Dr. Babasaheb Ambedkar Technological University, Lonere

Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142

www.dbatu.ac.in

UNDER GRADUATE PROGRAMME B. Tech First Year MECHANICAL ENGINEERING & ALLIED BRANCHES FOR THE ACADEMIC YEAR 2024-2025

(FOR AFFILIATED COLLEGES)

Department of Mechanical Engineering

Vision

The vision of the department is to achieve excellence in teaching, learning, research and transfer of technology and overall development of students.

Mission

Imparting quality education, looking after holistic development of students and conducting need based research and extension.

<u>Credit Framework under Four-Years UG Engineering Programme with Multiple Entry</u> and Multiple Exit options:

- The Four-year Bachelor's Multidisciplinary Engineering Degree Programme allows the students to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per their choices and the feasibility of exploring learning from different institutions.
- The minimum and maximum credit structure for different levels under the Four-year Bachelor's Multidisciplinary Engineering UG Programme with multiple entry and multiple exit options are as given below:

Lovels	Qualification	Credit Requirements		Somester	
Levels	Title	Minimum	Maximum	Semester	Year
4.5	One Year UG	40	44	2	1
	Certificate in				
	Engg./ Tech.				
5.0	Two Years UG	80	88	4	2
	Diploma in Engg./				
	Tech.				
5.5	Three Years	120	132	6	3
	Bachelor's Degree				
	in Vocation (B.				
	Voc.) or B. Sc.				
	(Engg./ Tech.)				
	4-Years				
	Bachelor's degree				

Credit Framework

Louolo	Qualification	Credit Requ	uirements	Samastar	
Levels	Title	Minimum	Maximum	Semester	Year
6.0	(B.E./ B.Tech. or	160	176	8	4
	Equivalent) in				
	Engg./ Tech. with				
	Multidisciplinary				
	Minor				
	4-Years	180	194	8	4
	Bachelor's degree				
6.0	(B.E./ B.Tech. or				
	Equivalent) in				
	Engg./ Tech				
	Honors and				
	Multidisciplinary				
	Minor				
6.0	4-Years	180 194		8	4
	Bachelor's degree				
	(B.E./ B.Tech. or				
	Equivalent) in				
	Engg./ Tech				
	Honors with				
	Research and				
	Multidisciplinary				
	Minor				
	4-Years	180	194	8	4
	Bachelor's degree				
	(B.E./ B.Tech. or				
6.0	Equivalent) in				
	Engg./ Tech				
	Major Engg.				
	Discipline with				
	Double Minors				
	(Multidisciplinary				
	and Specialization				
	Minors)				

• There are multiple exit options at each level. Student will be given a specific Qualification mentioned in the table depending on the level at which he/she decides to have an exit. Ex. If a student decides to exit after completion of two years (level 5.0) of the program, he will be given a Diploma in Engineering with specific exit condition mentioned in the syllabus of the specific branch. He/she can rejoin the program with the multiple entry option at the level next where he/she chose to exit

previously. (Student can join at level 5.5 if successfully completed level 5.0 previously at the time of exit).

- Minimum credit requirements of each level are mentioned in the credit framework table.
- There are 4 distinct options available at level 6.0.
- First one is basic level 6.0 option where minimum 160-maximum 176 credits are mandatory which can be completed as per the Semester-wise Credit distribution structure mentioned in the table given below.

Here, the Bachelor's Engineering Degree in chosen Engg./ Tech. Discipline with multidisciplinary minor (min.160-max.176 Credits) i.e. "**B. Tech in Mechanical Engineering with Computer Engineering**" (160-176 credits) enables students to take up five-six or required additional courses of 14 credits in the discipline other than Mechanical Engineering distributed over semesters III to VIII. Here in the case of "**B. Tech in Mechanical Engineering with Computer Engineering**" (160-176 credits) student is supposed to take up 50% or more courses to complete the 50% or more credits (from assigned 14 credits) from **Computer Engineering minor bucket**. The remaining courses to complete the assigned 14 credits can be covered from other discipline's minor buckets.

- Remaining three level 6.0 options are the advanced options where the student is given an opportunity to get extra qualification by earning some extra credits (18-20 extra credits). These three options are given below:
- Level 6.0: The **Bachelor's Engineering Degree with Honours** in chosen Major Engg./ Tech. Discipline i.e. in Mechanical Engineering with Honours with Multidisciplinary Minor (180-194 credits) enables students of Mechanical Engineering to take up five-six additional courses of 18 to 20 credits in the Mechanical Engineering discipline distributed over semesters III to VIII. The decision regarding the mechanism of distribution of these 18-20 credits over semesters III to VIII, which are over and above the min.160-max.176 Credits prescribed for the duration of four years will be taken by Academic Authorities of University. Student must have CGPA equal to or greater than 7.5 at the end of second semester to go for this option.
- Level 6.0: The **Bachelor's Engineering Degree with Research** in i.e. in Mechanical Engineering with Research with Multidisciplinary Minor (180-194 credits) enables students of Mechanical Engineering to take up a research project of 18 to 20 credits in the Mechanical Engineering discipline distributed over semesters VII to VIII. Student must have CGPA equal to or greater than 7.5 at the end of sixth semester to go for this option.
- Level 6.0: The Bachelor's Engineering Degree in chosen Engg./ Tech. Discipline with Double Minor (Multidisciplinary and Specialization Minor, 180-194 credits), i.e. "B. Tech in Mechanical Engineering with other selected discipline in Engineering (as MDM) with Specialization Minor in Computer Engineering" (180-194 credits) enables students to take up five-six additional courses of 14 credits in the discipline other than Mechanical Engineering discipline distributed over semesters III to VIII. Here, the other selected discipline in Engineering should be different from Specialization Minor i.e. Computer Engineering. This enables students to take up five-six or required additional courses of 18 to 20 credits in the Computer Engineering discipline distributed

over semesters III to VIII, which are over and above the min.160-max.176 Credits. The decision regarding the mechanism of distribution of these 18-20 credits over semesters III to VIII, prescribed for the duration of four years will be taken by Academic Authorities of University. **Student must have CGPA equal to or greater than 7.5 at the end of second semester to go for this option**.

Semester-wise	Credit	distribution	structure	for Four	· Year	UG	Engineering	Program -
		Or	ne Major,	One Min	or			

Semester		Ι	п	ш	IV	V	VI	VII	VIII	Total
Basic Science Course	BSC/ESC	06-	08-							14-18
Engineering Science Course	-	10- 08	06- 04							16-12
Programme Core Course (PCC)	Program Courses		02	08- 10	08- 10	10- 12	08- 10	04- 06	04- 06	44-56
Programme Elective Course (PEC)	-					04	08	02	06	20
Multidisciplinary Minor (MD M)	Multidisciplinary Courses		-	02	02	04	02	02	02	14
Open Elective (OE) Other than a particular program	-			04	02	02				08
Vocational and Skill Enhancement Course (VSEC)	Skill Courses	02	02		02		02			08
Ability Enhancement Course (AEC -01, AEC-02)	Humanities Social Science	02			02					04
Entrepreneurship/Economics/ Management Courses	and Management (HSSM)			02	02					04
Indian Knowledge System (IKS)	-		02							02
Value Education Course (VEC)	-			02	02					04
Research Methodology	Experiential Learning								04	04
Comm. Engg. Project (CEP)/Field Project (FP)	Courses			02				-	-	02
Project									04	04
Internship/ OJT	1							12	-	12
Co-curricular Courses (CC)	Liberal Learning Courses	02	02						-	04
Total Credits (Major)		20- 22	160- 176							

Student need to follow the Semester-wise Credit distribution structure for Four Year UG Engineering Program as prescribed in the table given above.

- There are seven vertical categories with specific credits distributed in specific semesters.
- Student can choose a Program Elective Course (PEC) in that specific semester from the given subjects.
- Multidisciplinary course (MDM) and Open Elective (OE) courses can be chosen from the MDM and OE Buckets depending on students choice. Completion of total credits given in the last column of the table for each vertical is mandatory.
- Students can complete 40% of the courses through online platforms like NPTEL/SWAYAM. The NPTEL SWAYAM course content should be at least 80% similar to the course content in the syllabus.

General Rules and Regulations

- 1. The normal duration of the course leading to B. Tech degree will be EIGHT semesters.
- 2. The normal duration of the course leading to M. Tech degree will be FOUR semesters.

3. Each academic year shall be divided into 2 semesters, each of 20 weeks duration, including evaluation and grade finalization, etc. The Academic Session in each semester shall provide for at least 90 Teaching Days, with at least 40 hours of teaching contact periods in a five to six days session per week. The semester that is typically from Mid-July to November is called the ODD SEMESTER, and the one that is from January to Mid-May is called the EVEN SEMESTER. Academic Session may be scheduled for the Summer Session/Semester as well. For 1st year B. Tech and M. Tech the schedule will be decided as per the admission schedule declared by Government of Maharashtra.

4. The schedule of academic activities for a Semester, including the dates of registration, mid-semester examination, end-semester examination, inter-semester vacation, etc. shall be referred to as the Academic Calendar of the Semester, which shall be prepared by the Dean (Academic), and announced at least TWO weeks before the Closing Date of the previous Semester.

5. The Academic Calendar must be strictly adhered to, and all other activities including co-curricular and/or extra -curricular activities must be scheduled so as not to interfere with the Curricular Activities as stipulated in the Academic Calendar.

Registration:

1. Lower and Upper Limits for Course Credits Registered in a Semester, by a Full- Time Student of a UG/PG Programme:

A full time student of a particular UG/PG programme shall register for the appropriate number of course credits in each semester/session that is within the minimum and maximum limits specific to

that UG/PG programme as stipulated in the specific Regulations pertaining to that UG/PG programme.

- 2. Mandatory Pre-Registration for higher semesters: In order to facilitate proper planning of the academic activities of a semester, it is essential for the every institute to inform to Dean (Academics) and COE regarding details of total no. of electives offered (Course-wise) along with the number of students opted for the same. This information should be submitted within two weeks from the date of commencement of the semester as per academic calendar.
- 3. PhD students can register for any of PG/PhD courses and the corresponding rules of evaluation will apply.
- 4. Under Graduate students may be permitted to register for a few selected Post Graduate courses, in exceptionally rare circumstances, only if the DUGC/DPGC is convinced of the level of the academic achievement and the potential in a student.

Course Pre-Requisites:

- 1. In order to register for some courses, it may be required either to have exposure in, or to have completed satisfactorily, or to have prior earned credits in, some specified courses.
- 2. Students who do not register on the day announced for the purpose may be permitted LATE REGISTRATION up to the notified day in academic calendar on payment of late fee.
- 3. REGISTRATION IN ABSENTIA will be allowed only in exceptional cases with the approval of the Dean (Academic) / Principal.
- 4. A student will be permitted to register in the next semester only if he fulfils the following conditions:
 - i) Satisfied all the Academic Requirements to continue with the programme of Studies without termination
 - ii) Cleared all Institute, Hostel and Library dues and fines (if any) of the previous semesters;
 - iii) Paid all required advance payments of the Institute and hostel for the current semester;
 - iv) Not been debarred from registering on any specific ground by the Institute.

Evaluation System:

1. Absolute grading system based on absolute marks as indicated below will be implemented from academic year 2023-24, from I year B. Tech.

Percentage of marks	Letter Grade	Grade Point
91-100	EX	10.0
86-90	AA	9.0
81-85	AB	8.5
76-80	BB	8.0
71-75	BC	7.5
66-70	CC	7.0
61-65	CD	6.5
56-60	DD	6.0

51-55	DE	5.5
40-50	EE	5.0
<40	EF	0.0

2. Class is awarded based on CGPA of all eighth semester of B. Tech Program.

CGPA for pass is minimum 5.0						
CGPA upto <5.50	Pass class					
$CGPA \ge 5.50$	Second Class					
&<6.00	First Class					
$CGPA \ge 6.00$	Distinction					
[Percentage of Marks =CGPA*10.0]						

3. A total of 100 Marks for each theory course are distributed as follows:

Mid Semester Exam (MSE) Marks	20
Continuous Assessment Marks	20
End Semester Examination(ESE)Marks	60

4. A total of 100 Marks for each practical course are distributed as follows

1.	Continuous Assessment Marks	60
2.	End Semester Examination (ESE)Marks	40

- It is mandatory for every student of B. Tech to score a minimum of 40 marks out of 100, M. Tech to score a minimum of 45 marks out of 100 with a minimum of 20 marks out of 60 marks in End Semester Examination for theory course.
- This will be implemented from the first year of B. Tech starting from Academic Year 2023-24

5. Description of Grades

EX Grade: An 'EX' grade stands for outstanding achievement.

EE Grade: The 'EE' grade stands for minimum passing grade.

The students may appear for the remedial examination for the subjects he/she failed for the current semester of admission only and his/her performance will be awarded with EE grade only.

If any of the students remain absent for the regular examination due to genuine reason and the same will be verified and tested by the Dean (Academics) or committee constituted by the University Authority.

FF Grade: The 'FF' grade denotes very poor performance, i.e. failure in a course due to poor performance .The students who have been awarded 'FF' grade in a course in any semester must repeat the subject in next semester.

6. Evaluation of Performance

a. Semester Grade Point Average (SGPA)

The performance of a student in a semester is indicated by Semester Grade Point Average (SGPA) which is a weighted average of the grade points obtained in all the courses taken by the student in the semester and scaled to a maximum of 10. (SGPI is to be calculated up to two decimal places). A Semester Grade Point Average (SGPA) will be computed for each semester as follows:

$$SGPA = \frac{\left[\sum_{i=1}^{n} c_i g_i\right]}{\left[\sum_{i=1}^{n} c_i\right]}$$

Where

'n' is the number of subjects for the semester,

 c_i is the number of credits allotted to a particular subject, and

 g_i is the grade-points awarded to the student for the subject based on his performance as per the above table.

SGPA will be rounded off to the second place of decimal and recorded as such.

b. Cumulative Grade Point Average (CGPA):

An up to date assessment of the overall performance of a student from the time he entered the Institute is obtained by calculating Cumulative Grade Point Average (CGPA) of a student. The CGPA is weighted average of the grade points obtained in all the courses registered by the student since s/he entered the Institute. CGPA is also calculated at the end of every semester (upto two decimal places).Starting from the first semester at the end of each semester (S); a Cumulative Grade Point Average (CGPA) will be computed as follows:

$$CGPA = \frac{\left[\sum_{i=1}^{m} c_i g_i\right]}{\left[\sum_{i=1}^{m} c_i\right]}$$

Where,

'm' is the total number of subjects from the first semester onwards up to and including the semester S,

'ci' is the number of credits allotted to a particular subject, and

'gi' is the grade-points awarded to the student for the subject based on his/her performance as per the above table.

CGPA will be rounded off to the second place of decimal and recorded as such.

7. Attendance Requirements:

a. All students must attend every lecture, tutorial and practical classes.

- **b.** To account for approved leave of absence (eg. representing the Institute in sports, games or athletics; placement activities; NCC/NSS activities; etc.) and/or any other such contingencies like medical emergencies, etc., the attendance requirement shall be a minimum of 75% of the classes actually conducted. If the student failed to maintain 75% attendance, he/she will be detained for appearing the successive examination. The Dean (Academics)/ Principal is permitted to give 10% concession for the genuine reasons as such the case may be. In any case the student will not be permitted for appearing the examination if the attendance is less than 65%.
- **c.** The course instructor handling a course must finalize the attendance 3 calendar days before the last day of classes in the current semester and communicate clearly to the students by displaying prominently in the department and also in report writing to the head of the department concerned.
- **d.** The attendance records are to be maintained by the course instructor and he shall show it to the student, if and when required.

8. Transfer of Credits:

The courses credited elsewhere, in Indian or foreign University/Institutions/ Colleges/Swayam Courses by students during their study period at DBATU may count towards the credit requirements for the award of degree. The guidelines for such transfer of credits are as follows:

- a. 20 % of the total credit will be considered for respective calculations.
- b. Credits transferred will be considered for overall credits requirements of the programme.
- c. Credits transfer can be considered only for the course at same level i.e. UG, PG etc.
- d. A student must provide all details (original or attested authentic copies) such as course contents, number of contact hours, course instructor /project guide and evaluation system for the course for which he is requesting a credits transfer. He shall also provide the approval or acceptance letter from the other side. These details will be evaluated by the concerned Board of Studies before giving approval. The Board of Studies will then decide the number of equivalent credits the student will get for such course(s) in DBATU. The complete details will then be forwarded to Dean for approval.
- e. A student has to get minimum passing grades/ marks for such courses for which the credits transfers are to be made.
- f. Credits transfers availed by a student shall be properly recorded on academic record(s) of the student.
- g. In exceptional cases, the students may opt for higher credits than the prescribed.

Dr. Babasaheb Ambedkar Technological University Lonere for Affiliated Colleges Mechanical Engineering and Allied Branches First year structure 23-24 as per NEP 2020

			Semester I								
Course Category	Category under NEP	Course Code	Course Title	T	eachii chem	ng e	E	valuati	on Sch	eme	
				L	Т	Р	CA	MSE	ESE	Total	No. of Credits
	Mandatory		Induction Program		3	-weel	ks dur	ation ir sen	n the b nester	eginnin	g of the
BSC1	Mandatory: Major	24AF1000BS101	Engineering Mathematics- I	3	0	-	20	20	60	100	3
BSC2	Open Elective	24AF1PHYBS102	Engineering Physics	3	-	-	20	20	60	100	3
BSC3	Open Elective	24AF1PHYBS103L	Engineering Physics Lab	-	-	2	60	-	40	100	1
ESC1	Mandatory: Major	24AF1EGDES104	Engineering Graphics	2		-	20	20	60	100	2
ESC3	Skill Enhancement course	24AF1EGDES105L	Engineering Graphics Lab	-	-	2	60	-	40	100	1
ESC2	Minor	24AF1000ES106	Basic Electrical and Electronics Engineering	3	-	-	20	20	60	100	3
ESC4	Minor	24AF1000ES107L	Basic Electrical and Electronics Lab			2	60	-	40	100	1
HSSM1	Ability Enhancement course	t 24AF1000HM108	Communication Skills	2	-	-	20	20	60	100	2
HSSM2	Ability Enhancement	t 24AF1000HM109L	Communication Skills Lab	-	-	2	60	-	40	100	1
PCC1	Vocational Skill courses	24AF1000VS110L	Workshop Practices			4	60	-	40	100	2
HSSM3	Co-curricular courses	s24AF1000CC112A/ 24AF1000CC112B/ 24AF1000CC112C	Basic Life Skills for Modern Youth/Yoga for Health /UHV	1		-	20	20	-	40	1
			Total	14	1	12					21

			Semester II								
Course Category	Category under NEP	Course Code	Course Title		Teaching Scheme		Ev	No. of Credits			
				L	Т	Р	CA	MSE	ESE	Total	
BSC4	Mandatory: Major		Engineering Mathematics- II	3	0	-	20	20	60	100	3
ESC5	Mandatory: Major		Engineering Mechanics	3		-	20	20	60	100	3
ESC6	Minor		Computer Programming	2	-	-	20	20	60	100	2
BSC5	Open Elective		Engineering Chemistry	3	-	-	20	20	60	100	3
ESC7	Open Elective (Self Study)		Energy and Environmental Engineering	2	-	-	20	20	60	100	2
BSC6	Open Elective		Engineering Chemistry lab	-	-	2	60	-	40	100	1
ESC8	Minor		Computer Programming Lab	-	-	2	60	-	40	100	1
PCC2	Skill Enhancement course		AutoCAD			2	60	-	40	100	1
PCC3	Vocational Skill courses		Basic Mechanical Practices			2	60	-	40	100	1
ESC9	Indian Knowledge System		IKS Bucket	2			20	20	60	100	2
HSSM3	Co-curricular courses		NSS/NCC/ Sports			4	20	20	-	40	2
ESC10	Minor		Engineering Mechanics Lab			2	60	-	40	100	1
			Total	13	1	14					22
	Total Credits: 21 +22 = 43 C Exit Option I : Qualifier fo Students opting for this op industry/organization. The 1. CNC Turning 4. Mechanical Draftsman The project should be evalu	Credit or UG Certificate tion, should complete t e topics may include bu 2. 3 D Printin 5. Refrigerati uated by a panel of exa	he well-defined project activity which t not restricted to the following : g on and Air-conditioning Practice miners.	h is equiva 3. Joinin 6. Vehicle	lent to g Prac e Main	4 Cro tices itenan	edits (1 ace	120hrs)	in the	appropr	iate

24AF1000BS101: Engineering Mathematics – I

Teaching Scheme:	Examination Scheme:
Lectures: 3hrs/week	Internal Assessment: 20 Marks
Tutorial:	Mid Term Test: 20 Marks
Credits: 3	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Apply the matrix technique (Linear algebra) to find solutions of system of linear equations arising in many engineering problems.
CO2	Demonstrate the concept partial derivatives and their applications to Maxima/ Minima, series expansion of multi valued functions.
CO3	Compute Jacobian of functions of several variables and their applications to engineering problems.
CO4	Identify and sketch of curves in various coordinate system.
CO5	Evaluate multiple integrals and their applications to area and volume.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Linear Algebra- Matrices

Inverse of a matrix by Gauss-Jordan method; Rank of a matrix; Normal form of a matrix; Consistency of non-homogeneous and homogeneous system of linear equations; Eigen values and Eigen vectors; Properties of eigen values and eigen vectors(without proofs); Cayley-Hamilton's theorem (without proof) and its applications.

Unit 2: Partial Differentiation

Partial derivatives of first and higher orders; Homogeneous functions – Euler's Theorem for functions containing two and three variables (with proofs); Total derivatives; Change of variables.

Unit 3: Applications of Partial differentiation

Jacobians - properties; Taylor's and Maclaurin's theorems (without proofs) for functions of two variables; Maxima and minima of functions of two variables; Lagrange's method of undetermined multipliers.

Unit 4: Reduction Formulae and Tracing of Curves

6hrs

6hrs

6hrs

Reduction formulae for $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$, $\int_0^{\frac{\pi}{2}} \cos^n x \, dx$, $\int_0^{\frac{\pi}{2}} \sin^n x \cos^n x \, dx$; Tracing of standard curves given in Cartesian, parametric & polar forms.

Unit 5: Multiple Integrals 6hrs

Double integration in Cartesian and polar co-ordinates; Evaluation of double integrals by changing the order of integration and changing to polar form; Triple integral; Applications of multiple integrals to find area as double integral, volume as triple integral and surface area.

Text Books

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.
- **3.** A course in Engineering Mathematics (Vol I) by Dr. B. B. Singh, Synergy Knowledgeware, Mumbai.
- 4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 2. A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd., Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course	Name Instructor	Host Institute
1.	Engineering	Prof. Jitendra	IIT Kharagpur
	Mathematics –I	Kumar	

24AF1PHYBS102: Engineering Physics

Teaching Scheme:	Examination Scheme:
Lectures: 3hrs/week Credits: 3	Internal Assessment: 20 Marks Mid Term Test: 20 Marks
	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Students will familiar with the principles of acoustic design of a hall and also methods of production of ultrasonic and its applications in various fields and also
	understand the concept of dielectric and polarization types.
CO2	Students acquired basic knowledge of interference, polarization. Students are able to understand the light propagation in fibre and use of Laser in Science and Engineering.
CO3	Students can apply the knowledge of quantum mechanics to set Schrödinger's equations.
CO4	Students are able to understand key principle and application of nuclear physics. Identify planes in crystal and characteristics measurements of cubic system.
CO5	Assimilate wide scope of advanced materials in modern developments and its role in

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit-1: Acoustics, Ultrasonics and Dielectrics

Acoustics: Introduction, Reflection of sound (reverberation and echo), absorption coefficient, Sabine's formula, Acoustical planning of building and factors affecting architectural acoustics of building.

Ultrasonic Waves: properties, Production of ultrasonics waves: Magnetostriction method and Piezoelectric method, Applications (any three in detail).

Dielectrics: Polar and non-polar dielectrics, Polarization, Types of Dielectric polarization.

Unit-2: Engineering Optics

Interference in thin film due to reflected light, Wedge shaped film, Newton' Rings, Applications, Polarization: Introduction, types of polarization, definition of optical activity & specific rotation, Lasers: Characteristics, spontaneous emission and stimulated emission; metastable state, population inversion, types of pumping, resonant cavity, He-Ne Laser, semiconductor laser, Applications of Lasers, Optical fibre: Acceptance cone, Numerical aperture, applications of fibre optics.

Unit-3: Quantum Mechanics

De-Broglie hypothesis of matter waves, Wave function and its physical significance, Heisenberg's

6 hrs

8 hrs

uncertainty principle and its application, Schrodinger's time dependent wave equation, Schrodinger's time independent wave equation, Introduction to quantum computing (bits & qubits, difference between classical and quantum computers).

Unit-4: Crystal Structure and Nuclear Physics

Crystal Structure: Fundamental concepts (lattice, basis, unit cell, crystal systems), Cubic structure: Number of atoms per unit cell, atomic radius, co-ordination number, packing fraction, Comparison of Aluminum (FCC) and Iron (BCC) at room temperature, Miller indices, Relation between ' ρ ' and 'a'.

Nuclear Physics: Introduction to mass defect, Q value of nuclear reaction, properties of α , β and γ rays, GM Counter.

Unit-5: Physics of Advanced Materials

Magnetic Materials: Types of magnetic materials, magnetic domain and hysteresis curve, Semiconductors: Conductivity of semiconductors, Hall Effect (derivation & Applications)

Superconductors: Definition, critical temperature, critical magnetic field, Meissner effect, type I & II superconductors, Introduction to BCS theory.

Nanomaterials: Introduction, top-down and bottom-up approach, Introduction to XRD, FESEM, VSM and CNT, Applications of nanomaterials.

Text /Reference books:

- 1) Introduction to Electrodynamics –David R. Griffiths.
- 2) Concept of Modern Physics Arthur Beizer. Tata McGraw-Hill Publishing Company Limited.
- 3) Optics Ajoy Ghatak. MacGraw Hill Education (India) Pvt. Ltd.
- 4) Science of Engineering Materials-C.M. Srivastava and C. Srinivasan. New Age International Pvt. Ltd.
- 5) Solid State Physics A.J. Dekker. McMillan India –Limited.
- 6) The Feynman Lectures on Physics Vol I, II, III.
- 7) Introduction to solid state physics Charles Kittel. John Willey and Sons
- 8) Engineering Physics M.N. Avadhanulu and P.G. Kshirsagar. S. Chand and Company LTD.
- 9) Engineering Physics R.K. Gaur and S. L. Gupta. Dhanpat-Rai Publications Pvt. Ltd.-New Delhi.
- 10) Fundamental of Physics Halliday and Resnik. Willey Eastern Limited.
- 11) Nanotechnology: An Introduction To synthesis, properties and applications of nanomaterials- Thomas Varghese, K. M. Balakrishna.

6 hrs

24AF1PHYBS103L: Engineering Physics Lab

Practical Scheme:	Examination Scheme:
Practical: 2hrs/batch	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	
CO2	
CO3	
CO4	
CO5	

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

At least 08 experiments should be performed from the following list

- 1. Newton's rings Determination of radius of curvature of Plano convex lens / wavelength of light.
- 2. Wedge Shaped film Determination of thickness of thin wire.
- 3. Half shade Polarimeter Determination of specific rotation of optically active material.
- 4. Laser Determination of wavelength of He-Ne laser light.
- 5. G.M. Counter Determination of operating voltage of G.M. tube
- 6. Crystal Plane Study of planes with the help of models related Miller Indices
- 7. P-N Junction Diode Characterisitics.
- 8. Hall Effect -Determination of Hall Coefficient
- 9. Four Probe Method-Determination of resistivity of semiconductor
- 10. Measurement of Band gap energy of Semiconductors
- 11. Experiment on fibre optics
- 12. B-H Curve Experiment
- 13. Ultrasonic interferometer.

24AF1EGDES104: Engineering Graphics

Teaching Scheme:	Examination Scheme:					
Lectures: 2hrs/week Credits: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End Semester Exam: 60 Marks (Duration: 04hrs)					

Course Outcomes:

CO1	Understand the basics of engineering graphics and its applications.
CO2	Describe the common terms used in design and drawing
CO3	Construct the positions of line for given conditions
CO4	Visualize the 2D and 3D views of the object
CO5	Ability to apply orthographic, sectional, auxiliary and isometric view in engineering drawing
C06	Understand the geometries of development of engineering projects

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												

Course Contents:

Unit 1: Introduction to Engineering Drawing

Principles of Engineering Graphics and their significance, usage of drawing instruments, line and lettering, Scales: Plain, Diagonal and Vernier Scale. Principles of Engineering Graphics; Orthographic Projection; Descriptive Geometry; Drawing Principles; Isometric Projection; Surface Development; Perspective; Reading a Drawing; Sectional Views; Dimensioning & Tolerances; True Length, Angle; intersection, Shortest Distance.

Unit 2: Projection of Points and Lines

Points is situated in different quadrants, Projection of lines inclined to both the planes, True length of straight lines and its inclination with reference plane, traces of line.

Unit 3: Projection of Planes & Solids

Projection of planes inclined to one plane & perpendicular to other plane, Auxiliary Plane, Projection of solid with axis inclined to both the planes.

Unit 4: Sections of solids & Development of Surfaces:

Sections of solids, Section planes perpendicular to one plane and parallel or inclined to other plane, Method of development, Developments of lateral surfaces of right solids.

4hrs

4hrs

4hrs

Unit 5: Orthographic & Isometric Views:

Principal of projection, Methods of projection, Orthographic projection, Isometric axes, lines & planes, Isometric Scale, Isometric drawing or isometric View

Reference/Text Books:

- 1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 46th Edition, 2003.
- 2. K. V. Nataraajan, A text book of Engineering Graphic, Dhanalakshmi Publishers, Chennai, 2006.
- 3. K. Venugopal and V. Prabhu Raja, Engineering Graphics, New Age International (P) Ltd, 2008.
- 4. Dhananjay A. Jolhe, Engineering Drawing with an Introduction to AutoCAD, Mc GrawHill Education, 2017.

Alternative NPTEL/SWAYAM Course:

Sr. No.	NPTEL Course	Name Instructor	Host Institute
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla, Prof. S. R. Kale	IIT Delhi

24AF1EGDES105L: Engineering Graphics Lab

Practical Scheme:	Examination Scheme:
Practical: 2hrs/batch	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	Get acquainted with the knowledge of various lines, geometrical constructions and construction of various kinds of scales.
CO2	Improve their imagination skills by gaining knowledge about points, lines and planes.
CO3	Become proficient in drawing the projections of various solids.
CO4	Gain knowledge about orthographic and isometric projections.
CO5	Understand different concepts of sectioning.

Mapping of course outcomes with program outcomes

Course					P	rogram	Outco	mes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Drawing Sheets:

- 1. Lines, lettering and dimensioning.
- 2. Geometrical Constructions.
- 3. Orthographic projections.
- 4. Projections of points and straight lines.
- 5. Projections of planes.
- 6. Projections of solids.
- 7. Section of solids.
- 8. Isometric Projections.

24AF1000ES106: Basic Electrical and Electronics Engineering

Teaching Scheme:	Examination Scheme:
Lectures: 2 hrs/week	Internal Assessment: 20 Marks
Credits: 2	Mid Term Test: 20 Marks
	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Apply basic ideas and principles of electrical engineering.
CO2	Identify protection equipment and energy storage devices.
CO3	Differentiate electrical and electronics domains and explain the operation of diodes and transistors.
CO4	Acquire knowledge of digital electronics
CO5	Design simple combinational and sequential logic circuits.

Mapping of course outcomes with program outcomes

Course					P	rogram	Outco	mes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Elementary Electrical Concepts

Fundamental of Electrical system Potential difference, Ohm's law, Effect of temperature on resister, resistance temperature coefficient, Electrical wiring system: Study of different wire gauges and their applications in domestic and industry. Energy Resources and Utilization: Conventional and nonconventional energy resources; Introduction to electrical energy generation from different resources, transmission, distribution and utilization, Advantages & Disadvantages of AC & DC transmission. Concept of Supply Demand, Power Factor, Need of unity factor.

Unit 2: Measurement of Electrical Quantities

Measurement of Voltage, Current, and Power; Measurement of 3 phase power; Study of Energy meters. Study of Electrical Storage devices: Batteries such as Nickel-cadmium (NiCd), Lithium- ion (Li-ion), Lithium Polymer (Li-pol.) batteries. Study of circuit breakers & Actuators (MCB & MPCB, Power Contactors & Aux contactors, Electro-Mechanical & Solid state Relays)

Unit 3: Diodes and Circuits

The P-N Junction Diode, V-I characteristics, Diode as Rectifier, specifications of Rectifier Diodes, Half Wave, Full wave, Bridge rectifiers, Equations for $I_{DC} V_{DC} V_{RMS}$, I_{RMS} , Efficiency and Ripple Factor for each configuration. Filters: Capacitor Filter, Choke Input Filter, Capacitor Input Filter (Π Filter), Zener Diode, Characteristics, Specifications, Zener Voltage Regulator, Types of Diodes: LED, Photodiode

4hrs

4hrs

Unit 4: Semiconductor Devices and Applications

Transistors: Introduction, Classification, CE, CB, and CC configurations, α , β , concept of gain and bandwidth. Operation of BJT in cut-off, saturation and active regions (DC analysis). BJT as an amplifier, biasing techniques of BJT, BJT as a switch.

Introduction to Digital Electronics: Number System, Basic logic Gates, Universal Gates, Boolean Postulates, De-Morgan Theorems

Reference/Text Books:

- 1. V.N. Mittal and Arvind Mittal, Basic Electrical Engineering, McGraw-Hill Publication.
- 2. Brijesh Iyer and S. L. Nalbalwar, A Text book of Basic Electronics, Synergy Knowledgeware Mumbai, 2017.ISBN:978-93-8335-246-3
- 3. Vincent DelToro, Electrical engineering Fundamentals, PHI Publication, 2nd Edition, 2011.
- 4. Boylstad, Electronics Devices and Circuits Theory, PearsonEducation.
- 5. Edward Hughes, Electrical Technology, PearsonEducation.
- 6. D. P. Kothari and Nagrath, Theory and Problems in Electrical Engineering, PHI Publication, 2011.
- 7. B. L. Theraja, Basic Electronics, S. Chand Limited, 2007.
- 8. Millman Halkias, Integrated Electronics-Analog and Digital Circuits and Systems, McGraw-Hill Publication, 2000.
- 9. Donald Neaman, Electronic Circuit Analysis and Design, McGraw-Hill Publication, 3rd Edition.
- 10. Donald Neaman, Electronic Circuit Analysis and Design, McGraw-Hill Publication, 3rd Edition.
- 11. Printed Circuit Boards Design & Technology, Walter C. Bosshart, McGraw-Hill Publication.

Note: Students are advised to use internet resources whenever required

24AF1000ES107L: Basic Electrical and Electronics Engineering Lab

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/batch	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	Able to connect circuit and to take readings basic parameters of electrical engineering.
CO2	To practically identify protection equipment and energy storage devices.
CO3	Able to differentiate electrical and electronics domains and explain the operation of diodes and transistors.
CO4	To acquire knowledge of digital electronics by handling practically
CO5	Design simple combinational and sequential logic circuits.

Mapping of course outcomes with program outcomes

Course					Р	rogran	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents: At least 08 experiments should be performed from the following list List of Experiments:

- 1. Measure voltage current and power in 1 phase circuit with resistive load.
- 2. Measure voltage current and power in R L series circuit.
- 3. Determine transformation ratio (K) of 1 phase transformer
- 4. Connect single phase transformer and measure input output quantities.
- 5. Identify various passive electronic components in the given circuit.
- 6. Connect resistors, capacitors in series and parallel combination on bread board and measure its value using multimeter.
- 7. Identify various active electronic component in the given circuit.
- 8. Test the performance of PN junction diode.
- 9. Test the performance of Zener diode.
- 10. Test the performance of NPN transistor.

