + C
where C is constant of integration.

Example 8: Evaluate  3[(1−x)(1−2x)(1−3x)].

Solution:

 3[(1− x)(1− 2x)(1− 3x)]

=  3[(−1)(−2)(−3)x3 + (11)x2 + (−6)x + 1]

= −6 3x3 + 0+ 0+ 0 = −6 · 3! = −6 · 6 = −36

...  nf (x) = a · n!hn.

EXERCISE

1. Evaluate (a)  tan−1
 
n−1
n

 
; (b)  2 cos 2x; (c)

 n(e2x+3).

Ans. (a) tan−1 1

2n2 ; (b) −4 sin2 h cos(2x + 2h); (c)

(e2 − 1)e2x+3

2. Evaluate

a.  2
 

5x+12

x2+5x+16

 

b.  2
 

1

(x2)+5x+6

 
with internal spacing h = 1.

Ans. (a) 2(5x+16)

(x+2)(x+3)(x+4)(x+5)
; (b) −2

(x+2)(x+3)(x+4)

3. Evaluate (a) 10[(1− x)(1− 2x2)(1− 3x3)×
×(1− 4x4)] if the interval of spacing is 2.

Hint: L.H.S.= 10[(−1)(−2)(−3)(−4)x10 +
terms containing powers of x less than 10] =
24 10[x10]+ 0+ · · · + 0 = 24 · 10!210 since

 nf (x) = n!hn.
Ans. 24× 210 × 10!

4. Show that  
 
uk
vk

 
= vk uk−uk vk

vkvk+1
.

Hint:  
 
uk
vk

 
= uk+1

vk+1
− uk

vk
= uk+1vk−ukvk+1

vkvk+1

= (uk+1vk−ukvk+ukvk−ukvk+1)
(ukvk+1)

5. Express f (x) = 2x3 − 3x2 + 3x − 10 in gen-

eralized power (in factorial notation) and hence

find  3y.

Ans. f (x) = 2[x]3 + 3[x]2 + 2[x]− 10, 3y=12

6. Compute the missing values in the following

table:

x : 45 50 55 60 65

y : 3.0 — 2.0 — −2.4

Hint: Solve  3y0 = 3y1 + y3 − 9 = 0, 3y1

= y1 + 3y2 − 3.6 = 0

Ans. y1 = 2.925, y3 = 0.225

7. Represent f (x) = x4 − 12x3 + 42x2 −30x +
9 and its successive differences in generalized

power.

Ans. f (x) = [x]4 − 6[x]3 + 13[x]2 + [x]1 + 9,

 y= 4[x]3− 18[x]2+ 26[x]+ 1, 4y= 24.

8. Obtain the function whose first difference is

x3 + 3x2 + 5x + 12.

Ans. 1
4
[x]4 + 2[x]3 + 9

2
[x]2 + 125[x]1 + C.

32.3 INTERPOLATION

To fix the height of dam across a river, an engineer

utilizes a set of data of the form (xi, yi) where xi
denotes the year and yi , the peak flood level across

the river; to estimate the highest possible flood level

in future. From the recorded data of (ti , Ai), time

and altitude of a rocket, a physicist would like to

estimate what was the altitude at a particular time

t0(  = ti). Thus most of the experimental or observed

data is in the form a set of say (n+ 1) ordered pairs

(x0, y0), (x1, y1), . . . , (xn, yn) which is the tabular

form of an unknown function y = f (x). The pro-

cess of determining the value of y for an x ∈ [x0, xn]

is known as interpolation. Here x0, x1, . . . , xn are
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called interpolation (or mesh) points. Note that x

differs from the interpolation points. Thus interpo-

lation is the “art of reading between the lines of a

table.” In extrapolation value of y is determined for

an x /∈ [x0, xn] i.e., for x outside the interval [x0, xn].

But generally interpoaltion includes extrapolation

also.

The problem of interpolation is to construct a

new (interpolating) function F (x) which collocates

(coincides) with the unknown function f (x) at the

tabulated (n+ 1) interpolation points

Fig. 32.10

i.e., y0 ≡ f (x0) = F (x0), y1 ≡ f (x1) = F (x1), . . .

yn ≡ f (xn) = F (xn).

Geometrically, this means that graphs of y = f (x)

and y = F (x) coincide at the n+ 1 points. Since a

unique straight line passes through two given points,

a unique parabola through three given points, a

unique polynomial F (x) of degree n can be deter-

mined (passing) satisfying the given set of (n+
1) points. In this case it is called a polynomial

interpolation. Now from y = F (x), y can be com-

puted for a given x. This interpolating polynomial

will be expressed in terms of finite differences in

several forms leading to the Newton-Gregory for-

ward, backward and central differences formulae of

Gauss, Stirling, Bessel, Everett etc. Lagrange’s inter-

polation and Newton’s divided differences formu-

lae are applicable for unequally spaced interpolation

points xi .

32.4 NEWTON-GREGORY FORWARD

INTERPOLATION FORMULA

Suppose the values of yi = f (xi) are given for
equally spaced values of the independent variable
(argument) xi = x0 + ih for i = 0, 1, 2, . . . , n. Here
h, known as the size of the interval or spacing, is
constant. Assume that the nth degree interpolating
polynomial is given by

F (x)= a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ · · ·
+an(x − x0)(x − x1) · · · (x − xn−1) (1)

Using the n+ 1 conditions, yi = F (xi) for i =
0, 1, 2, . . . , n, we determine the (n+ 1) unknown

coefficients a0, a1, a2, . . . , an in (1).
Putting x = x0 in (1), we get

y0 = F (x0) = a0 + 0+ · · · + 0 ... a0 = y0

Putting x = x1 in (1), we have

y1 = F (x1) = a0 + a1(x1 − x0)

But a0 = y0 and x1 − x0 = h

... a1 =
y1 − a0

x1 − x0
= y1 − y0

h
= 1

h
 y0

Now with x = x2 in (1), we get

y2 = F (x2)= a0 + a1(x2 − x0)+ a2(x2 − x0)(x2 − x1)

= a0 + a1 · 2h+ a2 · 2h · h

so a2 =
y2 − a0 − 2h · a1

2h2
= y2 − y0 − 2h 1

h
 y0

2h2

a2 =
y2 − y0 − 2(y1 − y0)

2h

= y2 − 2y1 + y0

2h
= 1

2h
 2y0.

Similarly, at x = x3, we have

y8 = F (x3)= a0 + a1(x3 − x0)+ a2(x3 − x0)(x3 − x1)

+a3(x3 − x0)(x3 − x1)(x3 − x2)

= a0+a1 · 3h+a2 · 3h · 2h+a3 · 3h · 2h · h

Solving a3 =
y3 − 3y2 + 3y1 − y0

3!h2
= 1

3!h2
 3y0.
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This way, we get

a4 =
1

4!h4
 4y0, a5 =

1

5!h5
 5y0 etc. and

an =
1

n!hn
 ny0 (2)

Substituting these values of a0, a1, . . . , an in (1),
we get the Newton-Gregory forward interpolation
formula (also known as Newton’s first interpolation
formula) as

y = F (x) = y0 +
 y0

h
(x − x0)+  

2y0

2!h2
(x − x0)(x − x1)+

+ 
3y0

3!h3
(x − x0)(x − x1)(x − x2)+ · · ·

+ 
ny0

n!hn
(x − x0)(x − x1)(x − x2) · · · (x − xn−1) (3)

Introducing q = x−x0

h
, the above formula (3) can

be written in more convenient way.

Now
x − x1

h
= x − (x0 + h)

h
= x − x0

h
− 1=q−1,

x − x2

h
= x − (x0 + 2h)

h
= x − x0

h
− 2=q−2 etc.

x − xn−1

h
= x − (x0 + (n− 1)h)

h

= q − (n− 1) = q − n+ 1.

Substituting these values, we have

F (x)= F (x0 + hq) = g(q) = y0 + y0 · q +

+ 
2y0

2!
q(q − 1)+  

3y0

3!
q(q − 1)(q − 2)+ · · ·

+q(q − 1) · · · (q − n+ 1)

n!
 ny0 (4)

Note that the coefficients of  ’s are binomial coef-
ficients. Since (4) involves only the “forward dif-
ferences”  y0, 

2y0, . . . ,  
ny0, Newton-Gregory

forward interpolation formula given by (4) is most
often used to interpolate (and extrapolate) for values
of y at the begining of a set of tabular data. For n = 1
in (4), we get linear interpolation

P1(x) = y0 + q y0.

For n = 2 in (4), we have parabolic interpolation

P2(x) = y0 + q y0 +
q(q − 1)

2
 2y0.

Newton-Gregory Backward Interpolation

Gormula

It is mainly useful to interpolate near the end of the
table. Assume the polynomial as

y = F (x)= a0 + a1(x − xn)+ a2(x − xn)(x − xn−1)+
+a3(x − xn)(x − xn−1)(x − xn−2)+ · · · +
+an(x − xn)(x − xn−1) · · · (x − x1) (5)

We use yi = F (x1) to determine a0, a1, . . . , an. Put
x = xn in (5). Then

yn = F (xn) = a0 + 0 · · · + 0 ... a0 = yn.
When x = xn−1 in (5), we get

yn−1 = F (xn−1) = a0 + a1(xn−1 − xn)

or a1 =
yn−1 − a0

xn−1 − xn
= yn − yn−1

xn − xn−1
= 1

h
∇yn

For x = xn−2 in (5), we have

yn−2 = F (xn−2) = a0 + a1(xn−2 − xn)+
+a2(xn−2 − xn)(xn−2 − xn−1)

a2 =
yn−2 − 2yn−1 + yn

2h2
= 1

2h2
∇2yn.

Similarly, we get

an =
1

n!hn
∇nyn

Substituting these values of a0, a1, . . . , an in (5),
we get the Newton-Gregory backward interpolation
formula (also known as Newton’s second interpola-
tion formula) as

y = F (x) = yn +
(x − xn)
h

∇yn +

+ (x − xn)(x − xn−1)

2!h2
∇2yn + · · ·

+ (x − xn)(x − xn−1) · · · (x − x1)

n!hn
∇nyn (6)

Introducing q = x−xn
h

and noting that

x − xn−1

h
= q + 1,

x − xn−2

h
= q + 2, . . .

x − xn
h

= x − (xn − (n− 1)h)

h
= q + n− 1,
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y = F (x)= F (xn + hq) = yn + q∇yn +
q(q + 1)

2!
∇2yn +

+q(q + 1)(q + 2)

3!
∇3yn + · · ·

+q(q+1)(q+2)· · ·(q+n−1)· 1

n!
∇nyn (7)

Generally (4) is used for forward interpolation and

backward extrapolation and (7) is used for backward

interpolation and forward extrapolation.

WORKED OUT EXAMPLES

Example 1: Compute (a) y(9); (b) y(7); (c) y(17)

and (d) y(19) from the following data:

x : 8 10 12 14 16 18

y : 10 19 32.5 54 89.5 15.4

Solution: Since x = 9 and x = 7 are at the begin-

ing of the table (data), use Newton-Gregory Forward

Interpolation Formula (NGFIF) for interpolation

at x = 9 and extrapolation at x = 7. Similarly,

since x = 17 and x = 19 occur at the end of the

data, use Newton-Gregory Backward Interpolation

Formula (NGBIF) for interpolation at x = 17 and

extrapolation at x = 19. Here interval size is h = 2

(points xi are equidistant).

The finte differences table (from which both forward

and backward differences can be read) is obtained

below:

Table 32.5:

Newton-Gregory forward interpolation formula is

y = y0 + q y0 +
q(q − 1)

2!
 2y0 +

+q(q−1)(q−2)

3!
 3y0+

q(q−1)(q−2)(q−3)

4!
 4y0 +

+q(q − 1)(q − 2)(q − 3)(q − 4)

5!
 5y0.

From the difference table, y0 = 10, y0 = 9,

 2y0 = 4.5,  3y0 = 3.5,  4y0 = 2.5 and  5y0 =
6.5.

a. To interpolate at x = 9: q= x−x0

h
so q= 9−8

2
= 1

2
.

Substituting the above data in the formula

y(9)= 10+ 1

2
(9)+ 1

2

 
1

2
− 1

 
1

2!
(4.5)

+
1
2

 
1
2
− 1

  
1
2
− 2

 
3!

(3.5)

+
1
2

 
1
2
− 1

  
1
2
− 2

  
1
2
− 3

 
4!

(2.5)

+
1
2

 
1
2
− 1

  
1
2
− 2

  
1
2
− 3

  
1
2
− 4

 
5!

(6.5)

y(9)= 14.455.

b. To extrapolate at x = 7: q = 7−8
2
= − 1

2
.

y(7)= 10− 9

2
+

 
1

2

  
3

2

 
1

2!
(4.5)

−1

2

 
3

2

  
5

2

 
1

3!
(3.5)

+1

2

 
3

2

  
5

2

  
7

2

 
1

4!
(2.5)

−1

2

 
3

2

  
5

2

  
7

2

  
9

2

 
1

5!
(6.5)

y(7)= 5.1777.

Newton-Gregory backward interpolation formula
is

y = yn + q∇yn +
q(q + 1)

2!
∇2yn +

+q(q + 1)(q + 2)

3!
∇3yn +
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+q(q + 1)(q + 2)(q + 3)

4!
∇4yn +

+q(q + 1)(q + 2)(q + 3)(q + 4)

5!
∇5yn.

From the difference table, xn = 18, yn = 154,

∇yn = 64.5, ∇2yn = 29, ∇3yn = 15, ∇4yn = 9,

∇5yn = 6.5.

c. To interpolate at x = 17, we have

q = x − xn
h

= 17− 18

2
= −1

2

Substituting these values in the formula

y(17)= 154+
 
−1

2

 
(64.5)

+
 
−1

2

  
−1

2
+ 1

 
· 1

2!
(29)

+
 
−1

2

  
−1

2
+ 1

  
−1

2
+ 2

 
1

3!
15

+

 
− 1

2

  
− 1

2
+ 1

  
− 1

2
+ 2

  
− 1

2
+ 3

 
(9)

4!

+

 
− 1

2

  
− 1

2
+1

  
− 1

2
+2

  
− 1

2
+3

  
− 1

2
+4

 
(6.5)

5!

y(17)= 126.841.

d. To extrapolate at x = 19, take q = 19−18
2
= 1

2
.

Then

y(19)= 154+ 1

2
(64.5)+ 1

2

 
3

2

 
1

2!
(29)

+1

2

 
3

2

  
5

2

 
1

3!
(15)

+1

2

 
3

2

  
5

2

  
7

2

 
1

4!
(9)

+1

2

 
3

2

  
5

2

  
7

2

  
9

2

 
1

5!
(6.5)

y(19)= 219.208.

Example 2: Fit a polynomial of degree three which

takes the following values:

x : 3 4 5 6

y : 6 24 60 120

Solution: The Newton-Gregory forward inter-
polating polynomial collocates (takes or geomet-
rically passes through) the given set of points
(x0, y0), (x1, y1), (x2, y2), (x3, y3) and is given by

y = y0 + q y0 +
q(q − 1)

2!
 2y0 +

q(q − 1)(q − 2)

3!
 3y0

Here q = x−x0

h
and h = 1 (given).

The finite differences table is

Table 32.6:

From the table, x0 = 3, y0 = 6, y0 = 18,  2y0 =
18, 3y0 = 6, q = x−x0

h
= x−3

1
= x − 3

Substituting these values

y = 6+ (x − 3)(18)+ (x − 3)
(x − 3− 1)

2!
(18)

+(x − 3)(x − 3− 1)
(x − 3− 2)

3!
(6)

= 6+ 18(x − 3)+ 9(x − 3)(x − 4)

+(x − 3)(x − 4)(x − 5)

y(x)= x3 − 3x2 + 2x

is the required cubic polynomial (which takes the

given data for example, y(3) = 33 − 3(32)+ 2(3) =
6 etc.).

Note: Using Newton’s backward interpolating
polynomial (using backward differences), we get the
same cubic polynomial

y = yn + q∇yn +
q(q + 1)

2!
∇2yn

+q(q + 1)(q + 2)

3!
∇3yn

= 120+ (x − 6)60+ (x − 6)(x − 5)

2!
(24)

+ (x − 6)(x − 5)(x − 4)

3!
6

y(x)= x3 − 3x2 + 2x.
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EXERCISE

1. Using Newton’s forward formula compute the

pressure of the steam at temperature 142◦ from

the following steam table:

Temperature: 140 150 160 170 180

Pressure: 3.685 4.854 6.302 8.076 10.225

Hint: Forward differences 1.169, 0.279, 0.047,

0.002.

Ans. 3.899

2. Using Newton’s backward formula compute

f (43), f (84) from the following table. Fit a

polynomial

x : 40 50 60 70 80 90

f (x) : 184 204 226 250 276 304

Hint: Backward differences: 28, 2, 0, 0, 0.

Ans. f (43)= 190, f (84)= 287; f (x)= 84+ 2.9x

− 0.01x2

3. Fit a cubic polynomial which takes the follow-

ing values. Hence find y(4).

x : 0 1 2 3

y : 1 0 1 10

Ans. x3 − 2x2 + 1, y(4) = 33, forward differences:

−1, 2, 6

4. Estimate the population in 1895 and 1925 from

the following statistics:

Year x : 1891 1901 1911 1921 1931

Population y : 46 66 81 93 101

Hint: Forward differences: 20,−5, 2,−3;

Backward differences: 8,−4,−1,−3.

Ans. 54.85, 96.84

5. Compute the first and tenth term of the follow-

ing series assuming that values of y are con-

secutive.

x : 3 4 5 6 7 8 9

y : 2.7 6.4 12.5 21.6 34.3 51.2 72.9

Hint: Forward differences: 3.7, 2.4, 0.6, 0;

Backward differences: 21.7, 4.8, 0.6, 0.

Ans. y(1) = 0.1, y(10) = 100

6. Construct an empirical formula for the function

y specified in the following table. Hence find

y(−1), y(0.5),

x : 0 1 2 3 4 5

y : 5.2 8.0 10.4 12.4 14.0 15.2

Ans. y = 5.2+ 3x − 0.2x2, y(−1) = 2, y(0.5) =
6.65

7. Determine log10 1044 using backward formula

from the data below:

x: 1000 1010 1020

log10 x: 3 3.0043214 3.0086002

x: 1030 1040 1050

log10 x: 3.0128372 3.017033 3.601193

Hint: Backward differences: 0.004156,

0.0000401, 0.0000008.

Ans. 3.0187005

Extrapolation

8. Compute sin 14◦ and sin 56◦ from the data

below:

x: 15◦ 20◦ 25◦ 30◦ 35◦

sin x : 0.2588 0.342 0.4226 0.5 0.5736

x: 40◦ 45◦ 50◦ 55◦

sin x : 0.6428 0.7071 0.706 0.8192

Hint: Forward differences: 0.0832, −0.0026,

−0.0006

Backward differences: 0.0532, −0.0057,

−0.0003

Ans. sin 14◦ = 0.24192, sin 56◦ = 0.82904

9. Find the polynomial of degree four which takes

the following values:

x : 2 4 6 8 10

y : 0 0 1 0 0

Hint: Differences: 0, 1, −3, 6.

Ans. 1
64

[x4 − 24x3 + 196x2 − 624x + 640]

10. Estimate the number of students who secured

marks between 40 and 45 from the follow-

ing table:
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Marks x : 30 to 40 40 to 50 50 to 60

No. Students y : 31 42 51

Marks x : 60 to 70 70 to 80

No. Students y : 35 31

Ans. y(45) = 47.87 ≈ 48, number of students

between 40 and 45 is 48− 31 = 17

11. Compute y(1.5) and y(8.5) from the following

data:

x : 1 2 3 4 5 6 7 8

y : 1 8 27 64 125 216 343 512

Hint: F.D.: 7, 12, 6, 0, 0, B.D.: 169, 42, 6, 0,

0.

Ans. y(1.5) = 3.375, y(8.5) = 614.125

12. If F (φ) =  φ
0

dt 
1− 1

2
sin2 t

(elliptic integral),

compute F (23.5) by both N-G forward and

backward formulae.

φ : 21 22 23 24 25 26

F (φ) : 0.3706 0.3887 0.4068 0.425 0.4433 0.4616

Hint: F.D.: φ = 22, F (22) = 0.3887, 0.0181,

0.0001

B.D.: φ = 25, F (25) = 0.4433, 0.0183, 0,

−0.0001.

Ans. Forward: F (23.5) = 0.4159, Backward:

0.41588.

32.5 CENTRAL DIFFERENCES

Observe that the Newton-Gregory forward differ-
ence formula involves only the leading differences
 y0, 

2y0, 
3y0 etc. corresponding to the leading

term (initial value) x0. Thus only those values of
function were used which lie on one side of the
chosen initial value. Similarly, the Newton-Gregory
backward difference formula used one-sided values
∇yn,∇2yn,∇3yn which lie on one side of yn. Inter-
polation formulae that contain both preceding and
succeeding values of the funtion w.r.t., the initial
value, give very useful results. For this purpose, the
differences located in a horizontal row (line) corre-
sponding to the initial values x0 and y0 in a diag-
onal difference table are used. These are known as
central differences and are used in the Gauss, Stir-
ling and Bessel interpolation formulae, for interpo-

Table 32.7: Central differences table

lation near the middle of the table, taken as the
initial value. Central differences are defined by the
operator δ as follows:

δy 1
2
= y1 − y0, δy 3

2
= y2 − y1, . . . , δyn− 1

2
= yn − yn−1

Higher order central differences are

δ2y1 = δy 3
2
− δy 1

2
, δ2y2 = δy 5

2
− δy 3

2
, etc.

Note 1: The subscript of δy for any difference is

the average of the subscripts of the two members of

the difference.

Note 2: Differences on the same horizontal line

have the same suffix.

Note 3: Odd order differences are known only for

half values of the suffix (having fractional suffix)

while even order differences for only integral values

of the suffix.

Note 4: Observe that  y0 = y1 − y0 = ∇y1 =
δy 1

2
. Also 3y2 = ∇3y5 = δ3y 7

2
etc. i.e., same num-

bers occur in the same positions but identified in

different ways.
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In order to derive the central-differences interpo-
lation formulas of Gauss, Stirling and Bessel, we
rearrange the central differences table with the ini-
tial values x0 and y0 placed at the middle of the table
as shown below. Here

xi = x0 + ih for i = 0,±1,±2, . . .

yi = f (xi ) and

 yi = yi+1 − yi, 2yi =  yi+1 − yi etc.

32.6 STIRLING AND BESSEL’S

INTERPOLATION FORMULAE

Gaussian Interpolation Formulae

Consider (2n+ 1) equally spaced points

x−n, x−(n−1), . . . , x−1, x0, x1, . . . , xn−1, xn

where

 xi = xi+1 − xi = h = constant

with i = −n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n.
Let P (x) be a polynomial of degree 2n, given by

P (x)= a0+a1(x−x0)+ · · ·+a2n(x−x−(n−1)) · · · (x−x−1)×
×(x − x0)(x − x1) · · · (x − xn−1)(x − xn).

Table 32.8 Central differences table

IfP (xi)= yi = f (xi) for i = 0,±1,±2, . . .,±n then

a0 = y0, a1 =  y0

h
, a2 =  2y−1

2!h2 , . . ., a2n =  2ny−n
(2n)!h2n .

Introducing q = x−x0

h
, we get Gauss first (GI)

interpolation formula

P (x)= y0 + q y0 +
q(q − 1)

2!
 2y−1

+ (q + 1)q(q − 1)

3!
 2y−1

+ (q + 1)q(q − 1)(q − 2)

4!
 2y−2 + · · ·

+ (q + n− 1) · · · (q − n)
(2n)!

 2ny−n (1)

Similarly, Gaussian second (GII) interpolation for-
mula is
P (x)= y0 + q y−1

+ (q + 1)q

2!
 2y−1 +

(q + 1)(q − 1)

3!
 3y−2

+ (q + 2)(q + 1)q(q − 1)

4!
 4y−2 + · · ·

+ (q+n)(q+n−1) · · · (q−n+1)

(2n)!
 2ny−n (2)

To shift the initial value from (x0, y0) to (x1, y1)

replace q by q − 1 and increase the indices in

R.H.S. of (2) by (1). This yields another Gaussian
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interpolation (GIII) formula

P (x)= y1 + (q − 1) y0 +
q(q − 1)

2!
 2y0

+q(q − 1)(q − 2)

3!
 3y−1

+ (q + 1)q(q − 1)(q − 2)

4!
 4y−1 + · · ·

+ (q + n− 1) · · · (q − n)
(2n)!

 2ny−(n−1) (3)

Stirling’s Interpolation Formula

is the arithmetic mean of GI and GII i.e., of (1) and
(2)

P (x)= y0 + q
 y−1 + y0

2
+ q

2

2
 2y−1

+q(q2 − 1)

3!

 3y−2 + 3y−1

2

+q
2(q2 − 1)

4!
 4y−2

+q(q2−1)(q2−22)

5!

 5y−3+ 5y−2

2
+ · · · (4)

Bessel’s Interpolation Formula

is the arithmetic mean of GI and GIII i.e., of (1) and
(3).

P (x)= y0 + q y0 +
q(q − 1)

2

 2y−1 + 2y0

2

+ (q − 1
2
)q(q − 1)

3!
 3y−1

Table 32.9

x q y  y  2y  3y  4y

1.0 −2 y−2 = 0.841
 y−2 = 0.05

1.1 −1 y−1 = 0.891  2y−2 = −0.009
 y−1 = 0.041  3y−2 = −0.001

1.2 0 y0 = 0.932  2y−1 = −0.01  4y−2 = 0.002
 y0 = 0.031  3y−1 = +0.001

1.3 1 y1 = 0.963  2y0 = −0.009
 y1 = 0.022

1.4 2 y2 = 0.985

+q(q − 1)(q + 1)(q − 2)

4!

 4y−2 + 4y−1

2
+ · · · .

Note 1: It is advised to use Stirling’s formula

for |q| ≤ 0.25 and Bessel’s formula for 0.25 ≤ q ≤
0.75.

Note 2: Stirling’s formula consists of the even
differences along the central line and mean of the
odd differences just above and below the central line

 y−1  3y−2  5y−3

− y0 −−−  2y−1 −−−  4y−2 −−−  6y−3 − central line.

 y0  5y−1  5y−2

Note 3: Bessel’s formula consists of means of even
differences along and below the central line and odd
differences below the central line

y0 −−  2y−1 −−−  4y−2 −−−  6y−3 −− central line.

 y0  3y−1  5y−2

 2y0  4y−1  6y−2.

WORKED OUT EXAMPLES

Example 1: Using Stirling’s formula, compute

f (1.22) from the following data:

x : 1.0 1.1 1.2 1.3 1.4

f (x) : 0.841 0.891 0.932 0.963 0.985

Solution: Choose origin as x0 = 1.2 given h =
interval size = 0.1 then q = x−x0

h
= 1.22−1.2

0.1
= 0.2

The central differences table is 32.9 below.

Since q = 0 : 2 lies in between − 1
4

and 1
4
, Stirling’s

formula is applicable.
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Stirling’s formula is

y = y0 + q
 
 y−1 + y0

2

 

+q
2

2!
 2y−1 +

q(q2 − 1)

3!

 
 3y−2 + 3y−1

2

 

+q
2(q2 − 1)

4!
 4y−2 + · · ·

Substituting the values from the table (underlined)

y(1.22)= 0.932+ 0.2
(.041+ .031)

2
+ (0.2)2

2!
(−0.01)

+ (0.2)[(0.2)2 − 1]

6

(−0.001+ 0.001)

2

+ (0.2)2[(0.2)2 − 1]

24
(0.002)

y(1.22)= 0.9389968.

Example 2: Use Bessel’s formula to compute

f (1.95) from the following data:

x : 1.7 1.8 1.9 2.0 2.1 2.2 2.3

f (x) : 2.979 3.144 3.283 3.391 3.463 3.997 4.491

Solution: Choose the origin at x0 = 2.0, given

h = 0.1 so q = x−x0

h
= 1.95−2.0

0.1
= −0.5. Since q =

−0.5 lies between − 1
4

and 3
4
, Bessel’s formula is

applicable. The central difference table is:

Table 32.10:

x q y  y  2y  3y  4y  5y

1.7 −3 2.979

0.165

1.8 −2 3.144 −0.026

0.139 −0.005

1.9 −1 3.283 −0.031 0

0.108 −0.005 0.503

2.0 0 3.391 −0.036 0.503

0.072 0.498 −1.503

2.1 1 3.463 0.462 −1.0

0.53 −0.502

2.2 2 3.997 −0.04

0.494

2.3 3 4.491

The Bessel’s formula is

y = y0 + q y0 +
q(q − 1)

2!

 
 2y−1 + 2y0

2

 

+

 
q − 1

2

 
q(q − 1)

3!
 3y−1

+ (q + 1)(q)(q − 1)(q − 2)

4!

 
 4y−2 + 4y−1

2

 

Substituting the values from the table (underlined)

y(1.95) = 3.391+ (−0.5)(0.072)

+ (−0.5)(−0.5− 1)

2

(−0.036+ 0.462)

2

+

 
−0.5− 1

2

 
(−0.5)(−0.5− 1)

6
(0.498)

+ (−0.5+1)(0.5)(−0.5−1)(−0.5−2)

24

(0.503−1.0)

2

y(1.95) = 3.362917.

EXERCISE

1. Compute sinh 1.41710 from the following

data:
x : 1.0 1.1 1.2 1.3 1.4

sinh x : 1.1752 1.33565 1.50946 1.69838 1.90430

x : 1.5 1.6 1.7 1.8

sinh x : 2.12928 2.37557 2.64563 2.94217

Hint: Use Stirlings with x0 = 1.4, y0 =
1.90430, differences 0.20592, 0.22498,

0.01906, 0.00206, 0.00225.

Ans. 1.94136

2. Calculate f (0.5437) for the probability inte-

gral f (x) = 2√
π

 x
0
e−t

2
dt with the following

data:

x : 0.51 0.52 0.53 0.54

f (x) : 0.5292437 0.5378987 0.5464641 0.5549392

x : 0.55 0.56 0.57

f (x) : 0.5633233 0.5716157 0.5798158

Hint: Use Stirlings with x0 = 0.54, y0 =
0.5549392, differences 0.0084751, 0.0083841,

−0.0000910, −0.0000007, 0.
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Ans. 0.5580520

3. Compute ex when x = 0.644 by (a) Stirling;

(b) Bessel’s formula from the following data.

Also find e0.638 by (a) Stirling; (b) Bessel’s for-

mulae.

x : 0.61 0.62 0.63 0.64

ex : 1.840431 1.858928 1.877610 1.896481

x : 0.65 0.66 0.67

ex : 1.9515541 1.934792 1.954237

Hint:

a, b. Differences: x0 = 0.64, y0 = 1.896481,

0.018871, 0.019060, 0.000189, 0,

0.000002, 0.000002.

c. x0 = 0.64, xn = 0.638, q = −0.2

d. x0 = 0.63, xn = 0.638, q = 0.8

Ans. a. 1.904082

b. 1.904082

c. 1.892692

d. 1.89262

4. Find f (16) by Stirling’s formula from the fol-

lowing data:

x : 0 5 10 15 20 25 30

f (x) : 0 0.0875 0.1763 0.2679 0.364 0.4663 0.5774

Hint: x0 = 15, y0 = 0.2679, Differences:

0.0916, 0.0961, 0.0045, 0.0017, 0.0017,

0,−0.0002, 0.0009.

Ans. 0.2867

5. Compute y(x = 5) using Bessel’s formula

x : 0 4 8 12

y : 143 158 177 199

Ans. 162.41

6. Find y(12.2) using Stirling’s formula

x : 10 11 12 13 14

y : 0.23967 0.28060 0.31788 0.35209 0.38368

Hint: x0 = 12, h = 1, p = 12.2− 12 = 0.2,

y0 = 0.31788, Differences: 0.03728, 0.03421,

−0.00365, −0.00307, 0.00058, −0.00045,

−0.00013.

Ans. 0.32497

7. Compute y(25) using Bessel’s formula

x : 20 24 28 32

y : 2854 3162 3544 3992

Hint: x0 = 24, h = 4, p = 25−24
4
= 1

4
; y0 =

3162, Differences: 382, 74, 66, −8.

Ans. 3250.875

32.7 LAGRANGE’S INTERPOLATION

The interpolation formulae derived so far, are appli-

cable only when argument x is equally spaced

(equidistant xi+1 − xi = h = constant). Lagrange’s

interpolation formula is a more general one and can

be applied for arbitrarily specified points i.e., for

unequally spaced argument (i.e., xi+1 − xi = h =
variable). For example tables of empirical data con-

tian variable intervals.

Fig. 32.11

In order to construct a polynomialLn(x) having (i)

degree not exceeding n and (ii) satisfying the (n+ 1)

set of points i.e., Ln(xi) = yi for i = 0, 1, 2, . . . , n

choose

Ln(x) =
 
i=0

Pi (x) · yi (1)

Geometrically, the second condition implies that
the curve y = Ln(x) meets the curve y = f (x)
at these (n+ 1) points x0, x1, x2, . . . , xn. Since
the desired polynomial Li(x) vanishes at n points
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x0, x1, . . . , xi−1, xi+1,...,xn and Li(xi) = yi choose

Pi (x)= ci (x − x0)(x − x1) · · · (x − xi−1)×
×(x − xi+1) · · · (x − xn) (2)

where ci is a constant coefficient. To satisfy the first
condition, at x = xj

Ln(xj ) =
n 
i=0

Pi (xj )yj = yj

we must have

Pi (xj ) = δij =
 

1, if j = i
0, if j  = i

 

This determines ci , put x = xi in (2), then

1= Pi (xi ) = ci (xi − x0)(xi − x1) · · · (xi − xi−1)

·(xi − xi+1) · · · (xi − xn)
or

ci=
1

(xi−x0)(xi−x1)· · ·(xi−xi−1)(xi−xi+1)· · ·(xi−xn)
Substituting ci in (2), we get the Lagrangian coeffi-
cient functions

Pi (x) = (x−x0)(x−x1) · · · (x−xi−1)(x−xi+1) · · · (x−xn)
(xi−x0)(xi−x1) · · · (xi−xi−1)(xi−xi+1) · · · (xi−xn)

(3)

The degree of the polynomial Pi(x) is not higher
than n (i.e., ≤ n). Substituting (3) in (1), we get the
required Lagrange’s interpolation formula

y = Ln(x) =

=
n 
i=0

yi · (x−x0)(x−x1)···(x−xi−1)(x−xi+1)···(x−xn)

(xi−x0)(xi−x1)···(xi−xi−1)(xi−xi+1)···(xi−xn)

or in the expanded form

y = Ln(x) = (x − x1)(x − x2) · · · (x − xn)
(x0 − x1)(x0 − x2) · · · (x0 − xn)

y0

+ (x − x0)(x − x2) · · · (x − xn)
(x1 − x0)(x1 − x2) · · · (x1 − xn)

y1 +

−−−−−−−−−−−−−−−−−−−−

+ (x−x0)(x−x1)· · ·(x−xi−1)(x−xi+1)· · ·(x−xn)
(xi−x0)(xi−x1)· · ·(xi−xi−1)(xi−xi+1)· · ·(xi−xn)

yi

−−−−−−−−−−−−−−−−−−−−

+ (x−x0)(x−x1)(x−x2)· · ·(x−xn−1)

(xn−x0)(xn−x1)(xn−x2)· · ·(xn−xn−1)
· yn (4)

Note: If the points are equally spaced, Lagrange’s

interpolation polynomial coincids with the corre-

sponding Newton’s interpolation polynomial.

To determine y at a point x∗, put x = x∗ in (4).

The unique polynomial (4) containing yi explicitly

is applicable for both unequally spaced and equally

spaced points, abscissa x0, x1, . . . , xn need not be in

order, but inconvenient to move from one interpola-

tion polynomial to another of degree one greater.

Note: The given function y = f (x) can be split
into partial fractions by dividing (4) throughout
by (x − x0)(x − x1) · · · (x − xi) · · · (x − xn) having
n+ 1 factors. Then

f (x)

(x − x0) · · · (x − xi ) · · · (x − xn)

= y0

(x0 − x1)(x0 − x2) · · · (x0 − xn)
· 1

(x − x0)
+

+ · · · y1

(x1 − x0)(x1 − x2) · · · (x1 − xn)
· 1

x − x1
+

−−−−−−−−−−−−−−−−−−−

+ yn

(xn − x0)(xn − x1) · · · (xn − xn−1)
· 1

(x − xn)

= A0

x − x0
+ A1

x − x1
+ · · · + An

x − xn
where A0, A1, . . . , An coefficients are com-

pletely determined by the points (x0, y0), (x1, y1)

· · · (xn, yn).

32.8 INVERSE INTERPOLATION USING

LAGRANGE’S INTERPOLATION

FORMULA

In the inverse interpolation, for a given value of y,

the corresponding value of x is to be determined.

For example to find value of the root x for which

the function y = f (x) becomes zero is an inverse

interpolation problem. Inverse interpolation problem

is similar to direct interpolation since the roles of x

and y are interchanged.
Now interchanging the roles of x and y, the

Lagrange’s interpolation formula for inverse inter-
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Fig. 32.12

polation takes the form given by

x=
n 
i=0

· (y−y1)(y−y2)· · ·(y−yi−1)(y−yi+1)· · ·(y−yn)
(yi−y1)(yi−y2)· · ·(yi−yi−1)(yi−yi+1)· · ·(yi−yn)

·xi

or in the expanded form

x= (y − y1)(y − y2) · · · (y − yn)
(y0 − y1)(y0 − y2) · · · (y0 − yn)

x0 +

+ (y − y0)(y − y2) · · · (y − yn)
(y1 − y0)(y1 − y2) · · · (y1 − yn)

· x1 + · · · +

+ (y−y1)(y−y2)· · ·(y−yi−1)(y−yi+1)· · ·(y−yn)
(yi−y1)(yi−y2)· · ·(yi−yi−1)(yi−yi+1)· · ·(yi−yn)

·xi+

+ · · · + (y − y0)(y − y1) · · · (y − yn−1)

(yn − y0)(yn − y1) · · · (yn − yn−1)
· xn (5)

Putting y = y∗ in (5), we get the value of x∗.

WORKED OUT EXAMPLES

Example 1: Use Lagrange’s interpolation formula

to fit a polynomial to the following data. Hence find

y(−2), y(1) and y(4).

x : −1 0 2 3

y : −8 3 1 2

Solution: Here x0 = −1, x1 = 0, x2 = 2, x3 = 3
and y0 = −8, y1 = 3, y2 = 1, y3 = 2. Using

Lagrange’s interpolation formula to this

y = f (x) = (x − 0)(x − 2)(x − 3)

(−1− 0)(−1− 2)(−1− 3)
(−8)+

+ (x+1)(x−2)(x−3)

(0+1)(0−2)(0−3)
· 3+ (x+1)(x−0)(x−3)

(2+1)(2−0)(2−3)
· 1+

+ (x + 1)(x − 0)(x − 2)

(3+ 1)(3− 0)(3− 2)
· 2

= 2

3
x(x − 2)(x − 3)+ 1

2
(x + 1)(x − 2)(x − 3)−

−1

6
x(x + 1)(x − 3)+ 1

6
(x + 1)x(x − 2)

= (x − 2)(x − 3)

 
7x + 3

6

 
+ 1

6
x(x + 1)

y = 1

6
[7x3 − 31x2 + 28x + 18]

is the required 3rd degree polynomial.

y(−2)= 1

6
[−56− 124− 56+ 18] = −218

6
= −36.33

y(1)= 1

6
[7− 31+ 28+ 18] = 22

6
= 3.666

y(4)= 1

6
[448− 496+ 112+ 18] = 82

6
= 13.666.

Partial fractions

Example 2: Express the function

x2 + 6x − 1

(x2 − 1)(x − 4)(x − 6)

as a sum of partial fractions, using Lagrange’s for-

mula.

Solution: Consider f (x) = x2 + 6x − 1. Tabulate

f (x) at the roots of the denominator of the given

expression i.e., at x = −1,+1, 4, 6.

x : −1 1 4 6

f (x) : −6 6 39 71

We fit a polynomial using Lagranges formula

f (x)= (x − 1)(x − 4)(x − 6)

(−1− 1)(−1− 4)(−1− 6)
· (−6)+

+ (x+1)(x−4)(x−6)

(1+1)(1−4)(1−6)
· 6+ (x+1)(x−1)(x−6)

(4+1)(4−1)(4−6)
· 39+

+ (x + 1)(x − 1)(x − 4)

(6+ 1)(6− 1)(6− 4)
· 71
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f (x)= 3

35
(x−1)(x−4)(x−6)+1

5
(x+1)(x−4)(x−6)−

−13

10
(x+1)(x−1)(x−6)+71

70
(x+1)(x−1)(x−4)

Dividing both sides by (x2 − 1)(x − 4)(x − 6),

f (x)

(x2 − 1)(x − 4)(x − 6)

= x2 + 6x − 1

(x2 − 1)(x − 4)(x − 6)
= 3

35

1

x + 1
+ 1

5

1

x − 1
−

−13

10

1

x − 4
+ 71

70

1

x − 6
.

Inverse interpolation

Example 3: Compute the value of x, when y = 8

by inverse interpolation using Lagrange’s formula

x : −2 −1 1 2

y : −7 2 0 11

Solution: Here x0 = −2, x1 = 1, x2 = 1, x3 = 2
and y0 = −7, y1 = 2, y2 = 0, y3 = 11. Now by
Lagrange’s formula, we have

x = (y − 2)(y − 0)(y − 11)

(−7− 2)(−7− 0)(−7− 11)
(−2)+

+ (y+7)(y−0)(y−11)

(2+7)(2−0)(2−11)
(−1)+ (y+7)(y−2)(y−11)

(0+7)(0−2)(0−11)
(1)+

+ (y + 7)(y − 2)(y − 0)

(11+ 7)(11− 2)(11− 0)
· (2)

Put y = 8, then

x = 6(8)(−3)

(−9)(−7)(−18)
(−2)+ (15)(8)(−3)

(9)(2)(−9)
(−1)+

+ (15)(6)(−3)

7(−2)(−11)
(1)+ (15)(6)8

(18)(9)(11)
2

x =− 8

21
− 20

9
− 135

77
+ 80

99
= −3.5483.

EXERCISE

Lagrange’s interpolation

Use Lagrange’s interpolation formula to solve the

following problems:

1. Given (1, 2), (3, 5), (7, 12), (13, 20) find (4, ?).

Hint: − 27
144

(2)+ 81
80

(5)+ 27
144

(12)− 9
720

(20).

Ans. 6.6875

2. Fit a polynomial of third degree and find y(0.2)

from the following data:

xi : 0 0.1 0.3 0.5

yi : −0.5 0 0.2 1

Ans. −0.15004, 125
3
x3 − 30x2 + 73

12
x − 0.5

3. Fit a polynomial of 3rd degree

x : 0 1 3 4

y : −12 0 6 12

Ans. x3 − 7x2 + 18x − 12

4. Determine p(v = 21) given the following:

v : 10 15 22.5 33.75 50.625 75.937

p : 0.3 0.675 1.519 3.417 7.689 17.3

Ans. 1.323

5. Compute f (9) from the following data:

x : 5 7 11 13 17

f (x) : 150 392 1452 2366 5202

Ans. − 50
3
+ 3136

15
+ 3872

3
− 2366

3
+ 578

5
= 810

6. Determine f (323.5) from the data given

below:

x : 321.0 322.8 324.2 325.0

f (x) : 2.50651 2.50893 2.51081 2.51188

Ans. 2.50987

7. Given (300, 2.4771), (304, 2.4829), (305,

2.4843), (307, 2.4871), find (301, ?).

Ans. 2.4786

8. Compute f (27) from the data below:

x : 14 17 31 35

f (x) : 68.7 64.0 44.0 39.1

Ans. 49.3.

Inverse interpolation

9. Determine x(7) from the tabulated data:

x : 1 3 4

y : 4 12 19

Ans. ?
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10. Find x(12) using Lagrange’s technique

x : 1.2 2.1 2.8 4.1 4.9 6.2

y : 4.2 6.8 9.8 13.4 15.5 19.6

Ans. 3.55

11. Let y(x) = 2√
11

 x
0
e−t

2
dt be the probability

integral. Given:

x : 0.46 0.47 0.48 0.49

y(x) : 0.4846555 0.4937452 0.5027498 0.5116683

Determine for what value of x, y(x) = 1
2
.

Ans. 0.476937

12. Find x corresponding to y = 10

x : 10 15 17 20

y : 3 7 11 17

Ans. x = 16.641

13. Compute the value of x when y = 15

x : 5 6 9 11

y : 12 13 14 16

Ans. 5
4
− 6+ 27

2
+ 11

4
= 46

4
= 11.5

14. Determine x(0) by inverse interpolation

x : 1 2 2.5 3

y : −6 −1 5.625 16

Ans. 2.122.

32.9 DIVIDED DIFFERENCES

In constructing the finite (forward and backward) dif-

ferences tables, it is assumed that the independent

variable x is equally spaced, i.e., xi+1 − xi = h =
constant for i = 0, 1, 2, . . . . When x is unequally

spaced, with variable interval, the concept of finite

differences is generalized to “divided differences”,

which takes into consideration (account) of the

changes in the values of the argument x.
Let the tabulated function y = f (x) consists of

(x0, y0), (x1, y1), . . . , (xn, yn) . . .with unequal inter-
vals, xi+1 − xi  = 0 for i = 0, 1, 2, . . .. Then the first
order divided difference, denoted by [xi, xi+1], is the

ratio given by

[xi, xi+1]= yi+1 − yi
xi+1 − xi

, i = 0, 1, 2, . . .

For example, [x0, x1]= y1 − y0

x1 − x0
, [x1, x2] = y2 − y1

x2 − x1
etc.

Similarly, the second order divided differences

[xi, xi+1, xi+2] = [xi+1, xi+2]− [xi, xi+1]

xi+2 − xi
for i = 0, 1, 2, . . .

For example, [x0, x1, x2] = [x1, x2]− [x0, x1]

x2 − x0
.

In general, the nth order divided differences:

[xi, xi+1, . . ., xi+n] =
[xi+1, . . ., xi+n]−[xi, . . ., xi+n−1]

xi+n−xi
for n = 1, 2, 3, . . . , ; i = 0, 1, 2, . . ..

Special case

If xi+1 − xi = h = constant i.e., when x is equally
spaced, then divided differences reduce to forward
(or backward) differences. Consider

[x0, x1]= y1 − y0

x1 − x0
= 1

h
(y1 − y0) = 1

h
 y0,

[x0, x1, x2]= [x1, x2]− [x0, x1]

x2 − x0
= 1

2h

 
 y1

h
−  y0

h

 

= 1

h2 · 2!
 2y0.

In general.

[x0, x1, x2, . . . , xn]=
1

hnn!
 ny0 or

[xk, xk+i , . . . , xk+n]=
1

hn · n! · 
nyk.

Properties

1. The divided differences operator denoted by  | is

linear because  | cf (x) = c | f (x) and  | (f (x)±
g(x)) = | f (x)±  | g(x), c being a constant.

2. The divided differences are symmetrical i.e.,

[x0, x1]= y1 − y0

x1 − x0
= y0

x0 − x1
+ y1

x1 − x0
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= y0 − y1

x0 − x1
= [x1, x0]

Similarly,

[x0, x1, x2]= [x1, x2]− [x0, x1]

x2 − x0

= 1

x2 − x0

  
y1

x1 − x2
+ y2

x2 − x1

 

−
 

y0

x0 − x1
+ y1

x1 − x0

  

= y0

(x0 − x1)(x0 − x2)
+ y1

(x1 − x0)(x1 − x2)
+

+ y2

(x2 − x0)(x2 − x1)

= [x1, x2, x0] = [x2, x0, x1].

3. Lemma: If y = P (x) is an nth degree polyno-
mial, then its divided difference of nth order
is constant. Consequently, the (n+ 1)th order
divided differences is zero i.e.,

[x, x0, . . . , xn−1]= c = constant and

[x, x0, . . . , xn−1, xn]=
c − c
x − xn

= 0

which follows from the fact that

[x, x0] = P (x)− P (x0)

x − x0

is a polynomial of degree (n− 1) in x, and

[x, x0, x1] = p(x, x0)− p(x0, x1)

(x − x1)

is a polynomial of degree (n− 2) in x, and so on.

Thus [x, x0, x1, . . . , xn, xn−1] is a polynomial of

degree (n− n) i.e., zero degree in x.

Note: Order of any divided difference is one less

than the number of values of the argument in it i.e.,

3rd order differences contain four values of x.

32.10 NEWTON’S DIVIDED DIFFERENCES

FORMULA

When another interpolation point is added to the tab-

ulated data, the Lagrangian coefficients are to be

recalculated, resulting a different Lagrange’s poly-

nomial of higher degree. This difficulty is removed

in the Newton’s divided differences formula (or

Newton’s general interpolation formula or Newton’s

interpolation formula for unequally spaced values of

the argument) in which polynomial of higher degree

is obtained simply by addition of new terms (to the

already existing formula).
Consider

[x, x0]= y − y0

x − x0
or

y = y0 + (x − x0)[x, x0] (1)

Now [x, x0, x1]= [x, x0]− [x0, x1]

x − x1
or

[x, x0]= [x0, x1]+ (x − x1)[x, x0, x1] (2)

Substituting (2) in (1), we have

y = y0 + (x − x0)[x0, x1]+
+(x − x0)(x − x1)[x, x0, x1] (3)

Again

[x, x0, x1, x2]= [x, x0, x1]− [x0, x1, x2]

x − x2
or

[x, x0, x1]= [x0, x1, x2]+
+(x − x2)[x, x0, x1, x2] (4)

Substituting (4) in (3), we get

y = y0 + (x−x0)[x0, x1]+ (x−x0)(x−x1)[x0, x1, x2]+
+(x − x0)(x − x1)(x − x2)[x, x0, x1, x2].

Continuing this way, we arrive at the Newton’s
divided differences formula as

y = f (x) = y0 + (x − x0)[x0, x1]+
+(x − x0)(x − x1)[x0, x1, x2]+
+(x − x0)(x − x1)(x − x2)[x, x0, x1, x2]+ · · · +
+(x−x0)(x−x1) · · · (x−xn−1)[x0, x1, . . . , xn] (5)

Note that the approximate relation (5) is obtained by
suppressing the error term E(x) where

E(x) = (x − x0) · · · (x − xn)[x, x0, x1, . . . , xn].
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Note: Various interpolation formulae obtained so

far are ‘different’ forms of the same (unique) poly-

nomial.

WORKED OUT EXAMPLES

Difference formula

Example 1: Find Newton’s divided differences

polynomial for the data in the table below. Also find

f (2.5)

x : −3 −1 0 3 5

f (x) : −30 −22 −12 330 3458

Solution: The divided differences table is:

Table 32.11

x y = f (x) Divided differences of order

1 2 3 4

−3 −30
−22−(−30)
−1−(−3)

= 8
2
= 4

−1 −22 10−4
0−(−3)

= 6
3
= 2

−12−(−22)
0−(−1)

= 10
1
= 10 26−2

3−(−3)
= 4

0 −12 114−10
3−(−1)

= 26 44−4
5−(−3)

= 5
330−(−12)

3−0
= 114 290−26

3−(−1)
= 44

3 330 1564−114
5−0

= 290
3458−330

5−3
= 1564

5 3458

Here x0 = −3, x1 = −1, x2 = 0, x3 = 3, x4 = 5,
and y0 = −30, y1 = −22, y2 = −12, y3 = 330,
y4 = 3458. The divided differences are

[x0, x1]= 4, [x1, x2] = 10,

[x2, x3]= 114, [x3, x4] = 1564,

[x0, x1, x2]= [x1, x2]−[x0, x1]

x2−x0
=2, [x1, x2, x3]=26,

[x2, x3, x4]= 290. Now

[x0, x1, x2, x3]= [x1, x2, x3]− [x0, x1, x2]

x3 − x0
= 4

[x1, x2, x3, x4]= [x2, x3, x4]− [x1, x2, x3]

x4 − x1
= 44

and finally

[x0, x1, x2, x3, x4]= [x1, x2, x3, x4]−[x0, x1, x2, x3]

x4−x0
=5

The Newton’s divided difference polynomial is

y = f (x)=y0+(x−x0)[x0, x1]+(x−x0)(x−x1)[x0, x1, x2]+
+(x − x0)(x − x1)(x − x2)[x0, x1, x2, x3]+
+(x − x0)(x − x1)(x − x2)(x − x3)[x0, x1, x2, x3, x4]

Substituting the above data

y = f (x) = −30+ (x + 3)(4)+ (x + 3)(x + 1)(2)+
+(x+3)(x+1)(x−0)(4)+(x+3)(x+1)x(x−3)(5)

y = f (x) = 5x4 + 9x3 − 27x2 − 21x − 12

is the required 4th degree polynomial. Now when

x = 2.5,

y = f (2.5)=5(2.5)4+9(2.5)3−27(2.5)2−21(2.5)−12

= 102.6785.

EXERCISE

Newton’s divided differences formula

Using Newton’s divided differences formula

(Newton’s general interpolation formula) solve the

following problems:

1. Find f (8).

x: 4 5 7 10 11 13

f (x): 48 100 294 900 1210 2028
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Hint: Divided differences are 52, 15, 1, 0.

Ans. 448

2. Fit a polynomial and find f (1) and f (8).

x: −1 0 3 6 7

f (x): 3 −6 39 822 1611

Hint: Divided differences are −9, 6, 5, 1.

Ans. x4−3x3+5x2−6, f (1)=−3, f (8)=2874.

3. Find value of y for x = 5.6075.

x: 5.6 5.602 .5605 .5607 .5608

y: .77556588 .77682686 .77871250 .779965 .78059114

Hint: Divided differences are 0.6305,

−0.38668, −0.9485714, −20.595237.

Ans. 0.77729893

4. Find log 323.5.

x: 321.0 322.8 324.2 325.0

log x: 2.50651 2.50893 2.51081 2.51188

Hint: Divided differences are 0.00134444,

−0.00000158, −0.00000022.

Ans. 2.50987

5. Fit a cubic polynomial.

x: 0 1 2 5

f (x): 2 3 12 147

Hint: Divided differences are 1, 4, 1.

Ans. x3 + x2 − x + 2

6. Obtain the Newton’s divided difference inter-

polating polynomial and hence find f (3).

x: 0 1 2 4 5 6

f (x): 1 14 15 5 6 19

Hint: Divided differences are 13, −6, 1, 0, 0.

Ans. x3 − 9x2 + 21x + 1, f (3) = 10

7. Fit a cubic polynomial and find f (6).

x: 3 7 9 10

f (x): 168 120 72 63

Hint: Divided differences are −12,−2, 1.

Ans. x3 − 21x2 + 119x − 27, f (6) = 147

8. Form the table of divided differences:
x: 4 5 7 10 11 13

f (x): 48 100 294 900 1210 2028

Extend the table to include values x = 2 and

x = 15.

Hint: Divided differences: 52, 15, 1, 0, 0.

Ans. x3 − x2, y(2) = 4, y(15) = 3150.

9. Fit a polynomial to the data (−4, 1245),

(−1, 33), (0, 5), (2, 9), (5, 1335). Hence find

f (1) and f (7).

Ans. 3x4 − 5x3 + 6x2 − 14x + 5,f (1)=− 5,f (7)

= 5689

10. Calculate f (1.5).

x: 1 2 3 4 5

f (x): 0 7 26 63 124

Hint: Divided differences are 7, 12, 6, 0.

Ans. f (1.5) = 2.25

11. Calculate f (9).

x: 5 7 11 13 17

f (x): 150 392 1452 2366 5202

Hint: Divided differences are 121, 24, 1.

Ans. 810

12. Determine the Newton’s general interpolation

polynomial and hence find f (−3) and f (9).

x: −4 −1 0 2 5

f (x): 1245 33 5 9 1335

Hint: Divided differences are −404, 94, −14,

3.

Ans. 3x4 − 5x3 + 6x2 − 14x + 5, f (−3) = 479,

f (9) = 16403.

32.11 ERRORS IN POLYNOMIAL INTERPO-

LATION

Computing of values for a tabulated function at

points not in the table is known as interpolation.

Thus, interpolation means to estimate a missing func-

tion value by taking a weighted average of known

(given) function values at neighbouring points.

Suppose the functiony = f (x) is known (given) at

(n+ 1) points (x0, y0), (x1, y1) . . . (xn, yn). A poly-
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nomial of degree n, Pn(x) is known as the interpo-

lating polynomial when Pn(x) passes through (satis-

fies) these (n+ 1) points. Pn(x) can be constructed

using only the numerical values xk and yk and does

not need any order derivatives of f (x). The approx-

imation Pn(x) is known as interpolated value when

x0 < x < xn and extrapolated value when x < x0 or

xn < x.

The error is zero at tabulated points x0, x1, . . . , xn;

while it may be nonzero at points not in the table.

Error may increase when number of interpolation is

increased (classical example: f (x) = (1+ 25x2)−1

in [−1, 1]).
The error term associated with thenth degree poly-

nomial Pn(x) is obtained by using the generalized
Rolle’s theorem and is given by

E(x)= f (x)− Pn(x)

= (x − x0)(x − x1) . . . (x − xn) ·
f (n−1)(ξ )

(n+ 1)!
(1)

Here ξ is any value in the smallest interval that

contains {x, x0, x1, . . . , xn}. The disadvantage with

this error expression is that the derivative of f is

not known (since the function f (x) itself is not

known except at the tabulated points). Note that

the error term (1) is same for Lagrange polynomial

and interpolating polynomial obtained from divided-

difference table.

Error estimation when f (x) is unknown: When f (x)

is unknown,
f (n)(x)

n!
can be approximated by the nth

order divided difference

i.e.,
f (n)(x)

n!
= f [x0, x1, . . . , xn] = f [n]

0 = nth
order divided difference.

Thus the error of the interpolation is approxi-

mately given by the next term that would be added.
The next-term rule is a most valuable rule for esti-

mating the error of interpolation as follows:

En(x) ≈ value of the next term

that would be added to Pn(x).

= f [n]
0 (x − x0)(x − x1)(x − x2) . . . (x − xn−1).

The interpolating polynomial that fits a divided dif-

ference table at x = x0, x1, x2, . . . , xn is given by

Pn(x)= f [0]
0 + (x − x0)f

[1]
0 + (x − x0)(x − x1)f

[2]
0

+(x − x0)(x − x1)(x − x3)f
[3]
0 + . . .

+(x − x0)(x − x1) . . . (x − xn−1)f
[n]
0

Thus for P1(x) the next term to be added is

f
[2]
0 · (x − x0)(x − x1).

WORKED OUT EXAMPLES

Example 1: Find the error of the interpolates for

f (1.25) using polynomial of degree 1, 2, 3, 4, (b).

Estimate the error using the next-term rule. Here

f (x) = ex2−1 and x0 = 1, x1 = 1.1, x2 = 1.2, x3 =
1.3, x4 = 1.4

Solution: The divided difference table is

xi f (xi) f
[1]
i f

[2]
i f

[3]
i f

[4]
i

1 1 2.3368 4.2675 6.105 7.65

1.1 1.23368 3.1903 6.099 9.165

1.2 1.55271 4.4101 8.8485

1.3 1.99372 6.1798

1.4 2.61170

Here

f
[1]
0 = f [x0, x1] = f1 − f0

x1 − x0
,

f
[2]
0 = f [x0, x1, x2] = f (x1, x2)− f (x0, x1)

x2 − x0
etc.

The interpolating polynomials of degree 1, 2, 3 are

P1(x)= f0 + f [1]
0 (x − x0) = 1+ 2.3368(x − 1)

P2(x)= f0 + f [1]
0 (x − x0)+ f [2]

0 (x − x0)(x − x1)

P2(x)= 1+ 2.3368(x − 1)+ 4.2675(x − 1)(x − 1.1)

P3(x)= f0 + f [1]
0 (x − x0)+ f [2]

0 (x − x0)(x − x1)

+f [3]
0 (x − x0)(x − x1)(x − x2)

= 1+ 2.3368(x − 1)+ 4.2675(x − 1)(x − 1.1)

+ 6.105(x − 1)(x − 1.1)(x − 1.2)

P4(x)= 1+ 2.3368(x − 1)+ 4.2675(x − 1)(x − 1.1)

+6.105(x − 1)(x − 1.1)(x − 1.2)

+7.65(x − 1)(x − 1.1)(x − 1.2)(x − 1.3)
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Interpolated values at x = 1.25 are

P1(1.25)= 1.5842, P2(1.25) = 1.7442,

P2(1.25)= 1.7556468, P4(1.25) = 1.75496;

The exact value f (1.25) = e(1.25)2−1

= 1.7550546571
Here Ist, 2nd, 3rd, 4th, 5th derivatives are

f  (x)= 2xex
2−1, f   = 2(1+ 2x)ex

2−1,

f    = 4(x + 2x2 + 1)ex
2−1,

f IV = 4(4x3 + 2x2 + 6x + 1)ex
2−1;

EXERCISE

1. Find the error of the interpolates for f (1.75)

using polynomials of degree 1, 2, 3. (b) Esti-

mate the error using the next-term rule. Here

f (x) = x2e−x/2.

Ans. Divided difference table

xi f (xi) f
[1]
i f

[2]
i f

[3]
i f

[4]
i

1.10 0.6981 0.8593 −0.1755 0.0032 0.0027

2.00 1.4715 0.4381 −0.1631 0.0191

3.50 2.1287 −0.0511 −0.0657

5.00 2.0521 −0.2877

7.10 1.4480

Errors of interpolation for f (1.75)

Degree Interpola- Actual Estimate Max. Min. Upper Lower

ted value error from next- f i+1 f i+1 bound bound

term rule

1. 1.25668 0.01996 0.02852 −.3679 .0594 .0299 −.00483

2. 1.28520 −0.00856 0.00091 −0.8661 0.1249 .0059 −0.0408

3. 1.28611 −0.00947 −0.00249 1.1398 −0.0359 .0014 −0.0439

f V = 8ex
2−1(4x4 + 2x3 + 12x2 + 3x + 3).

Error using

En(x) = f
(n+1)(ξ )

(n+ 1)!
(x − x0)(x − x1) · · · (x − xn)

with ξ = 1.3.

E1(x)= 0.89717

E2(x)= 0.0035388, E3(x) = −0.000130682

E4(x)=−0.0000133947

Errors of interpolation for f (1.25)

Degree Interpolated value Actual error Error

using En(x) next-term rule

1 1.5842 0.17085467 0.89717 (4.2675)(1.25−1)

× (1.25−1.1) = 0.1600

2 1.7442 0.01085467 − 0.0035388 0.0114

3 1.7556468 − 0.00059213 − 0.00013068 − 0.000717

4 1.75496 0.00009467 − 0.000013394

Exact value: f (1.25) = 1.755054657

2. Find an approximation to sin 0.34 and find a

bound for the error using a polynomial or degree

3 and given that sin 0.30 = 0.29552, sin 0.32 =
0.31457, sin 0.33 = 0.32404, sin 0.35 =
0.34290.

Ans. sin 0.34 = 0.33348, Error bound: 1.2× 10−9
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3. Find a bound for the error in approxima-

tion f (1.09) using 3rd degree polynomial and

the data f (1.00) = 0.1924, f (1.05) = 0.2414

f (1.10) = 0.2933, f (1.15) = 0.3492 for the

function f (x) = log10 tan x.

Ans. f (1.09) = 0.2826, Error bound: 7.4× 10−6

4. Approximate f (1.03) using interpolating poly-

nomial of degree 1, 2, 3 using x0 = 1, x1 =
1.05, x2 = 1.07, x3 = 1.1, x4 = 1.15 compare

the actual error to the error bound and to error

obtained by next-term rule off (x) = 3xex − e2x .

5. Write the error term E3(x) for cubic Lagrange

interpolation to f (x) = x5 − 5x4 where interpo-

Ans. P2(x) = 1.536459+ 0.8145167(x − 1.91)

−0.1210609(x − 1.91)(x − 1.97)

Error ∼10−2(0.09)(0.03)(0.02) = 0.54× 10−6

Interpolated value: P 2(2) = 1.609439

Exact value: f (2) = log 5 = 1.6094379

Estimate error at x = 0.55 using linear interpo-

lation, at x = 0.60 using quadratic interpolation,

at x = 0.46 using cubic interpolation. Exact val-

ues are f (0.46) = 1.10073, f (0.55) = 1.14127,

f (10.6) = 1.16619.

Ans. P1(0.55) = 1.14178 based on 0.5, 0.58

P2(0.6) = 1.16618 based on 0.5, 0.58, 0.66

P3(0.46) = 1.04403 based on 0.3, 0.42, 0.5, 0.58

lation is to be exact at the four nodes x0 = −1,

x1 = 0 x2 = 3, x3 = 4.

Ans. f (4)(c) = 120(c − 1) for all c, so that E3(x) =
5(x + 1)(x − 3)(x − 4)(c − 1)

6. For f (x) = sin x on [0, 1], determine the step

size h so that linear Lagrange interpolation has

an accuracy of 10−6.

Ans. |E1(x)| = 5× 10−7, |f (2)(c)| ≤ | − sin(1)| =
0.84147098 = M2, h2M2

8
= h2

8
(0.84147098) <

5× 10−7 or h < 0.00218027

7. Let f (x) = log(1+ x2). Consider the following

divided difference table. Estimate the error for

interepolate f (2) using a quadric interpolate with

the points 1.91, 1.97, 2.02.

xi f (xi) f
[1]
i f

[2]
i f

[3]
i

1.88 1.511693

1.91 1.536459 0.825333

1.97 1.585330 0.8145167 −0.1224067

2.02 1.625390 0.8012000 −0.1210609 0.96128× 10−2

2.11 1.696001 0.7845555 −0.1188893 1.0858× 10−2

2.18 1.749617 0.7659571 −0.1162400 1.26157× 10−2

Note: Third order divided differences are all

approximately equal to 10−2.

8. Develop a divided differences table for the fol-

lowing data.

x: 0.3 0.42 0.5 0.58 0.66 0.72

y: 1.04403 1.08462 1.11803 1.15603 1.19817 1.23223

32.12 SYMBOLIC RELATIONS AND SEPA-

RATION OF SYMBOLS

Let x0, x1, . . . , xn be a set of tabular points which are

equally spaced i.e.,

xi = x0 + ih, i = 0, 1, 2, . . . n.
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Then

∇f (xi ) = f (xi )− f (xi − h)

is the backward-difference operator,

 f (xi ) = f (xi + h)− f (xi )

is the forward-difference operator

δf (xi ) = f
 
xi +

h

2

 
− f

 
xi −

h

2

 

is the central-difference operator. The shift operators
are defined as

E(f (xi ))= f (xi + h)

E−1(f (xi ))= f (xi − h)

The averaging operator is defined as

µ(f (xi )) =
1

2

 
f

 
xi +

h

2

 
+ f

 
xi −

h

2

  

Higher order differences are obtained by repeated
applications of the difference operators. Let fi =
f (xi). Then

∇nf (xi )= ∇n−1fi −∇n−1fi−1

 nf (xi )= n−1fi+1 − n−1fi

Enf (xi )= f (xi + nh)

E−nf (xi )= f (xi − nh)

δnf (xi )= δn−1f
i+ 1

2
− δn−1f

i− 1
2

=
n 
j=0

(−1)j
n!

j !(n− j )!fi+ n2−j

Note that the differences  kf0 lie on a straight line

sloping downward to the right. The differences∇kf3

lie on a straight line sloping upward to the right. The

differences δ2kf2 lie on a horizontal line. Thus the

entries in the difference table can be interpreted as

either forward or backward differences.

Symbolic relations are established using these

symbolic operators. Standing alone, all these opera-

tors are without any significance and are meaning-

less unless operated on a function, like
 

or d
dx

or√
. These operators are linear operators i.e., say

 (c1f1 + c2f2) = c1 f1 + c2 f2

and obey laws of algebra.

Relationship between the Operators

 ∇ E δ

  (1−∇)−1 − 1 E−1 1
2
δ2 + δ

 
1+ 1

4
δ2

∇ 1− (1+ )−1 ∇ 1− E−1 − 1
2
δ2 + δ

 
1+ 1

4
δ2

E  + 1 (1−∇)−1 E 1
2
δ2 + δ

 
1+ 1

4
δ2 + 1

δ  (1+ )−
1
2 ∇(1−∇)−

1
2 E

1
2 − E− 1

2 δ

µ (1+  
2

)(1+ )
1
2 (1− ∇

2
)(1−∇)−

1
2

E
1
2 +E−

1
2

2

 
1+ 1

4
δ2

Some of the above relations can be established as

follows:

(a)  (f (x0)) = f (x0 + h)− f (x0) = E(f (x0)

−f (x0)) = (E − 1)(f (x0))

Thus  = (E − 1)

(b) ∇(f (x)) = f (x)− f (x + h) = f (x) −E−1

(f (x)) = (1− E−1)(f (x))

Thus ∇ = (1− E−1)

(c) δ(f (x)) = f  
x + h

2

 − f  
x − h

2

 =
=E 1

2 f (x)−E− 1
2 f (x)=

 
E

1
2−E− 1

2

 
(f (x))

Thus δ =
 
E

1
2 − E− 1

2

 
(d) µ(f (x)) = 1

2

 
f

 
x + h

2

 + f  
x − h

2

  
= 1

2

 
E

1
2 f (x)+ E− 1

2 f (x)
 

= 1

2

 
E

1
2 + E− 1

2

 
(f (x))

Thus δ = E 1
2 − E− 1

2
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Similarly other results in the above table can be

proved.

Now using laws of algebra, we can prove the fol-

lowing.

(i) E∇ = E(1− E−1) = E − 1 =  
∇E = (1− E−1)E = E − 1 =  
Thus En∇n = ∇nEn =  n

(ii) Since  = E − 1

 n = (E − 1)n = En − nEn−1 +
 
n

2

 
En−2

−
 
n

3

 
En−3 + . . .

 nf (x)= Enf − nEn−1f +
 
n

2

 
En−2f

−
 
n

3

 
En−3f + . . .

= f (x + nh)− nf [x + (n− 1)h]

+
 
n

2

 
f [x + (n− 2)h]+ . . .

Thus

 nf = fn − nfn−1 +
 
n

2

 
fn−2 −

 
n

3

 
fn−3 + . . .

(iii) Newton-Gregory forward formula: We know that
E = 1+ , so En = (1+ )n

Then

fn = Enf0 = (1+ )nf0

= [1+ n +
 
n

2

 
 2 +

 
n

3

 
 3 + . . .]f0

fn = f0 + n f0 +
 
n

2

 
 2f0 +

 
n

3

 
 3f0 + . . .

(iv) Newton-Gregory backward formula
Since E = (1−∇)−1, En = (1−∇)−n. Then

fn = Enf0 = (1−∇)−nf0

=
 
1+ n∇ +

 
n+ 1

2

 
∇2+

+
 
n+ 2

3

 
∇3 + . . .

 
f0

fn = f0 + n∇f0 +
 
n+ 1

2

 
∇2f0 +

+
 
n+ 2

3

 
∇3f0 + . . .

= f0 + n∇f−1 +
 
n+ 1

2

 
 2f−2 +

+
 
n+ 2

3

 
 3f−3 + . . .

WORKED OUT EXAMPLES

Example 1: Prove that ∇6y8 =  6y2.

Solution: ∇6 = (1− E−1)6

= (1− 6E−1 + 15E−2 − 20E−3

+15E−4 − 6E−5 + E−6)

So

∇6y8 = (1− 6E−1 + 15E−2 − 20E−3

+15E−4 − 6E−5 + E−6)y8

∇2y8 = y8 − 6y7 + 15y6 − 20y5 + 15y4 − 6y3 + y2

Also

∇6y2 = (E − 1)6y2 = (E6 − 6E5 + 15E4

−20E3 + 15E2 − 6E + 1)y2

= y8 − 6y7 + 15y6 − 20y5 + 15y4 − 6y3 + y2

Thus ∇6y8 =  6y2

Example 2: Show that ∇rfk =  rfk−r
Solution:

RHS =  rfk−r = (E − 1)rfk−r (... = E − 1)

= Er (1− E−1)rfk−r (...∇ = 1− E−1)

= Er∇rfk−r = ∇rErfk−r = ∇2fk
... Erfk−r = fk−r+r
Example 3: Show that δ = 2 sin h

 
hD
2

 
.

Solution: δ = E 1
2 − E− 1

2 = e hD2 − e− hD2
(...E = ehD) = 2 sin h

 
hD
2

 
.

Example 4: Prove that ( + 1)(1−∇) = 1

Solution: Since  = E − 1,  + 1 = E and ∇ =
1− E−1 so 1−∇ = E−1

Then ( + 1)(1−∇) = E · E−1 = 1
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Example 5: Show that  ∇ = δ2

Solution:  ∇ = (E − 1)(1− E−1)
= E − 1− 1+ E−1

= (E − E−1)2

Now δ = (E
1
2 − E− 1

2 )

δ2 = (E
1
2 − E− 1

2 )2 = (E − 2+ E−1)

= (E − E−1)2

Hence  ∇ = δ2

Example 6: Show that  
2

E
x3 = 6xh2

Solution:

LHS =  2

E
x3 = (E−1)2

E
x3

=
 
E2 + 1− 2E

E

 
x3 = (E − 2+ E−1)x3

= (x + h)3 − 2x3 + (x − h)3

= (x3 + 3x2h+ 3xh2 + h3)− 2x3

+(x3 − 3x2h+ 3xh2 − h3)

= 6xh2

Example 7: Show that ( +∇)2(x2 + x) = 8 with

h = 1

Solution: Since = E − 1 and ∇ = 1− E−1. We
have

( +∇)2(x2 + x)= (E − 1+ 1− E−1)2 = (E − E−1)2

= E2 + E−2 − 2

So

( +∇)2 = (E2 + E−2 − 2)(x2 + x)

= E2(x2 + x)+ E−2(x2 + x)− 2(x2 + x)

[(x + 2)2 + (x + 2)]+ [(x − 2)2 + (x − 2)]

−2(x2 + x) = 8

Example 8: Show thatu0 + Eu0 · x + E2u0 · x2+
+ E3u0 · x3 + . . .
=

 
1

1−x + x

(1−x)2
 + x2

(1−x)3
 2 + . . .

 
u0

Solution: Rewriting LHS as

LHS = (1+ xE + x2E2 + x3E3 + . . .)u0

=
 

1

1− xE

 
u0 =

 
1

1− x(1+ )

 
u0

since E = 1+ 

=
 

1

1− x − x 

 
u0 =

1

1− x

 
1

1− x 
1−x

 
u0

= 1

1− x [1+ x 

1− x +
x2 2

(1− x)2
+ . . .]u0

=
 

1

1− x +
x

(1− x)2
 + x2

(1− x)3
 2 + . . .

 
u0

Example 9: Show that δE
1
2 =  

Solution: E
1
2 f (x) = f (x + h

2
)

δE
1
2 (f (x)) = δ[f (x + h

2
)]

= f (x + h
2
+ h

2
)− f (x + h

2
− h

2
)

= f (x + h)− f (x)

=  f (x)

Example 10: Prove that ∇ − = − ∇
Solution:

LHS :∇ − = (1− E−1)− (E − 1)

= 2− E − E−1

RHS : − ∇ = −(E − 1)(1− E−1)

= −[E − 1− 1+ E−1]

= 2− E − E−1

Example 11: Show that ∇ + =  
∇ − ∇

 

Solution: LHS = ∇ + = (1− E−1)+ (E − 1)

= E − E−1

Now

 

∇ =
E − 1

1− E−1
= E(E − 1)

(E − 1)
= E

∇
 
= 1− E−1

E − 1
= 1

E

 
1− E−1

1− E−1

 
= E−1

RHS :
 

∇ −
∇
 
= E − E−1

EXERCISE

1. Show that ex =
 
 2

E

 
ex · Eex

 2ex
taking h as the

interval of difference.
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Hint:
 
 2

E

 
ex =  2E−1ex =  2ex−h = e−h

 2 ex

RHS: e−h 2ex · Eex
 2ex

= e−hex+h = ex
2. Prove that

(a)  3y2 = ∇3y5

(b)  = 1
2
δ2 + δ

 
1+ δ2

4

(c) 2+ = (E
1
2 + E− 1

2 )(1+ )
1
2

(d) hD = log(1+ ) = − log(1− ) =
sinh−1(µδ)

3. Prove that

(a) δ =  (1+ )−
1
2 = ∇(1−∇)−

1
2

(b) µ2 = 1+ δ2

4

(c) δ(E
1
2 + E− 1

2 ) =  E−1 + 
4. Show that ∇yn+1 = h[1+ 1

2
∇ + 5

12
∇2 + . . .]y  n

5. Show that

(a) u1x + u2x
2 + u3x

3 + . . . =
 

x
1−x)

 2

 u1 + 
x

1−x
 3
 2u1 + . . .

(b) u0 + u1x

1!
+ u2x

2

2!
+ u3x

3

3!
+ . . .

= ex(u0 + x u0 + x2

2!
 2u0 + x3

3!
 3u0

+ . . .)

6. Prove that E
1
2 =

 
1
2
+ δ2

4

 1
2 + δ

2

7. Show that ∇2 = h2D2 − h3D3 + 7
12
h4D4 + . . .

8. Show that E = ehD
Hint: E(f (x)) = f (x + h), expand by Tay-

lor’s series, E(f (x)) = f (x)+ hf  + h2

2!
f   +

h3

3!
f   + . . .
= f (x)+ hDf + h2

2!
D2f + h3

3!
D3f + . . .

=
 
1+ hD + h2D2

2!
+ h3D3

3!
+ . . .

 
f

= ehD(f (x))

Prove the following.

9.  (figi) = fi gi + gi+1 fi

10.  f 2
i = (fi + fi+1) fi

11.  
 

1
fi

 
= −  fi

fifi+1

12.  
 
fi
gi

 
= (gi fi−fi gi )

gigi+1

32.13 NUMERICAL DIFFERENTIATION

Numerical differentiation or approximate differen-

tiation is used when the function y = f (x) is (i)

given in tabular form (ii) function is highly com-

plex. The basic idea in numerical differentiation

is to replace the given function y = f (x) on the

interval [a, b] by an interpolating polynomial P (x)

and set f  (x) = P  (x); f   (x) = P   (x) etc. Numer-

ical differentiation is less exact than interpolation.

Although f (x1) = P (x1), f  (x1) need not be equal

to p (x1). (see figure).

Fig. 32.13

Numerical Differentiation Using

Newton’s Forward Formula

Suppose y = f (x) is specified in an interval [a, b] at
equally spaced points xi = x0 + ih(i = 1, 2, . . . n)
by means of the values yi = f (xi). Replace the
tabulated function y = f (x) by Newton’s forward
interpolation polynomial passing through the (n+ 1)
points x0, x1, . . . , xn. Thus

y(x)= y0 + q y0 +
q(q − 1)

2!
 2y0 +

q(q − 1)(q − 2)

3!

· 3y0 +
q(q − 1)(q − 2)(q − 3)

4!
 4y0 + · · · (1)

where q = x−x0

h
and h = xi+1 − xi , for i = 0, 1, . . .

Here q is a function of x and
dq

dx
= 1

h
. Rewriting (1)

y(x)= y0 + q y0 +
q2 − q

2
 2y0 +

q3 − 3q2 + 2q

6

· 3y0 +
q4 − 6q3 + 11q2 − 6q

24
 4y0 + · · · (1*)
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Differentiating (1*) w.r.t. x, we have

dy

dx
= dy
dq
· dq
dx
= 1

h

dy

dq
=

= 1

h

 
 y0+

2q−1

2
 2y0+

3q2−6q+2

6
 3y0

+ 4q3 − 18q2 + 22q − 6

24
 4y0 + · · ·

 
(2)

Similarly, differentiating (2) once again w.r.t. x, we
get

d2y

dx2
= d

dx

 
dy

dx

 
= 1

h

d

dq

 
dy

dx

 

= 1

h2

 
 2y0 + (q − 1) 3y0

+6q2 − 18q + 11

12
 4y0 + · · ·

 
(3)

Higher order derivatives can be computed similarly.

Special case

When derivative is required at a basic tabulated point
xi , then choose x = x0, so q = 0 (since each tabular
value may be taken as the initial value x0). Thus

dy

dx

    
x=x0

= y (x0) = 1

h

 
 y0 −

1

2
 2y0 +

 3y0

3

− 
4y0

4
+  

5y0

5
− · · ·

 
(4)

and

d2y

dx2

    
x=x0

= y  (x0) = 1

h2

 
 2y0 − 3y0

+11

12
 4y0 −

5

6
 5y0 + · · ·

 
(5)

Similarly,

y   (x0)= 1

h3

 
 3y0 −

3

2
 4y0 +

7

4
 5y0 + · · ·

 
(6)

y    (x0)= 1

h4

 
 4y0 − 2 5y0 + · · ·

 
(7)

Thus formulas (2), (3) (and (4), (5) in special case)

given the derivatives of y(x).

Numerical Differentiation Using

Newton’s Backward Formula

In this case, we replace y(x) by Newton backward
interpolation formula:

y(x)= yn + q∇yn +
q(q + 1)

2!
∇2yn

+q(q + 1)(q + 2)

3!
∇3yn + · · ·

Differentiating w.r.t. x,

y (x)= 1

h

 
∇yn +

1

2
(2q + 1)∇2yn

+3q3 + 6q + 2

6
∇3yn + · · ·

 
(8)

y  (x)= 1

h2

 
∇2yn + (q + 1)∇3yn

+6q2 + 18q + 11

12
∇4yn + · · ·

 
(9)

Special case: When x = xn, then q = 0.

y (xn)=
1

h

 
∇yn+

1

2
∇2yn+

1

3
∇3yn+

1

4
∇4yn+ · · ·

 
(10)

y  (xn)=
1

h2

 
∇2yn+∇3yn+

11

12
∇4yn+ · · ·

 
(11)

WORKED OUT EXAMPLES

Example: Compute f  (x) and f   (x) at (a) x = 16;

(b) x = 15; (c) x = 24; (d) x = 25 from the follow-

ing table:

x: 15 17 19 21 23 25

f (x) = √x: 3.873 4.123 4.359 4.583 4.796 5.8

Compare with the exact values.

Solution:

a. To find f  , f   at x = 16, 15, use the forward

differences results.

f  (x)= 1

h

 
 y0+

2q − 1

2
 2y0 +

3q2 − 6q + 2

6
· 3y0+
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Table 32.12: The finite difference table

x y = √x  y  2y  3y  4y  5y

15 3.873

0.250

17 4.123 −0.014

0.236 0.002

19 4.359 −0.012 −0.001

0.224 0.001 0.002

21 4.583 −0.011 0.001

0.213 0.002

23 4.796 −0.009

0.204

25 5.000

+4q3 − 18q2 + 22q − 6

24
 4y0

 

Here q = x−x0

h
, x0 = 15, h = 2 and x = 16, then

q = 16−15
2
= 1

2
= 0.5,

Also y0 = 0.250, 2y0 = −0.014, 3y0 = 0.002,
 4y0 = −0.001.

... f  (16)= 1

2

 
0.250+ 0+ 3(.5)2 − 6(.5)+ 2

6
(.002)

+4(.5)3 − 18(.5)2 + 22(.5)− 6

24
(−0.001)

 

f  (16)= 0.1249375 (Exact value: 0.125)

Similarly,

f   (16)= 1

22
[−0.014+ (0.5− 1)(.002)

+6(.5)2 − 18(.5)+ 11

12
(−.001)

f   (16)=−0.0038229 (Exact value = −0.00390625)

b. When x = 15 (which is a tabulated point), then

q = 0

f  (15)= 1

2

 
0.250−1

2
(−0.014)+1

3
(0.002)−1

4
(−0.001)

f  (15)= 0.128958 (Exact value: 0.12909)

f   (15)= 1

4

 
−0.014− 0.002+ 11

12
(−0.001)

 
f   (15)=−0.004229 (Exact value:− 0.0043033).

For (c) and (d) use Newton’s backward formulae

since x = 24 and x = 25 are at the end of the table.

c. Here q = x−xn
h

, x = 24, xn = 25, h = 2, q =
24−25

2
= −0.5, q = −0.5. Here ∇yn = .204,

∇2yn = −0.009,∇3yn = 0.002,∇4yn = 0.001.

f  (24)= 1

2

 
.204+ 1

2
(2(.5)+ 1)(−0.009)

+3(−.5)3 + 6(−.5)+ 2

6
(0.002)

 
= 0.09727 (Exact value: 0.10206)

f   (24)= 1

22

 
− 0.009+ (−.5+ 1)(0.002)

+6(−.5)2 + 18(−.5)+ 11

12
(0.001)

 
=−0.00242708 (Exact value :− 0.002126293)

d. When x = 25 which is a tabulated value, q = 0.

Then

f  (25)= 1

2

 
.204+ 1

2
(−0.009)+ 1

3
(.002)+ 1

4
(.001)

 
= 0.100208 (Exact value: 0.100)

f   (25)= 1

22

 
−0.009+ 0.002+ 11

12
(.001)

 
=−0.00225 (Exact value: − 0.002)

Note: y = √x, y  (x) = 1

2
√
x
, y   = −1

4x3/2 .

EXERCISE

1. Using forward differences find the first and sec-

ond derivatives of y at x = 2 for the data given

below:

x: 2 4 6 8 10

y: 0 0 1 0 0

Hint: Differences are 0, 1,−3, 6.

Ans. −1.5, 2.375

2. Compute y  (1), y   (1) and y  (3) from the fol-

lowing data:
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x: 1 2 3 4 5 6 7 8

y: 2.105 2.808 3.614 4.604 5.857 7.451 9.467 11.985

Hint: Differences: .703, .103, .081, −0.002.

Ans. y  (1)=0.6925, y   (1)=0.0201; y  (3)=.883

3. Determine y  (2), y   (2), y    (2), y     (2), y  (1.5),

y   (1.5) from the data below, compare with

exact values:

x: 0 1 2 3 4 5

y: 0 1 8 27 64 125

Hint: Differences: 1, 6, 6, 0, 0.

Ans. y  (2) = 12, y   (2) = 12, y    (2) = 6, y     (2) =
0, y  (1.5) = 6.75, y   (1.5) = 9. Exact value:

y = x3, y  = 3x2, y   = 6x, y    = 6, y     = 0.

4. Compute y  (1.05), y   (1.05), y  (1.25), y   (1.25)

from the following data:

x: 1.00 1.05 1.10 1.15 1.20 1.25 1.30

y: 1.00 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017

Ans. y  (1.05) = 0.48763, y   (1.05) = −0.2144,

y  (1.25) = 0.44733, y   (1.25) = −0.158332

5. Find y  (50) of the tabulated function y =
log10 x, given below:

x: 50 55 60 65

y: 1.6990 1.7404 1.7782 1.8129

Hint:Forward differences: 414,−36, 5,h = 5.

Exact value: 0.0087.

Ans. 0.0087
 = 1

5
(0.0414+ 0.008+ 0.0002)

 
6. The following table contains the path y = f (t)

traversed in time t by a point moving in a

straight line. Using finite forward differences

upto order five inclusive, find the velocity v =
dy

dt
and acceleration A = d2y

dt2
at the point of

times: t = 0, 0.01, 0.02, 0.03, 0.04.

time t in sec: 0 0.01 0.02 0.03 0.04 0.05

Path y(ti ) in cm: 0 1.519 6.031 13.397 23.396 35.721

t : 0.06 0.07 0.08 0.09

y(ti) 50 65.798 82.635 100

Hint: Forward differences are 2.993,

−0.139, −0.082, −0.004. Exact: y =
100(1− cos 50πt

9
), V = dy

dt
= 5000π

9
sin

 
50πt

9

 
,

W = d2y

dt2
= 250000π2

81
cos

 
50πt

9

 
.

Ans. Table 32.13

t V W Vexact Wexact

0.00 0.4 30600 0.0 30462

0.01 303.6 29780 303.08 30001

0.02 596.3 28780 596.98 28625

0.03 873.2 26250 872.66 26381

0.04 1121.7 23360 1121.9 23340

7. Compute y  (1.1), y   (1.1), y  (1.6), y   (1.6)

given:

x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6

y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031

Hint:Forward differences: .414,−0.36, 0.006,

−0.002, 0.002, −0.003, backward differences

.281,−0.018, 0.005,−0.001,−.001,−0.003.

Ans. y  (1.1) = 3.946, y   (1.1) = −3.545, y  (1.6) =
2.727, y   (1.6) = −1.703

8. Determine y  (0), y   (0) from following data:

x: 0 1 2 3 4 5

y: 4 8 15 7 6 2

Ans. y  (0) = −27.9, y   (0) = 117.67.

32.14 NUMERICAL INTEGRATION

Let f (x) be continuous on the interval [a, b] and

its antiderivative F (x) is known. Then the definite

integral of f (x) from a to b may be evaluated using

Newton-Leibnitz formula b

a

f (x)dx = F (b)− F (a) (1)

where f  (x) = f (x).

