1.1 Introductory Remarks

The solution in radicals
the

aided by the rational root test if the cubic is irreducible. This conundrum led the Italian Mathematician Gerolamo

mz&s-m“s"ﬁ) to conceive of the complex numbers in around 1545, though his understanding was

(Without trigonometric functions) of a general cubic equati tains th re root of
AT g quation contains the square root
gative numbers when all the three roots are real numbers; a situation that cannot be rectified by factoring

:t:le work on the problem of general polynomials ultimately led to the fundamental theorem of algebra, which
D\Vsl tl.\at with complex numbers, a solution exists to every polynomial equation of degree one or higher. The
complex numbers thus form an algebraically closed field, where any polynomial equation has a root.

Many lpathemat:lcians contributed to the full development of complex numbers, The rules for addition,
subtraction, multiplication and division of complex numbers were developed by the Italian mathematician Rafacl
Bombelli (1526-1572). A more abstract formalism for the complex numbers was further developed by the Irish

mathematician William Rowan Hamilton (1805-1865), who extended this abstraction to the theory of
quarternions.

1.2 Definition of Complex Number

A cc?mplt?x number is a number that can be expressed in the form x + iy, where x and y are real numbers an.d s
the imaginary unit satisfying the equation i = —1. In this expression, x is the real part and y is the imaginary
part of the complex number. A complex number is generally denoted by z. The symbol z, which can stand for a

set of complex numbers, is called a complex variable. Two complex numbers z = X + iy and Z = x — iy are said
to be conjugate of each other.

1.3 Equality of Complex Numbers
If two complex numbers are equal, then their real and imaginary parts will respectively be equal.
Letz; = x; + iy, and z, = x, + iy, be two complex numbers such that z; = Z3. Then
X, +iy, =x, +iy;
= (x; — %) = i(y, — 1)
= —x)l=-0—y)? i*=-1
=00 —1)2+ 0 —y1)* =0
2x-%=0,y,-=0
SEXTE=2X20, 18902 ‘
This proves the required result.
1.4 Geometrical Representation of a Complex Number

A complex number can be viewed as a point or position vector in a two dimension'al Cartesian coordinate system
called the complex plane or Argand diagram, named after the French mathematician J.R. Argand (1768 - 1822)
who published the idea of geometrical representation of complex numbers in the year 1806.

AY
The complex numbers are conventionally plotted using ttgc real part as the P(X,y)
horizontal component, and imaginary part as vertical (see Fig. 1.1). : i
Any complex number Z = X + iy can be represented as the point P(x,y) in § i y
the xy-plane. B Sy
y-pP X = - x
24




)

1-2 | A COURSE IN ENGINEERING MATHEMATICS VOL. - ||

1.5 Polar Form of a Complex Number

The polar equivalent of the complex number z = X + iy is given by 5
z=x+iy=rcosf+ i(rsin®) = r(cos6 + Lsin
where 72 = x% + y* and tan 8 HW..

i esented as
Here the quantity 7 is known as the modulus of the complex number Z and is repr

r=|x+iyl =2 +y*.

The angle 8, which defines the position of the vector OP ,

) e
number z = x + iy and is given by amp. of (= x + iy) =6 = tan Akv .
} ] 11 such rotations will
£ OP be turned in anti-clockwise direction through E::.En.m of 2m, the point wﬁw.w.ﬂu_ M\Mﬂ\w __.nv_.ammz.m et
=m<n=_om»3nvom=mo=mmcnmo:u.:n:nnmo_. all such positions of OP, the poin

complex number = x + iy .

is called the amplitude of argument of the complex

itude is i d by multipl
The complex number z = x + iy has, therefore, various polar forms, when the amplitude is Increase y muitiples
of 21T, As a result, the general polar form of z = x + iy is given by .
z=x + iy = rlcos(2mn + ) + i sin(Zmm + ARG R
; ichili - d m is kno
Here 2mu + 6 is known as the general amplitude of = x + 1y, and 8 which lies between — 1T and 7 is known as

the principal value of the amplitude.

1.6 Polar Form of z = x + iy for Different Signs of x,y

), in this case, will lie in the first quadrant.

(@) z=x+iy (x> 0,y > 0): The point P(x,y

P(x.y)

<

:

S e

Fig. 1.2
Y

Herer = /(x2 + y2) and = a . Hencez=x + iy = J 2 + y?){cosa + isina}, where tana = .
, 1= H«- A H
Example: 1 +iV3 = 2 TOM ek sin L

(M) z=-x+iy (x>0,y>0): The point P(—x,y) lies in the second quadrant and ZAOP = a where

y

tana ==
X
A
P(-x, y) ¥
r
y
0
a
X' -« 2 —\
Ak X 0
v\_
Fig. 1.3
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The amplitude of the complex number will be 6 = 7 — a and the modulus will be = JGZ+y2).
Hence —x + iy = \[(xZ ¥ y*){cos(m — a) + i sin(r — a)}
Example: -1+ (/3 =2 Tom ? - mV +isin ? - m&

w

N M c Na ~. N

unm| |

3 +m=. wﬂw

© z= ..kﬂ iy (x>0,y>0): The point P(—x,—y) lies in the third quadrant and ZAOP = & where
tan a = =and the amplitude of the complex number being 6 = m +a and 7 = V&2 +52).