24AF1000HM108: Communication Skills

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Internal Assessment:20 Marks
Credits: 2	Mid Term Test: 20 Marks
	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Students would be more confident while using English
CO2	Engage in analysis of speeches or discourses and several articles
CO3	Identify and control anxiety while delivering speech
CO4	Write appropriate communications(Academic/Business)
CO5	Prepared to take the examinations like GRE/TOFEL/IELTS
CO6	Identify and control the tone while speaking
CO7	Develop the ability to plan and deliver the well-argued presentations

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
CO7												

Course Contents:

Unit 1: Communication and Communication Processes

Introduction to Communication, Forms and functions of Communication, Barriers to Communication and overcoming them, Verbal and Non-verbal Communication

Reading Skills: Introduction to Reading, Types of Readers and Reading, Barriers to Reading, Strategies for Reading, Comprehension.

Listening Skills : Importance of Listening, Types of Listening, Barriers to Listening.

Unit 2: Speaking & Verbal & Non-verbal Communication

Use of Language in Spoken Communication, Principles and Practice of Group Discussion, Public Speaking (Addressing Small Groups and Making Presentation), Interview Techniques, Appropriate Use of Non-verbal Communication, Presentation Skills, Extempore, Elocution.

Unit 3: Study of Sounds in English

Introduction to phonetics, Study of Speech Organs, Study of Phonemic Script, Articulation of Different Sounds in English.

2hrs

4hrs

Unit 4: English Grammar

Grammar: Forms of Tenses, Articles, Prepositions, Use of Auxiliaries and Modal Auxiliaries, Synonyms and Antonyms, Common Errors.

Unit 5: Writing Skills

Features of Good Language, Writing Emails, Technical Reports: Report Writing: Format, Structure and Types

Letter Writing: Types & Layouts, Letters and Applications, Use of Different Expressions and Style, Writing Job Application Letter and Resume.

Text book:

Mohd. Ashraf Rizvi, Communication Skills for Engineers, Tata McGraw Hill

Reference Books:

- 1. Sanjay Kumar, Pushp Lata, Communication Skills, Oxford University Press, 2016
- 2. Meenakshi Raman, Sangeeta Sharma, Communication Skills, Oxford University Press, 2017
- 3. Teri Kwal Gamble, Michael Gamble, *Communication Works*, Tata McGraw Hill Education, 2010
- 4. Anderson, Kenneth. Joan Maclean and Tossny Lynch. Study Speaking: A Course in Spoken English for Academic Purposes. Cambridge: CUP, 2004.
- 5. Aswathappa, K. Organisational Behaviour, Himalayan Publication, Mumbai (1991).
- 6. Atreya N and Guha, *Effective Credit Management*, MMC School of Management, Mumbai (1994).
- 7. Balan, K.R. and Rayudu C.S., *Effective Communication*, Beacon New Delhi (1996).
- 8. Bellare, Nirmala. *Reading Strategies*. Vols. 1 and 2. New Delhi. Oxford University Press, 1998.
- 9. Bhaskar, W. W. S & Prabhu, N. S.: *English through Reading*, Vols. 1 and 2. Macmillan, 1975.
- 10. Black, Sam. Practical Public Relations, E.L.B.S. London (1972).
- 11. Blass, Laurie, Kathy Block and Hannah Friesan. Creating Meaning. Oxford: OUP, 2007.
- 12. Bovee Courtland, L and Thrill, John V. *Business Communication*, Today McGraw Hill, New York, Taxman Publication (1989).

4hrs

24AF1000HM109L: Communication Skills Lab

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/batch	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	
CO2	
CO3	
CO4	
CO5	

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

List of Practicals (Any 10 PR sessions can be conducted)

- 1. How to introduce oneself? (2hrs)
- 2. Introduction to Phonemic symbols (2hrs)
- 3. Articulation of sounds in English with proper manner (2hrs)
- 4. Read and write pronunciations/transcriptions from the dictionary (2hrs)
- 5. Practice and exercises on pronunciations of words (2hrs)
- 6. Introduction to stress and intonation (2hrs)
- 7. Rapid reading sessions (2hrs)
- 8. Know your friend (2hrs)
- 9. How to introduce yourself (2hrs)
- 10. Extempore (2hrs)
- 11. Group discussion (2hrs)
- 12. Participating in a debate (2hrs)
- 13. Presentation techniques (2hrs)
- 14. Interview techniques (2hrs)

24AF1000VS110L: Workshop Practice

Teaching Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Internal Assessment: 60 Marks
Credits: 2	External Exam: 40 Marks

Course Outcomes:

CO1	Prepare simple wooden joints and parts using wood working tools and machines (Apply)
CO2	Apply the fitting and plumbing skills and produce a Fitting/Plumbing job with specified dimensions using fitting and plumbing tools (Apply)
CO3	Practice sheet metal tools and machine to develop simple sheet metal article (Apply)
CO4	Practice edge preparation for simple Lap, Butt, T joint using Arc/Gas/Resistance welding using welding hand tools and equipment (Understand)
CO5	Demonstrate machining processes including turning, facing, step turning, drilling and parting (Understand)

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				2		2		3		2	3
CO2	3				2		2		3		2	3
CO3	3				2		2		3		2	3
CO4	3				2		2		3		2	3
CO5	3				2		2		3		2	3

Course Contents

List of Practicals:

- 1. Wood sizing exercises in planning, marking, sawing, chiseling and grooving to make half lap joint and cross lap joint.
- 2. A job involving cutting, filing to saw cut, filing all sides and faces, corner rounding, drilling and tapping on M. S. plates.
- 3. A job on use of plumbing tools and preparation of plumbing line involving fixing of water tap and use of elbow, tee, union and coupling, etc.
- 4. Making a small parts using GI sheet involving development, marking, cutting, bending, brazing and soldering operations- i)Tray ii) Funnel and similar articles.
- 5. Exercise in Arc welding (MMAW) to make a square butt joint.
- 6. Exercise in Resistance (Spot) welding to make a lap joint.
- 7. Ajobusing power operated tools related to sheet metal work, Welding, Fitting, Plumbing, Carpentry and patternmaking.
- 8. A job on turning of a Mild Steel cylindrical job using center lathe.

Contents:

a) Carpentry: Technical Terms related to wood working, Types of wood, Joining materials,

Types of joints - Mortise and Tenon, Dovetail, Half Lap, etc., Methods of preparation and applications, Wood working lathe, safety precautions.

- b) **Welding:** Arc welding welding joints, edge preparation, welding tools and equipment, Gas welding types of flames, tools and equipment, Resistance welding Spot welding, joint preparation, tools and equipment, safety precautions.
- c) **Fitting and Plumbing:** Fitting operation like chipping, filing, right angle, marking, drilling, tapping etc., Fitting hand tools like vices, cold chisel, etc. Drilling machine and its operation, Different types of pipes, joints, taps, fixtures and accessories used in plumbing, safety precautions.
- d) **Sheet Metal Work:** Simple development and cutting, bending, Beading, Flanging, Lancing and shearing of sheet metal, Sheet metal machines Bending Machine, Guillotine shear, Sheet metal joints, Fluxes and their use.
- e) **Machine shop**: Lathe machine, types of lathes, major parts, cutting tool, turning operations, safety precautions

Reference/Text Books:

- 1. K. C. John, Mechanical Workshop Practice, Prentice Hall Publication, New Delhi, 2010.
- 2. Hazra and Chaudhary, Workshop Technology-I, Media promoters & Publisher private limited.

24AF1000CC112A: Basic Life-Skills for Modern Youth

Teaching Scheme:	Examination Scheme:
Lecture: 2 hr/week Credit: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End-Sem Exam: 60 Marks

Course Outcomes:

CO1	Explain the methods of stress management
CO2	Explain the benefits of positive thinking
CO3	Demonstrate the listening skills and methods to improve it.
CO4	Decision making skill
CO5	Demonstrate with examples critical and creative thinking
CO6	Explain the importance of goal setting.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Total 16 topics are covered in three modules under this course. Ideally, 2 lessons will be covered in a week in an 8-week session. Each lesson is designed to be delivered for 90 mins for discussion, activities, and group work.

Unit 1: Self-Awareness

Knowing and living with oneself: This theme covers topics that foster the student's relationship and under- standing of themselves including their thoughts, feelings and behaviours: Stress management, Emotional regulation, Positive thinking, Self-esteem

Unit 2: Interpersonal Skills

Knowing and living with others: The lessons in this theme explore how to establish healthy, respectful relation- ships; lessons highlight the use of non-violent communication, assertiveness and dispute resolution: Empathy, Listening skills, Interpersonal effectiveness, Handling disputes, Managing relationships, Confident communication

Unit 3: Thinking Skills

Making effective decisions: The skills taught in this theme include concrete ways of thinking and executing tasks so that youth will make effective decisions, set relevant goals, and be informed consumers of information: Goal setting, Decision making, Problem solving, Critical and creative thinking, Executive function skills, Resilience (bouncing back from adversity)

Text-Books/Reference Books:

- 1. Life-Skill Education-Planning and Research published by WHO
- 2. Curriculum for Life Skills (Jeevan Kaushal) by UGC

24AF1000CC112B: Yoga for Health

Teaching Scheme:	Examination Scheme:
Lecture: 2 hr/week Credit: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End-Sem Exam: 60 Marks

Course Outcomes:

CO1	What are current trends of career in physical education
CO2	Importance of physical fitness
CO3	What are components of physical fitness and wellness
CO4	What is meaning and importance of yoga in physical and mental fitness?
CO5	Demonstration of various asanas in standing posture and sitting posture.
CO6	Explain various relaxation methods and meditation techniques.

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Changing trends & Career in Physical Education- Meaning & definition of physical education; its aims & objectives; career options (2 Hrs theory)

Unit 2: **Physical Fitness, Wellness & Lifestyle-** Meaning & importance of physical fitness, wellness & lifestyle; Components of Physical fitness & wellness *(Theory 4 Hrs)*.

Unit 3: **Yoga**: History and development, traditional school of yoga. Meaning and importance of yoga; (Theory 2 Hrs)

Warm up: Neck bending, shoulder bending, neck rotation, shoulder movement, trunk movement, knee movement, ankle movement

Yogasanas:

- A) Standing posture (Palm tree posture, Padahastasana, Ardhacakrasana, Trikunasana), Pranayam,
- *B) Sitting posture*: (Padmasana, Bhadrasana, Dandasana, Vajrasana, Adhrauttarasana, Uttarasana, Sasakasana, Uttaramandukasana, Vakrasana,)
- *C) Prone posture*: (Makarasana, Bhujangasana, Salabhasna, Setubandhanasana, Naukasana, Uttanapadasana, Ardhasalsana, Swasana).Surya pranam etc.

(Theory 4 Hrs; Practical 12 Hrs) **Pranayam and Shanti Prarthana**: Kapalbhati, Anulam-Viloma, Bhramari Pranayama, Kapalbhati, Sitali Pranayama (1 hr Theory; 1 hr Practical).

Unit 4: Relaxation methods (Theory 1 Hr; Practical 1 Hr)

Unit 5: Meditation- Introduction to various meditation techniques, yoga for concentration & related asanas benefits of meditation *(Theory 1 Hr; Practical 1 Hr)*

Textbooks & Reference Books

- 1. Rath, S.S. Physical Fitness and Wellness
- 2. A Textbook on Yoga for Health by NCERT

24AF1000CC112C: Universal Human Values (UHV)

Teaching Scheme:	Examination Scheme:
Lecture: 2 hr/week Credit: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End–Sem: 60 Marks

Course Outcomes:

CO1	Explain need and process for value education									
CO2	Demonstrate right understanding of happiness and prosperity									
CO3	Explain the correct understanding of harmony, prosperity, physical need and swasthya									
CO4	Differentiate between harmony in family, society and human relationship									
CO5	Explain the harmony at all levels of human existence									
CO6	Establish the interrelation between holistic understanding harmony and professional ethics.									

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents

Unit 1: Need, basic guidelines, contents and process for value education

Understanding the need, basic guidelines, content and process for Value Education, Self-Exploration-what is it? – its content and process; 'Natural Acceptance' and Experiential Validationas the mechanism for self- exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfil the above human aspirations: understanding & living in harmony at various levels.

Unit 2: Understanding harmony in human being- harmony in myself YSELF

The understanding human being as a co-existence of the sentient 'T' and the material 'Body, Understanding the needs of Self ('T') and 'Body' – Sukh and Suvidha, Understanding the Body as an instrument of 'T' (I being the doer, seer, and enjoyer), Understanding the characteristics and activities of 'T' and harmony in T, Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam & Swasthya.

Unit 3: Understanding harmony in family and society - harmony in human relationship. YSELFN RELATIONSHIP

Understanding harmony in the Family- the basic unit of human interaction; Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay tripti; Trust (Vishwas) and Respect (Samman) as the foundational vales of relationship; Understanding the meaning of Vishwas; Difference between intention and competence; Understanding the meaning of Samman; Difference between respect and differentiation; the other salient values in relationship; Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals;Visualizing a universal harmonious order in society; Undivided Society (Akhand Samaj); Universal Order (Sarvabhaum Vyawastha) – from family to world family.

Unit 4: Understanding harmony in the nature and in existence IT-4: UNDERSTAINY

Understanding the harmony in the Nature; Interconnectedness and mutual fulfilment among the four orders of nature – recyclability and self-regulation in nature; Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space; Holistic perception of harmony at all levels of existence.

Unit 5: Implications of the above holistic understanding harmony on professional ethics,

Natural acceptance of human values, The definitiveness of Ethical Human Conduct, The basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models, Case studies of typical holistic technologies, management models and production systems, Strategy for the transition from the present state to Universal Human Order: a) At the level of the individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.

Textbooks/Reference books:

- A Foundation Course in Human Values and Professional Ethics, R. R. Gaur, R. Asthana, G. P. Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019, ISBN 978-93-87034-47-1
- Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R. R. Gaur, R. Asthana, G. P. Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019, ISBN 97893-87034-53-2

Semester II Engineering Mathematics II

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Internal Assessment: 20 Marks
Tutorial:	Mid Term Test: 20 Marks
Credits: 3	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Discuss the need and use of complex variables to find roots, separate complex quantities and to establish relation between circular and hyperbolic functions.
CO2	Solve first and higher order differential equations and apply them as mathematical modeling in electric and mechanical systems.
CO3	Determine Fourier series representation of periodic functions over different intervals.
CO4	Demonstrate the concept of vector differentiation and interpret the physical and geometrica meaning of gradient, divergence &curl in various engineering streams.
CO5	Apply the principles of vector integration to transform line integral to surface integral, surface to volume integral &vice versa using Green's, Stoke's and Gauss divergence theorems.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Complex Numbers

Definition and geometrical representation ; De-Moivre's theorem(without proof) ; Roots of complex numbers by using De-Moivre's theorem ; Circular functions of complex variable – definition ; Hyperbolic functions ; Relations between circular and hyperbolic functions ; Real and imaginary parts of circular and hyperbolic functions ; Logarithm of Complex quantities.

Unit 2: Ordinary Differential Equations of First Order and First Degree and Their Applications

9hrs

Linear equations; Reducible to linear equations (Bernoulli's equation); Exact differential equations; Equations reducible to exact equations; Applications to orthogonal trajectories, mechanical systems and electrical systems.

Introductory remarks - complementary function, particular integral; Rules for finding complementary functions and particular integrals; Method of variation of parameters; Cauchy's homogeneous and Legendre's linear equations.

Unit 4: Fourier Series

Introductory remarks- Euler's formulae ; Conditions for Fourier series expansion - Dirichlet's conditions ; Functions having points of discontinuity ; Change of interval ; Odd and even functions - expansions of odd and even periodic functions ; Half -range series.

Unit 5: Vector Calculus

Scalar and vector fields: Gradient, divergence and curl; Solenoidal and irrotational vector fields; Vector identities (statement without proofs); Green's lemma, Gauss' divergence theorem and Stokes' theorem (without proofs).

Text Books

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.
- 3. A course in Engineering Mathematics (Vol II) by Dr. B. B. Singh, Synergy Knowledgeware, Mumbai.
- 4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- 2. A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd., Singapore.
- 3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

General Instructions:

1. The tutorial classes in Engineering Mathematics-II are to be conducted batchwise. Each class should be divided into three batches for the purpose.

2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.

3. The minimum number of assignments should be eight covering all topics.

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute
1	Engineering	Prof. Jitendra Kumar	IIT Kharagpur
	Mathematics II		

9hrs

9hrs

9hrs

D. .
Engineering Mechanics

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Internal Assessment: 20 Marks
Tutorial:	Mid Term Test: 20 Marks
Credits: 3	End Semester Exam: 60 Marks

Course Outcomes:

CO1	Apply fundamental Laws of Engineering Mechanics
CO2	Apply Conditions of static equilibrium to analyze given force system
CO3	Compute Centre of gravity and Moment of Inertia of plane surfaces
CO4	Compute the motion characteristics of a body/particle for a Rectilinear Motion
CO5	Know and discuss relation between force and motion characteristics

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit-1 Introduction and Fundamental principles

Introduction: objectives of engineering analysis and design, idealization of engineering problems, simplification of real 3D problems to 2-D and 1-D domain, basis of assumptions, introduction to types of supports and loads, free body diagram, laws of motion.

Fundamental principles: force systems, resolution and composition of a forces, resultant, couple, moment, Lami's theorem Varignon's theorem.

Unit- 2 Equilibrium

Static equilibrium: analytical and graphical conditions of equilibrium, equilibrium of coplanar concurrent forces, coplanar non concurrent forces, parallel forces. Centroid of composite shapes, moment of inertia of planer sections.

Friction: Coulomb's laws, friction angles, wedge friction, sliding friction.

Unit-3 Beams and Trusses

Beams: Types of beam, loads and supports, beam reactions for simply supported beams, continuous beams (with 3 supports only)

Simple trusses: Types of trusses, analysis of plane trusses by method of joints and method of sections.

Unit-4 Kinematics of Particle

Kinematics of linear motion: types of motion, laws of motion, kinematics of particles, rectilinear motion, constant and variable acceleration, study of motion diagrams, motion under gravity, projectile motion, concept of relative velocity

6hrs

6hrs

6hrs

Unit- 5 Kinetics and Work, Power, Energy

Kinetics of particle: D'Alembert's principle: applications in linear motion, kinetics of rigid bodies, applications in translation.

Work done by a force, potential energy, kinetic energy of linear motion and rotation, work energy equation, conservation of energy, power. Collision of elastic bodies, Impulse momentum principle.

Text Books:

- 1. S. Timoshenko, D. H. Young, "Engineering Mechanics", McGraw Hill, 1995.
- 2. Tayal A. K., "Engineering Mechanics", Umesh Publications, 2010.
- 3. Bhavikatti S. S., Rajashekarappa K. G., "Engineering Mechanics", New Age International Publications,

2nd Edition.

4. Beer, Johnston, "Vector Mechanics for Engineers", Vol. 1: Statics and Vol. 2: Dynamics,

McGraw Hill Company Publication, 7th edition, 1995.

Reference Books:

- 1. Irving H. Shames, "Engineering Mechanics -Statics and Dynamics", Pearson Educations, Fourth edition, 2003.
- 2. McLean, Nelson, "Engineering Mechanics", Schaum's outline series, McGraw Hill Book Company, N. Delhi, Publication.
- 3. Singer F. L., "Engineering Mechanics -Statics & Dynamics", Harper and Row Pub. York.
- 4. Junnarkar S.B., and Shah, H.J. "Applied Mechanics", Charotar Publication House Anand

Computer Programming

Teaching Scheme:I	Examination Scheme:
Lecture: 2 hrs/weekITutorial:NCredits: 2H	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End Semester Exam: 60 Marks

Course Outcomes:

CO1	Able to implement flow chart and algorithm, Understand the components of computer and C programming development.
CO2	Able to understand and apply mathematical operators, tokens and data types.
CO3	Able analyse and develop C program using control flow statements, functions and structure.
CO4	Able to design, develop and analyse C program using array
CO5	Able to develop and implement C program by using different C proramming concepts.

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Process of programming

4hrs

Editing, Compiling, Error Checking, executing, testing and debugging of programs. IDE commands. Eclipse for C Program development, Flowcharts, Algorithms.

Unit 2: Types, Operators and Expressions

4hrs

Variable names, Data types, sizes, constants, declarations, arithmetic operators, relational and logical operators, type conversions, increment and decrement operators, bitwise operators, assignment operators and expressions, conditional expressions precedence and order of evaluation.

Unit 3: Control Flow

4hrs

Statements and Blocks. If-else, else-if switch Loops while and for, do-while break and continue goto and Labels. Functions and Program Structure: Basic of functions, functions returning no integers external variables scope rules.

Unit 4: Arrays in C

Initializing arrays, Initializing character arrays, multidimensional arrays.

Unit 5: Structures C

4hrs

Basics of structures, structures and functions arrays of structures. **Pointer in C**. Pointers to integers, characters, floats, arrays, structures. *Special Note: Topic of Pointers in C is only for lab exercises and not for end semester examinations*.

Reference/Text Books:

- 1. Brain W. Kernighan & Dennis Ritchie, The C Programming Language, Prentice Hall, 2nd Edition, 1988.
- 2. R. S. Bichkar, Programming with C, Orient Blackswan, 1 st Edition, 2012.
- 3. Herbert Schildit, C the Complete Reference, McGraw-Hill Publication, 2000.
- 4. Balguruswamy, Programming in C, PHI.
- 5. Yashwant Kanitkar, Let Us C, PHI

Engineering Chemistry

Examination Scheme:
Internal Assessment: 20 Marks
Mid Term Test: 20 Marks
End Semester Exam: 60 Marks

Course Outcomes:

CO1	Students should be able to understand and explain the basic concepts of Water
	treatment and capable to explain softening processes and water characteristics.
CO2	Students should be able to explain analysis, Calorific value of fuel and explain
	lubricants, its properties and industrial importance.
CO3	Students should know the concepts of Electrochemistry and its importance.
CO4	Student should be able to understand and explain various instrumental methods of Analysis.
CO5	Student should be able to understand and explain properties and uses of Engineering materials such as Cement, Gypsum plaster, Rubber etc.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

Unit 1: Water Treatment

Introduction, Hard and Soft water, Disadvantages of hard water, Softening of water :Ion exchange process, Hot lime –soda process, Reverse Osmosis (RO), Hardness and its determination by EDTA method, Dissolved oxygen (DO) and its determination by Winkler's method, Numerical based on hardness, Treatment of water for domestic purpose- aeration, sedimentation and disinfection.

Unit 2: Fuels and Lubricant

Fuels: Introduction, Classification of fuel, Calorific value of a fuel, Characteristics of a good fuel, Calorific value by- Bomb Calorimeter, Boy's Calorimeter and its numerical. Analysis of coal: Proximate and Ultimate analysis, Liquid fuel- Refining of petroleum.

Lubricant: Introduction, classification of lubricant - Solid, Semi -solid and Liquid

lubricant, Properties of lubricant: Physical and Chemical properties of lubricant – viscosity surface tension, Flash point and Fire point, Acid value , Saponification value.

8hrs

Unit 3: Electrochemistry

Introduction, Electrical conductance, Conductance measurement by Wheatstone bridge method, Cell constant, Conductometric titrations, Glass electrode and its application for pH measurement, Ostwald's theory of acid- base indicator, Fuel cell , working of H2-O2 fuel cell and its applications, Rechargeable Batteries: Lithium ion batteries and Lithium batteries.

Unit 4: Instrumental Methods of Analysis

UV-Visible spectroscopy: Introduction, Laws of absorption: Lambert's- Beer's law, Instrumentation and working of double beam spectrophotometer.Flame Photometry: Introduction, Principle and workingChromatography: Introduction, Classification, Thin layer chromatography (TLC).IR spectroscopy: Introduction, Principle, Range of IR radiations, Double beam IRSpectrophotometer and applications of IR Spectroscopy.

Unit 5: Engineering Materials

Cement: Introduction, Portland Cement, Chemical Composition of Cement Gypsum: Plaster of Paris, Properties and Uses

High polymers: Introduction. Types of Polymerization, Thermoplastic and

Thermosetting resin, Constituent of Plastic, Synthesis of Urea formaldehyde and its Properties and Uses, Brief discussion on Natural Rubber, Synthesis of Styrene - butadiene rubber and its Properties and uses.

Textbooks:

1. Jain P.C & Jain Monica, Engineering Chemistry, Dhanpat Rai& Sons, Delhi, 1992.

- 2. Bhal &Tuli, Text book of Physical Chemistry, S. Chand & Company, New Delhi.
- 3. Shikha Agarwal, Engineering Chemistry- Fundamentals and applications, Cambridge Publishers 2015.

4. Gurudeep Chatwal and Sham Anand, Instrumental methods of Chemical Analysis, Himalaya Publishing House, New Delhi

5. Polymer Science , V. R. Gowarikar , New Age International Publication

Reference books:

1. Barrow G.M., Physical Chemistry, McGraw-Hill Publication, New Delhi.

- 2. O. G. Palanna, Engineering Chemistry, Tata McGraw-Hill Publication, New Delhi.
- 3. WILEY, Engineering Chemistry, Wiley India, New Delhi 2014.
- 4. S.S.Dara, Engineering Chemistry, McGraw Hill Publication, New Delhi.

5. Willard, Hobart H.; Merritt, Lynne L., Jr.; Dean, John A. Instrumental Methods of Analysis, American Chemical Society

7hrs

7hrs

Energy and Environment Engineering

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week Credits: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End-Sem: 60 Marks

Course Outcomes:

CO1	List the conventional and renewable sources of energy, energy conservation principles, environmental protection practices (Remember Level)
CO2	Explain the operation of conventional power plants and working principle of renewable power generation (Understand Level)
CO3	Compare merits and demerits of the conventional power generation and renewable power generation methods (Understand Level)
CO4	List and discuss the energy conservation practices and environmental protection principles (Remember Level)
CO5	Demonstrate the sources, effects and control measures of air, water, noise and soil pollution (Understand Level)

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1				1	1							
CO2	1	1			1	1						1	
CO3	1	1			1	1						1	
CO4	1				1	1			1	1	1	1	
CO5	1				2	1		1	1	1	1	1	

Course Contents:

Unit 1: Conventional Power Generation

Steam power station, Nuclear power plant – Gas turbine power plant- Hydro power station: Schematic arrangement, advantages and disadvantages, Thermo electric and thermionic generators, Environmental aspects for selecting the sites and locations of power plants.

Unit 2: Renewable Power Generation

Solar, Wind, Biogas and Biomass, Ocean Thermal energy conversion (OTEC), Tidal, Fuel cell, Magneto Hydro Dynamics (MHD): Schematic arrangement, advantages and disadvantages.

Unit 3: Energy Conservation and Environment Protection

The Energy and Environment Relationship, carbon dioxide (CO2) emissions and climate change, Energy Conservation and Environmental Protection, Energy conservation: Scope for energy conservation and its benefits, Energy conservation in day-to-day life, such as lighting, cooking, transportation etc. Environment protection in everyday life: reuse, recycle, water

4hrs

4hrs

conservation etc.

Unit 4: Air Pollution

Environment and Human health - Air pollution: sources- effects- control measures - Particulate emission, air quality standards, and measurement of air pollution.

Unit 5: Water Pollution

4hrs

Water pollution- effects- control measures- Noise pollution –effects and control measures, Disposal of solid wastes, Bio-medical wastes-Thermal pollution – Soil pollution -Nuclear hazard.

Reference/Text Books:

- 1. A Chakrabarti, M. L Soni, P. V. Gupta, U. S. Bhatnagar, A Text book of Power System Engineering, Dhanpat Rai Publication.
- 2. Rai. G. D., Non-Conventional Energy Sources, Khanna Publishers, Delhi, 2006.
- 3. Rao S., Parulekar B.B., Energy Technology-Non conventional, Renewable and Conventional, Khanna Publishers, Delhi, 2005.
- 4. Glynn Henry J., Gary W. Heinke, Environmental Science and Engineering, Pearson Education, Inc, 2004.
- 5. J. M. Fowler, Energy and the Environment, McGraw-Hill, 2nd Edition, 1984.
- 6. Gilbert M. Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Prentice Hall, 2003.

Engineering Chemistry Laboratory

Practical Scheme:	Examination Scheme:
Practical: 2hrs/week	Internal Assessment: 60 Marks
Credit: 1	Practical Examination / Oral: 40 Marks

Course Outcomes:

CO1	Student should able to understand and perform water quality monitoring parameters
	such as Chloride content, Hardness and Dissolve Oxygen etc.
CO2	Student should able to understand and perform the Physical properties in the liquid
	state such as Viscosity, and Surface Tension.
CO3	Student should able to understand and perform the Chemical properties of the
	lubricant.
CO4	Student should able to know and perform the rate of corrosion of metals and alloys.
CO5	Student should able to know and perform the quantitative analysis such as pH-metry
	and Conductometry (Instrumental methods).

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

List of Experiments: (Perform any 8-10 Experiments)

- 1. Determination of Hardness of water sample by EDTA method.
- 2. Determination of Chloride content in water sample by precipitation titration method.
- 3. Determination of Dissolve Oxygen in water by Iodometric method.
- 4. Determination of Percent purity of Bleaching Powder.
- 5. pH-metric Titration (Acid Base titration)
- 6. Conductometric Titration (Acid Base titration)
- 7. Surface tension
- 8. Viscosity
- 9. To determine Acidity of water sample.
- 10. To determine Calorific value of a fuel.
- 11. Determination of Acid value of an oil sample.
- 12. Determination of Saponification value of an oil sample.
- 13. To verify Beer's-Lambert's law.
- 14. To determine Alkalinity water sample.
- 15. To determine the maximum wavelength of absorption of a given solution by colorimeter.

16. Experiments on Chromatography.

Reference Books:

- 1. Systematic experiments in Chemistry, A. Sethi, New Age International Publication, New Delhi.
- 2. Practical Inorganic Chemistry, A. I. Vogel, ELBS Pub.
- 3. Practical in Engineering Chemistry, S. S. Dara

Computer Programming Laboratory

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/week	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	Able to explain programming fundamentals.
CO2	Able to demonstrate programming with operators and control structures
CO3	Able to implement advanced programming concepts in C arrays, structures, strings, and pointers.
CO4	Able to solve real-life industrial problems using C concepts.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

List of Practicals:

- 1. Assignment on Flow Chart.
- 2. A Simple program to display a message "Hello world" on screen.
- 3. A Program to take input from user and display value entered by user on screen.
- 4. Basic example for performing different C Operations using operator. (With and without using scanf()).
- 5. Basic Program on Operator. (Using scanf()).
- a) Program to find and print area, perimeter and volume of geometric objects.
- b) Program to check a number entered by user is Perfect number or not.
- 6. Program to find maximum and minimum between two numbers given by user using if-else and conditional Operators.
- 7. Program to swap two numbers.
- 8. Program to print square and factorial of an entered number using while loop.

- 9. Program to check a number is Palindrome number or not.
- 10. Program to check Armstrong number.
- 11. Program to check and generate prime numbers up to n.
- 12. Program to find GCD of two entered numbers.
- 13. Program to find maximum and minimum from n entered numbers.
- 14. Program to print alternate numbers from n entered numbers.
- 15. Program to search an element in an Array using linear and binary search.
- 16. Program to print entered numbers in ascending order using sorting.
- 17. Program to print addition, subtraction and multiplication of Matrices.
- 18. Program to find length of string. (With and without using library function).
- Programs demonstrating use of Structures, Arrays of Structures and Structure containing arrays.
- 20. Programs demonstrating use of pointers to integers, floats, char, strings, structures and arrays.

AutoCAD Lab

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/week	Internal Assessment: 60 Marks
Credit: 1	External Exam: 40 Marks

Course Outcomes:

CO1	Know various tools and functions of AutoCAD
CO2	To be able to draw simple sketches of engineering objects using AutoCAD
CO3	To apply various basic and advance editing tools
CO4	To be able to prepare a printable drawing using AutoCAD
CO5	To be able to add various detailing to the drawing

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

List of Practical's/Assignments

1) Introduction of AUTOCAD: Learning about the user interface of AutoCAD, such as panels, ribbon, model space, etc. Understanding the setup tips of AutoCAD, Learning basic drawing tools, Using the Mouse, Keyboard, and Enter Key to work quickly and efficiently in AutoCAD

2) Starting with Sketching: Lines, Circles, Rectangles, Polygons

3) Editing the sketches: Move, Copy, Rotate, Mirror, Scale

4) Advanced Editing Commands: Trim and Extend, Fillet and Chamfer, Polyline Edit, Spline, Offset, Explode, Join

5) Printing Your Drawing: Using Layouts and Viewports, Scaling Viewports, Model Space vs. Paper Space in Layouts, Printing from Layout Tabs, Printing from the Model Tab

6) Adding detailing to the drawing: Adding text, The Multileader Tool, Hatching, Adding Dimensions Using Dimensioning Tools, Dimensioning in a Layout Tab vs. the Model Tab, Using Dimension Styles, Editing Dimensions

Basic Mechanical Practices Lab

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/week	Internal Assessment: 60 Marks
Credit: 1	EXTERNAL EXAM. 40 MIAIKS

Course Outcomes:

CO1	Identify and apply suitable power tools for various workshop processes (Apply)									
CO2	Prepare a piping layout using different plumbing tools and fittings (Understand)									
CO3	Make the use of joining practices using riveting, soldering and brazing (Apply)									
CO4	Make use of blanking, punching, drawing and bending to make a simple part (Analyze)									
CO5	Practice assembly /disassembly skills for the engine or machine system (Understand)									

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1	1					2	1
CO2	1				1	1					2	1
CO3	1				1	1					2	1
CO4	1				1	1					2	1
CO5	1				1	1					2	1

Course Contents:

List of Practical's/Experiments/Assignments:

A student is expected to do atleast one job from each of the following:

- **1.** Power Tooling Operations
- 2. Plumbing Tools and Operations
- **3.** Soldering, Brazing and Riveting
- 4. Press Fitting Operations
- 5. Assembly/Disassembly of a two wheeler engine or a simple machine

Indian Knowledge System (IKS Bucket)

Teaching Scheme:	Examination Scheme:
Lecture: 2 hr/week Credit: 2	Internal Assessment: 20 Marks Mid Term Test: 20 Marks End-Sem: 60 Marks

Note: The students are required to opt any one course from IKS bucket prescribed by the University.

National Service Scheme (NSS)

Teaching Scheme:	Examination Scheme:
Practical: 4 hr/week	Internal Assessment: 20 Marks
	White Term Test. 20 Warks

Course Contents:

Unit 1: Life Competencies and skill

Definition and importance of life competencies, Communication, Inter Personal, Problem solving and decision making, Positive thinking, Self-confidence and self-esteem, Life goals, Stress and time management

Unit 2: Social Harmony and National Integration

Indian history and culture, Role of youth in peace-building and conflict resolution, Role of youth in Nation building

Unit 3: Youth Development Programmes in India

National Youth Policy, Youth development programmes at the National Level, State Level and voluntary sector, Youth-focused and Youth-led organizations

Engineering Mechanics Laboratory

Practical Scheme:	Examination Scheme:
Practical: 2 hrs/week Credit: 1	Internal Assessment: 60 Marks External Exam: 40 Marks
ourse Outcomes:	

Co

CO1	Estimate the various engineering application and their principles
CO2	Apply conditions of equilibrium for solving problems of mechanics.
CO3	Analysis the behavior of object subjected to external loading.
CO4	Identify the surfaces and solids with respect to centre of gravity and centroid.
CO5	Examine the forces acting on the object under the dynamic conditions.

Mapping of course outcomes with program outcomes

Course					Р	rogran	n Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Course Contents:

At least 08 experiments should be performed from the following list

- 1. To verify the law of Force Polygon
- 2. To verify the law of Moments using Parallel Force apparatus. (simply supported type)
- 3. To verify the law of moments using Bell crank lever.
- 4. To determine support reaction for beam.
- 5. To determine the co-efficient of friction between wood and various surface (like Leather,

Wood, Aluminum) on an inclined plane.