However, computation of the definite integral by

(1) becomes difficult or practically impossible when

(i) the antiderivative F (x) can not be found by ele-

mentary means or is too involved (ii) when the inte-

grand f (x) is specified in tabular form.
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The numerical integration of a single integral is

known as mechanical quadrature and uses the

geometrical interpretation of the definite integral b
a
f (x)dx as the area under the curve y = f (x)

between the ordinates x = a and x = b. The basic

integration rule is to replacef (x) by a simple polyno-

mial φ(x), say Lagrange’s interpolation polynomial

in [a, b]. Thus b

a

f (x)dx ∼
 b

a

φ(x)dx (2)

Choosing interval size h = b−a
n

, divide the inter-

val [a, b] into n intervals by means of (n+ 1)

equally spaced points x0 = a, xi = x0 + ih, i =
1, 2, 3, . . . , n− 1, xn = b. Let yi = f (xi) for i =
0, 1, 2, . . . , n.

Integrating the integral in the R.H.S. of (2), we get

Newton-Cotes formula of the form b

a

f (x)dx ∼ c · h ·
n 
i=0

wi · f (xi ) (3)

[Since the end points x0, xn are used in (3), these

formula are known as ‘closed’ type.]

Here m is the degree of the polynomial φ(x), c

is the coefficient and wi are weights, given in the

following table:

Table 32.14

Case m c w0 w1 w2 w3 Name of the rule

I. 0 1 1 Rectangular and

mid point rules

II. 1 1
2

1 1 Trapezoidal rule

III. 2 1
3

1 4 1 Simpson’s 1
3

rule

IV. 3 3
8

1 3 3 1 Simpson’s 3
8

rule

The degree m of the polynomial φ(x) used in the

derivation of the above formula are 0, 1, 2, 3 respec-

tively.

Derivation of Trapezoidal, Simpson’s 1
3
and

Simpson’s 3
8
Rule Formula:

The basic idea in numerical integration is to replace
the unknown tabulated function y = f (x) by an nth

degree polynomial Pn(x) say Newton-Gregory for-
ward interpolation formula and carry on the integra-
tion. Thus

I =
 xn

x0

f (x)dx  
 xn

x0

Pn(x)dx

 
 n

q=0

 
y0 + q y0 +

q(q − 1)

2!
 2y0

+q(q − 1)(q − 2)

3!
 3y0 + · · ·

+q(q−1)(q−2) · · · (q−n+1)

n!
 ny0

 
dq

Here the new variable is q = x−x0

h
, so dq = dx

h
.

Trapezoidal Rule

Take n = 1 (two points, one internal) 1

0

y dx = h
 1

0

(y0+q y0)dq=h
 
y0q+ y0·

q2

2

     1
q=0

= h
 
y0 +

 y0

2

 
= h

 
y0 +

y1 − y0

2

 

= h(y1 + y0)

2
= h

2
(y1 + y0).

Applying this to successive intervals, we get xn

x0

y dx =
 x1

x0

y dx +
 x2

x1

y dx + · · · +
 xn

nn−1

y dx

= h
2

(y0+y1)+h
2

(y1+y2)+ · · ·+h
2

(yn−1+yn)

I = h
2

 
y0 + 2(y1 + y2 + · · · + yn−1)+ yn

 

Simpson’s 1
3
Rule

Take n = 2 (three points, two intervals, curve (poly-
nomial) parabola). x2

x0

y dx = h
 2

0

 
y0 + q y0 +

q(q − 1)

2
 2y0

 
dq

= h
 
y0·q+

q2

2
 y0+

 2y0

2

 
q3

3
−q

2

2

        
2

q=0

= h
 
2y0 + 2 y0 +

1

3
 2y0
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= h
 
2y0 + 2(y1 − y0)+ 1

3
(y2 − 2y1 + y0)

 

= h
3

[y0 + 4y1 + y2].

Applying for successive intervals (the number of
intervals must be even or the number of points is
odd). xn

x0

y dx =
 x2

x0

y dx +
 x4

x2

y dx + · · · +
 xn

xn−2

y dx

= h
3

[y0 + 4y1 + y2]+ h
3

[y2 + 4y3 + y4]+ · · ·

+h
3

[yn−2 + 4yn−1 + yn]

I = h
3

 
y0 + 2(y2 + y4 + · · · + yn−2)

+4(y1 + y3 + · · · + yn−1)+ yn
 

Simpson’s 3
8
Rule

Take m = 3, number of intervals 3 and number of
points 4: (number of intervals should be multiples of
3 i.e., 3N).

 x3

x0

y dx = h
 3

0

 
y0 + q y0 +

q(q − 1) 2y0

2

+q(q − 1)(q − 2)

3!
 3y0

 
dq

= h
 
3y0 +

9

2
 y0 +

9

4
 2y0 +

3

8
 3y0

= h
 
3y0 +

9

2
(y1 − y0)+ 9

4
(y2 − 2y1 + y0)+

+3

8
(y3 − 3y2 + 3y1 − y0)

 

= 3

8
h[y0 + 3y1 + 3y2 + y3].

Applying repeatedly xn

x0

y dx = 3

8
h

 
y0+2(y3+y6+ · · · +yn−3)+3(y1+y2

+y4 + y5 + · · · + yn−2 + yn−1)+ yn
 
.

Thus

x0 x1 x2 x3 x4

Rectangular rule on [ , ]x x0 1

(i)

x0 x1 x2 x3 x4

Trapezoidal rule on [ , ]x x0 1

(iii)

x0 x1 x2 x3 x4

Simpson’s rule on [ , ]x x0 2
1
3

(iv)

x0 x1 x2 x3 x4

Simpson’s th rule on [ , ]x x0 3
3
8

(v)

x0 x1 x2 x3 x4

Boole’s rule on [ , ]x x0 4

(vi)

Fig. 32.14
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Trapezoidal Rule

When n = 1, h = b − a, then b

a

f (x)dx =
 b

a

y dx  h
2

[y0 + y1]. (4)

Generalized or Composite or Multiple Seg-

ment Trapezoidal Rule

When h = b−a
n

(i.e., interval is divided into n inter-
vals). b

a

y dx = h

2
[y0+y1]+h

2
[y1+y2]+ · · ·+h

2
[yn−1+yn]

= h

2
[y0 + 2(y1 + y2 + · · · + yn−1 + yn)]. (5)

Simpson’s 1
3
Rule

When n = 2, b

a

y dx = h
3

[y0 + 4y1 + y2].

Generalized Simpson’s 1
3
Rule

When n = 2m (even) number of intervals b

a

y dx = h
3

[(y0+4y1+y2)]+ h
3

[y2+4y3+y4]+ · · ·

+h
3

[yn−2 + 4yn−1 + yn]

= h
3

 
(y0 + yn)+ 2(y2 + y4 + · · · + yn−2)

+ 4(y1 + y3 + · · · + yn−1)
 
.

Simpson’s 3
8
Rule

When n = 3 b

a

y dx = 3

8
h[y0 + 3y1 + 3y2 + y3].

Generalized Simpson’s 3
8
Rule

 b

a

y dx = 3

8
h[y0 + 3y1 + 3y2 + y3]

+3

8
h[y3 + 3y4 + 3y5 + y6]+ · · ·

+3

8
h[yn−3 + 3yn−2 + 3yn−1 + yn]

= 3

8
h

 
(y0 + yn)+ 2(y3 + y6 + · · · + yn−3)

+ 3(y1 + y2 + y4 + y5 + · · · + yn−2 + yn−1)
 
.

Weddle Rule

When (n = 6), b

a

y dx = 3h

10
[y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6].

Generalized Weddle Rule

 b=x0+nh

a=x0

y dx = 3h

10
[y0+5y1+y2+6y3+y4+5y5+y6]

+3h

10
[y6+5y7+y8+6y9+y10+5y11

+y12]+· · ·+3h

10
[yn−6+5yn−5+yn−4

+6yn−3+yn−2+5yn−1+yn].

Note: While there is no restriction for the number of

intervals in trapezoidal rule, number of sub intervals

n in the case of Simpson’s 1
3

rule must be even, for

Simpson’s 3
8

rule must be multiple of 3, for Weddle’s

rule must be multiple of 6.

WORKED OUT EXAMPLES

Example 1: Given that y = log x, and

x: 4.0 4.2 4.4 4.6 4.8 5.0 5.2

y: 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6487

evaluate I =  5.2

4
log x dx by (a) Trapezoidal rule;

(b) Simpson’s 1
3

rule; (c) Simpson’s 3
8

rule; (d)

Weddle’s rule; (e) Compare it with exact value.

Solution:

a. By trapezoidal rule, (h = 0.2)

I = 0.2

2
[1.3863+ 1.6487+ 2(1.4351+ 1.4816

+1.5261+ 1.5686+ 1.6094)]
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I = 1.8276551

b. By Simpson’s 1
3

rule

I = 0.2

3
[1.3863+ 1.6487+ 2(1.4816+ 1.5686)

+4(1.4351+ 1.5261+ 1.6094)]

I = 1.8278472

c. By Simpson’s 3
8

rule

I = 3

8
(0.2)[1.3863+ 1.6487+ 2(1.5261)

+3(1.4351+ 1.4816)+ (1.5686+ 1.6094)]

I = 1.8278470

d. By Weddle’s rule

I = 3

10
(0.2)[1.3863+ 5(1.4351+ 1.6094)

+6(1.5261)+ 1.4816+ 1.5686+ 1.6487]

I = 1.8278474

e. By integrating by parts

I =
 4.2

5

ln x dx=x· ln x−
 
x· 1
x
dx=x· ln x−x

    5.2
4

= (5.2 ln 5.2−5.2)−(4 ln 4−4)=3.373−1.54517

I = 1.827822556.

Example 2: The half ordinates in fect of the mid

ship section of a vessel are 12.5, 12.8, 12.9, 13, 13,

12.8, 12.4, 11.8, 10.4, 6.8, 0.5 and the ordinates are

2 feet apart. Find the centre of gravity of the section.

Solution: Centre of gravity (x, 0).

x: 0 2 4 6 8 10

half

ordinates: 12.5 12.8 12.9 13 13 12.8

y: 25 25.6 25.8 26 26 25.6

xy: 0 51.2 103.2 156 208 256

x: 12 14 16 18 20

half

ordinates: 12.4 11.8 10.4 6.8 0.5

y: 24.8 23.6 20.8 13.6 1

xy: 297.6 330.4 332.8 244.8 20

Here x =
 20

0 xy dx 20
0 y dx

= I1
I2

where by Simpson’s 1
3

rule

I1 =
1

3
(2)[20+ 332.8+ 4(51.2+ 156+ 256+ 330.4

+244.8)+ 2(103.2+ 208+ 297.6+ 332.8)]

I1 = 4037.8666

I2 =
1

3
(2)[25+ 1+ 4(25.6+ 26+ 25.6+ 23.6

+13.6)+ 2(25.8+ 26+ 24.8+ 20.8)]

I2 = 452.2666

... x = 4037.8666

452.2666
= 8.928066154 ≈ 8.93.

Example 3: The speeds of an electric train at vari-

ous times after leaving one station until it stops at the

next station are given in the following table (Table

11.15). Find the distance between the two stations.

Table 32.15

Speed in mph 0 13 33 39 1
2

40 40 36 15 0

Time in minutes 0 1
2

1 1 1
2

2 2 1
2

3 3 1
4

3 1
2

Solution: Let v = ds
dt

be the velocity of the train at
any time t . Then s, the distance between the two
stations (with a lapse of 3 1

2
minutes) is

s =
 3 1

2

t=0

·ds
dt
dt =

 3 1
2

t=0

v dt =
 3

0

v dt +
 3 1

2

3

v dt

since the time interval are not the same. By applying

Simpson’s 1
3

rule with h = 1
2

and h = 1
4
, we have

Table 32.16

Speed in mph 0 13 33 39 1
2

40 40 36 15 0

Time in hours 0 1
120

1
60

1
40

1
30

1
24

1
20

13
240

7
480

s = s1 + s2 =
1

3
· 1

120

 
0+ 36+ 4(13+ 39

1

2
+ 40)

+2(33+ 40)

 
+ 1

3
· 1

240
[36+ 0+ 4(15)]

= 23

15
+ 2

15
= 25

15
= 5

3
= 1

2

3
= 1.666 miles

Thus the distance between the two stations is 1.666

miles.
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EXERCISE

Evaluate approximately the following integrals:

Trapezoidal rule

1. Use trapezoidal rule to evaluate (a)
 10

1
dx
x

, n =
10; (b)

 1

0
dx

1+x2 , n = 4; (c)
 1

0
sin x
x
dx, n = 4.

Ans. a. 1
2

 
1+ 0.1+ 2

 
1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7

+ 1
8
+ 1

9

  = 2.3788

b. 1
4
·  1

2

 
1+ 1

2

 + 16
17
+ 4

5
+ 16

25

 = 0.7828

c. 1
4
· 1

2
[1+ 0.84+ 2(.9898+ 0.95885

+.90885)] = 0.9445

2. Using the following data evaluate by T.R.

a.

x: 1 2 3 4 5 6 7

y: 2.105 2.808 3.614 4.604 5.857 7.451 9.467

b.

x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

f (x): 1.543 1.668 1.811 1.971 2.151 2.352 2.577 2.828 3.107

with (i) h = 0.1; (ii) h = 0.2; (iii) h = 0.4.

Ans. a.
 7

1
y dx= 1

2
[2.105+2(2.808+3.614+4.604

+5.851+.7451)+9.467]=30.120

b.
 1.8

1
f (x)dx= 1.7683(h= 0.1), 1.7728

(h = 0.2), 1.7904(h = 0.4).

3. Integrate
 π

0
sin x dx, n = 10.

Hint:

x: 0 π
10

2π
10

3π
10

4π
10

5π
10

6π
10

7π
10

8π
10

9π
10

π

sin x: 0 .309 .5878 .809 .951 1 .951 .809 .5878 .309 0

Ans. 6.3138

4. Evaluate
 1

0
dx

1+x2 , n = 10.

Hint:

x: 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

f (x): 1 .99 .96 .917 .862 .8 .735 .67 .61 .55 .5

Ans. 0.6547

Simpson’s 1
3
rule

5. Integrate approximately
 1.04

1
f (x)dx from

the following data:

x: 1 1.01 1.02 1.03 1.04

f (x): 3.953 4.066 4.182 4.300 4.421

Hint: h = 0.1.

Ans. 0.16734, I= 0.1
3

[(3.953)+ (4.421)+ 4(4.066

+4.182+ 4.3)]

6. Evaluate log e7 by Simpson’s 1
3

rule.

Hint: I =  6

0
dx

1+x .

Ans. 1.9588

7. Compute
 π

2
0

√
sin x dx.

Hint: n = 6, h = π
12

.

Ans. 1.18728, I = π
3
· 1

12
[0+ 1+ 4(.50874+

0.8409+ 0.98282)+ 2(0.70711+ 0.9306)]

8. Compute I =  1

0
dx

1+x , n = 10, h = 0.1.

Ans. 0.69315

9. Integrate approximately
 π

0
sin x dx, n = 10.

Ans. 3.0778

10. Compute
 1

0
dx

1+x2 , n = 10.

Ans. 0.785425

11. A river is 80 feet wide. The depth d in feet at a

distance x feet from one bank is given by:

x: 0 10 20 30 40 50 60 70 80

d: 0 4 7 9 12 15 14 8 3

Find approximately the area of cross section of

the river.

Hint: I =  80

0
d dx = 1

3
(10)[0+ 3+ 4(4+

9+ 15+ 8)+ 2(7+ 12+ 14)]

Ans. 710 sq. feet

12. A body of weight w tons is acted upon by

a variable force F tons weight. It acquires a

speed of v mph after travelling y yards where

v2 = 89.8
w

 
F (y)dy. Ifw = 600 andF is given

by the table below, estimate the velocity at the

end of 400 yards from the starting point.

y: 0 50 100 150 200 300 400

f (y): 90 62 45 34 26 15 8

Hint:
 400

0
F dy =  200

0
+  400

200
with h1 = 50,

h2 = 100.
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Ans. v = 44.16 mph

13. Find the approximate mileage travelled by a

train between 11.50 AM to 12.30 PM from the

following data:

time t : 11.50 AM 12 12.10 12.20 12.30

speed (mph): 24.2 35 41.3 42.8 39.2

Hint: I = s  12.30

t=11.50
v dt = 1

6

 
1
3

 
[24.2+

39.2+ 4(35.0+ 42.8)+ 2(41.3)].

Ans. s = distance = 25.4 miles

Simpson’s 3
8
rule

14. Evaluate loge7 by Simpson’s 3
8
th rule.

Hint: I =  6

0
dx

1+x = loge(1+ x)
  6

0
= loge 7

x: 0 1 2 3 4 5 6

1
1+x : 1 1

2
1
3

1
4

1
5

1
6

1
7

Ans. 1.966

15. Integrate
 1

0
dx

1+x2 , n = 12.

Hint:

x: 0 1
12

1
6

1
4

1
3

5
12

1
2

f (x) = 1

1+x2 : 1 .993 .973 .94 .9 .85 .8

x: 7
12

2
3

3
4

5
6

11
12

1

f (x) = 1

1+x2 : .8 .746 .692 .64 .59 .543 0.5

Ans. 0.78539

16. Evaluate
 1

0
exdx approximately.

Hint: n = 9, h = 1
9
= 0.1111

x: 0 1
9

2
9

1
3

4
9

5
9

ex : 1 1.1175 1.2488 1.3956 1.5596 1.743

x: 6
9

7
9

8
9

1

ex : 1.9477 2.176 2.432 2.718

Ans. 1.7182888

17. Integrate
 40

0
a(t)dt from the data given below:

t : 0 5 10 15 20 25 30 35 40 45

a(t): 40 45.25 48.5 51.25 54.35 59.48 61.5 64.3 68.7 70

Hint: 5
 

3
8

 
[40 + 70 + 2(51.25 + 61.5) +

3(45.25 + 48.5 + 54.35 + 59.48 + 64.3 +
68.7)].

Ans. 5
 

3
8

 
(1357.24) = 2544.825

Weddle’s rule

18. Integrate approximately
 1.1

0
exdx, n = 12.

Hint: I = 3
10

 
1.1
12

 
[1+ 5(1.1051)+ 1.2214+

6(1.3498)+ 1.4918+ 5(1.6487)+ 2(1.822)+
5(2.0137)+ 2.2225+ 6(2.4596)+ 5(2.71828)

+ 3.004166]

Exact value: ex |1.10 = 2.004166

Ans. 2.0040219

19. Evaluate approximately
 7

1
y dx, n = 6.

x: 1 2 3 4 5 6 7

y: 2.157 3.519 4.198 4.539 4.708 4.792 4.835

Ans. 25.4061

20. Integrate
 1.4

0.2
(sin x − ln x + ex)dx, n = 12.

Hint:

x: 0.2 0.3 0.4 0.5 0.6 0.7

y: 3.0295 2.8493 2.797 2.821 2.8976 3.01465

x: 0.8 0.9 1.0 1.1 1.2 1.3 1.4

y: 3.166 3.348 3.559 3.8 4.0698 4.3705 4.3704

I = 3
10

(0.1) [21.0584 + 5(13.5828) +
6(6.62137) + 2(3.16605)]

Exact value: − cos x − x(ln x − 1)+ ex
  1.4

0.2
=

4.05095

Ans. 4.05098

21. Evaluate
 1

0
dx

1+x2 , n = 12.

Hint:

x: 0 1
12

1
6

1
4

1
3

5
12

1
2

f (x): 1 0.993 0.9729 0.94 0.9 0.852 0.8

x: 7
12

2
3

3
4

5
6

11
12

1

f (x): .746 .6923 .64 .5906 .5434 0.5

Ans. 0.7603725

Boole’s Rule of Integration

The goal in numerical integration is to approximate b
a
f (x) dx using (N + 1) sample points (x0, f0),

(x1, f1) . . ., (xN, fN ) where fk denotes f (xk).
Boole’s rule is obtained by using a 4th degree

Lagrange interpolating polynomial based on the
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nodes x0, x1, x2, x3 and x4. Consider the approxi-
mation formula 4

0

g(t)dt = w0g(0)+ w1g(1)+ w2g(2)+ w3g(3)

+w4g(4) (1)

we determine the weightsw0,w1,w2,w3,w4 assum-

ing that (1) is exact for the functionsg(t) = 1, t , t2, t3,

t4. Thus when g(t) = 1 then g(0) = g(1) = g(2) =
g(3) = g(4) = 1 . From (1) 4

1

1 · dt = 4 = w0 + w1 + w2 + w3 + w4 (2)

For g(t) = t , g(0) = 0, g(1) = 1, g(2) = 2, g(3) =
3, g(4) = 4 so from (1) 4

0

t dt = t2

2

    
4

0

= 8 = 0+ w1 + 2w2 + 3w3 + 4w4

(3)

Similarly for g(t) = t2, t3, t4 from (1) we get

64

3
= w1 + 4w2 + 9w3 + 16w4 (4)

64 = w1 + 8w2 + 27w3 + 64w4 (5)

1024

5
= w1 + 16w2 + 81w3 + 256w4 (6)

Solving equations (1) to (6) we get w0 = 14
45

, w1 =
64
45

, w2 = 24
45

, w3 = 64
45

, w4 = 14
45

.

Thus the Boole’s rule for the interval [x0, x4] x4

x0

f (x)dx ≈ 2h

45
[7f0 + 32f1 + 12f2 + 32f3 + 7f4]

(7)

Composite Boole’s Rule

When Boole’s rule is repeated over 4 M subintervals

of [a, b], we get the composite Boole’s rule as

 b

a

f (x)dx ≈ 2h

45

M 
k=1

[7f4k−4 + 32f4k−3

+12f4k−2 + 32f4k−1 + 7f4k] (8)

Note: To apply Boole’s rule, the number of subin-

tervals should be multiples of 4 (i.e., 4, 8, 12 . . .) and

the numbers of nodes must be odd.

WORKED OUT EXAMPLES

Example 1: Evaluate
 5

1
dx
x

by Boole’s rule.

Solution: Take h = 5−1
4
= 1 so that there 4 subin-

tervals.

x 1 2 3 4 5

f (x) = 1
x

1 1
2

1
3

1
4

1
5

Using Boole’s rule 5

1
dx
x
≈ 2.1

45

 
7.1+ 32

 
1
2

 + 12
 

1
3

 + 32
 

1
4

 + 7 · 1
5

 
= 364

225
= 1.61777

while the exact value is ln 5− ln 1 = 1.60943

Example 2: Find the distance travelled by a sub-

marine under polar ice cap from the following table

showing the velocity at variance times

t 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time

(hr)

Velocity 6.0 7.5 8.0 9.0 8.5 10.5 9.5 7.0 6.0

v(t)

km/hr

Solution: We know that

d = distance travelled =
 2

t=0

v(t)dt

We evaluate this definite integral by Boole’s rule
with 4 · 2 = 8 subintervals. Here h = 2−0

8
= 1

4
=

0.25 (and 9 node points). Applying the composite
Boole’s rule we get

d = 2h

45
[7f0 + 32f1 + 12f2 + 32f3 + 7f4]

+2h

45
[7f4 + 32f5 + 12f6 + 32f7 + 7f8]

= 2(0.25)

45
[7(6)+ 32(7.5)+ 12(8)+ 32(9)+ 7(8.5)]

+2(0.25)

45
[7(8.5)+ 32(10.5)+ 12(9.5)+ 32(7.0)

+7(6.0)]

= 16.6777
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EXERCISE

1. Evaluate
 1

0
dx

1+x2 by Boole’s rule with 12 subin-

tervals.

Ans. Exact value: π
4
= 0.7854, by Boole’s rule: 0.8236

Hint: 2
45
· 1

12
[7{1+ 2(0.9+ 0.746+ 0.692)+

0.5} +32{0.993+ 0.94+ 0.85+ 0.746+ 0.64

+0.543} +12{0.973+ 0.8+ 0.59}] = 0.8236

2. Evaluate
 1.4

0.2
(sin x − ln x + ex)dx

Ans. Exact value: 4.05025, n = 12, h = 0.1, by

Boole’s: 4.04235

Hint: 2(0.1)

45
[7{3.0295+ 2(2.8976+ 3.559)

+4.3704} + 32{2.8493+ 2.821+ 3.01465

+3.348+ 3.8+ 4.3705} +12(2.797+ 3.166+
4.0698)] = 4.04235

3. A river is 80 feet wide. The depth d in feet at

a distance x from one bank (side) of the river is

given below.

x : 0 10 20 30 40 50 60 70 80

d : 0 4 7 9 12 15 14 8 3

Find approximately the area of cross section of

the river.

Ans. 708

Hint: n = 8, h = 10

Area = 2(10)

45
[7{0+ 2(12)+ 3} +32 {4+ 9+

15+ 8} +12(7+ 14)] = 708

4. Find the distance between two stations from the

following data consisting of the speeds of an elec-

tric train at various times after leaving one station

until it stops at the next station.

Speed of 0 13 33 39 1
2

40 40 36 15 0

train v(t)

in mph

t in mt 0 1
2

1 1 1
2

2 2 1
2

3 3 1
2

4

Ans. 1.788148 miles

Hint: Distance =  4

0
v(t)dt , n = 8, h = 1

2
mt =

1
120

hr,= 2
45
· 1

120
[7(0+ 40+ 40+ 0)+ 32(13+

39 1
2
+40+ 15)+ 12(33+ 36)]

32.15 SPLINE INTERPOLATION

In analyzing experimental data, in ascertaining the

relations among variables and in design work, the

common problem encountered is fitting a curve

through specified points in a plane. Interpolating

curve is a curve that passes through a set of points in

a plane and the curve is said to interpolate at these

points.

It is observed that approximation of arbitrary func-

tions on a closed interval becomes oscillatory for

higher-degree polynomials. By dividing the given

interval into a collection of subintervals, piecewise

polynomial approximation consists of constructing

a (generally) different approximating polynomial on

each subinterval. Cubic spline interplation is the

most common piecewise approximation using cubic

polynomial, known as spline function, connecting

each pair of data points (or nodes or knots). Cubic

splines are third-order curves employed to connect

each pair of data points.

Consider a set of (n+ 1) data points, which

need not be evenly spaced, (x0, f (x0)), (x1, f (x1)),

(x2, f (x2)) . . . (xn, f (xn))

or (xi, fi) for i = 0, 1, 2, . . . n. (1)

Between each pair of adjacent points from xi to

xi+1, we fit an nth degree polynomial si(x). Thus

the spline (function) curve can be of any degree. By

far, cubic splines are the most popular and are useful

version in engineering practice since the cubic spline

interpolation gives an interpolation formula that is

smooth in the first derivative and continuous, both

within an interval and its boundaries (end points x0

and xn). The name ‘spline’ is originated from the

draftman’s spline which is a drafting aid consisting of

a thin flexible rod or strip of wood that is bent to draw

a smooth curve through the points to be interpolated.

Linear Splines

Linear splines are first-order splines defined by lin-

ear functions. Geometrically they are straight lines

connecting two adjacent data points. For a given set

of (n+ 1) data points (1), the set of linear functions

defining linear splines in the ‘n’ intervals are:

S1(x) = f (x0)+m0(x − x0); x0 ≤ x ≤ x1.

S2(x) = f (x1)+m1(x − x1); x1 ≤ x ≤ x2.
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x0 x1 x2 xn – 1 xn

S(x)

x

Fig. 32.15 Piecewise linear interpolation

............................................................

Sn(x) = f (xn − 1)+mn−1(x − xn−1);

xn−1 ≤ x ≤ xn
Heremi is the slope of the straight line connecting

the data points (or nodes) xi and xi+1 and is given by

mi =
f (xi+1)− f (xi)

xi+1 − xi
(2)

Fitting of linear splines is piecewise linear inter-

polation and the interpolating curve is broken curve

joining ‘n’ straight line segments. Disadvantage of

linear splines is that at the point (known as knot)

where two splines meet, the slope changes abruptly

i.e., first derivative is discontinuous.

Quadratic Splines

Interpolation of second-order polynomials leads to

quadratic splines having continuous first derivatives

at the knots.

For each interval we fit a parabola given by

si(x) = aix2 + bix + ci
For n+ 1 data points we have n intervals. So we

should determine 3× n unknown constants (a’s, b’s

and c’s). The 3n condition to find the 3n unknowns

are given by the following equations.

1. At the interior knots, the function values must
be equal.

ai−1x
2
i−1 + bi−1xi−1 + ci−1 = f (xi−1)

aix
2
i−1 + bixi−1 + ci = f (xi−1)

for i = 2, n giving raise to 2(n− 1) = 2n− 2

conditions.

2. The first and last functions must pass through

the two end points x0 and xn.

a1x
2
0 + b1x0 + c1 = f (x0)

anx
2
n + bnxn + cn = f (xn)

giving 2 conditions.

3. At the interior knots, the first derivatives

f  (x) = 2ax + b must be equal.

2ai−1xi + bi−1 = 2aixi + bi
for i = 2 to n giving n− 1 conditions

4. Assume that the second derivative is zero at

the first point x0. Then the first two points are

connected by a straight line, so a1 = 0.

Thus solving (2n− 2)+ 2+ (n− 1)+
1 = 3n conditions above we get the 3n

unknown constants a, b, c’s. The drawback is

the straight line connecting the first two points.

Cubic Splines

A spline of at least (m+ 1) order should be used in

order to make sure that the mth derivatives are con-

tinuous at knots. Cubic splines employing third order

polynomials are very popular in practice because

they ensure that the first and second derivatives are

continuous.

f x( )0 f x( )1 f x( )2

f x( )3S x1( )

S x2( )

S x3( )

Interval 1 2nd interval
3rd

interval

x

i

0

= 0
x

i

1

= 1
x

i

2

= 2
x

i

3

= 3

x

S x( )

Fig. 32.16 Piecewise cubic spline approximation

Let us fit a (different) third order polynomial

Si(x) = aix3 + bix2 + cix + di (3)

for each of the n intervals between the (n+ 1)

data points (knots) (i = 0, 1, 2, . . . n). The prob-

lem is to find the 4× n = 4n unknown constants
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(a i s, b
 
i s, c

 
i s and d  i s). We have the following con-

ditions

a. 2n− 2 conditions since the function values

must be equal at the (n− 1) interior knots.

b. 2 conditions since the first and last functions

must pass through the two end points x0 and

xn.

c. (n− 1) conditions since the first derivatives

must be equal at the (n− 1) interior points.

d. (n− 1) conditions since the second derivatives

must be equal at the (n− 1) interior knots.

The above conditions are summed to (2n− 2)+
(2)+ (n− 1)+ (n− 1) = 4n− 2, thus short of 2

more conditions to solve the 4n unknown constants.

Two end point constraint are assumed as follows:

Natural spline for which the end point constraints

are assumed as “second derivatives at the end knots

are zero” i.e., S   (x0) = S   (xn) = 0. Natural splines

are more frequently used in which the end cubic (in

the first and last intervals) approach linearity (straight

line) at their extremities. This matches precisely with

the drafting spline.
The cubic spline for each interval (xi−1, xi) is

given by

Si (x) = f   (xi−1)

6(xi − xi−1)
(xi − x)3

+ f   (xi )
6(xi − xi−1)

(x − xi−1)3

+
 
f (xi−1)

(xi − xi−1)
− f

  (xi−1)(xi − xi−1)

6

 
(xi − x)+

+
 

f (xi )

(xi − xi−1)
− f

  (xi ) · (xi − xi−1)

6

 
(x − xi−1).

(4)

Equation (4) contains only two unknowns
f   (xi−1) and f   (xi), the second derivatives at the
end points of the interval (xi−1, xi), which are deter-
mined from the following equation.

(xi − xi−1)f   (xi−1)+ 2(xi+1 − xi−1)f   (xi )

+(xi+1 − xi )f   (xi+1)

= 6

(xi+1 − xi )
[f (xi+1)− f (xi )]

+ 6

(xi − xi−1)
[f (xi−1)− f (xi )]

(5)

Equation (5) written for the (n− 1) interior points

results in (n− 1) simultaneous equations for the sec-

ond derivatives. Note that these (n− 1) equations

form a tridiagonal system which can be solved in

an extremely efficient manner using computer algo-

rithms.

WORKED OUT EXAMPLES

Example 1: Fit a linear spline to the following data:

x: 1 3 6 8

y = f (x): 4 5.5 7 9.5

Estimate the value at x = 2, 4, 7.

Solution: There are n = 4 points and 3 intervals.

Assume that
x0 = 1, x1 = 3, x2 = 6, x3 = 8,

f (x0) = 4, f (x1) = 5.5, f (x2) = 7, f (x3) = 9.5

The three first order linear splines in the 3 intervals

are:

f (x) = f (x0)+m0(x − x0), x0 ≤ x ≤ x1

f (x) = f (x1)+m1(x − x1), x1 ≤ x ≤ x2

f (x) = f (x2)+m2(x − x2), x2 ≤ x ≤ x3

Here mi = f (xi+1)−f (xi )

xi+1−xi is the slope of straight line

connecting the two points. For the given data

m0 =
f (x1)− f (x0)

x1 − x0

= 5.5− 4

3− 1
= 1.5

2
= 0.75

m1 =
f (x2)− f (x1)

x2 − x1

= 7− 5.5

6− 3
= 1.5

3
= 0.5

m2 =
f (x3)− f (x2)

x3 − x2

= 9.5− 7

8− 6
= 2.5

2
= 1.25

Thus the three linear splines are

f (x) = 4+ 0.75(x − 1), when 1 ≤ x ≤ 3

f (x) = 5.5+ 0.5(x − 3), when 3 ≤ x ≤ 6

f (x) = 7+ 1.25(x − 6), when 6 ≤ x ≤ 8

Since x = 2 lies in the first interval 1 ≤ x ≤ 3, we
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get f (2) from the first equation.

f (2) = 4+ 0.75(2− 1) = 4.75

Similarly f (7) = 7+ 1.25(7− 6) = 8.25.

Since x = 4 lies in the second interval 3 ≤ x ≤ 6,

we get f (4) from the second equation:

f (4) = 5.5+ 0.5(4− 3) = 6

Example 2: Fit quadratic splines to the following

data. Use the results to estimate the value at x =
2, 4, 7.

x: 1 3 6 8

f (x): 4 5.5 7 9.5

Solution: For the 4 data points in 3 intervals we fix

three quadratic splines of the form

Si(x) = aix2 + bix + ci
we have to determine 3× 3 = 9 unknown a1, b1, c1,

a2, b2, c2, a3, b3, c3. We need 3 · 3 = 9 equations or

conditions to determine these 9 unknowns. There are

two interior points x1 and x2.

1. Function values must be equal at the two interior
points, giving rise to 4 equations.

ai−1x
2
i−1 + bi−1xi + ci−1 = f (xi−1)

aix
2
i−1 + bixi−1 + ci = f (xi−1)

for i = 2 to 3 .

For i = 2, a1x
2
1 + b1x1 + c1 = f (x1)

a2x
2
1 + b2x1 + c2 = f (x1)

i.e., 9a1 + 3b1 + c1 = 5.5 (1)

9a2 + 3b2 + c2 = 5.5 (2)

For i = 3, a2x
2
2 + b2x2 + c2 = f (x2)

a3x
2
2 + b3x2 + c3 = f (x2)

i.e., 36a2 + 6b2 + c2 = 7 (3)

36a3 + 6b3 + c3 = 7 (4)

2. The first and last functions must pass through the
end points x0 and x0 giving rise to 2 equations.

a1x
2
0 + b1x0 + c1 = f (x0)

anx
2
n + bnxn + cn = f (xn)

i.e.,
a1 + b1 + c1 = 4 (5)

64a3 + 8b3 + c3 = 9.5 (6)

3. The first derivatives at the interior knots must be
equal.

f  (x)= 2ax + b
2ai−1xi + bi−1 = 2aixi + bi

for i = 2, 3

2a1x2 + b1 = 2a2x2 + b2

2a2x3 + b2 = 2a3x3 + b3

i.e., 6a1 + b1 = 6a2 + b2 (7)

12a2 + b2 = 12a3 + b3 (8)

4. Assume that the second derivative is zero at the

first point i.e.,

a1 = 0 (9)

Using (9) a1 = 0 in (1) and (5) we get

3b1 + c1 = 5.5

b1 + c1 = 4

solving b1 = 0.75, c1 = 3.25

From (2) and (3) we get

9a2 + 3b2 + c2 = 5.5

36a2 + 6b2 + c2 = 7

27a2 + 3b2 = 1.5

Form (7) 6a2 + b2 = 0+ b1 = 0.75

Solving a2 = −0.75
9

, b2 = 1, c2 = 4

From (4) and (6)

36a3 + 6b3 + c3 = 7

64a3 + 8b3 + c3 = 9.5

Subtracting 28a3 + 2b3 = 2.5

From (8): 12a3 + b3 = 12a2 + b2 = 0

Solving a3 = 2.5
4

, b3 = −7.5, c3 = 29.5

Thus the values of the 9 coefficients are

a1 = 0, b1 = 0.75, c1 = 3.25,

a2 = −0.75
9

, b2 = 1, c2 = 4,

a3 = 2.5
4

, b3 = −7.5, c3 = 29.5,

Then the three required quadratic splines are

S1(x) = 0+ 0.75x + 3.25, in 1 ≤ x ≤ 3

S2(x) = −0.75
9
x2 + x + 4, in 3 ≤ x ≤ 6
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S3(x) = 2.5
4
x2 − 7.5x + 29.5, in 6 ≤ x ≤ 8

At x = 2, S1(2) = 4.75

At x = 4, S2(4) = 6.6666

At x = 7, S3(7) = 7.625

Example 3: Fit cubic splines to the following data

and estimate the value at x = 2, 4, 7 and y  (4).

x: 1 3 6 8

y = f (x): 4 5.5 7 9.5

Solution: Assume a cubic spline a third order poly-

nomial

Si(x) = aix3 + bix2 + cix + di
For the 4 data points and 3 intervals, we have to

determine 4× 3 = 12 unknown constants a1, b1, c1,

d1, a2, b2, c2, d2; a3, b3, c3, d3.

1. The second derivatives at the end knots are zero;

i.e., f   (1) = f   (8) = 0.

2. The second derivatives at the end of each interval
(at the two interior points) are given by

(xi − xi−1)f   (xi−1)+ 2(xi+1 − xi−1)f   (xi )

+(xi+1 − xi )f   (xi+1)

= 6

(xi+1 − xi )
[f (xi+1)− f (xi )]+

+ 6

(xi − xi−1)
[f (xi−1)− f (xi )] (1)

For i = 1, from (i) we have

(xi − x0)f   (x0)+ 2(x2 − x0)f   (x1)+ (x2 − x1)f   (x2)

= 6

(x2 − x0)
[f (x2)− f (x1)]+ 6

(x1 − x0)
[f (x0)− f (x1)]

with x0 = 1, x1 = 3, x2 = 6, f0 = 4, f1 = 5.5, f2 =
7, we have

(3− 1)f   (1)+ 2(6− 1)f   (3)+ (6− 3)f   (6)

= 6

(6− 1)
[7− 5.5]+ 6

(3− 1)
[4− 5.5].

For natural spline, f   (1) = 0. So above equation

reduces to

10f   (3)+ 3f   (6) = −2.7 (2)

Similarly for i = 2, from (1) we have

(x2−x1)f   (x1)+2(x3−x1)f   (x2)+(x3−x2) f   (x3)

= 6

(x3 − x2)
[f (x3)− f (x2)]+

+ 6

(x2 − x1)
[f (x1)− f (x2)]

with x1 = 3, x2 = 6, x3 = 8, f1 = 5.5, f2 = 7, f3 =
9.5, we get (6− 3)f   (3)+ 2(8− 3)f   (6)+ (8−
6)f   (8)

= 6

(8− 6)
[9.5− 7]+ 6

(6− 3)
[5.5− 7].

For natural spline f   (8) = 0. So above equation

reduces to

3f   (3)+ 10f   (6) = 4.5 (3)

solving (2) and (3) we get

f   (3) = −0.4451, f   (6) = 0.58352

The equation of the cubic spline is

Si =
f   (xi−1)

6(xi−xi−1)
(xi−x)3+ f   (xi)

6(xi−xi−1)
(x−xi−1)3

+
 
f (xi−1

)

(xi−xi−1)
− f

  (xi−1)(xi−xi−1)

6

 
(xi − x)

+
 

f (xi)

(xi−xi−1)
− f

  (xi)(xi−xi−1)

6

 
(x − xi−1)

(4)
For i = 1,

S1(x)= f   (x0)

6(x1 − x0)
(x1 − x)3 + f   (x1)

6(x1 − x0)
(x − x0)3

+
 
f (x0)

x1 − x0
− f

  (x0)(x1 − x0)

6

 
(x1 − x)

+
 
f (x1)

x1 − x0
− f

  (x1)(x1 − x0)

6

 
(x − x0)

with x0 = 1, x1 = 3, x2 = 6, f0 = 4, f1 = 5.5, f2 =
7, f   (1) = 0, f   (3) = −0.4451, f   (6) = 0.58352
the above equation reduces to

S1(x)= 0+ (−0.4451)

6(3− 1)
(x − 1)3+
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+
 

4

(3− 1)
− 0

 
(3− x)

+
 

5.5

(3− 1)
− (−0.4451)

(3− 1)

6

 
(x − 1) (5)

Thus the cubic spline in the first interval [1, 3] is

S1(x) = −0.0371(x − 1)3 + 2(3− x)+ 2.898(x − 1)

For i = 2, form (4) we get

S2(x)= f   (x1)

6(x2 − x1)
(x2 − x)3 + f   (x2)

6(x2 − x1)
(x − x1)3

+
 
f (x1)

(x2 − x1)
− f

  (x1)(x2 − x1)

6

 
(x2 − x)

+
 
f (x2)

x2 − x1
− f

  (x2)(x2 − x1)

6

 
(x − x1)

with the substitution of data, we get

S2(x)= −0.4451

6(6− 3)
(6− x)3 + 0.58352

6(6− 3)
(x − 3)3

+
 

5.5

(6− 3)
− (−0.4451)(6− 3)

6

 
(6− x)

+
 

7

6− 3
− (0.58352)(6− 3)

6

 
(x − 3) (6)

Thus the second cubic spline in the second interval
[3, 6] is

S2(x)=−0.02473(6− x)3 + 0.03242(x − 3)3

+(2.05588)(6− x)+ (2.04154)(x − 3)

Similarly for i = 3, from (4) we get

S3(x)= f   (x2)

6(x3 − x2)
(x3 − x)3 + f   (x3)

6(x3 − x2)

+
 
f (x2)

x3 − x2
− f

  (x2)

6
(x3 − x2)

 
(x3 − x)

+
 
f (x3)

x3 − x2
− f

  (x3)(x3 − x2)

6

 
(x − x2)

with the given data

f3(x)= 0.58352

6(8− 6)
(8− x)3 + 0

+
 

7

8− 6
− 0.58352

6
(8− 6)

 
(8− x)

+
 

8

8− 6
− 0

 
(x − 6)

Thus the third cubic spline in the 3rd interval [6, 8]
is

S3(x)= 0.04863(8− x)3 + 3.3055(8− x)

+4(x − 6) (7)

Now using (5), (6), (7), we get

f1(2) = 4.8609

f2(4) = 5.98788

f3(7) = 7.35413

Since 4 is in the interval [3, 6] differentiate f2(x) to
find f  (4). So

f  1(x)=+0.07419(6− x)2 + 0.09726(x − 3)2

−2.05588+ 2.04154

Thus f  (4) = 0.37968

EXERCISE

1. Obtain the natural cubic spline approximation for

the following data

x: 0 1 2 3

f (x): 1 2 33 244

Ans. f1(x) = −4x3 + 5x + 1 in [0, 1]

f2(x) = 50x3 − 162x2 + 167x − 53 in [1, 2]

f3(x) = −46x3 + 414x2 − 985x + 715 in [2, 3]

2. Fit a natural cubic spline to the following data

x: 1 2 3 4

y: 1 5 11 8

Hence compute y(1.5), y  (2)

Ans. y(1.5) = 103/40, y  (2.0) = 94/15

f1(x) = 1
15

[17x3 − 51x2 + 94x − 45] in

1 ≤ x ≤ 2

f2(x) = 1
15

[−55x3 + 381x2 − 770x + 531] in

2 ≤ x ≤ 3

f3(x) = 1
15

[38x3 − 456x2 + 1741x − 1980] in

3 ≤ x ≤ 4

3. Fit a natural cubic spline and evaluate the spline

at 0.66, 1.75.
x: 0.0 1.0 1.5 2.25

f (x): 2.000 4.4366 6.7134 13.9130
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Ans. f1(x) = 0.3820(x − 0)3 + 0(x − 0)2

+2.0546(x − 0)+ 2.000 in [0, 1.0]

f2(x) = 3.1199(x − 1)3 + 1.146(x − 1)2

+3.2005(x − 1)+ 4.4366 in [1, 1.5]

f3(x) = −2.5893(x − 1.5)3 + 5.8259(x − 1.5)2

+6.6866(x − 1.5)+ 6.7134 in [1.5, 2.25]

f1(0.66) = 3.4659 Exact: 3.4340

f3(1.75) = 8.7087 Exact: 8.4467

Exact f (x) = 2ex − x2

4. Fit a natural cubic spline to the following data

x: 0 1 2 3

y: 0 0.5 2 1.5

Ans. S1(x) = 0.4x3 + 0.1x in 0 ≤ x ≤ 1

S2(x) = −(x − 1)3 + 1.2(x − 1)2+

+1.3(x − 1)+ 0.5 in 1 ≤ x ≤ 2

S3(x) = 0.6(x − 2)3 − 1.8(x − 2)2+

+0.7(x − 2)+ 2.0 in 2 ≤ x ≤ 3.

5. Fit a cubic natural spline

x: 0 1 2

y: 4 1 2

Ans. s1(x) = 4− 4x + x3 in [0, 1]

s2(x) = 1− (x − 1)+ 3(x − 1)2 − (x − 1)3 in

[1, 2]

6. Fit (a) linear spline (b) quadratic spline (c) cubic

natural spline to the following data.

x: 3.0 4.5 7.0 9.0

y = f (x): 2.5 1.0 2.5 0.5

Evaluate the function at x = 5.

Ans. (a) Linear splines

f1(x) = 2.5− (x − 3) in [3, 4.5]

f2(x) = 1.0+ 0.6(x − 4.5) in [4.5, 7]

f3(x) = 2.5− 1(x − 7) in [7, 9]

f2(5) = 1.3

(b) Quadratic splines

f1(x) = −x + 5.5 in [3, 4.5]

f2(x) = 0.64x2 − 6.76x + 18.46 in [4.5, 7.0]

f3(x) = −1.6x2 + 24.6x − 91.3 in [7.0, 9.0]

f2(5) = 0.66

(c) Cubic natural splines

In [3, 4.5]

f1(x) = 0.193939(x − 3)3 + 1.66667(4.5− x)

+0.23030(x − 3)

f2(x) = 0.1163647(7− x)3 − 0.116364(x −
4.5)3 −0.327273(7− x)+ 1.727273(x − 4.5)

in [4.5, 7]

f3(x) = −0.145455(9− x)3 + 1.831818(9− x)

+0.25(x − 7) in [7, 9]

f2(5) = 1.1255

7. Fit natural cubic splines for the following data.

x: −10 0 10 20 30

y: .99815 .99987 .99973 .99823 .99567

Ans. In −10 ≤ x ≤ 0.

f1(x) = −0.00000042(x + 10)3 +
0.000214(x + 10) +.99815

In 0 ≤ x ≤ 10

f2(x) = 0.00000024x3 − 0.0000126x2 +
.000088x +.99987

In 10 ≤ x ≤ 20

f3(x) = −0.00000004(x − 10)3 −
0.000054(x − 10)2 −0.000092(x − 10)+ .9973

In 20 ≤ x ≤ 30

f4(x) = .00000022(x − 20)3 − 0.0000066(x −
20)2 −0.000212(x − 20)+ .99823

32.16 NUMERICAL METHODS IN LINEAR

ALGEBRA: GAUSS-SEIDEL

METHOD

Solutions to system of non-homogeneous linear

equations in n unknowns can be obtained by direct

(or reduction or elimination) methods such as

Cramer’s rule, matrix inversion method, Gaus-

sian elimination, Gauss-Jordan method, Cholosky’s

(Crout’s) method. The solutions can also be obtained

by indirect (or iterative methods) which include

the Gauss-Seidel method, (South Well’s) relaxation

method, Sweep method.

Diagonal:

A system of simultaneous linear equations is called

a diagonal system if in each equation the coefficient

of a different unknown is greater in absolute value

than the sum of the absolute values of the other coef-

ficients.

Usually, the large coefficient appears in the main

diagonal position aii . Gauss-Seidel method is an iter-

ative method which gives approximate solution by

successive approximations. This method will always

converge rapidly if the system is diagonal.
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Gauss-Seidel method

Step I: Solve each of the n equations of the system

for the unknown with the largest coefficient. Suppose

a11 is the largest coefficient of x1 in the first equation,

then divide Equation (1) throughout by a11, result-

ing in a new equation with x1 expressed in terms

of the remaining variables x2, x3, . . . , xn. Similarly,

dividing the second equation by a22, 3rd equation by

a33 . . . and nth equation by ann, Then

x1 = a∗12x2 + a∗13x3 + · · · + a∗1nxn + k1
x2 = a∗21x1 + a∗23x3 + · · · + a∗2nxn + k2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xn = a∗n1x1 + a∗n2x2 + · · · + a∗n,n−1xn−1 + kn




(1)

Step II Assume an initial solutions (guess)

(x
(0)
1 , x

(0)
2 , x

(0)
3 , . . . , x

(0)
n ). Here 0 indicates the start-

ing solution. It may be taken as (0, 0, 0, . . . , 0).

Step III Substitute x
(0)
i in the right hand side

members of (1) which results in the new values

x
(1)
i , which is first approximation. Now substitute

x
(1)
i in the R.H.S. of (1) which yields the sec-

ond approximation x
(2)
i . Repeating this procedure,

we arrive at (x
(m)
1 , x

(m)
2 , . . . , x(m)

n ) at the mth itera-

tion. Step III is repeated until required accuracy is

obtained.

Note 1: Always use the last calculated (i.e., latest)
values for the other unknown, say

x
(k+1)
2 = a∗21x

(k+1)
1 + a∗23x

(k)
3 + · · · + a∗2nx(k)

n + k1

Note 2: Choice of initial value will not affect the

solution (we get same solution) but will affect the

number of iterations for convergence.

WORKED OUT EXAMPLES

Example: Using Gauss-Seidel method, solve the
following system of equations starting with initial

solution as (a) (0, 0, 0) (b)
 

9
5
, 4

5
, 6

5

 
.


5−1 0

−1 5−1

0−1 5






x1

x2

x3


 =




9

4

−6




Solution: (a) System is

5x1 − x2 = 9

−x1 + 5x2 − x3 = 4

−x2 + 5x3 =−6

Step I: Rewriting the system

x1 =
9

5
+ 1

5
x2

x2 =
4

5
+ 1

5
x1 +

1

3
x3

x3 =−
6

5
+ 1

5
x2




(∗)

Step II: Assume initial solution as

(x1 = 0, x2 = 0, x3 = 0)

Step III: Using the initial solution in R.H.S. of (∗)

x
(1)
1 = 9

5
+ 1

5
· 0 = 9

5
= 2.032

x
(1)
2 = 4

5
+ 1

5
· 9

5
= 29

25
= 1.0128

x
(1)
3 = −6

5
+ 1

5
· 29

25
= −121

125
= −0.99744

Note that in the calculation of x
(1)
2 , the latest (avail-

able) value x
(1)
1 = 9

5
is used (but not x

(0)
1 = 0).

Similarly, in the calculation of x
(1)
3 the latest value

x
(1)
2 = 29

25
is used (but not x

(0)
2 = 0). Thus the first

approximation is
 

9
5
, 29

25
, −121

125

 
.

Second iteration:

x
(2)
1 = 9

5
+ 1

5

 
29

25

 
= 254

125
= 2.032

x
(2)
2 = 4

5
+ 1

5

 
254

125

 
− 1

5

 
121

125

 
= 633

625
= 1.0128

x
(2)
3 = −6

5
+ 1

5
· 633

625
= −3117

3125
= −0.99744

Third iteration:


x
(3)
1 = 9

5
+ 1

5
(1.0128) = 2.00256

x
(3)
2 = 4

5
+ 1

5
(2.00256)− 1

3
(−0.99744) = 0.868032

x
(3)
3 = −6

5
+ 1

5
(.868032) = −1.0263936.
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Similarly, we get at the 4th iteration x
(4)
1 = 2.002048,

x
(4)
2 = 1.0000829, x

(4)
3 = −0.99998

At 5th iteration: x
(5)
1 = 2.0000165, x

(5)
2 =

1.0000073, x
(5)
3 = −0.99999

(b) Initial approximation: x
(0)
1 = 9

5
, x

(0)
2 = 4

5
, x

(0)
3 =

−6
5

1st iteration : 1.96, 0.952,−1.0096

2st iteration : 1.9904, 0.99616,−1.000768

3st iteration : 1.999232, 0.99969,−1.000064

4st iteration : 1.999938, 0.99997, 1.0000049

5st iteration : 1.999994, 0.99999,−1.0000004

Note 1: Exact solution is 2, 1,−1

EXERCISE

Solve the following system of equations by Gauss-

Seidel method:

1. 10x1 + 8x2 + 6x3 = 16.4, 10x2 + 8x3 +
4x4 = −3.8, 2x1 + 10x3 + 2x4 = 36.9,

x1 + 6x3 + 10x4 = 30.9

Ans. x1 = 2.4, x2 = −3.2, x3 = 3, x4 = 1.05. At

6th iteration: x1 = 2.3721, x2 = −3.19096,

x3 = 3.00525, x4 = 1.049632

2. 8x1 + x2 − x3 = 8, 2x1 + x2 + 9x3 = 12,

x1 − 7x2 + 2x3 = −4.

Ans. x1 = 1, x2 = 1, x3 = 1

3. Start with (2, 2,−1) and solve 5x1 − x2 + x3

= 10, 2x1 + 4x2 = 12, x1 + x2 + 5x3 = −1.

Ans. x1 = 2.5555, x2 = 1.7222, x3 = −1.0555

4. 10x1 + x2 + x3 = 12, 2x1 + 10x2 + x3 =
13, 2x1 + 2x2 + 10x3 = 14.

Ans. x1 = 1, x2 = 1, x3 = 1

5. 10x1 − 2x2 − x3 − x4 = 3, −2x1 + 10x2 −
x3 − x4 = 15, −x1 − x2 + 10x3 − 2x4 = 27,

−x1 − x2 − 2x3 + 10x4 = −9.

Ans. x1 = 1, x2 = 2, x3 = 3, x4 = 0

6. 4x1 + 2x2 + x3 = 11, −x1 + 2x2 = 3, 2x1 +
x2 + 4x3 = 16.

Ans. x1 = 1, x2 = 2, x3 = 3

7. 20x1 + x2 − 2x3 = 17, 3x1 + 20x2 − x3 =
−18, 2x1 − 3x2 + 20x3 = 25.

Ans. x1 = 1, x2 = −1, x3 = 1.

8. 3x1 − 0.1x2 − 0.2x3 = 7.85, 0.1x1 + 7x2 −
0.3x3 =−19.3, 0.3x1 − 0.2x2 + 10x3 = 71.4.

Ans. x1 = 3, x2 = −2.5, x3 = 7

9. 27x1 + 6x2 − x3 = 85, 6x1 + 15x2 + 2x3 =
72, x1 + x2 + 54x3 = 110.

Ans. x1 = 2.4255, x2 = 3.5730, x3 = 1.9260

10. x1 − 8x2 + 3x3 = −4, 2x1 + x2 + 9x3 = 12,

8x1 + 2x2 − 2x3 = 8.

Ans. x1 = 1, x2 = 1, x3 = 1.

32.17 LARGEST EIGEN VALUE AND THE

CORRESPONDING EIGEN VECTOR:

BY POWER METHOD

Bounds for eigen values λ of an arbitrary n rowed
square matrix A = (ajk) are given by circular disks
from Gershgorin theorem

|akk−λ|≤|ak1|+|ak2|+ · · · +|ak,k−1|+|ak,k+1|+ · · · +|akn|

for some k where 1 ≤ k ≤ n. Thus all the eigen val-

ues lie within these n circular disks (some may be

identical) with centres at the diagonal elements akk
and radii equal to the sum of the absolute values of

the elements of the kth row baring akk (except akk).

Ex:A =
 

5 1

1 5

 
, eigen values 4, 6. Gershgorin cir-

cular disks : 2 : centres 5, 5, radii 1, 1.

Fig. 32.18

However, to find the approximate values of all the

eigen values and eigen vactors, iteration mathod or

power mathod is used. Power method is particularly

used when only the largest and/or the smallest eigen
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values of a matrix are desired. The advantage of this

method is that the eigen vector associated with the

largest eigen value is also obtained simultaneously.

Also the intermediate (remaining) eigen values can

also be found, after “sweeping” the already found

largest and/or smallest eigen values.

Power Method

Let λ1, λ2, . . . , λn be the eigen values and
V1, V2, . . . Vn be the corresponding eigen vactors of
a n-rowed square matrix A. Assume that λ1 is the
absolutely largest eigen value of A i.e.,

|λ1| > |λ2| ≥ |λ3| ≥ . . . ,≥ |λn|.
Consider V = α1V1 + α2V2 + · · · + αnVn where
α1, α2, · · ·αn are scalars. Then

AV = α1AV1 + α2AV2 + · · · + αnAVn
= α1λ1V1 + α2λ2V2 + · · · + αnλnVn

Pre multiplying by A

A2V = α1λ
2
1V + α2λ

2
2V2 + · · · + αnλ2

nVn.

Thus for any positive integer p

ApV = α1λ
p

1V1 + α2λ
p

2V2 + · · · + αnλpnVn

ApV = λp1
 
α1V1 + α2

 
λ2

λ1

 p
V2 + · · · + αn

 
λn

λ1

 p
Vn

 

provided α1  = 0. All terms in R.H.S. except the first

term have limit zero since λ1 is the dominant value

and p is large.
Now

AP+1V

ApV
= λ

p+1
1 · α1V1

λ
p

1α1V1

= λ1

Also the required eigen vector corresponding to
this largest eigen value is

λ
−p
1 ApV = α1V1.

Power method procedure

Step I: Choose an arbitrary real vector x0  = 0.
Generally, X0 is chosen as

X0 =




1

1

1

1




or any other value like X0 = [10000]T etc.

Step II: Compute X1 = AX0, X2 = AX1, X3 =
AX2, . . . , Xs = AXs−1. Put X = Xs−1, Y = Xs
Step III: Compute m0 = xT x,m1 = xT y,m2 =
YT Y

Step IV: Largest eigen value = λ1 = m1
m0

,

8, the error in λ1 : |8| ≤
 
m2
m0
− λ2

1,

Eigen vector corresponding to λ1 is Y = Xs .
[This eigen vector can be normalized either by

dividing the eigen vector by the magnitude of its

first component or by its largest component or by

normalizing to a unit length.]

Determination of Smallest Eigen Value

AX = λX
A−1AX = A−1λX

1

λ
X = A−1X

Thus if λ is eigen value of A, then the reciprocal 1
λ

is the eigen value of A−1. Then the reciprocal of the

largest eigen value of A−1 will be the smallest eigen

value of A.

Procedure:

Step I: Determine A−1

Step II: Calculate λ∗ dominant eigen value ofA−1

Step III: 1
λ∗ is the smallest eigen value of A.

Determination of Intermediate (remaining)

Eigen Values

Ax = λx
(A− λ1I )x = (λ− λ1)x

Then (λ− λ1) is an eigen value of (A− λ1I ). Thus

‘sweeping’ the dominant eigen value, (A− λ1I ) will

have remaining eigen values dominant, say λ2 which

can be found by power method.
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WORKED OUT EXAMPLES

Example 1: Find the largest eigen value and the
corresponding eigen vector of the matrix

A =

−2 0 −1

1 −1 1

2 2 0




Find the error in the value of the largest eigen

value.

Solution: Choose the initial vector X0 =

1

1

1


,

Then X1 = AX0 =

−2 0 −1

1 −1 1

2 2 0





1

1

1


 =


−3

1

4


 .

Now X2 = AX1 =

−2 0 −1

1 −1 1

2 2 0





−3

1

4


 =


 2

0

−4


 .

Then X3 = Ax2 =

−2 0 −1

1 −1 1

2 2 0





 2

0

−4


 =


 0

−2

4


 .

continuing these iterations, we get

X4 = AX3 =

−4

6

−4


 , X5 = AX4 =


 12

−14

4


 ,

X6 = AX5 =

−28

30

−4


 , X7 = AX6 =


 60

−62

4


 ,

X8 = AX7 =

−124

126

−4


 and X9 = AX8 =


 252

−254

4


 .

Put X = X8 and Y = X9. Then

m0 =XT X = [−124 126 − 4]


−124

126

−4


 = 31268

m1 =XT y = [−124 126 − 4]


 252

−254

4


 = −63268

m2 = YT Y = [252 − 254 4]


 252

−254

4


 = 128036.

The largest eigen value = λ1 = m1
m0
= −63268

31268

λ1 = −2.0234105

(at the 9th iteration).
The corresponding eigen vector is

X9 =

 252

−254

4


 or X9 =


1

−1.007936

0.0015




The error in the largest eigen value is 8

|8| ≤
(
m2

m0
− λ2

1 =
(

128036

31268
− (2.023415)2

=
√

4.094793− 4.094208 =
√

0.00058473

= 0.02418.

Note that the exact three eigen values of A are

−2,−1, 0.

Example 2: Find the absolutely smallest eigen
value of the matrix

A =

 2 −1 0

−1 2 −1

0 −1 2




Solution: We know that if λ is an eigen value of A

then the reciprocal 1
λ

is the eigen value ofA−1. Thus

the largest eigen value of A−1 is the smallest eigen

value of A.

Choose X0 =

1

1

1


 and apply power method, for

A−1. Now

B = A−1 = 1

4


3 2 1

2 4 2

1 2 3




X1 = BX0 =
1

4


3 2 1

2 4 2

1 2 3





1

1

1


=1

4


6

8

6


=1

2


3

4

3


 .

X2 = B2X0 =
1

4


3 2 1

2 4 2

1 2 3


 1

2


3

4

3


=1

8


20

28

20


=1

2


5

7

5




X3 = BX2 = B3X0 =
1

4


3 2 1

2 4 2

1 2 3


 1

2


5

7

5
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= 1

8


34

48

34


 = 1

4


17

24

17




X4 = B4X0 =
1

4


3 2 1

2 4 2

1 2 3


 1

4


17

24

17




= 1

16


116

260

116


 = 1

16


116

164

116




X4 =
1

4


29

41

29


 ,

X5 = bX4 =
1

4


3 2 1

2 4 2

1 2 3


 1

4


29

41

29


 = B5X0

X5 =
1

16


198

280

198


 .

X6 = BX5 = B6X0 =
1

64


1352

1912

1352


 = 1

8


169

239

169




Put X = X5, Y = X6,m0 = XTX = 1
64
· (39202)

m1 = xT y = 1
64

(66922).

Then the largest eigen value of B is
m1
m0
= 1.70710

The reciprocal 1
1.70710

= 0.58578 is the smallest

eigen value of A.

Example 3: Find the bounds for eigen values ofA.

where A =

1 0 −1

1 2 1

2 2 3


 .

Solution: The bounds for eigen values are given by

three Gershgorin circular disks c1, c2, c3
c1: centre 1 and radius |0| + | − 1| = 1,

c2: centre 2 and radius 1+ 1 = 2

c3: centre 3 and radius 2+ 2 = 4

The actual eigen values 1, 2, 3 of A lies within these

three circular disks c1, c2 and c3.

EXERCISE

Find the largest eigen value of the matrix A and

the error in the largest eigen value |8| ≤
 
m2
m0
− λ2

1.

Fig. 32.19

(Ex. 1 to 5)

1. A =

2 2 1

1 3 1

1 2 2




Hint:X0=

1

1

1


 , X1=AX0=


5

5

5


=5


1

1

1


,

X2=25


1

1

1


X3=125


1

1

1


 , X4=625


1

1

1


,

X5 = 3125X0,X6 = 15625X0X7 = 78125X0.

Put m0 = X6, m1 = X7, λ1 = m1
m0

=
(12625)(78125)(3)

(126252)(3)
= 5,

m2
m0
= 25, |8| = 0

Ans. 5 (Actual eigen values are 1, 1, 5)

2.


−3 2 1

1 −2 1

1 2 −3




Hint: X0=

1

1

1


 , X1=


−3

1

1


 , X2=


 12

−4

−4


,

X3 =

−48

16

16


 , X4 =


 192

−64

−64


, m2 = 45056,

m1 =−11264,m0 = 2816,
m2
m0
= 16,

m1
m0
= λ1

= −4, |8| = 0

Ans. −4

3. A =

1 0 −1

1 2 1

2 2 3
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Hint: X1=


 0

4

7


 , X2=


−7

15

29


 , X3=


−36

52

103


,

X4=


−139

171

341


 , X5=


−480

544

1087


 , X6=


−1567

1695

3389


.

m2 = 16813835, m1 = 5358083, m0 =
1707905, q = m1

m0
. Exact eigen values are

1, 1, 3.

Ans. 3.131722.

4. A =




2 0 1 0

0 0 3 1

1 3 4 −2

0 1 −2 0




Hint: X1 = [3 4 6 − 1]T ,X2 = [12 17 41 −
8]T ,X3 = [65 115 243 − 65],m2 =
80724,m1 = 13218,m0 = 2178, |8| =
0.48184.

Ans. 6.0688705

5. A =

 9 10 8

10 5 −1

8 −1 3




Hint:

X1 = [27 14 10]T ,X2 = [463 330 232]T ,

X3 = [9323 6048 4070]T ,

X4 = [176947 119400 80746]T

X5 = [3432491 2285724 1538414]T

X6 = [66056971 44215116 29789446]

X7 = [1.2749× 109, 8.5185× 108, 5.7360× 108]

m0 = 7.2059× 1015, m1 = 1.3896× 1017.

Ans. 19.284197

6. Determine the largest eigen value and the cor-
responding eigen vector of the matrix

A =

 2 −1 0

−1 2 −1

0 −1 2




Hint: x0 = [1 0 0]T ,X1 = [1,−0.5 0]T ,X2 =
2.8[1 − 1 .43]T X3 = 3.43[.87 − 1 0.54]T ,

X4 = 3.41[.8 − 1 .61]T , X5 = 3.41[.76 −
1 .65]T , X6 = 3.41[.74 − 1 .67]

Ans. 3.41, [0.74,−1, 0.67]T

7. Find the largest eigen value and the corre-
sponding eigen vector of the matrix A where

A =

4 1 0

1 2 1

0 1 1




Hint: [1 1 1], [5 4 2], [24 15 6],

[111 60 21], [504 252 81], [2268 1089 333],

[10161 4779 1492], [45433, 21141, 6201],

[202833, 93906, 27342], [905238, 417987,

121248], [4038939, 1862460, 539235].

Ans. 4.46, [0.9 0.42 .12]T

8. A =

1 2 0

2 1 0

0 0 −1




Ans. 3.0, [1 1 0]

9. A =
 

1 2

3 2

 

Hint: Exact value: 4,
 

2
3

1
 T

Ans. 3.987, [.668 1]T

10. A =

1 6 1

1 2 0

0 0 3




Hint: X0 = [1 0 0], X1 = [1 1 0], X2 =
3[2.3 1 0], X3 = 4[2.1 1.1 0], X4 =
4[2.2 1.1 0], X5 = 4.4[2 1 0], X6 = 4[2 1 0],

X7 = 4[2 1 0].

Ans. 4, [2 1 0]T

11. Determine the bounds for the eigen values of

the matrix A where

(a) A =
 

0 1

0 0

 
Ans. λ = 0; Circles c1, c2; centres 0, 0 and radii

1, 0 respectively.

(b) A =
 

3 4

4 −3
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Ans. λ = ±5; centres: 3,−3; radii 4, 4 respec-

tively

(c) A =




6 0 −3

0 6 3

−3 3 2




Ans. λ = 6, 4±
√

22 = 6, 8.6904,−0.6904

circular disks with centres at 6, 6, 2 and

radii | − 3|, 3, | − 3| + 3 respectively.

(d) A =




26 −2 2

2 21 4

4 2 28




Ans. λ = 30, 25, 20; circles: centers 26, 21, 28

radii: | − 2| + 2, 2+ 4, 4+ 2.



Chapter33

Numerical Solutions of ODE and

PDE

INTRODUCTION

Analytical solutions canbeobtainedonly for selected

class of ODE&PDE, using series solutions, Laplace

transform, Fourier transform, separation of variables

technique etc. For certain problems, analytical solu-

tions can not be obtained. However numerical solu-

tions can be obtained to the desired degree of accu-

racy using computers, in all the above cases. The

advantage is that numerical solutions can be obtained

for problems involving irregularly shaped bound-

aries and is easy to program on computer. The only

serious disadvantage with these numerical solutions

is that they lack the generality of the analytical solu-

tions. When the initial conditions are changed, the

numerical solution must be calculated again. Tay-

lor’s series, Picard’s, Modified Euler’s, Runge-Kutta

4th order, Milne’s predictor-corrector and Adame-

Bashforth-Milne’s methods for solution of first order

ODE are considered in this chapter. Numerical solu-

tions of PDE: one dimensional heat equation, wave

equation and two-dimensional Laplace’s equation

are studied.

33.1 NUMERICAL SOLUTIONS OF

FIRST ORDER ORDINARY DIFFEREN-

TIAL EQUATIONS

Differential equation is the most important mathe-

matical model for physical phenomena such as the

motion of objects, fluids, heat flow, bending and

cracking ofmaterials, vibrations, chemical reactions.

Since an nth order D.E. can in general, be reduced

to a system of n first order D.E., in essence, it would

be sufficient to examine a first order O.D.E.
dy

dx
= f (x, y) (1)

together with an initial condition (I.C.)

y(x0) = y0 (2)

Numerical solutions of first order O.D.E. (1) plays

a vital role, since analytical solutions of (1) are rare

(except in standard forms).

Taylor’s Series Method

Consists of expanding the function y(x) in powers
of (x − x0):

y(x)= y(x0)+ y (x0) · (x − x0)+
y  (x0)
2!

(x − x0)2

+y
   (x0)
3!

(x−x0)3+ · · ·+
y(n)(x0)

n!
(x−x0)n+ · · ·

(3)

In (3), y(x0) is known from I.C. (2). The remain-

ing coefficiently y  (x0), y   (x0), . . ., y(n)(x0) etc. are
obtained by successively differentiating (1) and eval-

uating at x0. Substituting these values in (3), y(x)

at any point can be calculated from (3), provided

h = x − x0 is small.
When x0 = 0, then Taylor’s series (3) takes sim-

pler form

y(x)=y(0)+y (0) · x+y  (0) · x
2

2!
+ · · ·+y(n)(0) ·

xn

n!
+ · · ·

(4)

33.1
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Modified Euler’s Method

For small changes x in x, the change in y is y ≈
dy

dx
 x. Thus

f (y + y)− f (y) =  y = dy

dx
 x.

Using
dy

dx
= f (x, y) at (xi, yi), we have
y i = f (xi, yi ) (5)

ỹi+1 = yi + h f (xi, yi ) Predictor (6)

Equation (6) is known as Euler’s method. Using (5)
as a predictor equation find

ỹ i+1 = f (xi + 1, ỹi+1). (7)

Using the average of the slopes (5) and (7), we get

yi+1 = yi +
y i + ỹ i+1

2
.

yi+1 = yi + h
f (xi, yi )+ f (xi+1, ỹi+1)

2
Corrector

(8)

Slope ( + 1, + 1)f x y¢ i i
~

Error

T

TrueASf xi yi¢ ( , )x
Slope

yi yi
yi + 1

xi xi+1h
P: Predicted value, T: True value, AS: Average slope

Fig. 33.1

The Equation (8) is known as the corrector equa-

tion. Thus themethod using the predictor (6) and cor-

rector (8) is known as the modified Euler’s method

or Heun’s method or Euler-Cauchy method or Euler-

Trapezoidal method or improved Euler method or

Euler’s predictor-corrector method.

Runge-Kutta 4th Order Method

The one-step methods like Taylor series method,
Euler’s method or modified Euler’s method evalu-
ate y at a pivota point xi , thus giving the starting
values for the multi-step methods which use recur-
rence equations, at these preceding pivotal points.
Runge-Kuttamethod is another one such one-step (or
single step) method, which is also self-starting like

the Taylor’s Euler’s, methods. Runge-Kutta meth-
ods achieves the accuracy of a Taylor series method
without requiring the calculation of higher deriva-
tives. A two parameter h, k family of formulas of
fourth order accuracy are known as Runge-Kutta
fourth order method and are given by the following
formulae:

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) (9)

where

k1 = h f (xi, yi )
k2 = h f

 
xi + h

2
, yi + k1

2

 
k3 = h f

 
xi + h

2
, yi + k2

2

 
k4 = h f (xi + h, yi + k3)




(10)

Note: When f is independent of y, (9) reduce’s to
Simpson’s 1

3
rule, 

h

2

 
1

3

 
f (xi )+ 4f

 
xi +

h

2

 
+ f (xi + h)

 
.

The only disadvantage with R-K method is the

repeated evaluation of function f (x, y) at several

points.

Milne’s Predictor-Corrector Method

Is amulti-stepmethodwhich uses the previously cal-
culated four values of the dependent variable y and
its derivative y  in the subsequent steps. Integrating xn+1

xn−3

dy

dx
dx =

 xn+1

xn−3
f (x, y)dx

where R.H.S. is evaluated by Simpson’s 1
3
rule for

the extended interval xn−2 to xn to xn−3 to xn+1.

yn+1 − yn−3 =
4h

3

 
2y n−2 − y n−1 + 2y n

 
or

yn+1 = yn−3 +
4h

3
(2yin−2 − yin−1 + 2yin) (11)

(11) is known as the predictor formula. Using (11),
calculate y in+1 = f (xn+1, yn+1). Integrating between
xn−1 to xn+1 using Simpson’s 1

3
rule.

yn+1 = yn−1 +
h

3
(yin−1 + 4yin + yin+1) (12)

(12) is known as the corrector formula. The next pair

of values yn+2, y in+2 are obtained in a similarwayfirst

using (11) to find yn+2, then y in+2 by f (xn+2, yn+2).
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With this value the corrector value of yn+2 is obtained
from (12).

WORKED OUT EXAMPLES

Taylor’s series method

Example 1: Using Taylor series expansion eval-

uate the integral of y  − 2y = 3ex , y(0) = 0 at

(a) x = 0.1(0.1)0.3; (b) x = 1.0; 1.1.

Solution: Rewriting y  = 2y + 3ex , y(0) = 0. Dif-
ferentiating and evaluating at x = 0,

y (0)= 2y(0)+3e0=2 · 0+3 · 1=3
y  = 2y +3ex, y  (0)=2y (0)+3=2 · 3+3=9
y   = 2y  +3ex, y   (0)=2y  (0)+3=2 · 9+3=21
y    = 2y   +3ex, y    (0)=2y   (0)+3=2 · 21+3=45
y     = 2y    +3ex, y     (0)=2y    +3=2 · 45+3=93

In general,

y(n+1)(x) = 2y(n)(x)+ 3ex or y(n+1)(0) = 2y(n)(0)+ 3.

The Taylor’s series expansion of y(x) about 0 is

y(x)= y(0)+ xy (0)+ x2 y
  (0)
2!

+ x3 y
   (0)
3!

+x4 y
    (0)
4!

+ x5 y
     (0)
5!

+ · · ·

Substituting the values of y  (0), y   (0), . . .

y(x)= 0+ 3x + 9

2
x2 + 21

6
x3 + 45

24
x4 + 93

120
x5 + · · ·

y(x)= 3x + 4.5x2 + 3.5x3 + 15

8
x4 + 31

40
x5 + · · · (1)

Now put x = 0.1 in (1)

y(0.1)= 3(0.1)+4.5(0.1)2+3.5(0.1)3+15

8
(0.1)4+31

40
(.1)5

y(0.1)= 0.34869

Similarly, put x = 0.2 in (1)

y(0.2)= 0.6+ 0.18+ 0.028+ 0.003+ 0.000248

= 0.811244.

y(0.3)= 0.9+ 0.405+ .0945+ .015187+ .0018832
= 1.4165702

Put x = 1 in (1)

y(1)= 3+ 9

2
+ 7

2
+ 15

8
+ 31

40
= 13.65

Put x = 1.1 in (1)

y(1.1)= 3.3+ 5.445+ 4.6585+ 2.745+ 1.248 = 17.39.

Modified Euler’s method

Example 2: Intensity of radiation is directly pro-

portional to the amount of remaining radioactive sub-

stance. TheDE is y  = −ky, where k = 0.01, t0 = 0,

y0 = 100 g. Determine how much substance will

remain at the moment t = 100 sec. Find the solution

by (a) Euler’s method, (b) Modified Euler’s method

with h = 25.

Solution: Here h = 25, f (t, y) = −ky, f (t, y) =
−0.01 y, since

dy

dt
= f (t, y) = −ky. (a) Euler’s

method (see Table 33.1).

Table 33.1 Euler’s method

t yi fi = f (ti , yi )  yi = hfi yi+1 = yi + yi
0 100 −1 −25 100+ (−25) = 75

25 75 −0.75 −18.75 75− 18.75 = 56.25

50 56.25 −0.5625 −14.0625 56.25− 14.0625 = 42.1875

75 42.1875 −0.421875 −10.546875 42.1875− 10.5468 = 31.640625

100 31.640625

(b) Modified Euler’s method: h = 25, f (t, y) =
−0.01y (see Table 33.2).

Runge-Kutta 4th order method

Example 3: Using Runge-Kutta 4th order method

find the solution of
dy

dx
= y − x with initial condition
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Table 33.2 Modified Euler’s method

t yi fi = f (ti , yi ) ỹi+1 = yi + hfi f̃i+1 = f (xi+1, ỹi+1)  ̃yi = h
2
(fi + f̃i+1) yi+1 = yi +  ̃yi

0 100 −1 100+ 25(−1) (−0.01)(75) 25
2
(−1− 0.75) 100− 21.875

= 75 = −0.75 = −21.875 = 78.125

25 78.125 −0.78125 78.125+ 25(−0.78) (−0.01)(58.59) 25
2
(−0.78− 0.59) 78.125− 17.09

= 58.59 = −0.5859 = −17.09 = 61.034

50 61.034 −0.61 45.7755 −0.4578 −13.35 47.68

75 47.68 −0.4768 35.76 −0.3576 −10.43 37.25

100 37.25

Note: Exact solution: y = 100 e−kt , At t = 100, y = 36.7879.

y(0) = 1.5 on [0, 1].

Solution: Here choose h = 0.2 given f (x, y) =
y − x, x0 = 0, y0 = 1.5.

See Table 33.3 on p. 33.5.

Milne’s predictor-corrector method

Example 4: Using Milne’s predictor-corrector

method evaluate the integral of y  − 4y = 0 at x =
0.4, 0.5 given that y(0) = y0 = 1, y1 = y(0.1) =
1.492, y2 = y(0.2) = 2.226, y3 = y(0.3) = 3.320.

Solution: Here
dy

dx
= 4y, so f (x, y) = y  = 4y,

h = 0.1, x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 =
0.4, x5 = 0.5.

Predictor: yn+1 = yn−3 +
4h

3
(2yin−2 − yin−1 + 2yin)

with n = 3,

y4 = y0 +
4h

3
(2yi1 − yi2 + 2yi3).

Here h = 0.1, y0 = 1, y i1 = 4y1 = 4(1.492) =
5.968.

yi2=4y2=4(2.226)=8.904, yi3=4y3=4(3.32)=13.28

... y4 = y(x4) = y(0.4) = 1+ 4(0.1)

3
[2(5.968)

−8.904+ 2(13.28)]

y4 = 1+ 4(0.1)

3
(29.592) = 1+ 3.9456 = 4.9456

So yi4 = 4y4 = 4(4.9456) = 19.7824

Corrector

yn+1 = yn−1 +
h

3
(yin−1 + 4yin + yin+1)

with n = 3,

y4 = y2 +
h

3
(yi2 + 4yi3 + yi4)

... y4 = y(x = 0.4) = 2.226+ 0.1

3
(2.226

+4(13.28)+ 19.7824)

y4 = 2.226+ 2.72688 = 4.95288

with n = 4, predictor

y5 = y1 +
4h

3
[2yi2 − yi3 + 2yi4]

Since y  = 4y, y ii = 4yi

y5 = 1.492+ 4(0.1)

3
4[2y2 − y3 + 2y4]

= 1.492+ 16(0.1)

3
[2(2.226)− 3.320+ 2(4.95288)]

y5 = 7.3788

Correct with n = 4,

y5 = y3 +
h

3
[yi3 + 4yi4 + yi5]

y5 = y3 +
4h

3
[y3 + 4y2 + y5] (since y i = 4yi )

= 3.320+ 4(0.1)

3
[3.320+ 4(4.95288)+ 7.3788]

y5 = y(x = 0.5) = 3.320+ 4.06804 = 7.3880426.

Note: The exact solution is y = e4x + c, with

y(0) = 1, c = 0 so y = e4x . Then y(0.4) = e4(0.4) =
4.953032425 and y(0.5) = e4(0.5) = 7.389056099.
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Table 33.3 Runge-Kutta 4th order method

Correction
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EXERCISE

Taylor series

1. Evaluate the integral of y   + yy  − x2 = 0,

y(0) = 1, y  (0) = 1 at x = 0.1(0.1)0.3 by

Taylor series.

Hint: y(x) = 1+ x − x2

2!
+ 5x4

4!
− 8x5

5!
+ · · ·.

Ans. y(0.1) = 1.095, y(0.2) = 1.180, y(0.3) =
1.257

2. Find the first five terms of the expansion in

a power series of the solution y = y(x), z =
z(x) of the system y (x) = y cos x − z sin x,
zi(x) = y sin x + 2 cos x, with initial condi-

tions y(0) = 1, z(0) = 0.

Ans. y(x) = 1+ x + x2

2
− 5 x

4

4!
+ · · ·, z(x) = x2

2
+

x3

2
+ 5

4!
x4 + · · ·

3. Find y(0.1) by Taylor’s series expansion when

y  = x − y2, y(0) = 1.

Hint: y(x) = 1− x + 3
2
x2 − 4

3
x3 − 17

12
x4 −

31
20
x5 + · · ·.

Ans. y(0.1) = 0.9138

4. Given y  = x2 + y2, y(0) = 0, determine the

first three non-zero terms in Taylor series and

hence obtain y(1).

Ans. y(x) = 1
3
x3+ 1

63
x7+ 2

2079
x11, y(1) = 0.3502.

5. Determine the three terms in the Taylor’s series

solution to theBlasius equation y    + yy   = 0,

y(0) = 0, y  (0) = 0, y   (0) = 1.

Ans. ?

6. Compute y(0.1) and y(0.2) by Taylor’s series

method if y  = x2y − 1, y(0) = 1.

Hint: y(x) = 1− x + x3

3
− x4

4
· · ·.

Ans. y(0.1) = 0.9033, y(0.2) = 0.80227.

Euler’s method

7. Evaluate the integral of y  − y2 = 0 by Euler’s

predictor-corrector method at x = 0.1, 0.2

with initial condition y(0) = 1.

Ans. y(0.1) = 1.1105, y(0.2) = 1.24827.

8. Evaluate by Euler’s method

a. y  − y2 = 0, y(0) = 1, at x = 0.1, 0.2, 0.3

b. y  = y − x, y(0) = 2, at x = 0.2, 0.4, 0.6.

Ans. a. y(0.1)=1.1, y(0.2)=1.221, y(0.3)=1.37
b. y(0.2) = 2.4, y(0.4) = 2.84, y(0.6) =
3.328

9. Use Heun’s method to integrate y  = 4e0.8x −
0.5y from x = 0 to 4 with a step size of 1 and

with y(0) = 2.

Hint: y = 4
1.3

(e0.8x − e−0.5x)+ 2e−0.5x is

exact solution.

Ans. y(1) = 6.70108, y(2) = 16.319, y(3) =
37.199, y(4) = 83.377

10. Solve the following initial value problems by

modified Euler’s method.

a. y  = x + y, y(0) = 1, h = 0.1,

x = 0(0.1)0.3

b. y  = ln(x + y), y(0) = 2, h = 0.2, x =
0(0.2)0.8

c. y  = x + |√y|, y(0) = 1, h = 0.2, x =
0(0.2)0.6

Ans. a. 1.1105, 1.2432, 1.4004

b. 2.0656, 2.1416, 2.2272, 2.3217

c. 1.2309, 1.5253, 1.8861

Runge-Kutta 4th order method

11. Integrate the D.E. y  = y − 2x
y
, y(0) = 1 from

0 to 2 by R-K method with h = 0.2.

Ans. y(0.2) = 1.1832, y(0.4) = 1.3416, y(0.6) =
1.4832, y(0.8) = 1.61251, y(1.0) = 1.7321,

y(1.2) = 1.844, y(1.4) = 1.9495, y(1.6) =
2.049, y(1.8) = 2.145, y(2.0) = 2.2366

12. Integrate D.E. y = x + y, y(0) = 0, h = 0.2

by R-K method, from 0 to 1.

Ans. y(0.2) = 0.0214, y(0.4) = 0.0918, y(0.6) =
0.222, y(0.8) = 0.4255, y(1.0) = 0.718

13. Using R-K method, find the solution of

y = 0.25 y2 + x2
with initial condition y(0) = −1 on [0, 0.5]

with h = 0.1.
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Ans. −0.97528, −.94978, −.92154, −.8887,
−.84945

14. Integrate D.E. by R-K method given y  =
−2xy2, y(0) = 1, h = 0.2 on [0, 1].

Ans. y(0.2) = .9615, y(0.4) = .862, y(.6) =
.73527, y(.8) = .6097, y(1.0) = .500073

15. Apply R-K method to solve

a. y  = x + y, y(0) = 1, h = 0.2, and find

y(0.2)

b. y  = y2−x2
y2+x2 , y(0)= 1, h= 0.2, x = 0(0.2)0.4

Ans. a. y(0.2) = 0.2428

b. y(0.2) = 1.196, y(0.4) = 1.3752.

Milne’s predictor-corrector method

16. Use Milne’s predictor-corrector method to

integrate y  = 4e0.8x − 0.5y from x = 0 to

x = 4 with a step size of 1 and with y(0) = 2.

Ans. 6.20485, 14.86, 33.7242, 75.4329

17. Compute y(0.8) and y(1.0) byMilne’s method

if y  = 1+ y2, y(0) = 0, y(0.2) = 0.2027,

y(0.41) = 0.4228, y(0.6) = 0.6841.

Hint: y  (0) = 1, y  (0.2) = 1.0411, y  (0.4)
= 1.1787, y  (0.6) = 1.4681, ypredictor(0.8) =
1.0239, y  (0.8) = 2.048

Ans. y(0.8) = 1.0294, y(1) = 1.5549

18. Find y(0.4) and y(0.5) by Milne’s method if

y  + y = 2ex , y0 = 2, y1 = 2.010, y2 = 2.04,

y3 = 2.09, h = 0.1.

Ans. ỹ4 = 2.162, y4 = 2.162, ỹ5 = 2.255, y5 =
2.2546

19. Calculate y at x = 0.4, and x = 0.5, if y  =
x + y and y0 = 1, y1 = 1.1103, y2 = 1.2428,

y3 = 1.3997, h = 0.1.

Ans. ỹ4 = 1.5836, y4 = 1.5836, ỹ5 = 1.7974, y5 =
1.7974

20. Determine y(0.8), y(1.0) by Milne’s P-C

method when y  = x − y2, y(0) = 0.

Hint: y1 = 0.02, yi1 = 0.1996, y2 = 0.0795,

yi2 = 0.3937, y3 = 0.1762, yi3 = 0.5689 
y = x2

2
− x5

20
+ x8

160
− x11

4400

 
.

Ans. y(0.8) = 0.3046, y(1.0) = 0.4555.

33.2 PICARD’S METHOD OF SUCCESSIVE

APPROXIMATION∗

A problem involving ODEs is not completely spec-

ified by its equations. Boundary conditions (B.C.s),

which are algebaric conditions on the values of the

function y(x), play crucial role in determining how

to attack the problem numerically. Initial value prob-

lems involve condition(s) specified at some starting

value x0, while in (two-point) boundary value prob-

lems boundary conditions are specified at more than

one point x.

Picard’s method of successive approximation and

Taylor’s series are single step methods in which the

solutions are obtained in analytical form as power

serier in x.

Picard’s Method of Successive Approxima-

tion

The particular solution of the initial value problem

consisting of an ordinary first order differential equa-

tion

dy

dx
= f (x, y) (1)

with initial condition y(x0) = y0 is obtained by inte-
grating (1). Then y

y0

dy =
 x

x0

f (x, y)dx

or

y(x) = y0 +
 x

x0

f (x, y)dx (2)

In the Picard’s method, the first approximation y1 is

obtained by replacing y in f (x, y) in RHS of (2) by

y0 and then evaluating the integral (which is now a

function of x) wrt x. The second approximation y2

∗Emile Picard (1856–1941), French mathematician.
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is then obtained by replacing y in f (x, y) of RHS of

(2) by y1 and integrating wrt x. Successive approxi-

mations are obtained similarly. In practice, Picard’s

method is restricted to a limited class of problems

in which the integral in RHS of (2) can be evaluated

easily. Thus

y1 = y0 +
 x

x0

f (x, y0)dx

y2 = y0 +
 x

x0

f (x, y1)dx

y3 = y0 +
 x

x0

f (x, y2)dx

and so on yielding a sequence of functions

y1, y2, y3, . . . giving rise to a better approximation.

