Dr. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY LONERE – RAIGAD – 402103

End Semester Examination – December – 2017

Branch: F.Y. B.Tech.	Semester: I
Subject: Engineering Physics (PHY103) Date: 15 / 12 / 2017	Marks: 60 Time: 3 Hrs.
Q1. Attempt the following:	
a. Obtain the differential equation of wave motion.	(6)
b. What is Piezoelectric and Magnetostriction Effect?	(4+2)
Calculate the natural frequency of 40 mm length of a pure iron rod. G	iven the density of
pure iron is 7.25 X 10^3 kg/m 3 and its Young's Modulus is 115 X 10^9 N/	m². Can you use it
in magnetostriction oscillator to produce ultrasonic waves?	
Q2. Attempt any TWO of the following:	
a. Derive an expression for the optical path difference for the reflected rays in a	thin film of (6)
constant thickness and hence find the conditions for maxima and minima.	
b. What is double refraction? Explain the difference between ordinary ray (O-ray and extra ordinary ray (e-ray).	y). (6)
c. What is population inversion and stimulated emission?	(4+2)
Calculate the acceptance angle of an optical fibre where the refractive index o	f core is 1.55
and that of cladding is 1.50.	
Q3. Attempt the following:	
a . With neat diagram explain principle and working of Bainbridge Mass Spectr	ograph. (6)
b. Derive the time independent Schrodinger's wave equation.	(6)
Q4. Attempt the following:	
a. Define atomic radius. Calculate atomic radii in SC, BCC and FCC lattices w	ith suitable (4+2)
diagrams.	
Lead exhibits FCC structure. Each side of unit cell is of 4.95 A ⁰ Calculate rac	lius of lead atom.

 a. Derive the relation between interplaner spacing 'd ' defined by Miller Indices (hkl) and lattice parameter 'a '. Calculate the interplaner spacing for (220) plane where the lattice constant is 4.938 A⁰. 	(4+2)
b. What is X-ray? How do we get the continuous spectrum in X-rays explain. An X-ray is operated at 20 kv. Calculate the minimum wavelength of X-rays emitting from	(4+2) om it.
Q5. Attempt the following:	
a. On the basis of domain theory explain B-H curve and hence explain retentivity and coercivity.	(6)
b. What is Superconductivity? Explain Meissner Effect in Superconductors.	(2+4)
Q6. Attempt the following:	
a. What is Hall effect? Derive an expression for Hall Coefficient.	(6)
b. Derive an expression for electromagnetic wave in free space and hence calculate the value of velocity of light in free space.	(6)

----- END OF PAPER -----