- 6. Simple / compound pendulum.
- 7. Moment of Inertia of fly wheel
- 8. To find CG and moment of Inertia of an irregular body using Computation method.
- 9. Verification of force transmitted by members of given truss.
- 10. Collision of elastic bodies (Law of conservation of momentum
- 11. Verification of law of machine by using worm and worm wheel.
- 12. Any other innovative experiment
- 13. Assignment on beam reaction with at least 05 examples
- 14. Application of spreadsheet program for determination of beam reaction, laws of moment, any other topic from the syllabus.

DEPARTMENT OF MECHANICAL ENGINEERING CERTIFICATE COURSES

CNC Turning

Duration: 120 Hrs. Credits: 4

The students should learn the following during 120 Hrs. of time and will be eligible to work on CNC Turning Machine in the industry.

Course Contents:

Content	Contact Hrs.	Training Mode
CNC machine fundamentals	8	CNC Turning Lathe
CNC lathe and various systems	4	CNC Turning Lathe
Major parts of the CNC Turning Lathe and	4	CNC Turning Lathe
their functions		
Functions of CNC control	4	CNC Turning Lathe
Operation of CNC Lathe – Various modes	4	CNC Turning Lathe
Tooling for CNC Lathe	4	CNC Turning Lathe
Basics of part programming using G and M	4	CNC Simulator
codes		
Setting the Datum and plane creation, datum	8	CNC Simulator
shift (G17, G18 and G19 working planes)		
G96 and G97 Spindle control	2	CNC Simulator
All main cycles including Roughing and	20	CNC Simulator
finishing cycles		
Screw threading and tapping cycle, parting off	10	CNC Simulator
Centerline drilling and Boring cycle	10	CNC Simulator
Editing of programs online	10	CNC Simulator
Writing part programs for the work drawing	10	CNC Simulator
CNC simulation for all turning cycles	10	CNC Simulator
Understanding alarms and responding to it in	4	CNC Simulator
CNC machines		
Safety in CNC Machine operation	4	CNC Turning Lathe

Reference: - HASS CNC simulator manual for CNC lathe

3D Printing

Duration: 120 Hrs. Credits: 4

Course Contents:

- 1. Explain the concept of 3D printing or additive manufacturing
- 2. To analyze 3D printing technology
- 3. Install 3D software to be used
- 4. Demonstrate different stages of Additive manufacturing process
- 5. Use of correct CAD formats to manufacture a 3D printed part
- 6. Show how to do slicing of a 3D model
- 7. Prepare STLs for 3D Printing
- 8. Prepare CAD Models with STL file
- 9. Planning for 3D printing
- 10. Part orientation/placement
- 11. Time/material/machining cost estimations
- 12. Process Simulations
- 13. Demonstrate the working of 3D printer
- 14. Basic maintenance and calibration of 3D printers

Joining Practices

	Duration: 120 Hrs. Credits: 4
Course Contents:	
Unit 1: Oxyfuel-Gas Welding	30hrs
Unit 2: Arc-welding processes, Electrodes for Arc welding,	30hrs
Types of weld joint	
Unit 3: Brazing, Soldering and Adhesive-bonding	30hrs
Unit 4: Mechanical Fastening Processes	30hrs

References:

- 1. ASM Handbook, Vol.6: Welding, Brazing, and Soldering, ASM International, 1993.
- 2. ASM Handbook, Vol. 6A: Welding Fundamentals and Processes, ASM International, 2011.

Mechanical Draftsman

Duration: 120 Hrs. Credits: 4

Course Contents:

Unit 1: Construct different Geometrical figures using drawing Instruments

Perform assignment using drawing instruments: Draw straight and parallel lines, triangles, polygons, circles, parallelogram, angle bisector and line bi-sector. Construct regular polygons (up to 8 sides) on equal base. Layout an A3 drawing sheet as per SP -46: 2003 with margin and name plate. Fold a sheet of A0 size for filing Cabinets or binding as per SP: 46- 2003. Write block letters & numerals in single & double stroke. Write name of the drawing title on heading at centre alignment in double stroke 5:4 block letter. Draw a sample title block as used in industry. Label a drawing views showing the types of line are used. Construct ellipse, parabola & hyperbola. Construct involutes, cycloid curves, helix & spiral.

Unit 2: Draw Orthographic Projections and sectional views giving proper dimensioning with title block using appropriate line type and scale

Generate views in orthographic projection by placing object between horizontal and vertical plane of axes. Generate side view of laminar objects in different inclination on VP and HP by auxiliary vertical plane. Provide dimension on object as per SP-46:2003 Draw orthographic projection of points, lines and plain laminar figures. Draw orthographic projection of solids viz. prism, cones, pyramids and their frustums in 1st angle and 3rd angle method.

Sketch Conventional signs and symbols for section. Draw sectional views with adjacent object showing cutting plane and direction of view. Sketch different types of section lines and abbreviations for different materials as per SP-46:2003. Draw Orthographic drawing of solids (viz., cube, prisms, cone and pyramids) finding out the true shape surfaces cut by oblique planes

Unit 3: Draw and indicate the specification of different types of fasteners, welds and other mechanical devices as per SP-46:2003

Draw different Screw threads with SP-46:2003conventions. Draw bolts, studs, nuts, washers and other fasteners as per SP46:2003 conventions. Draw different locking arrangement of nuts, machine screws, caps screw set screw as per convention. Draw a half sectional view of a coupler nut. Draw eye foundation bolt, rag foundation bolt and Lewis foundation bolt. Draw welded joints giving welding symbols in welded structures. Draw section of welded steel structural column & bracket fabricated by plate. Draw keys, cotters, circlips and pins as per convention. Draw different types of pipe fittings and pipe joints (flanged, welded, threaded, socket and spigot). Draw structural steel sections with dimension as per IS specification. Draw rivets and riveted joints with conventional specification. Draw a double strap, double riveted zig-zag butt joint.

Draw the diagram illustrating basic size deviations and tolerances. Draw symbols for machining and surface finishes (grades and micron values). Draw the system of indication of geometrical tolerances of form and position as per standard. Draw muff coupling, flanged coupling, friction grip coupling, pin type flexible coupling, universal coupling, Oldham's coupling, claw coupling, cone friction clutch. Draw details and assembly of simple bearing and foot step bearing, Plummer Block and self-aligning bearing (swivel bearing). Construct tooth profile of a spur gear above 30 teeth. Draw two spur gears and bevel gears in mesh.

Unit 4: CAD application and create 2D and 3D objects on CAD.

Perform file management in Windows operating system. Create, save and print a document, worksheet and pdf file. Start drawing in CAD from: new, template wizard and existing drawing file. Select Drawing limit of the CAD drawing space. Select proper setting of ribbon and toolbars, choice of workspace, scale. Draw object in CAD drawing space using commands from icons in the ribbon, from menu bar, from floating toolbar and by typing command at the command prompt. Use functional keys to access certain commands. Input or locate point by Absolute Coordinate system, Polar Coordinate System and Relative Co-ordinate System. Create geometrical figures using draw tools

Draw object CAD drawing space using line, polyline, polygon, circle, rectangle, arc, ellipse commands. Modify object using Break, Erase, Trim, Offset, Fillet, Chamfer, Commands. Manage object using Move, Copy, Array, Insert Block, Make Block, Scale, Rotate, Hatch Commands. Create templates, Insert drawings, Layers, Modify Layer properties. Provide dimension, annotation on object and customize different Dimension and Text styles. Construct orthographic drawing using shortcut keyboard command. Construct isometric drawing of machine blocks. Create viewports in layout space to view drawings in model space. Identify three axes of the object. Change origin to create aligned objects under supervision. Create 3D solid objects using command from 3D primitives, Extrude, Revolve, subtract, union. Create 3D drawing by changing User co-ordinate systems. Annotate and dimension of the 3D model. Generate orthographic views from model space to layout space. Generate Print preview and Plotting. Customize page set up, Print preview and Plotting of 3D drawing.

Refrigeration & Air Conditioning Practice

Duration: 120 Hrs. Credits: 4

Course Contents: Unit 1: Basics of Refrigeration and Air conditioning	: 30hrs				
Unit 2: Refrigeration & Air conditioning tools, safety and standards					
Unit 3: Refrigeration and Air conditioning System installation					
and Maintenance	: 30hrs				
Unit 4: Non-conventional Refrigeration and air conditioning,					
Process Planning and cost estimation,					
Automobile air conditioning	: 30hrs				
References:					

- 1. Basic of Refrigeration and Air conditioning, P N Ananthanarayanan
- 2. International Standards in Refrigeration and Air Conditioning, UNEP (United Nations Environment Program
- 3. Refrigeration and Air Conditioning data book, New Age International Publication

Vehicle Maintenance

[Four-Wheeler or Two-Wheeler]

Duration: 120 Hrs. Credits: 4

	Examination Scheme:
Credits: 4	Continuous Assessment: CA1-10 Marks (Based on Part A)
	Continuous Assessment: CA2-10 Marks (Based on Part B)

Students are expected to spend 120 hours on **Part A**: Study of theoretical aspect of vehicle and engine & **Part-B**: hands -on experience in the Vehicle Service Workshop to learn vehicle maintenance through 10 modules:

Course Contents:

A) Theory Classes for understanding basics of Engine/Vehicle (Approx. 10 days)

1) Fundamentals of IC Engines

Applications, nomenclature, engine components, Engine classification, two and four stroke cycle engines; fundamental difference between SI and CI engines; valve timing diagrams.

2) Power Cycles: Air standard Otto, Diesel and Dual cycles; **Combustion:** Introduction, important qualities and ratings of SI Engines fuels; qualities and ratings of CI Engine fuels. Combustion in S.I. Engines, Combustion in C.I. Engines, combustion knock; types of SI and CI Engine combustion chambers.

3) Various Engine Systems

Starting systems, fuel supply systems, engine cooling system, ignition system, lubrication systems, governing systems.

4) Motor Vehicle Technology:

CHASSIS LAYOUT, CLUTCH SYSTEM, GEAR BOX, FINAL DRIVE, FRAME AND BODY, SUSPENSION SYSTEM STEERING SYSTEM AND FRONT AXLE BRAKING SYSTEM

B) Hands-on Experience in Service Workshop of Four-Wheeler or Two-Wheeler (Approx. 20 days)

1) Handling of Tools, Equipment's & Measuring Instruments

2) Awareness of Shop Floor Equipment

- 3) Awareness of Safety Precautions
- 4) Knowledge of Engineering Tools

5) Study of Petrol and Diesel Engines of Four/Two-Wheeler Vehicles through cut-section

models/charts/videos.

6) Do Servicing, Overhauling, Lubrication Work, Wheel Alignments of Four//Two-Wheeler Vehicles.

7) Diagnose, Dismantle, Inspection of vehicles of Four/Two-Wheeler Vehicles.

8) Trace out Fault of Engines, Gear Box, transmission System, Suspension System, steering systems,

Brakes, Electronic Components, Wiring, & Accessories etc. & repair them.

9) Study of Hydraulic Systems, Air-conditioning systems

10) Engine Tests

Textbooks:

- 1. Automotive Mechanics by W. Crouse, Tata McGraw-Hill
- 2. Internal Combustion Engines by Dr. V. Ganesan, Tata McGraw-Hill

Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME

B.TECH.

2nd MECHANICAL ENGINEERING/MECHANICAL ENGINEERING(SANDWICH) ACADEMIC YEAR 2024-25 (Affiliated institutes)

Abbreviations

BSC: Basic Science Course ESC: Engineering Science Course PCC: Professional Core Course PEC: Professional Elective Course OEC: Open Elective Course HSSMC: Humanities and Social Science including Management Courses PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester III B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich)

	Semester III									
Course Course Code		Course Title	Teac	hing Scł	Evaluation Scheme				No of	
Category			L	Т	Р	CA	MSE	ESE	Total	Credits
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4
ESC10	BTMES304	Materials Science and Metallurgy	3	1	-	20	20	60	100	4
PCC3	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2
PCC4	BTMCL306	Mechanical Engineering Lab – I	-	-	4	60	-	40	100	2
HSSMA	BTHM 307	Constitution of India	2				20	20		Audit
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1
Total 14 4 8 220 100							<mark>440</mark>	<mark>700</mark>	<mark>21</mark>	

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Course Structure for Semester IV

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich)

	Semester IV									
Course Course Code		Course Title	Teaching Scheme			Evaluation Scheme				
Category			L	Т	Р	CA	MSE	ESE	Tota l	No. of Credits
PCC 5	BTMC401	Manufacturing Processes – I	3	1	-	20	20	60	100	4
PCC 6	BTMC402	Theory of Machines-I	3	1	-	20	20	60	100	4
HSSMC3	BTHM403	UHV II	3	0	-	20	20	60_	100	3
ESC11	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A- <mark>C</mark>	Elective-I	3	-	-	20	20	60	100	3
PCC7	BTMCL406	Mechanical Engineering Lab-II	-	-	4	60	-	40	100	2
PROJ- <mark>3</mark>	BTMI40 <mark>7</mark>	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
		Total	15	3	<mark>4</mark>	<mark>160</mark>	100	<mark>340</mark>	<mark>600</mark>	<mark>20</mark>

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course

HSSMC = Humanities and Social Science including Management Courses

Sr. No	Course code	Course Name
<mark>1</mark>	BTMPE405 <mark>A</mark>	Numerical Methods in Engineering
<mark>2</mark>	BTMPE405 <mark>B</mark>	Sheet Metal Engineering
<mark>3</mark>	BTMPE405 <mark>C</mark>	Fluid Machinery

Elective I

Semester III Engineering Mathematics-III

BTBS301	Engineering Mathematics-III	BSC 7	3L-1T-0P	4 Credits
---------	-----------------------------	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Vector differentiation and integration required in Electro-magnetic and Wave theory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.
- Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

Course Contents:

Unit 1: Laplace Transform

Definition – conditions for existence ; Transforms of elementary functions ; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by t^n , scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives ; Evaluation of integrals by using Laplace transform ; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

Unit 2: Inverse Laplace Transform

Introductory remarks ; Inverse transforms of some elementary functions; General methods of finding inverse transforms ; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms ; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients

Unit 3: Fourier Transform

Definitions – integral transforms ; Fourier integral theorem (without proof) ; Fourier sine and cosine integrals ; Complex form of Fourier integrals ; Fourier sine and cosine transforms ; Properties of Fourier transforms ; Parseval's identity for Fourier Transforms.

Unit 4: Partial Differential Equations and Their Applications [09 Hours]

Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange's linear equations); Method of separation of variables – applications to find solutions of one-dimensional heat flow equation $\frac{2n}{2} = \frac{2n}{2}$

equation $\left(\frac{6u}{6t} = c^2 \frac{6^2u}{6x^2}\right)$, and one-dimensional wave equation $\left(i \cdot \frac{e^2}{6t^2} = c^2 \frac{6^2y}{6x^2}\right)$.

Unit 5: Functions of Complex Variables [09 Hours]

Analytic functions; Cauchy- Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Cauchy's integral theorem; Cauchy's integral formula; Residues; Cauchy's residue theorem (All theorems without proofs).

Text Books

- 1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.
- 2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.
- 3. A course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

[09 Hours]

[09 Hours]

[09 Hours]

Reference Books

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.
- **2.** A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd. , Singapore.
- **3.** Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata McGraw-Hill Publishing Company Ltd., New Delhi.

4. Integral Transforms and their Engineering Applications by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.

5. Integral Transforms by I. N. Sneddon, Tata McGraw-Hill, New York.

General Instructions:

- 1. The tutorial classes in Engineering Mathematics-III are to be conducted batchwise. Each class should be divided into three batches for the purpose.
- 2. The internal assessment of the students for 20 marks will be done based on assignments, surprise tests, quizzes, innovative approach to problem solving and percentage attendance.
- 3. The minimum number of assignments should be eight covering all topics.

Fluid Mechanics

BTMC302	PCC 1	Fluid Mechanics	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs./week	Continuous Assessment: 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Outcomes	Content	Level
CO1	Explain basic properties of fluid, fluid statics, kinematics and dynamics.	Understanding
CO2	Identify various types of flow, flow patterns and their significance.	Understanding
CO3	Explain concepts of flow through pipes, boundary layer theory, forces on immersed bodies and dimensionless parameters.	Understanding
CO4	Derive various equations in fluid mechanics such as Euler's, Bernoulli's, Momentum, Continuity etc.	Apply
CO5	Solve the problems related to properties of fluid, fluid kinematics, fluid dynamics, laminar flow, pipe flow, dimensional analysis, boundary layer theory, and forces on immersed bodies.	Apply

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2											
CO2	2											
CO3	2											
CO4	2											
CO5	3	2										

Course Contents:

Unit 1: Fluid Properties and Fluid Statics:

A) Fluid Properties: Definition of fluid, Fluid as a continuum, Properties of fluid, Viscosity, Types of fluid, Compressibility, Surface tension, Capillarity and vapor pressure.

B) Fluid Statics: Pascal's law, Hydrostatic law of pressure, Total Pressure, Centre of Pressure, Buoyancy, Meta center, Condition of Equilibrium of floating and submerged bodies (No Numerical Treatment on fluid Statics)

Unit 2: Fluid Kinematics and Dynamics

A) Fluid Kinematics: Eulerian and Langragian approach of fluid flow ,Types of flow, Definition of steady, Unsteady, Uniform, Non uniform, Laminar, Turbulent, Compressible, incompressible, rotational, Irrotational flow, 1D-2D flows, Stream line, Streak line, Path line, concept of Velocity, potential & stream function flow net (no numerical treatment),Continuity equation for steady, Unsteady, Uniform, non-uniform, Compressible,

[07 Hours]

[07 Hours]

Dr. Babasaheb Ambedkar Technological University, Lonere

incompressible.

B) Fluid Dynamics: Euler's equation, Bernoulli's equation along a streamline for incompressible flow, Practical applications of Bernoulli's equation - Pitot tube, Venturi meter, Orifice meter

Unit 3: Laminar Flow and Turbulent Flow

- A) Laminar Flow: Introduction to flow of viscous fluid through circular pipes, two parallel plates derivation and numerical.
- **B) Turbulent Flow:** Major and minor losses. Loss of energy due to friction (Darcy's and Chezy's equation). Minor energy losses in transition, expansion and contraction. Concept of HGL and TEL, flow through syphon, flow through pipes in series or compound pipes, equivalent pipe, parallel pipes, branched pipes, Power transmission through pipes. Moody's Diagram.

Unit 4: Forces on Immersed Bodies and Boundary Layer Theory [07 Hours]

- A) Forces on Immersed Bodies: Lift and Drag, Drag on a flat plate and on aerofoil. Types of drags, Development of lift. (Magnus effect) stalling condition of aerofoil.
- **B)** Boundary Layer Theory: Boundary layer thickness, its characteristics, laminar and turbulent boundary layers, separation, boundary layer control.

Unit 5: Dimensional analysis

Introduction to dimensional analysis, dimensional homogeneity, methods of dimensional analysis- Rayleigh's method, Buckingham's π -theorem, dimensionless numbers. (No numerical treatment)

Text Books:

- 1) P. N. Modi, S. M. Seth, "Fluid Mechanics and Hydraulic Machinery", Standard Book House, 10th edition, 1991.
- 2) Robert W. Fox, Alan T. McDonald, "Introduction to Fluid Mechanics", John Wile and Sons,5thedition.
- Fluid mechanics and Hydraulic machines, Dr. R. K. Bansal, Laxmi Publication, Delhi, 2005

References Books:

- 1) V. L. Streeter, K. W. Bedford and E. B. Wylie, "Fluid Dynamics", Tata McGraw-Hill,9thedition, 1998.
- S. K. Som, G.Biswas, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGrawHill, 2ndedition, 2003

[07Hours]

[07 Hours]

Thermodynamics

BTMC303	PCC2	Thermodynamics	3-1-0	4 Credits					
Teaching Scher	ne:	Examination Schem	Examination Scheme:						
Lecture: 3 hrs/w	reek	Continuous Assessm	Continuous Assessment: 20 Marks						
Tutorial: 1 hr/we	eek	Mid Semester Exam:	Mid Semester Exam: 20 Marks						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

End Semester Exam: 60 Marks(Duration 03 hrs)

CO1	Define the terms like system, boundary, properties, equilibrium, work, heat, ideal gas, entropy etc. used in thermodynamics.
CO2	Studied different laws of thermodynamics and apply these to simple thermal systems to study energy balance.
CO3	Studied Entropy, application and disorder.
CO4	Studied various types of processes like isothermal, adiabatic, etc. considering system with ideal gas and represent them on p-v and T-s planes.
CO5	Represent phase diagram of pure substance (steam) on different thermodynamic planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2	1									
CO3		1	1									
CO4	2											
CO5	1	1										

Course Contents:

Unit 1: Fundamental Concepts and Definitions [07 Hours]

Thermodynamic system and its type; Macroscopic vs. Microscopic viewpoint, properties, processes and cycles, point function, path function. Thermodynamic equilibrium, Quasi-static process.

Work and heat Transfer: Work transferred and other types of work, Heat transfer, temperature and its measurement (principle of measurement, various instruments etc.). Zeroth law of thermodynamics, specific heat and latent heat, relationship between C_P and C_V .
Unit 2: First Law of Thermodynamics [07 Hours]

First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy, different forms of energy, Enthalpy, PMM-I control volume.

Application of first law of steady flow processes (nozzle, turbine, compressor, pump, boiler, throttle valve etc.)

Unit 3: Second Law of Thermodynamics [07 Hours]

Limitation of first law of thermodynamics, cycle heat engine, refrigerator and heat pump, Kelvin- Plank and Clausius statements and their equivalence, Reversibility and Irreversibility, Carnot cycle, Carnot theorem, Absolute thermodynamic temperature scale.

Entropy: Introduction, Clausius theorem, T-s plot, Clausius inequality, Entropy and Irreversibility, Entropy principle and its application, combined I and II law, Entropy and direction, Entropy and disorder.

Unit 4: Ideal gas [07 Hours]

Boyle's law, Charl's law, Avogadro's law, universal gas constant, ideal processes with question, other equation of states.

Unit 5:Properties of Pure Substance

Phase change phenomenon of pure substance, phase diagram of pure substance, p-v, T-s, and h-s diagrams properties of steam, critical point parameters, triple point, property table, representation of processes of steam on p-v, T-s, and other diagrams, Dryness fraction and its measurement.

[07Hours]

Texts:

1. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill, New Delhi, 3rd edition,2005.

2. Y. A. Cengel, M. A. Boles, "Thermodynamics - An Engineering Approach", Tata McGraw Hill, 5thedition, 2006.

References:

1. G. J. Van Wylen, R. E. Sonntag, "Fundamental of Thermodynamics", John Wiley and Sons, 5thedition, 1998.

2. J. Moran, H. N. Shapiro, "Fundamentals of Engineering Thermodynamics", John Wiley and Sons, 4th edition, 2004.

Material Science and Metallurgy

BTMES304	ESC10	Materials Science and Metallurgy	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Study various crystal structures of materials			
CO2	Understand mechanical properties of materials and calculations of same using			
appropriate equations				
CO3	Evaluate phase diagrams of various materials			
CO4	Suggest appropriate heat treatment process for a given application			
CO5	Prepare samples of different materials for metallography			
CO6	Recommend appropriate NDT technique for a given application			

Mapping of course outcomes with program outcomes

Course]	Progra	m Out	comes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1									
CO2	3	2	2	3	2							
CO3	2	1	2	1	1							
CO4	1	2	2	1	2	1	2	1	1	1		
CO5	1	1	1	3	2		1		1			
CO6	1	1	2	2	2	1	2		1	1		

Course Contents:

Unit 1: Fundamentals

a) Structure of Materials

Crystal structures, indexing of lattice planes, Imperfections in crystals-point defects, line defects, Mechanism of plastic deformation, plastic deformation of polycrystalline materials.

b) Mechanical Properties and their Testing

Tensile test, engineering stress-strain curve, true stress-strain curve, types of stress-strain curves, compression test, formability, hardness testing, and different hardness tests-Vickers, Rockwell, Brinnel, Impact test.

Unit 2: Equilibrium Diagrams

Definitions of terms, rules of solid-solubility, Gibb's phase rule, solidification of a pure metal, plotting of equilibrium diagrams, lever rule, Iron-iron carbide equilibrium diagram, critical temperatures, solidification and microstructure of slowly cooled steels, non-equilibrium cooling of steels, classification and application of steels, specification of steels, TTT diagram, critical cooling rate, CCT diagram.

Unit 3: Heat Treatment

Heat treatment of steels, cooling media, annealing processes, normalizing, hardening, tempering, quenching and hardenability, surface hardening processes-nitriding, carbo-nitriding, flame hardening, induction hardening.

Unit 4: Metallography

Microscopy, specimen preparation, polishing abrasives and cloths, specimen mounting, electrolytic polishing, etching procedure and reagents, electrolytic etching, optical metallurgical microscope, Sulphur printing, flow line observations, examination of fractures, spark test, electron microscope.

Unit 5: Strengthening Mechanisms and Non-destructive Testing

Refinement of grain size, cold working/strain hardening, solid solution strengthening, dispersion strengthening, Precipitation hardening. Magnetic particle inspection, dye Penetrant inspection, ultrasonic inspection, radiography, eddy current testing.

Texts:

- 1. V. D. Kodgire, S.V. Kodgire, "Material Science and Metallurgy for Engineers", EverestPublishing House, Pune, 24thedition, 2008.
- 2. W. D. Callister, "Materials Science and Engineering: An Introduction", John Wiley andSons, 5thedition,2001.
- 3. V. Raghvan, "Material Science Engineering", Prentice Hall of India Ltd., 1992.

References:

- 1. V. B. John, "Introduction to Engineering Materials", ELBS, 6thedition, 2001.
- 2. G. F. Carter, D. E. Paul, "Materials Science and Engineering", ASM International, 3rdedition. 2000.
- 3. T. E. Reed-Hill, R. Abbaschian, "Physical Metallurgy Principles", Thomson, 3rdedition

Machine Drawing and CAD Lab

BTMCL305 PCC3 Machine Drawing and CAD 0-0-4 2 Cred
--

Teaching Scheme:	Examination Scheme:
Practical: 4 hrs/week	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Interpret the object with the help of given sectional and orthographic views. CO1

[07 Hours]

[07 Hours]

[07 Hours]

CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

Mapping of course outcomes with program outcomes

Course Outcomes		Program Outcomes										
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	2								3	2		1
CO2	2	1							2	1		1
CO3	2								2	1		
CO4	2	2			1				2	1		1
CO5	1	1			1				2	1		1
CO6	1	1			1				2	2		1

List of Practical's/ Experiments/ Assignments (minimum six assignments should be completed)

- 1. One full imperial drawing sheet consisting the drawing/sketches of representation of standard components, symbols of pipe joints, weld joints, rivet joint etc., surface finish symbols and grades, limit, fit and tolerance sketches.
- 2. Two full imperial drawing sheets, one consisting of assembly and the other consisting of details of any one standard component such as valves, components of various machine tools, pumps, joints, engine parts, etc.
- 3. Two assignments of AutoCAD: Orthographic Projections of any one simple machine component such as bracket, Bearing Housing or Cast component for Engineers such as connecting rod, Piston, etc.; with dimensioning and detailing of three views of components.
- 4. 3-D model at least one simple machine component.

Texts:

- 1. N. D. Bhatt, "Engineering Drawing", Charotar Publishing House, Anand, India.
- 2. N. D. Bhatt, "Machine Drawing", Charotar Publishing House, Anand, India.
- 3. Ajeet Sing, "Working with AutoCAD 2000", Tata McGraw Hill, New Delhi.
- 4. George Omura, "ABC of AutoLISP", BPB Publications, New Delhi.

References:

- 1. Narayana, Kannaiah, Reddy, "Machine Drawing", New Age International Publishers.
- 2. AutoCAD and Auto LISP manuals from Autodesk Corp. U.S.A.
- 3. IS Code: SP46-1988, Standard Drawing Practices for Engineering Institutes.

Mechanical Engineering Lab - I

BTMCL306 PCC4	Fluid Mechanics + Material Science and Metallurgy	0-0-4	2 Credit
---------------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Fluid Mechanics)

List of Practicals/Experiments/Assignments (Any Five from Group A)

- 1. Flow visualization technique: characteristics of laminar and turbulent flow patterns using Helleshaw Apparatus.
- 2. Verification of Bernoulli's theorem
- 3. Determination of Critical Reynolds number using Reynolds Apparatus
- 4. Determination of pressure drop in pipes of various cross-sections
- 5. Determination of pressure drops in pipes of various pipe fittings etc.
- 6. Viscosity measurement using viscometer(at least one type)
- 7. Verification of momentum equation using impact of jet apparatus
- 8. Determination of metacentric height of a floating body
- 9. Calibration of a selected flow measuring device and Bourdon pressure gauge
- 10. Gauge and differential pressure measurements using various types of manometers, Bourdon type pressure gauge.
- 11. Demonstration of measurement using these instruments Lab.
- 12. Experiment to study hydraulic jump.

Group B (Material Science and Metallurgy)

List of Practical's/Experiments/Assignments (Any Four from Group B

- 1. Brinell Hardness Test
- 2. Rockwell Hardness test
- 3. Erichson Cupping Test
- 4. Magnaflux Test
- 5. Dye Penetrant Test
- 6. Specimen Preparation for Microscopy
- 7. Sulphur Print Test
- 8. Spark Test
- 9. Study and drawing of microstructures of plain carbon steels of varying carbon percentage
- 10. Study and drawing of microstructures of heat treated steels
- 11. Jominy End Quench Test
- 12. Study and drawing of microstructures of cast irons

13. Study and drawing of microstructures of non-ferrous alloys

14. Hardening of steels of varying carbon percentage

CONSTITUTION OF INDIA

BTHM307	HSS	Constitution of India	2-0-0	Audit
	MA			

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Internal Assessment:20 Marks
Credits: - 2	Mid Term Test: 20 Marks
	End Semester Exam: Audit

Course Objective:

- To acquaint the students with legacies of constitutional development in India and help them tounderstand the most diversified legal document of India and philosophy behind it.
- To make students aware of the theoretical and functional aspects of the Indian ParliamentarySystem.
- To channelize students' thinking towards basic understanding of the legal concepts and itsimplications for engineers.
- To acquaint students with latest intellectual property rights and innovation environment with related regulatory framework.
- To make students learn about role of engineering in business organizations and e-governance.

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify and explore the basic features and modalities about Indian constitution.
CO2	Differentiate and relate the functioning of Indian parliamentary system at the
	center and state level.
CO3	Differentiate different aspects of Indian Legal System and its related bodies.
CO4	Discover and apply different laws and regulations related to engineering practices.
CO5	Correlate role of engineers with different organizations and governance models

Course					Р	rogran	Outco	mes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										2		1
CO2												
CO3												
CO4												
CO5												

Pedagogy: Lecture, Problem based learning, Group discussions, Visual media, Films, Documentaries, Debate forums.

Module 1--Introduction and Basic Information about Indian Constitution

Meaning of the constitution law and constitutionalism, Historical Background of the Constituent Assembly, Government of India Act of 1935 and Indian Independence Act of 1947, Enforcement of the Constitution, Indian

Constitution and its Salient Features, The Preamble of the Constitution, Fundamental Rights, Fundamental Duties, Directive Principles of State Policy, Parliamentary System, Federal System, Centre-State Relations, Amendment of the Constitutional Powers and Procedure, The historical perspectives of the constitutional amendments in India, Emergency Provisions: National Emergency, President Rule, Financial Emergency, and Local Self Government – Constitutional Scheme in India

Module 2-Union Executive and State Executive:

Powers of Indian Parliament Functions of Rajya Sabha, Functions of Lok Sabha, Powers and Functions of the President, Comparison of powers of Indian President with the United States, Powers and Functions of the Prime Minister, Judiciary – The Independence of the Supreme Court, Appointment of Judges, Judicial Review, Public Interest Litigation, Judicial Activism, LokPal, Lok Ayukta, The Lokpal and Lok ayuktas Act 2013, State Executives – Powers and Functions of the Governor, Powers and Functions of the Chief Minister, Functions of State Cabinet, Functions of State Legislature, Functions of High Court and Subordinate Courts.

Module 3- Introduction and Basic Information about Legal System:

The Legal System: Sources of Law and the Court Structure: Enacted law -Acts of Parliament are of primary legislation, Common Law or Case law, Principles taken from decisions of judges constitute binding legal rules. The Court System in India and Foreign Courtiers (District Court, District Consumer Forum, Tribunals, High Courts, Supreme Court). Arbitration: As an alternative to resolving disputes in the normal courts, parties who are in dispute can agree that this will instead be referred to arbitration. Contract law, Tort, Law at workplace.

Module 4-Intellectual Property Laws and Regulation to Information:

Intellectual Property Laws- Introduction, Legal Aspects of Patents, Filing of Patent Applications, Rights from Patents, Infringement of Patents, Copyright and its Ownership, Infringement of Copyright, Civil Remedies for Infringement, Regulation to Information- Introduction, Right to Information Act, 2005, Information Technology Act, 2000, Electronic Governance, Secure Electronic Records and Digital Signatures, Digital Signature Certificates, Cyber Regulations Appellate Tribunal, Offences, Limitations of the Information Technology Act.

Module 5 -Business Organizations and E-Governance:

Sole Traders, Partnerships: Companies: The Company's Act: Introduction, Formation of a Company, Memorandum of Association, Articles of Association, Prospectus, Shares, Directors, General Meetings and Proceedings, Auditor, Winding up. E-Governance and role of engineers in E-Governance, Need for reformed engineering serving at the Union and State level, Role of I.T. professionals in Judiciary, Problem of Alienation and Secessionism in few states creating hurdles in Industrial development.

Suggested Readings:

- Brij Kishore Sharma: Introduction to the Indian Constitution, PHI, New Delhi, latestedition.
- Granville Austin: The Indian Constitution: Cornerstone of a Nation. 1966, OxfordClarendon Press.
- Subhash C. Kashyap: Our Constitution: An Introduction to India's Constitution and constitutional Law, NBT, 2018.
- PM Bakshi: The Constitution of India, Latest Edition, Universal Law Publishing.
- V.K. Ahuja: Law Relating to Intellectual Property Rights (2007)
- Suresh T. Viswanathan: The Indian Cyber Laws, Bharat Law House, New Delhi-88
- P. Narayan: Intellectual Property Law, Eastern Law House, New Delhi
- Prabudh Ganguli: Gearing up for Patents: The Indian Scenario, Orient Longman.
- BL Wadehra: Patents, Trademarks, Designs and Geological Indications.Universal LawPublishing LexisNexis.
- Intellectual Property Rights: Law and Practice, Module III by ICSI (only relevant sections)
- Executive programme study material Company Law, Module II, by ICSI (The Institute of Companies Secretaries of India) (Only relevant sections i.e., Study 1, 4 and 36).<u>https://www.icsi.edu/media/webmodules/publications/Company%20Law.pdf</u>

- Handbook on e-Governance Project Lifecycle, Department of Electronics & Information Technology, Government of India, <u>https://www.meity.gov.in/writereaddata/files/e-</u> Governance_Project_Lifecycle_Participant_Handbook-5Day_CourseV1_20412.pdf
- Companies Act, 2013 Key highlights and analysis by PWC. https://www.pwc.in/assets/pdfs/publications/2013/companies-act-2013-key-highlights-and-analysis.pdf

Referred Case Studies:

- Keshavanand Bharati V. State of Kerala, AIR 1973 SC 1461.
- Maneka Gandhi V. Union of India AIR, 1978 SC 597.
- S.R. Bammai V. Union of India, AIR 1994 SC 1918.
- Kuldip Nayyar V. Union of India, AIR 2006 SC312.
- A.D.M. Jabalpur V. ShivkantShakla, AIR 1976 SC1207.
- Remshwar Prasad V. Union of India, AIR 2006 SC980.
- Keshav Singh in re, AIR 1965 SC 745.
- Union of India V. Talsiram, AIR 1985 SC 1416.
- Atiabari Tea Estate Co.V. State of Assam, AIR 1961SC232.
- SBP & Co. Vs. Patel Engg. Ltd. 2005 (8) SCC 618.
- Krishna Bhagya Jala Nigam Ltd. Vs. G. Arischandra Reddy (2007) 2 SCC 720.
- Oil & Natural Gas Corporation Vs. Saw Pipes Ltd. 2003 (4) SCALE 92 185.