WORKED OUT EXAMPLES

Example 1: Solve the differential equation

dy

dx
= x2 − y, y(0) = 1

by Picard’s method of successive approximations to

get the value of y at x = 1. Use terms through x5,

compare it with the exact analytical solution.

Solution: Integrating the D.E., we obtain y

y0

dy =
 x

x0

(x2 − y)dx

y(x) = y(x0)+
 x
x0
(x2 − y)dx = 1+  x

0
(x2 − y)dx

The first approximation y1 is obtained by replacing

y by y0 = 1 in the integrand in RHS integral. Thus

y1 = 1+
 x

0

(x2 − 1)dx = 1+ x
3

3
− x

To obtain the second approximation y2, replace y

by 1− x + x3

3
in the integrand of the RHS integral.

Thus

y2 = 1+
 x

0

 
x2 − (1− x + x

3

3
)

 
dx

y2 = 1+ x
3

3
− x + x

2

x
− x

4

12

Now the third approximation y3 is obtained by

replacing y by y2 = 1− x + x2

2
+ x3

3
− x4

12
.

Thus

y3 = 1+
 x

0

 
x2 −

 
1− x + x

2

2
+ x

3

3
− x

4

12

  
dx

Integrating we get

y3 = 1+ x
3

3
− x − x

4

12
+ x

2

2
− x

3

6
+ x

5

60

y3 = 1− x + x
2

2
+ x

3

6
− x

4

12
+ x

5

60

Similarly replacing y by y3 and integrating wrt x we

get the fourth approximation y4 as

y4 = 1+
 x

0

 
x2 −

 
1− x + x

2

2
+ x

3

6
− x

4

12

+x
5

60

  
dx

y4 = 1− x + x
2

2
+ x

3

6
− x

4

24
+ x

5

60
− x6

360
(∗)

The exact solution of given DE is

y = x2 − 2x + 2− e−x

Expanding e−x in x, the exact solution is

y(x) = x2 − 2x + 2−
 
1− x + x

2

2!
− x

3

3!

−x
4

4!
+ x

5

5!
− x

6

6!
+ . . .

 

y(x) = 1− x + x
2

2
+ x

3

6
− x

4

24
+ x5

120
− x6

720
+ . . .
(∗∗)

Thus the fourth approximation y4(∗) concides with
the exact analytical solution y(∗∗) up to the 4th

power of x. Now

y4(x = 1) = 1− 1+ 1

2
+ 1

6
− 1

24
+ 1

60

− 1

360
= 0.638888

y(x = 1) = 1− 1+ 1

2
+ 1

6
− 1

24
+ 1

120

− 1

720
= 0.6319444
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Example 2: Obtain the Picard’s second approxi-

mation for the initial value problem

dy

dx
= x2

y2 + 1
, y(0) = 0.

Find y(1).

Solution: The first approximation is

y1 = y0 +
 x

x0

x2

y2 + 1
dx = 0+

 x

0

x2

y2 + 1
dx

Relpacing y by y0 = 0, we get

y1 =
 x

0

x2

02 + 1
dx = x

3

3

Replacing y by y1 = x3

3
we get the second approxi-

mation y2 as

y2 =
 x

0

x2 
x3

3

 2
+ 1

dx = tan−1
 
x3

3

 
− 0

In the third approximation

y3 =
 x

0

x2 
tan−1 x

3

3

 2
+ 1

The integration is difficult. This is the drawback of

the method.

Expanding tan−1, we get from second approximation

y2 = tan−1
 
x3

3

 
=

 
x3

3

 
−

 
x3

3

 3
1
3
+

 
x3

3

 5
1
5
. . .

y2 =
x3

3
− x

9

81
+ x15

1215
. . .

At x = 1, y2(1) = 1
3
− 1

81
+ 1

1215
= 0.321810699.

EXERCISE

Using Picard’s successive approximation, solve the

following initial value problems.

1. y  = x − y2, y(0) = 1. Find y(0.1).

Ans. y2 = 1− x + 3
2
x2 − 2

3
x3 + x4

4
− x5

20
,

y(0.1) = 0.914357

2. y  = x2 + y2, y(0) = 0, find y(0.4)

Ans. y3 = x3

3
+ 1

63
x7 + 2

2079
x   + 1

59535
x15, y(0.4) =

0.02135938

3. y  = x + y, y(0) = 1. Find y(1). Compare with

exact solution.

Ans. y5 = 1+ x + x2 + x3

3
+ x4

12
+ x5

60
+ x6

720

Exact solution: y = 1+ x + x2 + x3

3
+ x4

12
+

x5

60
+ x6

360
+ . . .

y5(1) = 3.434, y(1) = 3.44

4. y  = y−x
y+x , y(0) = 1. Find y(0.1).

Ans. y1 = 1− x + 2 log(1+ x), y2 is difficult for

evaluation. y1(0.1) = 0.9828

5. y  = x + y + xy, y(0) = 1, find y(0.1)

Ans. y3 = 1+ x + x2 + x3

3
+ 5

12
x4 + 11

60
x5 + x6

24

y3(0.1) = 1.1103768

33.3 ADAMS-BASHFORTH-MOULTON

METHOD (ABM METHOD)

Predictor-corrector is often loosely used to denote

the multistep or multivalue integration technique for

ODEs. The most popular predictor-corrector meth-

ods are probabily the Adams-Bashforth-Moulton

schemes, which have good stability properties unlike

the Milne’s method which is unstable due to the cor-

rector. The predictor-corrector method consists of

three separate processes. The predictor step P , eval-

uation of derivative y  n+1 from the latest value of y,

call as E and the corrector step, call as C. Iterating

m times with the corrector in this notation, may be

written as P (EC)m. SinceE is superior, the strategy

is PECE i.e., predict, evaluate, correct and evaluate.

Adams-Bashforth-Moulton (ABM) Method is a

non self-starting four step method which uses four

initial points (x0, y0), (x1, y1), (x2, y2) and (x3, y3),

obtained already by any one of the single-step meth-

ods to generate the points (xn, yn) for n ≥ 4. It

requires only two function evaluations of f (x, y) per

step.

A Lagrange cubic polynomial based on the four

points from xn−3 to xn, is integrated over one step
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xK–3 2

xK –2

Kx –1

xK–1

K

K

kx

x

x +1

xK+1

x

x

Extrapolation is used in the Adams-Bashforth
predictor

Interpolation is used in the Adams-Moulton
corrector

Fig. 33.2 Integration on the interval x , xk k+1

xK–

xK–3

from xn to xn+1 yielding the Adams-Bashforth pre-

dictor.

yn+1 = yn +
h

24

 
55fn − 59fn−1 + 37fn−2 − 9fn−3

 
(1)

The tentative computed value of y at xn+1 obtained
from the predictor formula (1), together with values

of y at xn, xn−1, xn−2 are used to construct a sec-

ond cubic polynomial, which is then integrated over

the interval xn to xn+1, yielding the Adams-Moulton
corrector:

yn+1 = yn +
h

24
[9fn+1 + 19fn − 5fn−1 + fn−2]

(2)

The step size h, should be decreased, when the

difference between predicted and corrected values

reaches or exceeds the accuracy criterion.

WORKED OUT EXAMPLES

Example 1: Solve y  = x2 − y, y(0) = 1 on

the interval [0, 0.5] with step size h = 0.05 and

with initial values y(0.05) = 0.95127058, y(0.10) =
0.90516258, y(0.15) = 0.86179202. Compare with

true (exact) solution.

Solution: Here f (x, y) = x2 − y. h = 0.05 x0 =
0, y0 = 1, f (x0, y0) = f0 = 02 − 1 = −1
x1 = 0.05, y1 = 0.95127058, f (x, y) = f1 =
(0.05)2 − 0.95127058 so f1 = −0.94877058.
x2 = 0.10, y1 = 0.90516258, so f (x2, y2) = f2 =
(0.10)2 − 0.90516258 = −0.89516258
x3 = 0.15, y3 = 0.86179202 so f (x3, y3) = f3 =
(0.15)2 − 0.86179202 = −0.83929202
Use Adams-Bashforth predictor (n = 3)

y4 = y3 +
h

24
[55f3 − 59f2 + 37f1 − 9f0]

substituting the above starting values

y4 = 0.86179202+ 0.05

24
[55(−0.8392920)

−59(−0.89516258)+ 37(−0.94877058)
−9(−1)]

= 0.86179202+ 0.05

24
[−19.45097924]

y4 = 0.86179202− 0.040522873 = 0.821269146

Using this tentative predictor value, compute f4 =
f (x4, y4) = f (0.20, 0.821269146)

f4 = (0.20)2 − 0.821269146 = −0.781269146

Now we utilize this value of f4 in the Adams-

Moulton corrector (n = 3)

y4 = y3 +
h

24
[9f4 + 19f3 − 5f2 + f1]

substituting the above data, we get

y4 = 0.86179202+ 0.05

24
[9(−0.781269146)

+19(−0.83929202)− 5(−0.89516258)
+(−0.94877058)]

= 0.86179202+ 0.05

24
[−19.45092837]

y4 = 0.86179202− 0.040522767 = 0.821269252

The exact (true) solution is

y(x) = x2 − 2x + 2− e−x

so y(0.20) = 0.821269246. Calculating further val-

ues with ABM method we get the follwing data:



NUMERICAL SOLUTIONS OF ODE AND PDE 33.11

n x Adams-Bashforth Moulton method y(x) Exact solution y(x) Error

4 0.20 0.821269252 0.821269246 6× 10−9

5 0.25 0.7836992 0.783699216 1.69× 10−8

6 0.30 0.7491818 0.749181779 +2.068× 10−8

7 0.40 0.6896800 0.689679954 4.6036× 10−8

8 0.50 0.6434694 0.64346934 5.9716× 10−8

Note: For n = 4, we have the following predictor

corrector formulas.
Predictor: y5= y4+ h

24
[55f4 − 55f3 + 37f2 − 9f1]

Corrector: y5 = y4 + h
24
[9f5 + 19f4 − 5f3 + f2].

Here

f4 = f (0.2, 0.821269252) =
(0.2)2−0.821269252 = −0.781269252

EXERCISE

ABM Method
Solve by ABMmethod using the given initial values.

Compare with exact solution.

1. y  = −2x − y, y(0) = −1, find y(0.4), y(0.5)
y(0) = −1, y(0.1) = −0.9145122,

y(0.2) = −0.8561923, y(0.3) = −0.8224547
Ans. At 0.4, Predictor value = −0.8109687

Corrector value : −0.8109652
Exact solution: y(x) = −3e−x − 2x + 2

y(0.4) = Exact value = −0.8109601
At 0.5 = P : −0.8195978, C : −0.819505,

E: −0.8195920
2. y  = (x − y)/2, y(0) = 1, h = 0.125, find y on

[0, 1]. Compare with exact solution. Initial val-

ues are : y(0.125) = 0.94323919, y(0.250) =
0.89749071, y(0.375) = 0.86208736.

Exact solution: y(x) = 3e−x/2 − 2+ x
Ans. y(0.5) = 0.83640227, y(0.625) = 0.81984673,

y(0.75) = 0.81186762, y(0.875) =
0.81194530, y(1.0) = 0.81959166

3. y  = 2xy2, y(0) = 1, h = 0.05, find y on [0, 0.5]

Compare with exact solution.

Initial values are y(0.05) = 1.0025063,

y(0.10) = 1.0101010, y(0.15) = 1.0230179.

Exact solution: y(x) = 1/(1− x2)
Ans. y(0.2) = 1.0416675 y(0.25) = 1.0666688

y(0.3) = 1.0989052, y(0.4) = 1.1904878,

y(0.5) = 1.3333631

4. y  = y2 sin x, y(0) = 1, find y on [0.05],h=0.05.

Initial values: y(0.05) = 1.0012513, y(0.10) =
1.0050209, y(0.15) = 1.0113564.

Exact solution: y(x) = sec x

Ans. y(0.2) = 1.0203389, y(0.25) = 1.0320852,

y(0.3) = 1.0467519, y(0.4) = 1.0857051

y(0.5) = 1.1394953.

5. y = − x
y
, y(1) = 1, find y on [1, 1.4]. h = 0.05

Initial values y(1.05) = 0.94736477, y(1.10) =
0.88881944, y(1.15) = 0.82310388

Exact solution: y(x) = (2− x2)1/2
Ans. y(1.2) = 0.7483205, y(1.25) = 0.6613998,

y(1.3) = 0.5566583, y(1.35) = 0.4208572,

y(1.4) = 0.1974740.

6. y  = x3 + y2, y(0) = 0, h = 0.1. Find y on

[0, 1.2]. Initial values are y(0.2) = 0.0004,

y(0.4) = 0.0064, y(0.6) = 0.0325

Ans. y(0.8) = 0.1035, y(0.9) = 0.1669, y(1.0) =
0.2574, y(1.1) = 0.3836, y(1.2) = 0.5581

33.4 NUMERICAL SOLUTIONS TO

PARTIAL DIFFERENTIAL

EQUATIONS

Many physical phenomena can be modelled math-

ematically by partial differential equations, whose

theory is quite difficult and numerical methods most

difficult and needs extensive computation. Although

analytical solutions can be obtained by separation of

variable technique and integral transforms (Fourier
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transforms), in many complicated cases one has to

resort to numerical methods. Initial value problems

or time dependent problems consists of two types:

hyperbolic problems (containing both fxx and ftt
term as in wave equation) and parabolic problems

(which contain only fxx and ft but no ftt term as in

the heat equation). For these problems, the solution is

known at an initial time and then propagates through

space in time. The domain is open (goes to infin-

ity) somewhere for example, in time. The other type

of problems is the boundary value problem where

the domain is closed and is entirely surrounded by

boundary values. These problems are called elliptic

(and are time independent as in the case of Laplace

equation).

The dimension of a partial differential equation

is the number of space variables x, y, z appear-

ing in the equation as independent variables (apart

from the independent variable time t). Thus a one-

dimensional heat equation or one-dimensional wave

equation involves only one space variable say x (and

of course time t). Similarly two-dimensional Laplace

equation contains two space variables say x and y.

The central idea in numerical methods to partial

differential equations is to discretize the partial dif-

ferential equationby replacing it, approximately, by a

finite systemof algebraic equations.One such impor-

tant discretization method is finite differences, in

which the derivatives are replaced by finite differ-

ences. The entire given domain is discretized by a

discrete set of points, as follows:

Introducing xi = x0 + ih, i = 0, ±1, ±2, ±3,
. . . and tj = t0 + jk, j = 0, ±1, ±2, ±3, . . ., the
(numerical) solution is obtained at the discrete points

(xi,tj ) known as grid or nodal or lattice or mesh or

pivotal points of the computational grid. Here h =
constant is spacing (or size of interval) in x-direction

while k = constant is spacing in t-direction.

33.5 NUMERICAL SOLUTION TO ONE-

DIMENSIONAL HEAT EQUATION

Consider the initial boundary value problem of the
parabolic one-dimensional heat equation.

P.D.E:
∂u

∂t
= c2 ∂

2u

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (1)

Two boundary conditions (B.C.’s):

u(0, t) = 0 u(L, t) = 0 (2)

One initial condition (I.C.)

u(x, 0) = f (x) (3)

Fig. 33.3

Replacing ut and uxx by finite differences, equa-

tion (1) is approximated by a finite difference equa-

tion.

1

k

 
ui,j+1 − uij

 = c2

h2

 
ui+1,j − 2uij + ui−1,j

 
(4)

Here h is mesh size in x-direction i.e., h = L
N
and

k is mesh size in t-direction. Rewriting (4),

ui,j+1 =
 
1− 2r)uij + r(ui+1,j + ui−1,j

 
(5)

where r = c2k

h2
. This method is known as Schmidt

explicitmethodbecause the unknownui,j+1 is explic-
itly expressed in terms of the known (given) values

ui,j ; ui+1,j ; ui−1,j ; whereas in the implicit method

such as theCrank-Nicolsonmethod the equations are

implicit i.e., coupled and one has to solve a system

of linear equations. Formula (5) provides a march-

ing scheme to compute u at the mesh points. This

method is convergent and stable if r = c2k

h2
≤ 1

2
. In

particular for r = 1
2
, (5) reduces to

ui,j+1 =
1

2
(ui+1,j + ui−1,j ) (6)

which is known as Bender-Schmidt recurrence rela-

tion. So the values of h, k are so chosen (c is already

given) that r ≤ 1
2
. For r > 1

2
the method is divergent

and unstable.
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Stencil (pattern, molecule or star)

Finite difference approximations are often presented

in terms of stencils or coefficient schemes which

shows the pattern of connection in the difference

equations. The entries in the stencil are coefficients

in the difference equation.

For example the explicit method given by (5) is

represented as a stencil shown below:

WORKED OUT EXAMPLES

Example 1: Solve the initial boundary value prob-
lem:

∂f

∂t
= 2

∂2f

∂x2

f (0, t)= 10 (1)

f (6, t)= 18 (2)

f (x, 0)= x
2

2
(3)

with h = 1 and τ = 1
8
by explicit method.

Solution: m = aτ

h2
. Here a = 2, h = 1, τ = 1

8
so

m = 1
4
. The explicit formula fi,j+1 = (1− 2m)

fij +m(fi+1,j + fi−1,j ) with m = 1
4
becomes

fi,j+1 =
1

2
fij +

1

4
(fi+1,j + fi−1,j ) (4)

Here first row t = 0, consists of the initial values

given by IC(3) : f (x, 0) = x2

2
at x = 1, 2, 3, 4, 5.

The first column x = 0, gives the first boundary

condition f (0, t) = 10. The last column x = 6,

gives the second boundary condition f (6, t) = 18.

The remaining values of f are calculated using

(4). As t →∞, the process reaches steady state,

so fxx = 0, f (x) = c1x + c2, 10 = f (0) =
0 + c2 .

.. c2 = 10, 18 = f (6) = 6.c1 + 10

... c1 = 4
3
, analytical exact solution as t →∞ is

f (x)= 4
3
x + 10. These are plotted for t →∞ in the

last row of the Table 33.7.

Table 33.7

B.C. (1) B.C. (2)

tj\xi 0 1 2 3 4 5 6

I.C.(3) t = 0 10 1
2

2 4.5 8 12.5 18

t = 1
8

10 3.25 2.25 4.75 8.25 12.75 18

t = 1
4

10 4.69 2.88 5.0 8.5 12.94 18

t = 3
8

10 5.56 3.86 5.34 8.73 13.09 18

t = 1
2

10 6.25 4.66 5.82 8.98 13.23 18

t = 5
8

10 6.79 5.35 6.32 9.25 13.36 18

t = 3
4

10 7.23 5.95 6.81 9.55 13.49 18

t = 7
8

10 7.60 6.49 7.28 9.85 13.63 18

t = 1 10 7.92 6.97 7.73 10.15 13.78 18

t = 11
8

10 8.20 7.40 8.15 10.45 13.93 18

t = 1 1
4

10 8.45 7.79 8.54 10.75 14.08 18

t = 13
8

10 8.67 8.14 8.91 11.03 14.23 18

t = 1 1
2

10 8.87 8.47 9.25 11.30 14.37 18

t = ∞ 10 11 1
3
12 2

3
14 15 1

2
16 2

3
18

Example 2: Solve the above problem by Bender-

Schmidt recurrence equation; with h = 1 and τ

determined accordingly.

Solution: m = aτ

h2
= 2τ

1
. For Bender-Schmidtm =

1
2
... τ = time interval size = 1

4
. (See Table 33.8.)

Non-dimensional form

Example 3: Transform the heat equation

UT = c2UXX,where 0 ≤ X ≤ L

to non-dimensional form.

Solution: Introducing

u = U

u0
and x = X

L
, t = c

2T

L2
, we have

∂u

∂x
= ∂U
∂X

· ∂X
∂x

= L∂U
∂X
,
∂2u

∂x2
= ∂

∂X

 
L
∂U

∂X

 
∂X

∂x
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Table 33.8

B.C.(1) B.C.(2)

tj\xi 0 1 2 3 4 5 6

I.C.(3) t = 0 10 1
2

2 4.5 8 12.5 18

t = 1
4

10 6 2.5 5.0 8.5 13 18

t = 1
2

10 6.25 5.5 5.5 9 13.25 18

t = 3
4

10 7.75 5.88 7.25 9.38 13.5 18

t = 1 10 7.94 7.50 7.625 10.38 13.69 18

t = 5
4

10 8.75 7.78 8.94 10.66 14.19 18

t = 3
2

10 8.89 8.84 9.22 11.56 14.33 18

t = 7
4

10 9.42 9.05 10.20 11.77 14.78 18

t = 2 10 9.53 9.81 10.41 12.49 14.89 18

t = 9
4

10 9.90 9.97 10.15 12.65 15.25 18

t = 5
2

10 9.99 10.53 11.31 13.20 15.33 18

∂2u

∂x2
= L∂

2U

∂X2
· L = L2 ∂

2U

∂X2
. Similarly,

∂u

∂t
= ∂U
∂T

∂T

∂t
= L

2

c2

∂U

∂T
. Then

UT =
∂U

∂T
= c2

L2

∂u

∂t
= c2UXX = c2

∂2U

∂X2
= c2 · 1

L2

∂2u

∂x2

Thus
∂u

∂t
= ∂

2u

∂x2
i.e., ut = uxx

for 0 ≤ X
L
≤ L

L
i.e., 0 ≤ x ≤ 1. This form is known

as non-dimensional standard form. Similarly, the
wave equation

UT T = a2UXX where 0 ≤ X ≤ L
can be transformed to non-dimensional standard
form

utt = uxx where 0 ≤ x ≤ 1.

EXERCISE

Numerical solution to one-dimensional

heat equation

1. Using Schmidt explicit method, solve

ut = uxx , 0 ≤ x ≤ 1, u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 2x when 0 ≤ x ≤ 0.5 and

u(x, 0) = 2(1− x) when 0.5 ≤ x ≤ 1

for h = 1, k = 0.001 at t = 0.001, 0.002.

Ans.
x : 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

u(x, 0.001) : 0 .2 .4 .6 .8 .96 .8 .6 .4 .2 0

u(x, 0.002) : 0 .2 .4 .6 .796 .928 .796 .6 .4 .2 0

2. Use Schmidt explicit method to obtain numer-

ical solution of ut = uxx, u(0, t) = u(1, t) =
0, u(x, 0) = sin πx, with h = 1

3
, k = 1

36
for

two levels.

Hint: Here r = kc2

h2
= 1

36
· 1 

1
3

 2 = 1
4
so

ui,j+1 =
1

4
[ui−1,j + 2uij + ui+1,j ]

Ans. x = 0
√
3/2

√
3/2 0

t = 1
36

: 0 .65 .65 0

t = 2
36

: 0 .49 .49 0

3. Use Schmidt explicit method to solve ut =
uxx, u(0, t) = u(1, t) = 0, u(x, 0) = sin πx;

for 0 ≤ t ≤ 0.2, with r = 0.25.

Hint: r = k/h2 = 0.25, so k = 0.01, ui,j+1
= 0.25

 
ui−1,j + 2uij + ui+1,j

 
. Value at x =

0.6 is same as at x = 0.4; Value at x = 0.8 is

same as at x = 0.2 due to symmetry.

Ans.

Table 33.9

x = 0.2 x = 0.4

t = 0 : 0.588 0.951

t = 0.04 0.393 0.637

t = 0.08 0.263 0.426

t = 0.12 0.176 0.285

t = 0.16 0.118 0.191

t = 0.20 0.079 0.128

4. Using Bender-Schmidt (explicit method with

r = 1
2
) solve uxx − 2ut = 0, u(0, t) = u(4, t)

= 0, u(x, 0) = x(4− x), with h = 1, k = 1.

Ans.5. Solve 2uxx − ut = 0, u(x, 0) = 50(4− x),
u(0, t) = 0,u(4, t) = 0,withh = 1, τ = 0.25.

Hint: use Bender-Schmidt scheme.

Ans. At t = 1.50; u = 0, 6.25, 12.5, 6.25, 0 (after

six iterations)
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Table 33.10

t \ x 0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 1.5 2 1.5 0

3 0 1 1.5 1 0

4 0 .75 1 .75 0

5 0 .5 .75 .5 0

6. Compute u(x, t) at x = 0, 1, 2, . . . 7, t = 1
8
j ,

j = 0, 1, 2, 3, 4, 5 by solving ut = 4uxx ,

u(0, t) = u(8, t) = 0, u(x, 0) = 4x − x2

2
.

Hint: r = 1
2
, use Bender-Schmidt recurrence

relation.

Ans. Table 33.11

j\x 0 1 2 3 4 5 6 7 8

0 0 3.5 6 7.5 8 7.5 6 3.5 0

1 0 3 5.5 7 7.5 7 5.5 3 0

2 0 2.75 5 6.5 7 6.5 5 0

3 0 2.5 4.625 6 6.5 6 4.625 0

4 0 2.3 4.25 5.56 6 5.56 4.25 0

5 0 2.125 3.94 5.125 5.56 5.125 3.94 2.125 0

33.6 NUMERICAL SOLUTION TO ONE-

DIMENSIONAL WAVE EQUATION

Consider the initial boundary value problem of
hyperbolic one-dimensional wave equation

P.D.E :
∂2u

∂t2
= a2 ∂

2u

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (1)

Two boundary conditions:

u(0, t) = u(L, t) = 0 (2)

Two initial conditions: Prescribed initial displace-

ment:
u(x, 0) = f (x) (3)

Prescribed initial velocity:

ut (x, 0) = g(x) (4)

The finite difference approximation of (1) is

1

k2

 
ui,j+1 − 2uij + ui,j−1

 
= a

2

h2

 
ui+1,j − 2uij + ui−1,j

 
(5)

This explicit method converges and stable for 0 <
r ≤ 1. Here h is mesh size in x-direction and k is the
mesh size in t-direction. For a given a2, choose h and
k such that

r = a
2k2

h2
= 1.

Then Equation (5) simplifies to

ui,j+1 = ui−1,j + ui+1,j − uij−1 (6)

The numerical solution is generally represented in

the form of an open ended table, consisting of n

columns, headed by xi = x0 + ih, where the mesh

size h = L−0
n

. Here x0 = 0, xn = L.
Step I All the entries in the first column are zeros,

given by the first boundary condition u(0, t) = 0.

Step II Similarly, all the entries in last column are
zeros, given by the second boundary condition.

u(L, t) = 0.

Step III Each row represents a time step. Entries

in first row, are calculated using (3) the first ini-

tial condition u(x, 0) = f (x) for xi = x0 + ih, i =
1, 2, 3, · · · , n.
Step IV Observe that formula (6) involves 3 time

steps namely the future (j + 1) in termsof the present

(j) and the past j − 1. At this stage, from step III,

the first row gives only on time step (j = 0). So use

(4) the second initial condition which gives rise to

another (second) row which will be the second time

step (j = 1).
Now from I.C. (4) in difference form is

1
2k
(ui1 − ui,−1) = gi

or ui,−1 = ui1 − 2 k gi (7)

where gi = g(ih). For t = 0 (i.e., j = 0), we have

from (6)

ui1 = ui−1,0 + ui+1,0 − ui,−1 (8)

Substitute ui,−1 from (7) into (8), we get

ui1 = ui−1,0 + ui+1,0 − (ui1 − 2k gi ) or

ui1 =
1

2
(ui−1,0 + ui+1,0)+ kgi (9)

Equation (9) expresses ui1 in terms of the initial data.

For i = 0, 1, 2, . . . , n, Equation (9) gives the entries

in the second row.

Step V Now that we have two rows, one from I.C.
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(3) and one from I.C. (4), we can calculate third row

entries by formula (6) using the first (j = 0) and

second row (j = 1) entries. Continuing this process

the 4th row is calculated by (6) using 2nd and 3rd

row entries. Subsequent rows are obtained similarly.

Stencil for formula (6)

WORKED OUT EXAMPLES

Numerical solution to one-dimensional

wave equation

Examples: Compute numerically the solution of

the one-dimensional wave equation 25fxx − ftt = 0

with boundary conditions f (0, t) = f (5, t) = 0 and

with initial conditions f (x, 0)= 20x,when 0 ≤ x ≤
1 and f (x, 0) = 25

 
1− x

5

 
when 1 ≤ x≤5; ∂f

∂t

  
t=0 =

0.

Solution: Here a2 = 25, choose h = 1 mesh size
in x. Since

a2t2

h2
= 1 so

25τ 2

1
= 1 or τ = 1

5
, mesh size in t .

InItial values: At t = 0, (initial displacement).

f (x, 0) =
 

20x, 0 ≤ x ≤ 1

25
 
1− x

5

 
, 1 ≤ x ≤ 5

IC (1)

For x= 0, f00= 0, for x= 1, f10= 20, for x= 2, f20
= 15, f30 = 10, f40 = 5, f50 = 0. These six values

form the first row in the table.

Since at
∂f

∂t
(x, 0) = 0, I.C. (2)

the initial velocity is zero so

fi1 =
1

2

 
fi−1,0 + fi+1,0

 
. IC (2)

For i = 1, f11 = 1
2
(f00 + f20) = 1

2
(0+ 15) = 7.5,

For i = 2, f21 = 1
2
(f10 + f30) = 1

2
(20+ 10) = 15

For i = 3, f31 = 1
2
(f20 + f40) = 1

2
(15+ 5) = 10

For i = 4, f41 = 1
2
(f30 + f50) = 1

2
(10+ 0) = 5

These six values form the second row in the table.
The remaining displacements are calculated from

fi,j+1 = fi−1,j + fi+1,j − fi,j−1 (*)

which involves 2 time steps (at J and J − 1). Then

the resulting (Table 33.12) is given below:

Table 33.12

f (0, t=0) f (5, t)=0
B.C.(1)↓ ↓B.C.(2)

t\x 0 1 2 3 4 5

I.C.(1) 0 f00 = 0 f10 = 20f20 = 15f30 = 10f40 = 5 f50 = 0

I.C.(2) 1 0 f11 = 7.5f21 = 15f31 = 10f41 = 5 0

2 0 −5 2.5 10 5 0

3 0 −5 −10 −2.5 5 0

4 0 −5 −10 −15 −7.5 0

5 0 −5 −10 −15 −20 0

6 0 −5 −10 −15 −7.5 0

7 0 −5 −10 −2.5 5 0

8 0 −5 2.5 10 5 0

9 0 7.5 15 10 5 0

10 0 20 15 10 5 0

The values in the 2nd, 3rd, 4th, . . ., 10th row are

calculated using the formula (*). The displacement

function f (x, t) goes through a complete oscillation

(cycle) in 10 steps, indicating a periodic behaviour

with period T = 10τ = 10
 
1
5

 = 2.

EXERCISE

Numerical solution to one-dimensional

wave equation

1. Evaluate the pivotal values of 16uxx =
utt , u(0, t) = u(5, t) = 0, u(x, 0) = x2(5−
x), ut (x, 0)= 0,with h = 1 and up to one half

of the period of vibration.

Hint: Period of vibration = 2L
a
= 2.5

4
since

a2 = 16, L = 5. Period: 5
2
secs or compute up

to t = 5
4
secs. From ut (x, 0) = 0, ui1 = ui0 so

1st and 2nd row are same.

Ans.
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Table 33.13

t\x 0 1 2 3 4 5

0 0 4 12 18 16 0

1 0 4 12 18 16 0

2 0 8 10 10 2 0

3 0 6 6 −6 −6 0

4 0 −2 −10 −10 −8 0

5 0 −16 −18 −12 −4 0

2. Determine the displacement u(x, t) of a string

if utt = uxx, u(x, 0) = x(10−x)
100

, u(0, t) = 0,

u(10, t) = 0, ut (x, 0) = 0 for x = 0(1)10, t

= 0(1)5.

Ans. x : 0 1 2 3 4 5

t = 0 : 0 0.09 0.16 0.21 0.24 0.25

t = 1 : 0 .08 .15 .20 .23 .24

t = 4 : 0 .02 .04 .06 .08 .09

t = 5 : 0 0 0 0 0 0

x : 6 7 8 9 10

t = 0 : .24 .21 .16 .9 0

t = 1 : .23 .20 .15 .08 0

t = 4 : .08 .06 .04 .02 0

t = 5 : 0 0 0 0 0

3. Compute numerically the solution of 4uxx −
utt = 0, u(x, 0)= x(4− x); u(0, t)= 0, u(4, t)

= 0, with h = 1, τ = 1
2
.

Hint: Complete one oscillation in 8 steps;

Period = 81
2
= 4.

Ans. Table 33.14

t\x 0 1 2 3 4

0 0 3 4 3 0

1 0 2 3 2 0

2 0 0 0 0 0

3 0 −2 −3 −2 0

4 0 −3 −4 −3 0

5 0 −2 −3 −2 0

6 0 0 0 0 0

7 0 2 3 2 0

8 0 3 4 3 0

4. Calculate the numerical solution with h = k =
0.2 by solving utt = uxx, u(x, 0) = sin πx,

u(0, t) = u(1, t) = 0, ut (x, 0) = 0.

Hint: Symmetric u(x= 0.2, t)= u(x= 0.8, t)

and u(x = 0.4, t) = u(x = 0.6, t).

Ans. Table 33.15

x = 0 0.2 0.4

t = 0 0 .588 .951

t = 0.2 0 0.476 0.769

t = 0.4 0 0.182 0.294

t = 0.6 0 −0.182 −0.294
t = 0.8 0 −0.476 −0.769
t = 1.0 0 −0.588 −0.951

5. Evaluate the pivotal values for 1
2

period

of vibration by solving 25uxx − utt
= 0, u(0, t) = u(5, t) = 0, u(x, 0) = 2x, 0 ≤
x ≤ 2.5, u(x, 0) = 10− 2x, 2.5 ≤ x ≤ 5.

Hint: h = 1, τ = 1
5
.

Ans. Table 33.16

j\i 0 1 2 3 4 5

0 0 2 4 4 2 0

1 0 2 3 3 2 0

2 0 1 1 1 1 0

3 0 −1 −1 −1 −1 0

4 0 −2 −3 −3 −2 0

5 0 −2 −4 −4 −2 0

33.7 NUMERICAL SOLUTION TO TWO-

DIMENSIONAL LAPLACE EQUATION

Consider the boundary value problem of elliptic

Laplace equation in two-dimensions defined in a

rectangular domain with prescribed boundary con-

ditions as follows:

P.D.E :
∂2u

∂x2
= ∂

2u

∂y2
= 0,

0 < x < a,

0 < y < b
(1)

Four B.C’s
u(0, y)= p(y), u(x, 0) = q(x),
u(a, y)= r(y), u(x, b) = s(x) (2)

Fig. 33.4
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The rectangular domain is discretized by dividingOA
intoM qual parts of size x = a

M
= h, and dividing

OB into N equal parts of size  y = b
N
= k. Thus

the function u(x, y) is to be determined at the nodal
points pij = (xi, yj ) = (i x, j y) = (ih, jk) for
i = 0, 1, 2, . . .M and j = 0, 1, 2, . . . N. Replacing
(1) by finite difference, we have

ui−1,j − 2 uij + ui+1,j
h2

+ ui,j−1 − 2ui,j + ui,j+1
k2

= 0

For a square domain, h = k. The above equation
reduces to

uij =
1

4

 
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

 
(3)

(3) is known as the standard five points formula

and represented by the stencil.

Since Laplace’s equation is invariant under rotation

of axes through 45◦, we get a five point diagonal

formula

uij =
1

4

 
ui−1,j−1 + ui+1,j−1 + ui+1,j+1 + ui−1,j+1

 
(4)

with stencil

Generally, standard five point formula is preferred

over the diagonal formula.

Procedure: Suppose the square domain is divided

into a grid as follows:

Here the boundary values c1, c2, · · · , c16 are given.
To find the unknown function u at the 9 grid or mesh

points 1, 2, 3, . . . , 9,first use the diagonal formula to

compute first u5 and then u7, u9, u1, u3 in that order.

They are given by

u5 =
1

4
[c1 + c5 + c9 + c3]

u7 =
1

4
[c15 + u5 + c11 + c13]

u9 =
1

4
[u5 + c7 + c9 + c11]

u1 =
1

4
[c1 + c3 + u5 + c15]

u3 =
1

4
[c3 + c5 + c7 + u5]

Now making use of these values u5, u7, u9, u1, u3
compute the remaining values u8, u4, u6, u2 (in any

order) by standard five points formula, as follows:

u8 =
1

4
[u5 + u9 + c11 + c7]

u4 =
1

4
[u1 + u5 + u7 + c15]

u6 =
1

4
[u3 + c7 + u9 + u5]

u2 =
1

4
[c3 + u3 + u5 + u1]

The accuracy of these 9 values u1 to u9 can

be improved by using iterative methods such as

(i) Jacobi’s method (ii) Gauss-Seidel method (iii)

Successive over relaxation method. In the Gauss-

Seidel method (also known as Leibman’smethod)

a standard five point formula is used wherein the
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latest (last available) values of u are utilized. If n

denotes the iteration number then the value of u at

the (n+ 1)th iteration is given by

un+1i,j = 1

4

 
u
(n+1)
i−1,j + u

(n)
i+1,j + u

(n+1)
i,j−1 + u

(n)
i,j+1

 
(5)

Observe that in R.H.S. of (5), the latest values

un+1i−1,j and un+1i,j−1 are utilized.

Note: Solution of Laplace equation is known as

harmonic function.

WORKED OUT EXAMPLES

Example 1: Compute a solution to the Laplace’s

equation ∇2f = ∂2f

∂x2
+ ∂2f

∂y2
= 0 at all mesh (grid)

points of the following square in which the boundary

values are indicated, using five point formula.

Solution: Let us index the mesh points as
f1, f2, f3, . . . , f9. First calculate f5 using standard
five point formula and then calculate f1, f3, f7, f9
using diagonal formula. Now the remaining values
f2, f4, f6, f8 are again calculated by standard five
point formula. Thus by standard formula

f5 =
1

4
[0+ 17.0+ 21.9+ 12.1] = 12.525.

Now use diagonal formula

f1 =
1

4
[0+ 0+ 17.0+ 12.525] = 7.38

f3 =
1

4
[17.0+ 18.6+ 21.9+ 12.525] = 17.28

f7 =
1

4
[12.1+ 0+ 0+ 12.525] = 6.16

f9 =
1

4
[12.1+ 12.525+ 21.9+ 9] = 13.66

Resorting to standard formula

f2 =
1

4
[7.38+ 17+ 17.28+ 12.525] = 13.55

f4 =
1

4
[0+ 7.38+ 12.525+ 6.16] = 6.52

f6 =
1

4
[12.525+ 17.28+ 21+ 13.66] = 16.12

f8 =
1

4
[6.16+ 12.525+ 13.66+ 12.1] = 11.11.

Example 2: Solve the above problem, using the

values of f1, f2, . . . , f9 as the initial approximation,

by Gauss-Seidel (or Leibman’s) method.

Solution:

f
(n+1)
i,j = 1

4

 
f
(n+1)
i−1,j + f

(n)
i+1,j + f

(n+1)
i+1,j + f

(n)
i,j+1

 
1st iteration:

f1 =
1

4
[0+ 11.1+ 13.55+ 6.52] = 7.7925  7.79

f2 =
1

4
[7.79+ 17.0+ 17.28+ 12.525] = 13.65

f3 =
1

4
[13.65+ 19.7+ 21.9+ 16.12] = 17.84

f4 =
1

4
[0+ 7.79+ 12.525+ 6.16] = 6.62

f5 =
1

4
[16.12+ 11.11+ 13.65+ 6.62] = 11.875

f6 =
1

4
[21.0+ 13.66+ 17.84+ 11.875] = 16.09

f7 =
1

4
[11.11+ 8.7+ 0+ 6.62] = 6.607

f8 =
1

4
[13.66+ 12.1+ 11.875+ 6.607] = 11.06

f9 =
1

4
[17.0+ 12.8+ 16.09+ 11.06] = 14.238

2nd iteration

f1 =
1

4
[0+ 13.65+ 6.62+ 11.1] = 7.84

f2 =
1

4
[7.84+ 17.84+ 11.87+ 17] = 13.639  13.64

f3 =
1

4
[13.64+ 16.09+ 19.7+ 21.9] = 17.83

f4 =
1

4
[0+ 7.84+ 6.607+ 11.873] = 6.58
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f5 =
1

4
[6.58+ 13.64+ 11.01+ 16.09] = 11.843

f6 =
1

4
[11.843+ 17.833+ 14.238+ 21] = 16.2285

f7 =
1

4
[6.58+ 11.059+ 8.7+ 0] = 6.58

f8 =
1

4
[12.11+ 6.587+ 14.238+ 11.843] = 11.19

f9 =
1

4
[11.19+ 16.25+ 17+ 12.8] = 14.31.

Note that in every calculation, the latest (last avail-

able) values of f has been taken into the right hand

side of the formula.

Ans: 7.8, 13.6, 17.8, 6.6, 11.9, 16.2, 6.6, 11.2, 14.3.

EXERCISE

1 (a) Determine the values of the interior lattice

points of a square region of the harmonic

function u with boundary conditions pre-

scribed as shown in the figure.

(b) Iterate by Gauss-Seidel (Leibman’s)

method.

Ans. (a) u1 = 7.4, u2 = 13.6, u3 = 17.3, u4 = 6.5,

u5 = 12.5, u6 = 16.1, u7 = 6.2, u8 = 11.1,

u9 = 13.7

(b) u1 = 7.9, u2 = 13.7, u3 = 17.9, u4 = 6.6,

u5 = 11.9, u6 = 16.3, u7 = 6.6, u8 = 11.2,

u9 = 14.3 (after 3 iterations)

2 (a) Compute solution of Laplace’s equation in

the following square grid with prescribed

boundary conditions.

(b) Iterate the values by Gauss-Seidel method.

Ans. (a) u1 = 6.25, u2 = 9.38, u3 = 6.25, u4 =
18.75, u5= 25, u6= 18.75, u7= 43.75, u8
= 53.12, u9 = 43.75

(b) 7.17, 9.86, 7.16, 18.78, 25.04, 18.77, 42.88,

52.70, 42.87 (after 3 iterations)

3. Compute solution of Laplace’s equation in

the square grid.

Hint: Solve the system of equations

u2 + u3 − 4u1 + 100+ 100 = 0

u1 + u4 − 4u2 + 100+ 0 = 0

u1 + u4 − 4u3 + 100+ 0 = 0

u2 + u3 − 4u4 + 0+ 0 = 0

Ans. u1 = 75, u2 = 50, u3 = 50, u4 = 25

4 (a) Determine u1, u2, u3, . . . , u9 if u satisfies

Laplace’s equation in the grid with given

boundary condition.
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(b) Iterate by Gauss-Seidel method.

Hint: Use symmetry about AB and CD.

Ans. (a) u1 = u3 = u7 = u9 = 1125, u2 = u8 =
1188, u5 = 1500, u6 = u4 = 1438

(b) u1 = 939, u2 = 1001, u4 = 1251, u5 =
1126 (after 12 iterations)

5. Solve Laplace’s equation.

Hint: Solve the four equations

40+ 60+ u2 + u3 − 4u1 = 0

60+ 50+ u1 + u4 − 4u2 = 0

20+ 10+ u1 + u4 − 4u3 = 0

20+ 40+ u3 + u2 − 4u4 = 0

Ans. u1 = 43.33, u2 = 46.66, u3 = 26.66, u4 =
33.33

6. If ∇2u = 0, find u at the mesh points.

Hint: Square is symmetric about both the

diagonaly AC and BD.

Ans. u1 = 25, u3 = 15, u2 = 20, u5 = 20
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Matrices and Determinants

34.1 INTRODUCTION

Matrix means an “arrangement” or “array” Matrices

(plural ofmatrix)were introduced byCayley in 1860.

Amatrix ‘A’ is rectangular array ofm · n numbers (or

functions) arranged in m horizontal lines (known as

‘rows’) and in n vertical lines (known as ‘columns’),

denoted by Am×n. These m · n numbers are known

as the elements or entries of the matrix A and are

enclosed in brackets [ ], or ( ) or || ||. The order of the

matrix is m× n.

When m  = n, the matrix is said to be rectangular.

Row matrix (or row vector) B1×n is a matrix having

only one row (and several columns), column matrix

(or column vector) Cm×1 is a matrix having only one

column (and several rows). A matrix is said to be a

n-square matrix or simply square matrix if m = n.

Thus the number of rows and number of columns in

a square matrix are equal.

The elements of the matrix A are denoted by aij
and are located by the double subscript notation ij

where the first subscript i denotes the row (position)

and the second subscript j denotes the column posi-

tion. Thus capital letters are used to denote matrices,

while the corresponding small letters with double

subscript notation are used to denote the elements

(or entries). Thus A = [aij ].

Null or zero matrix denoted by 0 is a matrix with

all its elements zero.

Equality: TwomatricesA andB are said to be equal

if they are of the same order and aij = bij for every

i and j . Otherwise they are unequal, denoted by

A  = B.

34.2 MATRIX ALGEBRA

Sum (or difference):Cm×n = Am×n ± Bm×n thenC

is said to be the sum (or difference) of A and B pro-

vided cij = aij ± bij for i, j i.e. the elements of C

are obtained by adding (or subtracting) the corre-

sponding elements of A and B.

Note that addition or subtraction ofmatricesA and

B is possible onlywhen bothA andB are of the same

order.

Submatrix of A is a matrix obtained from A after

deleting some rows or columns or both.

Scalar multiplication: For any non zero scalar k,

we have C = kA when cij = kaij i.e every element

of A is multiplied by k. Thus−B is considered as B

multiplied by −1.

Properties:

1. A+ B = B + A commutative

2. A+ (B ± C) = (A+ B)± C associative

3. k(A+ B) = kA+ kB distributive

4. A− B  = B − A not commutative

Transpose of a matrix A of order m× n is denoted

byAT orA is obtained fromA by interchanging the

rows and columns. Thus B = AT is of n×m order

and bji = aij for any i, j , i.e. the i, j
th element of A

is placed in the j , i th location in AT .

Properties:

1. (AT )T = A

2. (kA)T = kAT

3. (A+ B)T = AT + BT

34.1



34.2 MATHEMATICAL METHODS

Matrix multiplication: Two matrices A and B are

said to be conformable for multiplication if the num-

ber of columns in A is equal to the number of rows

in B. Then the product of two matrices Am×p and

Bp×n is a matrix cm×n where

cij =
p 
k=1

aikbkj for i = 1 to m and

j = 1 to n

i.e., i, j th element in the product matrixC is obtained

by adding the p products obtained by multiplying

each entry of the i th row of A by the corresponding

entry of the j th column of B. Thus matrix multipli-

cation amounts to multiplication of rows (of the first

matrix) into columns (of the second matrix) i.e., row

by column multiplication.

m A • p B =m C
nnp

i.e. mn scalar products of the

m rows of A with n columns of B.

In the product C = AB, the matrix B is premul-

tiplied or multiplied from the left by A; while the

matrix A is post multiplied or multiplied from the

right by B.

Properties:

1. (kA)B = k(AB) = A(kB) = kAB

2. A(BC) = (AB)C

3. (A+ B)C = AC + BC

4. A(B + C) = AB + AC

However

5. AB  = BA in general (not commutative)

6. AB = 0 does not necessarily imply thatA = 0 or

B = 0 or BA = 0.

Also

7. AB = AC does not necessarily imply that

B = C, even when A  = 0.

8. (AB)T = BTAT

i.e., transpose of a product is the product of the trans-

poses.

34.3 SPECIAL SQUARE MATRICES

The elements aii of an n-square matrix are known

as diagonal elements. Trace of matrix A =

trace of A =
n 
i=1

aii = sum of the diagonal elements.

Result: trace (A+ B) = trace A + trace B,

trace (kA) = k trace A.

A is singularmatrix if |A| = 0.A is Non-singular

matrix if |A|  = 0

Upper triangular matrix if aij = 0 for i > j i.e.,

can have non zero entries only on and above themain

diagonal while any entry below the diagonal is zero.

Lower triangular matrix if aij = 0 for i < j . A

matrix is said to be triangular if it is either upper or

lower triangular matrix.

Diagonal matrix if any entry above or below, the

main diagonal is zero. However zero entries may be

present in the diagonal. Thus

aij = 0 for i  = j

(however aii = 0, not for all i).

Scalarmatrix is a diagonal matrix in which all the

diagonal entries are equal to a constant k i.e., aii = k

for every i and aij = 0 for any i and j , (i  = j ).

Identitymatrix denoted by I is a scalarmatrixwith

k = 1. Thus

I3 = I3× 3 =


1 0 0

0 1 0

0 0 1




Positive integral power of a matrix A, denoted by

An, is obtained by multiplying A by itself n times.

34.4 DIFFERENCES BETWEEN

DETERMINANTS AND MATRICES

Determinant MatrixD A

1. It has a numerical value It has no value. It is a symbol
representing an array of many
numbers on which algebra can
be performed.

2. It can only a be square It can be rectangular

3. It is zero when elements It is zero when
of any row (or elements in

mn) are zero

4. It is multiplied by It is multiplied by .
if elements of any elements

row (or column)
are multiplied by

5. Its value remains unalt- It gets altered (giving
ered by the inter a new matrix)
of rows and columns

6. Its value is – It gets changed to a new
cent rows

are are

only
one

k k

one
k

D

all

all

k

the
the matrix are zero

if the
of the matrix are

multiplied by

rise to
change when rows and

columns. are interchanged

when matrix
(or when adjacent rows (or

interchanged.

colu

adja
columns) interchanged. columns)
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WORKED OUT EXAMPLES

Example 1: Classify the following matrices. Also

find the order of the matrices.

(a)




1 2 3 4

2 3 4 5

3 −4 0 6

−7 3
2

8 10

5 6 7 9


 (b)



1

2

3

4


 (c) [2 4 6 7 8]

(d)



2 3 1 0

0 −5 3 7

0 0 0 10

0 0 0 6


 (e)


5 0 0

7 −2 0

9 8 12




(f)


5 0 0

0 −6 0

0 0 0


 (g)



k 0 0 0

0 k 0 0

0 0 k 0

0 0 0 k




(h)


0 0 0

0 0 0

0 0 0


 (i) [13]

Solution:

(a) Rectangular matrix of order 5× 4

(b) Column matrix of order 4× 1

(c) Row matrix of order 1× 5

(d) Upper triangular matrix, 4× 4 (square)

(e) Lower triangular matrix, 3× 3 (square)

(f) Diagonal matrix, 3× 3 (square)

(g) Scalar matrix, 4× 4 (square)

(h) Null or zero matrix, 3× 3 (square)

(i) 1× 1 matrix which identifies the single entry

Example 2: Suppose matrix A has m rows and m

+ 6 columns and matrix B has n rows and 12− n

columns. If both AB and BA exists, determine the

orders of the matrices A and B.

Solution: SinceAm×m+ 6Bn× 12− n exists, the num-

ber of columns in A must be equal to the number of

rows in B i.e. m + 6 = n or m− n = −6.

Similarly Bn× 12− nAm×m+ 6 exists,

12− n = m or m+ n = 12

solving m = 3, n = 9. The order of A is 3× 9 and

of B is 9× 3.

Example 3: Determine AB and BA if A− B = 
2 3

1 2

 
and A+ B =

 
5 7

4 1

 
. Is AB = BA.

Solution: Adding A− B =

 
2 3

1 2

 
= C

A+ B =

 
6 7

5 2

 
= D we get

2A = C +D =

 
2 3

1 2

 
+

 
6 7

5 2

 
=

 
8 10

6 4

 
so

A =

 
4 5

3 2

 
. Then

B = D − A =

 
6 7

5 2

 
−

 
4 5

3 2

 
=

 
2 2

2 0

 

So AB =

 
4 5

3 2

  
2 2

2 0

 
=

 
18 8

10 6

 
and

BA =

 
2 2

2 0

  
4 5

3 2

 
=

 
14 14

8 10

 
.

Note that AB  = BA, in general.

Example 4: If A =

 
11 −25

4 −9

 
show that An = 

1+ 10n −25n

4n 1− 10n

 
using mathematical induction.

Solution: Consider A2 = A · A

=

 
11 −25

4 −9

  
11 −25

4 −9

 

A2 =

 
21 −50

8 −19

  
1+ 10 · 2 −25 · 2

4 · 2 1− 10 · 2

 

Now A3 = A · A2 =

 
11 −25

4 −9

  
21 −50

8 −19

 

=

 
31 −75

12 −29

 

So

A3 =

 
1+ 10 · 3 −25 · 3

4 · 3 1− 10 · 3

 
.

Assume Ak =

 
1+ 10 k −25 k

4 k 1− 10 k

 
. Then
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Ak+1 = A · Ak =

 
11 −25

4 −9

  
1+ 10k −25k

4k 1− 10k

 

=

 
11+ 10k −25− 25k

4+ 4k −9− 10k

 

=

 
1+ 10(k + 1) −25(k + 1)

4(k + 1) 1− 10(k + 1)

 

By mathematical induction the result follows.

Example 5: If A =

 
8 −4

2 2

 
prove that

A2 − 10A+ 24 I = 0.

Solution: A2 = A · A =

 
8 −4

2 2

  
8 −4

2 2

 

=

 
56 −40

20 −4

 
. Then A2 − 10A+ 24I = 

56 −40

20 −4

 
− 10

 
8 −4

2 2

 
+ 24

 
1 0

0 1

 

=

 
56− 80+ 24 −40+ 40+ 0

20− 20+ 0 −4− 20+ 24

 

=

 
0 0

0 0

 
= 0

Example 6: Show that AB = AC does not neces-

sarily imply that B = C where A =


1 −3 2

2 1 −3

4 −3 −1


,

B =


1 4 1 0

2 1 1 1

1 −2 1 2


, C =


2 1 −1 −2

3 −2 −1 −1

2 −5 −1 0




Solution: A3× 3 B3× 4 = D3× 4

=


−3 −3 0 1

1 15 0 −5

−3 15 0 −5




= A3×3C3×4 however B  = C.

Example 7: Verify that

(a) AB = BA = 0, (b) AC = A,

(c) CA = C, (d) ACB = CBA,

(e) (A± B)2 = A2 + B2,

(f) (A− B)(A+ B) = A2 − B2

where A =


 2 −3 −5

−1 4 5

1 −3 −4


,

B =


−1 3 5

1 −3 −5

−1 3 5


, C =


 2 −2 −4

−1 3 4

1 −2 −3




Solution:

(a) AB =


 2 −3 −5

−1 4 5

1 −3 −4




−1 3 5

1 −3 −5

−1 3 5




=


0 0 0

0 0 0

0 0 0


 = 0

Similarly

BA =


−1 3 5

1 −3 −5

−1 3 5




 2 −3 −5

−1 4 5

1 −3 −4




=


0 0 0

0 0 0

0 0 0


 = 0

Thus AB = BA = 0

(b) AC =


 2 −3 −5

−1 4 5

1 −3 −4




 2 −2 −4

−1 3 4

1 −2 −3




=


 2 −3 −5

−1 4 5

1 −3 −4


 = A

(c) CA =


 2 −2 −4

−1 3 4

1 −2 −3




 2 −3 −5

−1 4 5

1 −3 −4




=


 2 −2 −4

−1 3 4

1 −2 −3


 = C

(d) ACB = (AC)B = (A)B = AB = 0

CBA = C(BA) = C · 0 = 0

(e) (A± B)2 = A2 ± AB ± BA+ B2 = A2 + B2

since AB = BA = 0

(f) (A− B)(A+ B) = A2 − BA+ AB − B2 =

A2 − B2 since AB = BA = 0

Example 8: Prove that (a) trace (A+ B) = traceA

+ trace B (b) trace (kA) = k trace A.

Solution: (a) Trace (A+ B) =

n 
i=1

(aii + bii)

=
 

aii +
 

bii = trace A + trace B
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(b) Trace (kA) =
n 
i=1

(kaii) = k
n 
i=1

aii = k trace A

Example 9: Express A =


5 −2 1

7 1 −5

3 7 4


 as the

product of LU where L and U are lower and upper

triangular matrices (known as LU-decomposition or

Factorization).
Solution: Let the lower triangular matrix be

L =


 l11 0 0

l21 l22 0

l31 l32 l33


 while U =


u11 u12 u13

0 u22 u23
0 0 u33




be the upper triangular matrix. Then

A =


5 −2 1

7 1 −5

3 7 4


 = LU


 l11 0 0

l21 l22 0

l31 l32 l33




u11 u12 u13

0 u22 u23
0 0 u33




Equating the corresponding component on both

sides, we have l11u11 = 5, l11u12 = −2, l11u13 = 1,

l21u11 = 7, l21u12 + l22u22 = 1, l21u13 + l22u23 =

−5, l31u11 = 3, l31u12 + l32u22 = 7, l31u13 + l32u23
+l33u33 = 4.

Since there are 12 unknowns and 9 equations only,

to get a unique solution, assume that

l11 = l22 = l33 = 1

Now u11 = 5, u12 = −2, u13 = 1. Then l21 =
7
u11
=

7
5
, u22 = (1− l21u12)/l22

 
1− 7

5
(−2)

  
1 = 19

5
, u23

= (−5− l21u13)/l22 =
 
−5− 7

5
· 1
 
= − 32

5
, l31 =

3
u11
= 3

5
.

Similarly l32 =
41
19
, u33 = 327

19
. Thus A = LU =

 1 0 0
7
5

1 0
3
5

41
19

1




5 −2 1

0 19
5

−32
5

0 0 327
19




34.5 MATRICES

EXERCISE

1. If A =


2 2 −3

5 0 2

3 −1 4


, B =


3 −4 2

4 2 5

2 0 3


,

C =


4 6 2

0 3 2

7 −2 3




find (a) A+ B, (b) A− B, (c) −3B, (d) verify

A+ (B − C) = (A+ B)− C, (e) Find D such

that C +D = B, (f) AB, (g) BA, (h) Is AB =

BA, (i) AC, (j) verify A(B + C) = AB + AC

(k) Is AB = AC, (l) Is AC = CA

Ans. (a) A+ B =


5 −2 −1

9 2 7

5 −1 7




(b) A− B =


−1 6 −5

1 −2 −3

1 −1 1




(c) −3B =


 −9 12 −6

−12 −6 −15

−6 0 −9




(e) Hint: B − C =


−1 −10 0

+4 −1 3

−5 2 0


 = D

(f) AB =


 8 −4 5

19 −20 16

13 −14 13




(g) BA =


−8 4 −9

33 3 12

13 1 9




(h) No. In general AB  = BA

(i) AC =


−13 24 −1

34 26 16

40 12 16




(j) Hint: B + C =


7 2 4

4 5 7

9 −2 6




(l) No (j) Hint: CA =


44 6 8

21 −2 14

13 11 −13


, No

AC  = CA

2. Determine the orders of the matrices A havingm

rows and m + 5 columns and B having n rows

and 11− n columns if both AB and BA exist.
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Ans. A3×8 ;B8×3

3. Compute the product AB,BA given that A+ B

=

 
1 −1

3 0

 
and A− B =

 
3 1

1 4

 
. Is BA = AB

Ans. AB =

 
−2 −2

0 −6

 
, BA =

 
−4 −2

−2 −4

 
, No

Hint: A =

 
2 0

2 2

 
, B =

 
−1 −1

1 −2

 

4. State why in general (a) (A± B)2  = A2 ±

2AB + B2 (b) A2 − B2  = (A− B)(A+ B)

(c) Verify the results (a) and (b) for A and B in

the above problem 3.

Ans. Since AB  = BA in general.

5. If A =


 1 2 2

0 2 1

−1 2 2


, verify that A3 − 5A2 +

8A− 4I = 0

6. If A =

 
cos θ − sin θ

sin θ cos θ

 
show that An = 

cos nθ − sin nθ

sin nθ cos nθ

 
by using mathematical

induction.

7. Is AB = BA given that

A =


 1 3 0

−1 2 1

0 0 2


, B =


 2 3 4

1 2 3

−1 1 2




8. Determine the values of x for which the matrixA

is nonsingular where A =


 1 2x 3x

1 1 2

x 3 0




Ans. A is nonsingular for any x other than 3 and 2
3

Hint: |A|=3x2−11x+6

= (x − 3)
 
x − 2

3

 
= 0

9. If A =

 
3 1

0 1

 
, B =

 
1 5

7 2

 
then find (a) AT (b)

BT (c) (A+ B)T (d) (A− B)T (e) AT + BT

(f) AT − BT (g) Verify (A+ B)T = AT + BT

(h) Is (A− B)T = AT − BT (i) (AB)T (j)BTAT

(k) Verify that (AB)T = BTAT

Ans. (a) AT =

 
3 0

1 1

 
(b) BT =

 
1 7

5 2

 

(c) (A+ B)T =

 
4 7

6 3

 

(d) (A− B)T =

 
2 −7

−4 −1

 

(e) AT + BT =

 
4 7

6 3

 
(g) True

(h) (A− B)T = AT − BT

(i) (AB)T =

 
10 7

17 2

 

(j) BTAT =

 
10 7

17 2

 

(k) True

10. Express A =


3 5 2

0 8 2

6 2 8


 as product LU where L

and U are lower and upper triangular matrices.

Ans. L =


1 0 0

0 1 0

2 −1 1


, U =


3 5 2

0 8 2

0 0 6




34.6 DETERMINANTS

Although determinants are inefficient in practical

computations, they are useful in vector algebra,

differential equations and eigenvalue problems. A

determinant is a scalar (numerical value) associated

with only square matrix A = [aij ] and is denoted as

determinant ofA or detA or |A|. Thus a determinant

is a scalar-valued function whose domain is a set of

square matrices. A determinant of an n× n square

matrix A is a scalar given by

D = detA =

         

a11 a12 . . . a1n
a21 a22 . . . a2n
...

an1 an2 . . . ann

         
(1)

The determinantD is said to be of order n and con-

tains n2 elements or quantities (which may be num-

bers or functions), arranged in n rows and n columns.
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The principal diagonal of the determinant is the slop-

ing line of elements from left top corner a11 to ann.

Note that in thematrix representation the elements

aij are enclosed between brackets [ ] or ( ) or || ||,

whereas in the determinant the elements are enclosed

between vertical lines or bars | |. For n = 2, the second

order determinant is defined by

D = detA =

    a11 a12
a21 a2

    = a11 a22 − a21 a12. (2)

i.e. second order determinant = difference between

the product of elements of principal diagonal and the

product of the elements of the other diagonal.

For n = 1,

D = det[a11] = [a11] = a11

Note: Here vertical bars does not denote absolute

value. Thus det [−5] = | − 5| = −5

Minor of an element aij of a matrix A, denoted by

Mij , is an (n− 1) order determinant of the submatrix

ofA obtained by omitting the ith row and j th column

in A.

Cofactor of an element aij of a matrix A, denoted

by Cij , is a signed minor of aij

i.e. Cij = (−1)i+jMij

Laplace Expansion

Laplace Expansion is the expansion of determinant

in terms of the cofactors. For n ≥ 2

D =

n 
j=1

aij Cij = ai1 Ci1 + ai2 Ci2 + · · · + ainCin

(row wise for any i = 1, 2, . . . or n) (3)

or

D =
n 
i=1

aij Cij =a1j C1j+a2j C2j+· · ·+anjCnj (4)

(column wise for any j = 1, 2, . . . or n).

Thus the value of a determinant is the sum of the

products of elements of any row (or column) and

their respective cofactors. However sum of products

formed by multiplying the elements of a row (or col-

umn) ofA by the corresponding cofactors of another

row (or column) ofA is zero i.e.
n 

k=1

aik Cjk = δij |A|

or
n 

k=1

akj Cki = δij |A|. Here δij is the Kronecker

delta. So it is convenient to choose the row or column

in the determinant with zeros in it, since these terms

in the expansion will vanish. The expansion ofD by

(3) or (4) involves n! determinants sinceD is defined

in terms of n determinants of order (n− 1), each of

which is in turn defined in terms of (n− 1) determi-

nants of order (n− 2) and then (n− 2) determinants

of order (n− 3) and so on. As the number of calcula-

tions of annth order determinant isN (n) ∼ en!, even

for n = 25, computing time is 4× 1019 sec s  1012

years. However with the use of several properties of

determinants which are listed below, the determinant

can be triangularized. In this case, the number of cal-

culationsN (n) ∼ 2n3

3
. For n = 25, computation time

is 0.01 second (against 1012 years which is incredi-

ble!)

Properties of Determinants

1. If all the elements of any one row (or column) are

zero, then det A = 0.

2. If any two rows (or columns) are proportional to

each other, then det A = 0.

3. If any row (or column) is a linear combination of

other rows (or columns), then det A = 0.

4. If all the elements of any row or column are mul-

tiplied by k, giving rise to a new matrix B, then

det B = k · detA.

5. If B = kA then det B = det (kA) = kn det A.

6. det (AT ) = det (A).

7. In general, det (αA+ βB)  = α det (A)+

β det (B) i.e. determinant ( ) is not linear.

8. If any two rows (or columns) of A are inter-

changed, yielding a new matrix B then

detB = − detA.

9. If k times the elements of any row (or column) in
A are added to the corresponding elements of any
row (or column) in A, giving rise to a new matrix
B, then det B = det A. This operation is written
symbolically as
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ri → ri + k rj

i.e., elements of j th rowmultiplied by k are added
to the corresponding elements of the ith row.Here
the ith row gets modified. Similarly

ci → ci + k cj

10. If A is a (upper or lower) triangular matrix or
diagonal matrix then

det A = a11 · a22 · · · ann

i.e. value of the determinant is the product of the

diagonal elements.

11. If each element of a row (or column) consists of

‘m’ terms (two: binomials, three: trinomial etc),

then the determinant is expressed as the sum of

‘m’ determinants. Suppose any row (or column)

of A is a binomial say a = b + c then

det A|a = det A|b + det A|c .

Here A|a is the original matrix, A|b is the matrix

obtained from the original matrix A|a by replacing

a by b and similarly A|c by replacing a by c.

Extending this, if the elements of say three rows

(or columns) consists of m, n, p terms respectively

then the original determinants can be expressed as

the sum of m · n · p determinants as stated above.

Product of Determinants

12. For any n× n matrices A and B

det (AB) = det (BA) = det A · det B

Note: If A is singular, then AB is also singular so

det A = 0, det AB = 0. Thus 0 = 0

13. If C = det A · det B, then the i, j th element of C

is obtained bymultiplying the ith row (or column)

of A with j th column (or row) of B. Note that in

matrix multiplication i, j th element is obtained

by multiplying the ith row of A with j th column

ofB. Whereas in determinant multiplication, ij th

element is obtained either bymultiplying (ith row

of A with j th column of B) or (ith row of A with

j th rowofB) or (ith column ofAwith j th column

ofB) or (ith columnofAwith j th rowofB).Thus,

in determinantmultiplicationwe canmultiply row

by row, row by column, column by row or column

by column.

14. Derivative of a Determinant

If the elements aij of a matrix A are differentiable

functions of a parameter t , then the derivative of

the determinant A equals to sum of n determinants

obtained by replacing in all possible ways the ele-

ments of one row (or column) of |A| by their deriva-

tives wrt ‘t’, i.e.

d
dt

(det A) =

         

da11
dt
· · ·

da1n
dt

a21 · · · a2n
...

an1 · · · ann

         
+

         

a11 · · · a1n
da21
dt
· · ·

da2n
dt

...

an1 · · · ann

         
+

+ · · · +

         

a11 · · · a1n
...

an−1, 1 · · · an+1, n
dan1
dt

· · ·
dann
dt

         
15. Factor Theorem

Consider an nth order functional determinant A in

which the elements aij are functions of x. Suppose

for x = x∗, any two rows (or columns) of A become

equal, then det A = 0. Then det A must contain

a factor (x − x∗). Suppose for x = x∗, k rows (or

columns) become identical then det A = 0. So con-

sequently det A must contain a factor (x − x∗)k−1.

16. Singular

AmatrixA is said to be singular if |A| = 0, otherwise

A is said to be nonsingular i.e., determinant of A is

non zero (|A|  = 0).

WORKED OUT EXAMPLES

Example 1: Find all the cofactors and evaluate

A =

    −2 3

−4 5

    
Solution: C11 = cofactor of −2 = 5,

C12 = cofactor of 3 = 4,

C21 = cofactor of −4 = −3,
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C22 = cofactor of 5 = −2

By Laplace expansion about the first row,

|A| = −2 · C11 + 3 · C12 = −2(5)+ 3(4)

= −10+ 12 = 2

By Laplace expansion about the second row

|A| = −4C21 + 5C22 = −4 (−3)+ 5 (−2)

= 12− 10 = 2

Similarly about first column

|A| = (−2)(5)− 4(−3) = −10+ 12 = 2

About 2nd column, |A| = 3(+4)+ 5(−2) = 2

Example 2: Find the minors M21,M13, cofactors

C22, C32 and evaluate the determinant

|A| =

      
12 27 12

28 18 24

70 15 40

      

Solution: M21 = minor of 28 =

    27 12

15 40

    
= 1080− 180 = 900

M13 = Minor of 12 =

    28 18

70 15

    = −840
C22 = cofactor of 18 = (−1)2+2M22 =

    12 12

70 40

    
= −360

C32 = cofactor of 15 = (−1)3+2M32 = −

    12 12

28 24

    
= −(−48) = 48. Expanding the determinant by ele-

ment of first row, we have

|A| = 12(18 · 40− 15 · 24) −27(28 · 40− 70 · 24)

+12(28 · 15− 70 · 18)

= 12(360)− 27(−560)+ 12(−840) = 4320+

15120− 11080

= 9360

Example 3: Evaluate |A| by triangularization

where

|A| =

        

1 2 3 4

2 1 4 3

3 4 2 1

4 3 1 2

        

Solution: R2 → R2 − 2R1, R3 → R3 − 3R1,

R4 → R4 −4R1

|A| ∼

        

1 2 3 4

0 −3 −2 −5

0 −2 −7 −11

0 −5 −11 −14

        
Expanding by first column and taking minus from

the three rows,

|A| = (−1)

      
3 2 5

2 7 11

5 11 14

      R2 → R2 − R1

= (−1)

      
3 2 5

−1 5 6

5 11 14

      
R1 → R1 + 3R2

R3 → R3 + 5R2
= (−1)

      
0 17 23

−1 5 6

0 36 44

      
Expanding by first column

|A| = (−1) · (−1)(−1)[17 · 44− 23 · 36]

|A| = −[748− 828] = 80

Example 4: Evaluate

A =

            

0 0 0 0 0 1

0 0 0 0 2 1

0 0 0 3 2 1

0 0 4 3 2 1

0 5 4 3 2 1

6 5 4 3 2 1

            
Solution: Interchanging all the rows and columns

we get

|A|=−|B|=−

            

1 0 0 0 0 0

1 2 0 0 0 0

1 2 3 0 0 0

1 2 3 4 0 0

1 2 3 4 5 0

1 2 3 4 5 6

            
=−(1·2·3·4· 5·6)

= −720

since B is an lower triangular matrix.

Example 5: Find the value of

        

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16
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Solution: R3 → R3 − R2, R4 → R4 − R1

=

        

1 15 14 4

12 6 7 9

−4 4 4 −4

12 −12 −12 12

        
Taking 4 from 3rd row and 12 from 4th row,

= 4 · 12

        

1 15 14 4

12 6 7 9

−1 1 1 −1

1 −1 −1 1

        
;

R4 → R4 + R1 = 48

        

1 15 14 4

12 6 7 9

−1 1 1 −1

0 0 0 0

        
= 48 · 0 = 0

since all the entries of the 4th row are zero.

Example 6: Evaluate

      
a + 2b a + 4b a + 6b

a + 3b a + 5b a + 7b

a + 4b a + 6b a + 8b

      

Solution: Performing R3 → R3 − R2, R1 →

R1 − R2,      
a + 2b a + 4b a + 6b

b b b

2b 2b 2b

      = 0 since the last two row

are proportional.

Example 7: Evaluate the nth order determinant

& =

          

a b · · · b b

b a · · · b b

· · · · · · · · · · · · · · ·

b b · · · a b

b b · · · b a

          

Solution: Adding all the (n− 1) columns to the first
column,

& =

          

a + (n− 1)b b · · · b

a + (n− 1)b a · · · b

a + (n− 1)b b · · · b

· · · · · · · · · · · ·

a + (n− 1)b b · · · a

          

= a + (n− 1)b

          

1 b b · · · b

1 a b · · · b

1 b a · · · b

· · · · · · · · · · · ·

1 b b · · · a

          
when a = b, R1 = R2 = R3 = · · · = Rn i.e. all the n

rows are identical and so determinant& vanish. Thus

by factor theorem, (a − b)n−1 is factor of&. Thus&

= (a − b)n−1 [a + (n− 1)b].

Example 8: Show that

      
a + b b + c c + a

b + c c + a a + b

c + a a + b b + c

      
= 2

      
a b c

b c a

c a b

      
Solution: Here the 3 rows contains binomials. So
the given determinant can be expressed as the sum
of 2 · 2 · 2 = 8 determinants as follows.      

a + b b + c c + a

b + c c + a a + b

c + a a + b b + c

      =
      
a b + c c + a

b c + a a + b

c a + b b + c

      +

+

      
b b + c c + a

c c + a a + b

a a + b b + c

      

=

      
a b c + a

b c a + b

c a b + c

      +
      
a c c + a

b a a + b

c b b + c

      +
      
b b c + a

c c a + b

a a b + c

      +

+

      
b c c + a

c a a + b

a b b + c

      
In this the 3rd determinant is zero because the 1st
and 2nd columns are identical. Then

=

      
a b c

b c a

c a b

      +
      
a b a

b c b

c a c

      +
      
a c c

b a a

c b b

      +

+

      
a c a

b a b

c b c

      +
      
b c c

c a a

a b b

      +
      
b c a

c a b

a b c

      

=

      
a b c

b c a

c a b

      +
      
b c a

c a b

a b c
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Since in these 2nd, 3rd, 4th, 5th determinants are zero

because of identical columns.

=

      
a b c

b c a

c a b

      + (−1)(−1)

      
a b c

b c a

c a b

      

= 2

      
a b c

b c a

c a b

      
Example 9: Prove that for the nth order determi-

nant & where

& =

           

1+ a1 a2 a3 · · · an
a1 1+ a2 a3 · · · an
a1 a2 1+ a3 · · · an
...

. . .

a1 a2 a3 · · · 1+ an

           
= 1+ a1 + a2 + · · · + an.

Solution: Performing R2 → R2 − R1, R3 →

R3 − R1, . . . , Rn → Rn − R1 (i.e. subtracting the
first row from the remaining (n− 1) rows) we get

& =

            

1+ a1 a2 a3 a4 . . . an
−1 1 0 0 . . . 0

−1 0 1 0 . . . 0

−1 0 0 1 . . . 0

· · · . . . . . . . . . · · ·

−1 0 0 0 . . . 0 1

            
Adding C2, C3, . . . , Cn columns to the first column
C1 i.e. C1 → C1 + C2 + C3 + · · · + Cn, we have

& =

           

1+ a1 + a2 + · · · + an a2 a3 a4 . . . an
0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
...

0 0 0 0 . . . 1

           
Since this is an upper triangular matrix,& = product

of the diagonal elements.

& = (1+ a1 + a2 + · · · + an) · 1 · 1 · . . . 1

Example 10: Solve the following equation

& = |A| =

      
a − x c b

c b − x a

b a c − x

      = 0

or for what value of x, & is zero (i.e., matrix A is

singular).

Solution: Adding C2, C3 columns to the first col-

umn C1, i.e, C1 → C1 + C2 + C3 we have

& =

      
a − x + c + b c b

c + b − x + a b − x a

b + a + c − x a c − x

      

= (a + b + c − x)

      
1 c b

1 b − x a

1 a c − x

      
performing R2 → R2 − R1, R3 → R3 − R1 we get

& = (a + b + c − x)

      
1 c b

0 b − x − c a − b

0 a − c c − x − b

      
= (a + b + c − x) · 1 · [(b − x − c)(c − x − b)−

− (a − c)(a − b)].

= (a + b + c − x) (x2 − a2 − b2 − c2+

+ ab + bc + ca).

Thus & = 0 when x = a + b + c or

x = ±
 
a2 + b2 + c2 − ab − bc − ca

Example 11: Compute the product directly (a)

Row by column (b) Row by row (c) Column by col-

umn (d) Column by row (e) By individually, calcu-

lating the determinants where

A =

      
1 1 −1

2 1 3

1 0 1

      , B =

      
−2 1 1

3 1 0

−1 2 4

      
Solution: Product of the determinants

(a) Row by column

AB =

      
1 1 1

2 1 3

1 0 1

      
      
−2 1 1

3 1 0

−1 2 4

      =
      

2 0 −3

−4 9 14

−3 3 5

      = −39
(b) Row by row

AB=

      
1 1 −1

2 1 3

1 0 1

      
      
−2 1 1

3 1 0

−1 2 4

      =
      
−2 4 −3

0 7 12

−1 3 3

      = −39
(c) Column by column

AB =

      
1 1 −1

2 1 3

1 0 1

      
      
−2 1 1

3 1 0

−1 2 4

      =
      
3 5 5

1 2 1

10 4 3

      = −39
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(d) Column by row

AB =

      
1 1 −1

2 1 3

1 0 1

      
      
−2 1 1

3 1 0

−1 2 4

      =
      

1 5 7

−1 4 1

6 0 11

      = −39
(e) A = 3, B = −13, so AB = (3)(−13) = −39

Example 12: Find the derivative of the determinant
wrt x (a) using formula (b) by differentiating the
value of the (expanded) determinant wrt x.

d

dx

      
x 1 2

x2 2x + 1 x3

0 3x − 2 x2 + 1

      
Solution: (a) By formula, the derivative = sum of
3 determinants where the 1st, 2nd, 3rd rows are dif-
ferentiated respectively wrt x. Thus

d

dx

      
x 1 2

x2 2x + 1 x3

0 3x − 2 x2 + 1

      =
      
1 0 0

x2 2x + 1 x3

0 3x − 2 x2 + 1

      +

+

      
x 1 2

2x 2 3x2

0 3x − 2 x2 + 1

      +
      
x 1 2

x2 2x + 1 x3

0 3 2x

      
= [(2x + 1)(x2 + 1)− x3(3x − 2)] + [x2(x2 + 1)−

− 3x2(3x − 2)− 1(2x(x2 + 1)− 0)+

+ 2(2x(3x − 2))] + [x((2x + 1)2x − 3x3)−

− x2(2x − 6)] = 1− 6x + 21x2 + 12x3 − 15x4.

(b) Expanding the given determinant

x[(2x + 1)(x2 + 1)− x3(3x − 2)]−

− 1[x2(x2 + 1)− 0] + 2[x2(3x − 2)− 0]

= −3x5 + 3x4 + 7x3 − 3x2 + x.

So d
dx

of determinant = d
dx

(−3x5 + 3x4 + 7x3−

−3x2 + x) = −15x4 + 12x3 + 21x2 − 6x + 1.

Example 13: Determine the values of x for which

matrix A is non singular given

A =


3− x 2 2

2 4− x 1

−2 −4 −1− x




Solution:

|A| = detA =

      
3− x 2 2

2 4− x 1

−2 −4 −1− x

      

Expanding the determinant

|A| = (3− x)[(4− x)(−1− x)+ 4]

−2[2(−1− x)+ 2)+ 2[−8+ 2(4− x)]

= x(x2 − 6x − 9) = x(x − 3)2

Then |A| = 0 when x = 0 or 3. Thus matrix A is non

singular i.e. |A| = 0 for any x other than zero and 3.

EXERCISE

1. Evaluate the following determinants

(a)

    4 8

−1 2

    (b)
    cos θ sin θ

− sin θ cos θ

    

(c)

      
−1 3 4

3 4 −1

4 −1 3

      (d)
      
1 p p2

1 q q2

1 r r2

      

(e)

        

0 1 2 3

−1 0 1 2

−2 −1 0 3

−3 −2 −3 0

        
(f)

        

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

        
Ans. (a) 16 (b) 1 (c) −126

(d) qr(r − q)+ rp(p − r)+ pq(q − p) (e) 4

(f) 1

2. Evaluate the determinants using triangulariza-

tion.

(a)

          

1 −2 3 −2 −2

2 −1 1 3 2

1 1 2 1 1

1 −4 −3 −2 −5

3 −2 2 2 −2

          
(b)

        

1 −2 3 −4

2 −1 4 −3

2 3 −4 −5

3 −4 5 6

        

(c)

        

21 17 7 10

24 22 6 10

6 8 2 3

6 7 1 2

        
(d)

        

3 2 2 2

2 3 2 2

2 2 3 2

2 2 2 3

        
Ans. (a) 118 (b) −304 (c) 0 (d) 9

3. Determine the values of x for which the deter-

minant is zero

(a)

      
x + 2 2x + 3 3x + 4

2x + 3 3x + 4 4x + 5

3x + 5 5x + 8 10x + 17
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(b)

        

1+ x 2 3 4

1 2+ x 3 4

1 2 3+ x 4

1 2 3 4+ x

        

(c)

      
x + 1 2x + 1 3x + 1

2x 4x + 3 6x + 3

4x + 1 6x + 4 8x + 4

      
Ans. (a) x = −1,−1,−2 (b) x = 0,−10

(c) x = 0,− 1
2

4. Find the value of the determinant

(a)

      
1 a b + c

1 b c + a

1 c a + b

      (b)
        

a b c d

−a b c d

−a −b c d

−a −b −c d

        

(c)

      
1 a a2

1 b b2

1 c c2

      (d)

        

1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

        

(e)

        

1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

        
(f)

           

1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

1 xn−1 x2n−1 . . . xn−1n−1

1 xn x2n . . . xn−1n

           
Ans. (a) 0 Hint: C3 → C3 + C2, take (a + b + c)

common)

(b) 8 abcd

(Hint: R2 + R1, R3 + R1, R4 + R1, diagonal,

product of diagonal elements)

(c) (a − b)(b − c)(c − a)

(Hint: a = b, a = c, b = c, & = 0. Assume

&=L(a−b)(b−c)(c−a), determine constant

L = 1 by comparing the diagonal element)

(d) (a−b)(a−c)(a−d)(b−c)(b − d)(c − d)

(e) (a − b)(a − c)(a − d)(b − c)(b − d)×

(c − d)(a + b + c + d)

Hint: By Factor Theorem & = L(a −

b)(a − c)(a − d)(b − c)(b − d)(c − d) since at

a = b, a = c, a = d, b = c, b = d, c = d, the

determinant is zero. Since principal diagonal is

bc2d4 is of 7th degree, introduce a linear factor

(a + b + c + d), then determine L = 1.

(f) (−1)
n(n−1)

2 · π where π = product of factors

(xi − xj ) with i < j (≤ n).

Hint: At x1 = x2, x3, . . . , xn, the & = 0 so

(x1 − x2)(x1 − x3) · · · (x1 − xn) are factors of

&. Similarly at x2 = x3, x4, · · · xn, the & = 0

so (x2 − x3)(x2 − x4) · · · (x2 − xn) are factors

of & and so on. At xn−1 = xn, the & = 0, so

(xn−1 − xn) is a factor of&. Compare the prin-

cipal diagonal term to get the value of the con-

stant coefficient.

5. Prove that

        

1+ a 1 1 1

1 1+ b 1 1

1 1 1+ c 1

1 1 1 1+ d

        
=

abcd
 
1+ 1

a
+ 1

b
+ 1

c
+ 1

d

 
Hint: Take a, b, c, d common from

R1, R2, R3, R4. Add R2, R3, R4 to R1,

take common 1+ 1
a
+ 1

b
+ 1

c
+ 1

d
, subtract C1

from C2, C3, C4.

6. Evaluate

        

a2 + x ab ac ad

ab b2 + x bc bd

ac bc c2 + x cd

ad bd cd d2 + x

        
Ans. x3(a2 + b2 + c2 + d2 + x)

Hint:Divide by abcd , multiply C1, C2, C3, C4

by a, b, c, d. Take a, b, c, d common from

R1, R2, R3, R4. Add C2, C3, C4 to C1, subtract

R1 from R2, R3, R4

7. Find

      
(b + c)2 a2 a2

b2 (c + a)2 b2

c2 c2 (a + b)2

      
Ans. 2abc(a + b + c)3

Hint: a, b, c, are factors (i.e. & = 0 when a =

0) (a + b + c)2 is factor since 3 columns are

equal, when a + b + c = 0. Principal diagonal

6th degree so (a + b + c) is also a factor.

8. Show that

      
a + b c c

a b + c a

b b c + a

      = 4abc

Hint: Expand into 8 determinants
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9. Show that        

a −b −a b

b a −b −a

c −d c −d

d c d c

        
= 4(a2 + b2)(c2 + d2)

Hint: Add C1 to C3, C2 to C4. Take 2 · 2 = 4

common. Then subtract C3 from C1, C4 from

C2 expand

10. Show that

      
2b1 + c1 c1 + 3a1 2a1 + 3b1
2b2 + c2 c2 + 3a2 2a2 + 3b2
2b3 + c3 c3 + 3a3 2a3 + 3b3

      

= 31

      
a1 b1 c1
a2 b2 c2
a3 b3 c3

      
Hint: Expand into 8 determinants, 27D + 4D,

remaining six determinants are zeros

11. Find the product of the determinants      
−2 1 1

3 1 0

−1 2 4

      and
      
1 3 4

2 −1 0

0 1 3

      
Ans. (−13)(−13) = 169

12. IfA=

      
2 1 1

1 2 1

0 −1 0

      ,B =

      
1
2

0 −1

−1 0 1

1 2 3

      . Then com-

pute 15A2 − 2AB − B2 without calculating A

and B independently

Ans. 15 · 1− 2 · 1− 1 = 12

Hint: A2 =

      
2 1 1

1 2 1

0 −1 0

      
      
2 1 1

1 2 1

0 −1 0

      
=

      
6 5 −1

5 6 −2

−1 −2 1

      = 1

Similarly AB =

       
0 −1 7

1
2

0 8

0 0 −2

       
= 1,

B2 = 1
4

      
5 −3 −5

−3 2 2

−5 2 14

      = 1

13. Find the derivatives of

    x
2 x3

2x 3x + 1

    
Ans. 2x + 9x2 − 8x3

14. Find the derivative of

      
x2 x + 1 3

1 2x − 1 x3

0 x −2

      
Ans. 5+ 4x − 12x2 − 6x5

15. Evaluate

      
b2 + ac bc c2

ab 2ac bc

a2 ab b2 + ac

      
Ans. 4a2b2c2

Hint: |A| =

      
b c 0

a 0 c

0 a b

      
2

16. Obtain all solutions of the following equations.

(a)

      
−1 3 x

2x − 3 1− x 3x + 1

2 x −2

      = 9x − 28

(b)

          

1 x x + 2 x − 2 100

0 x x − 2 x + 2 100

0 0 x + 2 x − 2 100

0 0 0 x − 2 x + 2

0 0 0 0 100

          
= 0

Ans. (a) x = −1,±3i (b) x = 0,±2
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Sequences and Series

INTRODUCTION

The study of convergence and divergence of a se-

quence, which is an ordered list of things, is a prereq-

uisit for infinite series. The unit square in the figure

can be expressed as an infinite (geometric) series

1 = 1

2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
+ · · ·

Several functions can be expressed as “infinite

polynomials” (known as “power series”) using

the concept of infinite series. By Fourier series,

certain functions can be represented as an infinite

sum of trigonometric functions. Using infinite

series, differential equations in problems of signal

transmission, chemical diffusion, vibration and heat

flow can be solved and non elementary integrals

evaluated. The infinite process of summing of an

infinite series is a puzzle for centuries convergence

and divergence of infinite series plays an important

role in engineering applications.

1

2

1

4

1

8

1

16

35.1 SEQUENCES

A sequence is a function from the domain set of

natural numbers N to any set S.

Real sequence is a function from N to R,

the set of real numbers; denoted by f :N → R.

Thus the real sequence f is set of all ordered

pairs {n, f (n)}|{n = 1, 2, 3, . . .} i.e., set of all pairs
(n, f (n)) with n a positive integer.

Notation: Since the domainof a sequence is always

the same (the set of positive integers) a sequencemay

be written as {f (n)} instead of {n, f (n)}.
Examples:

1.
 
n, 1

n

 =  
1
n

 =  
1, 1

2
, 1
3
, 1
4
, . . . 1

n
. . .

 
2.

 
n, 1

2n−1

 
=

 
1

2n−1

 
=

 
1, 1

2
, 1

22
, 1

23
, 1

24
, . . . ,

1

2n−1 , . . .
 

constant sequence where range is singleton set {c},
c = constant.
Example: {3, 3, 3, 3, . . .}
Null sequence {0, 0, 0, . . . , 0, . . .}

A sequence is also denoted by {an}whose ordinate
y = an at the abscissa x = n. Thus in a sequence for
each positive integer n, a number an is assigned and
is denoted as  an or (an) or

{an} = {a(1), a(2), a(3), . . . , a(n), . . .}
= {a1, a2, a3, . . . , an, . . .}

Here a1, a2, a3, . . . an, are known as the first, second,

third and nth terms of the sequence.

Infinite sequence is a sequence in which the

number of terms is infinite, and is denoted by {an}∞
n=1.