“z=—x—iy=./(x% +y?){cos(m + ) + i sin(w + @)}

j

>
B
A
:

PCxy) 4y
Fig. 1.4

Example: z = —1—iV3 =2 Tom? + MV + isin ? +m&

=2 Mncmah + Nm_sﬁ
3 3
(dz=x—1iy (x>0,y>0): The point P(x,—y) lies in the fourth quadrant and ZAOP = a where
tana = mEa the amplitude of the complex number being @ = 2r —a or —aandr = ,\Q|N.:|J
Hence z = x — iy = 3?83: —a) + isin(2n — a)}
= (x? + y*){cosa — isina}
Example: z = 1 — iV3=2 Tom AN: = mv + isin Aua - MVW

2 TEM — isin w

_vﬁxq JQ

Fig. 1.5
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* 1.7 Exponential Form of Complex Numbers
. 2 x @
When x is real, we have e* =1 +n+.~..|+m_|+. Bty

2!
2 x* A x m\m\
= _——F T e +ilx—71 1
: 2 A_ TR v 33
_ '
= cosx +isinx (Euler s Formula)
| Thus, Nnu+..v.n2ncmm+_.m.58uﬂma
Also, e ™ =cosx—isinx.
1.8 Properties of Complex Numbers % ey .
Let z = x + iy be a complex number and Z = x — iy be its conjugate. Then, We have the g Properties
of the complex numbers:
3!
W (a) am@vuwnm?+3
1
b) Im(z)=y HM@INJ
e two complex numbers

(©) z; ¥z =7 +7;, wherez; =x, +iyandz, =% + 12

d) zzz =27 /

© (z2/z)=
() zz=|z|* = |z .
@ |z12:] = |z1]lz;] and arg(z;2;) = arg(z;) + arg(z;)

z z
_ _ = E and arg |~v = arg(z) —arg(z2)
2| 2

p)

|

PSS

(h

~—~

1.9 Solved Examples

N\ %
/ﬁ Find the modulus and argument of = Iw + %m .
Solution: Here z = x + iy = |w+%& = r(cos @ + isin6)
=rcosf = ! drsinf = v /W/
Fo cosf =~z andrsind == SR
L~ 1o 2 2 >
o n:klA Hv+ 3 =
e =t R\ 28 e
o 1 3
rd ~r=1and cosf =—, azmu.,\ll
2 2 2
/w Since cos @ is negative and sin @ is positive, hence @ lies in the second quadrant.
g T 2m
= —-——=—
w 3 r
So, the principal value own =~ Hence, the modulus is 7 = 1 and the argument is 6 = .

B
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RGP = s prove that (a? + p2)(a? + b?) =1.
Solution: Given that ¢ Lip= I.ﬂ = hN% F 5 +1 NNZV
S iy AnN M u~v~ i AnN NwNVN P AMNNHNMVN Bz “.wu

= (a? +pH)(a* +b?) =1

/w/:.m..nﬁu + c == nE_ arg(z-1) = I:. find z .

%

Solution: ru,l X+ iy, then

m
mqmnn+5uwuom_.mnx+~+€uum
(YT
e Fi*@
pASCE s 1
L Szﬁv ,.\l
o xi+ 1l=V3y e (1)
m_am_ﬂ_w.u«m@lsuuﬁaum«mcﬂl_téumu
I R
= tan Hlpvl 3
= V~ "SZAﬁnla\W
s5=1l 3
=>-xV3+V3=y
=>xV/3+y=13. )

Toaﬁ:w:a@,in _._m<mmn w 55 H%.

If the sum and product of two complex numbers are real, show that those two numbers must be

either real or conjugate.

Solution: Let z; = x; + G: andz; = x; + iy, be the two complex numbers.

Then, 2 +2; = (x; + QL + (x +iy,) = (1 + x2) +i0n +52) = :@nvc

Then, u will be a real number as per the question.

So, we have (x; +x;) + i(y; +¥2) = u +i(0)
S+ =u; Y +Y =0t (@)

Letz;z, = v ,then v will be a real number as per the question.

(1 +in)(x +iyz) = v +i(0)

—y1y2) +iknxz + x1y2) = v +i(0)

2e..(2)

So, we have
= (11,

-y, =vinx +xy, =0.