******(Other relevant case studies can be consulted by the teacher as per the topic).

Prescribed Legislations:

- 1. Information Technology Act, 2000 with latest amendments.
- 2. RTI Act 2005 with latest amendments.
- 3. Information Technology Rules, 2000
- 4. Cyber Regulation Appellate Tribunal Rules, 2000

Suggested aid for Students and Pedagogic purpose

- RSTV debates on corporate law, IPR and patent issues
- NPTEL lectures on IPR and patent rights

Episodes of 10 -part mini TV series "Samvidhan: The Making of Constitution of India" by RSTV.

IT – 1 Evaluation

BTES209P	Internship – 1 Evaluation	PROJ-2	0L-0T-0F	1 Credits
(Internship – 1)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester IV Manufacturing Processes-I

BTMC401	PCC 5	Manufacturing Processes-I	3-1-0	4 Credits

Pre-Requisites: None

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Study center lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Study shaping, planning and drilling, their types and related tooling's

Mapping of course outcomes with program outcomes

Course	Program Outcomes

Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1	1				1		1
CO2	2	2	1		1	1				1		1
CO3	2	1	1		1	1				1		1
CO4	1		1		1	1				1		1
CO5	2		1		1	1				1		1
CO6	1				1	1				1		1

Course Contents:

Unit 1: Introduction and Casting Processes [07 Hours]

What is manufacturing? Selection of manufacturing processes, Introduction to casting; solidification of metals: Pure metals, Alloys; fluid flow; fluidity of molten metal; heat transfer: Solidification time, Shrinkage; defects: Porosity; Metal casting processes: Introduction; sand casting, shell molding, investment casting; Permanent-mold casting, vacuum casting, die casting, centrifugal casting.

Unit 2: Metal Forming

a) Rolling and Forging Processes

Introduction to Rolling; Flat-rolling Process: Roll Force, Torque, and Power Requirements, Geometric Considerations; Flat-rolling Practice: Defects in Rolled Plates and Sheets; Rolling Mills; Various Rolling Processes and Mills.

Introduction to forging, Open-die forging; Impression-die and Closed-die forging; various forging Operations; Forging Defects; Forging Machines.

b) Extrusion and Drawing

Introduction; Extrusion Process; Hot Extrusion; Cold Extrusion: Impact extrusion, Hydrostatic Extrusion; Extrusion Defects; Extrusion Equipment; Drawing Process; Drawing Practice; Drawing Defects and Residual Stresses; Drawing Equipment.

Unit 3: Joining Processes

Oxy-fuel-gas Welding; Arc-Welding Processes: Non consumable Electrode; Arc-welding Processes: Consumable Electrode, Shielded Metal-arc Welding, Submerged-arc Welding, Gas Metal-arc Welding; Electrodes for Arc Welding; The Weld joint, Quality, and Testing: Weld Quality, Weldability, Testing of Welds.

Introduction to solid state welding, Friction Welding, Resistance Welding: Spot, Seam, Projection Welding. Introduction to brazing and soldering.

Unit 4: Machining Processes: Turning and Hole Making

Introduction; The Turning Process; Lathes and Lathe Operations: Lathe Components, Work holding Devices and Accessories, Lathe Operations, Types of Lathes. Types of chips, Boring andBoring Machines; Drilling Machines: Drills, Drill Materials and Sizes, Drilling Practice, DrillingMachines, Reaming operation and Reamers; Tapping and Taps.

Unit 5: Machining Processes: Milling, Broaching and Gear Manufacturing [07 Hours] Introduction, Milling and Milling Machines: Peripheral Milling, Face Milling, End Milling, Other Milling Operations and Milling Cutters, Tool holders, Milling Process Capabilities,

[07Hours]

[07Hours]

Milling Machines; Planning and Shaping; Broaching and Broaching Machines; Gear Manufacturing by Machining: Form Cutting, Gear Generating, Cutting Bevel Gears, Gear-finishing Processes.

Text:

1. Serope Kalpak Jain and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009.

References:

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul DeGarmo, J.T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing", Wiley, 10th edition, 2007.

Theory of Machines- I

BTMC402	PCC 6	Theory of Machines-I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define basic terminology of kinematics of mechanisms
CO2	Classify planar mechanisms and calculate its degree of freedom
CO3	Perform kinematic analysis of a given mechanism using ICR and RV methods
CO4	Introduction of different types of lubrication system.
COS	Perform kinematic analysis of slider crank mechanism using Klein's construction and
COS	analytical approach
C06	Perform balancing of unbalance forces in rotating masses, different types of single/multi
000	cylinder reciprocating engines in different positions.

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1								3
CO2				1								3
CO3	1	1		2								3

Mapping of course outcomes with program outcomes

CO4	1						
CO5	1	1	3				2
CO6	1	1					2

Course Contents:

Unit 1: Velocity Acceleration Analysis

Definition of link, pair, kinematics chain, inversions, inversions of single and double slider crank chain, kinematic diagrams of mechanisms, equivalent linkage of mechanism, degree of freedom. Study of various mechanisms such as straight line mechanisms, pantograph, Geneva mechanism, steering gear mechanisms. Instantaneous centre of rotation, body and space centrodes, Kennedy's theorem.

Velocity and acceleration analysis and its purpose, velocity and acceleration diagrams using relative velocity method, Corioli's component of acceleration.

Velocity and acceleration of slider crank mechanism by analytical method and Klein's construction.

Unit 2: Friction and Lubrication

Dry friction, friction between nut and screw with different types of threads, Uniform wear theory and uniform pressure theory, Frication at pivot and collars, Friction in turning pair, Friction circle and friction axis, Friction in mechanisms.

Lubrication, Viscosity, Viscous flow, Boundary lubrication, Thick film lubrication, Hydrostatic and hydrodynamic lubrications.

Unit 3: Clutch, Brakes and Dynamometers

Friction Clutches: Single plate and multi-plate clutch, Cone clutch, Centrifugal clutch, Torque transmitting capacity, Clutch operating mechanism.

Brakes: Shoe brake, Internal and external shoe brakes, Block brakes, Band brakes, Band and block brakes, Braking torque.

Dynamometers: Different types of absorption and transmission type dynamometers, Construction and working of eddy current dynamometer, Torque measurement.

Unit 4: Cams and Followers

Types of cams and followers, Analysis of motion, Jump and ramp of cam, Determination of cam profiles for a given follower motion, Circular arc cam, Tangent cam, Cycloidal cam.

Unit 5: Balancing

Balancing of rotating masses in one and several planes, balancing of reciprocating, masses in single and multi-cylinder engine viz., inclined, radial and v-type engines, Primary and secondary balancing analysis, Concept of direct and reverse cranks, Balancing of locomotive engines, Effect of partial balancing, Static and dynamic balancing.

Texts:

- 1. A. Ghosh, A. K. Malik, "Theory of Mechanisms and Machines", Affiliated East-West Press Pvt. Ltd., New Delhi.
- 2. S. S. Rattan, "Theory of Machines", Tata McGraw Hill, New Delhi.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

References:

- 1. Thomas Beven, "Theory of Machines", CBS Publishers and Distributors, Delhi.
- 2. J. E. Shigely, J. J. Uicker, "Theory of Machines and Mechanisms", Tata McGraw Hill Publications, New York, International Student Edition, 1995.

		UHV-I	Ι	
BTHM403	HSSMC3	UHV II	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Course Outcomes: At the end of the course, students will be able to:

CO1	To help the students appreciate the essential complementarily between 'VALUES' and'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
CO2	To facilitate the development of a Holistic perspective among students towards life and profession
CO3	To highlight the possible implications of Holistic understanding in terms of ethical human conduct, trustful mutually fulfilling human behavior

Mapping of course outcomes with program outcomes

Course						Progra	m Outo	comes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												

Module 1 – Introduction to Value Education

- Understanding Value Education
- Self-exploration as the Process for Value Education
- Continuous Happiness and Prosperity the Basic Human Aspirations
- Right Understanding, Relationship and Physical Facility
- Happiness and Prosperity Current Scenario
- Method to Fulfill the Basic Human Aspirations

Module 2 – Harmony in the Human Being

- Understanding Human being as the Co-existence of the Self and the Body
- Distinguishing between the Needs of the Self and the Body
- The Body as an Instrument of the Self
- Understanding Harmony in the Self
- Harmony of the Self with the Body
- Programme to Ensure self-regulation and Health

Module 3 – Harmony in the Family and Society

- Harmony in the Family the Basic Unit of Human Interaction
- Values in Human-to-Human Relationship
- 'Trust' the Foundational Value in Relationship
- 'Respect' as the Right Evaluation
- Understanding Harmony in the Society
- Vision for the Universal Human Order

Module 4 – Harmony in the Nature (Existence)

- Understanding Harmony in the Nature
- Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature
- Realizing Existence as Co-existence at All Levels
- The Holistic Perception of Harmony in Existence

Module 5 – Implications of the Holistic Understanding – a Look at Professional Ethics

- Natural Acceptance of Human Values
- Definitiveness of (Ethical) Human Conduct
- A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order
- Competence in Professional Ethics
- Holistic Technologies, Production Systems and Management Models-Typical Case Studies
- Strategies for Transition towards Value-based Life and Profession

READINGS:

Text Book and Teachers Manual

a. The Textbook

A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

b. The Teacher's Manual

Teachers' Manual for *A Foundation Course in Human Values and Professional Ethics*, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

3.2 Reference Books

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj Pandit Sunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Strength of Materials

BTMES404	ESC11	Strength of Materials	3-1-0	4 Credits			
Teaching Sche	eme:	Examination Sch	ieme:				
Lecture: 3 hrs/v	week	Continuous Asses	Continuous Assessment: 20 Marks				
Tutorial: 1 hr/w	veek	Mid Semester Exa	Mid Semester Exam: 20 Marks				
		End Semester Exa	am: 60 Marks(D	uration 03 hrs)			

Pre-Requisites: Engineering Mechanics

Course Outcomes: At the end of the course, students will be able to:

CO1	State the basic definitions of fundamental terms such as axial load, eccentric load,
COI	stress, strain, E, μ , principle stresses, etc.
CO2	Analyze the stresses and strain energy in different load cases
CO3	Design the columns based on deflection
CO4	Design a beam based on bending and shafts based on torsion
CO5	Analyze given beam for calculations of SF and BM
C06	Calculate slope and deflection at a point on cantilever /simply supported beam
000	using double integration, Macaulay's, Area-moment and superposition methods

Mapping of course outcomes with program outcomes

Course	Prog	ram O	utcom	es								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1				2
CO2	1	1	2	2								2
CO3	1	1	2	2		1						3
CO4	1	3	2	1								2
CO5	1	1	2	3								2

Course Contents:

Unit 1: Simple Stresses and Strains

Mechanical properties of materials, analysis of internal forces, simple stresses and strains, stressstrain curve, Hooke's law, modulus of elasticity, shearing, thermal stress, Hoop stress, Poisson's ratio, volumetric stress, bulk modulus, shear modulus, relationship between elastic constants. Principal Stresses and Strains

Uni-axial stress, simple shear, general state of stress for 2-D element, ellipse of stress, principal stresses and principal planes, principal strains, shear strains, strain rosettes.

Unit 2: Strain energy, resilience and Combined Stresses

[10 Hours]

Strain energy, resilience: Load-deflection diagram, strain energy, proof resilience, stresses due to gradual, sudden and impact loadings, shear resilience, Combined axial and flexural loads, middle third rule, kernel of a section, eccentrically applied load.

Columns and Struts: Concept of short and long Columns, Euler and Rankine's formulae, limitation of Euler's formula, equivalent length, eccentrically loaded short compression

members.

Unit 3: Stresses in Beams

Moment of inertia of different sections, bending and shearing stresses in a beam, theory of simple bending, derivation of flexural formula, economic sections, horizontal and vertical shear stress, distribution shear stress for different geometrical sections-rectangular, solid circular, I-section, other sections design for flexure and shear.

Torsion

Introduction and assumptions, derivation of torsion formula, torsion of circular shafts, stresses and deformation indeterminate solid/homogeneous/composite shafts, torsional strain energy.

Unit 4: Shear Force and Bending Moment Diagram

Introduction to different types of beams, different types of supports & loads. Concept and definition of shear force and bending moment in determinant beams due to concentrated loads, UDL, UVL and couple. Relation between SF, BM and intensity of loading, construction of shear force and bending moment diagram for cantilever, simple and compound beams, defining critical and maximum value and position of point of contra flexure. Construction of BMD and **load** diagram from SFD, Construction of load diagram and SFD from BMD.

Unit 5. Deflection of beams

Differential equation of deflected beam, slope and deflection at a point, calculations of deflection for determinate beams by double integration, Macaulay's method, theorem of areamoment method (Mohr's theorems), moment diagram by parts, deflection of cantilever beams, deflection in simple supported beams, mid-span deflection, conjugate beam method, deflection by method of superstition.

Texts:

S. Ramamrutham, "Strength of Materials", Dhanpat Rai and Sons, New Delhi.

F. L. Singer, Pytle, "Strength of Materials", Harper Collins Publishers, 2002.

S. Timoshenko, "Strength of Materials: Part-I (Elementary Theory and Problems)", CBS Publishers, New Delhi.

References:

E. P.Popov, "Introduction to Mechanics of Solid", Prentice Hall, 2nd edition, 2005.S. H. Crandall, N. C. Dahl, T. J. Lardner, "An introduction to the Mechanics of Solids", Tata McGraw Hill Publications, 1978.

S. B. Punmia, "Mechanics of Structure", Charotar Publishers, Anand.

Numerical Methods in Mechanical Engineering

Teaching Schem	e:	Examination Scheme:		
BTMPE405A	PEC 1	Numerical Methods in Engineering	3-0-0	3 Credits

[10 Hours]

[08 Hours]

[10 Hours]

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe the concept of error
CO2	Illustrate the concept of various Numerical Techniques
CO3	Evaluate the given Engineering problem using the suitable Numerical Technique
CO4	Develop the computer programming based on the Numerical Techniques

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	3							
CO2	3	3		1	3							
CO3	3	3		1	3							
CO4	3	3		1	3							

Course Contents:

Unit1: Error Analysis

Significant figures, round-off, precision and accuracy, approximate and true error, truncation error and Taylor series, machine epsilon, data uncertainties, error propagation, importance of error sin computer programming.

Unit2: Roots of Equations

Motivation, Bracketing methods: Bisection methods, Open methods: Newton Raphson method, Engineering applications.

Unit3: Numerical Solution of Algebraic Equations

Motivation, Cramer's rule, Gauss- Elimination Method, pivoting, scaling, engineering applications.

Unit4: Numerical Integration and Differentiation

Motivation, Newton's Cotes Integration Formulas: Trapezoidal Rule, Simpson's rule, engineering applications Numerical differentiation using Finite divide Difference method

Unit5: Curve, Fitting and Interpolation and Computer Programming [07 Hours]

Motivation, Least Square Regression: Linear Regression, Polynomial regression. Interpolation: Newton's Divide Difference interpolation, engineering applications. Solution to Ordinary Differentiation Equations: Motivation, Euler's and Modified Euler's Method, Hen's method, Runge-Kutta Method, engineering applications.

[07 Hours]

[07 Hours]

[07 Hours]

Computer Programming

Overview of programming language, Development of at least one computer program based on each unit. **Texts:**

- 1. Steven C Chapra, Reymond P. Canale,
- "Numerical Methods for Engineers", Tata Mc Graw HillPublications, 2010.
- 2. E. Balagurusamy, "Numerical Methods" Tata McGraw HillPublications, 1999.

References:

- 1. V. Rajaraman, "Fundamental of Computers" Prentice Hall of India, NewDelhi, 2003.
- 2. S. S. Sastri, "Introductory Methods of Numerical Methods", Prentice Hall of India, New Delhi,3rdedition,2003.
- 3. K. E. Atkinson, "An Introduction to Numerical Analysis", Wiley, 1978.
- 4. M.J. Maron, "Numerical Analysis: A Practical Approach", Macmillan, New York, 1982

Sheet Metal Engineering

BTMDE/05B	DEC 1	Sheet Metal Engineering	300	3 Credits
DIMIL+03D	I LC I	Sheet Metal Eligneering	5-0-0	5 Cieuits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize common manufacturing processes of Sheet Metal Fabrication
CO2	Understand the principles of design and fabricate of sheet metal products and recognize
~ ~~	
CO3	Distinguish Shearing, Drawing and Pressing etc. processes.
CO4	Know types of dies and formability.
CO5	Select mechanical or hydraulic presses for the given process

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1	3	2				2	1		1		
CO2	3			1	3	2	3					2		
CO3	1	1		3	3	2	1		3		1	3		
CO4	3	3	1	1	3		1	1	1					

CO5	3	2		3	3	2		1	3

Course Contents:

Unit1: Introduction [07 Hours]

Importance of sheet metal engineering, materials used, desirable properties of materials in sheet metal products

Unit2: Basic Applications [07 Hours]

Shearing processes like blanking, piercing, and punching.

Unit3: Drawing Processes [07 Hours]

Shallow and deep drawing of cylindrical and rectangular bodies, forming and bending including spring-back.

Unit4: Types of Dies and Mechanical Presses

[07Hours]

Dies: Compound dies, progressive dies, and combination

dies

Mechanical Presses

Mechanical and hydraulic presses, modern development sin press tools, formability.

Unit 5: Case Studies [07 Hours]

Case studies for manufacturing of sheet metal products in various engineering applications **Texts:**

1. Donaldson al., "Tool Design", Tata McGraw-Hill Publications, New Delhi, 1998.

References:

- 1. P.N.Rao, "ManufacturingTechnology,Foundry,FormingandWelding",Vol.I,TataMcGrawHill PublishingCo.Ltd,NewDelhi,3rdedition, 2004.
- 2. ASMH and book, "Metal Forming", Vol. XV, ASM Publication, Metals Park, Ohio,10thedition,1989.
- 3. A. S. Deshpande, "Die Design Hand book", ASTME.
- 4. Sheet Metal Engineering Notes, IITBombay, 1999.

Fluid Machinery

BTMPE405C	PEC 1	Fluid Machinery	3-0-0	3 Credits
-----------	-------	-----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
C06	Explain working of various types of pumps, draw velocity diagrams, do simple
000	Calculations
CO7	Design simple pumping systems

Mapping of course outcomes with program outcomes

Course						Prog	ram Oı	itcome	s			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									1
CO2	3		3				2					1

CO3	3	2							1
CO4	3	3	2						1
CO5			3						1
CO6	3	3	3	1	1				1
CO7	3	3		3					1

Course Contents:

Unit 1: Momentum Equation and its Applications

Impulse momentum, Principle, Fixed and moving flat inclined plates, Curved vanes, Series of plates and vanes, Velocity triangle and their analysis, Water wheels. Hydrodynamic Machines: Classification, General theory, Centrifugal head, Fundamental equations, and Euler's equation, Degree of reaction, Head on machine, various efficiencies, Condition for maximum hydraulic efficiency.

Unit 2: Impulse and Reaction Turbines

Impulse principle, Construction of Pelton wheel, Velocity diagrams and its analysis, Number of buckets, Jets, Speed ratio, Jet ratio.

Reaction Turbines: Constructional details of Francis, Kaplan and Propeller turbine, Deciaz turbine, and Draft tube types, Efficiencies, Cavitation.

Unit 3: Governing of Turbines

Methods of governing, Performance characteristics, Safety devices, Selection of turbines, Unit quantities, Specific speed, Principles of similarity and model testing.

Unit 4: Centrifugal Pump

Construction, Classification, Terminology related to pumps, Velocity triangle and their analysis, Cavitation, NPSH, Thoma's cavitation factor, Priming, Methods of priming, Specific speed, Performance characteristics, Actual thrust and its compensation, Troubleshooting.

Multistage Pumps: Pump H-Q characteristics and system H-Q Characteristics, Series and parallel operation of pumps, Systems in series and parallel, Principle of model testing and similarity.

Unit 5: Special Purpose Pumps

Chemical pumps, nuclear pumps, Sewage pumps, Submersible deep well pumps, Pump installation, Energy efficient pumps.

Failure of Pumping System: Pump failures, Remedies, Source failure, Causes and remedies, Trouble shooting.

Miscellaneous Pumps: Reciprocating pump, Gear pump, Vane pump, Lobe pump, etc., Application field (no mathematical treatment).

Texts:

- 1. P. N. Modi, S. M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, Rajsons Publications Pvt. Ltd., 20th edition.
- 2. R. K. Bansal, "A Text Book of Fluid Mechanics and Hydraulic Machines", Lakshmi Publications Pvt. Ltd., 9th edition.

References:

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

1. Yunus A. Çengel, John M. Cimbala, Fluid Mechanics: Fundamentals and Applications", McGraw Hill, 3rd edition, 2014.

Mechanical Engineering Lab II

BTMCL406 PCC7	Manufacturing Processes Lab I+Theory of Machines Lab -I Strength of Materials Lab	0-0-4	2 Credit
---------------	---	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Manufacturing Processes Lab I)

List of Practical's/Experiments/Assignments (Any Three from Group

A)

Making a job with a process plan involving plain, step and taper turning as well thread cutting as operations on a Centre lathe.

- 1. Preparation of process planning sheet for a job including operations such as milling, drilling and shaping.
- 2. Making a spur gear using universal dividing head on milling machine.
- 3. Making a simple component by sand casting using a split pattern.
- 4. Cutting of a steel plate using oxyacetylene flame cutting /plasma cutting.
- 5. Making a butt joint on two stainless steel plates using TIG/MIG Welding.
- 6. An experiment on shearing operation.
- 7. An experiment on blanking operation.
- 8. An experiment on drawing operation

Group B (Theory of Machines Lab - I)

List of Practical's/Experiments/Assignments (Any Three from Group B)

1. Four sheets (half imperial size)

Graphical solution of problems on velocity, acceleration in mechanisms by relative velocity method, instantaneous center of rotation method and Klein's construction. At least one problem containing Corioli's component of acceleration.

2. Experiments (any 2

- a) Experimental determination of velocity and acceleration of Hooke's joint.
- b) Determination of displacement of slider-crank mechanism with the help of model and to plot velocity and acceleration curves from it.
- c) Experiment on Corioli's component of acceleration.

3. Assignment

Develop a computer program for velocity and acceleration of slider-crank mechanism.

Group C (Strength of Materials Lab)

List of Practical's/Experiments/Assignments (Any Three from Group C)

- 1. Tension test on ferrous and non-ferrous alloys (mid steel/cast iron/aluminum, etc.
- 2. Compression test on mild steel, aluminum, concrete, and wood
- 3. Shear test on mild steel and aluminum (single and double shear tests)
- 4. Torsion test on mild steel and cast-iron solid bars and pipes
- 5. Flexure test on timber and cast-iron beams
- 6. Deflection test on mild steel and wooden beam specimens
- 7. Graphical solution method for principal stress problems
- 8. Impact test on mild steel, brass, aluminum, and cast-iron specimens
- 9. Experiments on thermal stresses
- 10. Strain measurement in stress analysis by photo-elasticity
- 11. Strain measurement involving strain gauges/ rosettes
- 12. Assignment involving computer programming for simple problems of stress, strain Computations.

Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME

B.TECH.

3rd Year MECHANICAL ENGINEERING/MECHANICAL ENGINEERING(SANDWICH) ACADEMIC YEAR2023-2024

Abbreviations

BSC: Basic Science Course ESC: Engineering Science Course PCC: Professional Core Course PEC: Professional Elective Course OEC: Open Elective Course HSSMC: Humanities and Social Science including Management Courses PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester V B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester V											
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No of		
Category			L	Т	Р	CA	MSE	ESE	Total	Credits		
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4		
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4		
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4		
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3		
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3		
PCC 11	BTMC 506	Applied Thermodynamics	<mark>3</mark>		-	<mark>20</mark>	<mark>20</mark>	<mark>60</mark>	<mark>100</mark>	<mark>3</mark>		
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3		
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1		
		Total	18	3	6	180	120	500	800	25		

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
4	BTMOE505D	Product Design Engineering

Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

	Semester VI												
Course	Course Code	Course Title	Teac	hing Sc	heme	E	valuati	on Sch	eme	No. of			
Category			L	Т	Р	CA	MSE	ESE	Total	Credits			
PCC12	BTMC 601	Manufacturing Processes- II	3	1	-	20	20	60	100	4			
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4			
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3			
PEC4	BTMPE 604A-D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3			
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	<mark>3</mark>			
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3			
PROJ-4	BTMS607	B Tech Seminar	-	-	2	<mark>60</mark>		<mark>40</mark>	<mark>100</mark>	<mark>1</mark>			
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	-	-	2	60	-	40	100	<mark>1</mark>			
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluated in Sem VII			
		Total	15	2	10	280	100	420	800	22			

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMPE603A	IC Engines
2	BTMPE603B	Mechanical Vibrations
3	BTMPE603C	Machine Tool Design
4	BTMPE603D	Engineering Metrology and Quality Control
5	BTAPE603C	Advance Automobile Design
6	BTAPE603E	E – Vehicles

Elective IV:

SrNo	Course code	Course Name
1	BTMPE604A	Process Equipment Design
2	BTMPE604B	Product Life Cycle Management
3	BTMPE604C	Finite Element Method
4	BTMPE604D	Robotics
5	BTAPE604B	Computational Fluid Dynamics

Open Elective II:

Sr.No	Course code	Course Name
1	BTMOE605A	Quantitative Techniques and Project Management
2	BTMOE605B	Nanotechnology
3	BTMOE605C	Energy Conservation and Management
4	BTMOE605D	Wind Energy
5	BTMOE605E	Introduction to Probability Theory and Statistics

Semester - V

Heat Transfer

BTMC 501	PCC 8	Heat Transfer	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it for 1-D steady state heat transfer in regular shape bodies
CO2	Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and lumped heat transfer
CO3	Interpret the extended surfaces
CO4	Illustrate the boundary layer concept, dimensional analysis, forced and free convection under different conditions
CO5	Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

Mapping of course outcomes with program outcomes

Course					P	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1				1			
CO2	3	2			1							
CO3	3	1			2		2		1			
CO4	3	3		1	1				1			
CO5	3	3	3		1		2					
CO6	2	3		2	2		2		1			

Course Contents:

Unit1: Introduction

Heat transfer mechanism, conduction heat transfer, Thermal conductivity, Convection heat transfer, Radiation heat transfer, laws of heat transfer Steady State Conduction: General heat conduction equation, Boundary and initial Conditions, one dimensional steady state conduction : the slab, the cylinder, the sphere, composite systems.

Unit2: Overall Heat Transfer and Extended Surfaces

Thermal contact resistance, Critical radius of insulation, Electrical analogy, and Overall heat transfer coefficient, Heat sources systems, Variable thermal conductivity, extended surfaces. Unsteady State Con duction: Lumped system analysis, Biot and Fourier number, Heisler chart (Numerical examples).

Unit3: Principles of Convection

Continuity, Momentum and Energy equations, Hydro dynamic and Thermal boundary layer for aflat plate and pipe flow. Dimensionless groups force convection, relation between fluid friction and heat transfer, turbulent boundary layer heat transfer. Forced

Convection:

Empirical relations for pipe and tube flow, flow a cross cylinders, spheres, tube banks. Free Convection: Free convection from a vertical, inclined and horizontal surface, cylinder and sphere. (Numericalexamples).

Unit4: Heat Exchangers

Heat Exchangers: Classification of heat exchangers, temperature distribution in parallel counter arrangement, the overall heat transfer coefficient, Analysis of heat flow exchangers, the log mean temperature difference (LMTD) method, the effectiveness - NTU method, selection of heat exchangers, Introduction to TEMA standard. (Numerical examples).

Unit5: Radiation Heat Transfer

Introduction, thermal radiation, Black body

radiation, radiation laws, Radiation properties, Atmospheric and Solar radiation, The view factor Radiation heat transfer from black surfaces, gray surfaces, diffuses surfaces, Radiation shield sand the radiation effect. (Numerical examples).

Texts:

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

- 1. F. P. Incoropera, D. P.Dewitt, "FundamentalsofHeatandMassTransfer",John-Wiley,5th edition,1990.
- 2. S. P. Sukhatme, "A Text book On Heat Transfer", Tata McGraw-Hill Publications, 3rd edition.

References:

- 1. Y. A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw HillPublications,3rdedition,2006.
- 2. J. P. Holman, "HeatTransfer", Tata McGraw Hill Publications,9th edition,2004.

Machine Design - I

BTMC 502	PCC 9	Machine Design - I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Strength of Materials

Course Outcomes: At the end of the course, students will be able to:

CO1	Formulate the problem by identifying customer need and convert into design Specification
CO2	Understand component behavior subjected to loads and identify failure criteria
CO3	Analyze the stresses and strain induced in the component
CO4	Design of machine component using theories of failures
CO5	Design of component for finite life and infinite life when subjected to fluctuating load
CO6	Design of components like shaft, key, coupling, screw and spring

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1

CO2	3	2		1	1	1	1	1
CO3	1	1			1	1	1	1
CO4	3	3	2	1	2	1	1	1
CO5	1	1			1	1	1	1
CO6	2	2	2	1	1	1	1	1

Course Contents:

Unit1:MechanicalEngineeringDesignProcess

Traditional design methods, general industrial design procedure, design considerations, phases in design, creativity in design, use of standardization, preferred series, introduction toISO9000, use of design data book, aesthetic and ergonomic considerations in design.

Unit2:DesignofMachineElementsagainstStaticLoading

of Failure(Yield and Fracture Criteria): Maximum normal stress theory, Maximum shear stress theory, Maximum distortion energy theory, comparisonof various theories of failure, Direct loading and combined loading, Joints subjected to static loadinge.g. cotter and knuckle joint.

Unit3: Design against Fluctuating Loads

Stress concentration, stress concentration factors, fluctuating stresses, fatigue failure, endurance limit, notch sensitivity, approximate estimation of endurance limit, design for finite life and finite life under reversed stresses, cumulative damage in fatigue, Soderberg and Goodman diagrams, fatigue design under combined stresses.

Unit4:Design of Shafts Keys and Couplings

[07 Hours] Various design considerations in transmission shafts, splined shafts, spindle and axles strength, lateral and torsional rigidity, ASME code for designing transmission shaft. Types of Keys: Classification and fitmentin key ways, Design of various types of keys. Couplings: Design consideration, design of rigid, muff and flange type couplings, and

couplings.

Unit5: Design of Threaded Joints and Mechanical Springs

Power Screws: Forms of threads used for power screw and the it sapplications, torque analysis for square threads, efficiency of screw, overall efficiency, self-locking in power screws, stresses in the power screw, design of screw and nut, differential and compound screw, recirculating balls crew.

Welded Joints: Type of welded joints, stresses in butt and fillet welds, strength of welded jointssubjected to bending moments.

Mechanical Springs: Stress deflection equation for helical spring, Wahl's factor, style of ends, design of helical compression, shot peening.

Texts:

- 1. V. B. Bhandari, "Design of Machine Elements", TataMcGrawHill Publications, NewDelhi, 2008.
- 2. R. L.Nortan, "Machine Design: An Integrated Approach", PearsonEducationSingapore, 2001.

References:

[07 Hours]

[07 Hours] Theories

[07 Hours]

[07 Hours]

design offlexible

- 1. R. C.Juvinall, K. M.Marshek, "Fundamentalofmachinecomponentdesign", John Wiley&SonsInc., NewYork, 3rdedition, 2002.
- 2. B. J. Hamrock, B. JacobsonandSchmidSr., "FundamentalsofMachineElements", InternationalEdition, NewYork, 2ndedition, 1999.
- 3. A. S.Hall, A. R.Holowenko, H. G.Langhlin, "TheoryandProblemsofMachine Design", Schaum's OutlineSeries, Tata McGrawHillbookCompany, NewYork, 1982.
- 4. J. E.ShigleyandC.Mischke, "MechanicalEngineeringDesign", Tata McGrawHill Publications,7thedition, 2004.
- 5. M. F.Spotts, "DesignofMachineElements", PrenticeHallofIndia, NewDelhi.

Theory of Machines - II

BTMC 503	PCC 10	Theory of Machines - II	3-1-0	4 Credits						
Teaching Schen	ne:	Examination Scheme:	Examination Scheme:							
Lecture: 3 hrs/we	eek	Continuous Assessment	Continuous Assessment: 20 Marks							
Tutorial: 1 hr/we	ek	Mid Semester Exam: 20	Marks							
		End Semester Exam: 60	End Semester Exam: 60 Marks (Duration 03 hrs)							

Pre-Requisites: Engineering Mechanics, TOM - I

	Course Outcomes: At the end of the course, students will be able to:
CO1	Identify and select type of belt drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Characterize flywheels as per application requirement
CO4	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO5	Understand free and forced vibrations of single degree freedom systems

.

Mapping of course outcomes with program outcomes

Course Outcomes		Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	3	1		2		1			2		2			
CO2	2	3					1					3			
CO3		2		1											
CO4	2	3		2								3			
CO5	2	3		3								3			

Course Contents:

Unit 1: Belt Drives

Flat belts: Effect of slip, Creep, crowing of pulley, Length of belt, Centrifugal tension, Initial tension in belts, ratio of belt tensions, power transmitted.

V- Belts: Advantages of V-Belts over Flat Belt, ratio of belt tensions, torque transmitted.

Unit 2: Toothed Gears

Classification of gears, Terminology of spur gears, Conjugate action, Involute and cycloidal profiles, Path of contact, Arc of contact, Contact ratio, Interference, Undercutting, Backlash. Introduction to Internal gears.

Helical gear terminology, Normal and transverse module, Virtual number of teeth.

Unit 3: Worm & Bevel Gear & Gear Trains

Introduction & terminology of Worm gears & Bevel gear, concept of virtual number of teeth in bevel gear, Efficiency of worm gear.

Types of gear trains, Simple, Compound & Reverted Gear Trains, their Velocity ratios, Simple Epicyclic Gear Train & its Velocity Ratios.

Unit 4: Flywheel and Gyroscope

Flywheel: Turning moment diagram, Energy stored in the flywheel, Fluctuation of energy and speed, Determination of mass of flywheel for four stroke single cylinder IC Engine & simple Punching Press.

Gyroscope: Principles of gyroscopic action, Precession and gyroscopic acceleration, gyroscopic couple, Effect of the gyroscopic couple on Aeroplane, Naval ships and four wheelers.

Unit 5: Vibration

Mechanical Vibration: Basic concepts and definitions of Vibration, Single degree of freedom system, Undamped free vibrations, Natural frequency of Longitudinal & transverse vibrations of shaft with point loads (neglecting inertia), Introduction to damped free vibrations & equation of motion, Types of damping. Critical or whirling Speed of shaft in undamped system. Introduction to forced vibrations

Torsional Vibrations: Natural frequency & modes of single and two rotor system.

Texts:

- 1. S. S. Rattan, "Theory of Machines," Tata McGraw Hill Publications, New Delhi.
- 2. Thomas Beven, "Theory of machines," CBS Publishers, Delhi, 1984.
- 3. Kelly, Graham S., "Mechanical Vibrations," Schaum's Outline Series, McGraw Hill, New York, 1996.
- 4. Rao, J.S., "Introductory Course on Theory and Practice of Mechanical Vibration", New age International (P) Ltd, New Delhi, 2nd edition, 1999.