On theother hand, finite sequencedenotedby {an}mn=1

contains only a finite number of terms (m =finite).
Bounded sequence A sequence {an} is said to

be bounded if there exists numbers m and M such

that m < an < M for every n, otherwise it is said to

be unbounded.
Monotonic sequence

A sequence {an} is said to be
a. monotonically increasing if an+1 ≥ an for

every n
i.e., a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ an+1 ≤ · · ·

35.1
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b. monotonically decreasing if an+1 ≤ an for
every n
i.e., a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · ·

c. monotonic if it is either monotonically

increasing or monotonically decreasing.

Example:
 
1
n

 = 
1, 1

2
, 1

3
, 1

4
, 1

5
, . . .

 
bounded

since 0<an = 1
n
< 1 and monotonically decreasing.

Example: {2n} = {2, 22, 23, 24, . . .} unbounded

since 2n becomes larger and larger as n comes large

and monotonically increasing.

35.2 LIMIT OF A SEQUENCE

Consider a sequence {an} =  
3 + 1

n

 
.

Plotting the values
n: 1 2 4 5 10 50 100 1000 10000 100000. . .

an: 4 3.5 3.25 3.2 3.1 3.02 3.01 3.001 3.0001 3.00001. . .

As n increases, an = 3 + 1
n
becomes closer to 3.

Thus the difference (or distance) between 3 + 1
n
and

3 becomes smaller and smaller as n becomes larger

and larger i.e., we can make 3 + 1
3
and 3 as close

as we please, by choosing an appropriately (suffi-

ciently) large value for n, i.e., the terms of a sequence

cluster around this (limit) point. However note that

3 + 1
n

 = 3 for any value of n.

Limit: A number L is said to be a limit of a
sequence {an} and is denoted as

lim
As n→∞

an = lim
n→∞ an = lim an = L

if for every  > 0 there exists N such that

|an − L| <  for all n ≥ N.

Note: A sequence may have a unique limit or may

havemore thanone limit ormaynot have a limit at all.

Result: A monotonic sequence always has a limit

(may be finite or infinite).

35.3 CONVERGENCE, DIVERGENCE AND

OSCILLATION OF A SEQUENCE

Convergent A sequence {an} is said to be conver-
gent if it has a finite limit i.e., lim

n→∞
an = L =finite

unique limit value.

Divergent If lim
n→∞

an = infinite = ±∞.

Oscillatory If limit of an is not unique (oscillates

finitely) or ±∞ (oscillates infinitely).

Examples:

1.
 

1

n2

 
convergent since lim

n→∞
1

n2
= 0=finite unique

2. {n:} divergent since lim
n→∞

n := ∞
3. {(−1)n} oscillates finitely, since

lim
n→∞(−1)n =

 
1, n even

−1, n odd.

4. {(−1)n · n2} oscillates infinitely,
since limit = ±∞.

Result 1: If sequence {an} converges to limitL and

{bn} converges to L∗ then
a. {an + bn} converges to L + L∗

b. {can} converges to CL

c. {an · bn} converges to L · L∗

d. { an
bn

} converges to L
L∗ , provided L∗  = 0.

Result 2: Every convergent sequence is bounded.

Example:
 
1
n

 
is convergent and is bounded

an = 1
n
< 1, for every n.

Result 3: The converse is not true i.e., a bounded

sequence may not be convergent.

Example: {(−1)n} is oscillatory (has more than one

limit but is bounded since −1 ≤ (−1)n ≤ 1.

Result 4: A bounded monotonic sequence is con-

vergent.
Example:

 
1

n2

 
is bounded since 1

n2
≤ 1 for every n

and monotonically decreasing since 1

n2
> 1

(n+1)2
for

every n. Hence the sequence is convergent because

lim
n→∞

an = lim
n→∞

1

n2
= 0 = finite.

Useful Standard Limits

1. a. lim
n→∞

1

n
= 0, b. lim

n→∞
1

n2
= 0, c. lim

n→∞
1√
n

= 0

2. lim
n→∞

n1/n = 1

3. lim
n→∞

log n

n
= 0

4. lim
n→∞

 
1 + x

n

 n

= ex , for any x

5. lim
n→∞

x1/n = 1 for x > 0

6. (a) lim
n→∞

xn =0 for |x| < 1 i.e. − 1<x<1.

(b) lim
n→∞

xn

n!
= 0 for any x. In formulas (5) and

6(b) x remains fixed as n → ∞

WORKED OUT EXAMPLES

Determine the nature of the following sequences

whose nth term an is
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Example 1: an = n2−n
2n2+n

Solution:

lim
n→∞an = lim

n→∞
n2 − n

2n2 + n
= lim

n→∞
1 − 1

n

2 + 1
n

= 1

2

sequence is convergent since the limit of the se-

quence is unique and finite.

Example 2: an = tanh n.

Solution:

lim
n→∞an = lim

n→∞ tanh n = lim
n→∞

sinh n

cosh n

= lim
n→∞

en − e−n

en + e−n
= lim

n→∞
e2n − 1

e2n + 1

= lim
n→∞

1 − 1

e2n

1 + 1

e2n

= 1 so convergent.

Example 3: an = en.

Solution: lim
n→∞

en = ∞ so divergent.

Example 4: an = 2 + (−1)n.

Solution:

lim
n→∞a2n = lim

n→∞{2 + (−1)2n} = 2 + 1 = 3

lim
n→∞a2n−1 = lim

n→∞{2 + (−1)2n−1} = 2 − 1 = 1

sequence oscillates finitely since it has more than

one finite (two) limits.

EXERCISE

1. 2n+1
1−3n

Ans. convergent, limit = −2
3

2. 1 + (−1)n

n
Ans. convergent, limit = 1

3. 1+(−1)n

n
Ans. convergent, limit = 0

4. sin n Ans. divergent, limit = ∞
5. ln n

n
Ans. convergent, limit = 0

Hint: Apply L’ Hospital’s rule.

6. 1
3n

Ans. convergent, limit = 3
2

7. (−1)n−1n

3n
Ans. convergent

8.
 

n
n+1

 2
Ans. convergent

9. (n+1)2

(n+1)!
Ans. convergent

10. 2n Ans. divergent, limit = ∞
11. 1 + 1

n
Ans. convergent, limit = 1

12. [n + (−1)n]−1 Ans. convergent.

35.4 INFINITE SERIES

Differential Equations are frequently solved by

using infinite series. Fourier series, Fourier-Bessel

series, etc. expansions involve infinite series. Tran-

scendental functions (trigonometric, exponential,

logarithmic, hyperpolic, etc.) can be expressed

conveniently in terms of infinite series. Many prob-

lems that cannot be solved in terms of elementary

(algebraic and transcendental) functions can also be

solved in terms of infinite series.

Series

Given a sequence of numbers u1, u2, u3, . . . un, . . .

the expression

u1 + u2 + u3 + · · · + un + · · · (1)

which is the sum of the terms of the sequence, is

known as a numerical series or simply “series”. The

numbers u1, u2, u3, . . . un are known as the first,

second, third,. . ., nth term of the series (1).

Infinite Series

If the number of terms in the series (1) is infinite, then

the series is called an infinite series (otherwise finite

series when the number of terms is finite). Infinite

series (1) is usually denoted as

∞ 
n=1

un or
 

un (1)

Themain aim of this chapter is to study the nature (or
behaviour) of convergence, divergence or oscillation
of a given infinite series. For this purpose, define {Sn}
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the sequence of partial sums as

S1 = u1

S2 = u1 + u2

S3 = u1 + u2 + u3
...

Sn = u1 + u2 + u3 + · · · + un =
n 

k=1

uk

Here Sn is known as the nth partial sum of the

series, i.e., it is the sum of the first n terms of the

series (1).

Convergence

An infinite series
∞ 
n=1

un is said to be convergent if

∞ 
n=1

un = lim
n→∞

 
n 

k=1

uk

 
= lim

n→∞Sn =finite limit value=S

Here S is known as the sum (value) of the series (1).

Divergence

If lim
n→∞

Sn does not exist (i.e., lim
n→∞

Sn = ±∞) then

series (1) is said to be divergent.

Oscillation

When lim
n→∞

Sn tends to more than one limit (non

unique) or to ±∞ then series (1) is said to be os-

cillatory. Thus the behaviour of convergence, diver-

gence or oscillation of a series is the bahaviour of its

sequence of partial sums {Sn}.

Example: 1 + 1
4

+ 1
16

+ 1
64

+ · · ·
Here un = 1

4n−1 so lim
n→∞

Sn = lim
n→∞

1− 1
4n

1− 1
4

=
lim
n→∞

4
3

 
1 − 1

4n

 = 4
3

= finite,

series converges.

Example: 12 + 22 + 32 + · · · + n2 + · · ·
lim
n→∞

Sn = lim
n→∞

n(n+1)(2n+1)

6
= ∞, series diverges.

Example: 7− 4− 3+ 7− 4− 3+ 7− 4− 3+ · · ·
lim
n→∞

Sn = 0 or 7 or 3 according as the number of

terms is 3m, 3m + 1 or 3m + 2.

Since the limit is not unique, series oscillates

(finitely).

Example: 1−2+3−4+ · · · + (−1)n−1n+ · · ·
lim

n→∞ Sn = −n

2
= −∞ if n is even

lim
n→∞ Sn = n + 1

2
= +∞ if n is odd

series oscillates (infinitely).

Some General Properties of Series

1. If a series
 

un converges to a sum s then the

series c
 

un also converges to the sum cs, where

c is a constant.

2. If the series
 

un and
 

vn converges to the sums

s  and s   respectively then the series
 

(un + vn)

and
 

(un − vn) also converge to s  + s   and

s  –s   respectively. Addition or subtraction of two
series is done by termwise addition or termwise

subtraction.

3. The convergence of a series is not affected by

the suppression (deletion) or addition of a finite

number of its terms, since the deletion or addition

of the sum of these finite number of terms (which

is a finite quantity) does not alter the behaviour

of the sum of the series.

35.5 NECESSARY CONDITION

FOR CONVERGENCE

Necessary condition for convergence of a series 
un is that, its nth term un approaches zero as n

becomes infinite i.e.,

If series converges, then lim
n→∞

un = 0.

Important Note: This is not a test for convergence.

Proof: Let s be the sum of this convergent series.
Also let Sn and Sn−1 be the nth and (n − 1)th partial
sums of the given series so that

un = Sn − Sn−1

Taking limit, we have

lim
n→∞ un = lim

n→∞(Sn − Sn−1) = lim
n→∞ Sn − lim

n→∞ Sn−1

= s − s = 0.

Note 1: The converse of the above result is not

true, i.e., the above result is not a sufficient condition.

From the fact that the nth term un approaches zero,
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it does not follow that the series converges, for the

series may diverge.

If lim
n→∞

un = 0, then the series may converge or

may diverge.

Example: 1 + 1
2

+ 1
3

+ 1
4

+ · · · + 1
n

+ · · · is a di-
vergent series although its nth term approaches zero
i.e.,

lim
n→∞ un = lim

n→∞
1

n
= 0

Note 2: Preliminary test for divergence.

If the nth term of a series does not tend to zero as

n → ∞, then the series diverges i.e.,

if lim
n→∞

un  = 0 then series diverges.

Example:

1

2
+ 2

3
+ 3

4
+ 4

5
+ · · · + n

n + 1
+ · · ·

Since lim
n→∞

un = lim
n→∞

n
n+1

= 1  = 0 by the above

preliminary test, the given series diverges.

35.6 STANDARD INFINITE SERIES:

GEOMETRIC SERIES AND

HARMONIC SERIES

Geometric Series Test

∞ 
n=0

arn = a + ar + ar2 + ar3 + · · · + arn−1 + · · · ,

with a  = 0 (1)

is a geometric series, whose terms form a geometric
progression with the first term a and the common
ratio r . For this series

Sn = a − arn

1 − r
= a

1 − r
− arn

1 − r

Case 1: When |r| < 1 then lim
n→∞

rn = 0 so that

lim
n→∞ Sn = lim

n→∞

 
a

1 − r
− arn

1 − r

 
= a

1 − r
− a

1 − r
· 0

= a

1 − r
= finite

Hence geometric series (1) converges to the

sum a
1−r

when |r| < 1 i.e., in the interval −1 <

r < 1.

Case 2: When |r| > 1 then lim
n→∞

rn = ∞ so that

lim
n→∞ Sn = lim

n→∞

 
a

1 − r
− arn

1 − r

 
= ±∞

Thus series (1) diverges when |r| > 1

i.e., when r > 1 or r < −1.

Case 3: If r = 1, the series (1) reduces to

a + a + a + · · ·

consequently lim
n→∞

Sn = lim
n→∞

(na) = ∞
so series diverges.

Case 4: If r = −1, the series (1) reduces to

a − a + a − a + · · ·
In this case,

Sn =
 
0, when n is even

a, when n is odd

Thus lim
n→∞

Sn is not unique (more than one limit)

hence the series diverges.

Hence the geometric series converges only when

|r| < 1 and diverges for all other values of r .

Example: A ball is dropped from a height b feet

from a flat surface. Each time the ball hits the ground

after falling a distance h it rebounds a distance rh

where 0 < r < 1 (Fig. 35.1).

Fig. 35.1

Find the total distance the ball travels if b = 4 ft

and r = 3
4
.
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Solution: The total distance travelled by the ball is
given by the infinite geometric series

s = b + 2br + 2br2 + 2br3 + · · ·

s = b + 2br

1 − r
= b

(1 + r)

(1 − r)

For b=4, and r= 3
4
, the distances= 4

 
1+ 3

4

1− 3
4

 
= 28 ft.

Harmonic Series of Order p or

p -Harmonic Series or p -Series Test

∞ 
n=1

1

np
= 1

1p
+ 1

2p
+ 1

3p
+ · · · + 1

np
+ · · ·

This series converges for p > 1 and diverges for

p ≤ 1. An easy proof of this test is postponed and is

given in section (1.9) using Integral test.

35.7 TESTS FOR CONVERGENCE

AND DIVERGENCE

Although the behaviour of a series is found from the

behaviour of its sequence of partial sums {Sn}, most

often it is not possible to find Sn, the nth partial sum

and even if it is found, the evaluation of its limit

is cumbersome. Instead simple, practical and useful

test for convergence of a series are presented here

which depending on the individual terms of the series

rather than their sums.

A given infinite series is classified as

a. series of positive terms or positive series

b. alternating series

c. plus- and -minus series

d. power series

In the sections 1.8 to 1.14, only series of positive

terms are considered i.e.,

u1 + u2 + u3 + · · · + un + · · · with un > 0 for

every n > N where N is a fixed positive integer

(baring few finite negative terms at the beginning of

the series).

Example:

−8 − 6 − 3 − 2 + 1 + 2 + 3 + 4 + 5 + · · · + n + · · ·

Note: Positive series either converge or diverge

(becomes infinite) but do not oscillate.

35.8 COMPARISON TEST: ONLY FOR

SERIES WITH POSITIVE TERMS

Comparison test consists of “comparison” between

a given (unknown) series

∞ 
n=1

un = u1 + u2 + u3 + · · · + un + · · · (1)

and a (known) auxiliary series

∞ 
n=1

vn = v1 + v2 + v3 + · · · + vn + · · · (2)

whose nature (of convergence or divergence) is
known. Let the two series be with positive terms i.e.,

un > 0 and vn > 0 for every n = 1, 2, 3, 4, . . . .

Comparison Test for Convergence

Ifun ≤ vn for everyn and
 

vn converges then
 

un

also converges.

Proof: Let Sn =
n 

k=1

uk and σn =
n 

k=1

vk then

Sn ≤ σn

since un ≤ vn for every n taking limit

lim
n→∞ Sn ≤ lim

n→∞ σn = σ = finite sum

since
 

vn converges.Hence lim
n→∞

Sn has afinite limit

value s ≤ σ and therefore the series
 

un converges.

Example:

 
un =

∞ 
n=1

1

n!
= 1

1!
+ 1

2!
+ 1

3!
+ 1

4!
+ · · ·

= 1

1
+ 1

2
+ 1

6
+ 1

24
+ · · ·

choose
 

vn =
 1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · ·

which is a convergent geometric series with common
ratio r = 1

2
since

un = 1

n!
< vn = 1

2n
for every n,

by comparison test
 

un also converges.
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Comparison Test for Divergence

If un ≥ vn for every n and
 

vn diverges then
 

un

also diverges.

Proof: From the condition un ≥ vn, it follows that

Sn ≥ σn. Taking the limit lim
n→∞

Sn ≥ lim
n→∞

σn = ∞
since

 
vn is a divergent series. Hence lim

n→∞
Sn = ∞

and therefore
 

un also diverges.

Example: Since every term of the series

1 + 1√
2

+ 1√
3

+ 1√
4

+ · · · + 1√
n

+ · · ·

is greater than the corresponding term of the diver-
gent harmonic series (with p = 1) namely

1 + 1

2
+ 1

3
+ · · · + 1

n
+ · · ·

the original given series
∞ 
n=1

1√
n
also diverges.

Limit form of the comparison test

Let
 

un and
 

vn be two series of positive terms
only. Then the series

 
un and

 
vn either both con-

verge or both diverge together if

lim
n→∞

un

vn
= finite value = m  = 0.

Note 1: The above comparison tests for conver-

gence and divergence are valid only when both the

series
 

un and
 

vn are series with positive terms.

Note 2: Most often the geometric series

∞ 
n=0

arn

and the p-harmonic series

∞ 
n=1

1

np

are chosen as
 

vn (known) auxiliary series for

“comparison”.

Note 3: For the comparison test in the “limit form”

which is most useful, the nth term vn of the (known)

auxiliary series is chosen equal to the term of un

which is of highest degree in 1
n
.

Note 4: Although comparison test is most useful

basic test from which other tests are derived, it is

more often difficult, without experience, to find a

suitable known series for “comparison”.

Example: un = n2+3n+1
n3

, choose vn = n2

n3
= 1

n .

WORKED OUT EXAMPLES

Test for convergence of the following series (1 to 4):

Example 1:
 1

(n2n)

Solution: Since n2n ≥ 2n so that 1
n2n

≤ 1
2n

for

all n ≥ 1. As the geometric series
 
with a = 1,

r = 1
2

   
1
2

 n
is convergent so is the given series

by comparison of series.

Example 2:
 

(n + 1)−1n− 1
2

Solution: For n ≥ 1, n
3
2 + n

1
2 > n

3
2

so that
1

(n + 1)n
1
2

<
1

n
3
2

for all n ≥ 1

Thus the given series converges since the series

compared
 

1

n3/2
is a convergent p-series with

p = 3
2
> 1.

Example 3:
∞ 
n=1

1
n!

Solution: For n > 3, 2n < n! so 1
n!

< 1
2n
.

Since
  

1
2

 n
is convergent geometric series (with

a = 1 and r = 1
2
) by comparison the given series is

also convergent.

Example 4:
∞ 
n=1

 
2n+3
3n+1

 1
2

Solution: Here the nth term is

un =
 
2n + 3

3n + 1

 1
2

For comparison choose a series with nth term

vn =
 
2n

3n

 1
2
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so

lim
n→∞

un

vn
= lim

n→∞

 
2n + 3

3n + 1
· 3

n

2n

 1
2

= lim
n→∞

 
1+ 3

2n

1+ 1
3n

 1
2

= 1

Thus both the series
 

un and
 

vn have the same

nature of convergence i.e., both converge or both

diverge. Since vn =    
2
3

 n

is a geometric

series with a = 1 and r =
 

2
3
< 1 is convergent so

the given series is also convergent.

Example 5:
∞ 
n=1

 
n4 + 1 −

 
n4 − 1

Solution: Since (n4 + 1) − (n4 − 1) = 2, we have  
n4 + 1 +

 
n4 − 1

   
n4 + 1 −

 
n4 − 1

 
= 2

Thus the nth term of the given series is

un =
  

n4 + 1 −
 
n4 − 1

 
= 2  

n4 + 1 +
 
n4 − 1

 
For comparison, choose the series with nth term
vn = 2

n2
Then

lim
n→∞

un

vn
= 2  

n4 + 1 +
 
n4 − 1

 · n2

2

= lim
n→∞

1 
1 + 1

n4
+

 
1 − 1

n4

= 1

2
< 1

so both the series either converge or diverge.

Since
 

vn = 2
 

1

n2
is a convergent p-series

(with p = 2 > 1) so the given series
 

un also

converges.

Example 6:
∞ 
n=1

1
(a+n)p(b+n)q

where a, b, p, q are

all positive.

Solution: Choose the auxiliary harmonic series 
vn =

 1
np+q

lim
n→∞

un

vn
= lim

n→∞
1

(a + n)p(b + n)q
· np+q

= lim
n→∞

1 
a
n

+ 1
 p  

b
n

+ 1
 q = 1

Hence
 

un and
 

vn both converge or diverge

together. But
 

vn is convergent for p + q > 1 and

divergent for p + q ≤ 1.

EXERCISE

Test for convergence of the following series (1 to 5)

whose nth term is:

1. 1/(n(n + 2)) Hint: Compare
 

1

n2

Ans. convergent

2. (n + 1)/(n(n + 2)) Hint: Compare
 

1
n+2

Ans. divergent

3. 1/(2n)n Hint: Compare
 

1
2n

Ans. convergent

4. 1/
√
2n Hint: Compare

 
1√
n

Ans. divergent

5. 1/ ln n Hint: Compare
 

1
n

Ans. divergent

6.
∞ 
n=3

√
2n2−5n+1

4n3−7n2+2
Hint: Compare

∞ 
n=3

1

n2

Ans. convergent

7.
∞ 
n=1

sin2 n
2n

Hint: Compare
 

1
2n

Ans. convergent

8.
 

n2+1

n3+1
Hint: Compare

 
1
n

Ans. divergent

9.
∞ 
n=1

1
nn

Hint: Compare
 

1
2n

Ans. convergent

10.
∞ 
n=1

tan
 
1
n

 
Hint: Compare

 
1
n

Ans. divergent

11.
  √

n2 + 1 −
√
n2 − 1

 
Hint: Compare

 
1
n

Ans. divergent

12.
∞ 
n=1

1
2n+3n

Hint: Compare
  

1
3

 n
Ans. convergent
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13.
∞ 
n=2

log n

2n3−1
Hint: Compare

 
1

n2

Ans. convergent

14.
∞ 
n=1

1√
n+√

n+1
Hint: Compare

 
1√
n

Ans. divergent

15.
∞ 
n=1

1
xn+x−n Hint: Compare

 
xn

Ans. when x < 1 series is convergent; compare 
x−n when x > 1 series is convergent; For

x = 1 the series is divergent

16.
 

np

(n+1)q
Hint: Compare

 
np

nq

Ans. convergent when q > p + 1 and divergent

when q ≤ p + 1

17. 1.2
3.4.5

+ 2.3
4.5.6

+ 3.4
5.6.7

+ 4.5
6.7.8

+ · · ·
Hint: un = n(n+1)

(n+2)(n+3)(n+4)
, compare

 
1
n

Ans. divergent

18.
∞ 
n=1

(n1/3+1)p

(n7/3+n5/2+1)13/11

Hint: Compare
 

n
p
3

− 65
22

Ans. convergent if p < 129
22

19.
∞ 
n=1

xn√
n

Hint: Compare
 

n−1/2,

Ans. for x = 1, series is divergent; for x < 1 con-

vergent, for x > 1, divergent.

20.
∞ 
n=1

 
3
√
n3 + 1 − n

 
Hint: Compare

 
n−2

Ans. convergent.

35.9 CAUCHY’S INTEGRAL TEST

Theorem:

Let
 

un = u1 + u2 + u3 + · · · + un + · · · (1)

be series with positive and non-increasing terms

i.e., u1 ≥ u2 ≥ u3 ≥ · · · (2)

Let f (x) be a continuous non-increasing function

such that

f (1) = u1, f (2) = u2, f (3) = u3, . . . , f (n) = un (3)

Then the improper integral ∞

1

f (x) dx (4)

and the infinite series (1) are both finite (in which

case series (1) is convergent) or both infinite (in

which case series (1) is divergent).

Proof: Plot the terms u1, u2, u3, . . . of the series

(1) on the y- axis so that the first escribed rectangle

is of area u2 while the first inscribed rectangle is of

area u1.

Fig. 35.2

Thus the area under the curve y = f (x), above
the x-axis and between any two ordinates x = a and
x = b lies between the sum of the set of inscribed
(solid) and escribed (dotted) rectangles formed
by the ordinates at x = 1, 2, 3, . . ., as shown in
Fig. 35.2. Hence,

(Sn+1 − u1) ≤
 n+1

1

f (x) dx ≤ Sn

As n → ∞ the first inequality becomes

lim
n→∞ Sn+1 ≤ lim

n→∞

 n+1

1

f (x)dx + u1 =
 ∞

1

f (x)dx + u1

So if the integral on the R.H.S. is finite, then

lim
n→∞

Sn+1 = finite, therefore series (1) converges.

As n → ∞, from the second inequality

lim
n→∞

 n+1

1

f (x) dx =
 ∞

1

f (x) dx ≤ lim
n→∞ Sn
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It follows that if the integral on the L.H.S. is infinite

then lim
n→∞

Sn = infinite therefore series (1) diverges.

p -Series Test: Nature of p -harmonic Series

Using Integral Test

Consider the p-harmonic series

∞ 
n=1

1

np
= 1

1p
+ 1

2p
+ 1

3p
+ · · · + 1

np
+ · · ·

To apply integral test consider f (x) = 1
xp

then the
improper integral is ∞

1

f (x) dx =
 ∞

1

dx

xp
= lim

n→∞

 n

1

dx

xp

=
 

lim
n→∞

1
1−p

· x1−p ln x|n1 when p  = 1

lim
n→∞ ln x |n1 when p = 1

=




1
p−1

= finite when p > 1

∞ = infinite when p < 1

∞ = infinite when p = 1

Thus the p-harmonic series by integral test is conver-

gent when p > 1 and divergent when p ≤ 1.

Note 1: Integral test is used when the terms of the

series are positive and non increasing and when the

evaluation of the integral is easy.

Note 2: The lower limit in the improper integral (4)

need not be 1 but any numberN at which the integral

is finite.

WORKED OUT EXAMPLES

Using integral test, determine the convergence of the

series:

Example 1: 1 + 1
3

+ 1
5

+ · · · + 1
2n−1

+ · · ·

Solution: Take f (x) = 1
2x−1

Applying integral test ∞

1

dx

2x − 1
= 1

2
ln (2x − 1)

  ∞
1 = ∞, so divergent.

Example 2: sin π + 1
4
sin π

2
+ 1

9
sin π

3
+ · · ·

Solution: Here un = 1

n2
sin π

n
· · ·

Taking f (x) = 1

x2
sin π

x
and applying integral test

 ∞

1

sin π/x

x2
dx =

 π

0

sin t dt where
π

x
= t

= − cos t
  π
0 = 1 + 1 = 2 so convergent.

Example 3: 1
2

+ 4
9

+ 9
28

+ · · ·

Solution: Here the nth term is n2/(n3 + 1) so take

f (x) = x2

x3+1
using integral test.

 ∞

1

x2

x3 + 1
dx = 1

3
ln (x3 + 1)

  ∞
1 = ∞ so divergent.

Example4: e−1 + 2e−2 + 3e−3 + · · · +ne−n + · · ·

Solution: with f (x) = xe−x , Integral Test gives ∞

1

xe−x dx = −xe−x − e−x by integration by parts

= 0 + e−1 + 0 + e−1 = 2

e
, so convergent

since lim
x→∞

xe−x = lim
x→∞

x
ex

= 0, by L’ Hospital’s rule

and lim
x→∞

1
ex

= 0.

EXERCISE

Apply integral test to test for convergence of the

following series:

1. 1 + 1√
2

+ · · · + 1√
n

+ · · ·
Ans. f (x) = √

x, divergent

2. 1
2

+ 1
6

+ 1
12

+ · · · + 1
n(n+1)

+ · · ·
Ans. f (x) = 1

x(x+1)
convergent

3. 1
3

+ 1
15

+ 1
35

+ · · · + · · ·
Hint: un = 1

4n2−1
= 1

(2n−1)(2n+1)
, so f (x)

= 1

4x2−1

Ans. convergent

4.
∞ 
n=1

n

n2+1
Ans. divergent
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5.
 

2n3

n4+3
Ans. divergent

6.
∞ 
n=2

1
n log n

Ans. divergent

7.
∞ 
n=1

1

n2+1
Ans. convergent

8.
∞ 
n=1

1

n2
Ans. convergent

9.
∞ 
n=1

1

n
√

n2−1
Ans. convergent

10.
∞ 
n=2

1
n(log n)

Hint: Integral = 1

(p−1)(log 2)p−1 for p > 1

= ∞ for 0 ≤ p ≤ 1.

Ans. convergent for p > 1

divergent for 0 ≤ p ≤ 1.

11.
∞ 
n=1

en

e2n+9
Ans. convergent

12.
∞ 
n=1

1√
n2+9

Ans. divergent

13.
∞ 
n=3

1

n2−4
Ans. convergent

14.
∞ 
n=1

1
10n

Ans. divergent

15.
∞ 
n=0

e−n2

Hint: Since
 ∞
0

e−x2dx cannot be evaluated,

show that it is finite by comparing it with ∞
0

e−xdx.

Ans. convergent

16. 50
1.2

+ 50
2.3

+ 50
3.4

+ 50
4.5

+ · · ·
Hint: f (x) = 50

x(x+1)
, limit: 50 ln 2

Ans. convergent.

35.10 D’ALEMBERT’S∗ RATIO TEST

Theorem:

Let
 

un = u1 + u2 + u3 + · · · + un + · · · (1)

∗Jean le-Rond d’Alembert (1717–1783) French Mathematician.

be a series with positive terms. The ratio
un+1

un
measures the rate or growth of the terms of the series

(1),

Let lim
n→∞

un+1

un
= m (2)

Then

a. the series (1) converges if m < 1

b. the series (1) diverges if m > 1

c. the ratio test fails when m = 1

i.e., series may converge or diverge. Use a different

test.

Proof:

a. Let m < 1 and consider a number q such that
m < q < 1. For n ≥ N , where N is a large inte-
ger,

un+1

un
< q,

so that uN+1 < quN, uN+2 < quN+1 < q2uN,
uN+3 < qun+2

< q3uN , etc. Thus for n ≥ N , the
given series reduces to (leaving the firstN terms)

= uN + uN+1 + uN+2 + uN+3 + · · ·

= uN

 
1 + uN+1

uN
+ uN+2

uN
+ uN+3

uN
+ · · ·

 

< uN (1 + q + q2 + q3 + · · ·) (since q < 1)

= uN

1 − q
= finite quantity.

Hence
 

un is convergent.

b. Let m > 1, from limit (2) for n ≥ N ,

un+1

un
> 1,

so that un+1 > un for all n ≥ N , which means

that the terms of the series increase after the

N + 1th term. For this reason, the general term

un of the series does not tend to zero. Hence the

series diverges.

c. When m = 1, ratio test fails.
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Counter Example: For the convergent series

∞ 
n=1

1

n2
, lim
n→∞

un+1

un
= lim

n→∞
1

(n + 1)2
n2 = 1

Also for the divergent series

∞ 
n=1

1

n
, lim
n→∞

un+1

un
= lim

n→∞
1

n + 1
· n = 1

Thus ratio test can not be used to distinguish between

convergent and divergent series when m = 1

Important Note 1: Ratio test fails when the limit

(2) does not exist or equals to 1.When ratio test fails,

Raabe’s test may be used.

Note 2: Series diverges when lim
n→∞

un+1

un
= ∞ since

un+1

un
> 1 for n ≥ N.

Note 3: Ratio test is concerned only with value of
limit (2) without any reference to the magnitude of
the ratio

un+1

un
.

Even if lim
n→∞

un+1

un
= 1 but

un+1

un
> 1 for n ≥ N

then series diverges because general term does not

approach zero as n → ∞.

Note 4: Even though
un+1

un
< 1 for all n, the series 

un is not convergent unless lim
n→∞

un+1

un
< 1

Example: Although
un+1

un
= n

n+1
< 1 for all n the

series
 

un =  
1
n
, diverges since n → ∞ un+1

un
=

lim
n→∞

n
n+1

= 1.

WORKED OUT EXAMPLES

Use D’ Alembert’s ratio test to test for convergence

of the following series whose nth term is:

Example 1: (n + 3)!/(3!n!3n)

Solution:

lim
n→∞

un+1

un
= lim

n→∞
(n + 4)!

3!(n + 1)!3n+1
· 3!n!3n

(n + 3)!

= lim
n→∞

n + 4

(n + 1) · 3 = 1

3
lim

n→∞
1 + 4

n
1
n

+ 1
= 1

3
< 1

series is convergent.

Example 2: (2n)!/(n!)2

Solution:

lim
n→∞

un+1

un
= lim

n→∞
(2n + 2)!

[(n + 1)!]2
· (n!)

2

(2n)!

= lim
n→∞

(2n + 1)(2n + 2)

(n + 1)2

= lim
n→∞ 2 ·

 
2n + 1

n + 1

 
= 2 lim

n→∞

 
2 + 1

n

1 + 1
n

 

= 2.2 = 4 > 1

series is divergent.

Example 3: n3+a
2n+a

Solution:

lim
n→∞

un+1

un
= lim

n→∞
(n + 1)3 + a

2n+1 + a
· 2

n + a

n3 + a

= lim
n→∞

 
1 + 1

n

 3
+ a

n3 
2 + a

2n

 ·
 
1 + a

2n

 
 
1 + a

n3

 
= 1

2
< 1

series is convergent.

Example 4: (4n2 − 1)−1

Solution: Here the nth term un = (4n2 − 1)−1 =
1

(2n−1)(2n+1)
Applying ratio test, we have

lim
n→∞

un+1

un
= 1

(2n + 1)(2n + 3)
· (2n − 1)(2n + 1)

1

= lim
n→∞

2 − 1
n

2 + 3
n

= 1

so ratio test fails
Comparison test:

since n2 ≤ 4n2 − 1 for any n > 0

1

n2
≥ 1

4n2 − 1

since
 

1

n2
is a harmonic series (with p = 2) which

is convergent, so is the series
 

1

4n2−1
.

Example 5:
 
x2n · n/(n2 + 1)

 1
2
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Solution: Applying ratio test,

lim
n→∞

un+1

un

= lim
n→∞ xn+1·

 
n+1

(n+1)2 +1

 1
2

 
n2 +1

n

 1
2

· 1
xn

= lim
n→∞ x ·




 
1+ 1

n

 
 
1+ 1

n

 2
+ 1

n

·
 
1+ 1

n2

 


1
2

=x.

For x < 1 series converges, while it diverges for

x > 1.

When x = 1, the nth term of the series
 

n

n2+1

choose the series vn = 1
n
which is divergent.

Since n3 > n2 + 1 or n

n2+1
> 1

n2
or 

n

n2+1
>

 
1

n2
= 1

n
for every n > 1.

Thus the series with nth term
 

n

n2+1
is divergent.

Hence series converges for x < 1 and diverges for

x ≥ 1.

Example 6:
(1+α)(1+2α)(1+3α)+···+(1+nα)
(1+β)(1+2β)(1+3β)+···+(1+nβ)

Solution: Applying ratio test,

lim
n→∞

un+1

un

= (1+α)(1+2α)(1+3α)+ · · · (1+nα)(1+(n+1)α)

(1+β)(1+2β)(1+3β)+ · · · +(1+nβ)(1+(n+1)β)

× (1 + β) · · · (1 + nβ)

(1 + α) · · · (1 + nα)

= lim
n→∞

1 + (n + 1)α

1 + (n + 1)β
= α

β

For α
β
< 1 series converges

α
β
> 1 series diverges

For α
β

= 1 i.e., α = β, the nth term of the series is

un = 1

lim
n→∞ un = lim

n→∞ 1 = 1  = 0

so the series diverges for α = β.

Thus the given series converges forβ > α > 0 and

diverges for α ≥ β > 0.

EXERCISE

Use D’Alembert’s ratio test to test for the conver-

gence of the following series whose nth term is:

1. 10n/(n!)2 Ans. convergent

2. 1·2·3···n
3·5·7···(2n+1)

Ans. convergent

3. n2/3n Ans. convergent

4. n!/nn Ans. convergent

5. 2n/n2 Ans. divergent

6. n/(n + 1) Ans. divergent

7. 1/(1 · 2 · 3 · · · n) Ans. convergent

8. n!/(2n)! Ans. convergent

9. n!/100n Ans. divergent

10. (n + 1)/(n · 4n−1) Ans. convergent

11. 32n/23n Ans. divergent

12. (n!)3e3n/(3n)! Ans. convergent

13.
√
2n!/n! Ans. divergent

14. n!/(1 · 3 · 5 · · · (2n − 1)) Ans. convergent

15. n!/102n−1 Ans. divergent

In case, ratio test fails use other methods (say com-

parison test)

16. 1/(n(n + 1)) Hint: Sn = 1 − 1
n+1

Ans. convergent

17. (n2 + 1)/(n3 + 1) Hint: Compare 1
n

Ans. divergent

18. 1/(1 + e
1
n ) Hint: lim

n→∞
un = 1

2

Ans. divergent

19. 1

(1+n2)
Hint: Compare 1

n2

Ans. convergent

20. (n + 6)−
1
3 Hint: Compare n

1
3

Ans. divergent

21.
√
n/(n2 + 1) Hint: Compare n− 3

2

Ans. convergent
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22. x2n−2/((n + 1)
√
n) Hint: Compare n− 3

2

Ans. converges for x2 ≤ 1 and diverges for x2 > 1

23. (2n+1 − 2)xn/(2n+1 + 1)

Ans. converges for x < 1 and diverges for x ≥ 1

24. 1 · 3 · 5 · · · (2n − 1) · xn−1/(2 · 4 · 6 · · · 2n)
with x > 0

Ans. converges for x < 1 and diverges for x ≥ 1

25. n2 · xn−1 with x > 0

Hint: For x = 1, the series
 

n2 is divergent

Ans. convergent when x < 1 and divergent when

x ≥ 1

26. xn/(n(n + 1))

Hint: For x = 1, compare with
 

n−2 which

is convergent

Ans. convergent when x ≤ 1 and divergent when

x > 1

27. xn/(n(n + 1)(n + 2)) with x > 0

Ans. convergent if x ≤ 1 and divergent if x > 1

28. (
√
n2 + 1 − n)x2n

Ans. convergent if x2 < 1 and divergent if x2 ≥ 1

29. [(n + 1)/(n + 2)]nxn

Ans. convergent if x < 1 and divergent if x ≥ 1

30. x2n−1/(2n − 1)

Ans. converges for |x| < 1.

35.11 CAUCHY’S* nth ROOT TEST

Theorem: For a positive series

∞ 
n=1

un = u1 + u2 + u3 + · · · + un + · · · (1)

Let lim
n→∞

n
√
un = f inite value = m

Then

a. series converges when m < 1

b. series diverges when m > 1

c. test fails when m = 1, use a different test

∗Augustin-Louis Cauchy (1789–1857) French mathematician.

Note: Cauchy’s root test is applied when un in-

volves the nth power of itself as a whole.

WORKED OUT EXAMPLES

Use Cauchy’s nth root test to test for convergence of

the following series:

Example 1:
  

n+1
2n+5

 n
Solution: Here un =  

n+1
2n+5

 n
Applying Cauchy’s nth root test,

lim
n→∞ u

1/n
n = lim

n→∞

$ 
n + 1

2n + 5

 n% 1
n

= lim
n→∞

n + 1

2n + 5

= lim
n→∞

 
1 + 1

n

2 + 5
n

 
= 1

2
< 1

series is convergent.

Example 2:
  

1+ 1
n

 2n
en

Solution: un =
 
1+ 1

n

 2n
en

lim
n→∞ u

1
n
n = lim

n→∞




 
1 + 1

n

 2n
en




1
n

= lim
n→∞

 
1 + 1

n

 2
e

= 1

e
· 1 = 0.3678796 < 1

series convergent.

Example 3: 1+ x
2

+ x2

32
+ x3

43
+ · · · ∞ where x>0

Solution: Here the nth term un = xn

(n+1)n

lim
n→∞ u

1
n
n = lim

n→∞

$
xn

(n + 1)n

% 1
n

= lim
n→∞

x

(n + 1)
= x · 0 = 0 < 1

for any x. So series is convergent for any x.

Example 4:
 

x2n

2n
with x > 0
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Solution: un = x2n

2n

lim
n→∞ u

1
n
n = lim

n→∞

 
x2n

2n

 1
n

= lim
n→∞

x2

2
= x2

2

series is convergent if x2

2
< 1, i.e.,x <

√
2 = 1.4142

and divergent if x2

2
> 1, i.e., x >

√
2.

If x =
√
2, un = 1 for any n, so lim

n→∞
un = 1  = 0.

Series is divergent.

EXERCISE

Use Cauchy’s nth root test to test for convergence of

the following series whose nth term is:

1. 2n/n3 Ans. limit: 2, divergent

2.
 
1 + 1

n

 −n2

Ans. limit: 1
e
, convergent

3. (log n)−n Ans. converges for n > e2

4. n−n Ans. limit 0; convergent

5.
 
n+1
n+2

· x n
Ans. convergent for x < 1 and divergent for x ≥ 1

6.
 
1 + 1√

n

 − n
3
2
e

Ans. limit e−1; convergent

7.
 nx
1+n

 n
with x > 0

Ans. limit: x, convergent for x < 1 and divergent

for x ≥ 1

8. [(n + 1)x]n/nn+1 with x > 0

Ans. limit: x, convergent for x < 1 and divergent

for x ≥ 1

9.
  

n+1
n

 n+1 −  
n+1
n

  −n

Ans. limit: 1
e−1

, convergent

10. ne−n2 Ans. limit: 1

e2
, convergent

35.12 RAABE’S∗ TEST (Higher Ratio Test)

Theorem: Let
 

un be a positive series and let

lim
n→∞

 
un

un+1
− 1

 
n = m

∗Joseph Ludwig Raabe (1801–1859) Swiss mathematician.

Then the given series converges when m > 1 and

diverges when m < 1. Test fails for m = 1.

Note: When Raabe’s test fails, Logarithmic ratio

test orDeMorgan’s andBertrand’s testsmay be used.

WORKED OUT EXAMPLES

Example 1: Test for convergence of the series

1 + a + a(a + 1)

1 · 2 + a(a + 1)(a + 2)

1 · 2 · 3 + · · ·

Solution: The nth term of this series is

un = a(a + 1)(a + 2)(a + 3) · · · (a + n)

1 · 2 · 3 · · · (n + 1)

Applying ratio test, we have

lim
n→∞

un

un+1
= lim

n→∞
a(a + 1)(a + 2) · · · (a + n)

(n + 1)!

× (n + 2)!

a(a + 1)(a + 2) · · · (a + n)(a + n + 1)

= lim
n→∞

(n + 2)

(a + n + 1)
= lim

n→∞


 1 + 2

n

1 +
 
a+1
n

 



= 1

so ratio test fails.
Apply Raabe’s test,

lim
n→∞ n

$
n + 2

(a + n + 1)
− 1

%
= lim

n→∞
n(1 − a)

(n + a + 1)

= lim
n→∞

(1 − a) 
1 + a+1

n

 = 1 − a

series converges if 1 − a > 1 i.e., a < 0 and diverges

if 1 − a < 1 i.e., a > 0.

When a = 0, limit = 1. So series converges. Thus

series converges for a ≤ 0 and diverges for a > 0.

Example 2: 2
5
x + 2·4

5·8x
2 + 2·4·6

5·8·11 ·x3 + · · · with

x > 0

Solution: Here the nth term of the series is

un = 2 · 4 · 6 · · · (2n)
5 · 8 · 11 · · · (3n + 2)

· xn
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Applying ratio test,

lim
n→∞

un

un+1
= lim

n→∞
2 · 4 · 6 · · · (2n)

5 · 8 · 11 · · · (3n + 2)
· xn

×5 · 8 · 11 · · · (3n + 2)(3n + 5)

2 · 4 · 6 · · · (2n)(2n + 2)xn+1

= 1

2x
lim

n→∞

 
3n + 5

n + 1

 
= 3

2x

so series is convergent for 3
2x

> 1 and diverges for
3
2x

< 1. For x = 3
2
, ratio test fails.

Applying Raabe’s test,

lim
n→∞ n

 
un

un+1
− 1

 
= lim

n→∞ n

 
1

3

(3n + 5)

(n + 1)
− 1

 

= lim
n→∞

2n

3(n + 1)
= 2

3
< 1

series diverges.

Thus the given series converges for x < 3
2
and

diverges for x ≥ 3
2
.

Example 3: 1+ 1
2

+ 1·3
2·4 + 1·3·5

2·4·6 + · · ·

Solution: Here un = 1·3·5···(2n−1)
2·4·6···(2n)

Applying ratio test,

lim
n→∞

un

un+1
= lim

n→∞
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

× 2 · 4 · 6 · · · (2n)(2n + 2)

1 · 3 · 5 · · · (2n − 1)(2n + 1)

= lim
n→∞

2(n + 1)

2n + 1
= 1

Ratio test fails
Applying Raabe’s test,

lim
n→∞ n

 
un

un+1
− 1

 
= lim

n→∞ n

 
2n + 2

2n + 1
− 1

 

= lim
n→∞

n

2n + 1
= 1

2
< 1

series is divergent.

EXERCISE

Test for convergence of the following series with

x > 0 and whose nth term is:

1.
1·3·5···(2n−3)
2·4·6···(2n−2)

· a(a+1)(a+2)···(a+n−2)
b(b+1)(b+2)···(b+n−2)

with

a > 0, b > 0

Hint: Ratio test fails

By Raabe’s test, limit = b − a + 1
2
.

Ans. series is convergent for b > a + 1
2

2. [12 · 52 · 92 · · · (4n − 3)2]/[42 · 82 · 122 · · · (4n)2]
Ans. convergent

3.
1·3·5···(2n−1)
2·4·6···(2n) · 1

(2n+1)

Hint: Raabe’s test, limit = 6
4
> 1.

Ans. convergent

4. [4 · 7 · · · (3n + 1) · xn]/n!

Hint: For x = 1
3
, ratio test fails.

In Raabe’s test, limit = − 1
3
.

Ans. convergent for x < 1
3
and divergent for x ≥ 1

3
.

5. [22 · 42 · 62 · · · (2n)2x2n+2]/[3 · 4 · 5 · 6 · 7 ·
8 · · · (2n + 1)(2n + 2)]

Hint: For x2 = 1 (ratio test fails).

By Raabe’s test, limit = 3
2

Ans. convergent for x2 ≤ 1 and divergent for

x2 > 1

6. [1 · 3 · 5 · · · (2n − 3)x2n−1]/[2 · 4 · 6 · · ·
(2n − 2) · (2n − 1)]

Ans. convergent for x2 ≤ 1 and divergent for

x2 > 1

7.
a(a+1)(a+2)···(a+n−1)b(b+1)(b+2)···(b+n−1)·xn

1·2·3···n·c(c+1)(c+2)···(c+n−1)

Ans. convergent for x < 1 and divergent for x > 1

when x = 1, convergent for c > a + b and

divergent for c ≤ a + b

8. [1 · 3 · 5 · · · (2n − 1)(x2n+1)]/[2 · 4 · 6 · · ·
(2n) · (2n + 1)]

Ans. convergent for |x| ≤ 1 and divergent for

|x| > 1

9. [3 · 6 · 9 · · · (3n)]xn/[7 · 10 · 13 · · · (3n + 4)]

Hint: When x = 1, by Raabe’s test, lim

n
 

un
un+1

−1
 

= 4
3
> 1 therefore series is con-

vergent.



SEQUENCES AND SERIES 35.17

Ans. convergent for x ≤ 1 and divergent for x > 1

10. [1 · 3 · 5 · · · (2n − 1) · xn]/[2 · 4 · 6 · · · 2n]
Ans. convergent for x < 1 and divergent for x ≥ 1

11. xn log (nx)

Ans. convergent if x < 1 and divergent if x ≥ 1

12. (n! xn)/(3 · 5 · 7 · · · (2n + 1))

Hint: For x = 2 (ratio test fails), by Raabe’s

test, limit = 1
2
.

Ans. converges for x < 2 and diverges for x ≥ 2

13. (n!)2xn/(2n)!

Hint: For x = 4, (Ratio test fails), by Raabe’s

test, limit = − 1
2
.

Ans. convergent for x < 4 and diverges for x ≥ 4

35.13 LOGARITHMIC TEST

Theorem: Let
 

un be a positive series with

lim
n→∞

 
n · log

 
un

un+1

  
= m. Then the series

 
un

converges if m > 1 and diverges if m < 1 and test

fails when m = 1.

Proof: Let m> 1 and p be such that m>p> 1.
Consider the convergentp-series

 
vn =  

1
np

with
p > 1. Then by comparison test the given series 

un converges if

un

un+1
>

vn

vn+1
=

 
n + 1

n

 p

=
 
1 + 1

n

 p

Taking log and expanding R.H.S. by log series

log
un

un+1
>p log

 
1+ 1

n

 
=p

 
1

n
− 1

2n2
+ 1

3

1

n3
+ · · ·

 

or n

 
log

un

un+1

 
> p

 
1 − 1

2n
+ 1

3n2
+ · · ·

 
.

Taking limit

lim
n→∞ n

 
log

un

un+1

 
> p(1 − 0 − 0 · · ·) = p > 1

A similar proof can be obtained when m < 1.

Note 1: Generally logarithmic test is used when

Raabe’s test fails. Logarithmic test is used when ei-

ther n occurs as an exponent in
un

un+1
or evaluation

of limit becomes easier by taking logarithm.

Note 2: If
un

un+1
does not involve n as an exponent

or a logarithm, the series
 

un diverges.

WORKED OUT EXAMPLES

Test for convergence of the following series:

Example: (a+1) x
1!

+ (a+2)2 x2

2!
+ (a+3)2 x3

3!
+ · · ·

Solution: The nth term of this series is

un = (a + n)n

n!
xn so un+1 = (a + n + 1)n+1

(n + 1)!
xn+1

Applying ratio test,

lim
n→∞

un

un+1
= lim

n→∞
(a + n)n

n!
xn · (n + 1)!

(a + n + 1)n+1
· 1

xn+1

= 1

x
lim

n→∞(n + 1)
(a + n)n

(a + n + 1)n+1

= 1

x
lim

n→∞
(n + 1)nn

 
1 + a

n

 n
(n + 1)n+1

 
1 + a

n+1

 n+1

= 1

x
lim

n→∞
1 

1 + 1
n

 n

  
1 + a

n

 n
a

 1
a

, 
1 + a

n+1

 n+1
a

- 1
a

= 1

x
· 1
e

· e
1
a

e
1
a

= 1

xe

series is convergent for 1
xe

> 1 and divergent for
1
xe

< 1.

Ratio test fails for xe = 1
Apply logarithmic test with x = 1

e
consider

ln
un

un+1
= ln


e · 1 

1 + 1
n

 n

 
1 + a

n

 n
 
1 + a

n+1

 n+1




ln
un

un+1
= ln e + n ln

 
1 + a

n

 
− n ln

 
1 + 1

n

 
− (n + 1)

× ln

 
1 + a

n + 1
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Expanding, ln (1 + b) = b − b2

2
+ b3

3
+ · · ·

ln
un

un+1
= 1 + n

 
a

n
− 1

2

a2

n2
+ 1

3

a3

n3
+ · · ·

.

− n

 
1

n
− 1

2

1

n2
+ 1

3

1

n3
+ · · ·

/

− (n + 1)

 
a

(n + 1)
− 1

2

a2

(n + 1)2

+1

3

a3

(n + 1)3
+ · · ·

.

Multiplying by n,

n ln
un

un+1
=

 
−a2

2
+ a3

3n
+ · · ·

.
+

 
1

2
− 1

3

1

n
+ · · ·

/

+
 
a2

2

n

n + 1
− na3

3(n + 1)2
+ · · ·

.

where the terms after + · · · contain 1

n2
, 1

n3
etc. i.e.,

are of the order
 

1

n2

 
Applying logarithmic test,

lim
n→∞n ln

un

un+1
=

 
−a2

2
+ 0 + 0 + · · ·

.

+
 
1

2
+ 0 + 0 + · · ·

/

+
 
a2

2
+ 0 + 0 + · · ·

.
= 1

2
< 1

series diverges

Thus the given series converges for xe < 1 and

diverges for xe ≥ 1.

EXERCISE

Test for convergence of the following series:

1. x + 22x2

2!
+ 33x3

3!
+ 44x4

4!
+ 55x5

5!
+ · · ·

Hint: By ratio test, limit
un+1

un
= ex, converges

for ex < 1 and diverges for ex > 1

For ex > 1 by log test: limit = 1
2
< 1, therefore

diverges.

2. 1 + x
2

+ 2!
32

x2 + 3!
43

x3 + 4!
54

· x4 + · · ·
Hint: By ratio test, limit = x/e then for x < e

convergent and divergent for x > e.

For x = e, by log test, limit = − 1
2
< 1, diverges.

3. a+x
1

+ (a+2x)2

2!
+ (a+3x)3

3!
+ (a+4x)4

4!
+ · · ·

Hint: By ratio test, limit
un+1

un
= ex

converges for ex < 1 and diverges for ex > 1.

For ex = 1, by log test, limit = 1
2
< 1, divergent.

4. 1 + 2x
2!

+ 32x2

3!
+ 43x3

4!
+ 54x4

5!
+ · · ·

Hint: By ratio test, limit
un+1

un
= xe.

Series is convergent for xe < 1 and divergent for

xe > 1.

For xe = 1, limit = 3
2
> 1 series is convergent.

5. 1
22

+ 22

33
+ 33

44
+ 44

55
+ 55

66
+ · · ·

Hint: By Logarithmic test, lim
n→∞

n log un
un+1

=
lim
n→∞

n
  − 1 + 1

n
− 2

2n
+ · · ·  + log

 
1 + 1

n

 n + 
1
n

− 1

2n2
+ · · ·   = 3

2
> 1 series is convergent.

35.14 DeMORGAN’S AND

BERTRAND’S TEST

Theorem: The series of positive terms
 

un con-
verges or diverges as

lim
n→∞

 $
n

 
un

un+1
− 1

 
− 1

%
log n

/
is > 1 or < 1.

Note: When Raabe’s test fails, DeMorgan’s test

may be tried.

WORKED OUT EXAMPLES

Example 1: Test for convergence of

12

22
+ 12 · 32

22 · 42 + 12 · 32 · 52
22 · 42 · 62 + · · ·

Solution: The nth term of this series is

un = 12 · 32 · 52 · · · (2n − 1)2

22 · 42 · 62 · · · (2n)2
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Applying ratio test,

lim
n→∞

un

un+1
= lim

n→∞
12 · 32 · 52 · · · (2n − 1)2

22 · 42 · 62 · · · (2n)2

× 22 · 42 · 62 · · · (2n)2(2n + 2)2

12 · 32 · 52 · · · (2n − 1)2(2n + 1)2

= lim
n→∞

 
2n + 2

2n + 1

 2

= 1

the ratio test fails.
Apply Raabe’s test

lim
n→∞

 
n

 
un

un+1
− 1

 /
= lim

n→∞

 
n

, 
2n + 2

2n + 1

 2

− 1

-.

= lim
n→∞

 
n
(4n + 3)

(2n + 1)2

/
= 1

So the Raabe’s test also fails.
Apply DeMorgan’s and Bertrand’s test,

lim
n→∞

$ 
n

 
un

un+1
− 1

 
− 1

/
log n

%

= lim
n→∞

 
n(4n + 3)

(2n + 1)2
− 1

/
log n

= lim
n→∞

−(n + 1)

(2n + 1)2
· log n

= − lim
n→∞

1

4

log n

n
= 0 < 1, (by L’ Hospital’s rule)

So by DeMorgan’s and Bertrand’s test the given

series is divergent.

Example 2: 1

12
+ 1+2

12+22
+ 1+2+3

12+22+33
+ · · ·

Solution: The nth term of this series is

un = 1 + 2 + 3 + 4 + · · · + n

12 + 22 + 32 + · · · + n2

= n(n + 1)

2
· 6

n(n + 1)(2n + 1)
= 3

(2n + 1)

Applying ratio test,

lim
n→∞

un

un+1
= lim

n→∞
3

(2n + 1)
· 2n + 3

3

= lim
n→∞

 
2n + 3

2n + 1

 
= 1

the ratio test fails.

Applying Raabe’s test,

lim
n→∞ n

 
un

un+1
− 1

 
= lim

n→∞ n

 
2n + 3

2n + 1
− 1

 

= lim
n→∞

2n

2n + 1
= 1

the Raabe’s test also fails.
Apply DeMorgan’s test,

lim
n→∞

$
n

 
un

un+1
− 1

 
− 1

%
log n

= lim
n→∞

$
2n

2n + 1
− 1

%
log n

= lim
n→∞ − log n

2n + 1
= ∞

∞ (By L’ Hospital’s rule)

= lim
n→∞ − 1

n
· 1
2

= 0 < 1

So the series is divergent by DeMorgan’s test.

EXERCISE

Test for convergence of the following series:

1. a
b

+ a(a+1)
b(b+1)

+ a(a+1)(a+2)
b(b+1)(b+2)

+ · · ·

Hint: Ratio test fails. Apply Raabe’s test

Ans. Convergent if b − a > 1 and divergent if

b − a < 1. For b − a = 1, the Raabe’s test

fails. By applying DeMorgan’s test, series is

divergent for b − a = 1.

2. 1 + 22

32
+ 22·42

32·52 + 22·42·62
32·52·72 + · · ·

Hint: Ratio test fails, Raabe’s test also fails.

ByDeMorgan’s test, limit = 0 < 1 so series is

divergent.

Ans. divergent.

35.15 ALTERNATING SERIES

LEIBNITZ’S* THEOREM

All the series considered so far contained only

positive terms. However a series may contain some

positive and some negative terms.

∗Gottfried Wilhelm Leibnitz (1646–1716), German mathe-
matician.
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Alternating series is a series whose terms are
alternately positive and negative, i.e., series whose
terms have alternating (positive and negative) signs
in the form

u1 − u2 + u3 − u4 + · · · + (−1)n un + · · ·

where u1, u2, · · · un, · · · are all positive (i.e., un > 0,

for every n).
A simple test for convergence of alternating series

is given byLeibnitz’s theorem (rule) which states that
in the alternating series

u1 − u2 + u3 − u4 + · · · + (−1)nun + · · · (with un > 0)

(1)

if (i) the terms are such that each term is numerically

greater than its succeeding term

i.e., u1 > u2 > u3 > u4 > · · · > un > un+1 > · · ·
(2)

and (ii)

lim
n→∞un = 0 (3)

Then the alternating series (1) converges. Its sum

is positive, and does not exceed the first term.

Proof: Consider

S2m = (u1 − u2) + (u3 − u4) + · · · + (u2m−1 − u2m)

(4)

which is the sum of the first n = 2m even number of

terms of the series (1).
The expression in each of the parentheses in

(4) is positive (i.e., (u1 − u2) > 0, (u3 − u4) >
0 . . . , etc.) because of the condition (2). Hence
S2m > 0 and increases with increasing m as more
positive values are added. Rewriting (4) as

S2m = u1 − (u2 − u3) − (u4 − u5) − · · ·
−(u2m−2 − u2m−1) − u2m

and again using the condition (2), note that

S2m < u1

since positive quantities (in each bracket) are sub-
tracted from u1. Thus S2m increases with increasing
m and is bounded above, hence the sequence of even
partial sums has a limit say s,

i.e., lim
m→∞ S2m = s (with 0 < s < u1)

Nowconsider the sumof the firstn = 2m + 1, odd
number of terms of the series (1) as

S2m+1 = S2m + u2m+1

Taking the limit,

lim
m→∞ S2m+1 = lim

m→∞ S2m + lim
m→∞ u2m+1

= s + 0 = s

since lim
m→∞

u2m+1 = 0 follows from condition (3).

Therefore the given alternating series (1) converges

because lim
n→∞

= s both for even n and for odd n.

Note: Leibnitz’s theorem holds good even if the

inequalities (2) are true from some N onwards.

WORKED OUT EXAMPLES

Test for convergence of the following series:

Example 1: 1 − 1
2

+ 1
4

− 1
8

+ 1
16

+ · · ·
Solution: The given series is an alternating series
since the terms of the series are alternately posi-
tive and negative n with un = 1

2n
, so that un+1 =

1

2n+1 . Since un − un+1 = 1
2n

− 1

2n+1 = 1

2n+1 > 0 i.e.,

un+1 < un for every n, each term is numerically less
than its preceding term.

Also lim
n→∞ un = lim

n→∞
1

2n
= 0

By Leibnitz’s rule, the given series is convergent.

Example 2: 1 − x
12

+ x2

22
− x3

32
+ x4

42
· · ·

Solution: Here un − un+1 = xn

n2
− xn+1

(n+1)2
=

xn[n2(1−x)+2n+1]

n2(n+1)2

For |x| ≤ 1, un − un+1 > 0 for every n ≥ 1

Also lim
n→∞un = lim

n→∞
xn

n2
= 0 whenever |x| ≤ 1

Given alternative series is convergent for |x| ≤ 1.

[For |x| > 1, lim
n→∞

xn

n2
= lim

n→∞
n·xn−1

2n
= ∞ by

L’ Hospital’s rule and therefore the series diverges

for |x| > 1].
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Example 3: 1
6

− 2
11

+ 3
16

− 4
21

+ 5
26

+ · · ·

Solution: Here un = n
5n+1

Since lim
n→∞ un = lim

n→∞
n

5n + 1
= 1

5
 = 0

By Leibnitz’s rule, series is divergent.

Example 4: x
1+x

− x2

1+x2
+ x3

1+x3
− x4

1+x4
+ · · ·

Solution: For this alternating series

un − un+1 = xn

1 + xn
− xn+1

1 + xn+1

= xn(1 − x)

(1 + xn)(1 + xn+1)
> 0 for 0 < x < 1

Also lim
n→∞ un = lim

n→∞
xn

1 + xn
= 0

1 + 0
= 0

(since for x < 1, lim
n→∞ xn = 0)

By Leibnitz’s rule the series is convergent whenever

0 < x < 1.

EXERCISE

Test for convergence of the following series:

1. 1 − 1
2

+ 1
3

− 1
4

+ · · · Ans. convergent

2. 1 − 1
2!

+ 1
3!

− 1
4!

+ · · · Ans. convergent

3.
∞ 
n=2

(−1)n−1

ln n
Ans. convergent

4. 5
2

− 7
4

+ 9
6

− 11
8

+ · · · Hint: limit = 1.

Ans. oscillatory

5.
∞ 
n=1

cos nπ

n2+1
Ans. convergent

6.
 

(−1)n−1 1
np

when 0 < p ≤ 1

Ans. convergent

7. 1 − 1
2!

+ 1
4!

− 1
6!

+ · · · Ans. convergent

8.
∞ 
n=1

(−1)n+1
 √

n + 1 − √
n
 

Ans. convergent

9. 1
1.2

− 1
3.4

+ 1
5.6

− 1
7.8

+ · · ·
Ans. convergent

10.
∞ 
n=1

(−1)n−1·n
(2n−1)

Hint: limit = 1
2
.

Ans. oscillatory

11.

∞ 
n=1

(−1)n+1 · 1√
n

Ans. convergent

12.
∞ 
n=1

(−1)n−1 · n

n2+1
Ans. convergent

13. 1√
2−1

− 1√
2+1

+ 1√
3−1

− 1√
3+1

+ · · ·
Ans. divergent

14.
∞ 
n=1

(−1)n−1 · n
n+1

Ans. not convergent

15.
∞ 
n=1

(−1)n−1
√
n(n+1)(n+2)

Ans. convergent

16.
∞ 
n=1

(−2)n

n2
Ans. divergent

17.
∞ 
n=1

(−3)n

n!
Ans. convergent

18.
∞ 
n=1

(−1)nn

5+n
Ans. divergent

19.
∞ 
n=1

(−1)n
√
10n

n+2
Ans. convergent

20.
∞ 
n=0

(−1)n(n + 1)xn with x < 1
2

Ans. convergent

21.
∞ 
n=2

(−1)n−1xn

n(n−1)
, with 0 < x < 1

Ans. convergent

22.
∞ 
n=1

(−1)n−1 1
(x+n)

Ans. convergent

23.
∞ 
n=0

(−1)n xn

1+na
Ans. convergent for |x| < 1

24.
∞ 
n=1

(−1)n−1xn√
n

Ans. convergent if |x| < 1
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25. 3
2

− 5
4

+ 9
8

− 17
16

+ · · ·
Hint: lim un =  

1 + 1
2n

 = 1  = 0,

lim S2n = 1
3

 
1 −  

1
2

 2n = 1
3
and lim S2n+1 =

lim 1 + 1
3

 
1 +  

1
2

 2n+1 → 4
3
.

Ans. oscillatory.

35.16 ABSOLUTE CONVERGENCE AND

CONDITIONAL CONVERGENCE

Plus- and -minus series (also known as series

of positive and negative terms) is a series containing

both positive and negative terms in any order. In such

a series, any term may be either positive or negative.

Thus the alternating series considered earlier is a spe-

cial case of plus- and -minus series with alternating

positive and negative terms.

Absolute and conditional convergence

Let u1 + u2 + u3 + · · · + un + · · · =
 

un (1)

be a plus- and -minus series with the assumption

that here onwards the members u1, u2, . . . , un, . . .

can be either positive or negative i.e., some terms

may be positive and others negative (not necessarily

alternative). Let us form a series made up of the

absolute values of the terms of the series (1) i.e.,

|u1| + |u2| + |u3| + · · · + |un| + · · · =
 

|un| (2)

Each termof the series (2) is positive and numerically

equal to the corresponding term of series (1).

Absolute Convergence

The plus- and -minus series
∞ 
n=1

un is said to be ab-

solutely convergent if the corresponding series with

absolute terms
 |un| is convergent.

Example: 1 − 1
2!

+ 1
3!

− 1
4!

+ · · · is absolutely

convergent because the series formed with absolute

values 1 + 1
2!

+ 1
3!

+ 1
4!

+ · · · is convergent.

Conditional Convergence

If
 

un is convergent while
 |un| is divergent then 

un is said to be conditionally convergent.

Example: 1 − 1
2

+ 1
3

− 1
4

+ · · · is conditionally

convergent because the given series is convergent

(by Leibnitz’s rule) while 1 + 1
2

+ 1
3

+ 1
4

+ · · · is a
divergent harmonic series (with p = 1).

Sufficient Condition for Convergence

Theorem: Every absolutely convergent series is

necessarily a convergent series.

Note 1: The converse is not true i.e., a series 
un of positive and negative terms may converge

while the corresponding series
 |un| of absolute

terms may diverge. See example under conditional

convergence.

Note 2: Any convergent series of positive terms is

also absolutely convergent.

Test for Absolute Convergence

A series
 

un is absolutely convergent if

lim
n→∞

    un+1

un

    < 1

and divergent if

lim
n→∞

    un+1

un

    > 1

and test fails when the limit value is unity.

WORKED OUT EXAMPLES

Examine the following series for absolute or condi-

tional convergence:

Example 1: 1 − 1
3!

+ 1
5!

− 1
7!

+ · · ·
(JNTU 2001/S)

Solution: This is an alternating series with nth term
un = 1

(2n+1)!
also un+1 = 1

(2n+3)!
so that

un −un+1 = 1

(2n+1)!
− 1

(2n+3)!
= (2n+3)!− (2n+1)!

(2n+1)!(2n+3)!

= (2n + 2)(2n + 3) − 1

(2n + 3)!
> 0

Also lim
n→∞

un = lim
n→∞

1
(2n+1)!

= 0
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So by Leibnitz’s rule the given alternating series

is absolutely convergent and hence is convergent be-

cause every absolutely convergent series is necessar-

ily convergent.

Example2: 1
5√
2

− 1
5√
3

+ 1
5√
4

+ · · · + (−1)n 1
5√n

+ · · ·

Solution: The given series is an alternating series

with the nth term un = 1
5√n

= 1

n1/5
.

Here un = 1

n1/5
> un+1 = 1

(n+1)1/5
for all n and

lim
n→∞ un = lim

n→∞
1

n
1
5

= 0.

Thus byLeibnitz’s rule the given series is convergent.
However the series with absolute values

i.e.,
1
5
√
2

+ 1
5
√
3

+ 1
5
√
4

+ · · · + 1
5
√
n

+ · · ·

is p series
 

1
np

with p = 1
5
< 1 and therefore is

divergent. Hence the given series is conditionally

convergent.

EXERCISE

Examine the following series for absolute conver-

gence (A.C.) or conditional convergence (C.C.)

1. 1− 1

32
+ 1

52
− 1

72
+ 1

92
+ · · · + (−1)n+1 1

(2n−1)2+ · · ·
Hint: Compare with

 
1
np

series with say

p = 10.

Ans. A.C.

2. 1
2

− 4

23+1
+ 9

33+1
− 16

43+1
+ · · · + (−1)n+1 n2

n3 + 1+ · · ·
Hint: Use integral test to prove divergency.

Ans. C.C.

3. 1 − 2
3

+ 3

32
− 4

33
+ · · ·

Ans. A.C.

4. 2
3

− 3
4

· 1
2

+ 4
5

· 1
3

− 5
6

· 1
4

+ · · ·
Ans. C.C.

5. 1 − 1
2

+ 1
4

− 1
8

+ 1
16

− · · · + (−1)n 1
2n

+ · · ·
Ans. A.C.

6. 1 − 1√
2

+ 1√
3

− 1√
4

+ · · · + (−1)n+1 1√
n

+ · · ·

Ans. C.C.

7. 1

12+1
− 2

22+1
+ 3

32+1
− 4

42+1
+ · · · +

(−1)n−1 n

n2+1
+ · · ·

Ans. C.C.

8. 1 + 1

22
− 1

32
− 1

42
+ 1

52
+ 1

62
− 1

72
− 1

82
+ · · ·

Ans. A.C. (JNTU 1998)

9. 1

2(log n)2
− 1

3(log 3)2
+ 1

4(log 4)2
− 1

5(log 5)2
+ · · ·

+ (−1)n

n(log n)2
+ · · ·

Ans. A.C.

10.
∞ 
n=1

(−1)nnp

Ans. (i) A.C. for p < −1 (ii) C.C. for −1 ≤ p < 0

(iii) divergent, for p > 0

11.
∞ 
n=2

(−1)n
log log n√

log n
Ans. C.C.

12.
∞ 
n=3

(−1)n log n

n log log n
Ans. C.C.

13.
∞ 
n=0

(−1)n

(2n)!
Ans. C.C. (JNTU 1997)

14.
∞ 
n=0

(−1)n−1

n
√
n

Ans. A.C.

15.
∞ 
n=1

(−1)n+1(n+1)

n2
Ans. C.C.

16.
∞ 
n=1

(−1)n+122n−1

(2n−1)!
Ans. A.C.

Hint: Use ratio test for convergency.

17.
∞ 
n=1

(−1)n+1 n

n3+1
Ans. A.C.

18.
∞ 
n=1

(−1)n+1 1
n·2n Ans. A.C.

Hint: Use geometric series with r = 1
2
to test

for convergency.

19.
∞ 
n=1

(−1)n+1 1
n

Ans. C.C.

Hint: Compare with harmonic series with

p = 1.

20.
∞ 
n=1

(−1)n+1 1
n!

Ans. A.C.
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35.17 POWER SERIES

We have considered so far, series whose terms are

constants. Now we consider, series whose terms are

functions of x, more specifically series in which

nth term is a constant times xn or constant times

(x − b)n where b is a constant. A power series

is a series of the form
∞ 
n=0

anx
n = a0 + a1x + a2x

2

+ · · · + anx
n + · · · where a0, a1, a2 · · · an · · · are

all constants known as coefficients of the series

or
∞ 
n=0

an(x − b)n = a0 + a1(x − b) + a2(x − b)2+
· · · + an(x − b)n + · · ·
Interval of convergence of a power series is the

interval of x say −L < x < L such that the series

converges for values of x in this interval (−L,L)

and diverges for values of x outside this interval.

Test for Convergence of Power Series

lim
n→∞

un+1

un
= lim

n→∞
an+1x

n+1

anxn
= x · lim

n→∞
an+1

an
= x · L

series converges if |xL| < 1 i.e., −1
L

< x < 1
L

or

−L < x < L. Series diverges if |xL| > 1.

WORKED OUT EXAMPLES

Determine for what values of x, the following series

are convergent:

Example 1:

∞ 
n=1

(−1)n+1x2n−1

(2n−1)!

Solution: Applying the ratio test

lim
n→∞

    un+1

un

    = lim
n→∞

     (−1)n+2x2n+1

(2n + 1)!
· (2n − 1)!

(−1)n+1x2n−1

     
= lim

n→∞

     x2

2n(2n + 1)

     = 0 < 1, for any x.

So the given series converges for all x i.e., −∞ <

x < ∞.

Example 2: 1
1−x

+ 1

2(1−x)2
+ 1

3(1−x)3
+ · · ·

Solution: Here un = 1
n(1−x)n

.

Applying ratio test,

lim
n→∞

    un+1

un

    = lim
n→∞

    1

(n + 1)(1 − x)n+1
· n(1 − x)n

    
=

    1

1 − x

    lim
n→∞

n

n + 1
=

    1

1 − x

    
series converges when

  1
1−x

  < 1 i.e., |1 − x| > 1

or x < 0 and x > 2

Test for convergence at the end points x=0 and x=2.
For x = 0, the given series reduces to

1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · · + 1

n
+ · · ·

which is a divergent harmonic series with p = 1
For x = 2, the given series becomes

−1 + 1

2
− 1

3
+ 1

4
− 1

5
+ · · · + (−1)n

n
+ · · ·

This alternating series is convergent by Leibnitz’s

rule because

i. un = 1
n
>un+1 = 1

n+1
i.e., n+ 1>n true for all n

ii. lim
n→∞

un = lim
n→∞

1
n

= 0

Thus the given series converges for x ≥ 2 and x < 0.

Example 3: Find the interval of convergence of

i. exponential series

ii. logarithmic series and

iii. binomial series.

Solution:

i. Exponential series

∞ 
n=0

xn

n!
= 1 + x + x2

2!
+ · · · + xn

n!
+ · · ·

converges for all values of x i.e., −∞ < x < ∞
since by ratio test,

lim
n→∞

un+1

un
= lim

n→∞

 
xn+1

(n + 1)!

n!

xn

 
= x · lim

n→∞
1

n + 1

= 0 for any x

Interval of convergence is (−∞,∞)
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ii. The logarithmic series is given by
∞ 
n=1

(−1)n+1 xn

n
.

By ratio test,

lim
n→∞

un+1

un
= lim

n→∞(−1)n+2 xn+1

n + 1
· n

(−1)n+1xn

= (−x) lim
n→∞

n

n + 1
= −x · 1 = −x.

Series is convergent for |x| < 1 and divergent

for |x| > 1. When x = 1, the series reduces to

1 − 1
2

+ 1
3

− 1
4

+ · · ·, which is convergent.
When x = −1, the series reduces to

−  
1 + 1

2
+ 1

3
+ 1

4
+ · · · which is divergent.

Thus the interval of convergence of the loga-

rithmic series is (−1, 1](i.e., (−1 < x ≤ 1)).

iii. The binomial series is

1 + nx + n(n − 1)

2!
x2 + · · ·

+ n(n − 1) · · · (n − (r − 1))

r!
xr + · · ·

By ratio test,

lim
r→∞

ur+1

ur
= lim

r→∞
n(n − 1) · · · (n − (r − 1))

r!
xr

× (r − 1)!

n(n − 1) · · · (n − r)
· 1

xr−1

= x · lim
r→∞

 
n − r + 1

r

 

= x · lim
r→∞

 
n + 1

r
− 1

 
= −x for r > n + 1

Thus the interval of convergence of the binomial

series is (−1, 1) (i.e., − 1 < x < 1).

EXERCISE

Determine the interval of convergence i.e., for what

values of x, the following series are convergent. In-

vestigate convergence at the end points of the interval

also.

1.
∞ 
n=1

xn

(n!)2
Ans. All x

2.
∞ 
n=0

(−1)nxn Ans. |x| < 1

3.
∞ 
n=1

(−1)nxn

n(n+1)
Ans. |x| ≤ 1

4.
∞ 
n=1

x2n

2nn2
Ans. |x| ≤

√
2

5.
∞ 
n=0

(x+2)n√
n+1

Ans. −3 ≤ x < −1

6.
∞ 
n=1

xn

n
Ans. −1 ≤ x < 1

7.
∞ 
n=1

n xn−1 Ans. −1 < x < 1

8.
∞ 
n=1

(−1)nn3xn Ans. |x| < 1

9.
∞ 
n=1

1
n

 
x
5

 n
Ans. −5 ≤ x < 5

10.
∞ 
n=1

(−2)n(2x+1)n

n2
Ans. −3

4
≤ x ≤ − 1

4

11.
∞ 
n=1

(x−2)n

3n
Ans. −1 < x < 5

12.
∞ 
n=1

(−1)nx2n

(2n)3/2
Ans. −1 ≤ x ≤ 1

13.
∞ 
n=1

(−1)n xn

log(n+1)
Ans. |x| < 1

14.
∞ 
n=0

(−1)n xn

1+na
Ans. |x| < 1

15.
∞ 
n=1

(−1)n−1 xn

n
Ans. |x| < 1

16.
∞ 
n=0

(−1)nxn Ans. 0 < x < 1

17.
∞ 
n=1

(−1)n+1 (2x)
n

n
Ans. − 1

2
< x ≤ 1

2

18.
∞ 
n=0

(nx)n Ans. only for x = 0

19.
∞ 
n=1

3n
2
xn2 Ans. |x| < 1

3

20.
∞ 
n=1

n!xn

nn
Ans. −e < x < e

21.
∞ 
n=1

(n!)2

(2n)!
xn Ans. |x| < 4
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22.
∞ 
n=1

n!(x − 1)n Ans. only for x = 1

23.
∞ 
n=1

(x+1)n√
n

Ans. −2 ≤ x < 0

24.
∞ 
n=1

(x+3)n−1

n
Ans. −4 ≤ x < −2

25.
∞ 
n=0

(3x+6)n

n!
Ans. All x

26.
∞ 
n=0

(−2)n(n + 1)(x − 1)n

Ans. 1
2
< x < 3

2

27. Hypergeometric series

∞ 
n=0

a(a+1)···(a+n−1)b(b+1)···(b+n−1)
1·2·3···n·c(c+1)···(c+n−1)

· xn

Ans. i. Absolutely convergent if |x| < 1 and diver-

gent if |x| > 1

ii. For x = 1, converges if c > a + b

iii. For x = −1, converges if c + 1 > a + b

28.
∞ 
n=0

a(a+1)···(a+n−1)b(b+1)···(b+n−1)
c(c+1)···(c+n−1)d(d+1)···(d+n−1)

·xn

Ans. i. convergent if |x|<1 and divergent if |x|>1

ii. For x = 1 and convergent if c+d−a−b>1

and divergent if c + d − a − b ≤ 1

iii. For x = −1 and convergent if c+d>a+b.

35.18 SUMMARY

1. An infinite sequence {an} is convergent, diver-

gent or oscillates finitely (or infinitely) accord-

ing as the limit an as n → ∞ is finite, infinite,

or not unique (±∞).

2. If an infinite series is convergent then neces-

sarily its nth term approaches zero as n → ∞,

although the converse is not true i.e., when

lim
n→∞

un = 0, the series may converge or diverge,

so further investigation is required. However,

when lim
n→∞

un  = 0, the series is divergent.

3. Given an infinite series, classify it as (a) series

of positive terms (b) alternating series (c) plus

and minus series (d) power series.

4. For positive series, check whether lim
n→∞

un = 0.

If so, compare it with the standard geometric se-

ries
 

arn or p-harmonic series
 

1
np

where

p = difference between the degree of the nu-

merator and denominators of un.

5. Otherwise try ratio test. When ratio test fails,

apply Raabe’s or Logarithmic or DeMorgan’s

and Bertrand’s tests.

6. Prefer Cauchy’s nth root test when un involves

nth powers of itself as a whole.

7. Integral test is used when the terms of the series

are positive and non-increasing and the evalua-

tion of the integral is easy.

8. Use Leibnitz’s theorem to test for convergence

of an alternating series.

9. In a plus- and -minus series (includes alternating

series) if the series of absolute terms converges

then the series is absolutely convergent and is

therefore also (ordinarily) convergent. If not i.e.,

when the series of absolute terms diverges and

original series is convergent then series is con-

ditionally convergent.

10. Use ratio test, to find the interval of convergence

of a power series. Examine the series at the end

points of the interval also.



Chapter36

Analytical Solid Geometry

36.1 INTRODUCTION

In 1637, Rene Descartes* represented geometrical

figures (configurations) by equations and vice versa.

Analytical Geometry involves algebraic or analytic

methods in geometry. Analytical geometry in three

dimensions also known as Analytical solid** geom-

etry or solid analytical geometry, studies geometrical

objects in space involving three dimensions, which

is an extension of coordinate geometry in plane (two

dimensions).

Fig. 36.1

* Rene Descartes (1596–1650) French philosopher and mathe-
matician, latinized name for Renatus Cartesius.

** Not used in the sense of “non-hollowness”. By a sphere or
cylinder we mean a hollow sphere or cylinder.

Rectangular Cartesian Coordinates

The position (location) of a point in space can be

determined in terms of its perpendicular distances

(known as rectangular cartesian coordinates or sim-

ply rectangular coordinates) from three mutually

perpendicular planes (known as coordinate planes).

The lines of intersection of these three coordinate

planes are known as coordinate axes and their point

of intersection the origin.

The three axes called x-axis, y-axis and z-axis are

marked positive on one side of the origin. The pos-

itive sides of axes OX, OY, OZ form a right handed

system. The coordinate planes divide entire space

into eight parts called octants. Thus a point P with

coordinates x, y, z is denoted as P (x, y, z). Here

x, y, z are respectively the perpendicular distances

of P from the YZ, ZX and XY planes. Note that a line

perpendicular to a plane is perpendicular to every

line in the plane.

Distance between two points P1(x1, y1, z1) and

P2(x2, y2, z2) is
�
(x2−x1)2+(y2−y1)2+(z2−z1)2.

Distance from origin O(0, 0, 0) is

�
x22 + y22 + z22.

Divisions of the line joining two points P1, P2:

The coordinates of Q(x, y, z), the point on P1P2
dividing the line segment P1P2 in the ratio

m : n are
�
nx1+mx2
m+n ,

ny1+my2
m+n ,

nz1+mz2
m+n
�

or putting

k for m
n
,
�
x1+kx2
1+k ,

y1+ky2
1+k ,

z1+kz2
1+k

�
; k  = −1. Coordi-

nates of mid point are
�
x1+x2

2
,
y1+y2

2
,
z1+z2

2

�
.

36.1
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Direction of a line: A line in space is said to be

directed if it is taken in a definite sense from one

extreme (end) to the other (end).

Angle between Two Lines

Two straight lines in space may or may not intersect.

If they intersect, they form a plane and are said to

be coplanar. If they do not intersect, they are called

skew lines.

Angle between two intersecting (coplanar) lines is

the angle between their positive directions.

Angle between two non-intersecting (non-

coplanar or skew) lines is the angle between two in-

tersecting lines whose directions are same as those

of given two lines.

36.2 DIRECTION COSINES AND

DIRECTION RATIOS

Direction Cosines of a Line

Let L be a directed lineOP from the originO(0, 0, 0)

to a point P (x, y, z) and of length r (Fig. 36.2).

Suppose OP makes angles α, β, γ with the positive

directions of the coordinate axes. Then α, β, γ are

known as the direction angles of L. The cosines of

these angles cosα, cosβ, cos γ are known as the di-

rection cosines of the line L(OP ) and are in general

denoted by l, m, n respectively.
Thus

l = cosα = x

r
, m = cosβ = y

r
, n = cos γ = z

r
.

where r =
�
x2 + y2 + z2.

Fig. 36.2

Corollary 1: Lagrange’s identity: l2+m2+n2 = 1

i.e., sum of the squares of the direction cosines of

any line is one, since l2 +m2 + n2 = cos2 α +
cos2 β + cos2 γ = x2

r2
+ y2

r2
+ z2

r2
= 1.

Corollary 2: Direction cosines of the coordinate

axes OX, OY, OZ are (1, 0, 0), (0, 1, 0), (0, 0, 1)

respectively.

Corollary 3: The coordinates of P are (lr, mr, nr)

where l, m, n are the direction cosines of OP and r

is the length of OP.

Note: Direction cosines is abbreviated as DC’s.

Direction Ratios

(abbreviated as DR’s:) of a line L are any set

of three numbers a, b, c which are proportional

to l, m, n the DC’s of the line L. DR’s are also

known as direction numbers of L. Thus l
a
= m

b
=

n
c
= k (proportionality constant) or l = ak,m = bk,

n = ck. Since l2 +m2 + n2 = 1 or (ak)2 + (bk)2 +
(ck)2 = 1 or k = ±1√

a2+b2+c2
. Then the actual di-

rection cosines are cosα = l = ak = ± a√
a2+b2+c2

,

cosβ=m = bk = ± b√
a2+b2+c2

, cos γ = m = ck =
± c√

a2+b2+c2
with a2 + b2 + c2  = 0. Here +ve sign

corresponds to positive direction and −ve sign to

negative direction.

Note 1: Sum of the squares of DR’s need not be

one.

Note 2: Direction of line is [a, b, c] where a, b, c

are DR’s.

Direction cosines of the line joining two points
P1(x1, y1, z1) and P2(x2, y2, z2):

l = cosα = PQ

r
= LM

r
= OM −OL

r
= x2 − x1

r
.

Similarly, m = cosβ = y2−y1
r

and n = cos γ =
z2−z1
r

. Then the DR’s of P1P2 are x2 − x1, y2 − y1,
z2 − z1
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Fig. 36.3

Projections

Projection of a point P on lineL isQ, the foot of the

perpendicular from P to L.

Fig. 36.4

Projection of line segment

P1P2 on a line L is the line segment MN where M
and N are the feet of the perpendiculars from P and
Q on to L. If θ is the angle between P1P2 and line
L, then projection of P1P2 on L = MN = PR =
P1P2 cos θ . Projection of line segment P1P2 on line
L with (whose) DC’s l, m, n is

l(x2 − x1)+m(y2 − y1)+ n(z2 − z1)

Fig. 36.5

Angle between Two Lines

Let θ be the angle between the two lines OP1 and

OP2. Let OP1 = r1,OP2 = r2. Let l1,m1, n1 be

DC’s of OP1 and l2,m2, n2 are DC’s of OP2. Then

the coordinates of P1 are l1r1,m1r1, n1r1 and of P2
and l2r2,m2r2, n2r2.

Fig. 36.6

From  OP1P2, we have

P1P
2
2 = OP 2

1 +OP 2
2 − 2OP1 ·OP2 · cos θ

(l2r2 − l1r1)2 + (m2r2 −m1r1)
2 + (n2r2 − n1r1)2

=
�
(l1r1)

2 + (m1r1)
2 + (n1r1)

2
�

+
�
(l2r2)

2 + (m2r2)
2 + (n2r2)

2
�
− 2 · r1r2 cos θ.

Using l21 +m2
1 + n21 = 1 and l22 +m2

2 + n22 = 1,

r21 + r22 − 2r1r2(l1l2 +m1m2 + n1n2)
= r21 + r22 − 2r1r2 cos θ.

Then cos θ = l1l2 +m1m2 + n1n2
Corollary 1:

sin2 θ = 1− cos2 θ = 1− (l1l2 +m1m2 + n1n2)2

= (l21 +m2
1 + n21)(l22 +m2

2 + n22)
−(l1l2 +m1m2 + n1n2)2

= (l1m2 −m1l2)
2 + (m1n2 − n1m2)

2

+(n1l2 − n2l1)2

using the Lagrange’s identity. Then

(l21+m2
1+n21)(l22+m2

2+n22)−(l1l2+m1m2+n1n2)2)
= (l1m2−l2m1)

2+(m1n2−m2n1)
2+(n1l2−n2l1)2.
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Thus sin θ =
��

(l1m2 −m1l2)2

Corollary 2: tan θ = sin θ
cos θ

=
√�

(l1m2−m1l2)
2

l1l2+m1m2+n1n2 .

Corollary 3: If a1, b1, c1 and a2, b2, c2 are DR’s

of OP1 and OP2
Then l1 = a1�

a2
1
+b2

1
+c2

1

, m1 = b1�
a2
1
+b2

1
+c2

1

, n1 =
c1�

a2
1
+b2

1
+c2

1

etc.

Then cos θ = a1a2+b1b2+c1c2�
a2
1
+b2

1
+c2

1

�
a2
2
+b2

2
+c2

2

,

sin θ=
�
(a1b2−a2b1)2+(b1c2−b2c1)2 + (c1a2−c2a1)2�

a21+b21+c21
�
a22+b22+c22

.

Corollary: Condition for perpendicularity:
The two lines are perpendicular if θ = 90◦. Then

cos θ = cos 90 = 0

Thus l1l2 +m1m2 + n1n2 = 0

or a1a2 + b1b2 + c1c2 = 0

Corollary: Condition for parallelism:
If the two lines are parallel then θ = 0. So sin θ=0.