= X%
Let us substitute y, = —y; from (1) in (2), to obtain

X +x(=y) =0y —x)=0

>y =0xn =x;
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Case IL. When n is a negative integer

Letn = —m, where m is a positive integer. Then, |
M = ———m
(cos 8+ isinB)" = (cos® +isin8)™" |A8mm+.m_=$=_
1
st h

= Cosm@ +isinmb

cosmB — isinmf
o samd)

= (cosm@ + isinmd)(cos®
cosm8 — isinmf

= Cosm8 +sin*mf

= cos(—m)8 +isin(-m)é

= cosnf +isinnd
Hence, the theorem holds true when n is a negative integer.
Case III. When n is a fraction
Letn = .Mu. where m may be a positive or negative fraction.
From the cases I and II, we have
Anomm+ MMBMVQ = cos @ +isinf

q q

1 0 5on240,
= (cosB + isinf) nomm+.m5m

147
(cos 6 + isin Sm = ?omm +isin Sew

P ) ) ()
*ncmm +isin WW =cosp F‘v + isinp AMV

= (cos@ + isinf)"

q q
Incmﬁ v+.msﬂv v
= cosné + isinnf

Thus, the theorem holds true in case n is a fraction.
Thus, (cos 8 + i sin8)" = cosné + i sinnf, when n is a real number.

1.11 Applications of De-Moivre’s Theorem

1. If 2 = cos 8 + isin @, then - = cos 8 — isin 6.
/ x
1

1
Proof: —=———
z cosf +isinf

= cos(—8) + isin(—0)

= (cos 8 + isin )~ = cos(=1)8 + i sin(—1)8

=cosf —isinf
/M (cos@ — isin@)™ = cosnf — isinnd .
Proof: (cos@ —isin@)" = {cos(—0) + isin(—0)}" = cosn(-0) + isin n(=6)
cos(—n@) + i sin(—nB)

cosnf — isinnf
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3. Iz, = cos O +isin 6 and z, = cos ¢ + i sin ¢, then ”X = cos(0 — ¢) + isin(0 - ¢) .
Prool: Iy cos @ + isin O
| Z; cos¢+ising

= (cos @ + [ sin@)(cos ¢ + i sin p)~"

= (cos 0 + isin@)(cos ¢ — i sin )
= (cos @ cos ¢ + sin B sin ¢) + i(sin 8 cos ¢ — cos @ sin ¢)
_ = cos(6 — ¢) + isin(6 — ¢)

,a/.. (sin@ +icos @)™ = nomaﬁmlav +.u.:ﬂ@l mv
Proof: (sin6 + icosf)" = Tomml mv + isin mlmvw; = ncmamlmv +_.mm==mlmv.
1.12 Solved Examples

H+m=.n+~aoma ..==
/ —._.96:_». A v lnauﬁl :av +;.= A.NI |=n.
1+sina—icosa 2

n
1+sin a+i cos nv: 1+cos Mlnvim_: Mlnv

Solution: LHS HA ) o (5—a)-isin(5—a)

1+sin a—icos a

| s NncmNAmlm.v+N.,m_:Awlmv8m mlmv %
> \ NnomNAlll N_m~:AlllvnomAnl|v

e

) -an(:=2)

o (G| e
, T ml.? Nv HT F va

= i(E3) = ()

nOwSAllQV.THw_.:SAMIhv

cos A% - :Qv + isin AWNH — :nv

= RHS

| .,..N, Ifx+=2cos mv.w +w =2cos¢ and z +w = 2 cos |, then prove that
\ x

(@) xyz+— =2cos(0+ ¢+ )

xyz

AE = + 2 = 2 cos(mb — n¢e)

() aa_w.. = 2cos(mé + ng) .

mo___:o._;&:oaa.fmnNncmm = x2—2xcosf+1=0

= x=cosf tisin@
Letx = cos @ + isinf

Similarly, y = cos¢ +isin¢and, z = cosy + isiny

o
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31 Ifthe @ is the cube root of unity, then the value of [1 : ] :

2 200 4’
3 30 6w
L b)-1
(b) - [Ans.: (c)]
" (d) none.
32. The cube roots of unity lie on a circle
®) x| =1 ) |z=1=1 [Ans.: (a)]
©lz+1]=1 (d) none.
33 Ifzlies on |z = 1. then  willlie on
(a) a circle (b) an ellipse (Ans.: )]
(¢) a parabola (d) none.
34. If real part of ‘z,%' =0, then z lies on the curve
@x*+y? +6x -8y = g (b)x? +y? +6x —4y =0 [Ans.: (a)]
S.:
©)x® +y2 4 4 — 8y=0 (d) none. o
s alues of a an
35- If2 + i3 is a root of the quadratic equation x? + ax + b = 0 where a and b € R, then the v
b are respectively
(a) 4,7 (b) —4,-7
[Ans.: (¢)]
() —4,7 (d) none.
36. The triangle formed by the points 1, 1—; and { as vertices in the Argand diagram is
(2) Scalene (b) Equilateral ;
: [Ans.: (¢)]
(c) isosceles (d) none.
37. Ifc* + 52 = 1, then 1:*:': is equal to
(@)c+is (b)c—is
(©)s+ic (d) none. [Ans.: (a)]
38. The value of sin(logit) is
(a) -1 (1
(©)0 (d) none. [Ans.: (a)]
39. If log[log(x + iy)] = p + iq, then the value of tan™(y/x) is
(a) eP cosq (b) e?sinp
(c) e sing (d) none. [Ans.: (¢)]
40. If the root of x> — 8x? + px + q = 0, where p & q are real numbers, is 3 — iv3, then its real root is
(2) 2 (b) 6
(©)9 (d) none.

[Ans.: (a)]