References:

- 1. Rao Singiresu, "Mechanical Vibrations", Pearson Education, New Delhi, 4th edition 2004.
- 2. J. E. Shigley, J. J. Vicker, "Theory of Machines and Mechanisms", Tata McGraw Hill International.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]
Refrigeration and Air Conditioning

BTMPE504A	PEC 2	Refrigeration and Air Conditioning	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Unit 1: Air Refrgeration System

Introduction, standard rating of refrigerating machine, coefficient of performance of refrigerator and heat pump., Reversed Carnot cycle and its limitations, reversed Brayton cycle, application to air craft refrigeration. Bootstrap refrigeration cycle, reduced ambient air cooling system, Regenerative air cycle system

Designation of refrigerant, selection of refrigerant, Desirable Properties, Primary and secondary refrigerants, azeotropes and its uses

Unit 2: Vapour Compression System

Thermodynamics analysis, theoretical and actual cycle, Use of P-h and T-s diagram for problem solving, COP, Effect of evaporator and condenser temperature on cycle performance, Effects of suction superheating

Liquid sub-cooling, liquid-vapour heat exchanger, estimation of compressor displacement, COP and power requirement, waste heat recover opportunities

Unit 3: Compound Vapour Compression System

Multi-evaporator, multi-compressor systems, cascade system

Vapour Absorption System: Aqua-ammonia system, lithium bromide-water system, Electrolux refrigerator, comparison with vapour compression cycle (descriptive treatment only), use of enthalpy concentration, thermodynamic analysis, and capacity control, solar refrigeration system

Unit 4: Air Conditioning:

Psychrometry, properties of moist air, Psychometric charts. Psychomeric processes, bypass factor Sensible and latent heat loads, SHF, GSHF, RSHF, All air system, all water system, unitary systems; window air-conditioner, split air-conditioners, refrigeration and airconditioning controls

Unit 5: Air Conditioning Process Calculation

Introduction to comfort air conditioning ,human comfort and comfort chart, Load calculation, outside conditions, indoor conditions, estimation of coil capacity required, evaporative cooling Principle of air distribution, duct design methods, friction chart, duct materials, methods of noise control

Texts:

1. Arora, C.P., Refrigeration and Air Conditioning, Tata McGraw Hills, New Delhi, Second Edition, 2000.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

2. Stoeker, W.F. and Jones, J.P., Principles of Refrigeration and Air Conditioning, McGraw Hill, New York, Second Edition, 1982.

References:

- 1. ASHRAE Handbook Fundamentals and Equipment, 1993.
- 2. ASHRAE Handbook Applications, 1961.
- **3.** ISHRAE Handbook
- 4. NPTEL Lectures by Prof. RamGopal, IIT Kharagpur
- 5. Carriern Handbook
- **6.** Jord R.C., and Priester, G.B., Refrigeration and Air Conditioning, Prentice Hall of India Ltd., New Delhi, 1969.
- 7. Threlkeld, J.L., Thermal Environmental Engineering, Prentice Hall, New York, 1970.

Steam and Gas Turbine

BTMPE504B	PEC 2	Steam and Gas Turbine	3-0-0	3 Credits	

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	State Various properties of Steam, Draw P-V, T-s, H-s (Mollier) diagrams for steam, Describe Theoretical steam turbine cycle.
CO2	Define and Understand Various Types of Design of Turbines.
CO3	Perform analysis of given steam and gas Turbine power plant (Efficiencies, Power Output, Performance)
CO4	Study and apply various Performance improvement Techniques in steam and gas Turbines
CO5	Assess factors influencing performance of thermal power plants,
CO6	Apply various maintenance procedures and trouble shootings to Turbines.

Mapping of course outcomes with program outcomes

Program Outcomes						
PO12						
-						

Course Contents:

Unit 1: Introduction

[07 Hours]

Properties of steam, Theoretical steam turbine cycle. The flow of steam through Impulse and Impulse-Reaction turbine blades

Unit 2:

[07 Hours]

Vortex flow in steam turbines, Energy lines, State point locus, Reheat factor and Design procedure. Governing and performance of steam turbine

Unit 3: Gas Turbine

Introduction, simple open cycle gas turbine, Actual Brayton cycle, Means of Improving the

efficiency and the specific output of simple cycle,

Unit 4: Gas Turbine Cycle Modifications and Performance

[07 Hours]

Regeneration, Reheat, Intercooling, closed-cycle gas turbine, turbine velocity diagram and work done.

Unit 5: Turbine Cooling and maintenance

[07 Hours]

Turbine blade cooling, material, protective coating, Performance of turbine, Application of turbine. Lubrication, cooling, fuel supply and control, Maintenance and trouble shooting.

Texts:

1. W. J. Kearton, "Steam Turbine Theory and Practice", ELBS.

References:

1. R. Yadav, "Steam and Gas Turbine", Central Publishing Home, Allahabad. Jack D. Mattingly, "Elements of Gas Turbine propulsion", Tata McGraw Hill Publications.

Engineering Tribology

BTMPE504C	PEC2	Engineering Tribology	3-0-0	Credits	

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic concepts and importance of tribology.		
CO^{2}	Evaluate the nature of engineering surfaces, their topography and surface		
02	characterization techniques		
CO3	Analyze the basic theories of friction and frictional behavior of various materials		
CO4	Select a suitable lubricant for a specific application		
CO5	Compare different wear mechanisms		
CO6	Suggest suitable material combination for tribological design.		

Mapping of course outcomes with program outcomes

Course					F	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	1	2	2		1						
CO3	2	3	1	2	1	1	1					
CO4	2	2	2		1	1	2		1		1	
CO5	1	1	1	1	1							
CO6	2	2	2		2	2	2		1	1	1	

Course Contents: Unit1: Introduction

[07 Hours] Definition of tribology, friction, wear and lubrication; importance of the tri-bological tudies. Surface Topography: Methods of assessment, measurement of surface roughness-different statistical parameters (Ra, Rz, Rmax, etc.), contact between surfaces, deformation between single and multiple asperity contact, contact theories involved

Unit2: Friction

Coulomb laws of friction, its applicability and limitations, comparison between static, rollingand kinetic friction, friction theories, mechanical interlocking, molecular attraction, electrostatic forces and welding, shearing and ploughing, models for asperity deformation.

Unit3: Lubrication

Types of lubrication, viscosity, characteristics of fluids lubricant, hydrodynamic lubrication, Reynold's equation, elasto-hydrodynamic lubrication: partial and mixed, boundary lubrication, various additives solid lubrication.

Unit4: Wear

Sliding wear: Abrasion, adhesion and galling, testing method spin-on-disc, block-onring, etc. theory of sliding wear, un-lubricated wear of metals, lubricated wear of metals, fretting wear of metals, wear of ceramics and polymers.

Wearing by plastic deformation and brittle fracture. Wear by hard particles: Two-body abrasive wear, three-body abrasive wear, erosion, effects of hardness shape and size of particles.

Unit5: Wear and Design and Materials for Bearings

Introduction, estimation of wear rates, the systems approach, reducing ear by changingthe operating variables, effect of lubrication on sliding wear, selection of materials and surface engineering. Principles and applications of tribo design

Materials for Bearings

Introduction, rolling bearings, Fluid film lubricated bearings, marginally lubricated and dry bearings, gas bearings.

Texts:

- 1. I. M. Hutchings, "Tribology, Friction and Wear Engineering Materials", Edward Arnold, London.
- 2. R. C. Gunther, "Lubrication", Baily Brother sand Swinfen Limited.
- 3. F. T. Barwell, "Bearing Systems, Principles and Practice", Oxford University Press.

References:

- 1. B. C. Majumdar, "Introduction to Tribology of Bearings", A. H. Wheeler & Co. Private Limited, Allahabad.
- 2. D. F. Dudley, "Theory and Practice of Lubrication for Engineers", John Willey and Sons.
- 3. J. Halling, "Principles of Tribology", Mc Millan Press Limited.
- 4. Cameron Alas Tair, "Basic Lubrication Theory", Wiley Eastern Limited.
- 5. M. J. Neale, "Tribology Handbook", Butterworth's.
- 6. D. D. Fuller, "Lubrication".

[07 Hours]

[07 Hours]

Fundamentals of Automobile Design

|--|

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							

Course Contents:

Domain related training (Approx. 20 Hrs)

Unit 1:

[07 Hours] Introduction to Styling, Basic of Design - Introduction to Design, Good Design & it's Examples of All Time, Industrial Design & its use. Design Process - Typical Product Life Cycle, Automotive Design Process (for production release), Design Studio (Automotive studio) Process or Product Conceptualization Process, Case Study. CAS Surfaces or Digital Clay Models, Class A Surfaces - Role of Class A surface Engineer, Requirements for a Surface to fulfill " Class A Surface" Standards, Case Studies for Class A Surfaces, Class A Surface Creation for Bonnet

Unit 2:

Introduction to Body In White: Introduction & familiarization to Body In White (BIW), various type of BIW, Types of BIW sub system, various aggregates of BIW. Bonnet Design Case Study: Function of Bonnet, Defined Input to Bonnet, Intended Input to Bonnet Design. Steps in Bonnet design, Study of Class A Surfaces, Hood Package Layout, Typical Sections, Block Surfaces in 3D, Dynamic Clearance Surfaces in 3D, Hood Structural Members, CAE 1(Durability, Crash), Panel Detail Design, Body Assembly Process, CAE 2(Durability, crash,

individual panel level), Design Updating & Detailing Prototypes, Design Updating & Production Release

Unit 3:

Introduction to CAE & its importance in the PLM, Introduction to FEA & its applications (NVH, Durability & Vehicle Crashworthiness). Introduction of Pre-Processor, Post-Processor & Solvers. Importance of discretization & Stiffness Matrix (for automobile components). Importance of oil canning on an automobile hood with Case study related to Durability Domain. Modal analysis on the hood (Case Study related to NVH Domain). Introduction of vehicle crashworthiness & Biomechanics (Newtonian laws, energy management, emphasis of impulse in car crashes). Head impact analysis as a Case study on the hood of an automobile (Eurocamp test regulation). Importance of Head performance criteria (HPC). Introduction to failure criteria (By explaining the analogy of using uni-axial test results for predicting tri-axial results in reality), Mohr's Circle, Von-Mises stress criteria, application of various failure criteria on brittle or ductile materials

Unit 4:

Introduction to CAD, CAM& CAE, FEA - Definition, Various Domains – NVH, Dura, Crash, Occupant Safety, CFD. Implicit vs. Explicit Solvers, Degree of Freedom, Stiffness Matrix, Pre-Post & Solver; Types of solvers, Animation. Durability -Oil Canning, Oil Canning on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions. NVH – Constrained Modal Analysis, Constrained Modal Analysis on Hood, Scope of work, Loading, Boundary Conditions, Results & Conclusions, Energy Management, Biomechanics, Head Impact Analysis on Hood, Importance of Failure Criteria, Von-Mises Stress

Unit 5:

[07 Hours]

Sheet metal design & Manufacturing Cycle, Simultaneous Engineering (SE) feasibility study, Auto Body & its parts, important constituents of an automobile, sheet metal, sheet metal processes. Type of draw dies, Draw Model development & its considerations. Forming Simulations, Material Properties, Forming Limit Curve (FLD), Pre-Processing, Post-Processing, Sheet metal formability- Simulation

Die Design –Sheet metal parts, Sheet metal operations (Cutting, Non-Cutting etc.), Presses, Various elements used in die design, Function of each element with pictures, Types of dies, Animation describing the working of dies, Real life examples of die design. **Fixture Design** - Welding (Spot/Arc Welding), Body Coordinates, 3-2-1 principle, Need for fixture, Design considerations, Use of product GD&T in the fixture design, fixture elements. Typical operations in Sheet metal Fixture (Manual/Pneumatic/Hydraulic fixture), Typical unit design for sheet metal parts (Rest/Clamp/Location/Slide/Dump units/Base), Types of fixture (Spot welding/ Arc welding/ Inspection fixture/Gauges)

Tools related training (Approx. 20 Hrs):

Depending on the tools available in the college, the relevant tool related training modules shall be enabled to the students.

AutoCAD, AutoCAD Electrical, AutoCAD Mechanical, AutoCAD P&ID, Autodesk 3ds Max, Autodesk Alias, Autodesk Sketch Book, Automotive, CATIA V5, CATIA V6, FEA, Autodesk Fusion 360, Autodesk Inventor, Autodesk Navisworks, Autodesk Ravit, Autodesk

[07 Hours]

Showcase, Autodesk Simulation, PTC Creo, PTC Pro ENGINEER, Solid Edge, SOLIDWORKS.

Texts:

- 1. Notes of TATA Technologies
- 2. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.
- 4. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.

References:

- 1. Ibrahim Zeid,"CAD/CAM Theoryand Practice", Tata McGraw-Hill Publication,
- 2. Mikell P. Grover "Automation, Production Systems and Computer-Integrated Manufacturing", Pearson Education, New Delhi.
- 3. P. Radhakrishnan & S. Subramanyan "CAD/CAM/CIM" Willey Eastern Limited New Delhi.
- 4. On wubiko, C., "Foundation of Computer Aided Design", West Publishing Company.1989
- 5. R.W. Heine, C. R. Loper and P.C.Rosenthal, *Principles of Metal Casting*, McGraw Hill, Newyork, 1976.
- 6. J. H. Dubois And W. I. Pribble, *Plastics Mold Engineering Handbook*, Van Nostrand Reihnhold, New York, 1987.
- 7. N. K. Mehta, Machine tool design, Tata McGraw-Hill, New Delhi, 1989.
- 8. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 9. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 10. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- 11. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

Automobile Engineering

BTAPE504D	PEC2	Automobile En	gineering	3-0-0						
Teaching Sche	me	Exa	amination Schem	ie						
Lecture: 3 Hrs/	'week	Co	Continuous Assessment: 20 Marks							
		Mi	Mid semester examination: 20 Marks							
		Ene	End Semester Exam: 60 Marks (3 hrs							
duration)										

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to :

	C	CO1 Identify the different parts of the automobile.			
-					
CC)2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,			
CC	D3 Demonstrate various types of drive systems; front and rear wheels, two and fou				
dri	ve				
CC)4	Apply vehicle troubleshooting and maintenance procedures.			
CC	5	Analyze the environmental implications of automobile emissions. And suggest suitable			
ee	5	regulatory modifications.			

Mapping of course outcomes with program outcomes

CourseOu		Program Outcomes										
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 [PO 9 1	PO10PC)11PO	12
01	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Course Contents:

Unit1: Introduction

Vehicle specifications, Classifications, Chassis layout, Frame, Main components of automobile and articulated vehicles; Engine cylinder arrangements, Power requirements, Tractive efforts and vehicle performance curves.

Unit2: Steering and Suspension Systems

Steering system; Principle of steering, Centre point steering, Steering linkages, Steering geometry and wheel alignment, power steering.

Suspension system: its need and types, Independent suspension, coil and leaf springs, Suspension systems for multiaxle vehicles, troubleshooting and remedies.

Unit3: Transmission System

Clutch: its need and types, Gearboxes: Types of gear transmission, Shift mechanisms, Over running clutch, Fluid coupling and torque converters, Transmission universal joint, Propeller shaft, Front and rear axles types, Stub axles, Differential and its types, Four wheel drive.

Unit4: Brakes, Wheels and Tyres

Brake: its need and types: Mechanical, hydraulic and pneumatic brakes, Disc and drum type: their relative merits, Brake adjustments and defects, Power brakes

Wheels and Tyres: their types; Tyre construction and specification ; Tyre wear and causes; Wheel balancing.

Unit5: Electrical Systems

Construction, operation and maintenance of lead acid batteries, Battery charging system, Principle and operation of cutout and regulators, Starter motor, Bendix drive, Solenoid drive, Magneto-coil and solid stage ignition systems, Ignition timing.

Vehicle Testing and Maintenance

Need of vehicle testing, Vehicle test standards, Different vehicle tests, Maintenance: trouble shooting and service procedure, over hauling, Engine tune up, Tools and equipment for repair and overhauling, Pollution due to vehicle emissions, Emission control system and regulations.

Texts:

1. Kripal Singh, "Automobile Engineering", Vol.I and II, Standard Publishers.

2. G.B.S.Narang,"Automobile Engineering", Dhanpat Rai and Sons.

References:

- 1. Joseph Heitner, "Automotive Mechanics", East-West Press.
- 2. W.H.Crouse, "Automobile Mechanics", Tata McGraw Hill Publishing Co.

Open Elective-I

Solar Energy

BTMOE505A OEC1 Solar Energy 3-0-0 3 credits					
	BTMOE505A	OEC1	Solar Energy	3-0-0	3 credits

Teaching Scheme:	Examination Scheme:						
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks						
	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks(Duration 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe measurement of direct, diffuse and global solar radiations falling on horizontal and inclined surfaces.
CO2	Analyze the performance of flat plate collector, air heater and concentrating type
	conector.
CO3	Understand test procedures and apply these while testing different types of collectors.
CO4	Study and compare various types of thermal energy storage systems.
CO5	Analyze payback period and annual solar savings due to replacement of conventional
COS	systems.
CO6	Design solar water heating system for a few domestic and commercial applications.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1	2				1						
CO3	2			1	1		2					
CO4	1	1										
CO5		2			1							
CO6			2	3		1	1					

Course Contents

Unit 1: Solar Radiation

Introduction, spectral distribution, solar time, diffuse radiation, Radiation on inclined surfaces, measurement of diffuse, global and direct solar radiation.

Unit 2: Liquid Flat Plate Collectors

Introduction, performance analysis, overall loss coefficient and heat transfer correlations, collect or efficiency factor, collect or heat removal factor, testing procedures.

Unit 3: Solar Air Heaters

Introduction, types of air heater, testing procedure.

Unit 4: Concentrating Collectors

Types of concentrating collectors, performance analysis

[07 Hours]

[07 Hours]

[07 Hours]

Unit 5: Thermal Energy Storage and Economic Analysis

[07 Hours]

Introduction, sensible heat storage, latent heat storage and thermo chemical storage Solar Pond: Solar pond concepts, description, performance analysis, operational problems. Economic Analysis

Definitions, annular solar savings, payback period.

Texts:

- 1. J. A. Duffie, W. A. Beckman, "Solar Energy Thermal Processes", John Wiley, 1974.
- 2. K. Kreith, J. F. Kreider, "Principles of Solar Engineering", Tata McGraw-Hill Publications, 1978.

References:

- 1. H. P. Garg, J. Prakash, "Solar Energy: Fundamentals and Applications", Tata McGraw Hill Publications, 1997.
- 2. S. P. Sukhatme, "Solar Energy Principles of Thermal Collection and Storage", Tata McGraw Hill Publications, 1996.

Renewable Energy Sources

BTMOE505B	OEC1	Renewa	ble Energy Sources	3-0-0	Credits				
Teaching Scheme:Examination Scheme:									
Lecture: 3 hrs/we	ek		Continuous Assessment: 20 Marks						
			Mid Semester Exam: 20 Marks						
End Semester Exam: 60 Marks (Duration 03									

Pre-Requisites: None

	Course Outcomes: At the end of the course, students will be able to:
CO1	Explain the difference between renewable and non-renewable energy
CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3	3	3	2	2		2
CO2	1	1	3	1	2	3	3	3	2	2		2
CO3	2	1	1				3	2		1		2
CO4	3	3			2	3	3	2				1

Course Contents:

Unit 1: Solar Energy

Energy resources, Estimation of energy reserves in India, Current status of energy conversion Spectral distribution, Solar geometry, Attenuation of solar radiation in Earth's atmosphere, Measurement of solar radiation, Properties of opaque and transparent surfaces.

Unit 2: Solar Collectors

Flat Plate Solar Collectors: Construction of collector, material, selection criteria for flat plate collectors, testing of collectors, Limitation of flat plate collectors, Introduction to ETC.

Concentrating type collectors: Types of concentrators, advantages, paraboloid, parabolic trough, Heliostat concentrator, Selection of various materials used in concentrating systems, tracking.

Unit 3: Solar Energy Applications

Air/Water heating, Space heating/cooling, solar drying, and solar still, Photo-voltaic conversion.

Unit 4: Wind Energy and Biomass

Introduction to wind energy, Types of wind mills, Wind power availability, and wind power development in India. Evaluation of sites for bio-conversion and Introduction to biomass resources, Location of plants, Biomass conversion process,

[07 Hours]

[07 Hours]

Unit 5: Other Renewable Energy Sources

[07 Hours]

Tidal, Geo-thermal, OTEC, hydro-electric, Nuclear energy

Texts:

1. Chetan singh Solanki, "Renewable Energy Technologies", Prentice Hallo India, 2008.

References:

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw-HillPublications, NewDelhi, 1992.
- 2. G. D.Rai, "SolarEnergyUtilization", KhannaPublisher, Delhi, 1992.

Human Resource Management

BTMOE505C	OEC1	Human Resour	ce Management	3-0-0	3 Credits
Teaching Schem	e:		Examination Scheme:		
Lecture: 3 hrs/we	eek		Continuous Assessment	: 20 Marks	
			Mid Semester Exam: 20	Marks	
			End Semester Exam: 60	Marks(Dura	ation 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe trends in the labor force composition and how they impact human resource management practice.
CO2	Discuss how to strategically plan for the human resources needed to meet organizational goals and objectives.
CO3	Define the process of job analysis and discuss its importance as a foundation for human
005	resource management practice
CO4	Explain how legislation impacts human resource management practice.
CO5	Compare and contrast methods used for selection and placement of human resources.
CO6	Describe the steps required to develop and evaluate an employee training program
CO7	Summarize the activities involved in evaluating and managing employee performance.
CO8	Identify and explain the issues involved in establishing compensation systems.

Mapping of course outcomes with program outcomes

Course	Progr	am Ou	tcomes	8								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					2						1	
CO2											3	
CO3										2		
CO4								2		2		
CO5									2	3		
CO6										1		3
CO7										2	2	
CO8											2	

Course Contents:

Unit1: Introduction to Human Resource management

Concept of management, concept of human resource management, personnel to humanresource management, human resource management model, important environmentalinfluences like government regulations, policies, labor laws and other legislation. Acquisition of humanresources: Human resource planning, Demand for man power, Weaknesses of man power planningg, job analysis, job specification, recruitment sources, recruitment advertising, the selection process, selection devices ,equal opportunities :Indian and foreign practices, socializing the new employee

Unit2: Development of Human resources

Employee Training and Management Development: Training, Training and Learning Identification of training needs, training methods, Manager Development, Methods for developing managers, evaluating training effectiveness

Career Development: Concept of career, value of effective career development, external versus internal dimensions to a career, career stages, linking career dimensions with stages

[07 Hours]

Unit3:Motivationof Human resources Definition of Characteristics of Motivation, The motivation, Nature and ories of motivation : a slow's Need Hierarchy Theory, Drucker Theory, Likert Theory, Mc Clell and Theory, McGregor Herzberg Two Factortheory,

X and Y, etc., Psychological approach .Job Design and Work Theory Scheduling: Design, Schedulingand Expectancy Theory, Job characteristics model, job enrichment, job rotation ,work modules, flex-time, new trends in work scheduling.

Unit4: Performance appraisal

[07 Hours]

Performance appraisal and expect ancy theory; appraisal process, appraisal methods, factors that can destroy appraisal. Rewarding the Productive Employee: Rewards and expectancy theory, types of rewards, qualities of effective rewards, criterions for rewards.

Unit5:Maintenanceof Human resources and Labor Relations [07 Hours] Compensation Administration : Concept of Compensation Administration, Job evaluation, Paystructures, Incentives compensation plans. Benefits and Services Benefits: Something for everybody, Services, Trends in benefits and services .Discipline:ConceptofDiscipline,typesofdisciplineproblems,generalguidelines, disciplinary action, employment-at-will doctrine, disciplining special employee groups Safety and Health:safety programs, health programs, stress, turn out.

Unions, Major labor legislation, goals of group representation. Collective Bargaining: objectives , scope, participants of collective bargaining, process of collective bargaining, trends in collective bargaining Research and the future: What is research? Types of research, hyre searching human resource management, Secondary sources: where to look it up, Primary sources: relevant research methods, current trends and implications for human resource management.

Texts:

1. David A. De Cenzo, StephenP. Robbins, "Personnel/Human Resources Management", Prentice Halof India Pvt. Ltd, 3rd edition, 2002.

2. Trevor Bolton, "An Introduction to Human Resource Management", Infinity Books, 2001.

References:

1. Ellen E. Kossek, "Human Resource Management-TransformingtheWorkplace", InfinityBooks, 2001. 2. G.S. Batra, R.C. Dangwal, "Human Resource Management New Strategies", DeepandDeepPublicationsPvt.Ltd., 2001. 3. D.M. Silvera, "HRD: TheIndianExperience", NewIndiaPublications, 2nd edition, 1990.

Product Design Engineering

BTMOE505D	OEC1	Product Design Engineering – I	3-0-0	3 Credits
-----------	------	--------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3hr/Week	Continuous Assessment: 20
	MarksMid Semester Exam: 20
	Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing

Course Outcomes: At the end of the course, students will be able to

- CO 01. Understand the need for product design
- Apply various methods of idea generation CO 02.
- Understand various types of prototypes and testing methods CO 03.
- Understand the product economics at production scale CO 04.
- Appreciate the environmental concerns in product lifecycle CO 05.

Course Contents:

Unit 1: Introduction to Engineering Product Design

Trigger for Product/Process/System, Problem solving approach for Product Design, Disassembling existing product(s) and understanding relationship of components with each other, identifying materials and their processing for final product, fitting of components, understanding manufacturing as scale of the components, Reverse engineering concept,

Unit 2: Ideation & Conceptualization

Generation of ideas, funneling of ideas, Short-listing of ideas for product(s) as an individual or group of individuals, Market research for need, competitions, Product architecture, Designing of components, Drawing of parts and synthesis of a product from its component parts, 3-D visualization,

Unit 3: Testing and Evaluation Prototyping:

Design Automation, Prototype testing and evaluation, Working in multidisciplinary teams, Feedback to design processes, Process safety and materials, Health and hazard of process operations.

Unit 4: Manufacturing

Design models and digital tools, Decision models, Prepare documents for manufacturing in standard format, Materials and safety data sheet, Final Product specifications sheet, Detail Engineering Drawings (CAD/CAM programming), Manufacturing for scale, Design/identification of manufacturing processes

Unit 5: Environmental Concerns

Product life-cycle management, Recycling and reuse of products, Disposal of product and waste. Case studies.

Reference:

1. Model Curriculum for "Product Design Engineer - Mechanical", NASSCOM (Ref. ID: SSC/Q4201, Version 1.0, NSQF Level: 7)

[07 Hours]

[07 Hours]

[07 Hours]

- 2. Eppinger, S., & Ulrich, K.(2015). Product design and development. McGraw-Hill Higher Education.
- 3. Green, W., & Jordan, P. W. (Eds.).(1999).Human factors in product design: current practice and future trends. CRC Press.
- 4. Sanders, M. S., & McCormick, E. J. (1993). Human factors in engineering and design. McGRAW-HILLbookcompany.
- 5. Roozenburg, N. F., & Eekels, J. (1995). Product design: fundamentals and methods (Vol. 2). John Wiley & Sons Inc.
- 6. Lidwell, W., Holden, K., & Butler, J.(2010). Universal principles of designs, revised and updated: 125 ways to enhance
- usability, influence perception, increase appeal, make better design decisions, and teach through design. Rockport Pub.

Applied Thermodynamics

BTMC506	PCC11	Applied Thermodynamics	3-0-0	4 Credits
---------	-------	------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air, equivalent evaporation, boiler efficiency, etc. Calculate minimum air required for combustion of fuel.
CO2	Studied and Analyze gas power cycles and vapour power cycles and derive expressions for the performance parameters like thermal efficiency.
CO3	Classify various types of boilers, nozzle, steam turbine and condenser used in steam power plant.
CO4	Classify various types condenser, nozzle and derived equations for its efficiency.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate between reciprocating androtary air compressors.

Mapping of course outcomes with program outcomes

Course					Р	rogran	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2										
CO3	1											
CO4			1									
CO5		2										

Course Contents:

Unit 1: Fuels and Combustion

[07 Hours]

Types of fuels, calorific values of fuel and its determination, combustion equation for hydrocarbon fuel, determination of minimum air required for combustion and excess air supplied conversion of volumetric analysis to mass analysis, fuel gas analysis.

Unit 2: Steam Generators

[07 Hours]

Classification of boilers, boiler details, requirements of a good boiler; merits and demerits of fire

tube and water tube boilers, boiler mountings and accessories. **Boiler Draught:** Classification of draught, natural draught, efficiency of the chimney, draught

losses, types of boiler draught.

Performance of Boilers: Evaporation, equipment evaporation, boiler efficiency, boiler trial and heat balance, Introduction to IBR.

Unit 3: Vapor and Gas Power Cycles, Steam Nozzles

Ideal Rankine cycle, Reheat and Regeneration, Stirling cycle, Joule-Brayton cycle. Calculation of thermal efficiency, specific steam/fuel consumption, work ratio for above cycles.

Steam Nozzles: Types of Nozzles, flow of steam through nozzles, condition for maximum discharge, expansion of steam considering friction, super saturated flow through nozzles, General relationship between area, velocity and pressure.

Unit 4: Condensers, Cooling Towers and Steam Turbines [07 Hours]

Condensers and Cooling Towers: Elements of steam condensing plants, advantages of using condensers, types of condensers, thermodynamic analysis of condensers, efficiencies, cooling towers.

Steam Turbines: Advantages and classification of steam turbines, compounding of steam turbines, velocity diagrams, work one done and efficiencies, losses in turbines.

Unit 5: Reciprocating Air Compressor

Classification constructional details, theoretical and actual indicator diagram, FAD, multi staging, condition for maximum efficiency, capacity control.

Concepts of Rotary compressors, Root-blower and type **Rotary** Compressorcompressors, Centrifugal compressors. Velocity diagram, construction and expression for work done, introduction to slip factor, power input factor.

Texts:

- 1. T. D. Eastop, A. McConkey, "Applied Thermodynamics", Addison Wesley Longman.
- 2. Rayner Joel, "Basic engineering Thermodynamics", Addison Wesley Longman.

References:

- 1. Yunus A. Cengel, "Thermodynamics- An Engineering Approach", Tata McGraw Hill Publications.
- 2. P. K. Nag, "Basic and Applied Thermodynamics", Tata McGraw Hill Publications.
- 3. P. K. Nag, "Power Plant Engineering", Tata McGraw Hill Publications, 2nd edition.
- 4. Sharma and Mathur, "Internal Combustion Engines", Tata McGraw Hill Publications.

Mechanical Engineering Lab – III

BTMCL 507	PCC 11	Heat Transfer Lab.+Theory of	0-0-6	3 Credit
-----------	--------	------------------------------	-------	----------

[07 Hours]

	Machines Lab II + Machine	
	Design Practice-I	

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Heat Transfer Lab)

List of Practical's/Experiments/Assignments (Any Three from Group

- 1. Determination of thermal conductivity of a metal rod.
- 2. Determination of thermal conductivity of insulating powder.
- 3. Determination of conductivity of a composite slab.
- 4. Temperature is distribution on a fin surface.
- 5. Determination of film heat transfer coefficient for natural convection.
- 6. Determination of film heat transfer coefficient for forced convection.
- 7. Determination of heat transfer coefficient for cylinder in cross flow in forced convection.
- 8. Performance of Double pipe Heat Exchanger/Shell and Tube Heat Exchanger.
- 9. Determination of emissivity of a metal surface.
- 10. Determination of Stefan Boltzman's constant.
- 11. Determination of critical heat flux.
- 12. Calibration of measuring instruments pressure gauge, thermocouple, flow-meter etc.

Group B (Theory of Machines Lab - II)

Listof Practical's/Experiments/Assignments (Any Three from Group B)

Term work should consist of chosen experiments from the below given list.

- 1. Study of various types of gear boxes such as Industrial gear box, Synchromesh gear box, Differential gear box, etc.
- 2. To draw conjugate profile for any general shape of gear tooth
- 3. To generate gear tooth profile and to study the effects under cutting and rack shift using models
- 4. To draw cam profile for various types of follower motions
- 5. To study various types of lubricating systems
- 6. To study various types of dynamometers
- 7. To determine speed vs. lift characteristic curve of a centrifugal governor and to find its coefficient of insensitiveness and stability.
- 8. Verification of principle of gyroscope and gyroscopic couple using motorized gyroscope
- 9. Study of any tow gyro-controlled systems
- 10. To study the dynamic balancing machine and to balance a rotor such as a fan or the rotor of electric motor or disc on the machine

- 11. To determine the natural frequency of damped vibration of a single degree of freedom system and to find its damping coefficient
- 12. To verify natural frequency of torsional vibration of two rotor system and position of node
- 13. To determine critical speed of a single rotor system
- 14. To determine transverse natural frequency of a beam experimentally using frequency measurement setup
- 15. To determine the frequency response curve under different damping conditions for the single degree of freedom system
- 16. To study shock absorbers and to measure transmissibility of force and motion.
- 17. Study of epicyclic gear train and its dynamic behavior

Group C (Machine Design Practice – I)

List of Practical's/Experiments/Assignments

1. The term work shall consist of 01 design projects based on syllabus of Machine Design-I. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with a part list and overall dimensions and other sheet involving drawings of individual components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing.

Make the Project full on AutoCAD or on any 3D Design software print the full sheet on A3 size paper.

- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer print outs using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-I.

IT – 2 Evaluation

BTMI408	IT – 2 Evaluation	PROJ-3	0L-0T-0P	1 Credits
(IT – 2)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

Semester - VI

Manufacturing Processes - II

BTMC 601	PCC12	Manufacturing Processes - II	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Understanding plastic

Mapping of course outcomes with program outcomes

Course					Pro	gram (Outcor	nes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1			2					1
CO2	3	3										1
CO3	3	3	1	2	3							1
CO4	3	3	2									1
CO5	3	3	1	3								1
CO6	3	1	3	3	3			2				1

Course Contents:

Unit 1: Abrasive Machining and Finishing Operations

Introduction; Abrasives and Bonded Abrasives: Grinding Wheels, Bond Types, Wheel Grade and Structure; Grinding Process: Grinding-wheel wear, Grinding Ratio, Dressing, Truing and Shaping of Grinding Wheels, Grindability of Materials and Wheel Selection; Grinding **Operations and Machines**, Finishing Operations

Unit 2: Mechanics of Metal Cutting

Geometry of single point cutting tools, terms and definitions; chip formation, forces acting on the cutting tool and their measurement; specific cutting energy; plowing force and the "size effect"; mean shear strength of the work material; chip thickness: theory of Ernst and merchant, theory of Lee and Shaffer.

Unit 3: Thermal aspects, Tool wear, and Machinability [07 Hours]

Temperature in Metal Cutting: Heat generation in metal cutting; temperature distribution in metal cutting, effect of cutting speed on temperatures, measurement of cutting temperatures **Tool life and tool Wear:** progressive tool wear; forms of wear in metal cutting: crater wear, flank wear, tool-life criteria.

Cutting tool materials: Basic requirements of tool materials, major classes of tool materials: highspeed steel, cemented carbide, ceramics, CBN and diamond, tool coatings; use of cutting fluid.

Unit 4: Processing of Powder Metals

Introduction; Production of Metal Powders: Methods of Powder Production, Particle Size, Shape, and Distribution, Blending Metal Powders; Compaction of Metal Powders: Equipment, Isostatic Pressing, Sintering; Secondary and Finishing Operations.

Unit 5: Processing of Plastics Ceramics and Glasses

Plastics: Introduction; Extrusion: Miscellaneous Extrusion Processes, Production of Polymer Reinforcing Fibers; Injection Molding: Reaction-injection Molding; Blow Moulding; Rotational Moulding; Thermoforming; Compression Moulding; Transfer Moulding; Casting; Foam Moulding: Cold Forming and Solid-phase Forming: Processing Elastomers.

Texts:

- 1. Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte. India Ltd., 6thedition, 2009.
- 2. Geoffrey Boothroyd, Winston Knight, "Fundamentals of Machining and Machine Tools", Taylor and Francis, 3rd edition, 2006.

References:

- 1. Milkell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and Systems", John Wiley and Sons, New Jersey, 4th edition, 2010.
- 2. Paul De Garmo, J. T. Black, Ronald A. Kohser, "Materials and Processes in Manufacturing",

[07 Hours]

[07 Hours]

[07 Hours]

Wiley, 10th edition, 2007.