(l1m2 −m1l2)
2 + (m1n2 −m2n1)

2 + (n1l2 − n2l1)2 = 0

or
l1

l2
= m1

m2
= n1

n2
=

�
l21 +m2

1 + n21�
l22 +m2

2 + n22
= 1

1
.

Thus l1 = l2, m1 = m2, n1 = n2

or
a1

a2
= b1

b2
= c1

c2
.

WORKED OUT EXAMPLES

Example1: Find the angle between the linesA(−3,

2, 4), B(2, 5,−2) and C(1,−2, 2), D(4, 2, 3).

Solution: DR’s of AB: 2− (−3), 5− 2, −2− 4

= 5, 3, −6
DR’s of CD: 3, 4, 1. Then DC’s of AB are l1 =
cosα1 = 5√

52+32+62
= 5√

25+9+36
= 5√

70
and m1 =

cosβ1 = 3
70
, n1 = cos γ1 = −6√

70
. Similarly, l2 =

cosα2 = 3√
32+42+12

= 3√
9+16+1

= 3√
26
, and m2 =

cosβ2 = 4√
26
, n2 = cos γ2 = 1√

26
. Now

cos θ = cosα1 · cosα2 + cosβ1 · cosβ2 + cos γ1 · cos γ2
= l1l2 +m1m2 + n1n2

cos θ = 5√
70

· 3√
26

+ 3√
70

· 4√
26

− 6√
70

· 1√
26

= 0.49225

... θ = cos−1(0.49225) = 60◦30.7 

Example 2: Find the DC’s of the line that is ⊥r to
each of the two lines whose directions are [2,−1, 2]

and [3, 0, 1].

Solution: Let [a, b, c] be the direction of the line.
Since this line is ⊥r to the line with direction
[2,−1, 2], by orthogonality

2a − b + 2c = 0

Similarly, direction [a, b, c] is ⊥r to direction
[3, 0, 1]. So

3a + 0+ c = 0.

Solving c = −3a, b = −4a or

direction [a, b, c] = [a,−4a,−3a] = [1,−4,−3].

... DC’s of the line: 1√
12+42+32

= 1√
26
, −4√

26
, −3√

26
.

Example 3: Show that the points A(1, 0,−2),

B(3,−1, 1) and C(7,−3, 7) are collinear.

Solution: DR’s of AB: [2,−1, 3], DR’s of AC:

[6,−3, 9], DR’s of BC: [4,−2, 6]. Thus DR’s of

AB,AC,BC are same. HenceA,B,C are collinear.

Example 4: Find the coordinates of the foot of

the perpendicular from A(1, 1, 1) on the line joining

B(1, 4, 6) and C(5, 4, 4).

Solution: SupposeD divides BC in the ratio k : 1.

Then the coordinates of D are
�
5k+1
k+1
, 4k+4
k+1
, 4k+6
k+1

�
.

DR’s ofAD: 4k
k+1
, 3, 3K+5

k+1
, DR’s of BC: 4, 0,−2AD

is ⊥r BC: 16k − 6k − 10 = 0, or k = 1.
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Coordinates of the foot of perpendicular are (3, 4, 5).

Example 5: Show that the points A(1, 0, 2),

B(3,−1, 3),C(2, 2, 2),D(0, 3, 1) are the vertices of

a parallelogram.

Fig. 36.7

Solution: DR’s ofAB are [3− 1,−1− 0, 3− 2] =
[2,−1, 1]. Similarly, DR’s of BC are [−1, 3,−1], of
CD[−2, 1,−1] of DA[−1, 3,−1]. Since DR’s of
AB and CD are same, they are parallel. Similarly BC
and DA are parallel since DR’s are same. Further AB
is not ⊥r to AD because

2(+1)+ (−1)(−3)+ 1(+1) = 6  = 0

Similarly, AD is not ⊥r to BC because

2(−1)+ (−1)3+ 1(−1) = −6  = 0.

Hence ABCD is a parallelogram.

EXERCISE

1. Show that the points A(7, 0, 10), B(6,−1, 6),

C(9,−4, 6) form an isoscales right angled

triangle.

Hint: AB2 = BC2 = 18, CA2 = 36,

AB2 + BC2 = CA2

2. Prove that the pointsA(3,−1, 1), B(5,−4, 2),

C(11,−13, 5) are collinear.

Hint 1: AB2 = 14, BC2 = 126, CA2 = 224,

AB + BC = 4
√
14 = CA

Hint 2:DR’s ofAB = 2,−3, 1;BC: 6,−9, 3;

AB l to BC
3. Determine the internal angles of the tri-

angle ABC where A(2, 3, 5), B(−1, 3, 2),

C(3, 5,−2).

Hint:AB2 = 18,BC2 = 36,AC2 = 54.DC’s

AB:− 1√
2
, 0,− 1√

2
; BC: 2

3
, 1
3
, −2

3
; AC: 1

3
√
6
,

2

3
√
6
, −7

3
√
6
.

Ans. cosA= 1√
3
, cosB=0 i.e., B=90◦, cosC=

√
6
3
.

4. Show that the foot of the perpendicular from

A(0, 9, 6) on the line joining B(1, 2, 3) and

C(7,−2, 5) is D(−2, 4, 2).

Hint: D divides BC in k : 1, D
�
7k+1
k+1

, −2k+2
k+1

,

5k+3
k+1

�
. DR’sAD: (7k + 1,−11k − 7,−k−3),

DR’s BC: 6,−4, 2. AD ⊥r BC: k = − 1
3
.

5. Find the condition that three lines with DC’s

l1,m1, n1; l2,m2, n2; l3,m3, n3 are concurrent.

Hint: Line with DC’s l, m, n through point of

concurrency will be ⊥r to all three lines, lli +
mmi + nni = 0, i = 1, 2, 3.

Ans.

�������
l1 m1 n1

l2 m2 n2

l3 m3 n3

������� = 0

6. Show that cos2 α + cos2 β + cos2 γ + cos2 δ

= 4
3
where α, β, γ, δ are the angles which a

line makes with the four diagonals of a cube.

Hint: DC’s of four diagonals are (k, k, k),

(−k, k, k), (k,−k, k), (k, k,−k) where k =
1√
3
; l, m, n are DC’s of line. cosα = l.k.

+mk +nk, cosβ = (−l +m+ n)k, cos γ =
(l −m+ n)k, cos δ = (l +m− n)k.

7. Show that the points A(−1, 1, 3), B(1,−2, 4),

C(4,−1, 1) are vertices of a right triangle.

Hint: DR’s AB : [2,−3, 1], BC : [3, 1,−3],

CA : [5,−2,−2]. AB is ⊥r BC.
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8. Prove that A(3, 1,−2), B(3, 0, 1), C(5, 3, 2),

D(5, 4,−1) form a rectangle.

Hint: DR’s: AB: [0,−1, 3]; AC: [2, 2, 4],

CD[0, 1,−3]; AD[2, 3, 1]; BC[2, 3, 1];

AB CD,AD BC,AD ⊥ AB: 0− 3+ 3=0,

BC ⊥ DC: 0+ 3− 3 = 0.

9. Find the interior angles of the triangle

A(3,−1, 4), B(1, 2,−4), C(−3, 2, 1).

Hint: DC’s of AB: (−2, 3,−8)k1,

BC: (−4, 0, 5)k2, AC: (−6, 3,−3)k3 where

k1 = 1√
77
, k2 = 1√

41
, k3 = 1√

54
.

Ans. cosA = 15√
462

, cosB = 32√
3157

, cosC = 3√
246

.

10. Determine the DC’s of a line ⊥r to a triangle

formed by A(2, 3, 1), B(6,−3, 2), C(4, 0, 3).

Ans. (3, 2, 0)k where k = 1√
13
.

Hint: DR: AB: [4,−6, 1], BC: [−2, 3, 1],

CA: [2,−3, 2]. [a, b, c] of⊥r line: 4a − 6b+
c = 0, −2a + 3b + c = 0, 2a − 3b + 2c = 0.

36.3 THE PLANE

Surface is the locus of a point moving in space sat-

isfying a single condition.

Example: Surface of a sphere is the locus of a point

that moves at a constant distance from a fixed point.

Surfaces are either plane or curved. Equation of

the locus of a point is the analytical expression

of the given condition(s) in terms of the coordinates

of the point.

Exceptional cases: Equations may have locus

other than a surface. Examples: (i) x2 + y2 = 0 is z-

axis (ii) x2 + y2 + z2 = 0 is origin (iii) y2 + 4 = 0

has no locus.

Plane is a surface such that the straight line PQ,

joining any two points P and Q on the plane, lies

completely on the plane.
General equation of first degree in x, y, z is of the

form

Ax + By + Cz+D = 0

Here A,B,C,D are given real numbers and

A,B,C are not all zero (i.e., A2 + B2 + C2  = 0)

BookWork: Show that every equation of the first

degree in x, y, z represents a plane.

Proof: Let

Ax + By + Cz+D = 0 (1)

be the equation of first degree in x, y, zwith the con-
dition that not all A,B,C are zero (i.e., A2 + B2 +
C2  = 0). Let P (x1, y1, z1) and Q(x2, y2, z2) be any
two points on the surface represented by (1). Then

Ax1 + By1 + Cz1 +D1 = 0 (2)

Ax2 + By2 + Cz2 +D2 = 0 (3)

Multiplying (3) by k and adding to (2), we get

A(x1 + kx2)+ B(y1 + ky2)+ C(z1 + kz2)+D(1+ k)
= 0 (4)

Assuming that 1+ k  = 0, divide (4) by (1+ k).

A

�
x1 + kx2
1+ k

�
+ B
�
y1 + ky2
1+ k

�
+ C
�
z1 + kz2
1+ k

�
+D

= 0

i.e., the point R
�
x1+kx2
1+k ,

y1+ky2
1+k ,

z1+kz2
1+k

�
which is

point dividing the line PQ in the ratio k : 1, also

lies on the surface (1). Thus any point on the line

joining P and Q lies on the surface i.e., line PQ

completely lies on the surface. Therefore the surface

by definition must be a plane.

General form of the equation of a plane is

Ax + By + Cz+D = 0

Special cases:

(i) Equation of plane passing through origin is

Ax + By + Cz = 0 (5)
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(ii) Equations of the coordinate planesXOY ,YOZ

and ZOX are respectively z = 0, x = 0 and

y=0

(iii) Ax + By +D = 0 plane ⊥r to xy-plane
Ax + Cz+D = 0 plane ⊥r to xz-plane
Ay + Cz+D = 0 plane ⊥r to yz-plane.

Similarly, Ax +D = 0 is  l to yz-plane, By +
D = 0 is  l to zx-plane, cz+D = 0 is  l to

xy-plane.

One point form

Equation of a plane through a fixed point

P1(x1, y1, z1) and whose normal CD has DC’s

proportional to (A,B,C): For any point

P (x, y, z) on the given plane, the DR’s of the

line P1P are (x − x1, y − y1, z− z1). Since a line

perpendicular to a plane is perpendicular to every

line in the plane, so ML is perpendicular to P1, P .

Thus

A(x − x1)+ B(y − y1)+ C(z− z1) = 0 (6)

Fig. 36.8

Note 1: Rewriting (6), we get the general form of

plane

Ax + By + Cz+D = 0 (1)

where D = −ax1 − by1 − cz1
Note 2: The real numbers A,B,C which are the

coefficients of x, y, z respectively in (1) are propor-

tional to DC’s of the normal ot the plane (1).

Note 3: Equation of a plane parallel to plane (1) is

Ax + By + Cz+D∗ = 0 (7)

x-intercept of a plane is the point where the plane

cuts the x-axis. This is obtained by putting y = 0,

z = 0. Similarly, y-, z-intercepts. Traces of a plane

are the lines of intersection of plane with coordinate

axis.

Example: xy-trace is obtained by putting z = 0 in

equation of plane.

Intercept form

Suppose P (a, 0, 0),Q(0, b, 0), R(0, 0, c) are the
x-, y-, z-intercepts of the plane. Then P,Q,R lies
on the plane. From (1)

Aa + 0+ 0+D = 0

or A = −D
a
.

Fig. 36.9

similarly, 0+ bB + 0+D = 0 or B = −D
b

and

C = −D
c
.

Eliminating A,B,C the equation of the plane in
the intercept form is

−D
a
x − D

b
− D

c
z+D = 0

or
x

a
+ y

b
+ z

c
= 1 (8)

Normal form

Let P (x, y, z) be any point on the plane. Let ON be

the perpendicular from origin O to the given plane.

Let ON = p. (i.e., length of the perpendicular ON

isp). Suppose l, m, n are the DC’s ofON . NowON

is perpendicular to PN . Projection ofOP onON is

ON itself i.e., p.
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Fig. 36.10

Also the projection OP joining origin (0, 0, 0) to
P (x, y, z) on the line ON with DC’s l, m, n is

l(x − 0)+m(y − 0)+ n(z− 0)

or lx +my + nz (9)

Equating the two projection values from (8) & (9)

lx +my + nz = p (10)

Note 1: p is always positive, since p is the perpen-

dicular distance from origin to the plane.

Note 2: Reduction from general form.

Transpose constant term to R.H.S. and make it
positive (if necessary by multiplying throughout by

−1). Then divide throughout by±
√
A2 + B2 + C2.

Thus the general form Ax + By + Cz+D = 0
takes the following normal form

Ax

±
�
A2+B2+C2

+ By

±
�
A2+B2+C2

+ Cz

±
�
A2+B2+C2

= −D
±
�
A2 + B2 + C2

(11)

The sign before the radical is so chosen to make the

R.H.S. in (11) positive.

Three point form

Equation of a plane passing through three given

points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3):

Since the three points P1, P2, P3 lie on the plane

Ax + By + Cz+D = 0 (1)

we have Ax1 + By1 + Cz1 +D = 0 (12)

Ax2 + By2 + Cz2 +D = 0 (13)

Ax3 + By3 + Cz3 +D = 0 (14)

Eliminating A,B,C,D from (1), (12), (13), (14)
(i.e., a non trivial solution A,B,C,D for the ho-
mogeneous system of 4 equations exist if the deter-
minant coefficient is zero)

x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

= 0 (15)

Equation (15) is the required equation of the plane

through the 3 points P1, P2, P3.

Corollary 1: Coplanarity of four given points:
The four points P1(x1, y1, z1), P2(x2, y2, z2), P3(x3,
y3, z3), P4(x4, y4, z4) are coplanar (lie in a plane) if

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

= 0 (16)

Angle between Two Given Planes

The angle between two planes

A1x + B1y + C1z+D1 = 0 (17)

A2x + B2y + C2z+D2 = 0 (18)

is the angle θ between their normals.HereA1, B1, C1

and A2, B2, C2 are the DR’s of the normals respec-
tively to the planes (17) and (18). Then

cos θ = A1A2 + B1B2 + C1C2�
A2
1 + B2

1 + C2
1

�
A2
2 + B2

2 + C2
2

Condition for perpendicularity

If θ = 0 then the two planes are ⊥r to each other.
Then

A1A2 + B1B2 + C1C2 = 0 (19)

Condition for parallelism

If θ = 0, the two planes are  l to each other. Then
A1

A2
= B1

B2
= C1

C2
(20)

Note: Thus parallel planes differ by a constant.

Although there are four constants A,B,C,D in

the equation of plane, essentially three conditions are
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required to determine the three ratios ofA,B,C,D,

for example plane passing through:

a. three non-collinear points

b. two given points and ⊥r to a given plane
c. a given point and ⊥r to two given planes etc.

Coordinate of the Foot of the Perpendicular

from a Point to a Given Plane

LetAx + By + Cz+D = 0 be the given plane and
P (x1, y1, z1) be a given point. Let PN be the per-
pendicular from P to the plane. Let the coordinates
of the foot of the perpendicular PN be N (α, β, γ ).
Then DR’s of PN (x1 − α, y1 − β, z1 − γ ) are pro-
portional to the coefficients A,B,C i.e.,

x1 − α = kA, y1 − B = kB, z1 − γ = kC
or α = x1 − kA, y1 = β − kB, z1 = γ − kC

Fig. 36.11

Since N lies in the plane

Aα + Bβ + Cγ +D = 0

Substituting α, β, γ ,

A(x1 − kA)+ b(y1 − kB)+ c(z1 − kC)+D = 0

Solving k = Ax1 + By1 + CZ1 +D
A2 + B2 + C2

Thus the coordinates of N (α, β, γ ) the foot of the
perpendicular from P (x1, y1, z1) to the plane are

α = x1 −
A(Ax1 + By1 + Cz1 +D)

A2 + B2 + C2
,

β = y1 −
B(Ax1 + By1 + Cz1 +D)

A2 + B2 + C2
,

γ = z1 −
C(Ax1 + By1 + Cz1 +D)

A2 + B2 + C2
(21)

Corollary 1: Length of the perpendicular from a
given point to a given plane:

PN2 = (x1 − α)2 + (y1 − β)2 + (z1 − γ )2
= (kA)2 + (kB)2 + (kC)2

= k2(A2 + B2 + C2)

=
�
Ax1 + By1 + Cz1 +D

A2 + B2 + C2

�2
(A2 + B2 + C2)

= (Ax1 + By1 + Cz1 +D)2

A2 + B2 + C2

or PN = Ax1 + By1 + Cz1 +D
±
�
A2 + B2 + C2

.

The sign before the radical is chosen as positive or

negative according as D is positive or negative. Thus

the numerical values of the length of the perpendic-

ular PN is

PN =
�����Ax1 + By1 + Cz1 +D�

A2 + B2 + C2

����� (22)

Note: PN is obtained by substituting the coordi-

nates (x1, y1, z1) in the L.H.S. of the Equation (1)

and dividing it by
√
A2 + B2 + C2.

Equation of a plane passing through the line of

intersection of two given planes u ≡ A1x + B1y +
C1z+D1 = 0 and v ≡ A2x + B2y + C2z+D2 =
0 is u+ kv = 0 where k is any constant.

Equations of the two planes bisecting the angles
between two planes are

A1x + B1y + C1z+D1�
A2
1 + B2

1 + C2
1

= ±A2x + B2y + C2z+D2�
A2
2 + B2

2 + C2
2

.

WORKED OUT EXAMPLES

Example 1: Find the equation of the plane which

passes through the point (2, 1, 4) and is

a. Parallel to plane 2x + 3y + 5z+ 6 = 0

b. Perpendicular to the line joining (3, 2, 5) and

(1, 6, 4)

c. Perpendicular to the two planes 7x + y + 2z = 6

and 3x + 5y − 6z = 8

d. Find intercept points and traces of the plane in

case c.

Solution:

a. Any plane parallel to the plane

2x + 3y + 5z+ 6 = 0
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is given by 2x + 3y + 5z+ k = 0 (1) (differs by

a constant). Since the point (2, 1, 4) lies on the

plane (1), 2(2)+ 3(1)+ 5(4)+ k = 0, k = −27.

Required equation of plane is 2x + 3y + 5z−
27 = 0.

b. Any plane through the point (2, 1, 4) is (one point
form)

A(x − 2)+ B(y − 1)+ C(z− 4) = 0 (2)

DC’s of the line joining M(3, 2, 5) and

N (1, 6, 4) are proportional to 2,−4, 1. Since

MN is perpendicular to (2), A,B,C are propor-

tional to 2,−4, 1. Then 2(x − 2)− 4(y − 1)+
1(z− 4) = 0. The required equation of plane is

2x − 4y + z− 4 = 0.

c. The plane through (2, 1, 4) is

A(x − 2)+ B(y − 1)+ C(z− 4) = 0. (2)

This plane (2) is perpendicular to the two planes

7x + y + 2z = 6 and 3x + 5y − 6z = 8.
Using A1A2 + B1B2 + C1C2 = 0, we have

7a + b + 2c = 0

3a + 5b − 6c = 0

Solving a
−6−10

= −b
−42−8

= c
35−3

or a
1
= b

−3
= c

−2
.

Required equation of plane is

1(x − 4)− 3(y − 1)− 2(z− 4)= 0

or x − 3y − 2z+ 7= 0

d. x-intercept: Put y = z = 0, ... x = −7 or (−7,

0, 0) is the x-intercept. Similarly, y-intercept is

(0, 7
3
, 0) and z-intercept is

�
0, 0, 7

2

�
. xy-trace is

obtained by putting z = 0. It is x − 3y + 7 =
0. Similarly, yz-trace is 3y + 2z− 7 = 0 and zx-

trace is x − 2z + 7 = 0.

Example 2: Find the equation of the plane con-

taining the points P (3,−1,−4), Q(−2, 2, 1), R(0,

4, −1).

Solution: Equation of plane through the point

P (3,−1,−4) is

A(x + 3)+ B(y + 1)+ C(z+ 4) = 0. (1)

DR’s ofPQ:− 5, 3, 5; DR’s ofPR:− 3, 5, 3. Since
line PQ and PR completely lies in the plane (1),
normal to (1) is perpendicular to PQ and PR. Then

−5A+ 3B + 5C = 0

−3A+ 5B + 3C = 0

Solving A = C = 1, B = 0

(x − 3)+ 0+ (z+ 4) = 0

Equation of the plane is

x + z+ 1 = 0

Aliter: Equation of the plane by 3-point form is

x y z 1

3 −1 −4 1

−2 2 1 1

0 4 −1 1

= 0

Expanding D1x −D2y +D3z− 1.D4 = 0 where

D1 =
−1 −4 1

2 1 1

4 −1 1

= −16, D2 =
3 −4 1

−2 1 1

0 −1 1

0 = 0

D3 =
3 −1 1

−2 2 1

0 4 1

= −16, D4 =
3 −1 −4

−2 2 1

0 4 −1

= 16

or required equation is x + z+ 1 = 0.

Example 3: Find the perpendicular distance be-

tween (a) The Point (3, 2,−1) and the plane 7x −
6y + 6z+ 8 = 0 (b) between the parallel planes

x − 2y + 2z− 8 = 0 andx − 2y + 2z+ 19 = 0 (c)

find the foot of the perpendicular in case (a).

Solution:

Perpendicular distance =
�
Ax1+By1+Cz1+D√

A2+B2+C2

�

a. Point (3, 2,−1), plane is 7x − 6y + 6z+ 8 =
0. So perpendicular distance from (3, 2,−1) to
plane is

= 7(3)− 6(2)+ 6(−1)+ 8�
72 + 62 + 62

= 11

−11
= | − 1| = 1

b. x-intercept point of plane x − 2y + 2z− 8 = 0

is (8, 0, 0) (obtained by putting y = 0, z = 0 in

the equation). Then perpendicular distance from
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the point (8, 0, 0) to the second plane x − 2y +
2z+ 19 = 0 is 1.8−2.0+2.0+19√

12+22+22
= 27

3
= 9

c. Let N (α, β, γ ) be the foot of the perpen-

dicular from P (3, 2,−1). DR’s of PN: 3−
α, 2− β,−1− γ . DR’s of normal to plane are

7,−6, 6. These are proportional. 3−α
7

= 2−β
−6

=
−1−γ

6
orα = 3− 7k, β = 2+ 6k, γ = −1− 6k.

Now (α, β, γ ) lies on the plane. 7(3− 7k)−
6(2+ 6k)+ 6(−1− 6k)+ 8 = 0 or k = 1

11
.

... the coordinates of the foot of perpendicular are�
26
11
, 28
11
, −17

11

�
.

Example 4: Are the points (2, 3,−5) and (3, 4, 7)

on the same side of the plane x + 2y − 2z = 9?

Solution: Perpendicular distance of the point

(2, 3,−5) from the plane x + 2y − 2z− 9 = 0 or

−x − 2y + 2z+ 9 = 0 is −1.2−2(3)−2(−5)+9√
12+22+22

= − 9
3
=

−3.

⊥r distance of (3, 4, 7) is −1.3−2.4+2.7+9√
12+22+22

= 12
3
= 6

⊥r distance from origin (0, 0, 0) is 0+0+0+9
3

= 3

So points (2, 3,−5) and (3, 4, 7) are on opposite

sides of the given plane.

Example 5: Find the angle between the planes

4x − y + 8z = 9 and x + 3y + z = 4.

Solution: DR’s of the planes are [4,−1, 8] and
[1, 3, 1]. Now

cos θ = A1A2 + B1B2 + C1C2�
A2
1 + B2

1 + C2
1

�
A2
2 + B2

2 + C2
2

= 4.1+ 3 · (−1)+ 1.8√
16+ 1+ 64

√
1+ 9+ 1

= 9√
81

√
11

= 1√
11

or θ = cos−1 1√
11
.

Example 6: Find the equation of a plane passing

through the line of intersection of the planes.

a. 3x + y − 5z+ 7 = 0 and x − 2y + 4z− 3 = 0

and passing through the point (−3, 2,−4)

b. 2x − 5y + z = 3 and x + y + 4z = 5 and paral-

lel to the plane x + 3y + 6z = 1.

Solution:

a. Equation of plane is u+ kv = 0 i.e.,

(3x + y − 5z+ 7)+ k(x − 2y + 4z− 3) = 0.

Since point (−3, 2,−4) lies on the intersection
plane

[3(−3)+ 1.(2)− 5(−4)+ 7]

+k[1(−3)− 2(2)+ 4(−4)− 3] = 0.

So k = 10
13
. Then the required plane is

49x − 7y − 25z+ 61 = 0.

b. Equation of plane is u+ kv = 0 i.e.,

(2x − 5y + z− 3)+ k(x + y + 4z− 5) = 0

or (2+k)x+(−5+k)y+(1+4k)z+(−3−5k) = 0.

Since this intersection plane is parallel to x +
3y + 6z− 1 = 0

So
2+ k
1

= −5+ k
3

= 1+ 4k

6
or k = −11

2
.

Required equation of plane is 7x + 21y + 42z−
49 = 0.

Example 7: Find the planes bisecting the angles

between the planes x + 2y + 2z = 9 and 4x − 3y +
12z+ 13 = 0. Specify the angle θ between them.

Solution: Equations of the bisecting planes are

x + 2y + 2z− 9�
1+ 22 + 22

= ±4x − 3y + 12z+ 13�
42 + 32 + 122

x + 2y + 2z− 9

3
= ±4x − 3y + 12z+ 13

13

or 25x + 17y + 62z− 78= 0 and

x + 35y − 10z− 156= 0.

cos θ = 25 · 1+ 17 · 35− 62× 10�
252 + 172 + 622

�
1+ 352 + 102

= 0

... θ = π

2

i.e, angle between the bisecting planes is π
2
.
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Example 8: Show that the planes

7x + 4y − 4z+ 30 = 0 (1)

36x − 51y + 12z+ 17 = 0 (2)

14x + 8y − 8z− 12 = 0 (3)

12x − 17y + 4z− 3 = 0 (4)

form four faces of a rectangular parallelopiped.

Solution: (1) and (3) are parallel since 7
14

= 4
8
=

−4
−8

= 1
2
. (2) and (4) are parallel since 36

12
= −51

−17
=

12
4
= 3. Further (1) and (2) are ⊥r since
7 · 36+ 4(−51)− 4(12) = 252− 204− 48 = 0.

EXERCISE

1. Find the equation of the plane through

P (4, 3, 6) and perpendicular to the line join-

ing P (4, 3, 6) to the pointQ(2, 3, 1).

Hint: DR’s PQ: [2, 0, 5], DR of plane

through (4, 3, 6) : x − 4, y − 3, z− 6;⊥r :
2(x − 4)+ 0(y − 3)+ 5(z− 6) = 0

Ans. 2x + 5z− 38 = 0

2. Find the equation of the plane through the

point P (1, 2,−1) and parallel to the plane

2x − 3y + 4z+ 6 = 0.

Hint: Eq. 2x − 3y + 4z+ k = 0, (1, 2,−1)

lies, k = 8.

Ans. 2x − 3y + 4z+ 8 = 0

3. Find the equation of the plane that con-

tains the three points P (1,−2, 4), Q(4, 1, 7),

R(−1, 5, 1).

Hint: A(x − 1)+ B(y + 2)+ C(z− 4) = 0,
DR: PQ: [3, 3, 3], PR: [−2, 7,−3].⊥r 3A+
3B + 3C = 0, −2A+ 7B − 3C = 0, A =
−10B, C = 9B.

Aliter:

x y z 1

1 −2 4 1

4 1 7 1

−1 5 1 1

= 0,

D1x −D2y +D3z−D4 = 0

where D1 =
−2 4 1

1 7 1

5 1 1

etc.

Ans. 10x − y − 9z+ 24 = 0

4. Find the equation of the plane

a. passing through (1,−1, 2) and⊥r to each of
the planes 2x + 3y − 2z = 5 and x + 2y −
3z = 8

b. passing through (−1, 3,−5) and parallel to

the plane 6x − 3y − 2z+ 9 = 0

c. passing through (2, 0, 1) and (−1, 2, 0) and

⊥r to the plane 2x − 4y − z = 7.

Ans. a. 5x − 4y − z = 7

b. 6x − 3y − 2z+ 5 = 0

c. 6x + 5y − 8z = 4

5. Find the perpendicular distance between

a. the point (−2, 8,−3) and plane 9x − y −
4z = 0

b. the two planes x − 2y + 2z = 6, 3x −
6y + 6z = 2

c. the point (1,−2, 3) and plane 2x − 3y +
2z− 14 = 0.

Ans. (a)
√
2 (b) −16

9
(c) 0 i.e., lies on the plane.

6. Find the angle between the two planes

a. x + 4y − z = 5, y + z = 2

b. x − 2y + 3z+ 4 = 0, 2x + y − 3z+ 7=0

Ans. (a) cos θ = 1
2
, θ = 60◦ (b) cos θ = −9

14
.

7. Prove that the planes 5x − 3y + 4z = 1, 8x +
3y + 5z = 4, 18x − 3y + 13z = 6 contain a

common line.

Hint: u+ kv = 0 substitute in w = 0, k = 1
2

8. Find the coordinates of N , the foot of the per-

pendicular from the point P (−3, 0, 1) on the

plane 4x − 3y + 2z = 19. Find the length of

this perpendicular. Find also the image of P in

the plane.

Hint: PN = NQ i.e., N is the mid point.

Ans. N (1,−3, 3),
√
29, image of P isQ(5,−6, 5)

9. Find the equation of the plane through the

line of intersection of the two planes x − 3y +
5z− 7 = 0 and 2x + y − 4z+ 1 = 0 and ⊥r
to the plane x + y − 2z+ 4 = 0.
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Ans. 3x − 2y + z− 6 = 0

10. A variable plane passes through the fixed

point (a, b, c) and meets the coordinate axes

in P,Q,R. Prove that the locus of the point

common to the planes through P,Q,R par-

allel to the coordinate plane is a
x
+ b
y
+ c
z

= 1.

Hint: OP = x1, OQ = y1, OR = z1, x
x1

+
y

y1
+ z
z1

= 1, (a, b, c) lies, a
x1

+ b
y1

+ c
z1

= 1.

36.4 THE STRAIGHT LINE

Two surfaces will in general intersect in a curve. In

particular twoplanes,which are not parallel, intersect

in a straight line.

Example: The coordinate planesZOX andXOY ,

whose equations are y = 0 and z = 0 respectively,

intersect in a line the x-axis.

Straight line

The locus of two simultaneous equations of first
degree in x, y, z

A1x + B1y + C1z+D1 = 0

A2x + B2y + C2z+D2 = 0
(1)

is a straight line, provided A1 : B1 : C1  = A2 : B2 :

C2 (i.e., not parallel). Equation (1) is known as the

general form of the equation of a straight line. Thus

the equation of a straight line or simply line is the

pair of equations taken together i.e., equations of

two planes together represent the equation of a line.

However this representation is not unique, because

many planes can pass through a given line. Thus a

given line can be represented by different pairs of

first degree equations.

Projecting planes

Of the many planes passing through a given line,

those that are perpendicular to the coordinate planes

are known as projecting planes and their traces

give the projections of the line on the coordinate

planes.

Symmetrical Form

The equation of line passing through a given point

P1(x1, y1, z1) and having direction cosines l, m, n is

given by

x − x1
l

= y − y1
m

= z− z1
n

(2)

since for any point P (x, y, z) on the line, the DR’s

of PP1: x − x1, y − y1, z− z1 be proportional to

l, m, n. Equation (2) represent two independent

linear equations and are called the symmetrical (or

symmetric) form of the equation of a line.

Corollary: Any point P on the line (2) is given by

x = x1 + lr, y = y1 +mr, z = z1 + nr (3)

for different values of r , where r = PP1.

Corollary: Lines perpendicular to one of the co-

ordinate axes:

a. x = x1, y−y1m = z−z1
n

, (⊥r to x-axis i.e.,  l to

yz-plane)

b. y = y1, x−x1l = z−z1
n

, (⊥r to y-axis i.e.,  l to

xz-plane)

c. z = z1, x−x1l = y−y1
m

, (⊥r to z-axis i.e.,  l to

xy-plane)

Corollary: Lines perpendicular to two axes

a. x = x1, y = y1 (⊥r to x- & y-axis i.e.,  l to

z-axis):

b. x = x1, z = z1 (⊥r to x- & z-axis i.e.,  l to

y-axis)

c. y = y1, z = z1 (⊥r to y- & z-axis i.e.,  l to

x-axis)

Corollary: Projecting planes: (containing the

given line)

(a)
x−x1
l

= y−y1
m

(b)
x−x1
l

= z−z1
n

(c)
y−y1
m

= z−z1
n

.

Note: When any of the constants l, m, n are zero,
the Equation (2) are equivalent to equations

l

x − x1
= m

y − y1
= n

z− z1
.
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Example: x
0
= y

2
= z

0
means 0

x
= 2

y
= 0

z
.

Corollary: If a, b, c are the DR’s of the line, then

(2) takes the form
x−x1
a

= y−y1
b

= z−z1
c

.

Corollary: Two point form of a line pass-

ing through two given points P1(x1, y1, z1) and

P2(x2, y2, z2) is

x − x1
x2 − x1

= y − y1
y2 − y1

= z− z1
z2 − z1

(4)

since the DR’s of P1P2 are x2−x1, y2−y1, z2−z1.

Transformation of General Form to

Symmetrical Form

The general form also known as unsymmetrical form

of the equation of a line can be transformed to sym-

metrical form by determining

(a) one point on the line, by putting say z = 0 and

solving the simultaneous equations in x and y.

(b) the DC’s of the line from the fact that this line is

⊥r to both normals of the given planes.

For example,

(a) by putting z = 0 in the general form

A1x + B1y + C1z+D1 = 0

A2x + B2y + C2z+D2 = 0
(2)

and solving the resulting equations

A1x + B1y +D1 = 0

A2x + B2y +D2 = 0,

we get a point on the line as�
B1D2 − B2D1

A1B2 − A2B1
,
A2D1 − A1D2

A1B2 − A2B1
, 0

�
(5)

(b) Using the orthogonality of the line with the two
normals of the two planes, we get

lA1 +mB1 + nC1 = 0

lA2 +mB2 + nC2 = 0

where (l, m, n), (A1, B1, C1) and (A2, B2, C2)
are DR’s of the line, normal to first plane, normal
to second plane respectively. Solving, we get the

DR’s l, m, n of the line as

l

B1C2 − B2C1
= m

C1A2 − C2A1
= n

A1B2 − A2B1

(6)

Using (5) and (6), thus the given general form
(2) of the line reduces to the symmetrical form

x − (B2D1−B1D2)
A1B2−A2B1

B1C2 − B2C1
=
y − (A2D1−A1D2)

A1B2−A2B1
C1A2 − C2A1

=

= z− 0

A1B2 − A2B1
(7)

Note 1: In finding a point on the line, one can

put x = 0 or y = 0 instead of z = 0 and get simi-

lar results.

Note 2: General form (2) can also be reduced to the

two point form (4) (special case of symmetric form)

by determining two points on the line.

Angle between a Line and a Plane

Let π be the plane whose equation is

Ax + By + Cz+D = 0 (8)

Fig. 36.12

and L be the straight line whose symmetrical form

is
x − x1
l

= y − y1
m

= z− z1
n

(2)

Let θ be the angle between the lineL and the plane
π . Let ψ be the angle between L and the normal to
the plane π . Then

cosψ = lA+mB + nC�
l2 +m2 + n2

�
A2 + B2 + C2

= cos(90− θ ) = sin θ (9)

since ψ = 90− θ . The angle between a line L and

plane π is the complement of the angle between the
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line L and the normal to the plane). Thus θ is deter-

mined from (9).

Corollary: Line is  l to the plane if θ = 0 then

sin θ = 0 i.e.,

lA+mB + nC = 0 (10)

Corollary: Line is ⊥r to the plane if θ = π
2
, then

sin θ = 1 i.e.,

l

A
= m

B
= n

C
(11)

(i.e., DR’s of normal and the line are same).

Conditions for a Line L to Lie in a Plane π

If every point of line L is a point of plane π , then
line L lies in plane π . Substituting any point of the
line L : (x1 + lr, y1 +mr, z1 + nr) in the equation
of the plane (8), we get

A(x1 + lr)+ B(y1 +mr)+ C(z1 + nr)+D = 0

or (Al + Bm+ Cn)r + (Ax1 + By1 + Cz1 +D) = 0

(12)

This Equation (12) is satisfied for all values of r
if the coefficient of r and constant term in (12) are
both zero i.e.,

Al + Bm+ Cn= 0 and

Ax1 + By1 + Cz1 +D = 0
(13)

Thus the two conditions for a line L to lie in a

plane π are given by (13) which geometrically mean

that (i) line L is ⊥r to the nomal ot the plne and (ii)

a (any one) point of line L lies on the plane.

Corollary: General equation of a plane containing

line L (2) is

A(x − x1)+ B(y − y1)+ C(z− z1) = 0 (14)

subject to

Al + Bm+ Cn = 0

Corollary: Equation of any plane through the line
of intersection of the two planes

u≡ A1x + B1y + C1z+D1 = 0 and

v ≡ A2x + B2y + C2z+D2 = 0

is u+ kv = 0 or (A1x + B1y + C1z+D1)+
k(A2x + B2y + C2z+D2) = 0 where k is a

constant.

Coplanar Lines

Consider two given straight lines L1

x − x1
l1

= y − y1
m1

= z− z1
n1

(15)

and line L2

x − x2
l2

= y − y2
m2

= z− z2
n2

(16)

From (14), equation of any plane containing line

L1 is

A(x − x1)+ B(y − y1)+ C(z− z1) = 0 (17)

subject to

Al1 + Bm1 + Cn1 = 0 (18)

If the plane (17) contains line L2 also, then the

point (x2, y2, z2) of L2 should also lie in the plane

(17). Then

A(x2 − x1)+ B(y2 − y1)+ C(z2 − z1) = 0 (19)

But the line L2 is ⊥r to the normal to the plane

(17). Thus

Al2 + Bm2 + Cn2 = 0 (20)

Therefore the two linesL1 andL2 will lie in the same

plane if (17), (18), (20) are simultaneously satisfied.

EliminatingA,B,C from (19), (18), (20)(i.e., homo-

geneous system consistent if coefficient determinant

is zero), we have

x2 − x1 y2 − y1 z2 − z1
l1 m1 n1
l2 m2 n2

= 0 (21)

Thus (21) is the condition for coplanarity of the two

lines L1 and L2. Now the equation of the plane con-

taining lines L1 and L2 is

x − x1 y − y1 z− z1
l1 m1 n1
l2 m2 n2

= 0 (22)

which is obtained by eliminatingA,B,C from (17),

(18), (20).
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Corollary: Condition for the two lines L1

u1 ≡ A1x + B1y + C1z+D1 = 0,

u2 ≡ A2x + B2y + C2z+D2 = 0

and Line L2 u3 ≡ A3x + B3y + C3z+D3 = 0,

u4 ≡ A4x + B4y + C4z+D4 = 0

(23)

to be coplanar is

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

= 0 (24)

If P (α, β, γ ) is the point of intersection of the two

lies, then P should satisfy the four Equations (23):

ui | at (α, β, γ ) = 0 for i = 1, 2, 3, 4. Elimination of

(α, β, γ ) from these four equations leads to (24).

Corollary: The general form of equations of a line
L3 intersecting the lines L1 and L2 given by (23) are

u1 + k1u2 = 0 and u3 + k2u4 = 0 (25)

where k1 and k2 are any two numbers.

Foot and length of the perpendicular from a

point P1(α, β, γ ) to a given line L:
x−x1
l

= y−y1
m

=
z−z1
n

Fig. 36.13

Any point on the lineL be (x1 + lr, y1 +mr, z1 +
nr). The DR’s of PN are x1 + lr − α, y1 +mr −
β, z1 + nr − γ . Since PN is ⊥r to line L, then

l(x1+ lr−α)+m(y1+mr−β)+n(z1+nr−γ ) = 0.

Solving

r = l(α − x1)+m(β − y1)+ n(γ − z1)
l2 +m2 + n2 (26)

The coordinates of N , the foot of the perpendicu-

lar PN is (x1 + lr − α, y1 +mr − β, z1 + nr − γ )
where r is given by (26).

The length of the perpendicularPN is obtained by

distance formula between P (given) and N (found).

Line of greatest slope in a plane

Let ML be the line of intersection of a horizontal

plane I with slant plane II. Let P be any point on

plane II. Draw PN ⊥r to the lineML. Then the line
of greatest slope in plane II is the line PN , because

no other line in plane II through P is inclined to the

horizontal plane I more steeply than PN .

Fig. 36.14

WORKED OUT EXAMPLES

Example 1: Find the points where the line x −
y + 2z = 2, 2x − 3y + 4z = 0 pierces the coordi-

nate planes.

Solution: Put z = 0 to find the point at which the

line pierces the xy-plane: x − y = 2 and 2x − 3y =
0 or x = 6, y = 4. ... (6, 4, 0).

Put x = 0, −y + 2z = 2, −3y + 4z = 0 or y = 4,

z = 3 ... (0, 4, 3) is piercing point.

Put y = 0, x + 2z = 2, 2x + 4z = 0 no unique

solution.

Note that DR’s of the line are [2, 0,−1]. So this line

is ⊥r to y-axis whose DR’s are [0, 1, 0] (i.e., 2 · 0+
0 · 1+ (−1) · 0 = 0). Hence the given line does not

pierce the xz-plane.
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Example 2: Transfer the general (unsymmetrical)

form x + 2y + 3z = 1 and x + y + 2z = 0 to the

symmetrical form.

Solution: Put x = 0, 2y + 3z = 1, y + 2z = 0.
Solving z = −1, y = 2. So (0, 2,−1) is a point on
the line. Let l, m, n be the DR’s of the line. Since this
line is ⊥r to both normals of the given two planes,
we have

1 · l + 2 ·m+ 3 · n = 0

1 · l + 1 ·m+ 2 · n = 0

Solving
l

4− 3
= − m

2− 3
= n

1− 2
or
l

1
= m

1
= −n

1

Equation of the line passing through the point
(0, 2,−1) and having DR’s 1, 1,−1 is

x − 0

1
= y − 2

2
= z+ 1

−1

Aliter: Two point form.

Put y = 0, x + 3z = 1, x + 27 = 0. Solving z =
1, x = −2 or (−2, 0, 1) is another point on the
line. Now DR’s of the line joining the two points
(0, 2,−1) and (−2, 0, 1) are −2,−2, 2. Hence the
equation of the line in the two point form is

x − 0

−2
= y − 2

−2
= z+ 1

2
or

x

1
= y − 2

1
= z+ 1

−1
.

Example 3: Find the acute angle between the lines
x
2
= y

2
= z

1
and x

5
= y

4
= z

−3
.

Solution: DR’s are [2, 2, 1] and [5, 4,−3]. If θ is
the angle between the two lines, then

cos θ = l1l2 +m1m2 + n1n2�
l21 +m2

1 + n21
�
l22 +m2

2 + n22

= 2 · 5+ 2 · 4+ 1 · (−3)√
4+ 4+ 1

√
25+ 16+ 9

= 15

3
√
50

= 1√
2

... θ = 45◦

Example 4: Find the equation of the plane con-

taining the line x = y = z and passing through the

point (1, 2, 3).

Solution: General form of the given line is

x − y = 0 and x − z = 0.

Equation of a plane containing this line is

(x − y)+ k(x − z) = 0

Since point (1, 2, 3) lies on this line, it also lies on
the above plane. Then

(1− 2)+ k(1− 3) = 0 or k = −1

2

Equation of required plane is

(x − y)− 1

2
(x − z)= 0

or x − 2y + z= 0.

Example 5: Show that the lines x
1
= y+3

2
= z+1

3

and x−3
2

= y

1
= z−1

−1
intersect. Find the point of in-

tersection.

Solution: Rewriting the equation in general form,
we have

2x − y = 3, 3x − z = 1

and x − 2y = 3, x + 2z = 5

If these four equations have a common solution,

then the given two lines intersect. Solving, y = −1,

then x = 1, z = 2. So the point of intersection is

(1,−1, 2).

Example 6: Find the acute angle between the lines
x
3
= y

1
= z

0
and the plane x + 2y − 7 = 0.

Solution: DR’s of the line: [3, 1, 0]. DR’s of normal
to the plane is [1, 2, 0]. If ψ is the angle between the
line and the normal, then

cosψ = 3 · 1+ 1 · 2+ 0 · 0�
32 + 12 + 02

�
12 + 22 + 02

= 5√
10

√
5
= 1√

2
so ψ = 45◦.

Angle θ between the line and the plane is the comple-

ment of the angle ψ i.e., θ=90−ψ=90−45=45◦.

Example 7: Show that the lines x + y − 3z =
0, 2x + 3y − 8z = 1 and 3x − y − z = 3, x + y −
3z = 5 are parallel.

Solution: DR’s of the first line are

l1 m1 n1
1 1 −3

2 3 −8

or
l1

1
= m1

2
= n1

1
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Similarly, DR’s of the second line are

l2 m2 n2
3 −1 −1

1 1 −3

or
l2

4
=m2

8
=n2

4
i.e.,

l2

1
=m2

2
=n2

1

Since the DR’s of the two lines are same, they are

parallel.

Example 8: Find the acute angle between the

lines 2x − y + 3z− 4 = 0, 3x + 2y − z+ 7 = 0

and x + y − 2z+ 3 = 0, 4x − y + 3z+ 7 = 0.

Solution: The line represented by the two planes is
perpendicular to both the normals of the two planes.
If l1,m1, n1 are the DR’s of this line, then

l1 m1 n1
2 −1 3

3 2 −1

or
l1

−5
= m1

11
= n1

7

Similarly, DR’s of the 2nd line are

l2 m2 n2
1 +1 −2

4 −1 −3

or
l2

−1
= m2

11
= n2

5

If θ is the angle between the lines, then

cos θ = l1l2 +m1m2 + n1n2�
l21 +m2

1 + n21
�
l22 +m2

2 + n22

= 5+ 121+ 35√
195

√
147

= 23

3
√
65

... So θ = 180◦1.4 

Example 9: Prove that the line x−4
2

= y−2

3
= z−3

6

lies in the plane 3x − 4y + z = 7.

Solution: The point of the line (4, 2, 3) should also

lie in the plane. So 3 · 4− 4 · 2+ 1 · 3 = 7 satisfied.

The line and normal to the plane are perpendicular.

So 2 · 3+ 3 · (−4)+ 6 · 1 = 6− 12+ 6 = 0. Thus

the given line completely lies in the given plane.

Example 10: Show that the lines x−2
2

= y−3

−1
=

z+4
3

and x−3
1

= y+1

3
= z−1

−2
are coplanar. Find their

common point and determine the equation of the

plane containing the two given lines.

Solution: Here first line passes through (2, 3,−4)
and has DR’s l1,m1, n1 : 2,−1, 3. The second line

passes through (3,−1, 1) and has DR’s l2,m2, n2 :
1, 3,−2. Condition for coplanarity:������
x2−x1 y2−y1 z2−z1
l1 m1 n1
l2 m2 n2

������=
������
3−2 −1−3 1+4

2 −1 3

1 3 2

������
= 7+28−35 = 0

satisfied.

Point of intersection: Any point on the first line is

(2+ 2r1, 3− r1 − 4+ 3r1) and any point on the sec-

ond line is (3+ r2,−1+ 3r2, 1− 2r2). When the

two lines intersect in a common point then co-

ordinates on line (1) and line (2) must be equal,

i.e., 2+ 2r1 = 3+ r2, 3− r1 = −1+ 3r2 and−4+
3r1 = 1− 2r2. Solving r1 = r2 = 1. Therefore the

point of intersection is (2+ 2 · 1, 3− 1,−4+ 3 · 1)
= (4, 2,−1).
Equation of plane containing the two lines:

������
x−x1 y−y1, z−z1
l1 m1 n1
l2 m2 n2

������ =
������
x−2 y−3 z+4

2 −1 3

1 3 −2

������ = 0

Expanding −7(x−2)− (−7)(y−3)+ 7(z+4) = 0

or x − y − z+ 3 = 0.

Example 11: Find the coordinates of the foot of

the perpendicular from P (1, 0, 2) to the line x+1
3

=
y−2

−2
= z+1

−1
. Find the length of the perpendicular and

its equation.

Solution: Any point N on the given line is (3r −
1, 2− 2r,−1− r). DR’s of PN are (3r − 2, 2−
2r,−3− r). NowPN is normal to line if 3(3r − 2)+
(−2)(2− 2r)+ (−1)(−3− r) = 0 or r = 1

2
. So the

coordinates of N the foot of the perpendicular from

P to the line are
�
3 · 1

2
− 1, 2− 2 · 1

2
,−1− 1

2

�
or�

1
2
, 1,− 3

2

�
.
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Length of the perpendicular

PN =
��

1

2
− 1

�2
+ (1− 0)2 +

�
−3

2
− 2

�2

=
�
1

4
+ 1+ 49

4
=
�
54

4
= 3

2

√
6.

DR’s of PM with r = 1
2
are [3 · 1

2
− 2, 2− 2 · 1

2
,

−3− 1
2
] i.e., DR’s of PM are 1

2
,−1, 7

2
. And PM

passes through P (1, 0, 2). Therefore the equation of
the perpendicular PM

x − 1

1
2

= y − 0

−1
= z− 2

7
2

or x − 1 = y

−2
= z− 2

7
.

Example 12: Find the equation of the line of the

greatest slope through the point (2, 1, 1) in the slant

plane 2x + y − 5z = 0 to the horizontal plane 4x −
3y + 7z = 0.

Solution: Let l1,m1, n1 be the DR’s of the line of
intersection ML of the two given planes. Since ML
is ⊥r to both normals,

2l1 +m1 − 5n1 = 0, 4l1 − 3m1 + 7n1 = 0.

Solving
l1
4
= m1

17
= n1

5
. LetPN be the line of greatest

slope and let l2,m2, n2 be its DR’s. SincePN andML
are perpendicular

4l2 + 17m2 + 5n2 = 0

AlsoPN is perpendicular to normal of the slant plane
2x + y − 5z = 0. So

2l2 +m2 − 5n2 = 0

Solving
l2
3
= m2

−1
= n2

1
.

Therefore the equation of the line of greatest slope
PN having DR’s 3,−1, 1 and passing through
P (2, 1, 1) is

x − 2

3
= y − 1

−1
= z− 1

1
.

EXERCISE

1. Find the points where the line x + y + 4z =
6, 2x − 3y − 2z = 2 pierce the coordinate

planes.

Ans. (0,−2, 2), (4, 2, 0), (2, 0, 1)

2. Transform the general form 3x + y − 2z = 7,

6x − 5y − 4z = 7 to symmetrical form and

two point form.

Hint: (0, 1,−3), (2, 1, 0) are two points on the

line.

Ans. x−2
2

= y−1

0
= z−0

3

3. Show that the lines x = y = z+ 2 and x−1
1

=
y

0
= z

2
intersect and find the point of intersec-

tion.

Hint: Solve x − y = 0, y − z = 2, y = 0,

2x − z = 2 simultaneously.

Ans. (0, 0,−2)

4. Find the equation plane containing the line x =
y = z and
a. Passing through the line x + 1 = y + 1 = z
b. Parallel to the line x+1

3
= y

2
= z

−1
.

Ans. (a) x − y = 0; (b) 3x − 4y + z = 0

5. Show that the line x+1
1

= y

−1
= z−2

2
is in the

plane 2x + 4y + z = 0.

Hint: 2(1)+ 4(−1)+ 1(2) = 0,

2(−1)+ 4(0)+ 2 = 0

6. Find the equation of the plane containing line
x−1
3

= y−1

4
= z−2

2
and parallel to the line x −

2y + 3z = 4, 2x − 3y + 4z = 5.

Hint: Eq. of 2nd line x−0
1
2

= y−1

1
= z−2

1
2

, con-

tains 1st line: 3A+ 4B + 2C = 0. Parallel

to 2nd line A+ 2B + C = 0, A = 0, B =
− 1

2
C,D = − 3

2
C.

Ans. y − 2z+ 3 = 0

7. Show that the lines x + 2y − z = 3, 3x − y +
2z = 1 and 2x − 2y + 3z = 2, x − y + z+
1 = 0 are coplanar. Find the equation of the

plane containing the two lines.

Hint: x−0
3

= y− 7
3

−5
= z− 5

3

−7
, x−0

1
= y−5

+1
= z−4

0
.

�������
x − 0 y − 5 z− 4

3 −5 −7

1 1 0

������� = 0, Expand.
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Ans. 7x − 7y + 8z+ 3 = 0

8. Prove that the equation of the plane through the

origin containing the line x−1
5

= y−2

4
= z−3

5
is

x − 5y + 3z = 0.

Hint: A(x − 1)+ B(y − 2)+ C(z− 3) = 0,

5A+ 2B + 3C = 0, A+ 2B + 3C = 0,

Expand

������
x − 1 y − 2 z− 3

5 4 5

1 2 3

������ = 0

9. Find the image of the point P (1, 3, 4) in the

plane 2x − y + z+ 3 = 0.

Hint: Line through P and ⊥r to plane: x−1
2

=
y−3

−1
= z−4

1
. Image Q: (2r + 1,−r + 3, r+4).

Mid point L of PQ is (r + 1,− 1
2
r + 3, 1

2
r +

4). L lies on plane, r = −2.

Ans. (−3, 5, 2)

10. Determine the point of intersection of the lines

x − 4

1
= y + 3

−4
= z+ 1

7
,
x − 1

2
= y + 1

−3
= z+ 10

8

Hint: General points: (r1 + 4, − 4r1 − 3, 7r1
− 1), (2r2 + 1, − 3r2 − 1, 8r2 − 10), Equat-

ing r1 + 4 = 2r2 + 1, −4r1 − 3 = −3r2 − 1,

solving r1 = 1, r2 = 2.

Ans. (5,−7, 6)

11. Show that the lines x+3
2

= y+5

3
= z−7

−3
, x+1

4
=

y+1

5
= z+1

−1
are coplanar. Find the equation of

the plane containing them.

Ans. 6x − 5y − z = 0

12. Find the equation of the line which passes

through the point (2,−1, 1) and intersect the

lines 2x + y = 4, y + 2z = 0, and x + 3z =
4, 2x + 5z = 8.

Ans. x + y + z = 2, x + 2z = 4

13. Find the coordinates of the foot of the per-

pendicular from P (5, 9, 3) to the line x−1
2

=
y−2

3
= z−3

4
. Find the length of the perpendicu-

lar and its equations.

Ans. (3, 5, 7), Length: 6, Equation x−5
−2

= y−9

−4
=

z−3
4
.

14. Find the equation of the line of greatest slope in

the slant plane 2x + y − 5z = 12 and passing

through the point (2, 3,−1) given that the line
x
4
= y

−3
= z

7
is vertical.

Ans.

15. Find the angle between the line x+1
2

= y

3
=

z−3
6

and the plane 3x + y + z = 7.

Hint: DR’s of line: 2, 3, 6; DR’s of normal to
plane 3, 1, 1

cos(90− θ ) = sin θ = 2 · 3+ 3 · 1+ 6 · 1√
4+ 9+ 36

√
9+ 1+ 1

.

Ans. sin θ = 15

7
√
11

16. Find the angle between the line x + y − z = 1,

2x − 3y + z = 2 and the plane 3x + y − z+
5 = 0.

Hint: DR’s of line 2, 3, 5, DR’s of normal:
3, 1,−1

cos(90− θ ) = sin θ = 2 · 3+ 3 · 1+ 5 · (−1)√
4+ 9+ 25

√
9+ 1+ 1

.

Ans. sin θ = 4√
38

√
11

36.5 SHORTEST DISTANCE BETWEEN

SKEW LINES

Skew lines: Any two straight lines which do not lie

in the same plane are known as skew lines (or non-

planar lines). Such lines neither intersect nor are

parallel.Shortest distance between two skew lines:

Fig. 36.15

Let L1 and L2 be two skew lines; L1 passing

through a given pointA andL2 through a given point
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B. Shortest distance between the two skew lines L1

and L2 is the length of the line segment CD which

is perpendicular to both L1 and L2. The equation

of the shortest distance line CD can be uniquely de-

termined since it intersects both lines L1 and L2 at

right angles. Now CD = projection of AB on CD =
AB cosθ where θ is the angle between AB and CD.

Since cos θ < 1, CD < AB, thus CD is the shortest

distance between the lines L1 and L2.

Magnitude (length) and the equations of the

line of shortest distance between two linesL1 and

L2:

Suppose the equation of given line L1 be

x − x1
l1

= y − y1
m1

= z− z1
n1

(1)

and of line L2 be

x − x2
l2

= y − y2
m2

= z− z2
n2

(2)

Assume the equation of shortest distance line CD as

x − α
l

= y − β
m

= z− γ
n

(3)

where (α, β, γ ) and (l, m, n) are to be determined.
Since CD is perpendicular to both L1 and L2,

ll1 +mm1 + nn1 = 0

ll2 +mm2 + nn2 = 0

Solving

l

m1n2 −m2n1
= m

n1l2 − n2l1
= n

l1m2 − l2m1

=
�
l2+m2+n2�

(m1n2−m2n1)2+(n1l2−n2l1)2+(l1m2−l2m1)2

= 1��
(m1n2 −m2n1)2

= 1

k

where k =
��

(m1n2 −m2n1)2

or l = m1n2 −m2n1

k
, m = n1l2 − n2l1

k
,

n= l1m2 − l2m1

k
(4)

Thus the DC’s l, m, n of the shortest distance line

CD are determined by (4).

Magnitude of shortest distance CD = projection

of AB onCD whereA(x1, y1, z1) is a point onL1 and

B(x2, y2, z2) is a point on L2.

... shortest distance CD =
= l(x2 − x1)+m(y2 − y1)+ n(z2 − z1) (5)

In the determinant form,

Shortest distance CD = 1

k

������
x2 − x1 y2 − y1 z2 − z1
l1 m1 n1
l2 m2 n2

������
(5 )

Note: If shortest distance is zero, then the two lines

L1 and L2 are coplanar.

Equation of the line of shortest distance CD:

Observe that CD is coplanar with both L1 and L2.

Let P1 be the plane containing L1 and CD. Equation

of plane P1 containing coplanar lines L1 and CD is������
x − x1 y − y1 z− z1
l1 m1 n1
l m n

������ = 0 (6)

Fig. 36.16

Similarly, equation of plane P2 containing L2 and

CD is ������
x − x2 y − y2 z− z2
l2 m2 n2
l m n

������ = 0 (7)
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Equations (6) and (7) together give the equation of

the line of shortest distance.
Points of intersection C and D with L1 and L2:

Any general point C∗ on L1 is

(x1 + l1r1, y1 +m1r1, z1 + n1r1)

and any general point D∗ on L2 is

(x2 + l2r2, y2 +m2r2, z2 + n2r2)
DR’s of C∗D∗: (x2 − x1 + l2r2 − l1r1, y2 − y1

+m2r2 −m1r1, z2 − z1 + n2r2 − n1r1)

If C∗D∗ is ⊥r to both L1 and L2, we get two equa-

tions for the two unknowns r1 and r2. Solving and

knowing r1 and r2, the coordinates of C and D are

determined. Then the magnitude of CD is obtained

by length formula, and equation of CD by two point

formula.

Parallel planes: Shortest distance CD = perpen-

dicular distance from any point on L1 to the plane

parallel to L1 and containing L2.

WORKED OUT EXAMPLES

Example 1: Find the magnitude and equation of
the line of shortest distance between the lines

x − 1

2
= y − 2

3
= z− 3

4
,

x − 2

3
= y − 4

4
= z− 5

5
.

Solution: PointA(x1, y1, z1) on first line is (1, 2, 3)
and B(x2, y2, z2) on second line is (2, 4, 5). Also
(l1,m1, n1) are (2, 3, 4) and (l2,m2, n2) = (3, 4, 5).
Then

k2 = (m1n2 −m2n1)
2 + (n1l2 − n2l1)2 + (l1m2 − l2m1)

2

= (15− 16)2 + (12− 10)2 + (8− 9)2

= 1+ 4+ 1 = 6 or k =
√
6.

So DR’s is of line of shortest of distance:
− 1√

6
, 2√

6
,− 1√

6
.

Shortest distance= 1

k

������
x2 − x1 y2 − y1 z2 − z1
l1 m1 n1
l2 m2 n2

������

=

������
1 2 2

2 3 4

3 4 5

������
1√
6

= (15− 16)− 2(10− 12)+ 2(8− 9)√
6

= −1+ 4− 2√
6

= 1√
6
.

Equation of shortest distance line:�������
x − 1 y − 2 z− 3

2 3 4

− 1√
6

2√
6

− 1√
6

������� = 0 or 11x + 2y − 7z+ 6 = 0

and�������
x − 1 y − 4 z− 5

2 3 4

− 1√
6

2√
6

− 1√
6

������� = 0 or 7x + y − 5z+ 7 = 0.

Example 2: Determine the points of intersection
of the line of shortest distance with the two lines

x − 3

3
= y − 8

−1
= z− 3

1
;
x + 3

−3
= y + 7

2
= z− 6

4
.

Also find the magnitude and equation of shortest

distance.

Solution: Any general point C∗ on first line is (3+
3r1, 8− r1, 3+ r1) and any general point D∗ on the
second line is (−3− 3r2,−7+ 2r2, 6− 4r2). DR’s
of C∗D∗ are (6+ 3r1 + 3r2, 15− r1 − 2r2,−3+
r1 − 4r2). If C

∗D∗ is⊥r to both the given lines, then
3(6+3r1+3r2)−1(15−r1−2r2)+1(−3+r1−4r2)= 0

−3(6+3r1+3r2)+2(15−r1−2r2)+4(−3+r1−4r2)= 0

Solving for r1 and r2, 11r1 − 7r2 = 0,+7r1 +
29r2 = 0 so r1 = r2 = 0. Then the points of inter-
section of shortest distance line CD with the given
two lines are C(3, 8, 3),D(−3,−7, 6).

Length of CD =
�
(−6)2 + (−15)2 + (3)2

=
√
270 = 3

√
30

Equation CD:
x − 3

−3− 3
= y − 8

−7− 8
= z− 3

6− 3

i.e.,
x − 3

−6
= y − 8

−15
= z− 3

3
.

Example 3: Calculate the length and equation of
line of shortest distance between the lines

5x − y − z = 0, x − 2y + z+ 3= 0 (1)

7x − 4y − 2z = 0, x − y + z− 3= 0 (2)
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Solution: Any plane containing the second line (2)
is

(7x − 4y − 2z)+ µ(x − y + z− 3)= 0

or (7+ µ)x + (−4− µ)y + (−2+ µ)z− 3µ= 0 (3)

DR’s of first line (1) are (l, m, n) = (−3,−6,−9)
obtained from:

l m n

5 −1 −1

l −2 1

The plane (3) will be parallel to the line (1) with
l = −3,m = −6, n = −9 if

−3(7+ µ)+ 6(4+ µ)+ 9(2− µ) = 0 or µ = 7

2

Substituting µ in (3), we get the equation of a plane

containing line (2) and parallel to line (1) as

7x − 5y + z− 7 = 0 (4)

To find an arbitrary point on line (1), put x = 0. Then

−y − z = 0 or y = −z and −2y + z+ 3 = 0, z =
−1, y = 1. ... (0, 1,−1) is a point on line (1). Now

the length of the shortest distance = perpendicular

distance of (0, 1,−1) to plane (4)

= 0− 5(1)+ (−1)− 7√
49+ 25+ 1

=
����−13√

75

���� = 13√
75

(5)

Equation of any plane through line (1) is

5x − y − z+ λ(x − 2y + z+ 3)= 0

or (5+ λ)x + (−y − 2λ)y + (−1+ λ)z+ 3λ= 0 (6)

DR’s of line (2) are (l, m, n) = (2, 3, 1) obtained
from

l m n

7 −4 −2

1 −1 1

plane (6) will be parallel to line (2) if

2(5+ λ)+ 3(−y − 2λ)+ 1(−1+ λ) = 0 or λ = 2.

Thus the equation of plane containing line (1) and

parallel to line (2) is

7x − 5y + z+ 6 = 0 (7)

Hence equation of the line of shortest distance is

given by (6) and (7) together.

Aliter: A point on line (2) is (0,−1, 2) obtained

by putting x = 0 and solving (2). Then the length

of shortest distance = perpendicular distance of

(0,−1, 2) to the plane (7) = 0+5+2+6√
75

= 13√
75

Note: By reducing (1) and (2) to symmetric forms

x − 1
3

1
= y − 5

3

2
= z

3

x + 4

1
= y + 7

3
2

= z

1
2

The problem can be solved as in above worked

Example 1.

Example 4: Show that the lines
x−1
2

= y−2

3
= z−3

4
; x−2

3
= y−3

4
= z−4

5
are coplanar.

Solution: Shortest distance between the two lines
is������
2− 1 3− 2 4− 3

2 3 4

3 4 5

������ =
������
1 1 1

2 3 4

3 4 5

������
= (−1)− (−2)+ (−1)

=0

... Lines are coplanar.

Example 5: If a, b, c are the lengths of the edges of

a rectangular parallelopiped, show that the shortest

distance between a diagonal and an edge not meeting

the diagonal is bc√
b2+c2

�
or ca√

c2+a2
or ab√

a2+b2

�
.

Solution: Choose coterminus edges OA, OB,

OC along the X, Y,Z axes. Then the coordinates

are A(a, 0, 0), B(0, b, 0), C(0, 0, c), E(a, b, 0),

D(0, b, c), G(a, 0, c)F (a, b, c) etc. so that OA =
a,OB = b,OC = c.
To find the shortest distance between a diagonal OF
and an edge GC. Here GC does not interest OF

Equation of the line OF:
x − 0

a − 0
= y − 0

b − 0
= z− 0

c − 0

or
x

a
= y

b
= z

c
(1)

Equation of the line GC:
x − 0

a − 0
= y − 0

b − 0
= z− c
c − c

or
x

1
= y

0
= z− c

0
(2)
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Fig. 36.17

Equation of a plane containing line (1) and parallel
to (2) is������

x y z

a b c

1 0 0

������ = 0 or cy − bz = 0 (3)

Shortest distance= Length of perpendicular drawn from

a point say C(0, 0, c) to the plane (3)

= c · 0− b · c�
02 + c2 + b2

= bc�
c2 + b2

.

In a similar manner, it can be proved that the short-

est distance between the diagonal OF and non-

intersecting edges AN and AM are respectively
ca√
c2+a2

, ab√
a2+b2

.

EXERCISE

1. Determine the magnitude and equation of the

line of shortest distance between the lines. Find

the points of intersection of the shortest dis-

tance line, with the given lines

x−8
3

= y+9

−16
= z−10

7
, x−15

3
= y−29

8
= z−5

−5
.

Ans. 14, 117x+ 4y− 41z− 490= 0, 9x− 4y− z=
14, points of intersection (5, 7, 3), (9, 13, 15).

2. Calculate the length, points of intersection, the

equations of the line of shortest distance be-

tween the two lines

x+1
2

= y+1

3
= z+1

4
, x+1

3
= y

4
= z

5
.

Ans. 1√
6
,
x− 5

3
1
6

= y−3

− 1
2

= z− 15
2

1
6

,
�
5
3
, 3, 13

3

�
,�

3
2
, 10

3
, 25

6

�
.

3. Find the magnitude and equations of shortest

distance between the two lines

x−1
2

= y−2

3
= z−3

4
, x−2

3
= y−4

4
= z−5

5
.

Ans. 1√
6
, 11x + 2y − 7z+ 6 = 0, 7x + y − 5z+

7 = 0.

4. Show that the shortest distance between the

lines x
2
= y

−3
= z

1
and x−2

3
= y−1

−5
= z+2

2
is 1√

3

and its equations are 4x + y − 5z = 0, 7x +
y − 8z = 31.

5. Determine the points on the lines x−6
3

= y−7

−1
=

z−4
1
, x−3

= y+9

2
= z−2

4
which are nearest to

each other. Hence find the shortest distance be-

tween the lines and find its equations.

Ans. (3, 8, 3), (−3,−7, 6), 3
√
30, x−3

2
= y−8

5
=

z−3
−1

.

6. Prove that the shortest distance between

the two lines x−1
3

= y−4

2
= z−4

−2
, x+1

2
= y−1

−4
=

z+2
1

is 120√
341

Hint: Equation of a plane passing through

the first lines nad parallel to the second line

is 6x + 7y + 16z = 98. A point on second

line is (−1, 1,−2). Perpendicular distance =
6(−1)+7(1)+16(−2)√

62+72+162
.

7. Find the length and equations of shortest dis-

tance between the lines x − y + z = 0, 2x −
3y + 4z = 0; and x + y + 2z− 3 = 0, 2x +
3y + 3z− 4 = 0.

Hint: Equations of two lines in symmetric

form are x
1
= y

2
= z

1
, x−5

−3
= y+2

1
= z

1
.

Ans. 13√
66
, 3x − y − z = 0, x + 2y + z− 1 = 0.

8. Determine the magnitude and equations of

the line of shortest distance between the lines
x−3
2

= y+15

−7
= z−9

5
and x+1

2
= y−1

1
= z−9

−3
.

Ans. 4
√
3, −4x + y + 3z = 0, 4x − 5y + z = 0

(or x = y = z).
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9. Obtain the coordinates of the points where

the line of shortest distance between the lines
x−23
−6

= y−19

−4
= z−25

3
and x−12

−9
= y−1

4
= z−5

2

meets them. Hence find the shortest distance

between the two lines.

Ans. (11, 11, 31), (3, 5, 7), 26

10. Find the shortest distance between any two op-

posite edges of a tetrahedron formed by the

planes x + y = 0, y + z = 0, z+ x = 0, x +
y + z = a. Also find the point of intersection

of three lines of shortest distances.

Hint: Vertices are (0, 0, 0), (a,−a, a),
(−a, a, a), (a, a,−a).

Ans. 2a√
6
, (−a,−a,−a).

11. Find the shortest distance between the lines

PQ and RS where P (2, 1, 3),Q(1, 2, 1),

R(−1,−2,−2), S(−1, 4, 0).

Ans. 3
√
2

36.6 THE RIGHT CIRCULAR CONE

Cone

A cone is a surface generated by a straight line

(known as generating line or generator) passing

through a fixed point (known as vertex) and satisfy-

ing a condition, for example, it may intersect a given

curve (known as guiding curve) or touches a given

surface (say a sphere). Thus cone is a set of points on

its generators. Only cones with second degree equa-

tions known as quadratic cones are considered here.

In particular, quadratic cones with vertex at origin

are homogeneous equations of second degree.

Equation of cone with vertex at (α, β, γ ) and

the conic ax2 + 2hxy + by2 + 2gx + 2fy + c =
0, z = 0 as the guiding curve:

The equation of any line through vertex (α, β, γ ) is
x − α
l

= y − β
m

= z− γ
n

(1)

(1) will be generator of the cone if (1) intersects the

given conic

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, z = 0 (2)

Since (1)meets z = 0, put z = 0 in (1), then the point

�
α − lγ

n
, β − mγ

n
, 0
�
will lie on the conic (2), if

a

�
α− lγ

n

�2
+2h

�
α− lγ

n

��
β−mγ

n

�
+b
�
β−mγ

n

�2
+

+2g

�
α − lγ

n

�
+ 2f
�
β − mγ

n

�
+ c = 0 (3)

From (1)

l

n
= x − α
z− γ ,

m

n
= y − β
z− γ (4)

Eliminate l, m, n from (3) using (4),

a

�
α − x − α

z− γ · γ
�2

+

+ 2h

�
α − x − α

z− γ · γ
��
β − y − β

z− γ · γ
�
+

+ b
�
β − y − β

z− γ · γ
�2

+ 2g

�
α − x − α

z− γ · γ
�
+

+ 2f

�
β − γ − β

z− γ · γ
�
+ c = 0

or

a(αz− xγ )2 + 2h(αz− xγ )(βz− yγ )+
+b(βz− yγ )2 + 2g(αz− xγ )(z− γ )+
+2f (βz− yγ )(z− γ )+ c(z− γ )2 = 0

or

a(x − α)2 + b(y − β)2 + c(z− γ )2 +
+2f (z− γ )(y − β)+ 2g(x − α)(z− γ )+
+2h(x − α)(y − β) = 0 (5)

Thus (5) is the equation of the quadratic cone with

vertex at (α, β, γ ) and guiding curve as the conic (2).
Special case:Vertex at origin (0, 0, 0). Putα = β =
γ = 0 in (5). Then (5) reduces to

ax2 + by2 + cz2 + 2f zy + 2gxz+ 2hxy = 0 (6)

Equation (6) which is a homogeneous and second

degree in x, y, z is the equation of cone with vertex

at origin.

Right circular cone

A right circular cone is a surface generated by a line

(generator) through a fixed point (vertex) making a
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constant angle θ (semi-vertical angle) with the fixed

line (axis) through the fixed point (vertex). Here the

guiding curve is a circle with centre at c. Thus every

section of a right circular cone by a plane perpendic-

ular to its axis is a circle.

Fig. 36.18

Equation of a right circular cone:with vertex at

(α, β, γ ), semi vertical angle θ and equation of axis

x − α
l

= y − β
m

= z− γ
n

(1)

Let P (x, y, z) be any point on the generating line
VB. Then the DC’s of VB are proportional to
(x − α, y − β, z− γ ). Then

cos θ = l(x−α)+m(y−β)+n(z−γ )�
(l2+m2+n2)

�
(x−α)2+(y−β)2+(z−γ )2

Rewriting, the required equation of cone is�
l(x − α)+m(y − β)+ n(z− γ )

�2
=

= (l2+m2+n2)
�
(x−α)2+(y−β)2+(z−γ )2

�
cos2 θ (2)

Case 1: If vertex is origin (0, 0, 0) then (2) reduces

(lx+my+nz)2=(l2+m2+n2)(x2+y2+z2) cos2 θ (3)

Case 2: If vertex is origin and axis of cone is z-axis
(with l = 0,m = 0, n = 1) then (2) becomes

z2 = (x2+y2+z2) cos2 θ or z2sec2θ = x2+y2+z2

z2(1+ tan2 θ ) = x2 + y2 + z2

i.e., x2 + y2 = z2 tan2 θ (4)

Similarly, with y-axis as the axis of cone

x2 + z2 = y2 tan2 θ

with x-axis as the axis of cone

y2 + z2 = x2 tan2 θ.

If the right circular cone admits sets of threemutu-

ally perpendicular generators then the semi-vertical

angle θ = tan−1
√
2 (since the sumof the coefficients

of x2, y2, z2 in the equation of such a cone must be

zero i.e., 1+ 1− tan2 θ = 0 or tan θ =
√
2).

WORKED OUT EXAMPLES

Example 1: Find the equation of cone with base

curve x2

a2
+ y2

b2
= 1, z = 0 and vertex (α, β, γ ). De-

duce the case when base curve is x
2

16
+ y2

9
= 1, z = 0

and vertex at (1, 1, 1).

Solution: The equation of any generating line

through the vertex (α, β, γ ) is

x − α
l

= y − β
m

= z− γ
n

(1)

This generator (1) meets z = 0 in the point�
x = α − lγ

n
, y = β − mγ

n
, z = 0

�
(2)

Point (2) lies on the generating curve

x2

a2
+ y2

b2
= 1 (3)

Substituting (2) in (3)

�
α − lγ

n

�2
a2

+
�
β − mγ

n

�2
b2

= 1 (4)

Eliminating l, m, n from (4) using (1),

�
α −
�
x−α
z−γ
�
γ
�2

a2
+

�
β −
�
y−β
z−γ
�
γ
�2

b2
= 1

b2
�
α(z− γ )− γ (x − α)

�2
+a2
�
β(z− γ )− γ (y − β)

�2
= a2b2(z− γ )2



ANALYTICAL SOLID GEOMETRY 36.27

Deduction: When a=4, b=3, α=1, β=1, γ =1,

9

�
(z− 1)− (x − 1)

�2
+ 16

�
(z− 1)− (y − 1)

�2
= 144(z− 1)2

9x2 + 16y2 − 119z2 − 18xz− 32yz+ 288z− 144 = 0.

Example 2: Find the equation of the cone with

vertex at (1, 0, 2) and passing through the circle x2 +
y2 + z2 = 4, x + y − z = 1.

Solution: Equation of generator is

x − 1

l
= y − 0

m
= z− 2

n
(1)

Any general point on the line (1) is

(1+ lr, mr, 2+ nr). (2)

Since generator (1) meets the plane

x + y − z = 1 (3)

substitute (2) in (3)

(1+ lr)+ (mr)− (2+ nr) = 1

or r = 2

l +m− n . (4)

Since generator (1) meets the sphere

x2 + y2 + z2 = 4 (5)

substitute (2) in (5)

(1+ lr)2 + (mr)2 + (2+ nr)2 = 4

or r2(l2 +m2 + n2)+ 2r(l + 2n)+ 1= 0 (6)

Eliminate r from (6) using (4), then

4

(l+m−n)2 (l
2+m2+n2)+2

2

(l+m−n) (l+2n)+1 = 0

9l2 + 5m2 − 3n2 + 6lm+ 2ln+ 6nm = 0 (7)

Eliminate l, m, n from (7) using (1), then

9

�
x−1

r

�2
+5
�y
r

�2
−3

�
z−2

r

�2
+6

�
x−1

r

��y
r

�
+

+2

�
x − 1

r

��
z− 2

r

�
+ 6

�
z− 2

r

��y
r

�
= 0

or 9(x − 1)2 + 5y2 − 3(z− 2)2 + 6y(x − 1)+
+2(x − 1)(x − 2)+ 6(z− 2)y = 0

Vertex (0, 0, 0):

Example 3: Determine the equation of a cone with

vertex at origin and base curve given by

a. ax2 + by2 = 2z, lx +my + nz = p
b. ax2 + by2 + cz2 = 1, lx +my + nz = p
c. x2 + y2 + z2 = 25, x + 2y + 2z = 9

Solution: We know that the equation of a quadratic

conewith vertex at origin is a homogeneous equation

of second degree in x, y, z. By eliminating the non-

homogeneous terms in the base curve, we get the

required equation of the cone.

a. 2z is the term of degree one and is non homoge-
neous. Solving

lx +my + nz
p

= 1

rewrite the equation

ax2 + by2 = 2 · z(1) = 2z

�
lx +my + nz

p

�

apx2 + bpy2 − 2nz2 − 2lxz− 2myz = 0

which is the equation of cone.

b. Except the R.H.S. term 1, all other terms are of
degree 2 (and homogeneous). Rewriting, the re-
quired equation of cone as

ax2 + by2 + cz2 = (1)2 =
�
lx +my + nz

p

�2

(ap2 − l2)x2 + (bp2 −m2)y2 + (cp2 − n2)z2 −

−2lmxy − 2mnyz− 2lnxz = 0

c. On similar lines

x2 + y2 + z2 = 25 = 25(1)2 = 25

�
x + 2y + 2z

9

�2

56x2−19y2−19z2−100xy−200yz−100xz = 0

Right circular cone:

Example 4: Find the equation of a right circular

cone with vertex at (2, 0, 0), semi-vertical angle θ =
30◦ and axis is the line x−2

3
= y

4
= z

6
.
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Solution: Here α = 2, β = 0, γ = 0, l = 3,m =
4, n = 6
√
3

2
= cos 30 = cos θ

= l(x − α)+m(y − β)+ n(z− γ )�
(l2 +m2 + n2)[(x − α)2 + (y − β)2 + (z− γ )2]

√
3

2
= 3(x − 2)+ 4y + 6z√

9+ 16+ 36
�
(x − 2)2 + y2 + z2

183[(x − 2)2 + y2 + z2] = 4[3(x − 2)+ 4y + 6z]2

147x2 + 119y2 + 39z2 − 192yz− 144zx − 96xy −

−588x + 192y + 288z+ 588 = 0

Vertex (0, 0, 0):

Example 5: Find the equation of the right circular

cone which passes through the line 2x = 3y = −5z

and has x = y = z as its axis.

Solution: DC’s of the generator 2x = 3y = −5z
are 1

2
, 1
3
,− 1

5
. DC’s of axis are 1√

3
, 1√

3
, 1√

3
. Point of

intersectionof the generator and axis is (0, 0, 0).Now

cos θ =
1
2
· 1√

3
+ 1

3
· 1√

3
− 1

5
· 1√

3�
1
3
+ 1

3
+ 1

3

�
1
4
+ 1

9
+ 1

25

=
19
30�
361
900

· 1√
3
= 1√

3

Equation of cone with vertex at origin

1√
3
= cos θ =

1√
3
(x + y + z)

1
�
x2 + y2 + z2

x2 + y2 + z2 = (x + y + z)2

xy + yz+ zx = 0.

Example 6: Determine the equation of a right

circular cone with vertex at origin and the

guiding curve circle passing through the points

(1, 2, 2), (1,−2, 2)(2,−1,−2).

Solution: Let l, m, n be the DC’s of OL the axis

of the cone. Let θ be the semi- vertical angle. Let

A(1, 2, 2), B(1,−2, 2), C(2,−1,−2) be the three

points on the guiding circle. Then the lines OA,

OB, OC make the same angle θ with the axis

OL. The DC’s of OA, OB, OC are proportional to

(1, 2, 2)(1,−2, 2)(2,−1,−2) respectively. Then

cos θ = l(1)+m(2)+ n(2)√
1 · √1+ 4+ 4

= l + 2m+ 2n

3
(1)

Fig. 36.19

Similarly,

cos θ = l(1)+m(−2)+ n(2)√
1
√
1+ 4+ 4

= l − 2m+ 2n

3
(2)

cos θ = 2l −m− 2n

3
(3)

From (1) and (2), 4m = 0 or m = 0.
From (2) and (3), l +m− 4n = 0, l − 4n = 0 or
l = 4n.

DC’s
l

4
= m

0
= n

1
or

l

4√
17

= m

0
= n

1√
17

.

From (1) cos θ =
4√
17

+ 2 · 0+ 2 1√
17

3
= 2√

17
.

Equation of right circular cone is

(l2+m2+n2)(x2+y2+z2) cos2 θ = (lx+my+nz)2�
16

17
+0+ 1

17

�
(x2+y2+z2) 4

17
=
�

4√
17
x+0+ 1√

17
z

�2
4(x2 + y2 + z2)= (4x + z)2

12x2 − 4y2 − 3z2 + 8xz= 0

is the required equation of the cone.

EXERCISE

1. Find the equation of the cone whose vertex

is (3, 1, 2) and base circle is 2x2 + 3y2 = 1,

z = 1.

Ans. 2x2 + 3y2 + 20z2 − 6yz− 12xz+ 12x + 6y

−38z+ 17 = 0
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2. Find the equation of the cone whose vertex

is origin and guiding curve is x
2

4
+ y2

9
+ z2

1
=

1, x + y + z = 1.

Ans. 27x2 + 32y2 + 72(xy + yz+ zx) = 0.

3. Determine the equation of the cone with ver-

tex at origin and guiding curve x2 + y2 + z2 −
x − 1 = 0, x2 + y2 + z2 + y − z = 0.

Hint:Guiding curve is circle in plane x + y =
1. Rewrite x2 + y2 + z2 − x(x + y)− (x +
y)2 = 0.

Ans. x2 + 3xy − z2 = 0

4. Show that the equation of cone with vertex at

origin and base circle x = a, y2 + z2 = b2 is

a2(y2 + z2) = b2x2. Further prove that the sec-
tion of the cone by a plane parallel to the XY -

plane is a hyperbola.

Ans. b2x2 − a2y2 = a2c2, z = c (put z = c in equa-
tion of cone)

5. Find the equation of a cone with vertex at

origin and guiding curve is the circle pass-

ing through the X, Y,Z intercepts of the plane
x
a
+ y

b
+ z
c
= 1.

Ans. a(b2 + c2)yz + b(c2 + a2)zx + c(a2 + b2)xy
= 0

6. Write the equation of the cone whose vertex is

(1, 1, 0) and base is y2 + z2 = 9, x = 0.

Hint: Substitute
�
0, 1− m

l
,− n

l

�
in base curve

and eliminate m
l
= y−1

x−1
, n
l
= z

z−1
.

Ans. x2 + y2 + z2 − 2xy = 0

Right circular cone (R.C.C.)

7. Find the equation of R.C.C. with vertex at (2,

3, 1), axis parallel to the line −x = y

2
= z and

one of its generators having DC’s proportional

to (1,−1, 1).

Hint: cos θ = −1−2+1√
6
√
3
, l = −1,m = 2, n =

1, α = 2, β = 3, γ = 1.

Ans. x2 − 8y2 + z2 + 12xy − 12yz+ 6zx − 46x+
+ 36y + 22z − 19 = 0

8. Determine the equation of R.C.C. with vertex

at origin and passes through the point (1, 1, 2)

and axis line x
2
= −y

4
= z

3
.

Hint: cos θ = 2−4+6√
6
√
29
, DC’s of generator: 1, 1,

2, axis: 2, −4, 3

Ans. 4x2+40y2+19z2−48xy−72yz+36xz=0

9. Find the equation of R.C.C. whose vertex is

origin and whose axis is the line x
1
= y

2
= z

3

and which has semi- vertical angle of 30◦

Hint: cos 30 =
√
3
2

= x(1)+y(2)+z(3)√
(x2+y2+z2)√1+4+9

Ans. 19x2+13y2+3z2−8xy−24yz−12zx = 0

10. Obtain the equation of R.C.C. generated when

the straight line 2y + 3z = 6, x = 0 revolves

about z-axis.

Hint: Vertex (0, 0, 2), generator x
0
= y

3
=

z−2
−2
, cos θ = − 2√

13
.

Ans. 4x2 + 4y2 − 9z2 + 36z− 36 = 0

11. Lines are drawn from the origin with DC’s pro-

portional to (1, 2, 2), (2, 3, 6), (3, 4, 12). Find

the equation of R.C.C.

Hint: cosα= l+2m+2n
3

= 2l+3m+6n
7

= 3l+4m+12n
13

l
−1

= m
1

= n
1
, cosα = 1√

3
, DC’s of axis:

−1, 1, 1.

Ans. xy − yz+ zx = 0

12. Determine the equation of the R.C.C. gen-

erated by straight lines drawn from the ori-

gin to cut the circle through the three points

(1, 2, 2), (2, 1,−2), and (2,−2, 1).

Hint: cosα= l+2m+2n
3

= 2l+m−2n
3

= 2l−2m+n
3

l
5
=

m
1
= n

1
, cosα = 5+2+2

3
√
27

= 1√
3
.

Ans. 8x2 − 4y2 − 4z2 + 5xy + 5zx + yz = 0

36.7 THE RIGHT CIRCULAR CYLINDER

A cylinder is the surface generated by a straight line

(known as generator) which is parallel to a fixed

straight line (known as axis) and satisfies a condition;

for example, it may intersect a fixed curve (known

as the guiding curve) or touch a given surface. A

right circular cylinder is a cylinder whose surface

is generated by revolving the generator at a fixed

distance (known as the radius) from the axis; i.e.,

the guiding curve in this case is a circle. In fact, the
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intersection of the right circular cylinder with any

plane perpendicular to axis of the cylinder is a circle.

Equation of a cylinderwith generators parallel to

the line x
l
= y

m
= z

n
and guiding curve conic ax2 +

by2 + 2hxy + 2gx + 2fy + c = 0, z = 0.
Let P (x1, y1, z1) be any point on the cylinder.

The equation of the generator through P (x1, y1, z1)
which is parallel to the given line

x

l
= y

m
= z

n
(1)

is
x − x1
l

= y − y1
m

= z− z1
n

(2)

Since (2) meets the plane z = 0,

...
x − x1
l

= y − y1
m

= 0− z1
n

or x = x1 −
l

n
z1, y = y1 −

m

n
z1 (3)

Since this point (3) lies on the conic

ax2 + by2 + 2hxy + 2gx + 2fy + c = 0 (4)

substitute (3) in (4). Then

a

�
x1 −

l

n
z1

�2
+ b
�
y1 −

m

n
z1

�2
+

+2h

�
x1 −

l

n
z1

��
y1 −

m

n
z1

�
+ 2g

�
x1 −

l

n
z1

�
+

+2f
�
y1 −

m

n
z1

�
+ c = 0.

The required equation of the cylinder is

a(nx − lz)2 + b(ny −mz)2 + 2h(nx − lz)(ny −mz)+
+2ng(nx − lz)+ 2nf (ny −mz)+ cn2 = 0 (5)

where the subscript 1 is droped because (x1, y1, z1)

is any general point on the cylinder.

Corollary 1: The equation of a cylinder with axis
parallel to z-axis is obtained from (5) by putting l =
0,m = 0, n = 1 which are the DC’s of z-axis: i.e.,

ax2 + by2 + 2hxy + 2gx + 2fy + c = 0

which is free from z.

Thus the equation of a cylinder whose axis is

paralle to x-axis (y-axis or z-axis) is obtained by

eliminating the variable x(y or z) from the equation

of the conic.

Equation of a right circular cylinder:

a. Standard form:with z-axis as axis and of radius
a. Let P (x, y, z) be any point on the cylinder.
Then M the foot of the perpendicular PM has
(0, 0, z) and PM = a (given). Then

a = PM =
�
(x − 0)2 + (y − 0)2 + (z− z)2

x2 + y2 = a2

Fig. 36.20

Corollary 2: Similarly, equation of right circular

cylinder with y-axis is x2 + z2 = a2, with x-axis is

y2 + z2 = a2.

b. General formwith the line x−α
l

= y−β
m

= z−γ
n

as

axis and of radius a.

Axis AB passes through the point (α, β, γ ) and

has DR’s l, m, n. Its DC’s are l
k
, m
k
, n
k
where k =√

l2 +m2 + n2.

Fig. 36.21

From the right angled triangle APM

AP 2 = PM2 + AM2

(x − α)2 + (y − β)2 + (z− γ )2

= a2 +
�
l(x − α)+m(y − β)+ n(z− γ )

�2
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which is the required equation of the cylinder (Here

AM is the projection of AP on the line AB is equal to

l(x − α)+m(y − β)+ n(z− γ )).
Enveloping cylinder of a sphere is the locus of

the tangent lines to the sphere which are parallel to

a given line. Suppose

x2 + y2 + z2 = a2 (1)

is the sphere and suppose that the generators are par-

allel to the given line

x

l
= y

m
= z

n
(2)

Then for any point P (x1, y1, z1) on the cylinder, the

equation of the generating line is

x − x1
l

= y − y1
m

= z− z1
n

(3)

Any general point on (3) is

(x1 + lr, y1 +mr, z1 + nr) (4)

By substituting (4) in (1), we get the points of inter-
section of the sphere (1) and the generating line (3)
i.e.,

(x1 + lr)2 + (y1 +mr)2 + (z1 + nr)2 = a2

Rewriting as a quadratic in r , we have

(l2 +m2 + n2)r2 + 2(lx1 +my1 + nz1)r +
+(x21 + y21 + z21 − a2) = 0 (5)

If the roots of (5) are equal, then the generating line
(3) meets (touches) the sphere in a single point i.e.,
when the discriminant of the quadratic in r is zero.

or 4(lx1 +my1 + nz1)2 − 4(l2 +m2 + n2)×
×(x21 + y21 + z21 − a2) = 0

Thus the required equationof the enveloping cylinder
is

(lx +my + nz)2 = (l2 +m2 + n2)(x2 + y2 + z2 − a2)

where the subscript 1 is droped to indicate that

(x, y, z) is a general point on the cylinder.

WORKED OUT EXAMPLES

Example 1: Find the equation of the quadratic

cylinder whose generators intersect the curve ax2 +

by2 + cz2 = k, lx +my + nz = p and parallel to

the y-axis. Deduce the case for x2 + y2 + z2 = 1 and

x + y + z = 1 and parallel to y-axis

Solution: Eliminate y between

ax2 + by2 + cz2 = k (1)

and lx +my + nz= p (2)

Solving (2) for y, we get

y = p − lx − nz
m

(3)

Substitute (3) in (1), we have

ax2 + b
�
p − lx − nz

m

�2
+ cz2 = k.

The required equation of the cylinder is

(am2 + l2)x2 + (bn2 +m2c)z2 − 2pblx

− 2npbz+ 2blnxz+ (bp2 −m2k) = 0.

Deduction: Put a = 1, b = 1, c = 1, k = 1, l =
m = n = p = 1

2x2 + 2z2 − 2x − 2z+ 2xz= 0

or x2 + z2 + xz− x − z= 0.

Example 2: If l, m, n are the DC’s of the genera-

tors and the circle x2 + y2 = a2 in the XY -plane is

the guiding curve, find the equation of the cylinder.

Deduce the case when a = 4, l = 1,m = 2, n = 3.

Solution: For any point P (x1, y1, z1) on the cylin-

der, the equation of the generating line through P is

x − x1
l

= y − y1
m

= z− z1
n

(1)

Since the line (1) meets the guiding curve
x2 + y2 = a2, z = 0,

x − x1
l

= y − y1
m

= 0− z1
n

or x = x1 −
lz1

n
, y = y1 −

mz1

n
(2)

This point (2) lies on the circle x2 + y2 = a2 also.
Substituting (2) in the equation of circle, we have�

x1 −
lz1

n

�2
+
�
y1 −

mz1

n

�2
= a2

or (nx − lz)2 + (ny −mz)2 = n2a2

is the equation of the cylinder.
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Deduction: Equation of cylinder whose genera-
tors are parallel to the line x

1
= y

2
= z

3
and pass

through the curve x2 + y2 = 16, z = 0. With a =
4, l = 1,m = 2, n = 3, the required equation of the
cylinder is

(3x − z)2 + (3y − 2z)2 = 9(16)= 144

or 9x2 + 9y2 + 5z2 − 6zx − 12yz− 144= 0.

Example 3: Find the equation of the right circular

cylinder of radius 3 and the line x−1
2

= y−3

2
= z−5

−1

as axis.

Solution: LetA(1, 3, 5) be the point on the axis and
DR’s of AB are 2, 2,−1 or DC’s of AB are 2

3
, 2
3
,− 1

3
.

Radius PM = 3 given. Since AM is the projection
of AP on AB, we have

AM = 2

3
(x − 1)+ 2

3
(y − 3)− 1

3
(z− 5)

Fig. 36.22

From the right angled triangle APM

AP 2 = AM2 +MP 2

(x − 1)2 + (y − 3)2 + (z− 5)2

=
�
2
(x − 1)

3
+ 2

y − 3

3
− 1

(z− 5)

3

�
+ 9

9[x2 + 1− 2x + y2 + 9− 6y + z2 + 25− 10z]

= [2x + 2y − z− 3]2 + 81

9[x2 + y2 + z2 − 2x − 6y − 10z+ 35]

= [4x2 + 4y2 + z2 + 9+ 8xy − 4xz− 12x

−4yz− 12y + 6z]+ 81

is the required equation of the cylinder.

Example 4: Find the equation of the envelop-

ing cylinder of the sphere x2 + y2 + z2 − 2y − 4z−
11 = 0 having its generators parallel to the line

x = −2y = 2z.

Solution: Let P (x1, y1, z1) be any point on the

cylinder. Then the equation of the generating line

through P and parallel to the line x = −2y = 2z or
x
1
= y

− 1
2

= z
1
2

is

x − x1
1

= y − y1
− 1

2

= z− z1
1
2

(1)

Any general point on (1) is�
x1 + r, y1 −

1

2
r, z1 +

1

2
r

�
(2)

The points of intersection of the line (1) and the

sphere

x2 + y2 + z2 − 2y − 4z− 11 = 0 (3)

are obtained by substituting (2) in (3).

(x1 + r)2 +
�
y1 −

1

2
r

�2
+
�
z1 +

1

2
r2
�2

− 2

�
y1 −

1

2
r

�

− 4

�
z1 +

1

2
r

�
− 11 = 0

Rewriting this as a quadratic in r

3

2
r2 + (2x1 − y1 + z1 − 1)r

+ (x21 + y21 + z21 − 2y1 − 4z1 − 11) = 0 (4)

The generator touches the sphere (3 if (4) has equal
roots i.e., discriminant is zero or

(2x1 − y1 + z1 − 1)2

= 4 · 3
2
· (x21 + y21 + z21 − 2y1 − 4z1 − 11).

The required equation of the cylinder is

2x2 + 5y2 + 5z2 + 4xy − 4xz+ 2yz

+ 4x − 14y − 22z− 67 = 0.

EXERCISE

1. Find the equation of the quadratic cylinder

whose generators intersect the curve

a. ax2 + by2 = 2z, lx +my + nz = p and

are parallel to z-axis.

b. ax2 + by2 + cz2 = 1, lx +my + nz = p
and are parallel to x-axis.

Hint: Eliminate z

Ans. a. n(ax2 + by2)+ 2lx + 2my − 2p = 0
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Hint: Eliminate x.

Ans. b. (bl2 + am2)y2 + (cl2 + an2)z2 + 2amnyz

−2ampy − 2anpz+ (ap2 − l2) = 0

2. If l, m, n are theDC’s of the generating line and

the circle x2 + z2 = a2 in the zx-plane is the

guiding curve, find the equation of the sphere.

Ans. (mx − ly)2 + (mz− ny)2 = a2m2

Find the equation of a right circular cylinder (4 to 9)

4. Whose axis is the line x−1
2

= y+3

−1
= z−2

5
and

radius is 2 units.

Ans. 26x2 + 29y2 + 5z2 + 4xy + 10yz− 20zx +
150y + 30z+ 75 = 0

5. Having for its base the circle x2 + y2 + z2 =
9, x − y + z = 3.

Ans. x2 + y2 + z2 + xy + yz− zx − 9 = 0

6. Whose axis passes through the point (1, 2, 3)

and has DC’s proportional to (2,−3, 6) and of

radius 2.

Ans. 45x2 + 40y2 + 13z2 + 36yz − 24zx + 12xy

− 42x − 280y − 126z + 294 = 0.

7. Whose axis is the line x−1
2

= y−2

1
= z−3

2
and

radius 2 units.

Ans. 5x2 + 8y2 + 5z2 − 4yz − 8zx − 4xy + 22x

− 16y − 14z − 10 = 0

8. Theguiding curve is the circle through the three

points (1, 0, 0), (0, 1, 0)(0, 0, 1).

Ans. x2 + y2 + z2 − xy − yz− zx = 1

9. The directing curve is x2 + z2 − 4x − 2z+
4 = 0, y = 0 andwhose axis contains the point

(0, 3, 0). Also find the area of the section of the

cylinder by a plane parallel to xz-plane.

Hint: Centre of circle (2, 0, 1) radius: 1

Ans. 9x2 + 5y2 + 9z2 + 12xy + 6yz− 36x − 30y

− 18z + 36 = 0, π

10. Find the equation of the enveloping cylinder of

the sphere x2 + y2 + z2 − 2x + 4y = 1, hav-

ing its generators parallel to the linex = y = z.
Ans. x2 + y2 + z2 − xy − yz − zx − 2x + 7y +

z − 2 = 0.
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Calculus of Variations

37.1 INTRODUCTION

Calculus of variations deals with certain kinds of

“external problems” in which expressions involving

integrals are optimized (maximized or minimized).

Euler and Lagrange in the 18th century laid the foun-

dations, with the classical problems of determining

a closed curve in the plane enclosing maximum area

subject to fixed length and the brachistochrone prob-

lem of determining the path between two points in

minimum time. The present day problems include

the maximization of the entropy integral in third law

of thermodynamics, minimization of potential and

kinetic energies integral in Hamilton’s principle in

mechanics, the minimization of energy integral in

the problems in elastic behaviour of beams, plates

and shells. Thus calculus of variations deals with the

study of extrema of “functionals”.

Functional: A real valued function f whose

domain is the set of real functions {y(x)} is known

as a functional (or functional of a single independent

variable). Thus the domain of definition of a func-

tional is a set of admissible functions. In ordinary

functions the values of the independent variables are

numbers. Whereas with functionals, the values of the

independent variables are functions.

Example: The length L of a curve, c whose equa-
tion is y = f (x), passing through two given points
A(x1, y1) and B(x2, y2) is given by

L =
 x2

x1

 
1 + y 2dx

where y  denotes derivative of y w.r.t. x.
Now the length L of the curve passing through

A and B depends on y(x) (the curve). Than L is a

function of the independent variable y(x), which is
a function. Thus

L{y(x)} =
 x2

x1

 
1 + y 2dx

Fig. 37.1

defines a functional which associates a real number

L uniquely to each y(x) (the independent variable).

Further suppose we wish to determine the curve hav-

ing shortest (least) distance between the two given

points A and B, i.e., curve with minimum length L.

This is a classical example of a variational problem

in which we wish to determine, the particular curve

y = y(x) which minimizes the functional L{y(x)}
given by (1). Here the two conditions y(x1) = y1 and

y(x2) = y2, which are imposed on the curve y(x) are

known as end conditions of the problem. Thus varia-

tional problems involves determination of maximum

or minimum or stationary values of a functional. The

term extremum is used to include maximum or min-

imum or stationary values.

37.2 VARIATIONAL PROBLEM

Consider the general integral (a functional)

I {y(x)} =
 x2

x1

f (x, y, y )dx (1)

37.1
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Extremal: A function y = y(x) which extremizes

(1) and satisfies the end conditions y(x1) = y1 and

y(x2) = y2 is known as an extremal or extremizing

function of the functional I (given by (1)). A

variational problem is to find such an extremal

function y(x).

Variation of a Function and a Functional

When the independent variable x changes to x + x

then the dependent variable y of the function y =
f (x) changes to y + y. Thus  y is the change of

the function, the differential dy provides the varia-

tion in y. Consider a function f (x, y, y  ) which for

a fixed x, becomes a functional defined on a set of

functions {y(x)}.
For a fixed value of x, if y(x) is changed to y(x) +

 η(x), where  is independent of x, then  η(x) is
known as the variation of y and is denotd by δy.
Similarly, variation of y  is  η (x) and is denoted by
δy  . Now the change in f is given by

 f = f (x, y +  η, y +  η ) − f (x, y, y )

Expanding the first term on R.H.S. by Maclaurins
series in powers of  , we get

 f = f (x, y, y ) +
 
∂F

∂y
η + ∂F

∂y 
η 
 
 +

+
 
∂2F

∂y2
η2 + 2∂2F

∂yy 
ηη + ∂2F

∂y 2
η 2

 
 2

2!
+

+ · · · − F (x, y, y )

or approximately, neglecting higher powers of  .

 f = ∂f

∂y
η + ∂f

∂y 
η   = ∂f

∂y
δy + ∂f

∂y 
δy 

Thus the variation of a functional f is denoted by δf
and is given by

δf = ∂f

∂y
δy + ∂f

∂y 
δy 

which is analogous to the differential of a function.

Result: (a) δ(f1 ± f2) = δf1 ± δf2

(b) δ(f1f2) = f1δf2 + f2δf1

(c) δ(f η) = ηf η−1δf

(d) δ
 

f1
f2

 
= f2δf1−f1δf2

f 2
2

(e) d
dx

(δy) = d
dx

( η) =  
dη

dx
=  η =

δy  = δ
 

dy

dx

 
.

Thus taking the variation of a functional and differ-

entiating w.r.t. the independent variable x are com-

mutative operations.

Result: The necessary condition for the functional

I to attain an extremum is that its variation vanish

i.e., δI = 0.

37.3 EULER’S EQUATION

A necessary condition for the integral

I =
 x2

x1

f (x, y, y )dx (1)

to attain an extreme value is that the extremizing

function y(x) should satisfy

∂f

∂y
− d

dx

 
∂f

∂y 

 
= 0 (2)

for x1 ≤ x ≤ x2.

Note 1: The second order differential equation (2)

is known as Euler-Lagrange or simply Euler’s equa-

tion for the integral (1).

Note 2: The solutions (integral curves) of Euler’s

equation are known as extremals (or stationary func-

tions) of the functional. Extremum for a functional

can occur only on extremals.

Proof: Assume that the function y = y(x), is

twice-differentiable on [x1, x2], satisfies the end

(boundary) conditions y(x1) = y1 and y(x2) = y2

and extremizes (maximizes or minimizes) the inte-

gral I given by (1). To determine such a function

y(x), construct the class of comparison functions

Y (x) defined by

Y (x) = y(x) +  η(x) (2)

on the interval [x1, x2]. For any function η(x), y(x) is

a member of this class of functions {Y (x)} for  = 0.

Assume that

η(x1) = η(x2) = 0 (3)
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Differentiating (2),

Y  (x) = y (x) +  η (x) (4)

Replacing y and y  in (1) Y and Y  from (2) and (4),

we obtain the integral

I ( ) =
 x2

x1

f (x, Y, Y  )dx (5)

which is a function of the parameter  . Thus the
problem of determining y(x) reduces to finding the
extremum of I ( ) at  = 0 which is obtained by solv-
ing I  ( = 0) = 0. For this, differentiate (5) w.r.t.  ,
we get

dI

d 
= I  ( ) =

 x2

x1

 
∂f

∂Y

∂Y

∂ 
+ ∂f

∂Y  
∂Y  

∂ 

 
dx

=
 x2

x1

 
∂f

∂Y
η + ∂f

∂Y  η
 
 
dx

putting  = 0,

I  (0) =
 x2

x1

 
∂f

∂y
η + ∂f

∂y 
η 
 
dx (6)

because for  = 0, we have from (2) Y = y and Y  =
y  . Integrating the second integral in R.H.S. of (6) by
parts, we have

I  (0) =
 x2

x1

∂f

∂y
η +

 
∂f

∂y 
η

    x2

x1

−
 x2

x1

η
d

dx

 
∂f

∂y 

 
dx

 

Since by (3), η(x1) = η(x2) = 0, the second term

vanishes and using I  (0) = 0, we get

I  (0) =
 x2

x1

 
∂f

∂y
− d

dx

 
∂f

∂y 

  
η dx = 0 (7)

Since η(x) is arbitrary, equation (7) holds good only
when the integrand is zero

i.e.,
∂f

∂y
− d

dx

 
∂f

∂y 

 
= 0 (2)

Note: Equation (2) is not sufficient condition. Solu-

tion of (2) may be maximum or minimum or a hori-

zontal inflexion. Thus y(x) is known as extremizing

function or extremal and the term extremum includes

maximum or minimum or stationary value.

EQUIVALENT FORMS OF EULER’S

EQUATION:
(I) Differentiating f , which is a function of x, y, y  ,
w.r.t. x, we get

df

dx
= ∂f

∂x
+ ∂f

∂y

dy

dx
+ ∂f

∂y 
dy 

dx

df

dx
= ∂f

∂x
+ y 

∂f

∂y
+ y  

∂f

∂y 
(8)

Consider

d

dx

 
y 

∂f

∂y 

 
= y 

d

dx

 
∂f

∂y 

 
+ ∂f

∂y 
y  (9)

Subtracting (9) from (8), we have

df

dx
− d

dx

 
y 

∂f

∂y 

 
= ∂f

∂x
+ y 

∂f

∂y
− y 

d

dx

 
∂f

∂y 

 

Rewriting this

d

dx

 
f−y 

∂f

∂y 

 
−∂f

∂x
=y 

 
∂f

∂y
− d

dx

 
∂f

∂y 

  
(10)

Since by Euler’s Equation (2), the R.H.S. of (10) is

zero, we get another form of Euler’s equtaion

d

dx

 
f − y 

∂f

∂y 

 
− ∂f

∂x
= 0 (11)

(II) Since
∂f

∂y is also function φ of x, y, y  say
∂f

∂y =
φ(x, y, y  ). Differentiating w.r.t. x

d

dx

 
∂f

∂y 

 
= ∂φ

∂x
+ ∂φ

∂y

dy

dx
+ ∂φ

∂y 
dy 

dx

= ∂

∂x

 
∂f

∂y 

 
+y 

∂

∂y

 
∂f

∂y 

 
+y  

∂

∂y 

 
∂f

∂y 

 

d

dx

 
∂f

∂y 

 
= ∂2f

∂x∂y 
+ y 

∂2f

∂y∂y 
+ y  

∂2f

∂y 2
(12)

Substituting (12) in the Euler’s equation (2), we have

∂f

∂y
− ∂2f

∂x∂y 
− y 

∂2f

∂y∂y 
− y  

∂2f

∂y 2
= 0 (13)

General case: the necessary condition for the occur-
rence of extremum of the general integral x2

x1

f (x, y1, y2, . . . , yη, y
 
1, y

 
2, . . . , y

 
η)dx

involving η functions y1, y2, . . . , yη, is given by the
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set of η Euler’s equations

∂f

∂yi
− d

dx

 
∂f

∂y i

 
= 0

for i = 1, 2, 3, . . . , η.

First integrals of the Euler-Lagrang’s equation:

Degenerate cases: Euler’s equation is readily inte-

grable in the following cases:

Case (a): If f is independent of x, then
∂f

∂x
= 0 and

equivalent form of Euler’s Equation (11) reduces to

d

dx

 
f − y 

∂f

∂y 

 
= 0

Integrating, we get the first integral of Euler’s equa-

tion

f − y 
∂f

∂y 
= constant (14)

Thus the extremizing function y is obtained as the

solution of a first-order differential equation (14)

involving y and y  only.

Case (b): If f is independent of y, then
∂f

∂y
= 0,

and the Euler’s Equation (2) reduces to

d

dx

 
∂f

∂y 

 
= 0

Integrating, we get the first integral of the Euler’s

equation as,

∂f

∂y 
= constant (15)

which is a first order differential equation involving

y  and x only.

Case (c): If f is independent of x and y then the

partial derivative
∂f

∂y is independent of x and y and is

therefore function of y  alone. Now (15) of case (b)
∂f

∂y = constant has the solution.

y = constant = c1

Integrating, the extremizing function is a linear func-
tion of x given by

y = c1x + c2

Case (d): If f is independent of y  , then
∂f

∂y = 0

and the Euler’s Equation (2) reduces to

∂f

∂y
= 0

Integrating, we get f = f (x) , i.e., function of x

alone.

Geodesics: A geodesic on a surface is a curve on

the surface along which the distance between any

two points of the surface is a minimum.

37.4 STANDARD VARIATIONAL

PROBLEMS

Shortest distance

Example 1: Find the shortest smooth plane curve

joining two distinct points in the plane.

Fig. 37.2

Solution: Assume that the two distinct points be

P1(x1, y1) and P2(x2, y2) lie in the XY -Plane. If y =
f (x) is the equation of any plane curve c in XY -

Plane and passing through the points P1 and P2, then

the length L of curve c is given by

L[y(x)] =
 x2

x1

 
1 + (y )2dx (1)

The variational problem is to find the plane curve
whose length is shortest i.e., to determine the func-
tion y(x) which minimizes the functional (1). The
condition for extrema is the Euler’s equation

∂f

∂y
− d

dx

 
∂f

∂y 

 
= 0

Here f =
 

1 + y  2 so
∂f

∂y
= 0,

∂f

∂y = 1
2

2y √
1+y 2

Then

0 − d

dx

 
y  

1 + y 2

 
= 0

or y = k

 
1 + y 2 where k = constant

Squaring y 2 = k2(1 + y 2)
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i.e., y =
 

k2

1 − k2
= m = constant.

Integrating, y = mx + c, where c is the constant of

integration. Thus the straight line joining the two

points P1 and P2 is the curve with shortest length

(distance).

Brachistochrone (shortest time) problem

Example 2: Determine the plane curve down

which a particle will slide without friction from the

point A(x1, y1) to B(x2, y2) in the shortest time.

Fig. 37.3

Solution: Assume the positive direction of the y-
axis is vertically downward and let x1 < x2. Let
P (x, y) be the position of the particle at any time t ,
on the curve c. Since energy is conserved, the speed
v of the particle sliding along any curve is given by

v =
 

2g(y − y∗)

where y∗ = y1 −
 

v2
1

2g

 
. Here g is acceleration due

to gravity, v1 is the initial speed. Choose the origin
at A so that x1 = 0, y1 = 0 and assume that v1 = 0.
Then

ds

dt
= v =

 
2gy

Integrating this, we get the time taken by the particle

moving under gravity (and neglecting friction along

the curve and neglecting resistance of the medium)

from A(0, 0) to B(x2, y2) is

t[y(x)] =
 

ds√
2gy

= 1√
2g

 x=x2

x=0

 
1 + y 2√

y
dx (1)

subject to the boundary conditions y(0) = 0 and
y(x2) = y2. Integral (1) is convergent although it is
improper. Here

f =
 

1 + y 2√
y

which is independent of x. Now

∂f

∂y 
= 1√

y

1 
1 + y 2

· 1

2
· 2y 

The Euler’s equation

d

dx

 
f − y 

∂f

∂y 

 
= 0

reduces to

d

dx

  
1 + y 2√

y
− y 2
√
y
 

1 + y 2

 
= 0

Integrating 
1 + y 2

 
1 + y 2 − y 2

√
y
 

1 + y 2
= k1 = constant

or y(1 + y 2) = k2 (1)

where k2 =
 

1
k1

 2

, put y  = cotθ where θ is a

parameter. Then from (1)

y = k2

1 + y 2
= k2

1 + cot2θ
= k2 sin2 θ = k2

2
(1 − cos 2θ )

(2)

Now

dx = dy

y 
=

k2
2

(+2 · sin 2θ )dθ

cotθ

= k22 · sin θ · cos θdθ

cotθ
= 2k2 sin2 θdθ

dx = k2 · (1 − cos 2θ )dθ.

Integrating, x = k2

 
θ − sin 2θ

2

 + k3, where k3 is

constant of integration. So

x − k3 =
k2

2
(2θ − sin 2θ ) (2)

Since y = 0 at x = 0, we have k3 = 0. Put 2θ = φ

in (1) and (2), then

x = k2

2
(φ − sin φ), y = k2

2
(1 − cos 2φ) (3)
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Equation (3) represents a one parameter family of

cycloids with
k2
2

as the radius of the rolling circle.

Using the condition that the curve (cycloid) passes

through B(x2, y2), the value of the constant k2 can

be determined.

Note: A curve having this property of shortest time

is known as “brachistochrone” with Greek words

‘brachistos’ meaning shortest and ‘chronos’ meaning

time. In 1696 John Bernoulli advanced this ‘brachis-

tochrone’ problem, although it was also studied by

Leibnitz, Newton and L’Hospital.

Minimal surface area

Example 3: Find the curve c passing through two

given points A(x1, y1) and B(x2, y2) such that the

rotation of the curve c about x-axis generates a sur-

face of revolution having minimum surface area.

Fig. 37.4

Solution: The surface area S generated by revolv-

ing the curve c defined by y(x) about x-axis is

S[y(x)] =
 B

A

2πy ds =
 x2

x=x1

2πy

 
1 + y 2dx (1)

To find the extremal y(x) which minimizes (1).

Here f = y
 

1 + y  2 which is independent of x. The
Euler’s equation is

d

dx

 
f − y 

∂f

∂y 

 
= 0 or f − y 

∂f

∂y 
= constant = c1

Substituting f and
∂f

∂y , we have

y

 
1 + y 2 − y 

y

2

1 
1 + y 2

· 2y = c1

y{(1 + y 2) − y 2} 
1 + y 2

= y 
1 + y 2

= c1 (2)

Put y  = sinh t , then from (2)

y 
1 + sin2 ht

= y

cosh t
= c1 or y = c1 cosh t (3)

So dx = dy

y 
= c1 sinh t dt

sinh t
= c1 dt

Integrating x = c1t + c2 (4)

where c2 is the constant of integration. Eliminating
‘t’ between (3) and (4)

t = x − c2

c1

therefore y = c1 cosh t = c1 cosh

 
x − c2

c1

 
(5)

Equation (5) represents a two parameter family of

catenaries. The two constants C1 and C2 are deter-

mined using the end (boundary) conditions y(x1) =
y1 and y(x2) = y2.

Solid of revolution with least resistance

Example 4: Determine the shape of solid of revo-

lution moving in a flow of gas with least resistance.

Fig. 37.5

Solution: The total resistance experienced by the
body is

F [y(x)] = 4πρv2

 L

0

yy 3 dx
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with boundary conditions y(0) = 0, y(L) = R. Here

ρ is the density, v is the velocity of gas relative to

solid. Heref = yy  3 is independent of x. The Euler’s

equation is

∂f

∂y
− d

dx

 
∂f

∂y 

 
= y 3 − d

dx
(3yy 2) = 0 (1)

Multiplying (1) by y  , we get

d

dx
(yy 3) = 0

Integrating

yy 3 = c3
1 or y = c1

y
1
3

Integrating y
1
3 dy = c1dx yields

y
4
3

4
3

= c1x + c2

or y(x) = (c3x + c4)
3
4 (2)

Using boundary conditions

0 = y(0) = 0 + c4 ... c4 = 0

R = y(L) = (c3L)
3
4 ... c3 =

R
4
3

L

The the required function y(x) is given by

y(x) = R
 x

L

 3
4
.

Geodesics

Example 5: Find the geodesics on a sphere of

radius ‘a’.

Solution: In spherical coordinates r, θ, φ, the dif-
ferential of arc length on a sphere is given by

(ds)2 = (dr)2 + (rdθ )2 + (r sin θdφ)2

Since r = a = constant, dr = 0. So 
ds

dθ

 2

= a2 + a2 sin2 θ

 
dφ

dθ

 2

Integrating w.r.t. θ between θ1 and θ2,

s =
 θ2

θ1

a

 
1 + sin2 θ

 
dφ

dθ

 2

dθ

Heref = a

 
1 + sin2 θ ·

 
dφ

dθ

 2

is independent ofφ,

but is a function of θ and
dφ

dθ
. Denoting

dφ

dθ
= φ , the

Euler’s equation reduces to

d

dθ

 
∂f

∂φ 

 
= 0 or

∂f

∂φ 
= constant.

i.e., a · 1 
1 + sin2 θφ 2

· 1

2
2 · sin2 θ · φ = k = constant

Squaring a2 sin4 θ · φ 2 = k2(1 + sin2 θ · φ 2)

or
dφ

dθ
= φ = k

sin θ ·
 

sin2 θ − k2
= kcosec2θ 

1 − c2cosec2θ

Integrating, we get

φ(θ ) =
 

kcosec2θ dθ 
(1 − k2) − (kcotθ )2

+ c2

φ(θ ) = cos−1

 
kcotθ 
1 − k2

 
+ c2

where c2 is constant of integration. Rewriting

kcotθ 
1 − k2

= cos(φ − c2) = cosφ · cos c2 + sin φ · sin c2

or cotθ = A cosφ + B sin φ

where A= (cos c2)(
 

1 − k2)

k
,

B = (sin c2)
(
 

1 − k2)

k

Multiplying by a sin θ , we have

a cos θ = A · a · sin θ · cosφ + B · a · sin θ · sin φ

Since r = a, the spherical coordinates are x =
a sin θ cosφ, y = a sin θ sin φ, z = a cos θ , so

z = Ax + By

which is the equation of plane, passing through ori-

gin (0, 0, 0) (since no constant term) the centre of

sphere. This plane cuts the sphere along a great cir-

cle. Hence the great circle is the geodesic on the

sphere.
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WORKED OUT EXAMPLES

Variational problems.

f is dependent on x, y, y�

Example 1: Find a complete solution of the Euler-

Lagrange equation for x2

x1

 
y2 − (y )2 − 2y cosh x

 
dx (1)

Solution: Here f (x, y, y  ) = y2 − (y  )2 −
2y cosh x, which is a function of x, y, y  . The

Euler-Lagrange equation is

∂f

∂y
− d

dx

 
∂f

∂y 

 
= 0 (2)

Differentiating (1) partially w.r.t. y and y  , we get

∂f

∂y
= 2y − 2 cosh x (3)

∂f

∂y 
= −2y (4)

Substituting (3) and (4) in (2), we have

2y − 2 cosh x − d

dx
(−2y ) = 0

y  + y = cosh x (5)

The complimentary function of (5) is

yc = c1 cos x + c2 sin x

and particular integral of (5) is

y = 1

2
cosh x.

Thus the complete solution Euler-Lagrange Equation
(5) is

y(x) = c1 cos x + c2 sin x + 1

2
cosh x.

f is independent of x

Example 1: Find the extremals of the functional

I [y(x)] =
 x2

x1

(1 + y2)

y 2
dx

Solution: Here f = 1+y2

y 2 which is independent of

x. So the Euler’s equation becomes

d

dx

 
f − y 

∂f

∂y 

 
= 0 (1)

Here
∂f

∂y 
= ∂

∂y 

 
1 + y2

y 2

 
= −2(1 + y2)

y 3
(2)

Substituting (2) in (1), we have

d

dx

 
1 + y2

y 2
−y 

(−2)(1 + y2)

y 3

 
= 3

d

dx

 
1 + y2

y 2

 
=0

y 2(2yy ) − (1 + y2)2y y  

y 4
= 0

or (1 + y2)y  − yy 2 = 0 (3)

Put y  = p, then y   = d
dx

y  = d
dx

p = dp

dy

dy

dx
=

y  dp
dy
= p

dp

dy
. Putting these values in (3),

(1 + y2)p
dp

dy
− yp2 = 0 or

dp

dy
= py

1 + y2

Integrating
dp

p
= y dy

1 + y2
= 1

2

d(1 + y2)

(1 + y2)

p2 = c2
1(1 + y2).

so p = c1

 
(1 + y2) or

dy

dx
= c

 
1 + y2

Integrating
dy 

1 + y2
= c1 dx we get

sinh−1 y = c1x + c2

Thus the required extremal function is

y(x) = sinh(c1x + c2)

where c1 and c2 are two arbitrary constant.

f is independent of y

Example 3: If the rate of motion v = ds
dt

is equal to

x then the time t spent on translation along the curve

y = y(x) from one point P1(x1, y1) to another point

P2(x2, y2) is a functional. Find the extremal of this

functional, when P (1, 0) and P2(2, 1).

Solution: Given
ds

dt
= x or

ds

x
= dt .

But ds =
 

1 + y  2dx so
 

1 + y  2 dx
x
= dt .
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Integrating from P1 to P2 x2

x1

dt =
 x2

x1

 
1 + y 2

x
dx. The functional is

t[y(x)] =
 x2

x1

 
1 + y 2

x
dx

Here f =
√

1+y 2
x

which is independent of y. Euler’s

equation is d
dx

 
∂f

∂y 

 
= 0

d

dx

 
1

x
· 1

2
· 1 

1 + y 2
· 2y 

 
= 0

x
 

(1 + y 2)y  − y 
 

(1 + y 2) + xy y  
 

x2(1 + y 2)
3
2

= xy  − y (1 + y 2)

x2(1 + y 2)
3
2

= 0

or xy  − y (1 + y 2) = 0.

Put y  = u, then x du
dx
− u(1 + u2) = 0

du

u(1 + u2)
= du

u
− udu

1 + u2
= dx

x

Integrating
 
u
x

 2 = c2
1(1 + u2)

y 2 = c2
1x

2(1 + y 2)

or y = c1x

 
(1 + y 2).

Put y  = tan v, then
 

1 + y  2 =
√

1 + tan2 v =√
sec2v

so x = y 

c1(1 + y 2)
= 1

c1

tan v

secv
= 1

c1
sin v (1)

and dx = 1

c1
cos v dv

Now
dy

dx
= y = tan v

dy = tan v dx = tan v · 1

c1
· cos v dv =

= 1

c1
sin v dv

Integrating y = −c2 cos v + c3 (2)

where c2 =
1

c1
or y − c3 = −c2 cos v (3)

Squaring (1) and (3) and adding

x2 + (y − c3)2 = (c2 sin v)2 + (−c2 cos v)2

= c2
2 = c4 (4)

Equation (4) represents a two-parameter family of
circles. If (4) passes through P1(1, 0) Then y(0) = 1.
Then (4) becomes

1 + (0 − c3)2 = c4 or 1 + c2
3 = c4

If (4) passes through P2(2, 1) then y(2) = 1.
So from (4),

4 + (1 − c3)2 = c4 = 1 + c2
3 ... c3 = −2

and c4 = 5. Thus the required extremal satisfying the
end points P1 and P2 is

x2 + (y + 2)2 = 5.

Invalid variational problem

Example 4: Test for an extremum of the functional

I [y(x)]=
 1

0

(xy + y2 − 2y2y )dx, with y(0)=1, y(1)=2.

Solution: Here f = xy + y2 − 2y2y  . Differenti-
ating partially w.r.t. y and y  , we have

∂f

∂y
= x + 2y − 4yy and

∂f

∂y 
= −2y2.

Substituting these in the Euler’s equation

∂f

∂y
− d

dx

 
∂f

∂y 

 
= (x + 2y − 4yy ) − d

dx
(−2y2) = 0

= x + 2y − 4yy + 4yy = 0

or x + 2y = 0 i.e., y = −x

2
.

However, this function y = f (x) does not satisfy the

given boundary conditions y(0) = 1 and y(1) = 2

i.e., 1 = y(0)  = 0 and 2 = y(1)  == − 1
2
. Thus an

extremum can not be achieved on the class of con-

tinuous functions.

Geodesics

Example 5: Determine the equation of the

geodesics on a right circular cylinder of radius ‘a’.
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Solution: In cylindrical coordinates (r, θ, z), the
differential of arc ds on a cylinder is given by

(ds)2 = (dr)2 + (rdθ )2 + (dz)2

Since radius r = a = constant, dr = 0. Then

 
ds

dθ

 2

= a2 +
 
dz

dθ

 2

or
ds

dθ
=

 
a2 +

 
dz

dθ

 2

Integrating

s =
 θ2

θ1

 
a2 +

 
dz

dθ

 2

dθ.

Since geodesic is curve with minimum length, we

have to find minimum of s. Here f =
 
a2 +  

dz
dθ

 2

which is independent of the variable z. Now the
Euler’s equation is

d

dθ

 
∂f

∂z 

 
= 0 or

∂f

∂z 
= constant = k

so
∂f

∂z 
=

  
a2 +

 
dz

dθ

 2
 
= 1

2

2 · z  
a2 + z 2

= k

or z 2 = k2(a2 + z 2)

z 2 = k2a2

1 − k2

i.e., z = dz

dθ
= ka 

1 − k2

Integrating z(θ ) = kaθ√
1−k2

+ c1. Thus the equation of

the geodesics which is a circular helix is

z= k∗θ + c1 and r = a

where k∗ = ka 
1 − k2

.

Example 6: Find the geodesics on a right circular

cone of semivertical angle α.

Solution: In spherical coordinates (r, θ, φ) the dif-
ferential of an arc ds on a right circular cone is given
by

(ds)2 = (dr)2 + (rdθ )2 + (r sin α dφ)2.

With vertex of the cone at the origin and z-axis as

the axis of the cone, the polar equation of cone is

θ = α = constant so dθ = 0.

Then  
ds

dφ

 2

=
 

dr

dφ

 2

+ r2 sin2 α

Integrating w.r.t., φ

s =
 φ2

φ1

  
dr

dφ

 2

+ r2 sin2 α · dφ

The arc length s of the curve is to be minimized. Here

f =
  

dr
dφ

 2

+ r2 sin2 α is independent of φ. Then

the integral of Euler’s equation is

f − r  
∂f

∂r  
= constant = k

or

 
r  2 + r2 sin2 α − r  · 1

2

2r   
r  2 + r2 sin2 α

= k

r  2 + r2 sin2 α − r  2 = k

 
r  2 + r2 sin2 α

squaring, r4 sin4 α = k2(r  2 + r2 sin2 α)

r  2 = r2 sin2 α(r2 sin2 α − k2)

k2

or
dr

dφ
= r sin α

k
·
 
r2 sin2 α − k2

i.e.,
kdr

r
 
r2 sin2 α − k2

= sin α · dφ.

Integrating k ·
 

dr

r
 
r2 sin2 α − k2

= sin α · φ + c1

where c1 is the constant of integration. Introducing
r = 1

t
, dr = − 1

t2
dt, t = 1

r
, the L.H.S. integral trans-

forms to

k ·
 
·t 1 

sin2 α

t2
− k2

·
 
−dt

t2

 
= −k

 
dt 

sin2 α − k2t2

= cos−1

 
kt

sin α

 
.

Then cos−1

 
kt

sin α

 
= φ sin α + c1

kt

sin α
= cos(φ sin α + c1)

Thus
k

r sin α
= cos(φ sin α + c1)

and θ = α are the equations of the geodesics.
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EXERCISE

Variational problems

1. Test for extremum of the functional

I [y(x)] =
 π

2

0

(y 2 − y2)dx, y(0) = 0, y
 π

2

 
= 1.

Hint: Euler’s Equation (EE): y   + y = 0, y =
c1 cos x + c2 sin x using B.C, c1 = 0, c2 = 1

Ans. y = sin x

Find the extremal of the following functionals

2.
 x2

x1
(y2 + y  2 − 2y sin x)dx

Hint: EE: 2y − 2 sin x − 2y   = 0

Ans. y = c1e
x + c2e

−x + sin x
2

3.
 1

0
(y  12 + 12xy)dx, y(0) = 0, y(1) = 1.

Hint: EE: y   = 6x, y = x3 + c1x + C2, C =
0, c2 = 0

Ans. y = x3

4.
 π

2
0 (y  2 − y2 + 2xy)dy, y(0) = 0, y

 
π
2

 = 0

Hint: EE: y   + y = x, y = c1 cos x +
c2 sin x + x

Ans. y = x − π
2

sin x

5.
 x2

x1
(y2 + 2xyy  )dx, y(x1) = y1, y(x2) = y2

Hint: EE: 2y + 2xy  − 2(xy  + y) = 0 i.e.,

0 = 0

Ans. Invalid problem

6.
 2

1
x3

y 2 dx, y(1) = 1, y(2) = 4

Ans. y = x2

7.
 3

2

y 2
x3 dx, y(2) = 1, y(3) = 16

Hint: EE:
y  
y = 3

x
, y  = cx3, y = c1x

4 + c2

Ans. y = 3
13
x4 − 35

13

8.
 x1

x0
(y2 + y  2 + 2yex) dx

Ans. y = Aex + Be−x + 1
2
xex

9.
 π

0
(4y cos x − y2 + y  2)dx, y(0) = 0, y(π ) =

0

Hint: EE: y   + y = 2 cos x, y = c1 cos x +
c2 sin x + x sin x, c1 = 0, c2 = arbitrary

Ans. y = (C + x) sin x.

37.5 ISOPERIMETRIC PROBLEMS

In calculus, in problems of extrema with constraints

it is required to find the maximum or minimum of a

function of several variably g(x1, x2, . . . , xη) where

the variables x1, x2, . . . , xη are connected by some

given relation or condition known as a constraint.

The variational problems considered so far find

the extremum of a functional in which the argument

functions could be chosen arbitrarily except for pos-

sible end (boundary) conditions. However, the class

of variational problems with subsidiary conditions

or constraints imposed on the argument functions,

apart from the end conditions, are branded as isoperi-

metric problems. In the original isoperimetric (“iso”

for same, “perimetric” for perimeter) problem it is

required to find a closed curve of given length which

enclose maximum area. It is known even in ancient

Greece that the solution to this problem is circle. This

is an example of the extrema of integrals under con-

straint consists of maximumizing the area subject to

the constraint (condition) that the length of the curve

is fixed.

The simplest isoperimetric problem consists

of finding a function f (x) which extremizes the

functional

I [y(x)] =
 x2

x1

f (x, y, y )dx (1)

subject to the constraint (condition) that the second

integral

J [y(x)] =
 x2

x1

g(x, y, y )dx (2)

assumes a given prescribed value and satisfying the

prescribed end conditions y(x1) = y1 and y(x2) =
y2. To solve this problem, use the method of

Lagrange’s multipliers and form a new function

H (x, y, y ) = f (x, y, y ) + λg(x, y, y ) (3)

where λ is an arbitrary constant known as the

Lagrange multiplier. Now the problem is to find the

extremal of the new functional,
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I ∗[y(x)] =  x2

x1
H (x, y, y  )dx, subject to no con-

straints (except the boundary conditions). Then the

modified Euler’s equation is given by

∂H

∂y
− d

dx

 
∂H

∂y 

 
= 0 (4)

The complete solution of the second order Equation

(4) contains, in general, two constants of integration

say c1, c2 and the unknown Lagrange multiplier λ.

These 3 constants c1, c2, λ will be determined using

the two end conditions y(x1) = y1, y(x2) = y2 and

given constraint (2).

Corollary: Parametric form: To find the
extremal of the functional

I =
 t2

t1

f (x, y, x
.
, y

.
, t)dt

subject to the constraint

J =
 t2

t1

g(x, y, x
.
, y

.
, t)dt = constant

solve the system of two Euler equations given by

∂H

∂x
− d

dt

 
∂H

∂x
.

 
= 0 and

∂H

∂y
− d

dt

 
∂H

∂y
.

 
= 0

resulting in the solution x = x(t), y = y(t), which
is the parametric representation of the required func-
tion y = f (x) which is obtained by elimination of t .

Here x
. = dx

dt
and y

. = dy

dt
and

H (x, y, x
.
, y

.
, t) = f (x, y, x

.
, y

.
, t) + λ g(x, y, x

.
, y

.
, t)

The two arbitrary constants c1, c2 and λ are deter-

mined using the end conditions and the constraint.

37.6 STANDARD ISOPERIMETRIC

PROBLEMS

Circle

Example 1: Isoperimetric problem is to determine

a closed curve C of given (fixed) length (perimeter)

which encloses maximum area.

Solution: Let the parametric equation of the curve

C be

x = x(t), y = y(t) (1)

where t is the parameter. The area enclosed by curve

C is given by the integral

I = 1

2

 t2

t1

(xy
. − x

.
y)dt (2)

where x
. = dx

dt
, y

. = dy

dt
. We have x(t1) = x(t2) = x0

and y(t1) = y(t2) = y0, since the curve is closed.
Now the total length of the curce C is given by

J =
 t2

t1

 
x
. 2 + y

. 2dt (3)

Form H = 1

2
(xy

. − x
.
y) + λ

 
x
. 2 + y

. 2 (4)

Here λ is the unknown Lagrangian multiplier. Prob-
lem is to find a curve with given perimeter for which
area (2) is maximum. Euler equations are

∂H

∂x
− d

dt

 
∂H

∂x
.

 
= 0 (5)

and
∂H

∂y
− d

dt

 
∂H

∂y
.

 
= 0 (6)

Differentiating H in (4) w.r.t. x, x
.
, y, y

.
and substi-

tuting them in (5) and (6), we get

1

2
y
. − d

dt


−1

2
y + λx

. 
x
. 2 + y

. 2


= 0 (7)

−1

2
x
. − d

dt


1

2
x + λy

. 
x
. 2 + y

. 2


= 0 (8)

Integrating (7) and (8) w.r.t. ‘t’, we get

y − λx
. 

x
. 2 + y

. 2
= c1 (9)

and x + λy
. 

x
. 2 + y

. 2
= c2 (10)

where c1 and c2 are arbitrary constants. From (9) and
(10) squaring (y − c1) and (x − c2) and adding, we
get

(x − c2)2 + (y − c1)2 =

 −λy

. 
x
. 2+y

. 2




2

+

 λx

. 
x
. 2+y

. 2




2

= λ2 (x
. 2 + y

. 2)

(x
. 2 + y

. 2)
= λ2

i.e., (x − c2)2 + (y − c1)2 = λ2
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which is the equation of circle. Thus we have

obtained the well-known result that the closed curve

of given perimeter for which the enclosed area is a

maximum is a circle.

Catenary

Example 2: Determine the shape an absolutely

flexible, inextensible homogeneous and heavy

rope of given length L suspended at the points A

and B

Fig. 37.6

Solution: The rope in equilibrium take a shape such

that its centre of gravity occupies the lowest position.

Thus to find minimum of y-coordinate of the centre

of gravity of the string given by

I [y(x)] =
 x2
x1

y
 

1 + y 2dx x2
x1

 
1 + y 2dx

(1)

subject to the constraint

J [y(x)] =
 x2

x1

 
1 + y 2dx = L = constant (2)

Thus to minimize the numerator in R.H.S. of (1) sub-

ject to (2). Form

H = y

 
(1 + y 2) + λ

 
1 + y 2 = (y + λ)

 
1 + y 2

(3)

where λ is Lagrangian multiplier. Here H is inde-
pendent of x. So the Euler equation is

H − y 
∂H

∂y 
= constant = k1

i.e., (y + λ)(

 
1 + y 2) − y (y + λ) · 1

2

2y  
1 + y 2

= k1

(y + λ)

 
(1 + y 2) − y 2

 
= k1(

 
1 + y 2)

or y + λ = k1

 
1 + y 2 (4)

Put y  = sinh t , where t is a parameter, in (4)

Then y + λ= k1

 
1 + sin2 ht = k1 cosh t (5)

Now dx = dy

y 
= k1 sinh t dt

sinh t
= k1dt

Integrating x = k1t + k2 (6)

Eliminating ‘t’ between (5) and (6), we have

y + λ = k1 cosh t = k1 cosh

 
x − k2

k1

 
(7)

Equation (7) is the desired curve which is a catenary.

Note: The three unknowns λ, k1, k2 will be

determined from the two boundary conditions (curve

passing through A and B) and the constraint (2).

WORKED OUT EXAMPLES

Example 1: Find the extremal of the function

I [y(x)] =  π

0
(y  2 − y2)dx with boundary condi-

tions y(0) = 0, y(π ) = 1 and subject to the con-

straint
 π

0
y dx = 1.

Solution: Here f = y  2 − y2 and g = y. So choose
H = f + λg = (y  2 − y2) + λy where λ is the
unknown Lagrange’s multiplier. The Euler’s equa-
tion for H is

∂H

∂y
− d

dx

 
∂H

∂y 

 
= 0

Using derivatives of H w.r.t. y and y  , we get

(−2y + λ) − d

dx
(2y ) = 0

or y  + y = λ

whose general solution is

y(x) = CF + PI = (c1 cos x + c2 sin x) + (λ) (1)
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The three unknowns c1, c2, λ in (1) will be deter-
mined using the two boundary conditions and the
given constraint. From (1)

0 = y(0) = c1 + c2 · 0 + λ or c1 + λ = 0

1 = y(π ) = −c1 + c2 · 0 + λ or − c1 + λ = 1

Solving λ = 1
2
, c1 = −λ = − 1

2
Now from the given constraint π

0

y dx = 1, we have

 π

0

(c1 cos x + c2 sin x + λ)dx = 1

c1 sin x − c2 cos x + λx

    π
0

= 1

(0 + c2 + λπ ) − (0 − c2 + 0) = 1

or 2c2 = 1 − πλ =
 
1 − π

2

 
Thus the required extremal function y(x) is

y(x) = −1

2
cos x +

 
1

2
− π

4

 
sin x + 1

2
.

Example 2: Show that the extremal of the isoperi-

metric problem I [y(x)] =  x2

x1
y  2 dx subject to the

condition J [y(x)] =  x2

x1
y dx = constant = k is a

parabola. Determine the equation of the parabola

passing through the pointsP1(1, 3) andP2(4, 24) and

k = 36.

Solution: Here f = y  2 and g = y. So form

H = f + λg = y 2 + λy.

The Euler equation for H is

∂H

∂y
− d

dx

 
∂H

∂y 

 
= 0

λ− d

dx
(2y ) = 0

or y  − λ

2
= 0

Integrating twice,

y(x) = λ

2

x2

2
+ c1x + c2 (1)

which is a parabola. Here c1 and c2 are constants of

integration. To determine the particular parabola, use

B.C’s y(1) = 3 and y(4) = 24 (i.e., passing through

points P1 and P2) and the given constraint. From (1)

3 = y(1) = λ

4
+ c1 + c2 (2)

Again from (1)

24 = y(4) = 4λ+ 4c1 + c2 (3)

Now from the constraint x2=4

x1=1

y(x)dx = 36

or

 4

1

 
λ

4
x2 + c1x + c2

 
dx = 36

i.e.,
λ

4
· x

3

3
+ c1

x2

2
+ c2x

    4
1

= 36

or 42λ+ 60c1 + 24c2 = 288 (4)

From (2) & (3):

λ− c2 = 12

and from (3) & (4)

2λ− c2 = 8

Solving λ = −4, c2 = −16, c1 = 20. Thus the spe-
cific parabola satisfying the given B.C.’s (passing
through P1 and P2) is

y =−4

4
x2 + 20x − 16

i.e., y =−x2 + 20x − 16.

EXERCISE

1. Find the curve of given length L which joins

the points (x1, 0) and (x2, 0) and cuts off from

the first quadrant the maximum area.

Ans. (x − c)2 + (y − d)2 = λ2, c = x1+x2
2

,

a = (x2−x1)

2
, λ2 = d2 + a2,

√
d2 + a2

cot−1
 
d
a

 = L
2
.

2. Determine the curve of given length L which

joins the points (−a, b) and (a, b) and gen-

erates the minimum surface area when it is

revolved about the x-axis.

Ans. y = c cosh x
c
− λ, where c = a

sin h−1
 
L
2

 , λ =
c
2

√
4 + L2 − b
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3. Find the extremal of I =  π

0
y  2dx subject to π

0
y2dx = 1 and satisfying y(0) = y(π ) = 0

Hint: EE: y  − λy = 0

Ans. yη(x) = ±
 

2
π

sin ηx, η = 1, 2, 3 . . .

4. Show that sphere is the solid of revolution

which has maximum volume for a given sur-

face area.

Hint: H = πy2 + λ[(2πy)
 

(1 + y  2)], EE:

y  =
√

4λ2−y2

y
, (x − 2λ)2 + y2 = (2λ)2; cir-

cle, solid of revolution sphere.

5. Find the curve of given length L which mini-

mizes the curved surface area of the solid gen-

erated by the revolution of the curve about the

x-axis.

Ans. Catenary

6. Determine y(x) for which
 1

0
(x2 + y  2)dx

is stationary subject to
 1

0
y2dx = 2, y(0) =

0, y(1) = 0.

Ans. y = ±2 sin mπx, where m is an integer.
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Linear Programming

38.1 INTRODUCTION

Optimization problems seek to maximize or min-

imize a function of a number of variables which

are subject to certain constraints. The objective may

be to maximize the profit or to minimize the cost.

The variables may be products, man-hours, money

or even machine hours. Optimal allocation of lim-

ited resources to achieve a given object forms pro-

gramming problems. A programming problem in

which all the relations between the variables is lin-

ear including the function to be optimized is called a

Linear Programming Problem (LPP). G.B. Dantzig,

in 1947, first developed and applied general problem

of linear programming. Classical examples include

transportation problem, activity-analysis problem,

diet problems and network problem. The simplex

method, developed by GB Dantzig, in 1947, con-

tinues to be the most efficient and popular method to

solve general LPP. Karmarkar’s method developed

in 1984 has been found to be upto 50 times as fast as

the simplex algorithm. LPP is credited to the works

of Kuhn, Tucker, Koopmans, Kantorovich, Charnes

Cooper, Hitchcock, Stiegler. LPP has been used to

solve problems in banking, education, distribution

of goods, approximation theory, forestry, transporta-

tion and petroleum.

38.2 FORMULATION OF LPP

In a linear programming problem (LPP) we wish to

determine a set of variables known as decision vari-

ables. This is done with the objective of maximiz-

ing or minimizing a linear function of these vari-

ables, known as objective function, subject to certain

linear inequality or equality constraints. These vari-

ables, should also satisfy the nonnegativity restric-

tions since these physical quantities can not be neg-

ative. Here linearity is characterized by proportion-

ality and additivity properties.

Let x1, x2 . . . , xn be the n decision unknown vari-

ables and c1, c2 . . . , cn be the associated (constant

cost) coefficients. Then the aim of LP is to optimize

(extremise) the linear function,

z = c1x1 + c2x2 + . . .+ cnxn (1)

Here (1) is known as the objective function. (O.F.)

The variables xj are subject to the followingm linear

constraints

ai1x1 + ai2x2 + . . .+ ainxn



≥

≤

≥


 bi (2)

for i = 1, 2, ... m. In (2), for each constraint only one

of the signs≥ or≤ or = holds. Finally xi should also

satisfy nonnegativity restrictions

xj ≥ 0 for j = 1 to n (3)

Thus a general linear programming problem consists

of an objective function (1) to be extremized subject

to the constraints (2) satisfying the non-negativity

restrictions (3).

38.1
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Solution

To LPP is any set of values {x1, x2 . . . , xn} which

satisfies all the m constraints (2).

Feasible Solution

To LPP is any solution which would satisfy the non

negativity restrictions given by (3).

Optimal Feasible Solution

To LPP is any feasible solution which optimizes (i.e.

maximizes or minimizes) the objective function (1).

From among the infinite number of feasible solu-

tions to an LPP, we should find the optimal feasible

solution in which the maximum (or minimum) value

of z is finite.

Example 1: Suppose Ajanta clock company pro-

duces two types of clocks “standard” and “deluxe”

using three different inputs A, B, C. From the data

givenbelow formulate theLPP to determine the num-

ber of standard and deluxe clock to be manufactured

to maximize the profit.

Let x1 and x2 be the number of “standard” and

“deluxe” clocks to be produced.

Technical coefficients

Input
Standard Deluxe

Capacity
(Resource)

A
B
C

2
2
4
2

4
2
0
3

20
12
16C

Profit (Rs)

Then the objective function is to maximize the

total profit i.e. maximize z = 2x1 + 3x2, since the

profit for one standard clock is Rs 2 and profit for

one deluxe and clock is Rs 3. Because of the limited

resources, for input A we have the following restric-

tion. Since one standard clock consumes 2 units of

resource A, x1 units of standard clocks consume 2x1

units of input A. Similarly 4x2 units of input A is

required to produce x2 deluxe clocks. Thus the total

requirement of the input A for production of x1, stan-

dard and x2 deluxe clocks is

2x1 + 4x2.

However, the total amount of resource A available is

20 units only. Therefore the restriction on resource

A is

2x1 + 4x2 ≤ 20

Similarly the restriction of resource B is

2x1 + 2x2 ≤ 12

and restriction on source C is

4x1 ≤ 16.

Since x1, x2 are physical quantities (the number of

clocks produced), they must be non negative i.e.

x1 ≥ 0

and x2 ≥ 0.

Thus the LPP consists of the O.F., three inequality

constraints and the non-negativity restrictions.

38.3 GRAPHICAL SOLUTION OF LPP

When the number of decision variables (or products)

is two, the solution to linear programming problem

involving any number of constraints can be obtained

graphically. Consider the first quadrant of the x1x2

plane since the two variables x1 and x2 should sat-

isfy the nonnegativity restrictions x1 ≥ 0 and x2 ≥ 0.

Now the basic feasible solution space is obtained in

the first quadrant by plotting all the given constraints

as follows. For a given inequality, the equation with

equality sign (replacing the inequality) represents a

straight line in x1x2 plane dividing it into two open

half spaces. By a test reference point, the correct side

of the inequality is identified. Say choosing origin

(0, 0) as a reference point, if the inequality is satis-

fied then the correct side of the inequality is the side

on which the origin (0, 0) lies. Indicate this by an

arrow. When all the inequalities are plotted like this,

in general, we get a bounded (or unbounded in case

of greater than inequalities) polygon which enclose

the feasible solution space, any point of which is a

feasible solution.

For z = z0, the objective function z = c1x1 + c2x2

represents an iso-contribution (or iso-profit) straight

line say x2 = −
c1
c2
x1 +

z0
c2

 
or x1 =

−c2
c1
x2 +

z
c1
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such that for any point on this line, the contribu-

tion (Profit) (value of z0) is same. To determine the

optimal solution, in the maximization case, assign-

ing arbitrary values to z, move the iso-contribution

line in the increasing direction of z without leav-

ing the feasible region. The optimum solution occurs

at a corner (extreme) point of the feasible region.

So the iso-profit line attains its maximum value of

z and passes through this corner point. If the iso-

contribution line (objective function) coincides with

one of the edges of the polygon, then any point on

this edge gives optimal solution with the same max-

imum (unique) value of the objective function. Such

a case is known asmultiple (alternative) optima case.

In the minimization case, assigning arbitrary values

to z, move the iso-contribution line in the direction

of decreasing z until it passes through a corner point

(or coincides with an edge of the polygon) in which

case the minimum is attained at this corner point.

Range of Optimality

For a givenobjective function z = c1x1 + c2x2, slope

of z changes as the coefficients c1 and c2 change

which may result in the change of the optimal corner

point itself. In order to keep (maintain) the current

optimum solution valid, we can determine the range

of optimality for the ratio
c1
c2

 
or

c2
c1

 
by restricting the

variations for both c1 and c2.

Special Cases:

(a) The feasible region is unbounded and in the case

of maximization, has an unbounded solution or

bounded solution.

(b) Feasible region reduces to a single point which

itself is the optimal solution. Such a trivial solu-

tion is of no interest since this can be neither max-

imized nor minimized.

(c) A feasible region satisfying all the constraints is

not possible since the constraints are inconsistent.

(d) LPP is ill-posed if the non-negativity restriction

are not satisfied although all the remaining con-

straints are satisfied.

Examples:

(a) x1+3x2 ≥ 3, x1+x2 ≥ 2, x1, x2 ≥ 0,

Maximize: z = 1.5x1 + 2.5x2 unbounded feasi-

ble region, unbounded solution (can be maxi-

mized indefinitely)

Fig. 38.1

(b) x1−x2≥0,−0.5x1+x2≤1 x1, x2≥0

Maximize: z = x2 − 0.75x1 unbounded feasible

region z2 = 0.5 is bounded optimal solution.

Fig. 38.2

(c) x1 + x2 ≤ 2,−x1,−5x2 ≤ −10

Maximize: z = −5x2, x1, x2 ≥ 0, (0, 2) is unique

solution, max: z = −10.

(0, 2)

Fig. 38.3

(d) x1 + x2 ≤ 1,−0.5x1 − 5x2 ≤ −10

Maximize: z = −5x2, x1, x2 ≥ 0. No feasible

region. Constraints are inconsistent
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Fig. 38.4

(e) 1.5x1 + 1.5x2 ≥ 9, x1 + x2 ≤ 2.

No feasible region.

(0, 6)

(6, 0)

(0, 2)

(2, 0)

WORKED OUT EXAMPLES

Example 1: ABC company produces two types of

calculators. A business calculator requires 1 hour of

wiring, one hour of testing and 3 hours of assem-

bly, while a scientific calculator requires 4 hours of

wiring, one hour of testing and one hour of assembly.

A total of 24 hours of wiring, 21 hours of assembly

and 9 hours of testing are availablewith the company.

If the company makes a profit of Rs 4 on business

calculator (BC) and Rs 10 on scientific calculator

(SC), determine the best product mix to maximize

the profit.

Solution: Let x1 be the number of business cal-

culators (BC) produced while x2 be the number of

scientific calculators (SC) produced. Then the objec-

tive is to maximize the profit z = 4x1 + 10x2 subject

to the following fine constraints:

x1 + 4x2 ≤ 24 (wiring) (I)

x1 + x2 ≤ 9 (testing) (II)

3x1 + x2 ≤ 21 (assembly) (III)

x1 ≥ 0

x2 ≥ 0

 
non negative (IV)

constraints (V)

To determine the feasible solution space consider

the first quadrant of the x1x2-plane since x1 ≥ 0

and x2 ≥ 0. Then draw the straight lines x1 + 4x2 =

24, x1 + x2 = 9 and 3x1 + x2 = 2.1. Note that an

inequality divides the x1x2-plane into two open half-

space. Choose any reference point in the first quad-

rant. If this reference point satisfies the inequality

then the correct side of the inequality is the side on

which the reference point lies. Generally origin (0,

0) is taken as the reference point. The correct side of

the inequality is indicated by an arrow. The shaded

region is the required feasible solution space satisfy-

ing all the five constraints. The five corner points of

the feasible region are A(0, 0), B(7, 0), C(6, 3), D(4,

5), E(0, 6). Identify the direction inwhich z increases

without leaving the region. Arbitrarily choosing z =

0, 28, 54, 60, 66, observe that the straight lines (profit

function) z = 4x1 + 10x2 or x2 = −
2
5
x1 +

z
10

passes

through the corner points A, B, C, E, D respectively.

The optimum solution occurs at the corner point D(4,

5), where the maximum value for z = 66 is attained.

Thus the best product mix is to produce 4 business

and 5 scientific calculator which gives a maximum

profit of Rs. 66.

x2

Solution
Space

3
+

=
2
1

x
x

1
2

x
x1
2

+ 4 = 24

x

x

1

2
+

=
9

3

1

2

Range of
optimality

In
c
re
a
s
in
g
z

z = 0

z = 28

z = 54
E

z = 60

z = 66

A B

C

D

x1

O
ptim

um

Fig. 38.5

Example 2: (a) Solve the above problems to min-

imize z = −4x1 − 10x2.

(b) If z = c1x1 + c2x2, does an alternative optimal

solution exists

(c) Determine the range of optimality for the ratio
c1
c2

 
or

c2
c1

 
.
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Solution: (a) Rewriting, x2 = −
2
5
x1 −

z
10

. Choose

z = 0,−28,−54,−60,−66, then the objective

function passes through the corner points A, B, C,

E, D respectively. Thus the minimum value z = −66

is attained at the corner point D(4, 5). Observe that

maximum of z = 4x1 + 10x2 is 66 and minimum of

z = −4x1 − 10x2 is − 66

i.e., max f (x) = −min (−f (x)).

(b) If z = c1x1 + c2x2 coincideswith the straight line

CD: x1 + x2 = 9, then any point on the line segment

CD is an optimal solution to the current problem and

thus has multiple (infinite) alternative optima.

(c) Let z = c1x1 + c2x2 be the objective function.

Then for c2  = 0, we write this as

x2 =
−c1

c2
x1 +

z

c2
The straight line

x1 + 4x2 = 24 rewritten as x2 = −
1
4
x1 +

24
4

has

slope− 1
4
and the straight line x1 + x2 = 9 rewritten

as x2 = −x1 + 9 has slope −1. Thus range of opti-

mality which will keep the present optimum solution

valid is
1

4
≤

c1

c2
≤ 1

For c2 = 4, 1 ≤ c1 ≤ 4

Similarly for c1  = 0, the range of optimality is

1 ≤
c2
c1
≤ 4. For c1 = 2, 2 ≤ c2 ≤ 8.

Example 3: Theminimum fertilizer needed/hector

is 120 kgs nitrogen, 100 kgs phosphorous and 80 kgs

of potassium.Twobrands of fertilizers available have

the following composition.

Fertilizer Nitrogen Phos. Potassium Price/100 kgs bag

A 20% 10% 10% Rs 50

B 10% 20% 10% Rs 40

Determine the number of bags of fertilizer A and

B which will meet the minimum requirements such

that the total cost is minimum.

Solution: LetX be the number of bags of fertilizer

A purchased andY be the number of bags of fertilizer

B purchased. Then the objective is to minimize the

total cos t = z = 50X + 40Y

subject to

20X + 10Y ≥ 120 (Nitrogen)

10X + 20Y ≥ 100 (Phosphorous)

10S + 10Y ≥ 80 (Potassium)

and X, Y ≥ 0

Draw the straight lines

2X + Y = 12 (1)

X + 2Y = 10 (2)

X + Y = 8 (3)

A(0, 12), B(4, 4), C(6, 2), D(10, 0)

X2

2

3

3

1

1

z = 500
z = 480

z = 380
z =

360

C

B

A

Y

Decreasing
direction
of z

(Unbounded)
Feasible
region

D

Fig. 38.6

Objective function: iso-profit equation:

Y = −
5

4
X +

z

40
(4)

Choose z = 500, 480, 380, 360 then (4) passes

through the corner points D, A, C, B respectively.

Thus the optimal solution occurs at B(4, 4) i.e. pur-

chase four bags of fertilizer A and 4 bags of fertilizer

B with a total minimum cost of Rs 360/-.

EXERCISE

Solve the following LPP graphically:

1. Right Wood Furniture Company manufactures

chairs and desks. The time required (in minutes)

and the total available time is given below. If com-

pany sells a chair for a profit of Rs. 25 and desk
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for a profit of Rs 75/- determine the best product

mix that will maximize the profit.

Chair Desk
Available

time

Fabrication

Assembly

Upholstery

Linoleum

15

12

18.75

–

40

50

–

56.25

27,000

27,000

27,000

27,000

Ans: Produce 1000 chairs and 300 desks, making a

profit of Rs 47,500.

Hint: Corner points are A(0, 0), B(1440, 0),

C(1440, 135), D(1000, 300), E(250, 480), F(0,

480): Maximize: z = 25X + 75Y . s.t.

15X + 40Y ≤ 27, 000,

12X + 50Y ≤ 27000,

18.75X ≤ 27000, 56.25Y ≤ 27000

2. Asia paints produces two types of paints with the

following requirements.

Standard
Paint

Delux
Paint

Total Available
Quantity (in tons)

Base

Chemicals

Profit (in 100’s)

6

1

5

4

2

4

24

6

Determine the optimum (best) product mix of the

paints that maximizes the total profit for the com-

pany. Demand for deluxe paint can not exceed

that of standard paint by more than 1 ton. Also

maximum demand of deluxe paint is 2 tons.

Ans: Produce 3 tons of standard and 1.5 tons of deluxe

paint, making a profit of Rs 2100.

Hint: Corner points: A(0, 0), B(4, 0), C(3, 1.5),
D(2, 2), E(1, 2), F(0, 1);OF:Maximize z = 5x1 +
4x2 subject to

6x1 + 4x2 ≤ 24, x1 + 2x2 ≤ 6,

−x1 + x2 ≤ 1, x2 ≤ 2, x1, x2 ≥ 0.

3. In an oil refinery, two possible blending processes

for which the inputs and outputs per production

run are given below.

Process

I

II

Input

Crude Crude

5 3

4 5

A B

Output

Gasoline Gasoline

5 8

4 4

X Y

A maximum of 200 units of crude A and 150

units of crude B are available. It is required to

produce at least 100 units of gasoline X and 80

units of gasolineY . The profit fromprocess I is Rs

300 while from process II is Rs 400. Determine

the optimal mix of the two processes.

Ans: Produce 30.7 units by process I and 11.5 units

from process II, getting a maximum profit of Rs

13,846.20.

Hint: Maximize: z = 300x1 + 400x2, subject to

5x1 + 4x2 ≤ 200, 3x1 + 5x2 ≤ 150

5x1 + 4x2 ≥ 100, 8x1 + 4x2 ≥ 80

Corner points: A(20, 0), B(40, 0), D(0, 30),

E(0, 25), C
 
400
13
, 150

13

 
4. Minimize z = 0.3x1 + 0.9x2 subject to

x1 + x2 ≥ 800, 0.21x1 − 0.30 x2 ≥ 0, 0.03x1−

−0.01 x2 ≥ 0, x1, x2 ≥ 0

Ans: x1 = 470.6, x2 = 329.4, minimum cost: Rs

437.64.

5. Maximize: z = 30x1 + 20x2 subject to x1 ≤ 60,

x2 ≤ 75, 10x1 + 8x2 ≤ 800.

Ans: x1 = 60, x2 = 25, Max: profit = Rs 2300

Hint:Corner points: A(0, 0), B(60, 0), C(60, 25),

D(20, 75), E(0, 75).

6. Given x1 ≥ 0, x2 ≥ 0, x1 + 2x2 ≤ 8, 2x1 − x2 ≥

−2 solve to (a) max x1 (b) max x2 (c) min x1 (d)

min x2 (e) max 3x1 + 2x2 (f) min−3x1 − 2x2 (g)

max 2x1 − 2x2

Ans: (a) x1 = 8 (b) x2 = 18
5

(c) x1 = 0 (d) x2 = 0 (e) z

= 24, x1 = 8, x2 = 0 (f) z = −24, x1 = 8, x2 = 0

(g) z = − 28
5
, x1 =

4
5
, x1 =

18
5

7. Minimize z = x1 + x2 s.t. x1 ≥ 0,

x2 ≥ 0 2x1 = x2 ≥ 12, 5x1 + 8x2 ≥ 74,

x1 + 6x2 ≥ 28.

Ans: x1 = 2, x3 = 8, min. 10

Hint: Unbounded region with corner points

A(0, 12), B(2, 8), C(10, 3), D(28, 0)
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8. Maximize: z = 5x1 + 3x2 s.t. x1 ≥ 0, x2 ≥ 0,

3x1 + 5x2 ≤ 15, 5x1 + 2x2 ≤ 10

Ans: x1 = 1.053, x2 = 2.368, Max: 12.37

Hint: Corner points: (0, 3), (1.053, 2.368), (2, 0)

9. Maximize: z = 2x1 − 4x2 s.t. x1 ≥ 0, x2 ≥ 0,

3x1 + 5x2 ≥ 15, 4x1 + 9x2 ≤ 36

Ans: x1 = 9, x2 = 0, Max: 18

Hint: Corner point: (0, 3), (0, 4), (5, 0) (9, 0)

10. Maximize: z = 3x1 + 4x2 s.t. x1 ≥ 0, x2 ≥ 0,

2x1 + x2 ≤ 40, 2x1 + 5x2 ≤ 180

Ans: x1 = 2.5, x2 = 35, z = 147.5

Hint:Corner points: 0(0, 0), A(20, 0), B(2.5, 35),

C(0, 36)

11. Minimize z = 6000x1 + 4000x2 s.t. x1 ≥ 0, x2 ≥

0, 3x1 + x2 ≥ 40, x1 + 2.5x2 ≥ 22, x1 + x2 ≥
40
3
.

Ans: x1 = 12, x2 = 4, zmin = 88,000

Hint: A(22, 0), B(12, 4), C(0, 40)

Note: Constraint x1 + x2 ≥
40
3

is redundant.

12. Maximize z = 45x1 + 80x2 s.t. 5x1 + 20x2 ≤

400, 10x1 + 15x2 ≤ 450.

Ans: x1 = 24, x2 = 14, z = Rs2200.

38.4 CANONICAL AND STANDARD FORMS

OF LPP

Since max f (x) = −min (−f (x)), an LPP with

maximation can be transferred to a minimization

problem and vice versa. Thus, the following analysis

can be applied for a maximization or minimization

problem without any loss of generality.

Canonical form of LPP is an LPP given by (1) (2)

(3) with all the constraints (2) are of the less than or

equal to type.

Standard form of LPP consists of (1) (2) (3) with all

constraints (2) are of the equality type and with all

bi ≥ 0, for i = 1 to m.

Conversion to Standard Form Given any general

LPP, it can be transformed to standard LPP as fol-

lows:

1. In any constraint if the right hand side con-

stant bi is negative, then multiply that constraint

throughout by−1. (Note that multiplication of an

inequality constraint by−1, reverses, the inequal-

ity sign i.e. −3 < −2, multiplied by −1 we get

(−1)(−3) > (−1)(−2)or3 > 2.

2. A less than or equal to type constraint 
j

aij xj ≤ bi ; (bi ≥ 0) gets transformed to an

equality
 
j

aij xj + si = bi

by the addition of a ’slack’ variable si , which

is non negative.

3. A greater than or equal to type constraint 
j

aij xj ≥ bi ; (bi ≥ 0)

can be transformed to an equality 
aij xj − si = bi

by subtracting a ’surplus’ variable Si , which

is non negative. In general, it is more convenient

to work with equations rather than with inequal-

ities. So given any general LPP, convert it to a

standard LPP, consisting of ’m’ simultaneous lin-

ear equations in "n" unknown decision variables.

Minimize:

z = c1x1 + c2x2 + · · · + cnxn (1)

subject to

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

−−−−−−−−−−−−−−−

am1x1 + am2x2 + · · · + amnxn = bm




(2)

and x1, x2, x3, · · · xn ≥ 0 (3)

Here cj (Prices), bj (requirements) and ai,j
(activity coefficients) for i = 1 to m, j = l to n)

are known constants.

Ifm > n, discard them− n redundant equa-

tions. If m = n, the problem may have a unique

(single) solution which is of no interest since

it can neither be maximized or minimized. If

m < n, which ensures that none of the equations

is redundant, then there may exist infinite number

of solutions from which an optimal solution can

be obtained.

Assume that m < n. Set arbitrarily any

n−m variables equal to zero and solve the m

equations for the remaining m unknowns. Sup-

pose the unique solution obtained be

{x1, x2, · · · xm}, by setting the remaining

(n−m) variables

xm+1, · · · , xn all to zero.
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Basic solution

{x1, x2, · · · , xm} is the solution of the systemof equa-

tions (2) in which n−m variables are set to zero.

Basic variables

are the variables x1, x2, · · · , xm in the basic solution.

Basis

is the set of m basic variables in the basic solution.

Non-basic variables

xm+1, xm+2, · · · xn are the (n−m) variables which

are equated to zero to solve the m equations (2),

(resulting in the basic solution).

Basic feasible solution

is a basic solution which satisfies the nonnegativity

restrictions, (3) i.e. all basic variables are non nega-

tive. (i.e. xj ≥ 0 for j = 1, 2, 3, · · ·m)

Nondegenerate basic feasible solution

is a basic feasible solution in which all the basic vari-

ables are positive (i.e., xj > 0 for j = 1, 2, 3, · · ·m)

Optimal basic feasible solution

is a basic feasible solution which optimizes (in this

case minimizes) the objective function (1).

Why Simplex Method

In an LPP with m equality constraints and n vari-

ables with m < n, the number of basic solutions is

ncm. For small n and m, all the basic solutions (cor-

ner points) can be enumerated (listed out) and the

optimal basic feasible solution can be determined.

Example:

Maximize: z = 2x1 + 3x2 s.t. 2x1 + x2 ≤ 4, x1 +

2x2 ≤ 5. Rewriting 2x1 + x2 + x3 = 4, x1 + 2x2 +

x4 = 5. Herem = 2, n = 4, ncm = 4c2 = 6 The six

basic solutions are: 1. (0, 0, 4, 5), Feasible (F), Non-

degenerate (ND) and z = value of O.F = 0

2. (0, 4, 0, -3), NF (non feasible)

3. (0, 2.5, 1.5, 0), z = 7.5 F, ND

4. (2, 0, 0, 3), z = 4, F, ND

5. (5, 0, - 6, 0), NF

6. (1, 2, 0, 0), z = 8,

Feasible nondegenerate and optimal.

However, even for n = 20, m = 10, the number

of basic solutions to be investigated is 1,84,756, a

large part of which are infeasible. It is proved that

the set of feasible solutions to a LPP form a convex

set (the line joining any two points of the set lies in

the set) and the corner (extreme) points of the convex

set are basic feasible solutions. If there is an optimal

solution, it exists at one of these corner points. The

simplex method devised by GB Dantzig is a power-

ful procedure which investigates in a systematic way

for optimal solution at these corner points which are

finite in number.

For m = 10, n = 20, simplex method obtains the

optimal in 15 steps, thus having an advantage of

92,378 to 1.

38.5 SIMPLEX METHOD

The simplex method is an algebraic iterative pro-

cedure which solves any LPP exactly (not approxi-

mately) or gives an indication of an unbounded solu-

tion. Starting at an initial extreme point, it moves

in a finite number of steps, betweenm and 2m, from

one extreme point to the optimal extreme point. Con-

sider the following LPP with ’m’ less than or equal

to inequalities in ’n’ variables.

Maximize z = c1x1 + c2x2 + · · · + cnxn
subject to a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxm ≤ b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1xm1 + am2x2 + · · · + amnxn ≤ bm
Introducing ’m’ slack variables s1, s2, . . ., sm, the

less than or equal to in equalities are converted to
equations.

a11x1 + a12x2 + · · · + a1nxn + s1 = b1

a21x1 + a22x2 + · · · + a2nxn + s2 = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn + · · · + sm = bm

Here x1, x2, · · · , xn, s1, s2, · · · , sm are all nonneg-

ative i.e. ≥ 0. The objective function is rewritten as
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Maximize: z = c1x1 + · · · + cnxn + 0.s1 + · · · +

0.sm.

Thus there are m equations in m+ n variables.

Putting (m+ n)−m = n variables zero we get a

starting basic feasible solution. Take x1 = x2 =

· · · xn = 0. Then the initial solution contains the m

basic variables s1, s2 · · · , sm. This corresponds to the

corner point origin with value of the objective func-

tion zero. Since this is a problem of maximization,

the value of objective function will increase if we

introduce one of non-basic variable xj (j = 1 to n),

into the solution forcing out one of the basic variable.

The obvious choice is the xj with the largest cj . Ties

are broken arbitrarily. The objective equation is writ-

ten as z− c1x1 − c2x2 − · · · − cnxn + 0.s1 + · · · +

0.sn = 0

For efficient use, this data is written in the form of

a table known as simplex tableau shown below:

Remark Basis Solution

-row 1 – – – – 0 0 0 0

-row 0 1 0 0

s -row 0 0 1

-row

-row 0 0 0 1

z x x x xn s s s

c z c c c c

s s a a a a b

s a a a a b

s a

s s a a a a b

1 2 1 2

1 2

1 1 11 12 1 1 1

2 2 21 22 2 2 2

1 2

j m

j n

j n

j n

i ij

m m m m mj mn m

1

¼
¼

¼
¼

¼
¼

¼
¼

¼
¼

¼
¼

¼ ¼ ¼ ¼

¼
¼

¼
¼

¼
¼

¼

The first row, z-row contains the coefficients of

the objective equation with last element in rectangle

indicating the current value of the objective func-

tion (In the present case it is zero). The left most

(first) column indicates the current basic variables

s1, s2, · · · , sm. The right most (last) column is the

solution column. Thus s1 = b1, s2 = b2, · · · , sm =

bm (all resources unused) is the basic solution with

the value of the objective function zero.

Test for optimality

If all the z-row coefficients of the nonbasic variables

are nonnegative, then the current solution is optimal.

Stop. Otherwise goto step I.

Step I. Entering variables: Suppose - cj , the z-row

coefficient of the non basic variables xj is the most

negative, then the variable xj will enter the basis. The

j th column is known as the pivotal column.

Step II. Leaving variable: Divide the solution col-

umn with the corresponding elements of the pivotal

column, with strictly positive denominator. Ignore

the ratios, when the pivotal column elements are zero

or negative.

Suppose
bi
aij

is the smallest non negative ratio

among these ratios
bi

aij
,
b2

a2j
, · · ·

bm

amj
,

then the basic variable si will leave the basis (and

therefore will become a non basic variable). The ith

row is known as the pivotal row. The element aij
at the intersection of the pivotal column and pivotal

row is known as the pivotal element, which is encir-

cled in the table step III. Compute the new simplex

tableauwith (s1, s2, · · · , xj , · · · , sm) as the new basis

compute.

Pivot row:

New pivot row =
current pivot row

pivot element
.

All other rows including z:

New row = current row - (Corresponding pivot

column coefficient) × (New pivot row).

The solution-column in the new tableau readily

gives the newbasic solutionwith newobjective value

(last element in the z-row). Now test for optimality.

If yes, stop. Otherwise go to step I.

Optimality condition

The nonbasic variable having themost negative (pos-

itive) coefficient coefficient in the z-row will be the

entering variable in a maximization (minimization)

problem. Ties are broken arbitrarily. When all the z-

row coefficients of the non basic variables are non-

negative (nonpositive) then the current solution is

optimal.

Feasibility condition

In both the maximization and minimization prob-

lems, the basic variable associated with the smallest

nonnegative ratio (with strictly positive denomina-

tor) will be the leaving variable.
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Thus the simplex method can be summarized as

follows:

Step 0. If all the constraints are less than or equal

to type, introduce slack variables and determine the

starting basic solution.

Step I. Using optimality condition, select the enter-

ing variable. If no variable can enter the basis, stop.

The current solution is optimal.

Step II. Using feasibility condition determine the

leaving variable.

Step III. Compute the new basic solution (new sim-

plex tableau) and go to step I.

Artificial Variable Technique

For a LPP in which all the constraints are less than or

equal to type with bi ≥ 0, an all-slack, initial basic

feasible solution readily exists. However for prob-

lems involving ≥ inequalities or equality constrains

no such solution is possible. To alleviate this, artifi-

cial variables are introduced in each of the ≥ or =

type constraints, and slack variables for the less than

or equal to type which will then provide a starting

solution. The M-method and the two-phase method

are two closely related methods involving artificial

variables.

M-Method (also Known as Charne’s Method

or Big M-Method)

Since artificial variables are undesirable, the coeffi-

cient for the artificial variable in the objective func-

tion is taken as − M in maximization problem and

as + M in minimization problems. Here M is a very

large positive (penalty) value. The augmented prob-

lem is solved by simplex method, resulting in one of

the following cases:

1. When all the artificial variables have left the basis

and optimality condition is satisfied, then the cur-

rent solution is optimal.

2. When one or more artificial variables are present

in the basis at zero level and the optimality condi-

tion is satisfied, then the solution is optimal with

some redundant constraints

3. No feasible solution exists when one or more arti-

ficial variables are present in the basis at a positive

level although the optimality condition is satis-

fied. Such a solution is known as pseudo optimal

solution since it satisfies the constraints but does

not optimize the objective function.

Note: Since artificial variables which is forced out

of the basis, is never considered for reentry, the col-

umn corresponding to the artificial variable may be

omitted from the next simplex tableau.

Two-Phase Method

In the M-method, M must be assigned some specific

numerical value which creates trouble of roundoff

errors especially in computer calculations. The z-

coefficient of the artificial variablewill be of the form

aM + b. For large chosen M, b may be lost and for

small chosenMand small a, bmay be present leading

to incorrect results. The two phase method consists

of two phases and alleviates the difficulty in the M-

method.

Phase I

Exactly as in M-method, introduce necessary artifi-

cial variables to get an initial basic feasible solution.

Solve this augmented problem, by simplex method

to minimize r, the sum of the artificial variables. If

r = 0, then all the artificial variables are forced out

of the basis. Goto phase II. If r > 0, indicating the

presence of artificial variables at non zero level, LP

has no feasible solution

Phase II

The feasible solution of phase I forms the initial basic

feasible solution to the original problem (without any

artificial variables). Apply simplex method to obtain

the optimal solution.

WORKED OUT EXAMPLES

Enumeration

Example 1: Solve the following LPP by enumerat-

ing all basic feasible solutions. Identify the infeasible
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solutions. Find the optimal solution and the value of

the objective function.

Maximize z = 2x1 + 3x2 + 4x3 + 7x4 subject to

2x1 + 3x2 − x3 + 4x4 = 8

x1 − 2x2 + 6x3 − 7x4 = −3

and x1, x2, x3, x4 ≥ 0.

Solution: The number of equations m = 2. The

number of variable n = 4. The number of basic vari-

ables = m = 2. The number of all possible solutions

is 4c2 = 6.

1. Put x3 = x4 = 0, solving 2x1 + 3x2 = 8, x1 −

2x2 = −3, we get x1 = 1, x2 = 2, z = 8. Basic

feasible solution, not optimal, x1, x2 are basic

variables, x3, x2 are non basic variables (which

are always zero).

2. Put x2 = x4 = 0. Solving 2x1 − x3 = 8, x1 +

6x3 = −3, we get x1 = 45
13
, x3 = −

14
3
. Since x3 <

0, this is a basic non feasible solution.

3. Put x1 = x4 = 0. Solving 3x2 − x3 = 8, −2x2 +

6x3 = −3, we get x2 = 45
16
, x3 =

7
16
, z = 163

16
. This

is a basic feasible solution (not optimal).

4. Put x3 = x2 = 0, solving 2x1 + 4x4 = 8, x1 −

7x4 = −3, we get x1 = 22
9
, x4 =

7
9
, z = 93

9
, basic

feasible solution (not optimal).

5. Put x1 = x3 = 0. Solving 3x2 + 4x4 = 8, 2x2 +

7x4 = 3 we get x2 = 44
13
, x4 =

−7
13

. This is a basic

non feasible solution.

6. Put x1 = x2 = 0. Solving −x3 + 4x4 = 8, 6x3 −

7x4 = −3, we get x3 = 44
17
, x4 =

45
17

. Thus the opti-

mal basic feasible solution with the basic vari-

ables x3 = 44
17
, x4 =

45
17

(and obviously the remain-

ing non basic variables x1, x2 at zero value) has

the maximum value of the objective function as
491
17

.

Simplex Method: Maximization

Example 1: Solve the following LPP by simplex

method.

Maximize z = 2x1 + 3x2

subject to 2x1 + 4x2 ≤ 20

2x1 + 2x2 ≤ 12

4x1 ≤ 16

x1 ≥ 0, x2 ≥ 0

Solution: Introducing three slack variables, the

given three less than or equal to inequality constraints

will be expressed as equations. Assign zero cost to

each of these slack variables. Then the standard form

of the LPP is to

Maximize z = 2x1 + 3x2 + 0 · s1 + 0 · s2 + 0 · s3
subject to

2x1 + 4x2 + s1 = 20

2x1 + 2x2 + s2 = 12

4x1 + s3 = 16

and x1, x2, s1, s2, s3 ≥ 0

Express the objective equation as

z− 2x1 − 3x2 = 0

Then the starting simplex tableau is represented as

follows:

Basis Solution Remark

1 –2 –3 0 0 0 0 -row

0 2 4 1 0 0 20 -row

0 2 2 0 1 0 12 -row

0 4 0 0 0 1 16 -row

z x x s s s

z z

s s

s s

s s

1 2 1 2 3

1 1

2 2

3 3

Corner points:A(0, 0),B(4, 0),C(4, 2),D(2, 4),E(0,

5). Value of O.F. at these extreme points: zA = 0,

zB = 8, zC = 14, zD = 16, zE = 15

2

x1

1

3

BA

E

x2

D
optimum ( = 2, = 4)

= 16
x x

z

1 2

D

C

Fig. 38.7

The initial basis consists of the three basic vari-

ables s1 = 20, s2 = 12, s3 = 16. The two non basic

variables are x1 = 0, x2 = 0. Note that non basic vari-

ables are always equal to zero. Thus this solution

corresponds to the corner (extreme) point A (0, 0) in

the graph. In the simplex tableau all the three basic
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variables are listed in the left-most (first) column

and their values (including the value of the objective

function), in the right-most (last) column. Here the

value of OF is 0 since all the resources are unutilized.