3. M. C. Shaw, "Theory of Metal Cutting", Oxford and I.B.H. Publishing, 1st edition, 1994.

Machine Design - II

BTMC 602PCC13Machine Design - II3-1-04 Credits					
	BTMC 602	PCC13	Machine Design - II	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and friction disk parameter.
CO4	Select materials and configuration for machine element like gears.
CO5	Design of elements like gears, belts for given power rating

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1

Course Contents:

Unit1: Rolling Contact Bearings

Types, Static and dynamic load carrying capacities, Stribeck's Equation, Equivalent load, load and life relationship, selection of bearing life, Load factor, selection of bearing from manufacturer's catalogue, Taper roller bearings and their selection, Cyclic loads and speeds, Design for probability of survivalotherthan90%Lubricationand mountings of rolling contact bearings.

Unit2: Spur Gear

Gear drives, Classification of gears, Law of gearing, Terminology of spur gear, Standard system of gear tooth force analysis, gear tooth failures, Selection of materials Constructional, Number of teeth, Face with, Beams strength equation, Effective load on gear tooth, Estimation of module based on beams strength. Design for maximum power capacity, Lubrication of gears. **Helical Gears:** Terminology, Virtual number of teeth, Tooth proportions, Force analysis, Beam strength equation, Effective load on gear tooth Wear strength equation.

Unit3: Bevel Gears

Types of bevel gears, Terminology of straight bevel, force analysis, Beam and Wear strength, Effective load on gear tooth.

Worm Gears: Terminology, Proportions, Force analysis, Friction in worm gears, Vector method, Selection of materials, Strength and wear rating, Thermal considerations

Unit4: Belt and Flywheel

Flat and V belts, Geometric relationship, analysis of belt tensions, condition for maximum power, Selection of flat and V belts from manufacturer's catalogue, Adjustment of belt tensions. Roller chains, Geometric relationship, polygonal effect.

Flywheel: Introduction, types of flywheels, stresses in disc and armed flywheel.

Unit5: Brakes, Clutches

Types of clutches, torque capacity, single and multi-plate clutches, cone clutch, centrifugal clutch, friction materials.

Types of brakes, energy equation, block with shoe brake, pivoted brake with long shoe, internal expanding shoe brake, thermal considerations.

Texts:

- 1. V. B. Bhandari, "Design of machine Elements", Tata McGraw Hill Publications, NewDelhi, 1998
- 2. R. L. Nortan, "Machine Design: An Integrated Approach", Pearson Education.

References:

- 1. J.E. Shigley, C.Mischke, "Mechanical Engineering Design", TataMcGraw Hill Inc, NewYork,6thedition, 2003.
- 2. R. C. Juvinall, K. M. Marshek, "Fundamentals of Machine Component Design", John Wiley&Sons, Inc,NewYork,2002.

[07 Hours]

[07 Hours]

[07 Hours]

IC Engines

BTMPE603A	PEC3	IC Engines	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Applied Thermodynamics – I

Course Outcomes: At the end of the course, students will be able to

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

Mapping of course outcomes with program outcomes

Course					Pı	rogram	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Course Contents:

Unit 1: Fundamentals of IC Engines

[07 Hours]

Applications, nomenclature, engine components, Engine classification, two and four stroke cycle

engines; fundamental difference between SI and CI engines; valve timing diagrams.

Power Cycles: Air standard Otto, Diesel and Dual cycles; Valve timing diagrams, Fuel-Air cycles and deviation of actual cycles from ideal cycles.

Unit 2: Combustion

Introduction, important qualities and ratings of SI Engines fuels; qualities and ratings of CI Engine fuels.

Combustion in S.I. Engines, flame speed, ignition delay, normal and abnormal combustion, effect of engine variables on flame propagation and ignition delay, Combustion in C.I. Engines, combustion of a fuel drop, stages of combustion, ignition delay, combustion knock; types of SI and CI Engine combustion chambers.

Unit 3: Various Engine Systems and Engine Testing and Performance[07 Hours]Starting systems, fuel supply systems, engine cooling system, ignition system, engine friction
and lubrication systems, governing systems.[07 Hours]

Engine Testing and Performance of SI and CI Engines

Parameters, Type of tests and characteristic curves.

Super charging in IC Engine: Effect of attitude on power output, types of supercharging.

Engine Emissions and control: Pollutants from SI and CI engines and their control, emission regulations such as Bharat and Euro.

Unit 4: Alternate fuels

Need for alternative fuels, applications, various alternate fuels etc

Gaseous Fuels, Alcohols, Biodiesels, vegetable oil extraction, Trans-esterification process, properties of alternative fuels and fuel blends.

Fuel Cell Technology: Operating principles, Types, construction, working, application, advantages and limitations.

Unit 5: Layout of Electric vehicle and Hybrid vehicles

Advantages and drawbacks of electric and hybrid vehicles, System components, Electronic control system – Different configurations of Hybrid vehicles, Power split device. High energy and power density batteries – Basics of Fuel cell vehicles

Texts References:

- 1. V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill Publications, New Delhi, 3rd edition.
- 2. J. B. Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw Hill Publications, New York, International Edition, 1988.
- 3. "Alternative Fuels", Dr. S. S. Thipse, Jaico publications.
- 4. "IC Engines", Dr. S. S. Thipse, Jaico publications.
- 5. "Engine Emissions, pollutant formation", G. S. Springer and D.J. Patterson, Plenum Press.
- 6. ARAI vehicle emission test manual.
- 7. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, "The Biodiesel Handbook", AOCS Press
- 8. Champaign, Illinois 2005.
- 9. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers,
- 10. 1997, ISBN 0-76-80-0052-1.

Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.

[07 Hours]

[07 Hours]

Mechanical Vibration

BTMPE603B	PEC3	Mechanical Vibration	3-0-0	Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Theory of Machines - II

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cause and effect of vibration in mechanical system
CO2	Formulate governing equation of motion for physical system
CO3	Understand role of damping, stiffness and inertia in mechanical system
CO	Analyze rotating system and calculate critical speeds
CO5	Estimate the parameters of vibration isolation system
CO6	Estimate natural frequencies and mode shapes of continuous system

Mapping of course outcomes with program outcomes

Course						Progr	am Ou	ıtcome	S			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	1	1					2
CO2	3	3	2	1	1							2
CO3	3	2	2	1	1							2
CO4	3	3	2	2	2							2
CO5	3	3	2	2	2		3					2
CO6	3	3	3	2								2

Course Contents:

Unit 1: Single DOF- Free Vibrations

[07 Hours]

Basic concepts: Causes and effect of vibrations, practical applications, harmonic and periodic motions, vibration terminology, vibration model, Equation of motion -natural frequency, Energy

method, Rayleigh method, principle of virtual work, damping model, viscously damped free vibration, Oscillatory, non-oscillatory and critically damped motions, logarithmic decrement. Coulomb's damping.

Unit 2: Single DOF- Forced Vibrations

Analysis of linear and torsional system subjected to harmonic force excitation, force transmissibility, Magnification factor, motion transmissibility, vibration isolation, typical isolator and mounts, critical speed of single rotor, undamped and damped.

Unit 3: Two DOF Systems

Introduction, formulation of equation of motion, equilibrium method, lagrangian method, free vibration response, Eigen values and eigen vector, Normal mode and mode superposition, Coordinate coupling, decoupling equation of motion.

Unit 4: Torsional Vibration

Simple system with one or two rotor masses, Multi DOF system: transfer matrix method, geared system, and branched system.

Unit 5: Multi Degree of Freedom System and Continuous Systems

Formulation of equation of motion, free vibration response, natural mode and mode shapes, orthogonality of model vectors, normalization of model vectors, decoupling of modes, model analysis, mode superposition technique. Free vibration response through model analysis. DF

Continuous Systems

Vibration of strings, longitudinal and transverse vibration of rods, transverse vibrations of beams, equation of motions and boundary conditions, transverse vibration of beams, natural frequencies and mode shapes.

Texts:

1. L. Meirovich, "Elements of Vibration Analysis", Tata McGraw Hill.

References:

- 1. S. S. Rao, "Mechanical Vibrations", Pearson education.
- 2. W. T. Thompson, "Theory of Vibration", CBS Publisher.

[07 Hours]

[07 Hours]

[07 Hours]

Machine Tool Design

BTMPE603C	PEC3	Machine Tool Design	3-0-0	3Credits
-----------	------	---------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Machine design and Manufacturing processes-I

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand basic motion involved in a machine tool.
CO2	Design machine tool structures for conventional and CNC machines.
CO3	Design and analyze system for specified speeds and feeds.
CO4	Understand control strategies for machine tool operations.
CO5	Design of rotary and linear drive for machine tools.
CO6	Analyze machine tool structure for design accuracy.

Mapping of course outcomes with program outcomes

Course					Pı	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2	1	2	1	1	1				1	1	1
CO2	3	1	3	1	2	1	1		1	1	1	1
CO3	2	1	2	1	1	1			1	1	1	1
CO4	2	1	1	1	1	1	1			1	1	1
CO5	3	1	3	1	1	1	1		1	1	1	1
CO6	2	1	2	1	1	1	1		1	1	1	1

Course Contents:

Unit 1: Introduction

[07 Hours]

Kinematics of different types of machine tools, selection of cutting conditions and tools, calculations of cutting force on single point and multipoint tools, hole machining, calculation of

power, accuracy requirements and standards.

Unit 2: Design of Rotary Drives

Design of spindle drives, AC motors with stepped drive, DC and AC variable speed drive motor characteristics and selection, principle of speed controllers, timing belts and other types of transmission belting, closed loop operation of mail drives, rotary indexing drives.

Unit 3: Design of Feed Drives

Feed drive using feed boxes, axes feed drive of CNC drives, DC and AC servomotors, characteristics controllers and their selection, Ball screws and friction guide ways, linear motion systems, design calculation of drives, closed loop operations of feed drive, linear indexing drives.

Unit 4: Control Elements

[07 Hours]

Single and multi-axis CNC controllers, hydraulic control, Pneumatic control limit switches, proximity switches, sequencing control using hardwired and PLC systems.

Design of machine tool structures: Static and dynamic stiffness, dynamic analysis of cutting process, stability, forced vibration, ergonomics and aesthetics in machine tool design.

Unit 5: Design of Spindle and Spindle Supports and Design of Special Purpose Machines [07 Hours]

Function of spindles, design requirements, standard spindle noses, design calculation of spindles, bearing selection and mounting.

Finite elements analysis of machine tool structures: Examples of static, dynamic and thermal analysis and optimization of typical machine tool structure like column and using a finite element analysis package.

Design of Special Purpose Machines

Modular design concepts, standard modules, example of design of typical SPM with CNC, transfer machines.

Texts:

- 1. N. K. Mehta, "Machine Tool Design", Tata McGraw Hill Book Co., 1991.
- 2. P.C. Sharma, "A Textbook of Machine Tools and Tool Design", S. Chand & Co. Ltd., 1 January 2005.
- 3. Sen and Bhattacharya, "Principles of Machine Tools", 1 Jan 2009.
- 4. Yoram Koren, "Computer control of manufacturing systems", Tata McGraw Hill Education, 2009.

References:

- 1. Aacherkan, "Machine Tool Design", Vol. I and Vol. III, Mir Publishers, Moscow, 1970.
- W. L. Cheney, "Details of Machine Tool Design (Classic Reprint)", Forgotten Books, 20 Sep 2016.
- 3. Central Machine Tool Institute, "Machine Tool Design Handbook", Tata McGraw Hill Education, 1st Edition, 16 June 2001.
- 4. Nicholas Lisitsyn, Alexis V Kudryashov, Oleg Trifonov, Alexander Gavryusin, N Acherkan, Nicholas Weinstein, "Machine Tool Design", Vol. I, University Press of the Pacific, 20 April 2000.

[07 Hours]

Engineering Metrology and Quality Control

BTMPE603D	PEC 3	Metrology and	d Quality Control	3-0-0	3 Credits			
Teaching Schen	ne:		Examination Scheme:					
Lecture: 3 hrs/w	eek		Continuous Assessment: 20 Marks					
			Mid Semester Exam: 20 Marks					
			End Semester Exam: 60 Marks(Duration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
CO6	Plot quality control charts and suggest measures to improve the quality of product and reduce cost using Statistical tools.

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Mapping of course outcomes with program outcomes

Course Contents:

Unit 1: Measurement Standard and Comparators

[07 Hours]

Measurement Standard, Principles of Engineering Metrology, Line end, wavelength, Traceability of Standards. Types and Sources of error, Alignment, slip gauges and gauge block, Linear and Angular Measurement (Sine bar, Sine center, Autocollimator, Angle Décor and Dividing head), Calibration. Comparator: Mechanical, Pneumatic, Optical, Electronic (Inductive), Electrical

(LVDT).

Unit 2: Interferometry and Limits. Fits. Tolerances

Principle, NPL Interferometer, Flatness measuring of slip gauges, Parallelism, Laser Interferometer, Surface Finish Measurement: Surface Texture, Measuring Surface Finish by Stylus probe, Tomlinson and Talysurf, Analysis of Surface Traces: Methods.

Design of Gauges: Types of Gauges, Limits, Fits, Tolerance; Terminology for limits and Fits. Indian Standard (IS 919-1963) Taylor's Principle.

Unit 3: Metrology of Screw Thread

Gear Metrology: Gear error, Gear measurement, Gear Tooth Vernier; Profile Projector, Tool marker's microscope. Advancements in Metrology: Co-ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.

Unit 4: Introduction to Ouality and Ouality Tools

Quality Statements, Cost of Quality and Value of Quality, Quality of Design, Quality of Conformance, Quality of Performance, Seven Quality Tools: Check sheet, Flow chart, Pareto analysis, cause and effect diagram, scatter diagram, Brain storming, Quality circles.

Unit 5: Total Quality Management and Statistical Quality Control [07 Hours]

Quality Function Deployment, 5S, Kaizan, Kanban, JIT, Poka yoke, TPM, FMECA, FTA, Zero defects.

Statistical Quality Control: statistical concept, Frequency diagram, Concept of Variance analysis, Control chart for variable & attribute, Process Capability.

Acceptance Sampling: Sampling Inspection, sampling methods. Introduction to ISO 9000: Definition and aims of standardizations, Techniques of standardization, Codification system.

Texts:

- 1. I. C. Gupta, "Engineering Metrology", Dhanpat and Rai Publications, New Delhi, India.
- 2. M. S. Mahajan, "Statistical Quality Control", Dhanpat and Rai Publications.

References:

- 1. R. K. Jain, "Engineering Metrology", Khanna Publications, 17th edition, 1975.
- 2. K. J. Hume, "Engineering Metrology", McDonald Publications, 1st edition, 1950.
- 3. A. W. Judge, "Engineering Precision Measurements", Chapman and Hall, London, 1957.
- 4. K. L. Narayana, "Engineering Metrology", Scitech Publications, 2nd edition.
- 5. J. F. Galver, C. R. Shotbolt, "Metrology for Engineers", Little-hampton Book Services Ltd., 5^{th} edition, 1969.
- 6. V. A. Kulkarni, A. K. Bewoor, "Metrology & Measurements", Tata McGraw Hill Co. Ltd., 1^{st} edition, 2009.
- 7. AmitavaMitra, "Fundamental of Quality Control and Improvement", Wiley Publication.
- 8. V. A. Kulkarni, A. K. Bewoor, "Quality Control", Wiley India Publication, 01st August, 2009.

[07 Hours]

[07 Hours]

- 9. Richard S. Figliola, D. E. Beasley, "Theory and Design for Mechanical Measurements", Wiley India Publication.
- 10. E. L. Grant, "Statistical Quality Control", Tata McGraw Hill Publications.
- J. M. Juran, "Quality Planning and Analysis", Tata McGraw Hill Publications.

Advance Automobile Design

BTAPE603C PEC3 Automobil	e Body Design 3-0-0 3Credits
--------------------------	------------------------------

Teaching Scheme:	Examination Scheme:			
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks			
	Mid Semester Exam: 20 Marks			
	End Semester Exam: 60 Marks (Duration 03 hrs)			

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Contents:

Domain Related Training

Unit 1:

[07 Hours]

BIW: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for BIW, Identification of Commodities for BIW, Design Concept & Considerations in BIW, BIW Materials & Grades, GD & T for BIW.

Unit 2:

[07 Hours] Sheet Metal Joining - Welds, Adhesives, TWBs. DFMEA, Design Verification - CAE Methods & Gateway supports Part A& B, CAE Analysis - NVH, Crash & Durability, Test Validation &

Assessment. Unit 3:

[07 Hours]

[07 Hours]

Manufacturing – Sequence, Welding & Assembly, Future Trends in BIW, BIW: Examples & **Case Studies**

Unit 4:

Trims: Requirement Specification in the Pre-Program Stage, Product Life Cycle & Important Gateways for Trims, Identification of Commodities for Trims, Design Requirements & Considerations, Trim Materials in Automotive.

Unit 5:
Design of Plastic Part, DFMEA, Design Verification – CAE Methods & Gateway supports, CAE Analysis – Moldflow, Crash & Durability, Test Validation & Assessment

Manufacturing Process, Assembly Sequence, Future Trends & Future Material for Trims, Trims: Examples & Case Studies

Texts:

- 1. Notes of TATA Technologies
- Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 1)", Right Tech, Inc., Kindle Edition.
- 3. Curt Larson, "Datum Principles: Flexible Parts: Applications for Automotive Body-in-White and Interior Trim (Dimensional Management Series Book 2)", Right Tech, Inc., Kindle Edition.

References:

- 1. Vukato Boljanovic, "Sheet Metal Forming Processes and Die Design", Industrial press Inc., Kindle Edition.
- 2. R. D. Cook, Concepts and Applications of Finite Element Analysis; John Wiley and Sons, second edition, 1981.
- 3. K.J. Bathe, Finite Element Method and Procedures; Prentice hall, 1996.
- 4. Ibrahim Zeid,"CAD/CAM Theory and Practice", Tata McGraw Hill Publication,
- 5. J. H. Dubois And W. I. Prebble, *Plastics Mold Engineering Handbook*, Van Nostr and Reihnhold, New York, 1987.
- 6. Geoffrey Boothroyd, Peter Dewhurst and Winston Knight, Product Design for Manufacturing and Assembly, 2nd Edition
- 7. C. Howard, *Modern Welding Technology*, Prentice Hall, 1979.
- 8. Jesper Christensen and Christophe Bastien, "Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations, Butterworth-Heinemann, Kindle Edition
- 9. Grieves, Michael, Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303
- Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realization, Springer Verlag, 2004. ISBN 1852338105

E Vehicles

BTAPE603E	E Vehicles	PEC 3	3L-0T-0P	3 Credits

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

Course Contents:

Unit I: Introduction to EV:

Past, Present & Feature of EV, Current Major Issues, Recent Development Trends, EV Concept, Key EV Technology, State-of-the Art EVs, Comparison of EV Vs IC Engine.

Unit II: EV System:

[07 Hours] EV Configuration: Fixed & variable gearing, single & multiple motor drive, In-wheel drives **EV Parameters:**

Weight, size, force, energy & performance parameters.

Unit III: EV Propulsion:

Electric Motor:

Choice of electric propulsion system, block diagram of EV propulsion system, concept of EV Motors, single motor and multi-motor configurations, fixed & variable geared transmission, Inwheel motor configuration, classification of EV motors, Electric motors used in current vehicle applications, Recent EV Motors, Comparison of Electric Motors for EV applications Required Power Electronics & Control:

Comparison of EV power devices, introduction to power electronics converter, four quadrant DC chopper, three-phase full bridge voltage-fed inverter, soft-switching EV converters, comparison of

[07 Hours]

hard-switching and soft-switching converter, three-phase voltage-fed resonance dc link inverter, Basics of Microcontroller & Control Strategies

Unit IV: EV Motor Drive:

[07 Hours]

[07 Hours]

DC Motor: Type of wound-field DC Motor, Torque speed characteristics

DC-DC Converter, two quadrant DC Chopper, two quadrant zero voltage transition converterfed dc motor drive, speed control of DC Motor

Induction Motor Drive: Three Phase Inverter Based Induction Motor Drive, Equal Area PWM, Three Phase Auxiliary resonant snubber (ARS) Inverter Type (ZVC & ZCS), Single Phase ARS Inverter Topology, Speed Control of Induction Motor, FOC, Adaptive Control, Model Reference Adaptive Control (MARS), Sliding mode Control,

Unit V: Energy Sources & Charging:

Different Batteries and Ultracapacitors, Battery characteristics (Discharging & Charging) Battery Chargers: Conductive (Basic charger circuits, Microprocessor based charger circuit.

Arrangementof an off-board conductive charger, Standard power levels of conductive chargers, Inductive(Principle of inductive charging, Soft-switching power converter for inductive charging), Batteryindication methods

Charging Infrastructure: Domestic Charging Infrastructure, Public Charging Infrastructure, Normal Charging Station, Occasional Charging Station, Fast Charging Station, Battery Swapping Station, Move-and-charge zone.

References:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001
- 2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 4. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

Process Equipment Design

BTMPE604A	PEC4	Process Equipment Design 3-0-0 Cred					
Teaching Schem	ne:	Examination Scheme:					
Lecture: 2 hrs/we							
		Mid Semester Exam: 20	Mid Semester Exam: 20 Marks				
		End Semester Exam: 60	Marks (Dur	ration 03 hrs)			

Pre-Requisites: None

	Course Outcomes: At the end of the course, students will be able to:
CO1	Understand the factors influencing design of pressure vessel
CO2	Calculate thickness and thickness variation for cylindrical storage tank
CO3	Estimation of thickness for thin and thick wall pressure vessels
CO4	Design of flange and gasket selection for cylindrical pressure vessels
CO5	Selection of various blade and baffle arrangement for agitators
CO6	Design of support for horizontal and vertical vessel

Course					P	rogran	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1			1	1	1				1
CO2	2	2	1			1	1	1				1
CO3	2	2	2			1	1	1				1
CO4	2	2	2			1	1	1				1
CO5	2	2	1			1	1	1				1
CO6	2	2	2			1	1	1				1

Course Contents:

Unit 1: Design Considerations for Pressure Vessel

Selection of type of vessel. Methods of fabrication. Effect of fabrication methods, various criteria in vessel design, Economic considerations, Types of process equipment, Constructional requirement and applications. Fabrication and testing, Inspection and non-destructive testing of equipment.

Unit 2: Storage Vessel

Design methods of atmospheric storage vessel: storage of fluids, storage of non-volatile liquids, storage of volatile liquids, storage of gases, Optimum tank proportion, Bottom design, Shell design, Wind girder for open top tank, Rub curb angle, Self-supported roof, Design of rectangular tank,

Unit 3: Pressure Vessel

Unfired process vessel with internal and external pressure, Operating condition, Selection of material, Design condition, Stresses, Design criteria, Design of shell subjected to internal and external pressure, cylindrical vessel under combined loading,

Design of heads and closures: flat head and formed heads for vessel. Design consideration for rectors and chemical process vessels. Flange facings, Gaskets, Design of flanged joint, Flange thickness, and Blind flanges.

Unit 4: High Pressure Vessel

Design of thick-walled high-pressure vessel, Constructional features, Materials for high-pressure vessels, Multilayer vessel with shrink fit construction, Thermal expansion for shrink fitting, stress in multi shell or shrink fit construction, autofrettage, Pre-stressing. Tall vessels and their design, Stress in shell, Determinations of longitudinal stresses, Longitudinal bending stresses due to eccentric loads, Determination of resultant longitudinal stresses.

Unit 5: Agitated Vessel and Support for Pressure Vessel

Type of agitators, Baffling, Power requirement for agitation, Design based on torque and bending moment, Design based on critical speed, Blade design, Hub and key design, Stuffing box and gland design, Turbine agitator design,

Support for Pressure Vessel

Bracket or lug support: Thickness of the base plate, Thickness of web (gusset) plate, Column support for bracket base plate for column or leg support. Skirt Support: Skirt design, Skirt bearing plate, and Anchor bolt design, Design of bolting chair. Saddle Support: Longitudinal bending moment, Stresses in shell at saddle.

Texts:

- 1. V. V. Mahajani, S. B. Umarji, "Process Equipment Design", Macmillan Publisher India Ltd.
- 2. L. E. Brownell, E. H. Young, "Process equipment design", John Wiley and Sons.
- 3. C. Bhattacharya, "Introduction to process Equipment Design".

Reference Book:

- 1. Dennis Moss, "Pressure Vessel Design Manual", Elsevier.
- 2. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publication

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Product Life Cycle Management

BTMPE604B	PEC4	Product Life Cycle Management	3-0-0	3Credits
-----------	------	-------------------------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)

Objectives: Establishing industry partnerships that guide, support, and validate PLM research and education activities assisting with the integration of PLM into College curricula and facilitating the PLM career opportunities.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

Course Outcomes					Pı	ogram	Outcon	nes				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1						1	
CO2	1				1		1				1	
CO3	1		1		1							
CO4	1		1		1						1	

CO5	1		1	1			
CO6	1		1		1		1

Course Contents:

Unit 1: Introduction and strategies to PLM

Need for PLM, opportunities and benefits of PLM, different views of PLM, components of PLM, phases of PLM, PLM feasibility study, PLM visioning, Industrial strategies, strategy elements, its identification, selection and implementation, change management for PLM.

Unit 2: Product Data Management (PDM)

Human resources in product lifecycle, Information, Standards, Vendors of PLM Systems and Components, PDM systems and importance, reason for implementing a PDM system, financial Justification of PDM, barriers to PDM implementation

Unit 3: Product Design

Engineering design, organization and decomposition in product design, product design process, methodical evolution in product design, concurrent engineering, design for 'X' and design central development model. Strategies for recovery at end of life, recycling, human factors in product design. Modeling and simulation in product design.

Unit 4: New Product Development

Structuring new product development, building decision support system, Estimating market opportunities for new product, new product financial control, implementing new product development, market entry decision, launching and tracking new product program, Concept of redesign of product

Unit 5: Technology Forecasting and PLM Software and Tools

Future mapping, invocating rates of technological change, methods of technology forecasting such as relevance trees, morphological methods and mission flow diagram, combining forecast of different technologies, uses in manufacture alternative.

PLM Software and Tools

Product data security. Product structure, workflow, Terminologies in workflow, The Link between Product Data and Product Workflow, PLM applications, PDM applications.

Texts/References:

- 1. Grieves, Michael, "Product Lifecycle Management", Tata McGraw-Hill, 2006, ISBN 007145230330.
- 2. Antti Saaksvuori, Anselmi Immonen, "Product Life Cycle Management", Springer, 1st edition, 2003.
- 3. Stark, John, "Product Lifecycle Management: Paradigm for 21stCentury Product Realization", Springer-Verlag, 2004.
- 4. Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", Taylor & Francis, 2006.
- 5. Robert J. Thomas, "NPD: Managing and forecasting for strategic processes".

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Finite Element Method

BTMPE604C	PEC4	Finite Element Method	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Γ

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic principle of Finite element methods and its applications
CO2	Use matrix algebra and mathematical techniques in FEA
CO3	Identify mathematical model for solution of common engineering problem
CO4	Solve structural, thermal problems using FEA
CO5	Derive the element stiffness matrix using different methods by applying basic mechanics laws
CO6	Understand formulation for two- and three-dimensional problems

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1		1				1		1	1		
CO2	2	3	2	1	2	1		1			2	1		
CO3	3	2	2	1	1				1		2	1		
CO4	3	3	2	1	2		1		1		2	1		

CO5	3	1	1	1	1		2	1
CO6	1	1	1			1	1	1

Course Contents:

Unit 1: Introduction

Finite element analysis and its need, Advantages and limitations of finite element analysis (FEA), FEA procedure.

Unit 2: Elements of Elasticity

Stress at a point, Stress equation of equilibrium, 2-D state of stress, Strains and displacements, Stress-strain relationship for 2-D state of stress, Plane stress and plane strain approach.

Unit 3: Relevant Matrix Algebra

Addition, subtraction and multiplication of matrices, Differentiation and integration of matrices, Inverse of a matrix, Eigen values and eigen vectors, Positive definite matrix, Gauss elimination.

Unit 4: One-Dimensional Problems

Introduction, FE modeling, Bar element, Shape functions, Potential energy approach, Global stiffness matrix, Boundary conditions and their treatments, Examples.

Unit 5: Trusses and Frames and Two-dimensional Problems

Introduction, Plane trusses, Element stiffness matrix, Stress calculations, Plane frames, examples.

Two-dimensional Problems

Introduction and scope of 2-D FEA, FE modeling of 2-D problem, Constant strain triangle, other finite elements (no mathematical treatment included), Boundary conditions.

Texts:

T. R. Chandrupatla, A.D. Belegundu, "Introduction to Finite Elements in Engineering",

Prentice Hall of India Pvt. Ltd., 3rd edition, New Delhi, 2004.

P. Seshu, "A Textbook of Finite Element Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.

R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, "Concepts and Applications of Finite Element Analysis", John Wiley & Sons, Inc.

References:

K. J. Bathe, "Finite Element Procedures", Prentice Hall of India Pvt. Ltd., 2006.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Robotics

BTMPE604D	PEC4	Robotics	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	List the various components of a typical Robot, grippers, sensors, drive system and describe their functions
CO2	Calculate the word to joint and joint to word coordinates using forward and reverse transformations
CO3	Calculate the gripper forces, drive sizes, etc.
CO4	Develop simple robot program for tasks such as pick and place, arc welding, etc. using some robotic language such as VAL-II, AL, AML, RAIL, RPL, VAL
CO5	Evaluate the application of robots in applications such as Material Handling, process operations and Assembly and inspection
CO6	Discuss the implementation issues and social aspects of robotics

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	1	1		1				3	1				
CO2	2	3	2	1	2	1			3	2				
CO3	3	2	2	1	1				3	2				

CO4	3	3	2	1	2	1	3	2	
CO5	3	1	1		1	1	3	2	
CO6	1	1	1				3	2	

Course Contents:

Unit 1: Introduction

Various basic components of a Robotic system, various configurations, work envelopes, Manipulators, Controllers, etc., Parameters [07 Hours]

Unit2: Mechanical Systemin Robotics

Motion conversion, Kinematic chains, position analysis. forward and reverse transformations, natural and joint space coordinates, homogeneous transformation and robot kinematics, Manipulator path control, Robot Dynamics.

[07 Hours]

Unit3: Drives for Robot

Electrical drives, Stepper motor, Servo motors, DC motors, AC motors, hydraulic and pneumatic drives, hybrid drives, drive selection for robotic joints.

[07 Hours]

Unit4: Sensors and End Effectors in Robotics

Sensors:

Position sensor, velocity sensor, proximity sensors, touch sensors, force sensors, miscellaneous sensors etc. [07 Hours]

End Effectors:

Types of end effectors, Mechanical Grippers, Design of End Mechanical Grippers, and Other Principles of gripping, Tools and end effectors, Considerations in gripper selection and design.

Unit5: Robot Programming

Path planning, Lead through (manual and powered) programming, teach pendant mode, programming languages, Simple statements from AL, AML, RAIL, RPL, VAL Languages

Artificial Intelligence for Robots: Knowledge Representation, Problem representation and problem solving, search techniques in problem solving

Application of robot in: Material handling, assembly and inspection, process operations, etc.Economic Analysis for robotic implementation

Texts:

Grover," Industrial Robotics: Technology, Programming 1. M. P. and Applications ", Tata Mc Graw Hill Publication.

References:

1. Saeed B. Niku, "Introduction to Robotics, Analysis, Systems, Applications ", Pearson Education.

2. Richard D. Klafter, "Robotic Engineering : An Integrated Approach", Prentice Hall of India.

Computational Fluid Dynamics

BTAPE604B	Fundamentals of Computational Fluid Dynamics	PEC 4	3L-0T-0P	3 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

CO1	Identify applications of finite volume and finite element methods to solve Navier-Stoke
COI	equations.
CO2	Evaluate solution of aerodynamic flows. Appraise & compare current CFD software. Simplif
02	flow problems and solve them exactly.
CO_{2}	Design and setup flow problem properly within CFD context, performing solid modeling usin
COS	CAD package and producing grids via meshing tool
CO4	Interpret both flow physics and mathematical properties of governing Navier-Stokes equation
C04	and define proper boundary conditions for solution.
CO5	Use CFD software to model relevant engineering flow problems. Analyse the CFD results
COS	Compare with available data, and discuss the findings

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				3	1		

CO2	2	3	2	1	2	1		3	2	
CO3	3	2	2	1	1			3	2	
CO4	3	3	2	1	2		1	3	2	
CO5	3	1	1		1		1	3	2	
CO6	1	1	1					3	2	

Course Contents:

Unit-I: Introduction to CFD

CFD – a research and design tool, CFD as third dimension of engineering supplementing theory and experiment, Steps in CFD solution procedure, strengths and weakness of CFD, Flow modeling using control volume - finite and infinitesimal control volumes, Concept of substantial derivative, divergence of velocity, Basic governing equations in integral and differential forms conservation of mass, momentum and energy (No derivations), Physical interpretation of governing equations, Navier-Stoke's model and Euler's model of equations.

Unit- II: Basic Discretization Techniques

Introduction to grid generation (Types of grids such as structured, unstructured, hybrid, multiblock, Cartesian, body fitted and polyhedral etc.), Need to discretize the domain and governing equations, Finite difference approximation using Taylor series, for first order (Forward Approximation, Backward Difference Approximation, Central difference Difference Approximation) and second order (based on 3 node, 4 node and 5 node points), explicit and Implicit approaches applied to 1D transient conduction equation, Counter flow equation () usingFTCS and Crank Nicholson's Method, Stability Criteria concept and physical interpretation, Thomas Tri-diagonal matrix solver.

Unit-III: Two Dimensional Steady and unsteady heat conduction

Solution of two dimensional steady and unsteady heat conduction equation with Dirichlet, Neumann, Robbins and mixed boundary condition – solution by Explicit and Alternating Direction Implicit method (ADI Method), Approach for irregular boundary for 2D heat conduction problems.

Unit-IV: Application of Numerical Methods to Convection – Diffusion system [07 Hours]

Convection: first order wave equation solution with upwind, Lax-Wendroff, Mac Cormack scheme, Stability Criteria concept and physical interpretation Convection -Diffusion: 1D and 2D steady Convection Diffusion system - Central difference approach, Peclet Number, stability criteria, upwind difference approach, 1 D transient convection-diffusion system

Unit-V: Incompressible fluid flow

Solution of Navier-Stoke's equation for incompressible flow using SIMPLE algorithms and its variation (SIMPLER), Application to flow through pipe, Introduction to finite volume method. **CFD as Practical approach**

Introduction to any CFD tool, steps in pre-processing, geometry creation, mesh generation, selection of physics and material properties, specifying boundary condition, Physical Boundary condition types such as no slip, free slip, rotating wall, symmetry and periodic, wall roughness, initializing and solution control for the solver, Residuals, analyzing the plots of various

[07 Hours]

[07 Hours]

[07 Hours]

parameters (Scalar and Vector contours such as streamlines, velocity vector plots and animation). Introduction to turbulence models. Reynolds Averaged Navier-Stokes equations (RANS), k- ϵ , k-. Simple problems like flow inside a 2-D square lid driven cavity flow through the nozzle

Texts/References:

- 1. "Computational Fluid Dynamics", John D Anderson: The Basics with Applications, McGraw-Hill
- 2. "Computational Fluid Dynamics", J. Tu, G.-H. Yeoh and C. Liu: A practical approach, Elsevier.
- 3. "Introduction to Computational Fluid Dynamics", A. W. Date: Cambridge University Press
- 4. "Computer Simulation of Fluid flow and heat transfer", P.S. Ghoshdastidar: Tata McGraw-Hill.
- 5. "Numerical Simulation of internal and external flows", Vol. 1, C. Hirsch, Wiley
- 6. Computational Fluid Mechanics and Heat transfer, Tannehill, Anderson, and Pletcher, CRC Press.