In the z-row, the value of the objective function in the

solution column is enclosed in a square. Since this is

a maximization problem, to improve (increase) the

value of z, one of the non-basic variables will enter

into the basis and there by forcing out one of the

current basic variable from the basis (since the num-

ber of basic variables in the basis is fixed and equals

to m = 3 the number of constraints). From the opti-

mality condition, the entering variable is one with

the most negative coefficient in the z-row. In the z-

row the most negative elements is −3. Thus the non

basic variablex2 will enter the basis. Todetermine the

leaving variable, calculate the ratios of the right-hand

side of the equations (solution-column) to the corre-

sponding constraint coefficients under the entering

variable x2, as follows:

Basis Entering
x2

Solution Ratio

20
4

12
2

16
0

= 5 minimum

= 6

= ¥ (Ignore)

S1

S2

S3

4

2

0

20

12

16

Therefore s1 is the leaving variable. The value of

the entering variable x2 in the new solution equals to

this minimum ratio 5. Here s1-row is the pivot row;

x2 column is the pivot column and the intersection

of pivot column and pivot row is the pivot element

4 which is circled in the tableau. The new pivot row

is obtained by dividing the current pivot row by the

pivot element 4. Thus the new pivot row is

0
4

2
4

4
4

1
4

0
4

0
4

20
4

i.e., 0 1
2

1 1
4

0 0 5

Recall that for all other rows, including z-row,

New row = current row − (corresponding pivot

coefficient) × (new pivot row)
New z-row = current z-row− (− 3) new pivot row

= (1, − 2, − 3, 0, 0, 0, 0)+

+3

 
0,

1

2
, 1,

1

4
, 0, 0, 5

 

= 1, −
1

2
, 0,

3

4
, 0, 0, 15

New s2-row = current s2-row−(2) new pivot row

= (0, 2, 2, 0, 1, 0, 12)−

−2
 
0, 1

2
, 1, 1

4
, 0, 0, 5

 
=

= (0, 1, 0, − 1
2
, 1, 0, 2)

New s3-row = current s3-row-(0) × (new pivot row)

= current s3-row itself

= 0, 4, 0, 0, 0, 1, 16

Summarizing these results we get the new simplex

tableau corresponding to the new basis (x2, s2, s3) as

follows. Note that this new basis corresponds to the

corner point E(0, 5) with value of OF as 15.

Basis

–

–

1
2

1
2

3
4

1
2

1
4

z

x

s

x

2

2

3

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

15

5

2

16

1

4 0

z x1 x2 s1 s2 s3 solution

From the tableau, the solution is

x2 = 5, s2 = 2, s3 = 16 (basic variables)

x1 = 0, s1 = 0 (non basic variables), value of OF is

15.

Thus the solution moved from corner point A to

corner point E in this one iteration. Optimal solution

is not reached since all elements of z-row are not

non negative. Since− 1
2
is the most negative element

in the current z-row, the variable x1 will enter the

basis. To determine the leaving variable again calcu-

late the ratios of RHS column with the elements of

the entering variable x1.

1
2

x

s

x

2

2

3

Basis Solution RatioEntering
x1

1

4

5

2

16

10

2

4

mini-
mum

Therefore, s2 will leave the basis. The pivotal ele-

ment is one; so pivot row remain the same. The
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new simplex tableau corresponding to the new basis

(x2, x1, s3) is given below.

1
2

1
2

1
2

1
2

1
2

Basis Solutionz x1 x2 s1 s2 s3

z

x

x

s

2

1

3

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

16

4

2

8

–

2

–

1

– 4

Here new z-row = current z-row−
 
− 1

2

 
pivot row

=
 
1,− 1

2
, 0, 3

4
, 0, 0, 15

 
×

×
 
−
 
− 1

2

   
0, 1, 0,− 1

2
, 1, 0, 2

 
=

= 1, 0, 0, 1
2
, 1

2
, 0, 16

Here new x2-row = (current x2 row)− 1
2
(pivot row)

=
 
0, − 1

2
, 0, 3

4
, 0, 0, 15

 
×

×− (1)
 
1
2

 
,
 
0, 1, 0,− 1

2
, 1, 0, 2

 
=

=
 
1, 0, 0, 1

2
, 1

2
, 0, 16

 
Here new s3-row = current s3-row − 4(pivot row)

= (0, 4, 0, 0, 0, 1, 16)

−4
 
0, 1, 0,− 1

2
, 1, 0, 2

 
=

= (0, 0, 0, 2,−4, 1, 8)

Since all the elements in the current z-row are non-

negative, the current solution is optimal. Read the

solution from the tableau as

x2 = 4, x1 = 2, s3 = 8 (basic variables)

s1 = 0, s2 = 0 (non basic variables)

value of O. F is 16.

Note that this solution corresponds to the corner

point D(2, 4). In this second iteration solutionmoved

from E to D.

Simplex Method: Minimization:

Example 1: Minimize: z = x1 + x2 + x3 subject

to x1 − x4 − 2x6 = 5, x2 + 2x4 − 3x5 + x6 = 3,

x3 + 2x4 − 5x5 + 6x6 = 5.

Solution: Fortunately the problem contains already

a starting basic feasible solution with x1, x2, x3 as the

basic variables.

Basis Solutionx2x1 x3 x4 x5 x6

z

x

x

z

x

1

3

1

x

x

x

z

x

x

x

2

2

6

1

4

6

– 1

1

0

0

– 1

1

0

0

– 1

1

0

0

0

– 2

1

6

0

0

0

1

0

0

0

1

– 1

0

1

0

– 1

0

1

0

– 1

– 1

0

0

1

– 1

0

0

– 3

– 5

0

13

5

3

5

0

– 1

2

2

0

1
5

3
10

63
30

1
3

5
3

20
3

53
6

1
3

3
5

1
10

13
10

13
10

1
6

13
6

13
6

5
3

1
5

4
15

2
5

2
5

1
6

5
6

5
6

213
30

1
3

– + –

– –

–

– –

–

–

–

– 1 00

0

1

0

213
30

Optimal solution: x1 =
213
30
, x4 =

13
10
, x6 =

2
5
O.F : 213

30
.

Unbounded solution:

Example 1: Solve LPP by simplex method.

Maximize: z = 2x1 − 3x2 + 4x3 + x4 subject to

x1 + 5x2 + 9x3 − 6x4 ≥ −2

3x1 − x2 + x3 + 3x4 ≤ 10

−2x1 − 3x2 + 7x3 − 8x4 ≥ 0

and x1, x2, x3, x4 ≥ 0.

Solution: Rewriting in the standard form

−x1 − 5x2 − 9x3 + 6x4 ≤ 2

3x1 − x2 + x3 + 3x4 ≤ 10

2x1 + 3x2 − 7x3 + 8x4 ≤ 0

Introducting 3 slack variables x5, x6, x7 we write the

LPP as

maximize: z = 2x1 − 3x2 + 4x3 + x4 + 0 · x5 + 0 ·

x6 + 0 · x7

subject to

−x1 − 5x2 − 9x3 + 6x4 + x5 = 2

3x1 − x2 + x3 + 3x4 + x6 = 10

2x1 + 3x2 − 7x3 + 8x4 + x7 = 0
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Objective equation is: z−2x1+3x2−4x3−x4=0

The first simplex tableau with the 3 basic variables

x5, x6, x7 is given below:

Basis Solutionx2x1 x3 x4 x5 x6 x7

z

x

x

x

5

6

7

– 2

– 1

3

2

3

– 5

– 1

3

– 4

– 9

1

– 7

– 1

6

3

8

0

1

0

0

0

0

1

0

0

0

0

1

0

2

10

0

Since −4 is most negative element in the z-row, the

associated variable x3 will enter the basis. Out of the

three ratios 2
−9
, 10

1
, 0
−7

, the first and third are ignored

(because the denominator is negative). So x6 will

be outgoing variable. The pivotal element is 1. So

pivotal row remains same. The next simplex tableau

with x5, x3, x7 is given below.

Basis Solutionx2x1 x3 x4 x5 x6 x7

z

x

x

x

5

6

7

10

26

3

23

– 1

– 14

– 1

– 4

0

0

1

0

11

33

3

29

0

1

0

0

4

9

1

7

0

0

0

1

40

92

10

70

In the current z-row, x2 has the most negative coef-

ficient − 1, so normally x2 should enter the basis.

However, all the constraint coefficients under x2 are

negative, meaning that x2 can be increased indefi-

nitely without violating any of the constraints. Thus

the problem has no bounded solution.

M-method:

Example 1: Solve the LPP by M-method

minimize z = 3x1 + 2.5x2

subject to

2x1 + 4x2 ≥ 40

3x1 + 2x2 ≥ 50

x1, x2 ≥ 0

Solution: Introducing surplus variables x3, x4, the

greater than inequations are converted to equations.

Minimize z = 3x1 + 2.5x2 + 0 · x3 + 0 · x4

subject to

2x1 + 4x2 − x3 = 40

3x1 + 2x2 − x4 = 50

x1, x2, x3, x4 ≥ 0

In order to have a starting solution, introduce two

artificial variables R1 and R2 in the first and second

equations. In the objective function the cost coeffi-

cients for these undesirable artificial variablesR1 and

R2 are taken as a very large penalty value M. Thus

the LPP takes the following form:

Minimize z = 3x1 + 2.5x2 + 0 · x3 + 0 · x4+

+M · R1 +M · R2 (1)
subject to

2x1 + 4x2 − x3 + R1 = 40 (2)

3x1 + 2x2 − x4 + R2 = 50 (3)

and x1, x2, x3, x4, R1, R2 ≥ 0

The z-column is omitted in the tableau for conve-

nience because it does not change in all the iterations.

Solving (2) and (3) we get

R1 = 40− 2x1 − 4x2 + x3 (4)

and R2 = 50− 3x1 − 2x2 + x4 (5)

Substituting (4) and (5) in the objective function (1)

we get

z = 3x1 + 2.5x2 +M(40− 2x1 − 4x2 + x3)

+M(50− 3x1 − 2x2 + x4)

or

z = (3− 5M)x1 + (2.5− 6M)x2 +M · x3+

+M · x4 + 90 ·M

which is independent of R1 and R2. Thus the objec-

tion equation is

z− (3− 5M)x1 − (2.5− 6M)x2 −Mx3−

−Mx4 = 90M

The simplex tableau with the starting basic solution

containing R1 and R2 as the basic variables in given

below:

Basis Solutionx1 x2 x3 x4 R1 R2

z

R

R

1

2

– 3+5M

2

3

– 2.5– 6M

4

2

–M

– 1

0

–M

0

– 1

0

1

0

0

0

1

90 M

40

50

In the z-row, the most positive coefficient is

−2.5+ 6M . So x2 will be entering variable. Since
40
4
= 10, 50

2
= 25, the variable R1 will leave the
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basis. So 4 is the pivotal element. New simplex

tableau is given below:

Basis Solutionx1 x2 x3 x4 R1 R2

z

x

R

2

2 2

0

1

0

–M

0

– 1

0

0

1

25+30M

40

50

– 3.5+4M
2

2.5– 6M
4

– 2.5+2M
4

1
4

1
4

1
2

1
2

1
2

–

–

Since −3·5+4M
2

is the most positive element in the z-

row, the variable x1 will enter the basis forcingR2 out

since the minimum of the ratios 10
1
2

= 20, 30
2
= 15 is

15. So pivotal element is 2. The next simplex tableau

is shown below:

15

205
4

7
8

7
8

3
16

3–16 M
8

5
2

1
4

1
4

3
8

3
8

1
2

1
2

1
4

1
4

Basis Solutionx1 x2 x3 x4 R1 R2

– M

–

– –

–

––z

x

x

2

1

0

0

1

0

1

0

Since all the elements in the z-row are non posi-

tive, the current solution is optimal given by x1 = 15,

x2 =
5
2
with value of objective function 205

4
(observe

that the artificial variables R1, R2 and surplus vari-

ables x3, x4 are nonbasic variables assuming zero

values. Thus R1, R2 have been forced out of the

basis).

Two-Phase Method

Example 1: Solve LPP by two-phase method

Maximize z = 2x1 + 3x2 − 5x3

subject to

x1 + x2 + x3 = 7

2x1 − 5x2 + x3 ≥ 10

and x1, x2, x3 ≥ 0

Solution: Phase I: Introducing a surplus variable

x4 and two artificial variables R1 and R2, the Phase

I of the LPP takes the following form:

Minimize r = R1 + R2 (1)

subject to

x1 + x2 + x3 + R1 = 7 (2)

2x1 − 5x2 + x3 − x4 + R2 = 10 (3)

and x1, x2, x3, x4, R1, R2 ≥ 0.

From (2),R1 = 7− x1 − x2 − x3 (4)

From (3),R2 = 10− 2x1 + 5x2 − x3 + x4 (5)

Substituting (4), (5) in (1) we get the objection func-

tion as

Minimize r = (7− x1 − x2 − x3)+ (10− 2x1 +

5x2 − x3 + x4)

or Minimize r = −3x1 + 4x2 − 2x3 + x4 + 17 or

r + 3x1 − 4x2 + 2x3 − x4 = 17

The simplex tableau containing the basic solution

with R1, R2 as the basic variables is given below.

Basis Solutionx2x1 x3 R1 R2 x4

r

R

R

1

2

3

1

2

– 4

1

– 5

2

1

1

0

1

0

0

0

1

– 1

0

– 1

17

7

10

The variable x1 will enter the basis since 3 is most

positive coefficient in the r-row of this minimization

problem. The variable R2 will leave the basis since
10
2
= 5 is less than 7

1
= 7. The pivotal element is 2.

Dividing the pivot row by the pivot element 2, we get

the new pivot row as 1,− 5
2
, 1

2
, 0, 1

2
,− 1

2
, 5.

Here the new rth-row:

= (3− 4 2 0 0− 1 17)− 3
 
1− 5

2
1
2
0 1

2
− 1

2
5
 

=
 
0 7

2
1
2
0− 3

2
1
2
2
 

Here the new R1-row:

= (1 1 1 1 0 0 7)− 1
 
1− 5

2
1
2
0 1

2
− 1

2
5
 

=
 
0 7

2
1
2
1− 1

2
1
2
2
 

The new simplex table with R1 and x1 as the basic

variables is shown below:

Basis Solutionx2x1 x3 R1 R2 x4

r

R

R

1

2

0

0

1

0

1

0

2

7

5

7
2

1
2

3
2

1
2

7
2

1
2

1
2

1
2

1
2

1
2

1
2

5
2

–

–

–

–

Now x2 with most positive coefficient 7
2
, will enter
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the basis pushing out R1 with ratio 2 
7
2

 = 4
7
. (The

other ratio 5

− 5
2

is ignored since the denominator is

negative). The pivotal element is 7
2
. The pivot row is 

0 1 1
7

2
7
−1
7

1
7

4
7

 
Here new r-row:

=
 
0 7

2
1
2

0 −3
2

1
2

2
 
− 7

2

 
0 1 1

7
2
7
− 1

7
1
7

4
7

 
= (0 0 0− 1− 1 0 0)

Here new x1-row:

=
 
1− 5

2
1
2

0 1
2
− 1

2
5
 
− 

− 5
2

  
0 1 1

7
2
7
− 1

7
1
7

4
7

 
=
 
1 0 6

7
5
7

1
7
− 1

7
45
7

 
The next simplex tableau of the second iteration with

x1 and x2 as the basic variables is given below.

Basis Solutionx2x1 x3 R1 R2 x4

r

x

x

2

1

0

0

1

0

1

0

0– 1 00

1
7

2
7

1
7

1
7

4
7

6
7

5
7

1
7

1
7

45
7

– 1

–

–

The phase I is complete since r is minimized attain-

ing value 0, producing the basic feasible solution x1

= 45
7
, x2 = 4

7
. Note that both the artificial variablesR1

and R2 have been forced out of the (starting) basis.

Therefore the columns of R1 and R2 can altogether

be ignored in the future simplex tableau.

Phase II: Having deleted the artificial variables

R1 andR2 and having obtained a basic feasible solu-

tion x1, x2 we solve the original problem given by

maximization of z = 2x1 + 3x2 − 5x3

subject to

x2 +
1
7
x3 +

1
7
x4 =

4
7

x1 +
6
7
x3 −

1
7
x4 =

45
7

and x1, x2, x3, x4 ≥ 0

The tableau associated with this phase II is

Basis Solutionx2x1 x3 x4

z

x

x

2

1

– 3

1

0

– 2

0

1

0

1
7

1
7

90
7

12
7

102
7

4
7

6
7

1
7

45
7

5

–

+ =

Since x2 withmost negative element in the z-row is

already in the basis, the current solution is optimal.

The basic feasible solution is x1 =
45
7
, x2 =

4
7

and

the maximum value of the objective function is 102
7

.

38.6 LINEAR PROGRAMMING PROBLEM

EXERCISE

Enumeration:

1. If a person requires 3000 calories and 100 gms

of protein per day find the optimal product mix

of food items whose contents and costs are given

below such that the total cost isminimum. Formu-

late this as an LPP. Enumerate all possible solu-

tions. Identify basic, feasible, nonfeasible, degen-

erate, non degenerate solutions and optimal solu-

tion.

Bread
x1

Meat
x2

Potatoes
x3

Cabbage
x4

Calories

Protein

Cost (Rs)

Milk
x5

2500

80

3

3000

150

10

600

20

1

100

10

2

600

40

3

Ans: LPP: Minimize z = 3x1 + 10x1 + x3 + 2x4 +

3x5.

s.t. 2500x1 + 3000x2 + 600x3 + 100x4 +

600x5 = 3000

80x1 + 150x2 + 20x3 + 10x4 + 40x5 = 100,

x1, x2, x3, x4, x5 ≥ 0;m = 2, n = 5, 5c2 = 10

basic solutions: F = Feasible, NF: non-feasible,

D: degenerate, ND: non degenerate

1. x1 =
10
9
, x2 =

2
27
, z = 110

7
, F, ND

2. x1 = 0, x3 = 5, z = 5, F, D

3. x1 =
20
17
, x4 =

10
17
, z = 80

77
, F, ND

4. x1 =
15
13
, x5 =

5
26
, z = 105

26
, F, ND, optimal,

5. x2 = 0, x3 = 5, z = 5, F, ND

6. x2 =
4
3
, x4 = −10, z = − 20

3
, NF, ND

7. x2 = 2, x5 = −5, z = 5, NF, ND

8. x3 = 5, x4 = 0, z = 5, F, D

9. x3 = 5, x5 = 0, z = 5, F, D

10. x4 = 10, x5 = −30, z = −30, NF, ND

All the remaining non basic variables are

zero.
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2. Find all basic solutions for

x1 + 2x2 + x3 = 4, 2x1 + x2 + 5x3 = 5

Ans: (2, 1, 0) F, ND; (5, 0, − 1), NF, ND; 
0, 5

3
, 2

3

 
F, ND.

3. Find the optimal solution by enumeration

Max: z = 5x1 + 10x2 + 12x3

s.t. x1, x2, x3 ≥ 0,

15x1 + 10x2 + 10x3 ≤ 200, 10x1 + 25x2 +

20x3 = 300

Ans: 1. (7.27, 9.1, 0, 0), z = 127 · 27

2. (5, 0, 12.5, 0), z = 175

3. (30, 0, 0,−250), NF

4. (0,−20, 40, 0), NF

5. (0, 12, 0, 80), z = 120

6. (0, 0, 15, 50), z = 180

(1) (2) (5) are F, ND:

(6) is optimal solution;

4. Find the optimal solution by enumeration

Max: z = 2x1 + 3x2 s.t. 2x1 + x2 ≤ 4, x1, x2 ≥

0, x1 + 2x2 ≤ 5.

Ans: 1. (0, 0, 4, 5), z = 0, F, ND

2. (0, 4, 0,−3) NF

3. (0, 2.5, 1.5, 0), z = 7.5, F, ND

4. (2, 0, 0, 3), z = 4, F, ND

5. (5, 0,−6, 0), NF

6. (1, 2, 0, 0), z = 8, F, ND, optimal.

Simplex Method

Solve the following LPP by simplex method.

1. A firm can produce 5 different products using 3

different input quantities, as follows.

Input Technical coefficients Capacity

quantity 1 2 3 4 5

A 1 2 1 0 1 100

B 0 1 1 1 1 80

C 1 0 1 1 0 50

Profit 2 1 3 1 2

Maximize the profit

Ans: x1 = 20, x3 = 30, x5 = 50, profit: Rs = 30

Hint: Max: z = 2x1 + x2 + 3x3 + x4 + 2x5 s.t.

x1 + 2x2 + x3 + x5 ≤ 100; x2 + x3 + x4 + x5 ≤

80; x1 + x3 + x4 ≤ 50

2. Max: z = 2x1 + x2 s.t. x1, x2 ≥ 0; 3x1 + 5x2 ≤

15; 6x1 + 2x2 ≤ 24.

Ans: x1 =
15
4
, x2 =

3
4
, z = 33

4

3. Max: z = 3x1 + 4x2 + x3 + 7x4 s.t. 8x1 + 3x2 +

4x3 + x4 ≤ 7,

2x1 + 6x2 + x3 + 5x4 ≤ 3,

x1 + 4x2 + 5x3 + 2x4 ≤ 8

x1, x2, x3, x4 ≥ 0.

Ans: x1 =
16
19
, x4 =

5
19
, x7 =

126
19
, z = 83

19

4. Minimize z = x2 − 3x2 + 2x5

s.t. x1 + 3x2 − x3 + 2x5 = 7,

−2x2 + 4x3 + x4 = 12,

−4x2 + 3x3 + 8x5 + x6 = 10

Ans: x2 = 4, x3 = 5, x6 = 11, z = −11

5. Max: z = 2x1 + 5x2 + 4x3

s.t. x1 + 2x2 + x3 ≤ 4; x1 + 2x2 + 2x3 ≤ 6

Ans: x2 = 1, x3 = 2, z = 13

6. Max: z = 5x1 + 4x2 s.t., x1, x2 ≥ 0;

6x1 + 4x2 ≤ 24; x1 + 2x2 ≤ 6,

x1 − x2 ≥ −1;−x2 ≥ −2

Ans: x1 = 3, x2 = 3
2
, z = 21

7. Max: z = x1 + 2x2 + x3 s.t. x1, x2, x3 ≥ 0,

2x1 + x2 − x3 ≤ 2;−2x1 + x2 − 5x3 ≥ −6;

4x1 + x2 + x3 ≤ 6.

Ans: x2 = 4, x3 = 2, x6 = 0, z = −10

(Note: Degenerate solution)

8. Max: z = −x1 + 3x2 − 2x3 s.t.

3x1 − x2 + 2x3 ≤ 7, 2x1 − 4x2 ≥ −12;

4x1 − 3x2 − 8x3 ≥ −10; x1, x2, x3 ≥ 0.

Ans: x1 = 4, x2 = 5, z = 11

9. Max. z = 6x1 + 9x2 s.t. x1, x2 ≥ 0, 2x1 + 2x2 ≤

24; x1 + 5x2 ≤ 44, 6x1 + 2x2 ≤ 60

Ans: x1 = 4, x2 = 8, x6 = 20, z = 96

Multiple optima:

10. Minimize: z = −x1 − x2 s.t. x1, x2 ≥ 0

x1 + x2 ≤ 2, x1 − x2 ≤ 1, x2 ≤ 1

Ans: x1 =
3
2
, x2 =

1
2
, z = −2
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Also another optimal solution is x1 = 1, x2 =

1, z = −2

11. Max: z = 6x1 + 4x2 s.t. x1, x2 ≥ 0, x1 ≤

4, 2x2 ≤ 12, 3x1 + 2x2 ≤ 18

Ans: x1 = 4, x2 = 3, z = 36

Another optimal solution: x1 = 2, x2 = 6, z =

36

Unbounded solution

12. Max: z = 4x1 + x2 + 3x3 + 5x4 s.t.

3x1 − 2x2 + 4x3 + x4 ≤ 10,

8x1 − 3x2 + 3x3 + 2x4 ≤ 20,

−4x1 + 6x2 + 5x3 − 4x4 ≤ 20

Ans: Unbounded solution

Note: In the second simplex tableau, since x2 has

most negative coefficient in z-row, normally x2

should enter the basis. But all the entries in the

column under x2 are negative or zero. So no vari-

able can leave the basis. Hence the solution is not

bounded

13. Min: z = −3x1 − 2x2 s.t. x1, x2 ≥ 0, x1 − x2 ≤

1, 3x1 − 2x2 ≤ 6.

Ans: Unbounded solution

Note: In the 3rd simplex tableau, x3 having the

most positive value (12) in z-row should normally

enter the basis. But all the entries under x3 are

negative. So OF can be decreased indefinitely.

M-Method

14. Minimize: z = 4x1 + 2x2 s.t. x1, x2 ≥ 0, 3x1 +

x2 ≥ 27;−x1 − x2 ≤ −21, x1 + 2x2 ≥ 30.

Ans: x1 = 3, x2 = 18, z = 48

15. Max: z = x1 + 2x2 + 3x3 − x4 s.t.

x1 + 2x2 + 3x3 = 15, 2x1 + x2 + 5x3 = 20,

x1 + 2x2 + x3 + x4 = 10, x1, x2, x3, x4 ≥ 0

Ans: x1 = x2 = x3 = 5
2
, x4 = 0, z = 15

16. Min: z = 2x1 + x2 s.t. x1, x2 ≥ 0, 3x1 + x2 =

3, 4x1 + 3x2 ≥ 6, x1 + 2x2 ≤ 3

Ans: x1 =
3
5
, x2 =

6
5
, z = − 12

5

17. Min: z = 3x1 − x2 s.t. x1, x2 ≥ 0, 2x1 + x2 ≥

2; x1 + 3x2 ≤ 3; x2 ≤ 4

Ans: x1 = 3, x3 = 4, x6 = 4, z = 9

18. Max: z = x1 + 5x2 s.t. x1, x2 ≥ 0, 3x1 + 4x2 ≤

6; x1 + 3x2 ≥ 2

Ans: x2 =
3
2
, x4 =

5
2
, z = − 15

2

19. Min: z = 2x1 + 4x2 + x3 s.t. x1 + 2x2 − x3 ≤

5; 2x1 − x2 + 2x3 = 2;−x1 + 2x2 + 2x3 ≥ 1

Ans: x3 = 1, x4 = 6, x6 = 1, z = 1

Two-Phase Method:

20. Max: z = x1 + 5x2 + 3x3 s.t. x1, x2, x3 ≥ 0, and

x1 + 2x2 + x3 = 3; 2x1 − x2 = 4

Ans: (2, 0, 1), z = 5

21. Min: z = 4x1 + x2 s.t. x1, x2, x3, x4 ≥ 0, and

3x1 + x2 = 3; 4x1 + 3x2 ≥ 6, x1 + 2x2 ≤ 4.

Ans:
 
2
5
, 9

5
, 1, 0
 
, z = 17

5

22. Minimize z = 7.5x1 − 3x2 s.t. x1, x2, x3 ≥

0, 3x1 − x2 − x3 ≥ 3; x1 − x2 + x3 ≥ 2

Ans: x1 =
5
4
, x2 = 0, x3 =

3
4
, z = 75

8

23. Minimize z = 3x1 + 2x2, s.t. x1, x2,≥ 0, x1 +

x2 ≥ 2; x1 + 3x2 ≤ 3, x1 − x2 = 1

Ans: x1 =
3
2
; x2 =

1
2
, z = 11

2

24. Minimize: z = 5x1 − 6x2 − 7x3 s.t. x1 + 5x2 −

3x3 ≥ 15; 5x1 − 6x2 + 10x3 ≤ 20; x1 + x2 +

x3 = 5, x1, x2, x3 ≥ 0

Ans: x2 =
15
4
; x3 =

5
4
, x5 = 30, z = −125

4

25. Max: z = 2x1 + x2 + x3 s.t.

4x1 + 6x2 + 3x3 ≤ 8;

3x1 − 6x2 − 4x3 ≤ 1; 2x1 + 3x2 − 5x3 ≥ 4;

x1, x2, x3 ≥ 0

Ans: x1 =
9
7
; x2 =

10
21
, z = 64

21
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38.7 THE TRANSPORTATION PROBLEM

The transportation problem is a special class of Lin-

ear programming problem. It is one of the earliest

and most useful application of linear programming

problem. It is credited to Hitchcock, Koopmans and

Kantorovich. The transportation model consists of

transporting (or shipping) a homogeneous product

from ‘m’ sources (or origins) to ‘n’ destinations,with

the objective of minimizing the total cost of trans-

portation, while satisfying the supply and demand

limits.

Let ai denote the amount of supply at the ith

source, bj denote the demand at destination j ; cij
denote the cost of transportation per unit from ith

source to j th destination; xij the amount shipped

fromorigin i to destination j . Then the transportation

problem is to minimize the total cost of transporta-

tion

z =

m 
i=1

n 
j=1

cij xij (1)

subject to the constraints

source constraint :

n 
j=1

xij = ai,

ai > 0; i = 1, 2, . . . m (2)

Destination constraint:

m 
i=1

xij = bj , bj > 0; j = 1, 2, . . . , n (3)

and

xij ≥ 0 (4)

In the balanced transportation problem it is assumed

that the total quantity required at the destinations is

precisely the same as the amount available at the

origins i.e.

m 
i=1

ai =

n 
j=1

bj . (5)

(5) is the necessary and sufficient condition for the

existance of a feasible solution to (2) and (3).

Denoting the sources and destinations as nodes

and routes as arcs, the transportation problem can be

represented as a network shown below:

Sm Dn

S1 D1 b1a1

b2a2

bnam

S2 D2

DemandDestinationsSourcesSupply
c x11 11;

c xmn mn;

The system of equations (1) to (4) is a linear pro-

gramming problemwithm+ n equations inmn vari-

ables. The transportation problem always has a finite

minimum feasible solution and an optimal solution

contains m+ n− 1 positive xij ’s when there are m

origins and n destinations. It is degenerate if less than

m+ n− 1 of the xij ’s are positive. No transportation

problem has ever been known to cycle.

Table for Transportation Problem

S1

S2

Si

Sm

bj

a

a

1

2

ai

am

bnbjb2b1
S =ai
S bj

c1nc1jc12c11

cmncmjcm2cm1

x1nx1jx12x11

xmnxmjxm2xm1

u
u

aiDnDjD2D1 uu

Destinations

S
o
u
rc
es

Note: Zero values for nonbasic variables are not

filled while zero values for basic variables are shown

in the tableau.

Like the simplex method the transport algorithm

consists of determining the initial basic feasible solu-

tion, identifying the entering variable by the use of

optimality condition and finally locating the leaving

variable by the use of feasibility condition.
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Determination of Initial (starting) Basic Fea-

sible Solution

An initial basic feasible solution containingm+ n−

1 basic variables can be obtained by any one of the

following methods (a) the north west corner rule

(b) row minimum (c) column minimum (d) matrix

minimum (or least cost method) (e) Vogel approx-

imation method. In general, Vogel’s method gives

the best starting solution. Although computationally

north west corner rule is simple, the basic feasible

solution obtained by this method may be far from

optimal since the costs are completely ignored.

(a) North-west corner rule (due to Dantzig):

Step I:Allocate asmuch as possible to the northwest

corner cell (1, 1). Thus let x11 = min(a1, b1). If a1 ≤

b1 then x11 = a1 and all x1j = 0 for j = 2, 3, . . . n

i.e. except x11 all other elements of the first row are

zero. The first row is satisfied so cross out the first

row and move to x21 of second row.

If a1 ≥ b1 then x11 = b1 and all xi1 = 0 for i =

2, 3, . . . m i.e., except x11 all other elements in the

first column are zero. The first column is satisfied

so cross out the first column and move to x12 of the

second column.

Note: If both a row and column are satisfied (i.e.,

say x11 = a1 = b1) simultaneously, then cross out

either row or column only but not both row and col-

umn.

Step II: Allocating as much as possible to the cell

(2, 1) or (1, 2) cross out the row or column and move

to (3, 1) or (1, 3).

Step III: If exactly one row or column is left

uncrossed out, stop. Otherwise go to step II wherein

move to lower row (below) if a row has just been

crossed out or move to right column if a column has

just been crossed out.

Note: Cells from “crossed out” row or column can

not be chosen for basis cells at a later step in the

determination of starting basic solution.

(b) Row-minimum

Identify the minimum cost element c1k in the first

row. (Ties are broken arbitrarily). Allocate as much

as possible to cell (1, k). If a1 ≤ bk then x1k = a1 so

move to the second row after changing bk to bk − a1.

Identify the minimum element in second row and

allocate as much as possible. Continue this process

until all rows are exhausted. If a1 > bk then x11 = bk ,

change a1 to a1 − bk , and identify the next smallest

(minimum) element in the first row allocate, continue

the process until the first row is completely satisfied.

(c) Column-minimum

This is exact parallel to the above row-minimum

method except that minimum in the columns are

identified instead of rows.

(d) Matrix minimum (least-cost method):

Identify the least (minimum) element cij in the

entire matrix. (Ties are broken arbitrarily). Allocate

as much as possible to the (i, j )th cell. If ai ≤ bj
then xij = ai , change bj to bj − ai . If ai ≥ bj then

xij = bj , change ai to ai − bj . Identify the next least

element and allocate as much as possible. Continue

this process until all the elements in the matrix are

allocated (satisfied).

(e) Vogel approximation method

Step I. The row penalty for a row is obtained by sub-

tracting the smallest cost element in that row from

the next smallest cost element in the same row. Cal-

culate the row penalties for each row and similarly

column penalties for each column.

Step II. Identify the row or column with the largest

penalty (ties are broken arbitrarily). In the selected

row or column, allocate as much as possible to the

cellwith the least unit cost.Cross out the satisfied row

or column. If a row and column are satisfied simul-

taneously, cross out either a row or column but not

both. Assign zero supply (or demand) to the remain-

ing row (or column). Any row or column with zero

supply or demand should not be used in computing

future penalties.
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Step III.

(a) A starting solution is obtained when exactly one

row or one column with zero supply or demand

remains uncrossed out. Stop.

(b) Determine the basic variables in an uncrossed

row (column) with positive (non zero) supply

(demand) by the least-cost method. Stop.

(c) Determine the zero basic variables in all the

uncrossed out rows and columns having zero sup-

ply and demand by the least cost method. Stop.

(d) Otherwise, go to step 1, recalculate the row and

column penalties and go to step II.

Note: Vogel’s method, which is a generalization of

the matrix minimum (least cost method) gives better

solution in most cases than all the other methods

listed above.

Method of Multipliers

The optimal solution to the transportation prob-

lem is obtained by iterative computions using the

method of multipliers (also known as UV -method

or stepping-stone method or MODI (modified distri-

bution) method). First of all, obtain a starting initial

basic feasible solution containing m+ n− 1 basic

variables (by any one of the above methods).

Step I: Introduce unknownsui with row i and vj with

column j such that for each current basic variable xij
in the tableau,

ui + vj = cij

is satisfied. This results inm+ n equations inm+ n

unknowns. Assume that u1 = 1 (or u1 = 0). (Instead

of u1, any other variable ui or vj can be chosen as

zero or one, resulting in the same optimal solution

but with different values in the tableau). Solving the

equations in ui , vj we get ui for i = 1 to m and vj
for j = 1 to n.

Step II. For each non basic variable, compute

cij = ui + vj − cij

Step III: (a) If cij ≤ 0 for any i and j (i.e. for all

non basic variables), stop. The current tableau gives

the optimal solution with minimum cost.

(b) If cij > 0, then solution is to be revised. The

entering variable is one which has most positive cij
(i.e., max cij for all i and j ).

(c) The leaving variable is determined by con-

structing a closed θ -loop which starts and ends at the

entering variable and consists of connected horizon-

tal and vertical lines (without any diagonals). Thus

each corner of the loop lies in the basic cell, except

the starting cell. The unknown θ is subtracted and

added alternatively at the successive corners so as

to adjust the supply and demand. From the cells in

which θ is subtracted, choose the maximum value

of θ such that xij − θ ≥ 0. This feasibility condition

determines the leaving variable. Now go to step I.

Maximization A transportation problem in which

the objective is to maximize (the profit) can be trans-

fered to a minimization problem by subtracting all

the entries of the cost matrix from the largest entry

of the matrix.

Unbalanced problem in which the total supply is

not equal to the total demand can always be trans-

fered to a balanced transportation problem by aug-

menting it with a dummy source or dummy destina-

tion. A dummy destination is added when supply is

greater than the demand. The cost of transportation

from any source to this dummy destination is taken

as zero. Similarly when demand is greater than sup-

ply, a dummy source is added. The cost of shipping

from this dummy source to any destination is taken

as zero. Now the corresponding balanced problem is

solved by the method of multipliers.

Transhipment problem consists of transporting

from source to destination via (through) intermedi-

ate or transient nodes, known as transhipment nodes

which act as both sources and destination. The tran-

shipment node should be large enough to allow the

entire supply or demand to pass through it. Thus

the ‘capacity’ of the transient node is the ‘buffer’

amount which equal the total supply or demand.

Thus the transhipment model consists of pure sup-

ply nodes which tranship the original supply, pure

demand nodes which receive the original demand,

and transhipment node which can receive original

supply plus the buffer or can tranship the original

demand plus the buffer. A given transhipment prob-
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lem can be transformed to a regular transportation

problem as follows:

I. Identify the pure supply nodes, pure demand

nodes and transhipment nodes from the given net-

work.

II. Denote the pure supply nodes and transhipment

nodes as the sources.

III. Denote the pure demand nodes and transhipment

nodes as the destinations.

IV. Note down the transportation costs cij read from

the given network. If ith source is not connected to

j th destination, put cij = M where M is a large

(penalty) value. Take cii = 0 since it costs zero

for transporting from ith source to itself (ith des-

tination).

V. Identify supply at a pure supply node as the origi-

nal supply; demand at a pure demand node as the

original demand; supply at a transhipment node as

the sum of original supply and buffer and finally

demand at a transhipment node as the sum of the

original demand and buffer.

Now the above transformed regular transportation

problem can be solved by using the method of mul-

tipliers.

Degeneracy The solution of a transport problem

is said to be degenerate when the number of basic

variables in the solution is less than m+ n− 1. In

such cases, assign a small value ε to as many non-

basic variables as needed to augment to m+ n− 1

variables. The problem is solved in the usual way

treating the ε cells as basic cells. As soon as the

optimum solution is obtained, let ε→ 0.

38.8 Transportation Problem

WORKED OUT EXAMPLES

Starting Solution:

Example 1: Obtain a (non artificial) starting basic

solution to the following transportation problem

using (a) North west corner rule (b) Row-minimum

(c)Columnminimum (d) Least cost (Matrixminima)

(e) Vogel’s (approximation) method

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6 6

8

5

6

Solution:

(a) NWCR:

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6, 5 6

8, 1

5

6

7 1

5

6

Supply as much as possible to the north-west corner

cell (1, 1).

Cost: 7× 0+ 1× 4+ 5× 3+ 6× 0 = 19

Note: This is a degenerate solution because it con-

tains only 4 basic variables (instead of 3+ 3− 1 = 5

basic variables).

(b) Row Minimum

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6, 1 6, 5

8, 1

5

6

7 1

1

5

5 1

Allot as much as possible in the first row to the cell

with least (minimum) cost i.e. (1, 1). The balance

allot to the next least cell in the first row.

Cost: 7× 0+ 1× 2+ 5× 3+ 1× 2+ 5× 0 =

19

Note: This is a non-degenerate solution (since it

contains 3+ 3− 1 = 5 basic variables).
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(c) Column Minimum

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6, 1 6, 5

8, 1

5

6

7 1

6

5

Cost: 7× 0+ 1× 2+ 5× 4+ 6× 2 = 34

This is a degenerate solution containing 4 basic

variables.

(d) Least cost method (matrix minima)

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6, 1 6

8, 1

5

6

7 1

5

6

Allot as much possible to that cell which has least

cost in the entire matrix say (1, 1) (tie broken arbi-

trarily between (1, 1) and (3, 3).

Cost: 7× 0+ 1× 4+ 5× 3+ 6× 0 = 19

This is a degenerate solution.

(e) Vogel’s (approximation) method

S

S

S

1

2

3

0

2

1

4

3

2

2

4

0

D1 D2 D3

7 6 1 6
5

8 1

5

6

7

5

1

1 5

Row penalties

2

1

1

2

1

2

1

2

�

�

�

Column
penalties

1 1

1

1

2

2

4

1

Cost: 7× 0+ 2× 1+ 3× 5+ 2× 1+ 0× 5 = 19

This is a non-degenerate solution.

Method of Multipliers

Example 1: Solve the following transportation

problem by UV -method obtaining the initial basic

solution by (a) Vogel’s method (b) NWCR (c) com-

pare the number of iterations in (a) and (b).

S

S

S

b

1

2

3

j

D1 D2 D3 D4 ai

3

0

2

0

1

5

1

2

0

2

4

0

10 25 30 35 100

30

20

50

(a) Initial solution by Vogel’s method

�

��

�

S

S

S

b

1

2

3

j

D1 D2 D3 D4 ai

3

0

2

0

1

5

1

2

0

2

4

0

10 25
30 35

100

30

20

50

10

10

252525

10 10

20 10

20 10

Row penalties

1

1

2

2

1

2

2

1

2

3

Column
penalties

2

2

3

1

1

1

1

2

2

2

2

1

Thus the initial basic feasible solution by Vogel’s

method is given by

S

S

S

1

2

3

D1 D2 D3 D4

3

0

2

0

1

5

1

2

0

2

4

0

10 10

25 25

20

where the basic variables are circled

Total cost: (20× 0)+ (10× 2)+ (10× 0)+

(10× 1)+ (25× 0)+ (25× 0) = 30

In the UV -method (method of multipliers) asso-

ciate the multipliers ui and vj with row i and column
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j such that for each basic variable xij we have

ui + vj = xij

Arbitrarily choosing u1 = 1 we solve for the

remaining ui , vj ’s as follows:

Basic variable u, v equation solution

x13 u1 + v3 = 0 v3 = −1

x14 u1 + v4 = 2 v4 = 1

x34 u3 + v4 = 0 u3 = −1

x32 u3 + v2 = 0 v2 = 1

x23 u2 + v3 = 1 u2 = 2

x21 u2 + v1 = 0 v1 = −2

To summarize u1 = 1, u2 = 2, u3 = −1

v1 = −2, v2 = 1, v3 = −1, v4 = 1

Now using ui and vj the non basic variables are

calculated as
xij = ui + vj − cij

Thus

Nonbasic Value

variable xij ui + vj − cij
x11 u1 + v1 − c11 = 1− 2− 3 = −4

x12 u1 + v2 − c12 = 1+ 1− 1 = 1

x22 u2 + v2 − c22 = 2+ 1− 2 = 1

x24 u2 + v4 − c24 = 2+ 1− 4 = −1

x31 u3 + v1 − c13 = −1− 2− 2 = −5

x33 u3 + v3 − c33 = −1− 1− 5 = −7

Non basic variables are placed in the south east

corner of each cell. Then the new table is

S

S

S

b

1

2

3

j

D1 D2 D3 D4 ai

3

0

2

0

1

5

1

1
2

0

2

4

0

10 25 30 35

30

20

50
–5

–4

25 25

– q + q

–q
10

10

20q
�

–7

–1

v1 = –2 v3 = –1 v4 = 1v2 = 1

u1 = 1

u

u

2

3

= 2

= –1

101

During computation, it is not necessary to write u,

v equations and solve themexplicitly. Instead, choos-

ing u1 = 1, compute v3, v4 from the basic variables

x13, x14 in the first row. Now using v4, u3 is obtained

from the basic variable x34. Similarly u2 is obtained

using v3 from the basic variable x23. Now using u2

we get v1 and finally using u3 we get v2.

Incoming: Amongst the nonbasic variables, the

entering variable is the one with the most positive

value (in the south east corner of the cell). Thus x21

will be the entering variable.

Outgoing: The leaving (basic) variable is deter-

mined by constructing a closed θ -loop which starts

and ends at the entering variable x21. In this modified

distribution all variables should be nonnegative and

supply and demand satisfied. Then

x14 = 10− θ ≥ 0

x22 = 25− θ ≥ 0

The maximum value of θ is 10 (which keeps both

x14, x22 nonnegative i.e., x14 = 0, x22 = 15 > 0).

Thus the new table is

S

S

S

b

1

2

3

j

D1 D2 D3 D4 ai

3

0

2

0

1

5

1

2

0

2

4

0

10 25 30 35

30

20

50
–4

–4

15 35

010 10

10 20

–6

–2

v1 = –2 v3 = –1 v4 = 0v2 = 0

u1 = 1

u

u

2

3

= 2

= 0

Since for all non basic variables x11, x14, x22, x24,

x31, x33 the values (in the southeast) of ui + vj − cij
are all negative, the current table is the optimal. The

optimal solution with least cost is (10× 1) +(20×

0)+(10× 0)+(10× 1)+(15× 0)+(35× 0) = 20.

(b) Initial solution by NWC rule: Suppressing

the working details we get the optimal solution in 3

iterations.

3

0

2

0

1

5

1

2

0

2

4

0

15 35

10

15

20
30

20

50

20

15

35

10 25 30 35

155

5

Associated cost

= (10× 3)+ (20× 1)+ (5× 2)+ (15× 1)+

+ (15× 5)+ (35× 0) = 150
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By UV method with u1 = 1 we get

3

0

2

0

0 –7

–8

1

5

1

2

0

2

4

0

15 35

10

155

20

4 – +

–

66

q
�

v1 = 2 v3 = –1 v4 = –6v2 = 0

u1 = 1

u

u

2

3

= 2

= 6

with θ = 5, x22, is outgoing and x12 is the incom-

ing variable.

Then the new table is

3

0

2

0

6 –1

–8

1

5

1

2

0

2

4

0

10 35

10

20

5

20

–2

+ –

– 6

0

q
�

2 5 00

1

– 4

0

–

with cost 120. Now choose θ = 10, x13 will be

incoming and x33 will be outgoing variable resulting

in the following table.

3

0

2

0

–1

–2

1

5

1

2

0

2

4

0

35

10

20

15

10 10

4 0

0

2 – 1 00

1

2

0

– +

–
q
�

– 6

choose θ = 10. Then x11 is outgoing and x21 is

incoming with new following table which is the opti-

mal solution since all xij = ui + vj − cij ≤ 0.

3

0

2

0

–1– 4

–2

1

5

1

2

0

2

4

0

35

10

15

10 20

0

– 4

–2 – 1 00

1

2

0
– 6

10

optimal cost is 20. Optimal solution is x12 = 10,

x13 = 20, x21 = 10, x23 = 10, x32 = 15, x34 = 35.

(c) The number of iterations is less when the

initial solution is obtained by Vogel’s method.

Unbalanced Transportation Problem

Example 1: Three electric power plants P1, P2, P3

with capacities of 25, 40 and 30 kWh supply electric-

ity to three cites C1, C2, C3. The maximum demand

at the three cities are estimated at 30, 35 and 25 kWh.

The price per kWh at the three cites is given in the

following table

P

P

P

1

2

3

600

320

500

700

300

480

400

350

450

c1 c2 c3

City

Plant

During the month of August, there is a 20%

increase in demand at each of the three cities, which

can be met by purchasing electricity from another

plant P4 at a premium rate of Rs 1000/- per kWh.

plant 4 is not linked to city 3. Determine the most

economical plane for the distribution and purchase

of additional energy.Determine the cost of additional

power purchased by each of the three cities.

Solution:

P

P

P

1

2

3

P4

600

320

500

1000

30+6

700

300

480

1000

35+7

400

350

450

M

25+5

25

40

70

13

148

c1 c2 c3

City

Apply Vogel’s method to obtain the initial solution.

For all nonbasic variables ui + vj − cij ≤ 0. The

present table is optimal. The optimal solution

is P1C3 : 25, P2C1 = 23, P2C2 = 17, P3C2 = 25,

P3C3 = 5, P4C1 = 13.

Total cost: Rs 36,710 + Rs 13000 = Rs 49710 only

city C1 purchases an additional 13 kWh power from

plant P4 at an additional cost of Rs 13,000/-.
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P

P

P

1

2

3

P4

25

40

30

13

c1 c2 c3

600

500

320

1000

700

480

300

1000

400

450

350

M

36 42 30
523

13

25

25

23 17

5

17

Row penalties

200

20

30

M

100

20

20

M

�

�

� �

Column
penalties

180

180

180

180

50

P

P

P

1

2

3

P4

25

40

30

13

c1 c2 c3

600

500

320

1000

700

480

300

1000

400

450

350

M

36 42 30

13

25

25

23 17

50

–20 – ve

–151

– 80

u1 = 0

u

u

u

2

3

4

= –129

= 51

= 551

v1 = 449 v2 = 429 v3 = 399

– 271

Transhipment Problem

Example 1: The unit shipping costs through the

routes from nodes 1 and 2 to nodes 5 and 6 via nodes

3 and 4 are given in the following network. Solve the

transhipment model to find how the shipments are

made from the sources to destinations.

1

2

3 5

4 6

100

200

1 6

5

8

4

3

2

31

150

150

Solution: The entire supply of 300 units is tran-

shipped from nodes P1 and P2 through T3 and T4

ultimately to destination nodesD5 andD6. Here P1,

P2 are pure supply nodes; T3, T4,D5 are tranship-

ment nodes; D6 is pure demand node. The tranship-

mentmodel gets converted to a regular transportation

problemwith 5 sources P1, P2, T3, T4,D5 and 4 des-

tinations T3, T4,D5 and D6. The buffer amount B =

total supply ( or demand) = 100 + 200 = (or 150 +

150) = 300 units. A high penalty costM is associated

with cell cij when there is no route from ith origin to

the j th destination. Zero cost is associated with cells

(i, i) which do not transfer to itself. The initial solu-

tion is obtained byVogel’smethod. Takingu1 = 0 and

M = 99 and applying method of multipliers we have

P

P

T

T

D

1

2

3

4

5

99

– 1

4

– 4

1 99

–2

99

1

23 99

99

– 92

1

– 92

0

– 90

6

8

90

0

–

3

– 2

5

92

199

– 196

99

– 195

0

150150

– q+q
00

q

300

300

200

100
100

200

300

300

300

u1 = 0

u

u

u

u

2

3

4

5

= 2

= –91

= 0

= 97

T3 T4 D5 D6

v1 = 1 v2 = 0 v3 = 97 v4 = 98

�

300 300 450 150

q

value of objective function is Rs 2650. Not all cij ≤

0. Note that c43 = 92 is most positive so the variable

x43 will enter into the basis. To determine the variable

leaving the basis, construct θ -loop from cells (4, 3)

to (2, 3) to (2, 2) to (4, 2). Choose θ = 0 to maintain

feasibility. Adjusting θ = 0, the leaving variable is

x23. Thus the new tableau is

p

p

t

t

d

1

2

3

4

5

99

–93

4

– 4

1 99

–94

99

– 91

23 99

–92

99

– 92

1

0

0

2

6

8

– 2

03

– 2

5

199

– 104

99

– 103

0

150150

+ q– q
0

0

q
300

300

200

100
100

200

300

300

300

u1 = 0

2

1

0

– 5

t3 t4 d5 d6

v1 = 1 0 5 6

�

+ q– q

– q

300 300 150 150

value of objective function is Rs 2650. Not all

cij ≤ 0. Note that c31 = 2 is most positive. So x31

is the entering variable. To determine the leaving
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variable construct a θ -loop from cells (3, 1) to (2, 1)

to (2, 2), to (4, 2) to (4, 3) to (3, 3) to (3, 1). Choose

maximum value of θ = 200. Then x21 will be the

leaving variable. Adjusting θ = 200, the new tableau

is given below.

p

p

t

t

d

1

2

3

4

5

99

–91

4

– 2

1 99

–92

99

– 91

23

– 2

99

–92

99

– 92

1

0

0 6

8

– 2

03

– 4

5

199

– 104

99

– 105

0

150150

100

200100

200

200

100 100

200

300

300

300

0

0

– 1

– 2

– 7

t3 t4 d5 d6

1 2 7 8

300 300 450 150

Observe that all cij ≤ 0. Therefore the current

tableau is optimal. The basic feasible optimal

solution is x11=100, x22 = 200, x31 = 200, x33 =

100, x42 = 100, x43 = 200, x53 = 150, x54 = 150.

The value of the objective function is

(100× 1)+ (200× 2)+ (200× 0)+ (100× 6)+

(100× 0)+ (200× 5)+ (150× 0)+ (150× 1) =

2250

Maximization:

Example 1: Solve the following transportation

problem to maximize the profit.

D1 D2 D3

5

2

3

1

4

6

8

0

7

12

14

4

S1

S

S

2

3

9 10 11

Solution: To transform this problem to a minimiza-

tion, subtract all the cost entries in the matrix from

the largest cost entry 8. Then the relative loss matrix

is

�

3

6

5

7

4

2

0

8

1

12

14

4

3

2

1

9

2

10

2

11

1

Applying vogel’s method we get max penalty 3. So

allocate to (1, 3).

�

3

6

5

7

4

2

0

8

1

12

14

4

4

2

3

9

2

10

2

11

11 1

Allocate to (1, 1) since 4 is the largest penalty

�

3

6

5

7

4

2

0

8

1

12

14

4

4

2

3

9

2

10

2

11

11 1

Allocate to (3, 2) since 3 is the largest penalty.

�

3

6

5

7

4

2

0

8

1

1

14

4

2

3

9
8

10

2

11

111

1

3 3

6 6

5 5

7 7

4 4

2 2

0 0

8 8

1 1

14

8 6

111

4

8 6

4

1

Finally

11

The maximum profit (wrt the original cost

matrix) is (1× 5)+ (11× 8)+ (8× 2)+ (6× 4)+

(4× 6) = 157
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Degeneracy

Example 1: Solve the following TP using NWCR

0

2

1

4

3

2

2

4

0

8

5

6

S1

S

S

2

3

7 6 6

D1 D2 D3

Solution: By NWC rule

0

2

1

4

3

2

2

4

0

8

5

6

S1

S

S

2

3

7 6 6

D1 D2 D3

7 1

5

6

This is a degenerate solution since it contains only 4

basic variables (instead of 3 + 3 - 1 = 5 basic vari-

ables). To get rid of degeneracy, introduce any one

non-basic variable say in cell (3, 2) at ’ε’ level where

ε is a small quantity. Thus

0

2

– 3 – 3

– 3

1

4

3

2

2

4

0

S1

S

S

2

3

D1 D2 D3

7 1

5

e 6

– 1 3 1

0
u1 = 1

0

– 1

since all cij ≤ 0 current solution is optimal. Now

letting ε→ 0 we get the solution as x11 = 7, x12 =

1, x22 = 5, x32 = 0, x33 = 6 with OF = 19+ 2 · ε =

19 as ε→ 0

38.9 TRANSPORTATION PROBLEM

EXERCISE

1. Obtain the starting solution (and the correspond-

ing cost i.e. value of objective function: OF)

of the following transportation problems by (a)

Northwest corner rule (b) Rowminimum (c) Col-

umn minimum (d) Least cost method (e) Vogel’s

method.

1 5

0 2

3 3

2 1

4 4

1 6

6 8

2 0

5 7

7

12

11

12

14

4

10 910 1010 11

(i) (ii)

10

4

13

14

3

20

15

9

7

12

5

7

12

1

5

7

9

8

0

19

(iii)

60 60 20 10

10

20

30

40

50

Ans. (i) (a) x11 = 7, x21 = 3, x22 = 9, x32 = 1, x33 =

10, OF: 94

(i) (b) x11 = 7, x21 = 3, x23 = 9, x32 =

10, x31 = 1, OF: 40

(i) (c) x13 = 7, x21 = 10, x23 = 2, x32 =

10, x33 = 1, OF: 61

(i) (d) x13 = 7, x21 = 10, x23 = 2, x32 =

10, x33 = 1, OF: 61

(i) (e) x11 = 7, x21 = 2, x23 = 10, x31 =

1, x32 = 10, OF: 40

(ii) (a) x11 = 9, x12 = 3, x22 = 7, x23 =

7, x33 = 4, OF: 104

(ii) (b) x11 = 2, x12 = 10, x21 = 3, x23 =

11, x31 = 4, OF: 38

(ii) (c) x12 = 10, x13 = 2, x21 = 9, x23 =

5, x33 = 4, OF: 72

(ii) (d) x11 = 2, x12 = 10, x21 = 3, x23 =

11, x33 = 4, OF: 38

(ii) (e) x11 = 2, x12 = 10, x21 = 3, x23 =

11, x33 = 4, OF: 38

(iii) (a) x11 = 10, x21 = 20, x31 = 30, x42 =

40, x52 = 20, x53 = 20, x54 = 10, OF: 1290

(iii) (b) x13 = 10, x21 = 10, x24 = 10, x31 =

30, x42 = 30, x43 = 10, x51 = 30, x52 = 20, OF:

890

(iii) (c) x13 = 10, x21 = 20, x31 = 10, x33 =

10, x34 = 10, x42 = 40, x51 = 50, OF: 860
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(iii) (d) x12 = 10, x22 = 20, x31 = 10, x32 =

20, x42 = 10, x43 = 20, x44 = 10, x51 = 50, OF:

960

(iii) (e) x11 = 10, x22 = 20, x31 = 30, x42 =

10, x43 = 20, x44 = 10, x51 = 20, x52 = 30, OF:

910

2. Solve the following TP by method of multipliers

method obtaining the starting solution by north

west corner rule.

(i) 3

0

2

3

0

0

2

5

4

0

4

1

1

1

0

3

1

1

6

0

30 60 50 40 20

40

70

60

30

Ans. x21 = 40, x21 = 10, x22 = 20, x24 = 40

x31 = 20, x33 = 40, x43 = 10, x45 = 20 OF:

70

(ii) 1

3

4

2

3

2

1 5

2 4

5 6

4 2

1 3

9 2

20 40 30 10 50 25

30

50

75

20
3 1 7 43 6

Ans. x11 = 20, x13 = 10, x23 = 20, x24 = 10, x25 =

20

x32 = 40, x35 = 10, x36 = 25, x45 = 20OF:

430

3. Solve the above problem 2 (ii) by obtaining the

initial solution by (a) row minimum (b) col-

umn minimum (c) matrix minimum (d) Vogel’s

method (e) compare the number of iterations

required in each of these methods including the

north west corner rule.

Ans. Optimal solution and value of OF is same as in 2

(ii) above for (a) (b) (c) (d). The number of itera-

tions required are 7 in NWCR, 1 in rowminimum

2 in column minimum, 1 in matrix minimum, 1

in Vogel’s method.

4. Solve the TP by UV-method obtaining initial

solution by

(a) NWC rule

Vogel’s method (c) compare the two meth-

ods.

10

12

0

0

7

14

20

9

16

11

20

18

5 15 15 10

15

25

5

Ans. (a) x12 = 5, x14 = 10, x22 = 10, x23 = 15, x31 =

5 OF: 315

(b) same (c) Vogel’s method give solution

closer to optimal. Number of iterations required

in Vogel is one while 3 in NWC rule.

5. Solve the following TP by method of multipli-

ers by obtaining the starting solution by (a) NWC

rule (b) Least-cost method (c) Vogel approxima-

tion method. State the starting solution and the

corresponding value of OF.

10

12

4

2

7

14

20

9

16

11

20

18

5 15 15 15

15

25

10

S1

S

S

2

3

D1 D2 D3 D4

Ans. Starting solution and associated OF (a) x11 =

5, x12 = 10, x22 = 5, x23 = 15,

x24 = 5, x34 = 10, OF: 520

(b) x12 = 15, x14 = 0, x23 = 15, x24 =

10, x31 = 5, x34 = 5, OF: 475

(c) x12 = 15, x14 = 0, x23 = 15, x24 =

10, x31 = 5, x34 = 5, OF: 475

(d) Solution by UV method

x12 = 5, x14 = 10, x22 = 10, x23 =

15, x31 = 5, x34 = 5, OF: 435

6. Solve the TP (use VAM)

21 25

17 14

16 13

18 23

6 10 12 15

11

13

1932 1827 41

D1 D2 D3 D4

S1

S

S

2

3
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Ans. x14 = 11, x21 = 6, x22 = 3, x24 = 4, x32 =

7, x33 = 12 optimal minimum cost: Rs 796

Degeneracy:

7. Solve the following TP.

9

7

6

12

3

5

9 9

7 5

9 3

6 10

7 5

11 11

4 4 6 2 4 2

5

6

2

9
6 8 11 22 10

Ans. x13 = 5, x22 = 4, x26 = 2, x31 = 1, x33 = 1,

x41 = 3, x44 = 2, x45 = 4, x13 =∈

minimum cost = 112 + 76ε = 112 as ε→ 0

Hint: The starting solution obtained by Vogel’s

method is a degenerate since it contains only 8

basic variables (instead of 6+ 4− 1 = 9 basic

variables). Introduce any one of the non basic

variable at ε level where ε is small and let ε→ 0.

Maximization:

8. Solve the following TP to maximize the profit

15 42

80 26

51 33

42 81

23 31 16 30

23

44

3390 6640 60

Ans. x12 = 23, x21 = 6, x22 = 8, x24 = 30,

x31 = 17, x33 = 16, OF = 7005

Hint: Obtain the relative loss matrix by subtract-

ing all the entries of the cost matrix from the

largest entry 90.

Unbalanced TP:

9. Solve the following unbalanced TP.

11 7

21 10

20 8

16 12

30 25 35 40

50

40

708 1812 9

D1 D2 D3 D4

S1

S

S

2

3

Ans. x13 = 25, x14 = 25, x23 = 10, x25 = 30,

x31 = 30, x32 = 25, x34 = 15

minimum cost = 1150

Hint: Total supply = 50 + 40 + 70 = 160

Total demand = 30 + 25 + 35 + 40 = 130

Introduce a dummy destination D5 with

demand (requirement) of 30. Use VAM.

Note: x25 = 30 means, 30 units are left

undespatched from S2. (Since it can not be send

to the dummy destination D5).

10. Solve the unbalanced TP;

5 7

6 6

1

4

75 20 50

10

80

153 52

D1 D2 D3

S1

S

S

2

3

Ans. x12 = 10, x21 = 20, x22 = 10, x23 = 50, x31 =

15 minimum cost: 515

Hint: Introduce fictitious source S4 with supply

of 40. Demand of 40 units is not met at destina-

tion 1.

Transhipment Problem

11. Solve the following transhipment problem

P1

P2

T1

D2

D3

D1

T2

1000

1200

3

4

2

5

8

6

4

9
3

5

800

900

500

Ans. P1T2 = 1000, P2T1 = 1200, T1D1 = 800

T1D2 = 400, T2D2 = 1000, D2D3 = 500

minimum cost = (1000× 4)+ (1200×

2)+ (800× 8)+ (400× 6)+ (100× 4)+

+(500× 3) = 20, 700.
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Hint: The corresponding TP is given below:

3

2

0

M

M

M

4

5

7

M

0

M

M

M

8

0

M

M

M

M

6

5

4

0

M

M

M

M

9

3

P

P

T

T

D

D

1

2

1

2

1

2

T1 T2 D1 D2 D3

1000

1200

B

B

B

B

B B 800+B 900+B 500

Here B = buffer = 1000 + 1200 = 2200 =

(800 + 900 + 500) and M = large penalty.

38.10 THE ASSIGNMENT PROBLEM

The assignment problem (or model) is a special case

of the transportation problem in which to each origin

there will correspond one and only one destination.

This can be described as a person-job assignment or

machine-task assignment model. Suppose there are

n persons who can perform any of the n different

jobs with varying degree of efficiency measured in

terms of cij representing the cost of assigning the i th

person to j th job (i = 1, 2, 3, . . . n, j = 1, 2, . . . n)

Then the objective of the assignment problem is to

minimize the total cost of performing all then jobs by

assigning “the best person for the job” on the one to

one basis of one person to one job. The assignment

problem can be solved as a regular transportation

problem in which the persons represent the sources,

the jobs represent the destinations, the supply amount

at each source and demand amount at each destina-

tion being exactly equal to 1.

Letxij =

 
1 if ith person assigned to j th job

0 if ith person not assigned to j th job

Since the ith person can be assigned to only one

job we have
n 
i=1

xij = 1 for i = 1, 2, . . . n.

Since the j th job can be assigned to only one

person we have
n 
i=1

xij = 1 for j = 1, 2, . . . , n. The

assignment problem consists of determining the inte-

gers xij (either 1 or 0) such that the total cost rep-

resented by the objective function
n 
i=1

n 
j=1

cij xij is

minimized. Thus the assignment problem is an inte-

ger linear programming problem. This combinato-

rial problem has n! number of possible assignments

which can be enumerated for small n. Even for n =

10, (n! = 3,628,800) the enumeration becomes very

time consuming and cumbersome.However the solu-

tion to the assignment problem is obtained by a sim-

ple method known as the “Hungarian method” or

“Floods’ technique”.

Hungarian Method or Flood’s Technique

1. Minimization case:

Step I. Determination of total-opportunity cost

(TOC) matrix:

(a) Subtracting the lowest entry of each columnof the

given payoff (cost) matrix from all the entries of

that corresponding column results in the column-

opportunity cost matrix.

(b) Now subtracting the lowest entry of each row of

the column-opportunity matrix (obtained in step

(a) above) from all the entries of the correspond-

ing row results in the total opportunity cost (TOC)

matrix.

Step II. Check for optimal assignment: Let n be

theminimum number of horizontal and vertical lines

required which cover ALL the zeros in the current

TOC matrix. Let m be the order of the cost (TOC)

matrix.

(a) If n = m, an optimal assignment can be made.

Goto step V

(b) If n < m, revise the TOC matrix. Goto step III.

Step III. Revision of TOC matrix:

(a) Subtract the lowest entry (among the uncovered

cells) of the current TOC matrix from all the

uncovered cells.

(b) Add this lowest entry to only those cells at which

the covering lines of step II cross. This revises

TOC matrix.
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Step IV. Repeat steps II and III initial an optimal

assignment is reached:

Step V. Optimal assignment:

(a) Identify a rowor column (in the final TOCmatrix)

having only one zero cell.

(b) Make assignment to this cell. Cross off both the

row and column in which this zero cell occurs.

(c) Repeat (a) for the remaining rows and columns

and make an assignment until a complete assign-

ment is achieved.

2. Maximization case:

The maximization problem can be converted to a

minimization problem by subtracting all the entries

of the original cost matrix from the largest entry (of

the original cost matrix). The transformed entries

give the “relative costs”.

3. Alternative Optima:

The presence of alternative optimal solutions is indi-

cated by the existance of a row or column in the final

TOC matrix with more than one zero cells.

4. Unbalanced Problem:

When the cost matrix is rectangular, a dummy row

or a dummy column added makes the cost matrix a

square matrix. All the costs cij associated with this

dummy row (or column) are taken as zeros.

5. Problem with Restrictions:

When the assignment problem includes certain

restrictions such that a particular (specified) i th per-

son can not be assigned to a particular j th job then

the associated cost cij is taken as a very big valueM

(generally infinity) so that it is prohibitively expen-

sive to make this undesirable assignment.

WORKED OUT EXAMPLES

Example 1: A national highway project consists

of 5 major jobs for which 5 contractors have submit-

ted tenders. The tender amounts (in lakhs of rupees)

quoted is given in the pay-off matrix below. If each

contractor is to be assigned one job, find the assign-

ment which minimises the total cost of the project.

1

2

3

4

5

120

140

50

75

110

150

80

40

65

90

75

90

40

45

140

90

85

70

70

115

100

170

110

90

100

Cont-
ractor

Jobs

A B C D E

Solution: The column opportunity matrix is

obtained by subtracting the lowest entry in each col-

umn from all the entries in that column

1

2

3

4

5

70

90

0

25

60

110

40

0

25

50

35

50

0

5

100

20

15

0

0

45

10

80

20

0

10

A B C D E

Column-opportunity matrix

The total-opportunity-cost (TOC) matrix is now

obtained by subtracting the lowest entry from each

row from all the entries in that row.

1 60 100 25 10 0

2 75 25 35 0 65

3 0 0 0 0 25

4 25 25 5 0 0

5 50 40 90 35 0

A B C D E

Toc Matrix

Since theminimum number of vertical and horizontal

lines (n) needed to cover all the zeros is less than the

number of row m (or columns) i.e. n = 3 < m = 5,

the current TOCmatrix is to be revised by subtracting

the lowest entry among the uncovered cells from all

the uncovered cells and adding it to crossed cells

(where the vertical and horizontal lines intersect).

Thus the lowest entry 5 will be subtracted from all
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the uncovered cells and added at the crossed cells (3,

4), and (3, 5). Then the revised TOC is

1 55 95 20 10 0

2 70 20 30 0 65

3 0 0 0 5 25

4 20 20 0 0 0

5 45 35 85 35 0

A B C D E

Here the minimum number of lines covering all the

zeros is less than the number of rows i.e. n = 4 <

m = 5. Revise the matrix as above

1 35 75 0 10 0

2 50 0 10 0 65

3 0 0 0 25 45

4 20 20 0 20 20

5 25 15 65 35 0

A B C D E

Here n = 4 < m = 5

1 25 65 0 0 0

2 50 0 20 0 75

3 0 0 10 25 55

4 10 10 0 10 20

5 15 5 65 25 0

A B C D E

Optimal Toc matrix

n = 5 = m = 5

Ist optimal assignment: choose a row (or column)

containing only one zero. Choosing so the first col-

umn, make an assignment. Thus

1 25 65 0 0 0

2 50 0 20 0 75

3 0 0 10 25 55

4 10 10 0 10 20

5 15 5 65 25 0

A B C D E

´

i.e. assignA to 3. Cross off first column and 3rd row.

Second and Third optimal assignment

1 25 65 0 0 0

2 50 0 20 0 75

3 0 0 10 25 55

4 10 10 0 10 20

5 15 5 65 25 0

A B C D E

´

´

Fromamong the remaining non-crossed out rows and

columns, choose a row or columnwith only one zero.

Thus assign B to 2 and D to 1. Cross off the 2 row

and 2 column and 4th column and first row.

4th and 5th optimal assignment:

1 25 65 0 0 0

2 50 0 20 0 75

3 0 0 10 25 55

4 10 10 0 10 20

5 15 5 65 25 0

A B C D E

´

´

i.e. assign C to 4 and E to 5

Thus the optimal assignment is

A3, B2, C4,D1, E5

with minimum cost = 50 + 80 + 45 + 90 + 100 = 365

Example 2: Maximization: The profit of assign-

ing a particular job to a specific machine is given in

the following matrix. Maximize the profit to accom-

plish all the jobs by assigning one machine to one

job. Check by enumeration.

1

2

3

380

210

260

610

380

210

330

415

300

A B CJob

Machine

Solution: To convert into a minimization problem,

subtract all the entries of the matrix from the largest

entry 610. Then

1

2

3

230

400

350

0

230

400

280

195

310

A B C
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Job opportunity column matrix

1 0 0 85

2 170 230 0

3 120 400 115

A B C

TOC matrix

1 0 0 85

2 170 230 0

3 5 285 0

A B C

n = 2 < m = 3

Revised TOC matrix

1 0 0 90

2 165 225 0

3 0 280 0

A B C

n = 3 = m = 3

Optimal assignment: A3, B1, C2

1 0 0 90

2 165 225 0

3 0 280 0

A B C

´

´

´

Maximum profit: 260 + 610 + 415 = 1285

Check by enumeration:

A1, B2, C3 : 380 + 380 + 300 = 1060

A1, B3, C2 : 380 + 210 + 415 = 1005

A2, B3, C1 : 210 + 210 + 330 = 750

A2, B1, C3 : 210 + 610 + 300 = 1120

A3, B1, C2 : 260 + 610 + 415 = 1285 Optimal solu-

tion

A3, B2, C1 : 260 + 380 + 330 = 970

Example 3: Unbalanced problem: The amount of

time (in hours) to perform a job by different men

is given below. Solve the unbalanced problem by

assigning four jobs to three men subject to one job

to one man.

Men

M

M

M

1

2

3

J1

7

5

8

J2

5

6

7

J3

8

7

9

J4

4

4

8

Jobs

Solution: Add a fictitious (dummy) fourth man, to

convert the unbalanced to balanced assignment prob-

lem. The amount of time taken by the fourth man is

taken as zero for each job.

Men

M

M

M

1

2

3

M4

J1

7

5

8

0

J2

5

6

7

0

J3

8

7

9

0

J4

4

4

8

0

Jobs

TOC matrix

3 1 4 0

1 2 3 0

1 0 2 1

0 0 0 0

J J J J

M

M

M

M

1 2 3 4

1

2

3

4

n m= 3 < = 4

Revised TOC Matrix

2 0 3 0

0 1 2 0

1 0 2 2

0 0 0 1

J J J J

M

M

M

M

1 2 3 4

1

2

3

4

= 4 = = 4n m

Optimal assignment

2 0 3 0

0 1 2 0

1 0 2 2

0 0 0 1

M1

J J J J

M

M

M

1 2 3 4

2

3

4

´

´

´

´
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M1J4,M2J1,M3J2,M4J3

Thus the job J3 is not assigned. The minimum

amount of time taken to accomplish all the three jobs

is 4 + 5 + 7 = 16 hours.

Persons

P1

P2

P3

P4

M1

5

7

9

7

M2

5

4

3

2

M3

–

2

5

6

M4

2

3

–

7

Machines

Example 4: Assignment with restrictions: The fol-

lowing matrix consists of cost (in thousands of

rupees) of assigning each of the four jobs to four

different persons. However the first person can not

be assigned to machine 3 and third person can not be

assigned to machine 4.

(a) Find the optimal assignment to minimize the cost

(b) Suppose a 5th machine is available the assign-

ment costs to the four persons as 2, 1, 2, 8, respec-

tively. Find the optimal solution

(c) Is it economical to replace one of the existing

machines by the new (5th) machine

(d) In such case which machine is to be replaced

(unused). (A dash indicates that assignment is not

possible because of the restrictions imposed)

Solution: (a) Since first person can not be assigned

to machine 3 a prohibitive (penalty) cost is imposed,

denoted by∞. Thus the cost matrix is

P1

P2

P3

P4

M1

5

7

9

7

M2

5

4

3

2

M3

¥

2

5

6

M4

2

3

¥

7

Row matrix

P1

P2

P3

P4

M1

3

5

6

5

M2

3

2

0

0

M3

¥

0

2

4

M4

0

1

¥

5

TOC Matrix Revised TOC

0

2

3

2

0

1

2

1

¥

0

2

4

¥

0

2

4

3

2

0

0

4

2

0

0

0

1

5

¥

0

0

4

¥

n = 3 < m = 4 n = 3 < m = 4

Optimal assignment

0 5 0

1 3 0 0

1 0 1

0 0 3 3

M

P1 ¥

1 2 3 4

2

3

4

M M M

P

P

P

¥

´

´

´

´

P1 to M4, P2 to M3, P3 to M2, P4 to M1

minimal cost: 2 + 2 + 3 + 7 = 14

(b) Introducing the 5th machine, the new cost matrix

is

P

P

1

5

P

P

P

2

3

4

M1

3

7

9

7

0

M2

5

4

3

2

0

M3

¥

2

5

6

0

M4

2

3

7

0

¥

M5

2

1

2

8

0

Subtracting the row minimums from each row, we

get

´

´

´

3 3 0 0

6 3 1 2 0

7 1 3 0

5 0 4 5 6

0 0 0 0 0

¥

¥

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

3

5

6

4

0

4

3

1

0

1

¥

0

2

3

0

0

1

4

0

¥

0

0

0

5

1

M1

P1

P

P

P

P

2

3

4

5

M2 M3 M4 M5

n m= 4 < = 5 n m= 5 = 5

optimal matrix

Optimal assignment:

P1 to M4; P2 → M3, P3 → M5, P4 → M2;P5 →

M1 Minimum cost: 2 + 2 + 2 + 2 = 8

(c) With the introduction of 5th machine the cost

has come down from 14 to 8. So it is economical to

introduce 5th machine.
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(d) Since the dummy person P5 is assigned to

machine 1, it means thatM1 is not used and therefore

can be replaced (dispensed with).

38.11 ASSIGNMENT PROBLEM

EXERCISE

1. Solve the following assignment Problem for min-

imum total cost. Check by enumeration.

1

2

3

A

380

210

260

B

610

380

210

C

330

415

300

Job

Machine

Ans. A2, B3, C1: minimal cost: 750

A1B2C3(1060), A1B3C2(1005), A2B1C3(1120),

A2B3C1(750), A3B1C2(1285), A3B2C1(970).

2. Find the optimal solution with minimum cost in

the following assignment problem

O

O

O

1

2

3

20

10

14

27

18

16

30

16

12

Origins D1 D2 D3

Destinations

Ans. O1 to D2, O2 to D1; O3 to D3

Total minimum cost: 49

3. Find the optimal assignment which maximizes

the total cost in the above problem 2.

Ans. O3 toD1,O2 toD2,O1 toD3, maximum cost: 62

Solve the following assignment problem for

minimum cost

4.

P

P

P

1

2

3

15

9

10

10

15

12

9

10

8

Person J1 J2 J3

Jobs

Ans: P1 to J2, P2 to J1, P3 to J3, minimum cost: 27

5.

P

P

P

1

2

3

P4

1

9

4

8

4

7

5

7

6

10

11

8

3

9

7

5

Persons J1 J2 J3 J4

Jobs

Ans. P1 to J1, P2 to J3; P3 to J2, P4 to J4 minimum

cost: 21

6. Assign the five jobs to the five machines so as to

maximize the total return if the following matrix

shows the return in (thousands of) 1 rupees for

assigning the ith machine (i = 1, 2, 3, 4, 5) to the

j th job (j = 1, 2, 3, 4, 5).

Machine 1 2 3 4 5

1 5 11 10 12 4

2 2 4 6 3 5

3 3 12 5 14 6

4 6 14 4 11 7

5 7 9 8 12 5

Job

Ans. M1 J3; M2 J5; M3 J4; M4 J2; M5 J1, Maximum

cost: 50

7. Four men can perform any of the four tasks with

different efficiency measured in terms of time

required to complete each task which is given in

the following table. Assign one task to one man

so as to minimize the total time spent on accom-

plishing the four tasks.

Men

Task

18 26 17 11

13 28 14 26

38 19 18 15

19 26 24 10

M

T

T

T

T

1 2 3 4

1

2

3

4

M M M

Ans. M1 to T2;M2 to T3;M3 to T1;M4 to T4, minimum

total time = 59
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8. Multiple Optima: Solve the following assignment

problem for minimum cost.

20 13 7 5

25 18 13 10

31 23 18 15

45 40 23 21

M

M

M

M

1

2

3

4

Jobs J J J J1 2 3 4

Men

Ans. Four optimal assignments all with the same min-

imum total cost: 76.

(i) M1J1;M2J4;M3J2;M4J3.

(ii) M1J2;M2J1;M3J4;M4J3.

(iii) M1J1;M2J2;M3J4;M4J3.

(iv) M1J4;M2J1;M3J2;M4J3.

9. Unbalanced assignment problem Three work

centers are required tomanufacture, assemble and

to package a product. The handling cost at each

of the four locations in the factory are given in

the following matrix. Determine the location of

work centres that minimizes total handling cost.

Job

Manufacturing 18 15 16 13

Assembly 16 11 – 15

Packaging 9 10 12 8

L L L L

M

M

M

1 2 3 4

1

2

3

Locations

Ans: M1 to L4;M2 to L2;M3 to L1. Location 3 is kept

idle (assigned to dummy job and no job is done).

10.

A B C D E

M

M

M

M

1

2

3

4

62 78 50 101 82

71 84 61 73 59

87 92 111 71 81

48 64 87 77 80

Jobs

M
en

Maximize the profit. Which job should be

declined?

Ans. M1D;M2B;M3C;M4E,M5 A. Since (dummy

man) M5 is assigned to job A, the job A should

be declined. Maximum profit: 101 + 84 + 111 +

80 = 376

11. With Restrictions Suppose five men are to be

assigned to five jobs with assignment costs given

in the following matrix. Find the optimal assign-

ment schedule subject to the restriction that first

person M1 can not be assigned job 3 and third

person M3 can not be assigned to job 4.

Jobs

Men

5 5 – 2 6

7 4 2 3 4

9 3 5 – 3

7 2 6 7 2

6 5 7 9 1

J J J J J

M

M

M

M

M

1 2 3 4 5

1

2

3

4

5

Ans. Minimal cost is 15with three alternative optimum

solutions.

(i) M1J4,M2J3,M3J2,M4J1,M5J5

(ii) M1J4,M2J3,M3J5,M4J2,M5J1

(iii) M1J4,M2J3,M3J2,M4J5,M5J1

12. Determine optimal location of three machines at

four different locations in a shop floor given the

cost estimate per unit of time of material han-

dling is given in the following matrix. Note that

machine 2 can not be placed in location 2.

Machines 2 3 4

M1 12 9 12 9

M2 15 - 0 20

M3 4 8 115 6

L1 L L L

Locations

Ans. M1 to L2 or L4; M2 to L3, M3 to L1

Dummy (fictitious) machine M4 is assigned

to location L4 or L2.

Minimum cost: 9 + 13 + 4 = 26



Statistical Tables

Appendix A

1. Binomial Distribution Function A.2 to A.7

�
Binomial Probability Sums:

r�
x=0

b(x; n, p) =
r�

x=0

�
n

x

�
px(1− p)n−x

�

2. Poisson Distribution Function A.8 to A.11

�
Poisson Probability Sums F (x; λ) =

x�
k=0

e−λ λ
k

k!