Open Elective-II

Quantitative Techniques in Project Management

BTMOE605A OEC 2 Administrative rechinques in risject 3-1-0 4Credits	BTMOE605A OEC 2 Quantitative Techniques in Project Management	3-1-0	4Credits
---	--	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mathematics-I/II/III

Course Outcomes: At the end of the course, students will be able to:

CO1	Define and formulate research models to solve real life problems for allocating limited
COI	resources by linear programming.
CO2	Apply transportation and assignment models to real life situations.
CO3	Apply queuing theory for performance evaluation of engineering and management
005	systems.
CO4	Apply the mathematical tool for decision making regarding replacement of items in real
C04	life.
CO5	Determine the EOQ, ROP and safety stock for different inventory models.
CO6	Construct a project network and apply CPM and PERT method.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	2				3	1	3	1
CO2	3	1	1	3	2				3	2	3	1
CO3	3	1	1	3	2				3	2	3	1
CO4	3	1	1	3	2	1			3	2	3	1
CO5	3	1	1	3	2	1			3	2	3	1
CO6	3	1	1	3	2	2			3	2	3	1

Course Contents:

Unit 1: Introduction

Introduction to Operations Research, Stages of Development of Operations Research, Applications of Operations Research, Limitations of Operations Research Linear programming problem, Formulation, graphical method, Simplex method, artificial variable techniques.

Unit 2: Assignment and Transportation Models

Transportation Problem, North west corner method, Least cost method, VAM, Optimality check methods, Stepping stone, MODI method, Assignment Problem, Unbalanced assignment problems, Travelling salesman problem.

Unit 3: Waiting Line Models and Replacement Analysis

Queuing Theory: Classification of queuing models, Model I (Birth and Death model) M/M/I (∞ , FCFS), Model II - M/M/I (N/FCFS).

Replacement Theory, Economic Life of an Asset, Replacement of item that deteriorate with time, Replacement of items that failed suddenly.

Unit 4: Inventory Models

Inventory Control, Introduction to Inventory Management, Basic Deterministic Models, Purchase Models and Manufacturing Models without Shortages and with Shortages, Reorder level and optimum buffer stock, EOQ problems with price breaks.

Unit 5: Project Management Techniques and Time and Cost Analysis [07 Hours]

Difference between project and other manufacturing systems. Defining scope of a project, Necessity of different planning techniques for project managements, Use of Networks for planning of a project, CPM and PERT.

Time and Cost Analysis

Time and Cost Estimates: Crashing the project duration and its relationship with cost of project, probabilistic treatment of project completion, Resource allocation and Resource leveling.

Texts:

- 1. P. K. Gupta, D. S. Hira, "Operations Research", S. Chand and Company Ltd., New Delhi, 1996.
- 2. L. C. Jhamb, "Quantitative Techniques for managerial Decisions", Vol. I and II, Everest Publishing House, Pune, 1994.
- 3. N. D. Vohra, "Operations Research", Tata McGraw Hill Co., New Delhi.

[**07 Hours**] stimality che

[07 Hours]

[07 Hours]

References:

- 1. H. Taha, "Operations Research-An Introduction", Maxwell Macmillan, New York.
- 2. J. K. Sharma, "Operations Research-An Introduction", Maxwell Macmillan, New Delhi.
- 3. Harvey M. Wagner, "Principles of Operations Research with Applications to Managerial Decisions", Prentice Hall of India Pvt. Ltd., New Delhi, 2nd edition, 2005.
- 4. Rubin and Lewin, "Quantitative Techniques for Managers", Prentice Hall of India Pvt. Ltd., New Delhi.

Nanotechnology

BTMOE605B	OEC2	Nanotechnology	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Demonstrate the understanding of length scales concepts, nanostructures and
COI	nanotechnology.
CO2	To impart basic knowledge on various synthesis and characterization techniques involved
02	in Nanotechnology
CO3	To educate students about the interactions at molecular scale
CO4	Evaluate and analyze the mechanical properties of bulk nanostructured metals and alloys,
C04	Nano-composites and carbon nanotubes.
CO5	To make the students understand about the effects of using nanoparticles over
COS	conventional methods

Course					Р	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		3	3	2	1		3		1	3
CO2	3	2			3	3	2				1	3
CO3	1	1	1	3	2				2	1		1

CO4	1	1		3	3	2	1	3		1	3
CO5	1	1	1	3	2			2	1		1

Course Contents:

Unit 1: Scientific Revolutions

Types of Nanotechnology and Nano machines: the Hybrid nanomaterial. Multiscale hierarchical structures built out of Nano sized building blocks (nano to macro). Nanomaterial's in Nature: Nacre, Gecko, Teeth. Periodic table, Atomic Structure, Molecules and phases, Energy, Molecular and atomic size, Surfaces and dimensional space: top down and bottom up.

Unit 2: Forces between Atoms and Molecules

Particles and grain boundaries, strong Intermolecular forces, Electrostatic and Vander Waals forces between surfaces, similarities and differences between intermolecular and inter particle forces covalent and coulomb interactions, interaction polar molecules. Thermodynamics of self-assembly.

Unit 3: Opportunity at the Nano Scale

Length and time scale in structures, energy landscapes, Inter dynamic aspects of inter molecular forces, Evolution of band structure and Fermi surface.

Unit 4: Nano Shapes

Quantum dots, Nano wires, Nano tubes, 2D and 3D films, Nano and mesopores, micelles, bilayer, vesicles, bio nano machines, biological membranes.

Unit 5: Influence of Nano Structuring and Nano Behavior

Influence of Nano structuring on mechanical, optical, electronic, magnetic and chemical properties-gram size effects on strength of metals- optical properties of quantum dots.

Nano Behavior

Quantum wires, electronic transport in quantum wires and carbon nano-tubes, magnetic behavior of single domain particles and nanostructures, surface chemistry of Tailored monolayer, self-assembling.

Texts:

- 1. C. Koch, "Nanostructured materials: Processing, Properties and Potential Applications", Noyes Publications, 2002.
- 2. C. Koch, I. A. Ovidko, S. Seal and S. Veprek, "Structural Nano crystalline Materials: Fundamentals & Applications", Cambridge University Press, 2011.

References:

1. Bharat Bhushan, "Springer Handbook of Nanotechnology", Springer, 2nd edition, 2006.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

2. Laurier L. Schramm, "Nano and Microtechnology from A-Z: From Nano-systems to Colloids and Interfaces", Wiley, 2014.

Energy Conservation and Management

BTMOE605C OEC2 Energy Conservation and Management 3-1	0 4 Credits
---	-------------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

	Course Outcomes: At the end of the course, students will be able to:
CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyze cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy conservation

	- map	ping v	I COUI	se out	comes	WICH]	PI 0510	iiii out		,		
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3			2	2		2
CO2	1	1	3	1	2	3			2	2		2
CO3	2	1	1							1		2
CO4	3	3			2	3						1

CO5		3		2			1

Course Contents:

Unit1: Introduction

General energy problem, Energy use patterns and scope of conservation. Energy Management Principles: Need, Organizing, Initiating and managing an energy magnet program.

Unit2: Energy Auditing

Elements and concepts, Types of energy audits, Instruments uses in energy auditing . Economic Analysis: Cash flows, Time value of money, Formula are relating present and future cash flows-single amount, uniform series.

Unit3: Financial Appraisal Methods

Payback period, Net present value, Benefit-cost ratio, Internal-rate of

return,Lifecyclecosts/benefits.Thermodynamicsofenergyconservation,Energyconservationin Boilers and furnaces, Energy conservation in Steam and condensate system.

Unit4: Cogeneration and Insulation and Heating

Concept, Types of cogeneration systems, performance evaluation of a cogeneration system. Waste Heat Recovery: Potential, benefits, waste heat recovery equipment's.

Space Heating, Ventilation Air Conditioning (HVAC) and water heating of building, Transfer of heat, Space heating methods, Ventilation and air conditioning, Heat pumps, Insulation, Cooling load, Electric water heating systems, Electric energy conservation methods.

Insulation and Heating Industrial Insulation: Insulation materials, Insulation selection, Economical thickness of insulation.Industrial Heating: Heating by indirect resistance, direct resistance heating (salt bath furnace),andHeat treatment by induction heating in the electric arc furnace industry.

Unit5: Energy Conservation in Electric Utility and Industry

Energy costs and two part tariff, Energy conservation in utility by improving load factor, Load curve analysis, Energy efficient motors, Energy conservation in illumination systems, Importance of Rwerfact orine energy conservation, Power factor improvement methods, Energy conservation in industries

Texts:

1. Callaghan, "Energy Conservation".

2. D.L. Reeg,"Industrial Energy Conservation", Pergamon Press.

References:

- 1. T.L. Boyen, "Thermal Energy Recovery", Wiley Eastern.
- 2. L.J. Nagrath ,"System Modeling and Analysis", Tata Mc Graw Hill Publications.
- 3. S.P. Sukhatme, "Solar Energy", Tata Mc Graw Hill Publications.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Wind Energy

BTMOE605D	OEC2	Wind Energy	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1

CO2		3	2	1	3	2	2	2	2		1
CO3	3	3	1	1	2	2	1				1
CO4	3	3		1							1
CO5	3	2	1								1

Course Contents:

Unit 1: Introduction and Wind Measurements

Historical uses of wind, History of wind electric generations

Wind Characteristics: Metrology of wind, World distribution of wind, Atmospheric stability, Wind speed variation with height, Wind speed statistics, Weibull statistics, Weibull parameters, Rayleigh and normal distribution

Wind Measurements

Biological indicators, Rotational anemometers, other anemometers, Wind direction

Unit 2: Wind Turbine Power, Energy and Torque

Power output from an ideal turbine, Aerodynamics, Power output from practical turbines, Transmission and generation efficiency, Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.

Unit 3: Wind Turbine Connected to the Electrical Network

Methods of generating synchronous power, AC circuits, the synchronous generator, per unit calculations, the induction machine, motor starting, Capacity credit features of electrical network

Unit 4: Wind Turbines with Asynchronous Electric Generators

Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Selfexcitation of the induction generators, Single phase operation the induction generator, Field modulated generators, Roesel generator.

Asynchronous Load: Piston water pumps, Centrifugal pumps, Paddle wheel heaters, Batteries, Hydrogen economy, and Electrolysis cells.

Unit 5: Economics of Wind Systems

Capital costs, Economic concepts, Revenues requirements, Value of wind generated electricity

Texts:

1. S. Ahmad, "Wind Energy: Theory and Practice", Prentice Hall of India Pvt. Ltd.

References:

- 1. Garg L. Johnson, "Wind Energy Systems" Prentice Hall Inc., New Jersey, 1985.
- 2. Desire Le Gouriers, "Wind Power Plants: Theory and Design" Pergamon Press, 1982.

[07 Hours]

[07 Hours]

07 Hours]

[07 Hours]

Introduction to Probability Theory and Statistics

BTMOE605D	Introduction to Probability Theory and Statistics	OEC 2	3L-1T-0P	4 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial:1 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Objective

The objective of this course is

- (i) To acquire the knowledge of mean, median, mode, dispersion, etc.
- (ii) To develop the basics of Probability theory
- (iii) To get the knowledge of random variables and their expectations
- (iv) To establish acquaintance with various probability distributions
- (v) To Acquire the knowledge of correlation and regression.

Course Outcome

At the end of the course, the student will be able to

(i) Apply the concepts to find the measure of the central tendency, dispersion and moments forgrouped data

(ii) Make use of the correlation, and regression analyses to find the correlation and regression Coefficients

(iii) Observe and analyze the behavior of various discrete and continuous probabilityDistributions

(iv)Investigate the properties such as mathematical expectation and variance of the random Variables.

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	1	2	2	1			1	1		2	
CO2	1	1		2	1		1					2	
CO3	1	2		2	2	1				2		2	
CO4	1	1	1	3	3	1			1			2	

Mapping of course outcomes with program outcomes

Course Contents:

Unit I: Probability

Probability Theory: Definition of probability, Addition theorem of probability, Multiplication theorem of probability, Conditional probability, Bayes' theorem of inverse probability, Properties of probabilities with proofs.

Unit II: Theoretical Probability Distributions

[07 Hours]

[07 Hours]

Theoretical Probability Distributions: Binomial distribution, Poisson distribution, Normal

distribution, Fitting of binomial distributions, Properties of Binomial, Poisson and normal distributions, Relation between binomial and normal distributions, Relation between Poisson and normal distributions, Importance of normal distribution, Examples.

Unit III: Moments, Skewness and Kurtosis

Moments about mean and an arbitrary point; Skewness: positive skewness, negative skewness, symmetric frequency distribution, Bowley's coefficient of skewness, Karl Pearson's coefficient of skewness,

Measures of skewness based on moments (β_1 , γ_1); Concepts of kurtosis, leptokurtic, mesokurtic and platykurtic frequency distributions.

Unit IV: Correlation and Regression

Correlation: Types of correlation, Karl Pearson's correlation coefficient (Covariance Method), Spearman's rank correlation method, Regression: lines of regression, fitting of lines of regression by the least squares method, interpretation of slope and intercept, properties of regression coefficients.

Unit V: Sampling Theory and Testing of Hypothesis[07 Hours]

Introduction to sampling distributions, Population and sample, Null hypothesis and Alternative hypothesis, Single and two tailed test, Testing of hypothesis, Level of significance, Critical region, Procedure for testing of hypothesis.

Text Books:

- 1. Fundamentals of Statistics by S. C. Gupta, Himalaya Publishing House Pvt. Ltd., New Delhi.
- 2. Probability and Statistics by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.
- 3. Mathematical Statistics by P. Mukhopadhyay, New Central Book Agency, Kolkata.
- 4. Fundamentals of Mathematical Statistics by S. C. Gupta and V. K. Kapoor, S. Chand and Sons, New Delhi.
- 5. An Introduction to Probability and Statistics by V. K. Rohatgi and A. K. Md. Ehsanes Saleh, Wiley Intercedence Publication, New York.
- 6. Introduction to Probability and Statistical Applications by P. L. Meyer, Addison Wesley Publishing Co., Massachusetts.

Reference Books:

- a. Probability, Statistics with Reliability, Queuing and Computer Science Applications by KishorS. Trivedi, Wiley India Pvt. Ltd., Mumbai.
- b. Probability, Queuing Theory and Reliability Engineering by G. Hari baskaran,Laxmi

Publications, New Delhi.

c. Probability and Statistics by R. S. Murray, J. S. John, R. Alu Srinivasan and D. Goswami,

Schaum's Outlines series, McGraw Hill Publications, New Delhi.

d. Introduction to Theory of Statistics by A. M. Mood, F. A. Graybill and D. C. Boes, tata McGraw – Hill Publications, Pune.

Mechanical Engineering Lab – IV

BTMCL 606	PCC 18	Manufacturing Processes Lab - II+ +Machine Design Practice-II+ Applied	0-0-6	3 Credit
-----------	--------	---	-------	----------

[07 Hours]

Thermodynamics lab	

: 30 Marks Marks
)

Group A (Manufacturing Processes Lab - II)

List of Practical's /Experiments/Assignments (Any Three from Group

A)

- 1. Study of types of chips
- 2. Study of the effect of process parameters on cutting ratio and shear angle in oblique turning process
- 3. Study of the effect of process parameters on the surface roughness during oblique turning process
- 4. Study of the effect of cutting fluid on surface roughness during oblique turning process
- 5. Study of the effect of process parameters on tool wear during oblique turning process
- 6. Study of the effect of process parameters on cutting forces in oblique turning process
- 7. Study of the effect of process parameters on cutting forces in end milling process
- 8. To develop a manual part program of a given component on CNC Lathe using G and M codes.
- 9. To develop a manual part program of a given component on CNC Lathe usingstock removal cycle.
- 10. To develop a manual part program of a given component on CNC Lathe using canned cycle.
- 11. To develop a manual part program of a given component on CNC Milling machine using G and M code.
- 12. To develop a manual part program of a given component on CNC Milling machine using pocket milling cycle.
- 13. To develop a manual part program of a given component on CNC Milling machine using scanned cycle.
- 14. To examine the effect of parameters on MRR and TWR in Electro Discharge Machining (EDM).
- 15. To evaluate machining accuracy in EDM.
- 16. Demonstration on Wire-EDM
- 17. Industrial visit to study manufacturing practices.

Group B (Machine Design Practice - II)

List of Practical's/Experiments/Assignments

- 1. The term work shall consist of 01 design projects based on syllabus of Machine Design-II. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with apart list and Overall dimensions and other sheet involving drawing so find Individual Components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing Make the Project full on Auto-cad or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer printout using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-II.

Group C (Applied Thermodynamics Lab)

Perform any FIVE Practical's

- 1. Determination of calorific value by Bomb calorimeter
- 2. Measurement of dryness fraction of steam using separating & throttling calorimeter.
- 3. Trial on boiler
- 4. Trial on convergent/convergent-divergent type nozzle
- 5. Performance evaluation of steam turbine (Reaction / Impulse).
- 6. Performance evaluation of surface condenser.
- 7. Flue gas analysis using emission measuring instruments
- 8. Study & trial on single stage/two-stage reciprocating air compressor
- 9. Trial on centrifugal blower
- 10. Visit to appropriate industry to study and experience some of the above listed systems

B. Tech	Seminar
----------------	---------

BTMS607 Seminar II	PROJ-3	0L-0T-2P	1 Credits
--------------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks

Objective:

- To expose and make students aware with latest research and research publications
- To understand the research and research publication, references, citation
- To enhance the presentation skill
- To enhance the report writing

• To make the student aware about research publication sites Students are expected to prepare a seminar report on the chosen topic/area

selected with the discussion of chosen guide based on the available literature on the chosen topic.

Mini Project (TPCS)

BTAP608 Mini Project (TPCS)	PROJ-4	0L-0T-2P	1 Credits
-----------------------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 2 hrs/week	Continuous Assessment: 60 Marks Mid Semester Exam: End Semester Exam: 40 Marks(Duration 03 hrs)

Students are expected to carry out a mini project under a project guide based on the chosen area. The project may be prototype/software based which may demonstrate Engineering application or community service. After completion the project work it is necessary that student should prepare a project report under the supervision of the assign guide and present before the committee.

Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

CURRICULUM

UNDER GRADUATE PROGRAMME

B.TECH.

Final Year MECHANICAL ENGINEERING/MECHANICAL

ENGINEERING(SANDWICH) ACADEMIC YEAR2024-2025

Abbreviations

BSC: Basic Science Course
ESC: Engineering Science Course
PCC: Professional Core Course
PEC: Professional Elective Course
OEC: Open Elective Course
HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester VII B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2024-25)

Semester V	II									
Course Category	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of Credits
			L	Т	Р	CA	MSE	ESE	Total	
PCC15	BTMC701	Mechatronics	3	-	-	20	20	60	100	3
HSSMC4	BTHM702	Industrial Engineering and Management	3	-	-	20	20	60	100	3
PEC5	BTMPE703A-G BTPPE703D	Elective-V	3	-	-	20	20	60	100	3
OEC3	BTMOE704A-C	Open Elective-III	3	-	-	20	20	60	100	3
OEC4	BTMOE705A-C	Open Elective-IV	3	-	-	20	20	60	100	3
PCC16	BTMCL706	Mechanical Engineering Lab - V		-	<mark>4</mark>	60	-	40	100	2
<mark>PROJ-6</mark>	BTMP 707	Mini Project			6	<mark>30</mark>		<mark>20</mark>	<mark>50</mark>	<mark>3</mark>
PROJ-7	BTMI60 <mark>9</mark>	IT – 3 Evaluation	-	-	-	-	-	100	100	1
		Total	15	-	10	<mark>190</mark>	100	<mark>460</mark>	<mark>750</mark>	21

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective V:

Sr. No	Course code	Course Name
1	BTMPE703A	Design of Air Conditioning Systems
2	BTMPE703B	Biomechanics
3	BTMPE703C	Non-conventional Machining
4	BTMPE703D	Advanced IC Engines
5	BTMPE703E	Additive Manufacturing
6	BTMPE703F	Surface Engineering
1	BILLE/02D	Processing of Polymers
8	BTMPE/03G	Stress Analysis

Open Elective III:

Sr. No	Course code	Course Name
1	BTMOE704A	Sustainable Development
2	BTMOE704B	Entrepreneurship Development
3	BTMOE704C	Plant Maintenance

Open Elective IV:

Sr.No	Course code	Course Name
1	BTMOE705A	Engineering Economics
2	BTMOE705B	Biology for Engineers
3	BTMOE705C	Intellectual Property Rights

Course Structure for Semester VIII

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) 2024-25

Semester V	VIII									
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				Credit
Category			L	Т	Р	CA	MSE	ESE	Total	
		Choose any two subjects from ANNEXURE-A#				20	20	60	100	3
						20	20	60	100	3
PROJ-8	BTMP801/ BTMI801	Project OR Internship	-	-	<mark>16</mark>	60	-	40	100	<mark>08</mark>
		Total	-	-	<mark>16</mark>	100	40	160	300	<mark>14</mark>

ANNEXURE-A# (Provisional) Recommendations of 8th Semester Courses in Self-study Mode from NPTEL/ SWYAM Platform, THE LIST MAY ALTER AND MODIFY AS PER THE AVAILABILITY OF THE SUBJECTS ON THE NPTEL/ SWYAM Platform AND USEFULNESS, EVERY YEAR

Sr No	Course Code	Course Name	Duration (Weeks)	Institute Offering	Name of Professor
				Course	
1	BTMEC801A	Fundamentals of Automotive Systems	12 Weeks	IITM	Prof. C. S. Shankar Ram
2	BTMEC801B	Mechanics of Fiber Reinforced Polymer Composite Structures	12 Weeks	IITG	Prof. Debabrata Chakraborty
3	BTMEC801C	Explosions and Safety	12 Weeks	IITM	Prof. K. Ramamurthi
4	BTMEC801D	Material Characterization	12 Weeks	IITM	Prof. Sankaran.S
5	BTMEC801E	Dealing with materials data : collection, analysis and interpretation	12 Weeks	IISc	Prof. M P Gururajan
6	BTMEC801F	Non-Conventional Energy Resources	12 Weeks	IITM	Prof. Prathap Haridoss

Six months of Internship in the industry

These subjects are to be studied on self –study mode using SWAYAM/NPTEL/Any other source

Student doing project in Industry will give NPTEL Examination/Examination conducted by the University i.e. CA/MSE/ESE # Students doing project in the Institute will have to appear for CA/MSE/ESE

SEM	Ι	II	III	IV	V	VI	VII	VIII	TOTAL
CREDITS	18	19	21	20	25	22	21	14	160

Semester - VII

Mechatronics

BTMC701	PCC15	Mechatronics	3-0-0	3 Credits				
Teaching Schem	ne:	Examination Schem	Examination Scheme:					
Lecture: 3 hrs/we	eek	Continuous Assessme	Continuous Assessment: 20 Marks					
Tutorial: 0 hr/we	ek	Mid Semester Exam:	Mid Semester Exam: 20 Marks					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define sensor, transducer and understand the applications of different sensors and transducers
CO2	Explain the signal conditioning and data representation techniques
CO3	Design pneumatic and hydraulic circuits for a given application
CO4	Write a PLC program using Ladder logic for a given application
CO5	Understand applications of microprocessor and micro controller
CO6	Analyse PI, PD and PID controllers for a given application

Mapping of course outcomes with program outcomes

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	3	2				2	1		1
CO2	3	2			3	3	2				1	3
CO3	1	1		3	3	2	1		3		1	3
CO4	3	3	1	1	3		1	1	1			
CO5	3			1	3	2	3					2
CO6		3	3		3	3	1	1	3			2

Course Contents:

Unit 1: Introduction

Introduction to Mechatronic systems, elements, advantages; practical examples of Mechatronic systems. Sensors and Transducers: Various types of sensors and transducers used in Mechatronic system such as pressure sensors, temperature sensors, velocity sensors, Acceleration sensors, proximity sensors, position sensors, force sensors, Optical encoders, Capacitive level sensor, tactile sensors, Selection of sensors.

Unit 2: Signal Conditioning and Data Representation

Types of electronic signals, Need for signal processing, Operational amplifiers: Types, classification and applications, Opto-isolators, Protection devices, Analogue to Digital and Digital to Analog Converters, Interfacing devices, Electromagnetic Relays.

Data representation systems, Displays, Seven segment displays, LCD displays, Printers, Data loggers, Data Acquisition Cards/Systems

Unit 3: Drives

[07 Hours] Electrical Drives: Types of Electrical Motors, AC and DC motors, DC servomotors, Stepper motors, linear motors,

[07 Hours]

End Semester Exam: 60 Marks (Duration 03 hrs)

etc.

Pneumatics and Hydraulics: Components of Pneumatic systems, actuators, direction control valves, pneumatic air preparation, FRL unit, methods of actuation of valves, Sequencing of Pneumatic cylinders using Cascade and shift register methods. Electro-pneumatic valves, Electro- pneumatic circuits using single and double solenoid methods. Hydraulic cylinders, design of cylinder, Design of Piston and piston rod, Valves, poppet valve, house pipes and design of tubing, Meter-in and Meter-out circuits.

Unit 4: Microprocessor and Microcontroller

8085 microprocessor: architecture, various types of registers and their functions in 8085µP, Instruction sets, interfacing, applications. 8081 microcontroller: architecture, Instruction sets, various pins and their functions interfacing, applications.

Programmable Logic Controller: Introduction, Architecture, Types of inputs/outputs, Specifications, guidelines for Selection of PLCs, Programming: Ladder logic and FBD

Unit 5: Control Systems and its Stabilty

Open and closed loop system; block diagram manipulation/reduction, Transfer function, modeling of Mechanical Systems using Spring, Dashpot and Mass equivalence.

Stability of Systems

On/Off controller, Proportional Control, Integral control, Derivative Control; PI, PD and PID Controllers, Introduction to control using state variable system models, Bode Plots and stability criteria.

Texts:

- 1. HMT Limited, "Mechatronics", Tata McGraw Hill Publications, 1998.
- 2. W. Bolton, "Mechatronics; Electronic Control System in Mechanical Engineering", Pearson Education Asia, 1999.
- 3. Raven, "Automatic Control Engineering", Tata McGraw Hill Publications, New York, 1986.

References:

- 1. R. K. Rajput, "A textbook of Mechatronics", S. Chand and Co., 2007.
- 2. Michael B. Histand, David G. Alciatore, "Introduction to Mechatronics and Measurement Systems", Tata McGraw Hill International Editions, 2000.
- 3. D. A. Bradley, D. Dawson, N. C. Buru, A. J. Loader, "Mechatronics", Chapman and Hall, 1993

Industrial Engineering and Management

BTHM702 HSSMC4 Industrial Engineering and Management 3-0-0 3 Credits
--

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Impart fundamental knowledge and skill sets required in the Industrial Management and Engineering profession, which include the ability to apply basic knowledge ofmathematics, probability and statistics, and the domain knowledge of IndustrialManagement and Engineering
CO2	Produce ability to adopt a system approach to design, develop, implement and innovate

[07 Hours]

	integrated systems that include people, materials, information, equipment and energy.									
CO3	Understand the interactions between engineering, businesses, technological and									
	environmental spheres in the modern society.									
CO4	Understand their role as engineers and their impact to society at the national and global									
0.04	context.									

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											2	1
CO2									2	2	2	
CO3								2				
CO4								2				2

Course Contents:

Unit 1: Introduction

Managing and managers, management- science, theory and practice, functions of management, evolution of management theory, contributions of Taylor, Fayol and others.

Planning: The nature and purpose of planning, objectives, strategies, policies and planning premises, decision making. Organizing: The nature and purpose of organizing, departmentation, Line/ staff authority and decentralization, effective organizing and organizational culture.

Unit 2: Human Resource Management

Staffing: Human resource management and selection, orientation, apprentice training and Apprentice Act (1961), performance appraisal and career strategy, job evolution and merit rating, incentive schemes.

Leading: Managing and human factor, motivation, leadership, morale, team building, and communication.

Controlling: The system and process of controlling control techniques, overall and preventive control.

Unit 3: Production/Operations Management

Operations management in corporate profitability and competitiveness, types and characteristics of manufacturing systems, types and characteristics of services systems.

Operations planning and Control: Forecasting for operations, materials requirement planning, operations scheduling.

Unit 4: Design of Operational Systems

Product/process design and technological choice, capacity planning, plant location, facilities layout, assembly line balancing, and perspectives on operations systems of the future.

Unit 5: Introduction to Industrial Engineering and Ergonomics

Scope and functions, history, contributions of Taylor, Gibreth, Gantt and others.

Work Study and Method Study: Charting techniques, workplace design, motion economy principles.

Work Measurement: Stopwatch time study, micromotion study, predetermined time system (PTS), work sampling. **Ergonomics**

Basic principles of ergonomics

Concurrent Engineering: Producibility, manufacturability, productivity improvement. Total Quality Management: Just in time (JIT), total quality control, quality circles, six sigma.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

- 1. H. Koontz, H. Weirich, "Essentials of Management", Tata McGraw Hill book Co., Singapore, International Edition, 5th edition, 1990.
- 2. E. S. Buffa, R. K. Sarin, "Modern Production/Operations Management", John Wiley and Sons, New York, International Edition, 8th edition, 1987.
- 3. P. E. Hicks, "Industrial Engineering and Management: A New Perspective", Tata McGraw Hill Book Co., Singapore, International Edition, 2nd edition, 1994.

References:

- 1. J. L. Riggs, "Production Systems: Planning, Analysis and Control", John Wiley & Sons, New York, International Edition, 4th edition, 1987.
- 2. H. T. Amrine, J. A. Ritchey, C. L. Moodie, J. F. Kmec, "Manufacturing Organization and Management", Pearson Education, 6th edition, 2004.

International Labour Organization (ILO), "Introduction to Work Study", International Labour Office, Geneva, 3rd edition, 1987.

Elective V

Design of Air-Conditioning Systems

BTMPE703A	PEC5	Design of Air-Conditioning Systems	3-0-0	3 Credits
		• • •		1

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Basic Air conditioning

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cooling load calculation
CO2	Explain concept of ventilation and its implementation
CO3	Learn duct design applied to real life situation
CO4	Learn and differentiate the various modern air conditioning systems/units

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2	1	1	1			1	
CO2	3	3				1	2					
CO3	3	3	3	2	2	1	1	1			2	
CO4		1	1	1		1	1	1				

Course Contents:

Unit1: Introduction

Moist Air properties, Psychrometry of various air condition processes, SHF, dehumidified air quantity, HVAC Equipment

clothing resistance,

Unit2: Human Comfort

[07 Hours]

[07 Hours]

metabolisms, indoor

or air quality,

Human comfort, environment comfort indices,

ventilationair, insided esign conditions, outsided esign conditions.

Unit3: Heat Flow

Heat Flow in Buildings, Building Heat Transfer, Cooling Load Calculation, Ventilation load, Effective sensible heat factor and selection of air conditioning apparatus.

Unit4: Air Diffusion

Room air diffusion, filtration, duct design, pressure drop, air distribution design, outlets

Unit 5: Air Conditioning Systems and its equipment

Air conditioning systems; constant volume, VAV, terminal reheat systems, single zone and multi zone systems, dual duct system, fan coil unit, noise control.

Air Conditioning Equipment: Fans, pumps and blowers, performance & selection

Texts:

- 1. W. F. Stoecker, J. P. Jones, "Principles of Refrigeration and Air Conditioning", Tata McGraw Hill Publications.
- 2. C. P. Arora, "Refrigeration and Air Conditioning", Tata McGraw Hill Publications.
- 3. Manohar Prasad, "Refrigeration and Air Conditioning", New Age International, 3rd edition, 2011.
- 4. R. C. Arora, "Refrigeration and Air Conditioning", PHI Learning Pvt. Ltd., 2010.

References:

- 1. "Handbook of Air Conditioning System Design", Carrier Air Conditioning Co., 1965.
- 2. W. P. Jones, "AirConditioning Engineering", EdwardArnoldPublishersLtd., London, 1984.
- 3. JamesL. Threlkeld, "ThermalEnvironmentalEngineering", PrenticeHall, New York, 1970.

Biomechanics

BTMPE703B	PEC 5	Biomechanics	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain various forces and mechanisms and define Newton's law of motion, work and
	energy, moment of inertia
CO2	Describe forces and stresses in different human joints
CO3	Discuss bio fluid mechanics in cardiovascular and respiratory system in human body
CO4	Differentiate between hard tissues and soft tissues
CO5	Understand concepts of implants and Identify different techniques used in biomechanics
	implants

[07 Hours]

[07 Hours]
Mapping	of course	outcomes with	program	outcomes
	01 0001100		P- 08	0

Course					P	rogram	n Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1			1	1	1	1		1	1
CO2	2	2	2			1	2		1		1	1
CO3	2	2	2			1	1	1	1			1
CO4	1	1	1				1	1	1			1
CO5	1	1	2				1	1			1	1

Course Contents:

Unit 1: Introduction

Review of principle of mechanics, vector mechanics-resultant forces of coplanar and non-coplanar and concurrent and non-concurrent forces, parallel forces in planes, equilibrium of coplanar forces, Newton's law of motion, work and energy, moment of inertia.

Unit 2: Biomechanics of Joints

Skeletal joints, forces and stresses in human joints, type of joints, biomechanical analysis of elbow, shoulder, spinal column, hip knee and ankle.

Unit 3: Bio-fluid Mechanics

Introduction, viscosity and capillary viscometer, Rheological properties of blood, laminar flow, cardiovascular and respiratory system.

Unit 4: Hard Tissues

Bone structure and composition, Mechanical properties of bones, cortical and cancellous bones, visco-elastic properties, Maxwell and Vigot model – Anisotropy

Unit 5: Soft Tissues and Biomechanics of Implant

Structure and functions of soft tissue: cartilage, tendon, ligament and muscle, Material properties of cartilage, tendon and ligament and muscle

Biomechanics of Implant: Specification for prosthetic joints, biocompatibility, requirement of biomaterial, characterization of different type of biomaterials, fixation of implants.

Texts/References:

1. Y. C. Fung, "Biomechanics: Mechanical properties of living tissues", Springer-Verlag, 2nd edition, 1993.

D. J. Schneck, J. D. Bronzino, "Biomechanics: Principle and Applications", CRC Press, 2nd edition, 2000.

Non-conventional Machining

BTMPE/03C	PEC5	Non-conventional Machining	3-0-0	3Credits
Teaching Schem	ne:	Examination Scheme:		
Lecture: 3 hrs/we	eek	Continuous Assessment:	20 Marks	
		Mid Semester Exam: 20	Marks	

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Manufacturing Processes

Course Outcomes: At the end of the course, students will be able to:

CO1	Classify Non-conventional machining processes.										
CO^{2}	Understand working principle and mechanism of material removal in various non-										
02	conventional machining processes.										
CO3	Identify process parameters their effect and applications of different processes.										
CO4	Summarized merits and demerits of non-conventional machining processes.										
COS	Explain the mechanism to design hybrid processes such as ELID grinding, EDCG, EDCM,										
COS	etc.										
CO6	Understand mechanism and working principle of micro machining using non-conventional										
	processes.										

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1				1		1
CO2	2	2	1		2	1	1			1		1
CO3	2	2	1	1	2	1	1			1		1
CO4	2	2	1		2	1	1			1		1
CO5	3	2	1	1	2	2	1			1		1
CO6	2	2	1	1	1	2	1			1		1

Course Contents:

Unit 1: Introduction to Non-Conventional Machining Processes

An overview, Trends in manufacturing, Classification of Non-Conventional Machining processes.

Unit 2: Chemical and Electrochemical Processes

Introduction, Types: CHM, ECM, Electrochemical grinding, electrochemical deburring, electrochemical honing, Mechanism of material removal, Process characteristics, Process parameters, Equipment and Tooling (maskants and etchants), Advantages, applications and limitations.

Unit 3: Thermo-Electrical Processes

Electrical discharge machining, Electron beam machining, Ion beam machining, Plasma arc machining, Hot machining, Mechanism of material removal, Process characteristics, Process parameters, Equipment and Tooling, Advantages, applications and limitations.