�

3. Areas under the Standard Normal Curve from 0 to z A.12

(Normal Tables)

4. tα-Critical Values of the t-Distribution A.13 to A.14

5. χ
2
α
-Critical Values of the Chi-squared Distribution A.15 to A.16

6. Fα-Critical Values of the F-Distribution

Values of F0.05(ν1, ν2): A.17 to A.18

Values of F0.01(ν1, ν2): A.19 to A.20

7. Fisher’s Z-Transformation A.21�
Values of Z = 1

2
ln 1+r

1−r

�

8. Table of exponential function, e−x , x > 0 A.22

9. Values of Incomplete Gamma function Ir (τ ) for use in the computation of

cumulative Gamma distribution function A.23 to A.28

A.1
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1. Binomial Distribution Function

Binomial Probability Sums:
r�

x=0

b(x; n, p) =
r�

x=0

�
n
k

�
px (1− p)n−x

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1 0 0.9000 0.8000 0.7500 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0 0.8100 0.6400 0.5625 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100

1 0.9900 0.9600 0.9375 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0 0.7290 0.5120 0.4219 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010

1 0.9720 0.8960 0.8438 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280

2 0.9990 0.9920 0.9844 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0 0.6561 0.4096 0.3164 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001

1 0.9477 0.8192 0.7383 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037

2 0.9963 0.9728 0.9492 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523

3 0.9999 0.9984 0.9961 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 0 0.5905 0.3277 0.2373 0.1681 0.0778 0.0312 0.0102 0.0024 0.0003 0.0000

1 0.9185 0.7373 0.6328 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005

2 0.9914 0.9421 0.8965 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086

3 0.9995 0.9933 0.9844 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815

4 1.0000 0.9997 0.9990 0.9976 0.9898 0.9688 0.9222 0.8319 0.6723 0.4095

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 0 0.5314 0.2621 0.1780 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000

1 0.8857 0.6554 0.5339 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001

2 0.9841 0.9011 0.8306 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013

3 0.9987 0.9830 0.9624 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0158

4 0.9999 0.9984 0.9954 0.9891 0.9590 0.8906 0.7667 0.5798 0.3447 0.1143

5 1.0000 0.9999 0.9998 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 0 0.4783 0.2097 0.1335 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000

1 0.8503 0.5767 0.4449 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000

2 0.9743 0.8520 0.7564 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002

3 0.9973 0.9667 0.9294 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027

4 0.9998 0.9953 0.9871 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257

5 1.0000 0.9996 0.9987 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497

6 1.0000 0.9999 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217

7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Binomial Probability Sums:
r�

x=0

b(x; n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

8 0 0.4305 0.1678 0.1001 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000

1 0.8131 0.5033 0.3671 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001

2 0.9619 0.7969 0.6785 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000

3 0.9950 0.9437 0.8862 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004

4 0.9996 0.9896 0.9727 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050

5 1.0000 0.9988 0.9958 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381

6 0.9991 0.9996 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869

7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 0 0.3874 0.1342 0.0751 0.0404 0.0101 0.0020 0.0003 0.0000

1 0.7748 0.4362 0.3003 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000

2 0.9470 0.7382 0.6007 0.4628 0.2318 0.0898 0.0250 0.0043 0.0003 0.0000

3 0.9917 0.9144 0.8343 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001

4 0.9991 0.9804 0.9511 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009

5 0.9999 0.9969 0.9900 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083

6 1.0000 0.9997 0.9987 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530

7 1.0000 0.9999 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252

8 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0 0.3487 0.1074 0.0563 0.0282 0.0060 0.0010 0.0001 0.0000

1 0.7361 0.3758 0.2440 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000

2 0.9298 0.6778 0.5256 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001

3 0.9872 0.8791 0.7759 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000

4 0.9984 0.9672 0.9219 0.8497 0.6331 0.3770 0.1662 0.0474 0.0064 0.0002

5 0.9999 0.9936 0.9803 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016

6 1.0000 0.9991 0.9965 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128

7 0.9999 0.9996 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702

8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639

9 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

11 0 0.3138 0.0859 0.0422 0.0198 0.0036 0.0005 0.0000

1 0.6974 0.3221 0,1971 0.1130 0.0302 0.0059 0.0007 0.0000

2 0.9104 0.6174 0.4552 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000

3 0.9815 0.8369 0.7133 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002

4 0.9972 0.9496 0.8854 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000

5 0.9997 0.9883 0.9657 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003

6 1.0000 0.9980 0.9924 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028

7 0.9998 0.9988 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185

8 1.0000 0.9999 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896

9 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026

10 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862

11 1.0000 1.0000 1.0000 1.0000 1.0000

(Contd.)
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Binomial Probability Sums:
r�

x=0

b(x; n, p) =
r�

x=0

�
n
x

�
px (1− p)n−x

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

12 0 0.2824 0.0687 0.0317 0.0138 0.0022 0.0002 0.0000

1 0.6590 0.2749 0.1584 0.0850 0.0196 0.0032 0.0003 0.0000

2 0.8891 0.5583 0.3907 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000

3 0.9744 0.7946 0.6488 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001

4 0.9957 0.9274 0.8424 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000

5 0.9995 0.9806 0.9456 0.8821 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001

6 0.9999 0.9961 0.9857 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005

7 1.0000 0.9994 0.9972 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043

8 0.9999 0.9996 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256

9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109

10 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410

11 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176

12 1.0000 1.0000 1.0000 1.0000 1.0000

13 0 0.2542 0.0550 0.0238 0.0097 0.0013 0.0001 0.0000

1 0.6213 0.2336 0.1267 0.0637 0.0126 0.0017 0.0001 0.0000

2 0.8661 0.5017 0.3326 0.2025 0.0579 0.0112 0.0013 0.0001

3 0.9658 0.7473 0.5843 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000

4 0.9935 0.9009 0.7940 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002

5 0.9991 0.9700 0.9198 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000

6 0.9999 0.9930 0.9757 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001

7 1.0000 0.9980 0.9944 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009

8 0.9998 0.9990 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065

9 1.0000 0.9999 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342

10 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339

11 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787

12 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458

13 1.0000 1.0000 1.0000 1.0000 1.0000

14 0 0.2288 0.0440 0.0178 0.0068 0.0008 0.0001 0.0000

1 0.5846 0.1979 0.1010 0.0475 0.0081 0.0009 0.0001

2 0.8416 0.4481 0.2811 0.1608 0.0398 0.0065 0.0006 0.0000

3 0.9559 0.6982 0.5213 0.3552 0.1243 0.0287 0.0039 0.0002

4 0.9908 0.8702 0.7415 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000

5 0.9985 0.9561 0.8883 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004

6 0.9998 0.9884 0.9617 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000

7 1.0000 0.9976 0.9897 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002

8 0.9996 0.9978 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015

9 1.0000 0.9997 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092

10 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441

11 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584

12 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154

13 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712

14 1.0000 1.0000 1.0000 1.0000 1.0000
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Binomial Probability Sums:
r�

x=0

b(x; n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

15 0 0.2059 0.0352 0.0134 0.0047 0.0005 0.0000

1 0.5490 0.1671 0.0802 0.0353 0.0052 0.0005 0.0000

2 0.8159 0.3980 0.2361 0.1268 0.0271 0.0037 0.0003 0.0000

3 0.9444 0.6482 0.4613 0.2969 0.0905 0.0176 0.0019 0.0001

4 0.9873 0.8358 0.6865 0.5155 0.2173 0.0592 0.0094 0.0007 0.0000

5 0.9978 0.9389 0.8516 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001

6 0.9997 0.9819 0.9434 0.8689 0.6098 0.3036 0.0951 0.0152 0.0008

7 1.0000 0.9958 0.9827 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000

8 0.9992 0.9958 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003

9 0.9999 0.9992 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0023

10 1.0000 0.9999 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127

11 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556

12 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 0.1841

13 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510

14 1.0000 0.9995 0.9953 0.9648 0.7941

15 1.0000 1.0000 1.0000 1.0000

16 0 0.1853 0.0281 0.0100 0.0033 0.0003 0.0000

1 0.5147 0.1407 0.0635 0.0261 0.0033 0.0003 0.0000

2 0.7892 0.3518 0.1971 0.0994 0.0183 0.0021 0.0001

3 0.9316 0.5981 0.4050 0.2459 0.0651 0.0106 0.0009 0.0000

4 0.9830 0,7982 0.6302 0.4499 0.1666 0.0384 0.0049 0.0003

5 0.9967 0.9183 0.8103 0.6598 0.3288 0.1051 0.0191 0.0016 0.0000

6 0.9995 0.9733 0.9204 0.8247 0.5272 0.2272 0.0583 0.0071 0.0002

7 0.9999 0.9930 0.9729 0.9256 0.7161 0.4018 0.1423 0.0257 0.0015 0.0000

8 1.0000 0.9985 0.9925 0.9743 0.8577 0.5982 0.2839 0.0744 0.0070 0.0001

9 0.9998 0.9984 0.9929 0.9417 0.7728 0.4728 0.1753 0.0267 0.0005

10 1.0000 0.9997 0.9984 0.9809 0.8949 0.6712 0.3402 0.0817 0.0033

11 1.0000 0.9997 0.9951 0.9616 0.8334 0.5501 0.2018 0.0170

12 1.0000 0.9991 0.9894 0.9349 0.7541 0.4019 0.0684

13 0.9999 0.9979 0.9817 0.9006 0.6482 0.2108

14 1.0000 0.9997 0.9967 0.9739 0.8593 0.4853

15 1.0000 0.9997 0.9967 0.9719 0.8147

16 1.0000 1.0000 1.0000 1.0000

(Contd.)
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Binomial Probability Sums:
r�

x=0

b(x; n, p) =
r�

x=0

�
n
x

�
px (1− p)n−x

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000

1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.0000

2 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.0001

3 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.0005 0.0000

4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001

5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 0.0106 0.0007 0.0000

6 0.9992 0.9623 0.8929 0.7752 0.4478 0.1662 0.0348 0.0032 0.0001

7 0.9999 0.9891 0.9598 0.8954 0.6405 0.3145 0.0919 0.0127 0.0005

8 1.0000 0.9974 0.9876 0.9597 0.8011 0.5000 0.1989 0.0403 0.0026 0.0000

9 0.9995 0.9969 0.9873 0.9081 0.6855 0.3595 0.1046 0.0109 0.0001

10 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 0.2248 0.0377 0.0008

11 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047

12 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221

13 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826

14 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382

15 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182

16 1.0000 0.9998 0.9977 0.9775 0.8332

17 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000

1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001

2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000

3 0.9018 0.5010 0.3057 0.1646 0.0328 0,0038 0.0002

4 0.9718 0.7164 0.5787 0.3327 0.0942 0.0154 0.0013 0.0000

5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003

6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000

7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002

8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009

9 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000

10 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002

11 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012

12 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064

13 1.0000 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282

14 0.9998 0.9962 0.9672 0.8354 0.4990 0.0982

15 1.0000 0.9993 0.9918 0.9400 0.7287 0.2662

16 0.9999 0.9987 0.9858 0.9009 0.5497

17 1.0000 0.9999 0.9984 0.9820 0.8499

18 1.0000 1.0000 1.0000 1.0000
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Binomial Probability Sums:
r�

x=0

b(x; n, p)

p

n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90

19 0 0.1351 0.0144 0.0042 0.0011 0.0001

1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000

2 0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000

3 0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001

4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000

5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001

6 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006

7 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000

8 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003

9 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016

10 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0.0000

11 0.9999 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003

12 1.0000 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017

13 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086

14 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352

15 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150

16 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946

17 1.0000 0.9992 0.9896 0.9171 0.5797

18 0.9999 0.9989 0.9856 0.8649

19 1.0000 1.0000 1.0000 1.0000

20 0 0.1216 0.0115 0.0032 0.0008 0.0000

1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000

2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 0.0000

3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0001

4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003

5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000

6 0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003

7 0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000

8 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001

9 1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006

10 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000

11 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001

12 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004

13 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024

14 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113

15 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432

16 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330

17 0.9998 0.9964 0.9645 0.7939 0.3231

18 1.0000 0.9995 0.9924 0.9308 0.6083

19 1.0000 0.9992 0.9885 0.8784

20 1.0000 1.0000 1.0000
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3. Areas under the Standard Normal Curve

from 0 to z

(Normal Tables)

z 0 1 2 3 4 5 6 7 8 9

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0754

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1256 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1916 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2258 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 .2649

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2996 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4654 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4979 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4098 .4998 .4998 .4998

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.7 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.8 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999

3.9 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000
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4. tα-Critical Values of the t-Distribution

α

ν 0.40 0.30 0.20 0.15 0.10 0.05 0.025

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706

2 0.289 0.617 1.061 1.386 1.886 2.920 4.303

3 0.277 0.584 0.978 1.250 1.638 2.353 3.182

4 0.271 0.569 0.941 1.190 1.533 2.132 2.776

5 0.267 0.559 0.920 1.156 1.476 2.015 2.571

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447

7 0.263 0.549 0.896 1.119 1.415 1.895 2.365

8 0.262 0.546 0.889 1.108 1.397 1.860 2.306

9 0.261 0.543 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201

12 0.259 0.539 0.873 1.083 1.356 1.782 2.179

13 0.259 0.537 0.870 1.079 1.350 1.771 2.160

14 0.258 0.537 0.868 1.076 1.345 1.761 2.145

15 0.258 0.536 0.866 1.074 1.341 1.753 2.131

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120

17 0.257 0.534 0.863 1.069 1.333 1.740 2.110

18 0.257 0.534 0.862 1.067 1.330 1.734 2.101

19 0.257 0.533 0.861 1.066 1.328 1.729 2.093

20 0.257 0.533 0.860 1.064 1.325 1.725 2.086

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080

22 0.256 0.532 0.858 1.061 1.321 1.717 2.074

23 0.256 0.532 0.858 1.060 1.319 1.714 2.069

24 0.256 0.531 0.857 1.059 1.318 1.711 2.064

25 0.256 0.531 0.856 1.058 1.316 1.708 2.060

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056

27 0.256 0.531 0.855 1.057 1.314 1.703 2.052

28 0.256 0.530 0.855 1.056 1.313 1.701 2.048

29 0.256 0.530 0.854 1.055 1.311 1.699 2.045

30 0.256 0.530 0.854 1.055 1.310 1.697 2.042

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021

60 0.254 0.527 0.848 1.045 1.296 1.671 2.000

120 0.254 0.526 0.845 1.041 1.289 1.658 1.980

∞ 0.253 0.524 0.842 1.036 1.282 1.645 1.960
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tα-Critical Values of the t-Distribution

α

ν 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005

1 15.895 21.205 31.821 42.434 63.657 127.322 636.590

2 4.849 5.643 6.965 8.073 9.925 14.089 31.598

3 3.482 3.896 4.541 5.047 5.841 7.453 12.924

4 2.999 3.298 3.747 4.088 4.604 5.598 8.610

5 2.757 3.003 3.365 3.634 4.032 4.773 6.869

6 2.612 2.829 3.143 3.372 3.707 4.317 5.959

7 2.517 2.715 2.998 3.203 3.499 4.029 5.408

8 2.449 2.634 2.896 3.085 3.355 3.833 5.041

9 2.398 2.574 2.821 2.998 3.250 3.690 4.781

10 2.359 2.527 2.764 2.932 3.169 3.581 4.587

11 2.328 2.491 2.718 2.879 3.106 3.497 4.437

12 2.303 2.461 2.681 2.836 3.055 3.428 4.318

13 2.282 2.436 2.650 2.801 3.012 3.372 4.221

14 2.264 2.415 2.624 2.771 2.977 3.326 4.140

15 2.249 2.397 2.602 2.746 2.947 3.286 4.073

16 2.235 2.382 2.583 2.724 2.921 3.252 4.015

17 2.224 2.368 2.567 2.706 2.898 3.222 3.965

18 2.214 2.356 2.552 2.689 2.878 3.197 3.922

19 2.205 2.346 2.539 2.674 2.861 3.174 3.883

20 2.197 2.336 2.528 2.661 2.845 3.153 3.849

21 2.189 2.328 2.518 2.649 2.831 3.135 3.819

22 2.183 2.320 2.508 2.639 2.819 3.119 3.792

23 2.177 2.313 2.500 2.629 2.807 3.104 3.768

24 2.172 2.307 2.492 2.620 2.797 3.091 3.745

25 2.167 2.301 2.485 2.612 2.787 3.078 3.725

26 2.162 2.296 2.479 2.605 2.779 3.067 3.707

27 2.158 2.291 2.473 2.598 2.771 3.057 3.690

28 2.154 2.286 2.467 2.592 2.763 3.047 3.674

29 2.150 2.282 2.462 2.586 2.756 3.038 3.659

30 2.147 2.278 2.457 2.581 2.750 3.030 3.646

40 2.125 2.250 2.423 2.542 2.704 2.971 3.551

60 2.099 2.223 2.390 2.504 2.660 2.915 3.460

120 2.076 2.196 2.358 2.468 2.617 2.860 3.373

∞ 2.054 2.170 2.326 2.432 2.576 2.807 3.291
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5. χ
2

α
-Critical Values of the Chi-squared Distribution

α

ν 0.995 0.99 0.98 0.975 0.95 0.90 0.80 0.75 0.75 0.50

1 0.04393 0.03157 0.03628 0.03982 0.00393 0.0158 0.0642 0.102 0.148 0.455

2 0.0100 0.0201 0.0404 0.0506 0.103 0.211 0.446 0.575 0.713 1.386

3 0.0717 0.115 0.185 0.216 0.352 0.584 1.005 1.213 1.424 2.366

4 0.207 0.297 0.429 0.484 0.711 1.064 1.649 1.923 2.195 3.357

5 0.412 0.554 0.752 0.831 1.145 1.610 2.343 2.675 3.000 4.351

6 0.676 0.872 1.134 1.237 1.635 2.204 3.070 3.455 3.828 5.348

7 0.989 1.239 1.564 1.690 2.167 2.833 3.822 4.255 4.671 6.346

8 1.344 1.646 2.032 2.180 2.733 3.490 4.594 5.071 5.527 7.344

9 1.735 2.088 2.532 2.700 3.325 4.168 5.380 5.899 6.393 8.343

10 2.156 2.558 3.059 3.247 3.940 4.865 6.179 6.737 7.267 9.342

11 2.603 3.053 3.609 3.816 4.575 5.578 6.989 7.584 8.148 10.341

12 3.074 3.571 4.178 4.404 5.226 6.304 7.807 8.438 9.034 11.340

13 3.565 4.107 4.765 5.009 5.892 7.042 8.634 9.299 9.926 12.340

14 4.075 4.660 5.368 5.629 6.571 7.790 9.467 10.165 10.821 13.339

15 4.601 5.229 5.985 6.262 7.261 8.547 10.307 11.036 11.721 14.339

16 5.142 5.812 6.614 6.908 7.962 9.312 11.152 11.912 12.624 15.338

17 5.697 6.408 7.255 7.564 8.672 10.085 12.002 12.792 13.531 16.338

18 6.265 7.015 7.906 8.231 9.390 10.865 12.857 13.675 14.440 17.338

19 6.844 7.633 8.567 8.907 10.117 11.651 13.716 14.562 15.352 18.338

20 7.434 8.260 9.237 9.591 10.851 12.443 14.578 15.452 16.266 19.337

21 8.034 8.897 9.915 10.283 11.591 13.240 15.445 16.344 17.182 20.337

22 8.643 9.542 10.600 10.982 12.338 14.041 16.314 17.240 18.101 21.337

23 9.260 10.196 11.293 11.688 13.091 14.848 17.187 18.137 19.021 22.337

24 9.886 10.856 11.992 12.401 13.848 15.659 18.062 19.037 19.943 23.337

25 10.520 11.524 12.697 13.120 14.611 16.473 18.940 19.939 20.867 24.337

26 11.160 12.198 13.409 13.844 15.379 17.292 19.820 20.843 21.792 25.336

27 11.808 12.879 14.125 14.573 16.151 18.114 20.703 21.749 22.719 26.336

28 12.461 13.565 14.847 15.308 16.928 18.939 21.588 22.657 23.647 27.336

29 13.121 14.256 15.574 16.047 17.708 19.768 22.475 23.567 24.577 28.336

30 13.787 14.953 16.306 16.791 18.493 20.599 23.364 24.478 25.508 29.336
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χ
2

α
-Critical Values of the Chi-squared Distribution

α

ν 0.30 0.25 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.001

1 1.074 1.323 1.642 2.706 3.841 5.024 5.412 6.635 7.879 10.827

2 2.408 2.773 3.219 4.605 5.991 7.378 7.824 9.210 10.597 13.815

3 3.665 4.108 4.642 6.251 7.815 9.348 9.837 11.345 12.838 16.268

4 4.878 5.385 5.989 7.779 9.488 11.143 11.668 13.277 14.860 18.465

5 6.064 6.626 7.289 9.236 11.070 12.832 13.388 15.086 16.750 20.517

6 7.231 7.841 8.558 10.645 12.592 14.449 15.033 16.812 18.548 22.457

7 8.383 9.037 9.803 12.017 14.067 16.013 16.622 18.475 20.278 24.322

8 9.524 10.219 11.030 13.362 15.507 17.535 18.168 20.090 21.955 26.125

9 10.656 11.389 12.242 14.684 16.919 19.023 19.679 21.666 23.589 27.877

10 11.781 12.549 13.442 15.987 18.307 20.483 21.161 23.209 25.188 29.588

11 12.899 13.701 14.631 17.275 19.675 21.920 22.618 24.725 26.757 31.264

12 14.011 14.845 15.812 18.549 21.026 23.337 24.054 26.217 28.300 32.909

13 15.119 15.984 16.985 19.812 22.362 24.736 25.472 27.688 29.819 34.528

14 16.222 17.117 18.151 21.064 23.685 26.119 26.873 29.141 31.319 36.123

15 17.322 18.245 19.311 22.307 24.996 27.488 28.259 30.578 32.801 37.697

16 18.418 19.369 20.465 23.542 26.296 28.845 29.633 32.000 34.267 39.252

17 19.511 20.489 21.615 24.769 27.587 30.191 30.995 33.409 35.718 40.790

18 20.601 21.605 22.760 25.989 28.869 31.526 32.346 34.805 37.156 42.312

19 21.689 22.718 23.900 27.204 30.144 32.852 33.687 36.191 38.582 43.820

20 22.775 23.828 25.038 28.412 31.410 34.170 35.020 37.566 39.997 45.315

21 23.858 24.935 26.171 29.615 32.671 35.479 36.343 38.932 41.401 46.797

22 24.939 26.039 27.301 30.813 33.924 36.781 37.659 40.289 42.796 48.268

23 26.018 27.141 28.429 32.007 35.172 38.076 38.968 41.638 44.181 49.728

24 27.096 28.241 29.553 33.196 36.415 39.364 40.270 42.980 45.558 51.179

25 28.172 29.339 30.675 34.382 37.652 40.646 41.566 44.314 46.928 52.620

26 29.246 30.434 31.795 35.563 38.885 41.923 42.856 45.642 48.290 54.052

27 30.319 31.528 32.912 36.741 40,113 43.194 44.140 46.963 49.645 55.476

28 31.391 32.620 34.027 37.916 41,337 44.461 45.419 48.278 50.993 56.893

29 32.461 33.711 35.139 39.087 42.557 45.722 46.693 49.588 52.336 58.302

30 33.530 34.800 36.250 40.256 43.773 46.979 47.962 50.892 53.672 59.703
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6. Critical Values of the F-Distribution

Values of F0.05(ν1, ν2)

ν1

ν2 1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88
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Critical Values of the F-Distribution

Values of F0.05(ν1, ν2)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.75 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Critical Values of the F-Distribution

Values of F0.01(ν1, ν2)

ν1

ν2 1 2 3 4 5 6 7 8 9

1 4052 4999.5 5403 5625 5764 5859 5928 5981 6022

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 3.79 2.66 2.56

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Critical Values of the F-Distribution

Values of F0.01(ν1, ν2)

ν1

ν2 10 12 15 20 24 30 40 60 120 ∞

1 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366

2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13

4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 3.43 3.30 3.15 3.00 2.92 2.S4 2.76 2.67 2.58 2.49

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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7. Fisher’s Z-Transformation

Values of Z = 1
2
ln 1+r

1−r

r 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

0.1 0.100 0.110 0.121 0.131 0.141 0.151 0.161 0.172 0.182 0.192

0.2 0.203 0.213 0.224 0.234 0.245 0.255 0.266 0.277 0.288 0.299

0.3 0.310 0.321 0.332 0.343 0.354 0.365 0.377 0.388 0.400 0.412

0.4 0.424 0.436 0.448 0.460 0.472 0.485 0.497 0.510 0.523 0.536

0.5 0.549 0.563 0.576 0.590 0.604 0.618 0.633 0.648 0.662 0.678

0.6 0.693 0.709 0.725 0.741 0.758 0.775 0.793 0.811 0.829 0.848

0.7 0.867 0.887 0.908 0.929 0.950 0.973 0.996 1.020 1.045 1.071

0.8 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 1.422

0.9 1.472 1.528 1.589 1.658 1.738 1.832 1.946 2.092 2.298 2.647

∗ For negative values of r put a minus sign in front of the corresponding Z ’s, and vice versa.
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Table 9 Values of the Incomplete Gamma Function Ir (τ ) for use in the Computation of the

Cumulative Gamma Distribution Function

r

τ 1 2 3 4 5

0.2 0.18127 0.01752 0.00115 0.00006 0.00000

0.4 0.32968 0.06155 0.00793 0.00078 0.00006

0.6 0.45119 0.12190 0.02312 0.00336 0.00039

0.8 0.55067 0.19121 0.04742 0.00908 0.00141

1.0 0.63212 0.26424 0.08030 0.01899 0.00366

1.2 0.69881 0.33737 0.12051 0.03377 0.00775

1.4 0.75340 0.40817 0.16650 0.05372 0.01425

1.6 0.79810 0.47507 0.21664 0.07881 0.02368

1.8 0.83470 0.53716 0.26938 0.10871 0.03641

2.0 0.86466 0.59399 0.32332 0.14288 0.05265

2.2 0.88920 0.64543 0.37729 0.18065 0.07250

2.4 0.90928 0.69156 0.43029 0.22128 0.09587

2.6 0.92573 0.73262 0.48157 0.26400 0.12258

2.8 0.93919 0.76892 0.53055 0.30806 0.15232

3.0 0.95021 0.80085 0.57681 0.35277 0.18474

3.2 0.95924 0.82880 0.62010 0.39748 0.21939

3.4 0.96663 0.85316 0.66026 0.44164 0.25582

3.6 0.97268 0.87431 0.69725 0.48478 0.29356

3.8 0.97763 0.89262 0.73110 0.52652 0.33216

4.0 0.98168 0.90842 0.76190 0.56653 0.37116

4.2 0.98500 0.92202 0.78976 0.60460 0.41017

4.4 0.98772 0.93370 0.81486 0.64055 0.44882

4.6 0.98995 0.94371 0.83736 0.67429 0.48677

4.8 0.99177 0.95227 0.85746 0.70577 0.52374

5.0 0.99326 0.95957 0.87535 0.73497 0.55951

5.2 0.99448 0.96580 0.89121 0.76193 0.59387

5.4 0.99548 0.97109 0.90524 0.78671 0.62669

5.6 0.99630 0.97559 0.91761 0.80938 0.65785

5.8 0.99697 0.97941 0.92849 0.83004 0.68728

6.0 0.99752 0.98265 0.93803 0.84880 0.71494

Ir (τ ) = FV (τ ) =

� τ

0

vr−1e−v

 (r)
dv, τ ≥ 0
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Table 9 (continued)

r

τ 1 2 3 4 5

6.2 0.99797 0.98539 0.94638 0.86577 0.74082

6.4 0.99834 0.98770 0.95368 0.88108 0.76493

6.6 0.99864 0.98966 0.96003 0.89485 0.78730

6.8 0.99889 0.99131 0.96556 0.90719 0.80797

7.0 0.99909 0.99270 0.97036 0.91823 0.82701

7.2 0.99925 0.99388 0.97453 0.92808 0.84448

7.4 0.99939 0.99487 0.97813 0.93685 0.86047

7.6 0.99950 0.99570 0.98124 0.94463 0.87506

7.8 0.99959 0.99639 0.98393 0.95152 0.88833

8.0 9.99966 0.99698 0.98625 0.95762 0.90037

8.5 0.99980 0.99807 0.99072 0.96989 0.92564

9.0 0.99988 0.99877 0.99377 0.97877 0.94504

9.5 0.99993 0.99921 0.99584 0.98514 0.95974

10.0 0.99995 0.99950 0.99723 0.98966 0.97075

10.5 0.99997 0.99968 0.99817 0.99285 0.97891

11.0 0.99998 0.99980 0.99879 0.99508 0.98490

11.5 0.99999 0.99987 0.99920 0.99664 0.98925

12.0 0.99999 0.99992 0.99948 0.99771 0.99240

12.5 1.00000 0.99995 0.99966 0.99845 0.99465

13.0 1.00000 0.99997 0.99978 0.99895 0.99626

13.5 1.00000 0.99998 0.99986 0.99929 0.99740

14.0 1.00000 0.99999 0.99991 0.99953 0.99819

14.5 1.00000 0.99999 0.99994 0.99968 0.99875

15.0 1.00000 1.00000 0.99996 0.99979 0.99914
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Table 9 (continued)

r

τ 6 7 8 9 10

1.0 0.00059 0.00008 0.00001

1.2 0.00150 0.00025 0.00004

1.4 0.00320 0.00062 0.00011 0.00002

1.6 0.00604 0.00134 0.00026 0.00005 0.00001

1.8 0.01038 0.00257 0.00056 0.00011 0.00002

2.0 0.01656 0.00453 0.00110 0.00024 0.00005

2.2 0.02491 0.00746 0.00198 0.00047 0.00010

2.4 0.03567 0.01159 0.00334 0.00086 0.00020

2.6 0.04904 0.01717 0.00533 0.00149 0.00038

2.8 0.06511 0.02441 0.00813 0.00243 0.00066

3.0 0.08392 0.03351 0.01190 0.00380 0.00110

3.2 0.10541 0.04462 0.01683 0.00571 0.00176

3.4 0.12946 0.05785 0.02307 0.00829 0.00271

3.6 0.15588 0.07327 0.03079 0.01167 0.00402

3.8 0.18444 0.09089 0.04011 0.01598 0.00580

4.0 0.21487 0.11067 0.05113 0.02136 0.00813

4.2 0.24686 0.13254 0.06394 0.02793 0.01113

4.4 0.28009 0.15635 0.07858 0.03580 0.01489

4.6 0.31424 0.18197 0.09505 0.04507 0.01953

4.8 0.34899 0.20920 0.11333 0.05582 0.02514

5.0 0.38404 0.23782 0.13337 0.06809 0.03183

5.2 0.41909 0.26761 0.15508 0.08193 0.03967

5.4 0.45387 0.29833 0.17834 0.09735 0.04875

5.6 0.48814 0.32974 0.20302 0.11432 0.05913

5.8 0.52169 0.36161 0.22897 0.13281 0.07084

6.0 0.55432 0.39370 0.25602 0.15276 0.08392

6.2 0.58589 0.42579 0.28398 0.17409 0.09838

6.4 0.61626 0.45767 0.31268 0.19669 0.11420

6.6 0.64533 0.48916 0.34192 0.22044 0.13136

6.8 0.67302 0.52008 0.37151 0.24523 0.14982
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Table 9 (continued)

r

τ 6 7 8 9 10

7.0 0.69929 0.55029 0.40129 0.27091 0.16950

7.2 0.72410 0.57964 0.43106 0.29733 0.19035

7.4 0.74744 0.60804 0.46067 0.32435 0.21226

7.6 0.76932 0.63538 0.48996 0.35181 0.23515

7.8 0.78975 0.66159 0.51879 0.37956 0.25889

8.0 0.80876 0.68663 0.54704 0.40745 0.28338

8.5 0.85040 0.74382 0.61440 0.47689 0.34703

9.0 0.88431 0.79322 0.67610 0.54435 0.41259

9.5 0.91147 0.83505 0.73134 0.60818 0.47817

10.0 0.93291 0.86986 0.77978 0.66718 0.54207

10.5 0.94962 0.89837 0.82149 0.72059 0.60287

11.0 0.96248 0.92139 0.85681 0.76801 0.65949

11.5 0.97227 0.93973 0.88627 0.80941 0.71121

12.0 0.97966 0.95418 0.91050 0.84497 0.75761

12.5 0.98510 0.96543 0.93017 0.87508 0.79857

13.0 0.98927 0.97411 0.94597 0.90024 0.83419

13.5 0.99227 0.98075 0.95852 0.92100 0.86474

14.0 0.99447 0.98577 0.96838 0.93794 0.89060

14.5 0.99606 0.98955 0.97606 0.95162 0.91224

15.0 0.99721 0.99237 0.98200 0.96255 0.93015

15.5 0.99803 0.99446 0.98654 0.97121 0.94481

16.0 0.99862 0.99599 0.99000 0.97801 0.95670

16.5 0.99903 0.99712 0.99261 0.98331 0.96626

17.0 0.99933 0.99794 0.99457 0.98741 0.97388
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Table 9 (continued)

r

τ 11 12 13 14 15

4.0 0.00284 0.00091 0.00027 0.00008 0.00002

4.5 0.00667 0.00240 0.00081 0.00025 0.00007

5.0 0.01370 0.00545 0.00202 0.00070 0.00023

5.5 0.02525 0.01099 0.00445 0.00169 0.00060

6.0 0.04262 0.02009 0.00883 0.00363 0.00140

6.5 0.06684 0.03388 0.01603 0.00710 0.00296

7.0 0.09852 0.05335 0.02700 0.01281 0.00572

7.5 0.13776 0.07924 0.04267 0.02156 0.01026

8.0 0.18411 0.11192 0.06380 0.03418 0.01726

8.5 0.23664 0.15134 0.09092 0.05141 0.02743

9.0 0.29401 0.19699 0.12423 0.07385 0.04147

9.2 0.31797 0.21682 0.13926 0.08438 0.05999

9.4 0.34236 0.23743 0.15524 0.09581 0.05590

9.6 0.36705 0.25876 0.17212 0.10815 0.06428

9.8 0.39195 0.28072 0.18988 0.12139 0.07346

10.0 0.41696 0.30322 0.20844 0.13554 0.08346

10.2 0.44197 0.32618 0.22777 0.15055 0.09429

10.4 0.46687 0.34951 0.24779 0.16641 0.10596

10.6 0.49159 0.37310 0.26843 0.18309 0.11847

10.8 0.51603 0.39687 0.28963 0.20054 0.11318

11.0 0.54011 0.42073 0.31130 0.21871 0.14596

11.2 0.56376 0.44459 0.33337 0.23756 0.16090

11.4 0.58690 0.46837 0.35576 0.25702 0.17661

11.6 0.60949 0.49198 0.37839 0.27703 0.19305

11.8 0.63146 0.51535 0.40117 0.29754 0.21019

12.0 0.65277 0.53840 0.42403 0.31846 0.22798

12.2 0.67338 0.56108 0.44690 0.33974 0.24637

12.4 0.69327 0.58331 0.46968 0.36130 0.26531

12.6 0.71239 0.60504 0.49232 0.38307 0.28474

12.8 0.73075 0.62623 0.51475 0.40498 0.30462
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Table 9 (continued)

r

τ 11 12 13 14 15

13.0 0.74832 0.64684 0.53690 0.42696 0.32487

13.2 0.76510 0.66681 0.55870 0.44893 0.34543

13.4 0.78108 0.68614 0.58012 0.47084 0.36625

13.6 0.79628 0.70478 0.60110 0.49262 0.38725

13.8 0.81068 0.72273 0.62158 0.51421 0.40838

14.0 0.82432 0.73996 0.64154 0.53555 0.42956

14.2 0.83720 0.75647 0.66094 0.55659 0.45075

14.4 0.84934 0.77225 0.67975 0.57728 0.47188

14.6 0.86076 0.78731 0.69793 0.59756 0.49289

14.8 0.87149 0.80164 0.71549 0.61741 0.51373

15.0 0.88154 0.81525 0.73239 0.63678 0.53435

15.5 0.90388 0.84622 0.77173 0.68292 0.58459

16.0 0.92260 0.87301 0.80688 0.72549 0.63247

16.5 0.93813 0.89593 0.83790 0.76426 0.67746

17.0 0.95088 0.91533 0.86498 0.79913 0.71917

17.5 0.96126 0.93160 0.88835 0.83013 0.75736

18.0 0.96963 0.94511 0.90833 0.85740 0.79192

18.5 0.97635 0.95624 0.92525 0.88114 0.82286

19.0 0.98168 0.96533 0.93944 0.90160 0.85025

19.5 0.98589 0.97269 0.95125 0.91908 0.87427

20.0 0.98919 0.97861 0.96099 0.93387 0.89514

20.5 0.99176 0.98335 0.96897 0.94630 0.91310

21.0 0.99375 0.98710 0.97545 0.95664 0.92843

21.5 0.99528 0.99005 0.98069 0.96520 0.94141

22.0 0.99645 0.99237 0.98488 0.97222 0.95231

22.5 0.99735 0.99418 0.98823 0.97794 0.96140

23.0 0.99802 0.99557 0.99088 0.98275 0.96893

23.5 0.99853 0.99665 0.99297 0.98630 0.97512

24.0 0.99892 0.99748 0.99460 0.98928 0.98018

24.5 0.99920 0.99811 0.99587 0.99166 0.98428
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Appendix B

1. Exponential function ex :

e = 2.71828 18284

exyy = ex+y, ex/ey = ex−y, (ex )y = exy

2(a) Natural logarithm:

ln x is the inverse of ex and has base e and

eln x = x, e− ln x = eln(1/x) = 1/x.
ln(xy) = ln x + ln y,

ln(x/y) = ln x − ln y,

ln(xa) = a ln x
(b) Logarithm of base ten log10x or simply logx

(known as common loarithm)

log x is the inverse of 10x , and

10log x = x, 10− log x = 1/x.

log x =M ln x, M = log e = 0.43429

ln x = 1

M
log x,

1

M
= 2.30258

3(a) Sine and cosine functions:

sin x is odd, sin(−x) = − sin x

cos x is even, cos(−x) = cos x

Note: Angles are measured in radians in calculus,

so that sin x and cos x have period 2π .

sin2 x + cos2 x = 1

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

sin 2x = 2 sin x cos x = 2 tan x/(1 + tan2 x),

cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x =

= 2 cos2 x − 1 = 1 − tan2 x

1 + tan2 x

Natural logarithm ln x

sin x

cos x

B.1



B.2 BASIC RESULTS

sin x = cos
 
x − π

2

 
= cos

 π
2

− x
 

cos x = sin
 
x + π

2

 
= sin

 π
2

− x
 

sin(π − x) = sin x, cos(π − x) = − cos x

cos2 x = 1

2
(1 + cos 2x), sin2 x = 1

2
(1 − cos 2x)

sin x sin y = 1

2
[− cos(x + y) + cos(x − y)]

cos x cos y = 1

2
[cos(x + y) + cos(x − y)]

sin x cos y = 1

2
[sin(x + y) + sin(x − y)]

cos x sin y = 1

2
[sin(x + y) − sin(x − y)]

sin u+ sin v = 2 sin
u+ v
2

cos
u− v
2

sin u− sin v = 2 cos
u+ v
2

sin
u− v
2

cos u+ cos v = 2 cos
u+ v
2

cos
u− v
2

cos v − cos u= 2 sin
u+ v
2

sin
u− v
2

A cos x + B sin x =
 
A2 + B2 cos(x ± δ),

tan δ = sin δ

cos δ
= ∓B

A

A cos x + B sin x =
 
A2 + B2 sin(x ± δ),

tan δ = sin δ

cos δ
= ∓A

B

(b) Tangent, cotangent, secant, cosecant:

tan x = sin x

cos x
, cot x = cos x

sin x
,

sec x = 1

cos x
, csc x = 1

sin x

tan(x ± y) = tan x ± tan y

1 ∓ tan x tan y
,

tan 2x = 2 tan x

1 − tan2 x

Any t-ratio of (n · 90◦ ± θ )
= ± same ratio of θ when n is even.

= ± co-ratio of θ,when n is odd.

The sign + or − is to be decided from the quadrant

in which (n · 90◦ ± θ ) lies.

tan x

cot x

Examples:

sin 570◦ = sin(6 × 90◦ + 30◦) = − sin 30◦ = −1

2
;

tan 315◦ = tan(3 × 90◦ + 45◦) = − cot 45◦ = −1

In any  ABC, a/ sinA = b/ sinB = c/ sinC
and cosC = a2+b2−c2

2ab
.

4. Hyperbolic functions:

sinh x = 1
2
(ex − e−x ), cosh x = 1

2
(ex + e−x )

tanh x = sinh x
cosh x

, coth x = cosh x
sinh x

cosh x + sinh x = ex, cosh x − sinh x = e−x

cosh2 x − sinh2 x = 1

sinh2 x = 1
2
(cosh 2x − 1), cosh2 x = 1

2
(cosh 2x + 1)

 
sinh(x ± y) = sinh x cosh y ± cosh x sinh y

cosh(x ± y) = cosh x cosh y ± sinh x sinh y

tanh(x ± y) = tanh x ± tanh y

1 ± tanh x tanh y
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5. Differentiation:

d
dx

(uv) = u dv
dx

+ v du
dx

d
dx

 
u
v

 = v du/dx−u dv/dx
v2

du
dx

= du
dy

· dy
dx

(Chain Rule) d
dx

(ax + b)n = n(ax + b)n−1 · a
d
dx

(ex ) = ex d
dx

(ax ) = ax loge a
d
dx

(loge x) = 1/x d
dx

(loga x) = 1
x log a

d
dx

(sin x) = cos x d
dx

(cos x) = − sin x

d
dx

(tan x) = sec2 x d
dx

(cot x) = −cosec2 x

d
dx

(sec x) = sec x tan x d
dx

(cosec x) = −cosec x cot x

d
dx

(sin−1 x) = 1√
(1−x2)

d
dx

(cos−1 x) = − 1√
(1−x2)

d
dx

(tan−1 x) = 1

1+x2
d
dx

(cot−1 x) = −1

1+x2
d
dx

(sec−1 x) = 1

x
√

(x2−1)

d
dx

(cosec−1 x) = −1

x
√

(x2−1)
d
dx

(sinh x) = cosh x d
dx

(cosh x) = sinh x

Dn(emx ) = mnemx Dn(amx ) = mn(log a)n · amx

Dn(ax+b)n=m(m−1) (m−2) . . . (m−n+1)(ax+b)m−n

Dn log(ax + b) = (−1)n−1(n− 1)!an/(ax + b)n

Dn sin(ax + b) = an sin(ax + b + nπ/2)
Dn cos(ax + b) = an cos(ax + b + nπ/2)

Dn
 
eax sin(bx + c) = (a2 + b2)n/2 eax

sin(bx + c + n tan−1 b/a)

Dn
 
eax cos(bx + c) = (a2 + b2)n/2 eax

cos(bx + c + n tan−1 b/a)

Dn(uv) = un + nC1un−1v + nC2un−2v2 +
· · · + nCrun−rvr + · · · + nCnvn

6. Integration:

 
xn dx = xn+1

n+1
(n  = −1)

 
1
x
dx = loge x 

ex dx = ex  
axdx = ax/ loge a 

sin x dx = − cos x
 
cos x dx = sin x 

tan x dx = − log cos x
 
cot x dx = log sin x 

sec x dx= log(sec x+ tan x)
 
cosec x dx= log(cosec x− cot x) 

sec2 x dx = tan x
 
cosec2x dx = − cot x 

sinh x dx = cosh x
 
cosh x dx = sinh x 

dx

a2+x2 = 1
a
tan−1 x

a

 
dx√

(a2−x2)
= sin−1 x

a 
dx

a2−x2 = 1
2a

log a+x
a−x

 
dx√

(a2+x2)
= sinh−1 x

a 
dx

x2−a2 = 1
2a

log x−a
x+a

 
dx√

(x2−a2)
= cosh−1 x

a

  
(a2 − x2) dx = x

 
(a2 − x2)
2

+ a2

2
sin−1 x

a  
(a2 + x2) dx = x

 
(a2 + x2)
2

+ a2

2
sinh−1 x

a  
(x2 − a2) dx = x

 
(x2 − a2)
2

− a2

2
cosh−1 x

a 
eax sin bx dx = eax

a2 + b2 (a sin bx − b cos bx)
 ∞

0

e−ax sin bxdx = b

a2 + b2 
eax cos bx dx = eax

a2 + b2 (a cos bx + b sin bx)
 ∞

0

e−ax cos bxdx = a

a2 + b2 ∞

−∞
e−x2dx = √

π

 ∞

0

e−ax

x
sin bxdx = tan−1 b

c
, c > 0, b > 0

 ∞

0

sin ax

x
dx = π

2
if a > 0
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 ∞

0

eax − e−ax

e−πx − e−πx dx = 1

2
tan
a

2 ∞

0

eax + e−ax

e−πx − e−πx dx = 1

2
sec
a

2 π/2

0

sinn x dx =
 π/2

0

cosn x dx

= (n− 1)(n− 3)(n− 5) . . .

n(n− 2)(n− 4) . . .

Note: R.H.S. is multiplied by π/2 when n is even π/2

0

sinm x cosn x dx

= (m− 1)(m− 3) . . .× (n− 1)(n− 3) . . .

(m+ n)(m+ n− 2)(m+ n− 4) . . .

Note: R.H.S. is multiplied by π/2 when both m

and n are even

 a
−a f (x) dx =

 
2
 a
0 f (x) dx, if f (x) is an even function.

0 if f (x) is an odd function. 2a
0 f (x) dx =

 
2
 a
0 f (x)dx, if f (2a − x) = f (x)

0 if f (2a − x) = −f (x). 
u dv = uv −

 
v du (Integration by parts) 

u(x)v(x) dx = uv1 − u v2 + u  v3 − u   v4 + · · ·
(Leibnitz General rule of integration by parts)

Note: Superscript  denotes differentiation, i.e.,

u   denotes differentiation of u twice. Subscript num-

ber denotes number of times integration of v, i.e., v3
denotes integration of v thrice.

7. Series:

Exponential series: ex = 1 + x
1!

+ x2

2!
+ x3

3!
+ · · ·

sin, cos, sinh, cosh series:

sin x = x − x3

3!
+ x5

5!
− · · · , cos x = 1 − x2

2!
+ x4

x!
− · · ·

sinh x = x + x3

3!
+ x5

5!
+ · · · , cosh x = 1 + x2

2!
+ x4

4!
+ · · ·

Log series:

log(1 + x) = x − x2

2
+ x3

3
− · · · ,

log(1 − x) = −
 
x + x2

2
+ x3

3
+ · · ·

 

Gregory series:

tan−1 x = x − x3

3
+ x5

5
− · · · ,

tanh−1 x = 1

2
log

1 + x
1 − x = x + x3

3
+ x5

5
+ · · ·

Binomial series:

(1 + x)n = 1 + nx + n(n− 1)

1 · 2 x2 + n(n− 1)(n− 2)

1 · 2 · 3 x3 + · · ·

(1 + x)−1 = 1 − nx + n(n+ 1)

1 · 2 x2 − n(n+ 1)(n+ 2)

1 · 2 · 3 x2 + · · ·

(1 − x)−n = 1 + nx + n(n+ 1)

1 · 2 x2 + n(n+ 1)(n+ 2)

1 · 2 · 3 x3 + · · ·

8(a) Progressions:

i. Numbers a, a + d, a + 2d, . . . are said to

be in Arithmetic progression (A.P.)

Itsnth termTn = a + n− 1d and sumSn =
n
2
(2a + n− 1d)

ii. Numbers a, ar, ar2, . . . are said to be in

Geometric progression (G.P.)

Its nth term Tn = arn−1 and

sum Sn = a(1−rn)
1−r , limn→∞

Sn = a

1 − r
when |r| < 1.

iii. Numbers a1, a2, a3, . . . are said to

be in Harmonic progression (H.P.) if

1/a1, 1/a2, 1/a3, . . . are in A.P.

iv. For any two numbers a and b, their

Arithmetic mean = 1
2
(a + b),

Geometric mean =
√
ab,

Harmonic mean = 2ab
(a+b) .

v. For the first n natural numbers
1, 2, 3, . . . , n, 

n= n(n+ 1)

2
,

 
n2 = n(n+ 1)(2n+ 1)

6
,

 
n3 =

 
n(n+ 1)

2

 2
vi. Stirling’s approximation. When n is large

n! ∼
√
2πn · nne−n.

(b) Permutations and combinations:

nPr = n!

(n− r)! ;

nCr = n!

r!(n− r)! =
nPr

r!
;

nCn−r = nCr , nC0 = 1 = nCn
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9. Matrices:

A−1 = 1

|A|adjA, (AB)−1 = B−1A−1,

(AB)T = BT AT , (AT )−1 = (A−1)T

10. Ordinary differential equations:

First order linear:

y  +p(x)y=q(x), I.F=e
 
p(x)dx

G.S: y · (I.F) =  
(I.F)(Q|x)dx

Bessel equation: x2y   +xy  +(x2 − v2)y=0

Legendre equation: (1−x2)y   −2xy  +λy=0

θ 0 30 45 60 90 180 270 360

(degrees)

θ 0
π

6

π

4

π

3

π

2
π

3π

2
3π

(radians)

sin θ 0 1
2

1√
2

√
3
2

1 0 −1 0

cos θ 1
√
3
2

1√
2

1
2

0 −1 0 1

tan θ 0 1√
3

1
√
3 ∞ 0 −∞ 0

11. (a) Law of exponents

am · an = am+n; (ab)m = ambm, (am)n =
amn, a

m
n = n

√
am

If a  = 0, a
m

an
= am−n, a0 = 1, a−m = 1

am

(b) Difference of like integer power, n > 1:

an − bn = (a − b)(an−1 + an−2b +
an−3b2 + · · · + abn−2 + bn−1)

For example
a3 − b3 = (a − b)(a2 + ab + b2)

a4 − b4 = (a − b)(a3 + a2b + ab2 + b3)

12. (a) Hyperbolic functions:

sinh x = ex−e−x
2

, cosh x = ex+e−x
2

,

tanh x = sinh x
cosh x

(b) Complex number: z = x + iy =
r(cos θ + i sin θ )
Euler’s Theorem: cos θ + i sin θ = cis θ = eiθ

So z = rcis θ = reiθ
De Moivre’s Theorem:

(cos θ + i sin θ )n = cos nθ + i sin nθ
sin x = eix−e−ix

2i
, cos x = eix+e−ix

2

(c) Relations between hyperbolic and

trigonometric functions:

sin ix = i sinh x, cos ix = cosh x,

tan ix = i tanh x,
sinh iz = i sin z, cosh iz = cos z,

tanh iz = i tan z
13. Frequently used limits

1. lim
x→0

sin x
x

= 1, 2. lim
x→0

ax−1
x

= loge a

3. lim
x→a

xn−an
x−a = nan−1, n any rational number

4. (a) lim
n→∞

1
n

= 0 (b) lim
n→∞

1

n2
= 0,

(c) lim
n→∞

1√
n

= 0

5. lim
n→∞

n
1
n = 1, 6. lim

n→∞
log n

n
= 0

7. lim
n→∞

 
1 + x

n

 n = ex for any x
8. lim

n→∞
x1/n = 1 for x > 0

9. (a) lim
n→∞

xn

n!
= 0 for any x > 0



x remains
fixed as
n → ∞

(b) lim
n→∞

xn = 0 for |x | < 1 i.e., −1 < x < 1.
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A

�a priori� probability 26.7, 26.20

Absolute error 3.10

Absolute value of

vector 1.1

complex number 1.20

Absorbing states

Acceleration 15.2

Adams � Bashforth � Moulton (ABM)

method 33.9

Addition of

vectors 1.2

complex numbers 1.20

Additive theorem  26.7

Adjoint of matrix  13.2

Admittance 9.54

Advancing operator D 21.3

Aerodynamic drag 8.2

Algebraic equation 32.1

Algebraic function 1.13, 11.1, 22.14

Algebraic multiplicity 14.2

Alternate Hypothesis (AH) 29.7, 29.8

Amplitude 1.20, 9.42, 9.45

Analogy between mechanical and electrical

system 8.2

Analysis of r ¥ c tables 29.31

Analytic 10.1

Analyticity 22.3

Angle between radius vector and tangent 2.10

Angle 1.3

Angular motion 9.57

Angular velocity 1.5

Angular velocity 8.2

Anharmonic ratio 25.17

ANOVA 28.15

Application of

double integral 7.4

triple integral 7.21

line integral 6.4

Application to IBVP 20.4

Applications of PDE 19.1

Approximating curve 30.1

Approximation of

hypergeometric distribution by BD 27.17

BD by ND 27.39

BD by PD 27.20

Approximations 3.27

Arc length 2.40

Area between two curves 6.14

Area bounded by

parametric curve 6.14

polar curve 6.14

Area by double integral 7.4

Area by Green�s Theorem 16.20

Area by line integral 16.5

Area of curvilinear trapezoid 6.13

Area of plane region 6.13

Area of surface of solid of revolution 6.38

Area under normal curve 27.30, A.12

Argand diagram 1.19

Argument principle 24.17

Argument theorem 24.17

Argument 1.20

Astroid 5.26

Asymptotes 5.2, 5.16

Augmented matrix 13.11

Auxiliary equation (AE) 9.2, 18.20, 21.3

Axioms of probability 26.7

B

Back substitution 13.19

Backward difference operator 32.33

Backward differences 32.9

Bayes� rule 26.20

Bayes� theorem 26.20

Bayesian estimation 29.5

Bayesian interval for m 29.5

Beat 9.58

Bernoulli trial 27.11

Bernoulli�s equation

Index



I.2 Index

Bessel�s DE 11.9

Bessel�s functions 11.9

first kind 11.11

second kind 11.15

Bessels� interpolation formulae 32.19, 32.20

Best fit parameters 30.16

Best fitting curve 30.2

Beta function 11.2

in terms of trigonometric function 11.3

as improper integral 11.3

Bilinear transformation (BT) 25.16

Binomial distribution (BD) 27.11

Binomial distribution function (binomial

sums) A.2 to A.7

Binomial equation 1.22

Binomial series 23.18

Bisection method 32.2

Bob 9.57

Bolzano method 32.3

Boole�s rule of integration 32.51

Both ends insulated 19.6

Both initial displacement and initial

velocity 19.15

Bound vector 1.1

Boundary point 22.1

Boundary value problem 8.1

Bounded region 22.2

Box product 1.5

C

Calculation of residue at

simple pole 24.1

multiple pole 24.1

Canonical form (C.F.) 14.20

Capacitance 8.50, 19.44

Capacitor 8.49, 9.53

Cardano�s method 1.14

Cardinality 26.2

Cardioid 5.23

Cartesian product 26.3

Cauchy DE 9.25, 18.29

Cauchy equation 27.45

Cauchy problem 8.4

Cauchy�s � Goursat theorem 23.6

Cauchy�s integral formula 23.12

Cauchy�s integral theorem 23.6

Cauchy�s MVT 2.21

Cauchy�s principal value 6.45

Cauchy�s remainder 2.24

Cauchy-Euler DE 9.25

Cauchy-Euler method 33.2

Cauchy�Riemann (CR) conditions 22.3

in polar coordinates 22.5

Cayley�Hamilton theorem 14.9

Central difference operator 32.33

Central differences 32.18

Central limit theorem 28.3

Centre of curvature 2.56

Centre of gravity (centroid) 7.4, 7.21

Chain rule for

partial differentiation 3.11, 3.13

Jacobians 3.21

Chance process 31.7

Change of order of integration 7.11

Change of scale property 12.5, 21.14, 27.29

Characteristic equation 9.2, 14.2, 21.3

Characteristic function 10.22

Characteristic polynomial 14.2

Characteristic value 10.22, 14.1

Characteristic vector 14.1

Charge Q 9.53

Charpit�s equations 18.17

Charpit�s method 18.16

Chebyshev equation 11.35

Chebyshev polynomial Tn(x) 11.35, 11.36

Chebyshev series 11.39

Chebyshev�s theorem 27.3

Check sum 13.19

Chi-squared distribution 28.15

Circle of curvature 2.56

Circle 22.1

Circularly symmetric 19.41

Circulation 16.25

Cissoid 5.9

Clairaut�s DE 8.29, 18.12

Classical probability 26.7

Classification of PDE of 2nd order 19.2

Classification of singularities 10.1

Clenshaw 30.12

Closed contour 23.1

Closed curve 23.1

Closed region 22.1



Index I.3

Coefficient of determination 30.26

Coefficient of thermal conductivity 19.3

Collectively exhaustive events 26.6

Collocational polynomial 30.1

Column matrix 13.1

Combination 26.5

with repetition 26.6

Complement 26.3

Complete integral 8.3, 18.7

Complete solution 8.3, 18.7

Completeness 10.18

Complex conjugate number 1.19

Complex conjugate roots 9.3

Complex form of Laplace equation 22.5

Complex function theory 22.1

Complex function 22.1, 22.2

Complex impedance 9.54

Complex integration 23.1

Complex matrices 14.26

Complex number 1.19

Complex plane 1.19

Complex power series 23.16

Complex sequence 23.16

Complex series 23.16

Complimentary function (CF) 9.9, 18.22, 21.3

Complimentary homogeneous linear equation 9.2

Components 1.2

Composite Boole�s rule 32.51

Composite hypothesis 29.8

Compound interest 21.1

Condition for conformality 25.2

Condition for validity of c2 test 29.35

Conditional probability distributions 31.2

Conditional probability 26.8

Conductance 19.44

Conductor 9.53

Confidence interval (CI) for

m : 29.2

a: 29.4

Confidence intervals 30.5

Confidence level a : 29.4

Confidence limits 29.4

Conformal mapping 25.1

Conjugate complex number 1.19

Conjugate harmonic function 22.4, 22.5

Conjugate point 5.4

Connected set 22.1

Conservative field 15.6

Consistent 13.11

Contingency tables 29.31

Continuity 3.2, 22.2

Continuous arc 23.1

Continuous probability distribution 27.2

Contour 23.1

Convergence 10.18

Convolution 12.33, 21.16

Convolution 20.4

Coplanar 1.5

Correlation analysis 30.25

Correlation coefficient r 30.25, 30.26

Correlation for bivariate frequency

distribution 30.34

Correlation 31.2

Counting 26.3

Covariance 31.2

CR equations not sufficient 22.9

Cramer�s rule 13.11

Critical point 25.1

Critical region (CR) 9.8

Critical values of

t-distribution A.13 to A.14

c2 � distribution A.15 to A.16

F distribution A.17 to A.20

c2�critical values A.15 to A.16

Critical values 29.4

Critical values 29.8

Critically damped 9.45

Cross product 1.3

Cross-ratio 25.17

Crout�s reduction for tridiagonal systems

Cubic spline interpolation 32.45

Cubic splines 32.46

Cumulative distribution 27.2

of exponential distribution 27.44

of Weibull distribution 27.51

Current I 9.53, 19.44

Curvature 2.43

in Cartesian form 2.43

in parametric form 2.44

in polar form 2.44

Curve fitting by sum of exponentials 30.11

Curve fitting 30.1



I.4 Index

Curve tracing in

Cartesian form 5.1

polar form 5.15

Curve tracing 5.1

Curvilinear coordinates 15.21

Curvilinear regression 30.8

Cusp 5.4

Cut 25.12

Cycloid 5.24

Cylindrical coordinates 15.21

Cylindrical disc method 6.27

Cylindrical function 11.10

Cylindrical shell method 6.27

D

d�neighbourhood 3.1

Damped forced oscillations 9.46

Damped harmonic motion 9.46

Damped motion 9.45

Damping coefficient 8.2

Damping constant 9.44

Damping factor 9.46

Damping rule 21.14

Damping 9.44

De Moivre 27.28

De Morgan�s laws 26.3

DE reducible to Bessel�s equation 11.19

DE with variable coefficients 9.25

Definite integral 16.1

Definiteness 14.21

Deflection of beam 12.17

Deflection 19.12, 19.37

Degree 1.13

Degree 8.2

Degrees of freedom (DOF) 28.2, 28.15

for c2
 distribution 29.34

Derivation

Chebyshev of  polynomials 11.36

one dimensional heat eqn 19.2

one dimensional wave eqn 19.12

two dimensional heat eqn 19.29

two dimensional wave eqn 19.36

transmission line equations 19.44

Legendre polynomial 11.22

Derivation of

trapezoidal rule 32.40

Simpson�s 
1

3
 rule 32.40

Derivative of analytic functions 23.14

Derivative of arc 2.40

Derivative 15.1

in component form 15.1

Descarte�s rule of sign 32.2

Determinant 21.6

Determination of

largest eigen value 32.73

smallest eigen value 32.74

intermediate eigen value 32.71

Determination of

rank of matrix 13.5

Determination of bilinear transformation 25.17

Deterministic experiment 26.6

Diagonal matrix 13.1

Diagonal 32.52

Diagonalization 14.13

Difference equation 21.1

first order homogeneous 21.2

k th order 21.1

nonhomogenous 21.1

2nd order homogenous 21.3

simultaneous 21.6

Difference of vectors 1.2

complex numbers 1.20

Differences of generalized power 32.9

Differences of polynomial 32.8

Differentiability 22.2

Differential calculus 2.1

Differential equation (DE) 8.2, 21.2

Differentiation of LT 12.10

Differentiation under integral sign 3.29

Diffusivity constant 19.3

Dimpled limacon 5.23

Dirac delta function 12.16

Direct correlation 30.26

Directed line segment 1.1

Direction of tangent 5.16

Directional derivative 15.5

Dirichlet conditions 17.2

Dirichlet problem for circular disk 19.26

Dirichlet problem 19.17

Discrete probability distribution 27.1

Discrete uniform distribution 27.9



Index I.5

Disjoint 26.2

Displacement 19.12

Displacement 8.2, 9.45

Distinct roots 9.2

Distribution 27.2

Distributive 13.1

Divergence 15.10

Divided differences 32.26

Division by power of s 12.27

Division by t 12.11

Division 1.21

Domain 22.1

Dot product 1.3

Double Fourier cosine series 19.32

Double Fourier series 19.31

Double Fourier sine series 19.31

Double integral 7.1

Double point 5.4

Double root 9.2

Double trigonometric series 19.31

Driving force 9.46

E

Echelon form 13.5

Eigen function 10.22, 19.38

Eigen value problem 19.31

Eigen value 10.22, 19.38

Eigen value 14.1

Eigen values of complex matrices 14.27

Eigen vector 14.1

Eigenfunction expansion 10.18

Electric circuit 8.49

Electric potential 8.49

Elementary Bessel�s functions 11.14

Elementary functions 11.1, 22.14

Elementary row transformations 13.4

Elementary theorems 26.7

Elements 26.1

Elliptic integral of 1st kind 9.58

Elliptic PDE 19.2

emf 9.53, 8.49

Empirical probability 26.7

Empty set 26.1

Engineering function 12.13

Entire 22.3

Envelope 2.64

Equality of

sets 26.1

vectors 1.1

complex numbers 1.19

matrices 13.1

Equation reducible to Bessel�s equation 11.12

Equi-dimensional DE 9.25

Equidistant 33.7

Equivalent matrices 13.5

Erlang distribution 27.48

Error estimation 32.30

Error function 27.29, 27.41

Error in polynomial interpolation 32.29

Error integral 27.41

Error 3.10

Essential singularity 23.28

Estimated probability 26.7

Estimation of proportions 29.37

Estimation 29.1

Euler DE 9.25

Euler�s formulae17.2

Euler�s integral of first kind 11.2

Euler�s integral of second kind 11.1

Euler�s method 33.2

Euler�s theorem 3.16

for three variables 3.17

Euler-Cauchy DE 9.25

Euler-Cauchy method 33.2

Evaluation of

double integral 7.2

triple integral 7.20

surface integral 16.12

Evaluation of line integral 23.7

Evaluation of real integrals 24.7

Even function 17.7

Even periodic extension (continuation) 17.15

Event 26.6

Evolute as envelope of normals 2.72

Evolute 2.60

e�x: exponential function values A.22

Exact differential 8.10

Exact equation 8.4

Expectation 27.3

Expected cell frequency 29.31

Expected value 27.3

Explicit solution 8.3



I.6 Index

Exponential curve 30.8

Exponential distribution 27.44

Exponential function 2.2

Exponential function 22.14

Exponential shift 9.19, 18.23, 21.4, 21.10

Expressions of gradient, divergence, curl in

Curvilinear coordinates 15.23

Extent 5.2, 5.16

Extraction of roots 1.27

Extrema of Tn(x) 11.37

Extremum 4.5

F

Factorial 32.9

Failure case 21.4, 21.9

Failure 27.11

F�distribution 28.16

Ferrari�s method 1.17

Fibonacci relation 21.1

Fiducial limits 29.4

Final value theorem 21.15

Finite differences 32.7

Finite Fourier

sine transform 20.12

cosine transform 20.12

Finite population correction factor 27.17

Finite population 28.3

First order first-degree DE 8.4

First order nonlinear DE 8.25

First shifting theorem for

L.T. 12.6

First transmission line equation 19.44

Fisher R.A. 28.12, 28.16

Fisher�s Z-transformation A.21

Fitting of

BD 27.13

PD 27.22

ND 27.31, 27.36

Fixed points 25.16

Flux 16.12

Folium of Descartes 5.8, 5.26

Forced damped mass-spring system 9.44

Forced motion 9.45

Forcing function 8.2

Formation of ODE 8.33

by elimination of

arbitrary constants 18.1

arbitrary functions 18.2

arbitrary F 18.2

Formation PDE 18.1

Forward difference operator 32.33

Forward differences 21.3, 32.7

Four cusped hypocycloid 5.26

Four leaved rose 5.21

Fourier-Bessel series 11.30

Fourier-Legendre series 11.30

Fourier coefficients 17.2

Fourier cosine integral 20.2

Fourier cosine series 17.8

Fourier cosine transform 20.3

Fourier integral in complex form 20.2

Fourier integral theorem 20.1

Fourier integral 20.1, 20.2

at point of discontinuity 20.1

Fourier integral 24.8

Fourier law of heat conduction 19.3

Fourier series at point of discontinuity 17.3

Fourier series in arbitrary interval 17.10

Fourier series 17.1, 17.2

Fourier sine integral 20.2

Fourier sine series 17.8

Fourier sine transform 20.3

Fourier transform of derivatives 20.4

Fourier transform 20.3

Fourier-Euler formulae 17.2

Free damped motion 9.45

Free motion 9.45

Free undamped nonlinear equation 9.57

Free undamped oscillations 9.45

Free undamped vertical motion 8.2

Free vectors 1.1

Frequency 9.43

Frictional force 9.44

Frobenius method 10.7

Frobenius series 10.7

Froberg 30.12

Function of several variables 3.1

of two variables 3.1

Functional dependence 3.25

Fundamental interval 10.17

Fundamental period 17.1

Fundamental region of ez 25.10



Index I.7

Fundamental theorem for homogeneous DE 9.2

Fundamental theorem of algebra 24.20

by Liouville�s theorem 24.20

by Rouche�s theorem 24.21

Fa-critical values  A.17 to A.

G

Gain of oscillation 9.59

Gamma distribution 27.47

Gamma function 11.1

Gauss-Seidel method 32.52, 33.25

Gauss divergence theorem 16.29

in rectangular form 16.30

alternate forms 16.30

Gauss, K.F. 27.28

Gaussian distribution 27.28

Gaussian elimination method 13.18

Gauss-Jordan elimination method 13.19

Gauss-Markov theorem 30.5

General additive rule 26.8

General change of variables in

double integral 7.13

Cartesian to polar 7.17

triple integral 7.24

cylindrical 7.24

spherical 7.24

General integral 8.3

General Leibnitz�s rule 3.30

General linear transformation 25.2

General multiplicative rule 26.9

General powers 22.23

General properties of LT 12.3

General rational power 1.23

General Solution (G.S.) 8.3, 9.9, 18.7, 18.22

General weighted LS approximation 30.17

discrete case 30.17

continuous function 30.17

Generalization of argument theorem 24.17

Generalized (composite or multi segment)

trapezoidal rule 32.41

Simpson�s 
1

3
 rule 32.42

Simpson�s 
3

8
 rule 32.42

Waddle rule 32.42

Generalized Cauchy�s integral formula 23.14

Generalized Euler formula 19.32

Generalized Fourier series 10.18

Generalized MVT 2.22

Generalized power series method 10.7

Generalized power 32.9

Generating function for

Bessel�s function 11.11

Legendre polynomials 11.24

Chebyshev polynomials 11.38

Geometric curve 30.9

Geometric multiplicity 14.2

Geometric series 23.18

Geometrical applications 8.35

Geometrical interpretation of

partial derivative 3.6

Gershgorin theorem 32.73

Goodness of fit test 29.34

Gosset, W.S. 28.12

Gradient 15.5

Gram-Schmidt orthogonalization 10.28, 10.29

for functions 10.30

Green�s

first formula (identity) 16.32

second formula (identity) 16.32

Green�s theorem in plane 16.19

Group of terms  8.3

H

Half range expansions 17.14

Half range Fourier cosine series 17.14

Half range Fourier sine series 17.14

Half wave rectifier 12.19

Halving method 32.2

Harmonic function 22.4

Harmonic oscillation equation 9.45

Harmonic oscillation 9.45

Harmonic 9.42, 19.38

Hazard function 27.52

Heaviside�s unit function 12.13

Helmert 28.15

Helmert, F.R. 27.48

Helmholtz equation 19.37

Hermitian matrix 14.26

Heun�s method 33.2

High frequency line equation 19.45

High transition probability 31.9



I.8 Index

Higher derivatives of sum 2.3

Higher order linear DE with variable

coefficients 9.37

Higher order linear homogeneous DE 9.5

Higher order partial derivatives 3.6

Holomorphic 22.3

Homogeneous B.C�s 19.6

Homogeneous equation 8.4

Homogeneous function 3.16, 8.5

Homogeneous PDE 19.2

with constant coefficients 18.18

Homogeneous system 13.10

Homogeneous 9.2, 18.7

Hooke�s law 9.44

Hyperbolic functions 22.17

Hyperbolic PDE 19.2

Hypergeometric distribution 27.15

I

I.F. by inspection 8.12

I.F. is function of x alone 8.14

I.F. is function of y alone 8.15

Identity matrix 13.1

Identity transformation 25.2

Imaginary part 1.19

Imaginary parts 22.2

Imaginary unit 1.19

Impedance 9.54

Implicit equation 2.44

Implicit solution 8.3

Improper integral

first kind 6.45

second kind 6.46

Incomplete gamma distribution  27.48, A.23 to

A.28

Indefinite integral 16.1

Indefinite integration 23.2

Indefinite 14.21

Indenting contours 24.8

Independence of path 16.5

Independence of path 23.7

Independent events 26.9

Indeterminate forms 2.33

Index 14.20

Indicial equation 10.7

Inductance 8.49, 19.44

Inductive time constant 8.50

Inductor 8.49

Inferences based LS 30.5

Infinite integral 6.45

Infinite population 28.3

Infinite rectangular strip 25.9

Initial (boundary) conditions 8.3, 8.4

Initial (boundary) value problem I (B) VP 8.3,

8.4

Initial displacement 19.13

Initial phase 9.43

Initial point 1.1

Initial value theorem 21.15

Initial velocity  19.13

Inner product 1.3, 10.28, 10.17

Input force 9.46

Insulated edges 19.21

Integral calculus 6.1

Integral curve 8.3

Integral of integer powers 23.7

Integrals of Bessel�s functions 11.15

Integrals of Tn(x) 11.37

Integrating factor (I.F.) 8.12

Integration around a

unit circle 24.7

semi-circle 24.7

Integration of L.T. 12.11

Intercepts 5.3

Interior point 22.1

Intermediate integral 18.31

Interpolating curve 32.45

Interpolation 32.12

Intersection 26.2

Interval estimation 29.4

Invariant eigen values 14.13

Invariant points 25.16

Inverse  

z-transform 21.13

Fourier sine transform 20.3

Fourier cosine transform 20.3

Finite Fourier sine transform 20.13

Finite Fourier cosine transform 20.13

Inverse by cayles-Hamilton theorem 14.10

Inverse correlation 30.26

Inverse interpolation 32.23

Inverse Laplace Transform (ILT) 12.20



Index I.9

of elementary functions 12.20

linearity property 12.21

first shift theorem 12.21

change of scale property 12.21

second shift theorem 12.28

Inverse laws 26.3

Inverse of adjoint 13.2

Inverse of matrix 13.2

Inverse operator 21.3

Inversion 25.3, 25.16

Irregular singular point (ISP) 10.2

Irrotational field 15.21

Isolated point 5.4

Isolated singular point (ISP) 23.27

J

Jacobi�s method 33.25

Jacobian 3.20

James Bernoulli 27.11

Joint probability distribution 31.1

Jordan�s lemma 24.9

Joukvowski�s (Zhukovsky�s)

transformation 25.15

K

Karl Pearson product-moment 30.26

Karl Pearson 27.48

Kirchhoff�s Law 9.53, 8.50, 19.44

Kolmogorov, A.N. 26.7

Kth order difference equation 21.2

L

L�Hospital�s rule 2.33

Lagrange�s DE 8.32, 18.7

Lagrange�s interpolation 29.2

Lagrange�s interpolation  32.22

Lagrange�s method of

undetermined multipliers 4.10

Lagrange�s MVT 2.17

Lagrange�s reduction 14.24

Lagrange�s remainder 2.24

Lame coefficients 15.22

Laplace equation in polar coordinates 19.24

Laplace integrals 20.7

Laplace transform (L.T.) 12.1

of elementary functions 12.1

of piecewise continuous functions 12.2

general properties 12.3

of derivatives 12.7

of integral 12.9

of periodic function 12.18

Laplace 27.28

Laplace�s eq in 2d 19.2, 19.17, 20.15

Laplacian operator 15.16, 22.5

Large sample 28.3

Large sample C.I for m 29.4

Large sample CI for p 29.37

Large sampling 28.1

Largest eigen value 32.73

Latent value 14.1

Launching velocity 8.48

Laurent series 23.21

Law of natural

growth 8.44

decay 8.45

Least Squares (LS) 30.2

Left one tailed test 29.8, 29.9

Legendre linear equation 9.28

Legendre polynomial Pn(x) 11.22

Legendre�s DE 11.21

Legendre�s functions 11.21

Leibman�s method 33.25

Leibnitz�s linear equation 8.19

Leibnitz�s theorem (rule) 2.7, 3.29

Leminiscate of Bernoulli 5.1, 5.20

Lemniscate 5.17

Length of

normal 8.36

tangent 8.36

subtangent   8.36

subnormal 8.36

Length of a plane curve 6.20

in Cartesian form 6.20

in parametic form 6.21

in polar form 6.21

Length of life 27.50

Length 10.28

Level of significance a 29.8

Limacon of Pascal 5.22

Limacon 5.18

Limit 3.1, 22.2

Line integral 16.4, 23.1



I.10 Index

Linear 8.2, 18.7

Linear

regression 30.4

weighted least squares approximation 30.16

multiple regression 30.23

correlation 30.26

Linear DE of 2nd and higher order 9.1

with constant coefficients 9.2

with variable coefficients 9.2

Linear dependence 1.6, 9.1

of Bessel�s functions 11.11

Linear difference equation 21.1

Linear first order equation 8.4

Linear fractional transformation 25.16

Linear Independence 9.1

Linear interpolation 32.3

Linear splines 32.45

Linear transformation 14.1

Linear transformation 25.16

Linear 19.2

Linearity principle 9.2, 19.4

Linearity property 20.3, 12.4. 21.14

Linearized pendulum equation 9.58

Liouville�s theorem 24.21

Ln z 22.23

Logarithm 22.21

Longitudinal vibrations 19.12

Loop 5.16

Loss of oscillation 9.59

Lower triangular matrix 13.1

LS quadratic curve (parabola) 30.2

LS straight line 30.2

M

Maclaurin�s series 2.26, 4.2

Maclaurin�s series 23.18

Magnitude 1.1

Mapping 25.1

w = z2 25.6

logarithmic function 25.10

Marginal distributions 31.2

Markov chain 31.7, 31.8

Markov property 27.45

Markov AA 31.2

Mass 7.4, 7.21

Mass-spring mechanical system 8.2, 9.44

Mathematical model of a mechanical system 8.1

Mathematical modelling 8.1

Mathematical probability 26.7

Matrix 13.1

multiplication 13.1

inversion method 13.11

Maxima and Minima 4.5

Maximum error of estimate E 29.1, 29.37

Mean of

Weibull distribution 27.51

Poisson distribution 27.20

normal distribution 27.30

discrete uniform distribution 27.10

Mean of

binomial distribution 27.11

Hypergeometric distribution 27.16

continuous uniform distribution 27.26

exponential distribution 27.44

gamma distribution 27.48

Mechanical oscillator 8.1

Mechanical quadrature 32.39

Members 26.1

Memoryless property 27.45

Merit function 30.16

Method

of variation of parameters 9.29

of elimination 9.32

of reduction of order 9.35

of separation of variables 19.1

Method of

false position 32.3

chords 32.3

proportion parts 32.3

tangents 32.4

Method of least squares 30.2

Method of obtaining

Fourier series 17.3

envelope 2.65

GS of nonhomogeneous DE 9.10

particular integral 9.9, 18.22

limit 3.2

extrema 4.6

PI by variation of parameters 9.30

Method of solving

homogeneous equation 8.6

Cauchy-Euler DE 9.26

Legendre�s DE 9.28



Index I.11

Method of undetermined coefficients 18.26,  21.3

Milne�s predictor-corrector method 33.2

Milne-Thompson method 22.5

Minimax 4.6

Mixed triple product 1.5

Möbius transformation 25.16

Modal matrix 14.13, 14.20

Modes of vibration 19.38

modified Euler�s method 33.2

Modulus 1.20

Moment of a force 1.4

Moment of Inertia (MI) 7.4, 7.21

Monge�s equations (M.E.) 18.30, 18.31

Monogenic 22.3

Moore 30.13

Multiple correlation 30.26

Multiple factors 18.19

Multiple integral 7.1

Multiple regression 30.4, 30.22

linear 30.23

nonlinear 30.23

Multiplication 1.3, 1.20

Multiplication

by s 12.7, 12.26

by t 12.10

by n 21.15

Multiplicity 23.27

Multipliers 18.8

Multiply connected domain 23.2

Multi-valued 22.2

Mutually exclusive events 26.6

N

Natural frequency 9.45

Natural splines 32.46

Necessary condition for  

extrema 4.6

exactness 8.10

Negative correlation 30.26

Negative definite 14.21

Negative exponential distribution 27.44

Negative semi-definite 14.21

Neighbourhood 22.1

Neumann function 11.15

Neumann problem 19.17

Newton�s

first interpolation formula 32.14

second interpolation formula 32.14

divided differences formulae 32.27

Newton�s law of cooling 8.46

Newton�s method 2.54

Newton�s second law 9.44

Newton-Gregory

forward interpolation formula 32.13

backward interpolation formula 32.14

Newton-Raphson method 32.4

Next-term rule 32.30

Node 5.4

Non linear curves 30.3

Non-deterministic experiment 26.6

Non-exact equation 8.4

Nonhomogeneous B.C�s 19.5

Nonhomogeneous difference equation 21.2, 21.3

Non-homogeneous equation 8.4, 9.2, 9.9

Non-homogeneous PDE 18.22

Nonhomogeneous PDE 19.2

Non-homogeneous system 13.10

Non-linear 8.3, 18.7

Non-linear correlation 30.26

Non-linear PDE of 1st order 18.11

Non-linear PDE of 2nd order 18.30

Nonlinear regression 30.8

Non-linear weighted least squares

approximation 30.19

discrete case 30.19

continuous function 30.20

Non-normal population 28.3

Non-singular matrix 13.1

Non-zero B.C�s 19.5

Norm 1.1, 14.17, 10.17, 10.28

Normal curve 27.29

Normal derivative 15.6

Normal distribution (N.D.) 27.28

Normal equations 30.3, 30.8, 30.17

Normal form 13.5, 13.8

Normal population 28.4

Normal probability distribution 27.28

Normal random variable 27.28

Normal table A.12, 27.29

Normalized 10.17

n-step transition probability 31.9

nth derivative 2.1

Null hypothesis (NH) 29.7



I.12 Index

Null matrix 13.1

Null set 26.1

Numerical analysis 32.1

Numerical differentiation 32.36

using Newton�s forward formula 32.36

using Newton�s backward formula 32.37

Numerical integration 32.39

Numerical solution of

one dimensional wave equation 33.21

two dimensional Laplace equation 33.24

Numerical solutions of

ODE 33.1

PDE 33.18

one dimensional heat equation 33.18

O

Odd function 17.7

Odd periodic continuation (extension) 17.15

Ohm�s law 8.49

One-dimensional

heat flow equation 19.2, 20.14

wave equation 19.2

One-end insulated 19.9

One-loop circuit 8.50

One-parameter family of curves 2.64, 8.4, 8.33

One-step transition probability 31.9

One-tailed test (OTT) 29.8

Operator 25.1

Order of matrix 13.1

Order 8.2, 21.2

Ordinary differential equation (O.D.E.) 8.2

Origin 5.3

Orthogonal curvilinear system 15.21

Orthogonal expansion 10.18

Orthogonal matrix 14.17

Orthogonal trajectories in

cartesian 8.39, 22.4

polar 8.39

Orthogonal transformation 14.17

Orthogonality of

eigen functions 10.22

functions 10.17

Bessel�s functions 11.12

Legendre polynomials 11.26

Chebyshev polynomials 11.39

Orthogonality relation for

double Fourier sine series 19.32

Orthogonality 8.40

Orthonormal system 14.17, 10.17, 10.29

Output 9.46

Over critically damped 9.45

Overdamped 9.45

P

Paired sample t-test 29.21

Parabolic PDE 19.2

Parallel 1.4

Parallelogram law 1.2

Parameters 28.2

Parseval�s identity 20.17

Partial derivative of vector function 15.2

Partial differential equation (PDE) 8.2

Partial differentiation (PD) 3.5

of composite functions 3.13

Partial fractions 12.30

distinct non-repeated linear factors 12.30

linear repeated factors 12.31

non repeated quadratic factors 12.31

repeated quadratic factors 12.32

Particular integral (P.I.) 8.3, 9.9, 18.22, 21.3

Particular solution 8.3

Partition 26.9

PDE of 1st order 18.7

p-discriminant 8.29, 8.32

Pearson Karl 28.15, 30.25

Pedal equation 2.51

Percentage error 3.27

Period 17.1, 9.45

Period of oscillation 9.43

Periodic function 17.1

Periodic Sturm-Liouville problem 10.22

Periodic time 9.43

Permutation 26.4

with repetition 26.6

Phase angle 8.50

Phase 1.20

P.I. when F(x) =

e
ax + b

9.10

sin (ax + b), cos (ax + b) 9.13

x
m

9.16

xV(x) 9.21



Index I.13

Picard�s method 33.7

Piecewise polynomial approximation 32.45

Point estimation 29.1

Poisson distribution function (Poisson sums) A.8

to A.11

Poisson distribution 27.19

Poisson process 27.24

Poisson, S.D. 27.5

Poisson�s equation 19.2

Polar

subtangent 2.11

tangent 2.11

normal 2.11

subnormal 2.11

Polar form 1.20

Pole of order m 23.27

Pole 23.27

Pole 5.16

Polynomial 1.13

Polynomial regression 30.8

Polynomials 22.14

Population f(x) 28.2

Population 28.1

Positive correlation 30.26

Positive definite 14.21

Positive semi-definite 14.21

Positive sense 23.1

Positive vector 1.2

Posteriori probability  26.20

Potential equation  19.17

Potential function 15.6

Potential 19.44

Power function 30.9

Power function 2.1

Power method 32.73

Power of matrix  13.1, 14.34, 14.14

Power of modeling 8.2

Power of the test 29.8

Power series 23.16, 10.2

Power series method 10.2

Power set 26.2

Powers of x in terms of Tn(x) 11.37

Practical harmonic analysis 17.20

Primitive 16.1

Primitive 8.3

Principal axes form 14.22

Principal part 23.27

Principal value 1.20, 1.22

Principal value 22.21

Principle of argument 24.18

Principle of deformation 23.7

Probabilistic experiment 26.6

Probability distribution 27.1

discrete 27.1

Probability function 27.2

Probability integral 27.29

Probability mass function  27.2

Probability of causes 26.20

Probability vector 31.8

Product function 2.2

Product rule 26.4

Projection 1.3

Proper subset 26.2

Proper value 14.1

Properties of

gradient 15.5

Jacobians 3.20

error function 27.41

double integral 7.1

eigen values and vectors 14.2

unitary matrix 14.28

Hermitian matrix 14.28

normal distribution 27.29

r 30.26

indefinite integral 16.1

line integral 16.4, 23.2

analytic functions 22.4

ez 22.15

trigonometric functions 22.16

hyperbolic functions 22.17

x2-distribution 28.15

Proportional error 3.27

P-value

Q

Quasi-linear 18.7, 19.2

Quadratic splines 32.45

Quadrature 6.13

Quadratic form (Q.F.) 14.18

R

Radially symmetric 19.14

Radio equation 19.45



I.14 Index

Radius of curvature 2.44

in Cartesian form 2.44

in parametric form 2.44

in polar form 2.44

of pedal curve 2.51

at origin 2.54

Random experiment 26.6

Random process 31.7

Random sampling 28.2

Random variable (RV) 27.1

discrete 27.1

continuous 27.1

Rank correlation 30.32, 30.33

Rank of matrix 13.3

Rare events 27.20

Rational function 22.14

Rational integral algebraic function 1.13

RC-circuit 9.53, 8.51

Reactance 9.54

Real part u 22.2

Real part 1.19

Receiving end 19.44

Reciprocal function 30.9

Rectangular cartesian coordinates 15.21

Rectangular distribution 27.8

Rectangular matrix 13.1

Rectangular plate 19.17, 19.29

Rectangular unit vectors 1.2

Rectification 6.20

Recurrence formula 21.13

Recurrence relation 10.2

Recurrence relations (RR) 21.2

for Bessel�s functions 11.13

for Legendre polynomials Pn(x) 11.25

for chebyshev polynomials Tn(x) 11.38

Reducible to homogeneous form 8.7

Reducible 18.18

Reduction formulae 6.1

Reduction of QF to CF 14.22

Reflection 25.3

Region 5.2, 5.13

Region of Convergence (ROC) 23.17, 23.23,

21.16

Region 22.1

Regression analysis 30.4

Regression line of y on x 30.4

Regula-Falsi method 32.2

Regular domain 7.1

Regular point 23.27

Regular singular point (RSP) 10.1

Regular Sturm-Liouville problem 10.22

Regular 22.3

Related properties of gradient, divergence,

curl 15.14

Relation between exponential, gamma, and poisson

distribution 27.49

Relation between b and G function 11.3

Relationship 30.1

Relationship between operators 32.33

Relative

maximum 4.5

minimum 4.5

Relative complement 26.3

Relative error 3.27

Removable discontinuity 22.6

Removable singularity 23.27

Repeated root 9.2

Residue theorem 24.2

Residue 24.1

Resistance 9.44, 9.54, 8.49, 19.44

Resistor 9.53, 8.49

Resonance 9.46

Response 9.46, 9.47

Right handed system 1.4

Right one tailed test (ROTT) 29.8

RLC-circuit 8.2, 9.53

RL-circuit 9.53, 8.50

Rodrigue�s formula 11.23

Rolle�s Theorem 2.14

Root of complex number 1.22

Root 1.13, 32.2

Roots of transcendental eqn 32.1

Rotation 25.3, 25.16

Rouche�s theorem 24.18

Row equivalence 13.5

Row matrix 13.1

Row reduced echelon matrix 13.5

r-permutation 26.4

Rule of elimination 26.18

Runge-Kutta 4th order method 33.2

S

Saddle point 4.6

Sample size 29.2, 29.37



Index I.15

Sample variance 28.2

Sample 28.1

Sampling

with replacement 28.2

without replacement 28.2

Sampling distribution (SD) 28.2

Sampling fluctuations 28.3

Sampling 28.1

Saw-tooth wave 12.19

Scalar field 15.1

Scalar function 15.1

Scalar matrix 13.1

Scalar multiplication 1.2

Scalar product 1.3

Scalar triple product 1.5

Scalars 1.1

Scale factors 15.22

Scaling 25.3

Scatter diagram 30.1

Schwarz�Christoffel transformation 25.20

SD of differences and sums 28.9

SD of mean : t-distribution 28.12

SD of proportions 28.9

SD of variances s2 28.16

Second shifting theorem 12.14

Second transmission line equation 19.44

Second-order differential operator 15.16

Self-orthogonal 8.40

Semi�infinite strip 19.22

Semi-infinite strip 25.12

Sending end 19.44

Separable 8.4, 19.1

separation of variables technique 19.1

Series circuit 8.50

Series solutions 10.1

Set 26.1

Shift operator E 21.3

Shifting property 21.14

to the left 21.15

Sign of

first derivative 5.3

second derivative 5.3

Signature 14.20

Significant values 29.8

Similar matrix 14.13

Simple closed curve 23.1

Simple connected domain 23.2

Simple correlation 30.26

Simple curve 23.1

Simple electric circuits 8.49

Simple frequency 9.45

Simple harmonic motion 8.2, 9.42

Simple hypothesis 29.8

Simple pendulum 8.2

Simple pendulum 9.57

Simple regression 30.4

Simple zero 23.27

Single-valued 22.2

Singular integral 6.45

Singular matrix 13.1, 14.2

Singular point 5.3

Singular point 23.27

Singular solution 8.3, 8.29

Singular Sturm-Liouville problem 10.22

Singulr point (SP) 10.1

Sink field 15.10

Sinusoidal 9.45

Size of set 26.2

Size of the test 29.8

Size 28.1

Skew-Hermitian matrix 14.26

Skew-symmetric matrix 14.17

Sliding friction force 8.2

Small sample 28.4

Small sampling 28.1

Small-sample test concerning

difference of two means 29.18

Smooth arc 23.1

Snedecor, G.W. 28.16

Solenoidal 15.10

Solution 1.13, 13.10

Solution by change of IV 9.38

Solution by LU-decomposition

Solution of

one-dimensional heat equation 19.3

one-dimensional wave equation 19.12

two- dimensional heat equation 19.30

difference equations 21.16

Solution of 2nd order PDE

miscellaneous 18.36

Solution of DE by L.T. 12.35

Solution of system of DE by L.T. 12.38



I.16 Index

Solution of Tridiagonal systems

Solution 8.3

Sought-for function 8.2

Source field 15.10

Source 19.44

Spearman�s correlation 30.32

Special functions 1.1

Special multiplication rule 26.9

Spectral mapping theorem 14.3

Spectral matrix 14.14, 14.20

Spectral shift 14.3

Spectrum 4.2, 10.22

Spherical coordinates 15.22

Spline function 32.45

Spline interpolation 32.45

Spring constant 9.44

Spring restoring force 9.44

Spring stiffness 8.2

Square matrix 13.1

s-shift Theorem 12.6

Standard

gamma function 27.48

normal distribution 27.29

normal curve 27.29

deviation 27.3

Standard error (SE) 28.3

Standard Jacobians 3.21

Standard Madaurin series 23.18

Static deflection 9.44

Static equilibrium 9.44

Stationary distribution 31.10

Statistical decisions 29.7

Statistical estimation 29.1

Statistical hypothesis 29.7

Statistical independence 31.2

Statistical inference 28.1

Statistical probability 26.7

Statistics 28.2

Steady-state 9.47, 8.51, 19.5

Stiffness of the spring 9.44

Stirling interpolation formulae 32.19, 32.20

Stochastic matrix 31.8

Stochastic process 31.7

Stoke�s theorem 16.24

Strandard error of estimate 30.26

Stretching 25.3

Strophoid 5.13

Sturm-Liouville eigenvalue problem 19.38, 19.42

Sturm-Liouville equation 10.21

Sturm-Liouville problems 10.21

Sturm-Liouville Theorem 10.22

Submatrix 13.3

Subset 26.2

Success 27.11

Successive approximation 33.7

Successive overrelaxation method 33.25

Successive transformations 25.13

Sum of matrices 13.1

Sum of squares form 14.20, 14.22

Sum rule 26.4

Superposition 9.2, 19.4

Surface area 16.12

Surface integrals 16.11

Survival function 27.45, 27.51

Swing 9.58

Symmetric matrix 14.17

Symmetry 5.1, 5.15

System of homogeneous equations 13.16

System of linear NH equations 13.10

System of simultaneous linear DE 9.32

T

Table of

curvilinear coordinates 15.34

general properties of LT 12.41

Laplace transforms 12.41

z-transforms 21.20

exponential function A.22

incomplete gamma function A.23 to A.28

Tangents at origin 5.3

Taylor�s series 2.26, 4.2, 23.17

Taylor�s series method 33.1

Taylor�s theorem for function of 2 variables 4.1

Taylor�s theorem 2.22, 23.17

t-distribution 28.12

Telegraph eqn 19.44

Telephone eqn 19.44

Terminal point 1.1

Terminal 19.44

Test for

homogenity (TFH) 29.31

independence (TFI) 29.31



Index I.17

Test for continuity 3.2

Test for exact differential 16.5

Test of hypothesis concerning

single mean 29.9

two means 29.13

one mean (t-distribution) 29.16

one proportion 29.23

one proportion (large sample) 29.24

two proportions 29.26

several proportions 29.29

correlation coefficient 30.27

Test of hypothesis 29.1, 29.7

Theorem of total probability 26.18

Theorem on limiting contours 24.9

Theortical probability distributions 27.5

Theory of equations 1.13

Three leaved rose 5.18, 5.21

Time-varying amplitude 9.46

Torsional oscillations 19.12

Total derivative 3.11

Trace 13.1, 14.2

Transcendental equation 1.13, 32.1

Transcendental function 22.14

Transcendental function 8.2, 11.1

Transformation of coordinates 15.21

Transformation 25.1

w = z
n

25.5

w = e
z

25.9

w = sin z 25.11

Transient term 9.47, 8.51, 19.5

Transition matrix 31.8

Translation 25.2, 25.16

Transmission line equations 19.43

Transpose of matrix 13.1

Transverse vibrations 19.12, 19.36

Triangle inequality 1.21

Triangular decomposition 13.20

Triangular factorization 13.20

Tridiagonal matrix 13.25

Trigonometric form of complex number 1.19

Trigonometric functions 2.2

Trigonometric functions 22.16

Trigonometric series 17.1

Triple integral 7.20

Trivial solution 13.10

t-shift theorem 12.14

Two parameter family of curves 2.73, 8.33

Two-dimensional heat equation 19.17

Two-dimensional steady state heat flow 19.17

Two-edges insulated 19.33

Two-tailed test (TTT) 29.8, 29.9

Type I error 29.7

Type II error 29.7

ta- critical values of t-distribution A.13 to A.14

U

Unbiased estimator  29.1

Undamped forced oscillations  9.47

Underdamped   9.46

Unequal  1.2

Uniform distribution

discrete  27.9

continuous  27.26

Union  26.2

Unit impulse function  12.16

Unit step function  12.13

Unit tangent vector  15.2

Unit vector  1.1

Unit vectors in curvilinear system  15.22

Unitary matrix   14.26

Unitary system  14.26, 14.27

Universal event  26.6

Universal set   26.2

Upper triangular matrix  13.1

V

Values of incomplete gamma function A.23 to

A.28

Variables separable 8.4

Variables treated as constant 3.9

Variance of

exponential distribution 27.44

gamma distribution 27.48

poisson distribution 27.20

normal distribution 27.30

weibull distribution 27.51

discreate uniform distribution 27.10

Variance of BD 27.11  

Variance of continuous uniform

distribution 27.26

Variance of Hypergeometric distribution 27.16

Variance ratio distribution 28.16



I.18 Index

Variance 27.3

Vector Algebra 1.1

Vector differential calculus 15.1

Vector differentiation 15.1

Vector field 15.1

Vector function 15.1  

Vector integration 16.1

Vector notation of Green�s Theorem 16.20

Vector product 1.3

Vector triple product 1.5

Vectors 1.1

Velocity 1.4, 15.2

Velocity of escape (from earth) 8.48

Verification of

Green�s theorem 16.20, 16.23

Stokes� theorem 16.26, 16.28

Gauss divergence Theorem 16.34, 16.35

Vertical displacement 19.37

Vibrating rectangular membrane 19.37

Vibrating string 19.12

Vibrations of circular membrane 19.41

Viscous damping force 9.57

Voltage 8.49, 19.44

Volume as double integral 7.5

Volume as triple integral 7.21

Volume integrals 16.16

Volume of parallelopiped 1.5

Volume of solid of revolution 6.26

in Cartesion form 6.26

in parametric form 6.28

in polar form 6.28

Volume of tetrahedron 1.5

W

Walli�s Formula 6.2

Weakest link 27.50

Weibull, W 27.51

distribution 27.50

failure law 27.52

Weight function 10.19, 30.17

Weights 3.16

Work done 1.3, 16.4

Wronskian 9.1

Z

Z-transform 21.1, 21.12

Zero vector 1.1

Zeros of T
n
(x) 11.37

Zero matrix 13.1

Zero 1.13, 23.27

Zero of kth order 23.27
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