Unit 4: Mechanical Processes[07 Hours]

Ultrasonic machining, Abrasive jet machining, Abrasive flow machining, Water Jet cutting, Mechanism of material removal, Process characteristics, Process parameters, Equipment and Tooling, Advantages, applications and limitations.

Unit 5: Laser Based Machining Processes and Hybrid Processes [07 Hours]

Types of lasers, Laser beam generation, Equipment and machining procedure, Process characteristics, Process parameters, Advantages and limitations of LBM, Applications.

Hybrid Processes

Concept, Mechanism of material removal, Process characteristics, Process parameters, Equipment and Tooling, classification, applications, advantages, Shaped tube electrolytic machining, Electrical discharge wire cutting, ELID grinding, Micro machining: Micro EDM, Micro ECM, Electro discharge chemical grinding (EDCG).

[07 Hours]

[07 Hours]

Texts:

- 1. P. C. Pande, H. S. Shan, "Modern Machining Process", Tata McGraw-Hill Publications, New Delhi, 1980.
- 2. V. K. Jain, "Advanced Machining Processes", Allied Publishers Pvt. Ltd., New Delhi, 2002.
- 3. P. K. Mishra, "Non-Conventional Machining", Narosa Publishing House, New Delhi, 2007

References:

- 1. P. C. Wellar, "Non-Traditional Machining Processes", SME, Michigan, 1984.
- 2. Gary F. Benedict, "Non-traditional Manufacturing Processes", Marcel Dekker, 1987.

Advanced IC Engines

BTMPE703D	PEC 5	Advanced IC Engines	anced IC Engines 3-0-0 3 Credit						
Teaching Schem	ne:	Examination Scheme:							
Lecture: 3 hrs/we	ek	Continuous Assessment	Continuous Assessment: 20 Marks						
		Mid Semester Exam: 20	Marks						
End Semester Exam: 60 Marks (Duration 03 hrs									

Pre-Requisites: IC Engines

Course Outcomes: At the end of the course, students will be able to:

CO1	Define and Distinguish between Spark ignition and Compression ignition system. Describe Air- fuel supply systems in ic engines.
CO2	Identify and Demonstrate normal and abnormal combustion in combustion chambers of IC engines. According to which able to analyse and Design combustion chambers.
CO3	Recognize and discuss engine emissions formation, effects and various methods to reduce emissions and their measuring equipment's.
CO4	Understand combustion and emission characteristics of an alternative energy sources and suggest appropriate applications of alternative fuels such as bio diesels, natural gas, LPG, hydrogen, etc. and their Engine modifications for using these fuels.
CO5	Apply and interpret with the recent trends IC engine techniques such as HCCI, CRDI, GDI, etc. with latest measuring equipments.

Mapping of	f course outcome	es with program	outcomes

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1		1							
CO2		2	3									
CO3		1				2	2					
CO4		1		2	1		1					
CO5					2	2	1					

Course Contents:

Unit 1: Spark Ignition Engines

[07 Hours]

Mixture requirements, Fuel injection systems, Monopoint, Multipoint & Direct injection, Stages of combustion: Normal and Abnormal combustion, Knock: Factors affecting knock, Combustion chambers.

Unit 2: Compression Ignition Engines

Diesel Fuel Injection Systems, Stages of combustion, Knocking, Factors affecting knock, Direct and Indirect injection systems, Combustion chambers, Fuel Spray behaviour, Spray structure and spray penetration, Air motion, Introduction to Turbo charging.

Unit 3: Pollutant Formation and Control

Pollutant, Sources, Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter, Methods of controlling Emissions, Catalytic converters, Selective Catalytic Reduction and Particulate Traps, Methods of measurement, Emission norms and Driving cycles.

Unit 4: Alternative Fuels and Multi-fuel Engines

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel: Properties, Suitability, Merits and Demerits, Engine Modifications.

Multi-fuel Engines: Multi-fuel engines, HCCI, GDI, and Exhaust after processing devices.

Unit 5: Recent Trends/Developments

Air assisted Combustion, Homogeneous charge compression ignition engines, Variable Geometry turbochargers, Common Rail Direct Injection Systems, Hybrid Electric Vehicles – NOxAdsorbers, Onboard Diagnostics.

Unit 6: Multi-fuel Engines

Texts:

- 1. V. Ganesan, "Internal Combustion Engines", TMH, 2nd edition, 2002.
- 2. R. B. Mathur, R. P. Sharma, "Internal Combustion Engines", DhanpatRai& Sons 2007.
- 3. E. F. Obert, "Internal Combustion Engines".

References:

- 1. Duffy Smith, "Auto Fuel Systems", The Good Heart Willcox Company, Inc., 1987.
- 2. Eric Chowenitz, "Automobile Electronics", SAE Publications, 1995.

Additive Manufacturing

BTMPE703E	PEC5	Additive Manufacturing	tive Manufacturing 3-0-0 3Credit						
Teaching Schem	ne:	Examination Scheme:							
Lecture: 3 hrs/we	ek	Continuous Assessment	Continuous Assessment: 20 Marks						
		Mid Semester Exam: 20) Marks						
	End Semester Exam: 60 Marks (Duration 03								

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the importance of Additive Manufacturing
CO2	Classify the different AM processes
CO3	Design for AM processes
CO4	Understand the applications of AM
CO5	Differentiate the post processing processes

Mapping of course outcomes with program outcomes

[07 Hours]

[07 Hours]

[07 Hours]

_													
	Course		Program Outcomes										
	Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	2	2	2	2					1
	CO2	2	2	3	3	3	3	1					1
	CO3	2	2	3	3	3		2					1
	CO4	3	3	3	2	2	2	2					1
	CO5	2	3	3	2	2	2	2					1

Course Contents:

Unit 1: Introduction to Additive Manufacturing (AM)

Introduction to AM, AM evolution, Distinction between AM and CNC machining, Advantages of AM. **AM process chain:** Conceptualization, CAD, conversion to STL, Transfer to AM, STL file manipulation, Machine setup, build, removal and clean up, post processing.

Classification of AM processes: Liquid polymer system, discrete particle system, molten material systems, and solid sheet system.

Unit 2: Design for AM

Motivation, DFMA concepts and objectives, AM unique capabilities, Exploring design freedoms, Design tools for AM, Part Orientation, Removal of Supports, Hollowing out parts, Inclusion of Undercuts and Other Manufacturing Constraining Features, Interlocking Features, Reduction of Part Count in an Assembly, Identification of markings/ numbers etc.

Unit 3: Guidelines for Process Selection

Introduction, selection methods for a part, challenges of selection, example system for preliminary selection, production planning and control

Unit 4: AM Applications

Functional models, Pattern for investment and vacuum casting, Medical models, art models, Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Re-manufacturing. Application examples for Aerospace, defence, automobile, Bio-medical and general engineering industries

Unit 5: Post Processing of AM Parts and Future Directions of AM

Support material removal, surface texture improvement, accuracy improvement, aesthetic improvement, preparation for use as a pattern, property enhancements using non-thermal and thermal techniques.

Future Directions of AM

Introduction, new types of products, employment and digiproneurship.

Texts:

- 1. Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles and Applications", World Scientific, 2003.
- 2. Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2nd edition, 2010.

References:

1. Ali K. Kamrani, EmandAbouel Nasr, "Rapid Prototyping: Theory and Practice", Springer, 2006.

- 2. D. T. Pham, S. S. Dimov, "Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling", Springer, 2001.
- 3. Andreas Gebhardt, "Understanding Additive Manufacturing", Hanser Publishers, 2011.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Surface Engineering

BTMPE703F	PEC5	Surface Engineering	3-0-0	3Credits
Teaching Schem	ne:	Examination Scheme:		
Lecture: 3 hrs/we	ek	Continuous Assessment	: 20 Marks	
		Mid Semester Exam: 20) Marks	
		End Semester Exam: 60	Marks (Dur	ation 03 hrs)

Pre-Requisites: None

	Course Outcomes: At the end of the course, students will be able to			
CO1	Learn the importance and need of surface engineering			
CO2	Describe various surface cleaning and modification techniques			
CO3	Understand the concepts of surface integrity			
CO4	Compare various surface coating technologies			
CO5	Select appropriate method of coating for a given application			
CO6	Apply measurement techniques and carry out characterization of coated surfaces.			

Mapping of course outcomes with program outcomes

Course					Pı	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1							1		1
CO2	2				2							
CO3	2	2	1	2						1		
CO4	2				1	1		1		1		
CO5	2	2	1		1		1	1	1	1	1	
CO6	2	2	1	2	2			1	1	1		

Course Contents:

Unit 1: Introduction

Definition, Significance, Role of surface Engineering in creating high performance product, Functional characteristics of a surface, Nature of surfaces: Deformed layer, Beilby layer, chemically reacted layer, Physisorbed layer, Chemisorbed layer; Classification of Surface Engineering Techniques.

Unit 2: Surface Preparation Techniques

Factors affecting selection of cleaning process, Significance of surface preparation, Classification of cleaning processes, Chemical cleaning processes; Mechanical Processes; Substrate considerations, Surface contaminants or soils, Tests for cleanliness.

Unit 3: Surface Integrity

Definition, Importance, Surface alterations, Factors in Surface Integrity: Visual, Dimensional, Residual stress, Tribological, Metallurgical; Measuring Surface Integrity effects: Minimum and Standard data set, Macroscopic and microscopic examination.

Unit 4: Surface Modification Techniques

Classification, Thermal treatments: Laser and electron beam hardening, Mechanical treatments: Short peening: Peening action, surface coverage and peening intensity, Types and sizes of media, Control of process variables, equipment; **Ion Implantation:** Basic Principle, Advantages and disadvantages, equipment.

Unit 5: Surface Coating Techniques and Characterization of Coatings [07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Thermal Spraying: Types and applications; Chemical Vapour Deposition: Principles, Reactions, Types and applications; Physical Vapour Deposition: Basic principle, Evaporation, Sputtering, Ion Plating, Applications; Electroplating: Principle of working and applications; Types of Coatings: Hard, Soft, Single layer, Multi-layer.

Characterization of Coatings

Physical characteristics and their measurements: Coating thickness, Surface Morphology and Microstructure. Mechanical properties and their Measurements: Hardness, Adhesion, Friction and Wear.

References:

- 1. ASM Handbook, "Volume 5: Surface Engineering", ASM International.
- 2. K. G. Budinski, "Surface Engineering for Wear Resistance", Prentice Hall.
- 3. T. Burakowski, T. Wierschon, "Surface Engineering of Metals: Principles, Equipment, Technologies", CRC Press.
- 4. B. Bhushan, B. K. Gupta, "Handbook of Tribology: Materials, Coatings, and Surface Treatments", Tata McGraw Hill Publications.

ASM Handbook, "Volume 16: Machining", ASM International.

Processing of Polymers

BTPPE703D	PEC5	Processing of Polymers	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Unit 1: Basic Concept:

Plastic Additives and Compounding: Various additives and their purpose (e.g.antioxidants, plasticizers, antistatic agents, blowing agents etc.), Principle of mixing and mixers, types.

Extrusion

Basic operation and analysis, solids conveying, drag induced conveying, melting mechanism, power consumption in metering zone. Overall extruder performance. Design of extrusion screws, modeling of extrusion process and computer simulation. Overall working of single screw and twinscrew extruders.

Unit 2: Polymer Devolatilization

Basic analysis of the process, functional design considerations, screw geometry and design Devolatilization in single screw and twin screw extruders and their design.

Extruded products

Such as films, pipes, profiles, coating, foamed products, design of sizing systems, haul off Systems, cooling and / or chilling units, winders, auxiliary equipment's used, measurement and Control of parameters. Types of dies used for the production of extruded products. Analysis of theflow through the dies. Manufacture of flat films, co extruded films, oriented films, drawing andstretching units.

Unit 3: Reactive extrusion and resident time distribution (RTD)

Process details, basic principles, equipment used, effective residence time and residence time Distribution (RTD), point measurements: characterization of melting and mixing time with the RTD, applications.

Extrusion blow molding

Types of blow molding techniques, flow analysis in the die, wall thickness control, parison swell, parison sag. Continuous and intermittent blow molding CAE of blow molding operation.

[07 Hours]

[07 Hours]

Unit 4: Thermoforming

[07 Hours]

Types, various techniques, materials, heat transfer analysis of the process, effect of plugs on article Thickness, continuous heating of a thin moving sheet.CAE in thermoforming.

Unit 5: Injection molding

[07 Hours]

Role of rheology in injection molding, melt flow in feed system, flow in mould cavity, mould Filling.Control of politicizing and injection process.

Reaction injection molding

Overall molding cycle, metering system for components, mixing head design, mould construction, Materials used and their applications.

Other Processing techniques: Calendering and milling, compression and transfer molding, casting, rotational molding, fabrication, decoration of polymers.

References:

1. Handbook of Plastics Test Method, R.B. Brown, George Godwin Limited, 1981.

2. Handbook of Plastic Testing Technology, Brown and Vishnu Shah, A. Wiley, Inter science Publication, 2007

ME (Polymer Engineering) Syllabus Page 26

- 3. Handbook of Plastics Test Methods, G.V. Eves, J.A. Mead, M.M. Riky.
- 4. Volume 8 of ASTM Standards, BIS Standards.
- 5. Polymer Extrusion, Chris Rauwendal SPE, Hanser Publishers.

6. Polymer Missing and Extrusion Technology – Nich olas Cheremisinoff, Marcel Dekker 1987

7. Modeling Of Polymer Processing, Isayav, Hanser Publishers, 1991.

8. Plastics Waste Management, Mustafa.

- 9. Plastics Extrusion Technology Hanser SPE, 1996
- 10. Thermoforming J.L. Throne, Hanser Publishers 1987
- 11. Blow Molding Handbook Rosato, Hanser Publish ers 1987
- 12. Mixing and Compounding of Polymers: Theory and Practice, Ica Manas-Zloczower, Hanser Verlag, 2009.
- 13. Extrusion of Polymers: Theory and Practice, Chan I. Chung, Hanser Verlag, 01-Apr-2000
- 14. Rotational Molding of Plastics R. J. Crawfor d, Research Studies Press Ltd.
- 15. Engineering with Polymers Powell.

Stress Analysis

	BTMPE703G	PEC5	Stress Analysis	3-0-0	3 Credits
--	-----------	------	-----------------	-------	-----------

Teaching Scheme:	Evaluation Scheme:
Lecture: 3 hrs/ week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hours)

Pre-Requisites: Strength of Materials, Machine Design-I

Course Outcome: At the end of course, student will be able to:

CO1	Explain the concept of stress, strain & their relationships & will also be able to choose suitable coordinate system for problems of stress analysis.
CO2	Explain the concept of Plane stress, plane strain, Stress & Strain at a point & will be able to derive the differential equation of equilibrium, Compatibility equation.
CO3	Apply the concept of stress function to solve the stress analysis problems involving simple

	components in Cartesian & Polar coordinate systems.				
CO4	Explain basic principles of optics, describe polariscope & explain the effect of stressed model on behaviour of light vector in polariscope, compensation technique, separation				
	techniques & Stress Freezing in photoelasticity				
	Describe various types of strain gage. Will be also able to describe & apply the theory of				
CO5	Wheatstone bridge for strain measurement using strain gages & to explain the technique				
	for measurement of strain & stresses in rotary components.				
CO6	Describe other techniques like Grid technique & Brittle coating method				

Mapping of Course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										1
CO2	2	2										1
CO3	2	3	3	2								1
CO4	2	1										1
CO5	1	2	1	1								1
CO6	1	2										1

Course Contents:

UNIT 1: Two dimensional problems in Cartesian coordinate System [7 Hours]

Fundamentals of stress & strain, Stress & strain components, stress-strain relationship, Elastic constant, Plane stress, Plane strain, differential equation of equilibrium, Saint Venant's principle, Compatibility condition, Compatibility equations for plane stress and plane strain conditions, Airys stress function.

UNIT 2: Two dimensional problems in Polar coordinate System [7 Hours]

General equations of equilibrium in polar coordinate, compatibility equation, relationship between stress components in polar and rectangular coordinate system, stress distribution about symmetric axis.

UNIT 3: Applications of theory of elasticity

Stress analysis of cantilever subjected to end point load, Stress analysis of simply supported beam subjected to UDL, Stress analysis of cylinder subjected to internal & external pressure, Pure bending of curved beams.

UNIT 4: Photoelasticity

Two-Dimensional Photo elasticity - Introduction to basic optics related to photo elasticity, stress-optic law, plane & circular polariscope arrangements, effect of stressed model in plane & circular polariscope, Isoclinic & Isochromatic, calibration of photo elastic material (determination of fringe constant using circular disk), photo elastic materials & their properties. Casting & preparation of photo elastic models, Tardy's compensation technique. Separation techniques like, shear difference, oblique incidence & electrical analogy.

Introduction to 3 – D photo elasticity - Phenomenon of Stress freezing, Stress freezing cycle, Introduction to Reflection polariscope, fringe sharpening & fringe multiplication.

UNIT 5: Strain Gages

[7 Hours]

Strain gage technique for stress & strain analysis - Introduction to electrical resistant strain gage, gage factor,

[7 Hours]

Wheatstone bridge circuit, bridge balance, output voltage of Wheatstone bridge, various bridge configurations, determination of principle strains & stresses using strain rosettes. Introduction to Strain measurement on rotating components.

Grid technique of strain analysis, Brittle coating method for stress & strain analysis.

Text Books:

- 1. Theory of Elasticity, S.P. Timoshenko, Mc-Graw Hill.
- 2. Experimental Stress Analysis, Daily & Riley, Mc-Graw Hill.

Reference Books:

- 1. Experimental Stress Analysis, L.S. Srinath, TMH.
- 2. Experimental Stress Analysis, T.K. Ray, S. Chand publications.
- 3. Theory of Elasticity, Sadhu Singh, Khanna publishers.
- 4. Experimental Stress Analysis, U.C. Jindal, Pearson publications.
- 5. Experimental Stress Analysis, Sadhu Singh. Khanna publishers.
- 6. Experimental Stress Analysis, Adel Mubeen, Dhanpat Rai & Sons.

Open Elective-III

Sustainable Development

BTMOE704A	OEC3	Sustainable Development	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the difference between development and sustainable development
CO2	Explain challenges of sustainable development and climate change
CO3	Explain sustainable development indicators
CO4	Analyze sustainable energy options
CO5	Understand social and economic aspects of sustainable development

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2	3		2	3	3	3	2	2		2		
CO2	1	1	3	1	2	3	3	3	2	2		2		
CO3	2	1	1				3	2		1		2		
CO4	3	3			2	3	3	2				1		

Dr. Babasaheb Ambedkar Technological University, Lonere													
	CO5		3			2	3	2				1	

Course Contents:

Unit 1: Introduction

Status of environment, Environmental, Social and Economic issues, Need for sustainability, nine ways to achieve sustainability, population, resources, development and environment.

Unit 2: Global Warming and Climate Change

Global Warming and climate Change since industrial revolution, Greenhouse gas emission, greenhouse effect, Renewable energy, etc.

Unit 3: Challenges of Sustainable Development and Global Environmental Issues[07 Hours]

Concept of sustainability, Factors governing sustainable development, Linkages among sustainable development, Environment and poverty, Determinants of sustainable development, Case studies on sustainable development, Population, income and urbanization Health care, Food, fisheries and agriculture, Materials and energy flows.

Unit 4: Sustainable Development Indicators and Environmental Assessment [07 Hours]

Need for indicators, Statistical procedures Aggregating indicators, Use of principal component analysis, Three environmental quality indices.

Environmental Assessment

National environmental policy act of 1969, Environmental Impact Assessment, Project categories based on environmental impacts, Impact identification methods, Environmental impact assessment process.

Unit 5: Environmental Management and Social Dimensions

Revisiting complex issues, Sector policies concerning the environment, Institutional framework for environmental management, Achievements in environmental management, People's perception of the environment, Participatory development, NGOs, Gender and development, Indigenous peoples, Social exclusion and analysis.

Texts:

- 1. J. Sayer, B. Campbell, "The Science of Sustainable Development: Local Livelihoods and the Global Environment", Biological Conservation, Restoration and Sustainability, Cambridge University Press, London, 2003.
- 2. J. Kirkby, P. O"Keefe, Timberlake, "Sustainable Development", Earth scan Publication, London, 1993.
- 3. Peter P. Rogers, Kazi F. Jalal, John A. Boyd, "An introduction to sustainable development", Glen Educational Foundation, 2008.

References:

- 1. Jennifer A. Elliott, "An introduction to sustainable development". London: Routledge: Taylor and Francis group, 2001.
- 2. Low, N. "Global ethics and environment", London, Rout ledge, 1999.
- 3. Douglas Muschett, "Principles of Sustainable Development", St. Lucie Press, 1997.

Entrepreneurship Development

BTMOE704B	OEC 4	Entrepreneurship Development	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
------------------	---------------------

[07 Hours]

[07Hours]

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)	
---------------------	---	--

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	
COI	enlarge the supply of entrepreneurs for rapid industrial development
CO2	Develop small and medium enterprises sector which is necessary for generation of
02	employment
CO3	Industrialize rural and backward regions
CO4	Provide gainful self-employment to educated young men and women
CO5	Diversify the sources of entrepreneurship.

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1									2					
CO2									2					
CO3											2			
CO4											2	3		
CO5												3		

Course Contents:

Unit 1: Introduction to Entrepreneurship

Evolution of the Concept of Entrepreneur Functions of Entrepreneur, Characteristics of an Entrepreneur, Types of Entrepreneur, Concept of Entrepreneurship, Growth of Entrepreneurship, Barriers of Entrepreneurship, Role of Entrepreneurship in India, Entrepreneurial Motivation, Major Entrepreneurial Competencies.

Unit 2: Small Scale Industries (SSI)

Characteristics of Small Scale Industry, Basis for Classification of Small Scale Industry: Resource Based, Demand Based, Ancillary, Subsidiary Based or Sub-Controlled Type, Technology Based etc. Government Policy for Small Scale Industry, Growth of SSI in Developing Countries, Role of National and State Agencies Providing Assistance To SSI's, Relationship between Small and Big Industries, Ownership Structure, Registration of SSI.

Unit 3: Project Identification and Project Formulation

Meaning of Project, Project Identification and Selection, Elements of Project Formulation, Concept and Significance of Project Formulation, Meaning, Significance and Contents of Project Report.

Accounting for Small Enterprises: Objective of Accounting, Accounting Process, Journal, Ledger, Preparation of Balance Sheet and Assessment of Economic Viability

Unit 4: Project Appraisal

Concept of Project Appraisal, Project Appraisal Methods, Cash Flows as Costs and Benefits, Payback Period, Average Rate of Return. Discounted Cash Flow Techniques, Working Capital Management, Cost of Capital, Financing of Enterprises, Project Sickness & Corrective Measures.

Unit 5: Marketing Management

Market Segmentation, Marketing Mix, and Packaging, Pricing Policy, Distribution Channels, and Govt. Purchases from

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

SSIS.

Laws Concerning Entrepreneur: Income Tax Laws, Excise Duty ,The Central Sales Tax Act, Professional Tax, Value Added Tax (VAT), Service Tax, The Workmen Compensation Act, The Minimum Wages Act, The Maternity Benefit Act, The Payment of Bonus Act

Institutional Support

Government Policies for Small Scale Entrepreneurs, Institutional Setup, District Industries Centers, Industrial Estates, SIDCO, NSIC, Directorate of Industries, Commercial Banks, New Entrepreneurial Development Agencies. **Women Entrepreneurship:** Growth, Problems, Recent Trends.

References:

- 1. S. S. Khanka, "Entrepreneurial Development", S. Chand and Company Ltd.
- 2. C. B. Gupta, N. P. Srinivasan, "Entrepreneurship Development in India", S. Chand and Sons.
- 3. B. Badhai, "Entrepreneurship Development Programme", Mansell Publishing Ltd.
- 4. V. Desai, "Dynamics of Entrepreneurial Development and Management", Hindustan Publishing House.
- 5. David H. Holt, "Entrepreneurship", PHI Learning.
- 6. Roy Rajeev, "Entrepreneurship", Oxford University Press.

Plant Maintenance

BTMOE704C	OEC3	Plant Maintenance	3-0-0	3Credits
Teaching Scheme:		Examination Scheme:		
Lecture: 3 hrs/week	ζ.	Continuous Assessmen Mid Semester Exam: 20 End Semester Exam: 60	t: 20 Marks) Marks) Marks (Dura	tion 03 hrs)

Objectives: To exemplify different types of plants and its function and analyse the principles used in plants maintenance. To understand various basic aspects related to running of industry the safety methods in plants. This course provides problems based techniques related with location, layout, maintenance, replacement of machines, etc. **Pre-Requisites:** None

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize and enlist probable failures in mechanical elements.									
CO2	Dismantle, assemble and align mechanisms in sequential order for given assembly.									
CO3	Compare maintenance practices like on-line, shut down, corrosion, productive and preventive maintenance.									
CO4	Analyze economics of plants and list factors affecting the maintenance of a plant.									
CO5	Correlate the linkages between different maintenance aspects and how they impact on overall maintenance effectiveness.									
CO6	Analyze different maintenance techniques and select an appropriate technique for a particular plant.									

Mapping of course outcomes with program outcomes

		Program Outcomes											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1		2	2		1	2	1	1	2			2	
CO2	2			1	1	2	2					2	

Di Dabasaneb Ambeukar Teemiological University, Lonere													
CO3	2	2	1	1	1		1	1	1				
CO4	1	1		2	1	2	1		2		1	2	
CO5	2	2			1	2	2				1	2	
CO6	1					1					1	1	

Course Contents:

Unit 1: Introduction

Introduction to concept of maintenance, Type of maintenance; Preventive, Productive, corrective, online, shut down and their significance.

Unit 2: Preventive Maintenance

Preventive maintenance and its importance, Repair cycle, systematic recording, preventive maintenance, Programming and types of schedules, Manpower and machine planning, Lubrication methods and practice, Color code schedule.

Unit 3: Online Maintenance and Shut down Maintenance

On-line maintenance, attending to joints, Valves, Pumps and other equipment's leakages,

Making shaft arrangement, stand-by unit, repairing damage to insulation, etc. without stopping the plant, attending faulty equipment, Fault finding and troubleshoots.

Shut down Maintenance

Shut down maintenance, Economic aspects of timing, duration of Timing and duration of shut down maintenance, Execution by using PERT and CPM.

Unit 5: Maintenance of Mechanical Equipment

Maintenance of major equipment like boiler, furnaces, kilns, shells and tube heat exchangers, pump and compressor, Towers, Cooling vessels, Valves piping.

Unit 6: Plant Condition Monitoring

Plant condition monitoring systems, instrumentation, Data collection and analysis, life expectancy and maintenance scheduling. The economics of maintenance management.

Text:

1. Lindley R. Hinggin, L.C. Morrow, "Maintenance Engineering Handbook", Tata McGraw Hill Book Company.

References:

1. Duncan C. Richardson, PE, "Plant Equipment and Maintenance Engineering Handbook", McGraw Hill Education, New York, Chicago, 2014.

Open Elective-IV Engineering Economics

BTMOE705A	OEC4	Engineering Economics	3-0-0	3 Credits			
Teaching Scheme:Examination Scheme:							
Lecture: 3 hrs/we	Lecture: 3 hrs/week Continuous Assessment: 20 Marks						
		Mid Semester Exam:	Mid Semester Exam: 20 Marks				
	50 Marks (Dur	ration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Apply the appropriate engineering economics analysis method(s) for problem solving: present worth, annual cost, rate-of-return, payback, break-even, Benefit-cost ratio.								
CO2	Evaluate the cost effectiveness of individual engineering projects using the methods learned and draw inferences for the investment decisions.								
CO3	Compare the life cycle cost of multiple projects using the methods learned, and make a quantitative decision between alternate facilities and/or systems.								
CO4	Compute the depreciation of an asset using standard Depreciation techniques to assess its impact on present or future value.								
CO5	Apply all mathematical approach models covered in solving engineering economics problems: mathematical formulas, interest factors from tables, Excel functions and graphs. Estimate reasonableness of the results.								
CO6	Examine and evaluate probabilistic risk assessment methods.								
CO7	Compare the differences in economic analysis between the private and public sectors. Recognize the limits of mathematical models for factors hard to quantify.								
CO8	Develop and demonstrate teamwork, project management, and professional communications skills								

Mapping of course outcomes with program outcomes

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											3	
CO2											3	
CO3											3	
CO4											3	
CO5					3						3	
CO6											3	
CO7											3	
CO8									2		3	

Course Contents:

Unit 1: Introduction to Economics

Introduction to Economics: Flow in an economy, Law of supply and demand, Concept of Engineering Economics: Engineering efficiency, Economic efficiency, Scope of engineering economics - Element of costs, Marginal cost, Marginal Revenue, Sunk cost, Opportunity cost, Break-even analysis: V ratio, Elementary economic Analysis: Material selection for product Design selection for a product, Process planning.

Unit 2: Value Engineering

Make or buy decision, Value engineering: Function, aims, and Value engineering procedure. Interest formulae and their applications: Time value of money, Single payment compound amount factor, Single payment present worth factor, Equal payment series sinking fund factor, Equal payment series payment Present worth factor: equal payment series capital recovery factor:

Uniform gradient series annual equivalent factor, Effective interest rate, Examples in all the methods. [07 Hours]

Unit 3: Cash Flow

Methods of comparison of alternatives: present worth method (Revenue dominated cash flow diagram), Future worth method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), Annual equivalent method (Revenue dominated cash flow diagram, cost dominated cash flow diagram), rate of return method, Examples in all the methods.

Unit 4: Replacement and Maintenance Analysis

[07 Hours]

[07 Hours]

Replacement and Maintenance analysis: Types of maintenance, types of replacement problem, determination of economic life of an asset, Replacement of an asset with a new asset: capital recovery with return and concept of challenger and defender, Simple probabilistic model for items which fail completely.

[07 Hours]

Unit 5: Depreciation and Evaluation of Public Alternatives

Depreciation: Introduction, Straight line method of depreciation, declining balance method of depreciation, sum of the years digits method of depreciation, sinking fund method of depreciation/annuity method of depreciation, service output method of depreciation-

Evaluation of Public Alternatives

Introduction, Examples, Inflation adjusted decisions: procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.

Texts:

1. PanneerSelvam R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.

References:

- 1. Chan S. Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald G. Newman, Jerome P. Lavelle, "Engineering Economics and analysis", Engineering Press, Texas, 2010.
- 3. E. P. Degarmo, W. G. Sullivan and J. R. Canada, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A. Khan, "Engineering Economy", Dorling Kindersley, 2012

Biology for Engineers

BTMOE705B	OEC 4	Biology for Engineers	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain origin of life and Evolution, Cells, Biomolecules-Lipids
CO2	Understand Biomolecules
CO3	Understand Cell structure and function and cell cycle
CO4	Explain Mendelian genetics
CO5	Understand and Explain DNA structure, DNA replication, Transcription, Translation

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	3		1		1			1		1	
CO2	1	2	3		1		1			1		1	
CO3	1	2	3		1		1			1		1	
CO4	1	2	3		1		1			1		1	
CO5	1	2	3		1		1			1		1	

Course Contents:

Unit 1: Introduction Origin of life and Evolution, Cells, Biomolecules-Lipids	[07 Hours]
Unit 2: Biomolecules Carbohydrates, water, Amino acids and proteins, Enzymes, Nucleotides	[07 Hours]
Unit 3: Cell structure Cell structure and function, Prokaryotes, Eukaryotes	[07 Hours]
Unit 4: Cell cycle Cell division, mitosis, meiosis, culture growth,	[07 Hours]
Unit 5: Genetics and DNA	[07 Hours]

Mendelian genetics, genetic disorders, Mendelian inheritance principle, pedigree analysis, Non- Mendelian inheritance **DNA**

Chromatin, DNA structure, DNA replication, Transcription, Translation.

Texts:

1. Arthur T. Johnson, "Biology for Engineers", CRC Press.

References:

- 1. N. A. Campbell, J. B. Reece, "Biology", International edition, Benjamin Cummings, New York, 7th edition or later, 2007 or later.
- 2. G. Karp, "Cell and Molecular Biology: Concepts and Experiments", Wiley, New York, 7th edition, 2013.

Intellectual Property Rights

BTMOE705C C	OEC4	Intellectual Property Rights	3-0-0	3 Credits
-------------	------	------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	State the basic fundamental terms such as copyrights, Patents, Trademarks etc.,
CO2	Interpret Laws of copy-rights, Patents, Trademarks and various IP registration Processes.
CO3	Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms commercial strategies.
CO4	Create awareness at all levels (research and innovation) to develop patentable technologies.
CO5	Apply trade mark law, copy right law, patent law and also carry out intellectual property audits.
CO6	Manage and safeguard the intellectual property and protect it against unauthorized use.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2								1				
CO3		1						1				
CO4										1		
CO5	1							1				
CO6								2				

Mapping of course outcomes with program outcomes

Course Contents:

Unit 1: Introduction to Intellectual Property

Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

Unit 2: Trade Marks

Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

Unit 3: Law of Copy Rights

Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Unit 4: Law of Patents and Trade Secrets

Foundation of patent law, patent searching process, ownership rights and transfer.

Trade Secrets

Trade secretes law, determination of trade secretes status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

Unit 5: New Development of Intellectual Property

New developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international trade mark law, copy right law, international patent law, and international development in trade secrets law.

Texts:

- 1. Deborah, E. Bouchoux, "Intellectual Property Right", Cengage learning.
- 2. Prabuddha Ganguli, "Intellectual property right: Unleashing the knowledge economy", Tata McGraw Hill Publishing Company Ltd.

References:

- 1. Ajit Parulekar, Sarita D'Souza, "Indian Patents Law-Legal and Business implications", Macmillan India Ltd., 2006.
- 2. B. L. Wadhera, "Law related to patents, Trademarks, Copyrights, Designs and Geographical indications", Universal law Publishing Pvt. Ltd., India, 2000.
- 3. P. Narayanan, "Law of copyright and Industrial Designs", Eastern Law house, Delhi, 2010.

Mechanical Engineering Lab –V

BTMCL706	PCC16		0-0-4	2 Credit
----------	-------	--	-------	----------

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	End Semester Exam: 40 Marks

Group A (Mechatronics Lab)

List of Practical's/Experiments/Assignments (Any SIX)

- 1. Study and demonstration of various types of sensors
- 2. Speed control of various types of Electrical Motors
- 3. MinimumtwocircuitsonPneumaticstobedevelopedonPneumatictrainerkit
- 4. Minimum two circuits on Electro-Pneumatics to be developed on Electro- Pneumatic trainer kit
- 5. Minimum two circuits on Hydraulics and Electro-hydraulics to be developed on Hydraulic trainer kit
- 6. Programming of Microprocessor and Microcontroller
- 7. Programming on PLC
- 8. Demonstration of Process control such as temperature, level, flow, etc. control using PID controller

Group B

Perform any THREE Practical's/ Assignments on Elective – V

SEMESTER VII Mini Project

BTMP707	Mini Project		PROJ-6	0L-0T-6P	3 Credits	
Teaching Sch	eme:	Examination Second	cheme:			
Practical: 6 hrs/week		Continuous Asso Mid Semester E	Continuous Assessment: 30 Marks Mid Semester Exam:			

IT – 3

End Semester Exam: 20 Marks

BTMI608	IT – 3 Evaluation	PROJ-7	0L-0T-0P	1 Credits
(IT – 3)				

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

SEMESTER VIII Project /Internship

BTMP801/	Project / Internship	PROJ-8	0L-0T-16P	8 Credits
BTMI801				

Teaching Scheme:	Examination Scheme:
Practical: 16 hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks

- BTMP707 Mini Project and BTMP801/ BTMI801 Project /Internship are independent and allotment will also be done independently in respective semester.
- BTMP707 Mini Project will be done in-house only.
- Evaluation of both will be done independently as per the time schedule in AC.
- In case student(s) choose in-house project, it may be an extension of the Mini Project, however, Mini Project should be completed in all respect in semester VII itself.